Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hình chóp ngũ giác có bao nhiêu cạnh?

    Hình chóp ngũ giác có 10 cạnh.

  • Câu 2: Vận dụng cao

    Dãy số (un) xác định bởi \left\{ \begin{matrix}u_{1} = \dfrac{1}{3} \\u_{n + 1} = \dfrac{n + 1}{3n}.u_{n} \\\end{matrix} ight. và dãy số (vn) xác định bởi \left\{ \begin{matrix}v_{1} = u_{1} \\v_{n + 1} = v_{n} + \dfrac{u_{n}}{n} \\\end{matrix} ight.. Tính \lim
v_{n}.

    Ta có:

    u_{n + 1} = \frac{n + 1}{3n}.u_{n}
\Leftrightarrow \frac{u_{n + 1}}{n + 1} =
\frac{1}{3}.\frac{u_{n}}{3n} nên dãy \left( \frac{u_{n}}{n} ight)là cấp số nhân với công bội q =
\frac{1}{3}

    Lại có: v_{n + 1} = v_{n} +
\frac{u_{n}}{n} \Leftrightarrow v_{n + 1} - v_{n} =
\frac{u_{n}}{n}, khi đó ta có:

    \begin{matrix}
  {v_2} - {v_1} = \dfrac{{{u_1}}}{1} \hfill \\
  {v_3} - {v_2} = \dfrac{{{u_2}}}{2} \hfill \\
  ..... \hfill \\
  {v_{n + 1}} - {v_n} = \dfrac{{{u_n}}}{n} \hfill \\ 
\end{matrix}

    Cộng vế theo vế ta được

    \begin{matrix}
  {v_{n + 1}} - {v_n} = \dfrac{{{u_1}}}{1} + \dfrac{{{u_2}}}{2} + ... + \dfrac{{{u_n}}}{n} \hfill \\
   = \dfrac{{{u_1}\left[ {1 - {{\left( {\dfrac{1}{3}} ight)}^n}} ight]}}{{1 - \dfrac{1}{3}}} \hfill \\ 
\end{matrix}

    Do đó: v_{n + 1} =
\frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n} ightbrack
+ v_{1} = \frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n}
ightbrack + \frac{1}{3}

    => \lim v_{n} = \lim\left\{
\frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n} ightbrack
+ \frac{1}{3} ight\} = \frac{5}{6}

  • Câu 3: Thông hiểu

    Cho phương trình \cos^{2}2x = m + 1 với m là tham số. Tìm tất cả các giá trị của tham số m để phương trình đã cho có nghiệm?

    Ta có:

    0 \leq \cos^{2}2x \leq 1 \Leftrightarrow0 \leq m + 1 \leq 1

    \Leftrightarrow - 1 \leq m \leq
0 thì phương trình có nghiệm.

  • Câu 4: Thông hiểu

    Cho dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{1}{n^{2} + n}. Khẳng định nào sau đây sai?

    Ta có:

    \dfrac{u_{n}}{u_{n + 1}} =\dfrac{\dfrac{1}{n^{2} + n}}{\dfrac{1}{(n + 1)^{2} + (n + 1)}}

    = \frac{n(n - 1)}{n(n + 1)} = \frac{n -
1}{n + 1}

    Với \forall n \in \mathbb{N}^{*},n >
1 ta thấy \frac{n - 1}{n + 1} = 1 -
\frac{2}{n + 1} < 1

    Suy ra dãy số đã cho là dãy số giảm.

  • Câu 5: Thông hiểu

    Khẳng định nào sau đây đúng khi nói về mặt phẳng?

    Theo cách xác định mặt phẳng thì “Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau”.

  • Câu 6: Nhận biết

    Chọn công thức đúng trong các công thức cho sau đây?

    Công thức đúng là: \sin2\alpha =\sin\alpha.\cos\alpha

  • Câu 7: Nhận biết

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

  • Câu 8: Thông hiểu

    Hàm số y = \sin \frac{x}{5} có chu kì bằng bao nhiêu?

     Chu kì của hàm số y = \sin \frac{x}{5} là: T = \dfrac{{2\pi }}{{\left| {\dfrac{1}{5}} ight|}} = 10\pi

  • Câu 9: Vận dụng

    Cho hình chóp S.ABCG,K lần lượt là trọng tâm các tam giác ABCSBC. Gọi E là trung điểm cạnh AC. Mặt phẳng (GEK) cắt SC tại M. Tỉ số \frac{MS}{MC} bằng:

    Hình vẽ minh họa

    Ta có: G là trọng tâm tam giác ABC E là trung điểm của AC.

    => B,G,E thẳng hàng hay (GKE) \equiv (EBK)

    Ta lại có K là trọng tâm tam giác SBC nên BK kéo dài cắt SC tại trung điểm của SC.

    Vậy M là trung điểm của SC suy ra \frac{MS}{MC} = 1

  • Câu 10: Thông hiểu

    Tính giới hạn của hàm số f(x) = \frac{\sqrt{4x^{2} + 1}}{x + 1} khi x \mapsto - \infty.

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
\lim_{x ightarrow - \infty}\frac{\sqrt{4x^{2} + 1}}{x +
1}

    = \lim_{x ightarrow -\infty}\dfrac{|x|\sqrt{4 + \dfrac{1}{x^{2}}}}{x + 1} = \lim_{x ightarrow- \infty}\dfrac{- x\sqrt{4 + \dfrac{1}{x^{2}}}}{x + 1}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{4 + \dfrac{1}{x^{2}}}}{1 + \dfrac{1}{x}} = \dfrac{- \sqrt{4}}{1} = -2

  • Câu 11: Nhận biết

    Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi u_{1} = - 5;d = 3.

    Theo bài ra ta có:

    S_{100} = \frac{\left( 2u_{1} + 99d
ight).100}{2} = 14350

  • Câu 12: Thông hiểu

    Nghiệm của phương trình sinx + cosx = 1 là:

     \begin{matrix}  \sin x + \cos x = 1 \hfill \\   \Leftrightarrow \sqrt 2 \sin \left( {x + \dfrac{\pi }{4}} ight) = 1 \hfill \\   \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} ight) = \dfrac{1}{{\sqrt 2 }} \hfill \\   \Leftrightarrow \sin \left( {x + \dfrac{\pi }{4}} ight) = \sin \left( {\dfrac{\pi }{4}} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x + \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi } \\   {x + \dfrac{\pi }{4} = \pi  - \dfrac{\pi }{4} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{4} - \dfrac{\pi }{4} + k2\pi } \\   {x = \pi  - \dfrac{\pi }{4} - \dfrac{\pi }{4} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k2\pi } \\   {x = \dfrac{\pi }{2} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

     Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2

    => u_n=2^n là cấp số nhân

  • Câu 14: Vận dụng

    Một chiếc đồng hồ đánh chuông, kể từ thời điểm 0 (giờ) thì sau mỗi giờ thì số tiếng chuông được đánh đúng bằng số giờ mà đồng hồ chỉ tại thời điểm đánh chuông. Hỏi một ngày đồng hồ đó đánh bao nhiêu tiếng chuông?

    Kể từ lúc 1 (giờ) đến 24 (giời) số tiếng chuông được đánh lập thành cấp số cộng có 24 số hạng với u_{1} =
1, công sai d = 1.

    => Số tiếng chuông được đánh trong 1 ngày là:

    \Rightarrow S = S_{24} =
\frac{24}{2}.\left( u_{1} + u_{24} ight)

    \Rightarrow S_{24} = 12.(1 + 24) =
300

  • Câu 15: Vận dụng

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Đáp án là:

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Tại x = 0,7 ta có:

    T(0,7) = 10000 + a.

    \lim_{x ightarrow 0,7^{-}}T(x) =
\lim_{x ightarrow 0,7^{-}}10\ 000 + a = 10\ 000 + a

     \lim_{x ightarrow 0,7^{+}}T(x) = \lim_{x
ightarrow 0,7^{+}}\left( 11\ 000 + 15100(x - 0,7) ight) = 11\
000.

    Hàm số liên tục tại x = 0,7 thì \lim_{x ightarrow 0,7^{-}}T(x) = \lim_{x
ightarrow 0,7^{+}}T(x) = T(0,7) \Leftrightarrow a = 1000.

  • Câu 16: Nhận biết

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm của AB,CD, điểm G là trọng tâm tam giác BCD. Khi đó giao điểm của MG và mặt phẳng (ACD) là:

    Hình vẽ minh họa:

    Trong tam giác ABN ta có: \frac{BM}{AB} < \frac{BG}{BN} \Rightarrow P =
MG \cap AN

    Vậy P = MG \cap (ACD)

  • Câu 17: Thông hiểu

    Giới hạn cần tìm của E =
\lim\frac{\sqrt{n^{3} + 2n} + 1}{n + 2} bằng:

    E = \lim\frac{\sqrt{n^{3} + 2n} + 1}{n +
2} = + \infty

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Tìm thiết diện của (MAB) với hình chóp.

    Do (MAB) chứa AB // CD, nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB. Đường thẳng này cắt SD tại điểm N.

    Vậy thiết diện của (MAB) với hình chóp là tứ giác ABMN, với N là giao điểm của SD với đường thẳng đi qua M và song song với AB.

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNC) và (ABD) là đường nào trong các đường thẳng sau đây?

    Hình vẽ minh họa

    Tìm giao tuyến giữa hai mặt phẳng

    Xét tam giác SAB có:

    M và N lần lượt là trung điểm của SA và SB

    => MN là đường trung bình của tam giác SAB

    MN // AB

    AB // CD (ABCD là hình bình hành)

    => MN // CD

    Mặt phẳng (MNC) và (ABD) (hay (ABCD)) lần lượt chứa hai đường thẳng MN và CD song song với nhau và điểm C chung

    => Giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung C và song song với AB là đường thẳng CD

    Hay (MNC) \cap (ABD) =CD

  • Câu 20: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight). Xác định u_{15} biết rằng u_{2} = 3;u_{4} = 7?

    Ta có:

    u_{4} - u_{2} = u_{1} + 3d - \left(
u_{1} + d ight) = 2d = 4 \Rightarrow d = 2

    Khi đó: u_{1} = u_{2} - d = 3 - 2 =
1

    Suy ra u_{15} = u_{1} + 17d = 1 + 17.2 =
35

  • Câu 21: Nhận biết

    Mệnh đề nào trong các mệnh đề sau đây là sai?

    Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy.

  • Câu 22: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau:

    Theo nội dung định lý tìm giới hạn, ta có:

    Nếu \lim u_{n} = 0, thì \lim{|u_{n}|} = 0

  • Câu 23: Thông hiểu

    Cho \sin x +
\cos x = \sqrt{2}. Tính giá trị \sin2x bằng

    Ta có:

    \sin x + \cos x = \sqrt{2}

    \Rightarrow \left( \sin x + \cos x
ight)^{2} = 2

    \Rightarrow 1 + 2\sin x.\cos x =2

    \Rightarrow \sin2x = 1

  • Câu 24: Nhận biết

    Hỏi x = \frac{{7\pi }}{3} là một nghiệm của phương trình nào sau đây?

     Với x = \frac{{7\pi }}{3}, suy ra \left\{ \begin{gathered}  \sin x = \sin \frac{{7\pi }}{3} = \frac{{\sqrt 3 }}{2} \hfill \\  \cos x = \cos \frac{{7\pi }}{3} = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  2\sin x - \sqrt 3  = 0 \hfill \\  2\cos x - 1 = 0 \hfill \\ \end{gathered}  ight.

  • Câu 25: Nhận biết

    Giá trị của \lim\frac{\sqrt{n + 1}}{n + 2} bằng:

    Với mọi số thực a>0 nhỏ tùy ý, ta chọn n_{a} = \left\lbrack \frac{1}{a^{2}} - 1
ightbrack + 1

    Ta có:

    \frac{\sqrt{n + 1}}{n + 2} <
\frac{1}{\sqrt{n + 1}} < a  với mọi n > n_{a}

    Suy ra \lim\frac{\sqrt{n + 1}}{n + 2} =
0

  • Câu 26: Vận dụng cao

    Tổng Sn = 1.3 + 2.5 + 3.7 + … + n(2n+1) có công thức thu gọn là?

    Sn = Σi = 1ni(2i+1) = Σi = 1n (2i2+1)

    = 2\Sigma_{i = 1}^{n}\mspace{2mu} i^{2}
+ \Sigma_{i = 1}^{n}\mspace{2mu} i = \frac{2n(n + 1)(2n +
1)}{6}

    = \frac{n(n + 1)}{2} = \frac{n(n + 1)(4n
+ 5)}{6}

  • Câu 27: Thông hiểu

    Cho tứ diện ABCD. Trên các cạnh AD,BC theo thứ tự lấy các điểm M,N sao cho AD = 3AM,CB = 3CN. Giả sử mặt phẳng (\alpha) chứa MN và song song với CD. Tìm các giao tuyến của tứ diện và mặt phẳng (\alpha). Xác định hình tạo bởi các giao tuyến này.

    Hình vẽ minh họa:

    Qua M, kẻ đường thẳng song song với CD cắt AC tại E.

    Qua N, kẻ đường thẳng song song với CD cắt BD tại F.

    Khi đó ME // NF // CD và (\alpha) \equiv(MENF)

    Ta có: \left\{ \begin{matrix}\dfrac{NF}{CD} = \dfrac{BN}{BC} = \dfrac{2}{3} \\\dfrac{ME}{CD} = \dfrac{AM}{AD} = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow NF = 2ME

    Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng (\alpha) là hình thang MENF với đáy lớn gấp đôi đáy nhỏ.

  • Câu 28: Thông hiểu

    Cho cấp số nhân (un) có {u_2} = \frac{1}{4};{u_5} = 16. Tìm công bội q và số hạng đầu u1.

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_2} = \dfrac{1}{4}} \\   {{u_5} = 16} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}.q = \dfrac{1}{4}} \\   {{u_1}.{q^4} = 16} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{q^3} = 64} \\   {{u_1}.{q^4} = 16} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {q = 4} \\   {{u_1} = \dfrac{1}{{16}}} \end{array}} ight.

  • Câu 29: Nhận biết

    Tính giới hạn \lim_{x ightarrow
1}\frac{2x^{3} + 3x - 1}{x^{2} + 1}ta được kết quả bằng

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{3} + 3x
- 1}{x^{2} + 1}

    = \frac{2.1^{3} + 3.1 - 1}{1^{2} + 1} =
\frac{4}{2} = 2.

  • Câu 30: Nhận biết

    Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2\left\{ \begin{matrix}
u_{n + 1} = u_{n}^{2} + 2v_{n}^{2} \\
v_{n = 1} = 2u_{n} \cdot v_{n} \\
\end{matrix} ight. với n ≥ 2. Công thức tổng quát của hai dãy (un)(vn) là?

    Chứng minh u_{n} - \sqrt{2}v_{n} =
(\sqrt{2} - 1)^{2n}

    Ta có u_{n} = \sqrt{2}v_{n} = u_{n -
1}^{2} + 2v_{n - 1}^{2} - 2\sqrt{2}u_{n - 1}v_{n - 1} = \left( u_{n - 1}
- \sqrt{2}v_{n - 1} ight)^{2}

    Mặt khác u_{1} - \sqrt{2}v_{1} = 3 -
2\sqrt{2} = (\sqrt{2} - 1)^{2} nên (1) đúng với n = 1 Giả sử u_{k} - \sqrt{2}v_{k} = (\sqrt{2} -
1)^{2k}, ta có u_{k - 1} -
\sqrt{2}v_{k + 1} = \left( u - \sqrt{2}v_{k} ight)^{2} = (\sqrt{2} -
1)^{2k + 1}

    Vậy (1) đúng với n ≥ 1

    Ta có u_{n} + \sqrt{2}v_{n} = (\sqrt{2} +
1)^{2^{n}}

    Do đó ta suy ra:

    \left\{ \begin{matrix}
2u_{n} = (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} - 1)^{2^{n}} \\
2\sqrt{2}v_{n} = (\sqrt{2} + 1)^{2^{n}} - (\sqrt{2} - 1)^{2^{n}} \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{n} = \frac{1}{2}\left\lbrack (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} -
1)^{2^{n}} ightbrack \\
v_{n} = \frac{1}{2\sqrt{2}}\left\lbrack (\sqrt{2} + 1)^{2^{n}} -
(\sqrt{2} - 1)^{2^{n}} ightbrack \\
\end{matrix} ight.

  • Câu 31: Vận dụng

    Cho cấp số nhân (un) có {S_2} = 4;{S_3} = 13. Biết {u_2} < 0. Tính {S_5}?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{S_2} = 4} \\   {{S_3} = 13} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{u_1}\left( {1 - {q^2}} ight)}}{{1 - q}} = 4} \\   {\dfrac{{{u_1}\left( {1 - {q^3}} ight)}}{{1 - q}} = 13} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}\left( {1 + q} ight) = 4} \\   {{u_1}\left( {1 + q + {q^2}} ight) = 13} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{1 + q}}{{1 + q + {q^2}}} = \dfrac{4}{{13}}\left( * ight)} \\   {{u_1} = \dfrac{4}{{1 + q}}\left( {**} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Xét (*)

    \begin{matrix}  \dfrac{{1 + q}}{{1 + q + {q^2}}} = \dfrac{4}{{13}}a \hfill \\   \Leftrightarrow 4{q^2} - 9q - 9 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {q = 3 \Rightarrow {u_1} = 1 \Rightarrow {u_2} = {u_1}.q = 3 > 0\left( L ight)} \\   {q =  - \dfrac{3}{4} \Rightarrow {u_1} = 16 \Rightarrow {u_2} = {u_1}.q =  - 12 < 0\left( {tm} ight)} \end{array}} ight. \hfill \\   \Rightarrow {S_5} = \dfrac{{{u_1}\left( {1 - {q^5}} ight)}}{{1 - q}} = \dfrac{{16.\left[ {1 - {{\left( {\dfrac{{ - 3}}{4}} ight)}^5}} ight]}}{{1 + \dfrac{3}{4}}} = \dfrac{{181}}{{16}} \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABCD. Trung điểm của các cạnh SA,SB,SC,SD lần lượt là M,N,P,Q. Chọn khẳng định đúng.

    Hình vẽ minh họa

    Ta có:

    (MNP)//(ABCD) \Rightarrow
(MNP)//(ABD)

    MP//ACAC cắt BD nên khẳng định MP//BD sai.

    MN cắt (SAD) tại M nên khẳng định MN//(SAD) sai.

    MP cắt (SBD) tại trung điểm của MP nên khẳng định MP//(SBD) sai.

  • Câu 33: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 34: Vận dụng

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt{3} \cos x + m - 1 = 0 có nghiệm:

     Ta có:

    \sqrt 3 \cos x + m - 1 = 0 \Rightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}

    Mặt khác \cos x \in \left[ { - 1;1} ight]

    Vậy để phương trình lượng giác có nghiệm thì

     \begin{matrix}   \Rightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3  \hfill \\  m \in \mathbb{Z} \Rightarrow m \in \left\{ {0;1;2} ight\} \hfill \\ \end{matrix}

    Vậy có 3 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.

  • Câu 35: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos6a = \cos^{2}3a -\sin^{2}3a

    = 2\cos^{2}3a - 1 = 1 -2\sin^{2}3a

  • Câu 36: Nhận biết

    Cho hàm số f(x) xác định trên tập số thực và có đồ thị như hình vẽ:

    Hỏi hàm số f(x) không liên tục tại điểm nào sau đây?

    Quan sát đồ thị hàm số ta thấy: \left\{
\begin{matrix}
\lim_{x ightarrow 1^{-}}f(x) = 3 \\
\lim_{x ightarrow 1^{+}}f(x) = 0 \\
\end{matrix} ight.

    Vậy \lim_{x ightarrow 1^{-}}f(x) eq
\lim_{x ightarrow 1^{+}}f(x) nên không tồn tại \lim_{x ightarrow 1}f(x). Do đó hàm số gián đoạn tại x_{0} = 1.

  • Câu 37: Vận dụng

    Cho các hàm số sau, hàm số nào là hàm số lẻ?

    Ta có: y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x

    Ta kiểm tra được y = x^{4} + \cos\left( x
- \frac{\pi}{3} ight)y =
tan^{2017}x + sin^{2018}x là hàm số không chẵn không lẻ

    y = 2015 + \cos x + sin^{2018}x là hàm số chẵn

    y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

    Vậy y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

  • Câu 38: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 39: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

     Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng cho trước

    Mặt phẳng (AB’D’) song song với mặt phẳng (BDC’).

    AB’//DC’AD’// BC’.

  • Câu 40: Thông hiểu

    Trong các giới hạn dưới đây, giới hạn nào không tồn tại?

    Ta có:

    \lim_{x ightarrow - 1}\frac{x}{(x +
1)^{2}} = - \infty

    \lim_{x ightarrow - \infty}\dfrac{2x +1}{x^{2} + 1} = \lim_{x ightarrow - \infty}\dfrac{\dfrac{2}{x} +\dfrac{1}{x^{2}}}{1 + \dfrac{1}{x^{2}}} = 0

    \lim_{x ightarrow 0}\frac{x}{\sqrt{x +
1}} = 0

    \lim_{x ightarrow + \infty}\left( \cos
x ight) không xác định.

  • Câu 41: Vận dụng cao

    Cho các số thực a,b,c thỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Khi đó số giao điểm của hàm số y = x^{3} + ax^{2} + bx + c với trục Ox là:

    Hàm số y = x^{3} + ax^{2} + bx +
c xác định và liên tục trên \mathbb{R}.

    Hàm số y = x^{3} + ax^{2} + bx +
c bậc ba nên đồ thị hàm số cắt Ox tối đa tại 3 điểm (1)

    Ta có:

    \lim_{x ightarrow - \infty}y = -
\infty suy ra \exists\alpha < -
2 sao cho f(\alpha) <
0

    Lại có: \lim_{x ightarrow + \infty}y =
+ \infty suy ra \exists\beta >
2 sao cho f(\beta) >
0

    Mặt khác \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
y(2) = 8 + 4a + 2b + c < 0 \\
\end{matrix} ight.

    Từ đó suy ra \left\{ \begin{matrix}
y(\alpha).y( - 2) < 0 \\
y( - 2).y(2) < 0 \\
y(2).y(\beta) < 0 \\
\end{matrix} ight.

    Do đó đồ thị hàm số cắt Ox tại ít nhất ba điểm (2)

    Từ (1) và (2) suy ra đồ thị hàm số đã cho cắt trục Ox tại đúng ba điểm.

  • Câu 42: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 43: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;S_{23} = 483. Tìm công sai d của cấp số cộng?

    Gọi d là công sai của cấp số cộng khi đó ta có:

    S_{23} = 483 \Leftrightarrow
\frac{23\left( 2u_{1} + 22d ight)}{2} = 483

    \Leftrightarrow \frac{23.( - 2 +
22d)}{2} = 483

    \Leftrightarrow d = 2

  • Câu 44: Nhận biết

    Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:

    Ta có: {u_6} = {u_1}.{q^{6 - 1}} = 5.{\left( { - 2} ight)^5} =  - 160

  • Câu 45: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành, ACBD cắt nhau tại O. Gọi I là trung điểm SO. Mặt phẳng (ICD) cắt SA,SB lần lượt tại M,N. Khi đó:

    a) Điểm M là giao điểm của đường thẳng SA với mặt phẳng (ICD). Đúng||Sai

    b) Ta có SN = \frac{2}{3}SB. Sai||Đúng

    c) Cho AB = a thì MN = \frac{a}{2}. Sai||Đúng

    d) Trong mặt phẳng (CDMN), gọi K là giao điểm của CNDM. Khi đó SKBC chéo nhau. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành, ACBD cắt nhau tại O. Gọi I là trung điểm SO. Mặt phẳng (ICD) cắt SA,SB lần lượt tại M,N. Khi đó:

    a) Điểm M là giao điểm của đường thẳng SA với mặt phẳng (ICD). Đúng||Sai

    b) Ta có SN = \frac{2}{3}SB. Sai||Đúng

    c) Cho AB = a thì MN = \frac{a}{2}. Sai||Đúng

    d) Trong mặt phẳng (CDMN), gọi K là giao điểm của CNDM. Khi đó SKBC chéo nhau. Sai||Đúng

    - Xác định M,N :

    Trong mặt phẳng (SAC), kẻ CI cắt SA tại M;

    Trong mặt phẳng (SBD), kẻ DI cắt SB tại N.

    \left\{ \begin{matrix}
M \in CI,CI \subset (ICD) \\
M \in SA \\
\end{matrix} \Rightarrow M = SA \cap (ICD) ight..

    Tương tự: \left\{ \begin{matrix}
N \in DI,DI \subset (ICD) \\
N \in SB \\
\end{matrix} \Rightarrow N = SB \cap (ICD) ight..

    -Tính MN theo a :

    Gọi E là trung điểm BN,OE là đường trung bình của tam giác BDN \Rightarrow OE//DN.

    Trong tam giác SOE, ta có NI qua trung điểm I của SONI//OE,N là trung điểm của SE.

    Hình vẽ minh họa

    -Vậy SN = NE = EB hay SN = \frac{1}{3}SB.

    Hoàn toàn tương tự, ta chứng minh được SM
= \frac{1}{3}SA.

    Khi đó hai tam giác SMN,SAB đồng dạng vì có góc S chung và \frac{SM}{SA} = \frac{SN}{SB} =
\frac{1}{3}.

    Xét tam giác SAB, theo định lí Thalès, ta có:

    \frac{MN}{AB} = \frac{SM}{SA} =
\frac{1}{3} \Rightarrow MN = \frac{AB}{3} = \frac{a}{3}.

    - Chứng minh SK//BC//AD :

    Dễ thấy S là điểm chung của hai mặt phẳng (SBC)(SAD).

    Ta có: \left\{ \begin{matrix}
K \in CN,CN \subset (SBC) \\
K \in DM,DM \subset (SAD) \\
\end{matrix} \Rightarrow K \in (SBC) \cap (SAD) ight..

    Vì vậy SK = (SBC) \cap
(SAD).

    Khi đó: \left\{ \begin{matrix}
SK = (SBC) \cap (SAD) \\
BC \subset (SBC),AD \subset (SAD) \Rightarrow SK//BC//AD. \\
BC//AD \\
\end{matrix} ight.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo