Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hỏi trên đoạn [0; 2023 \pi], phương trình \sqrt 3 \cot x - 3 = 0 có bao nhiêu nghiệm? 

     Ta có \cot x = \sqrt 3  \Leftrightarrow \cot x = \cot \frac{\pi }{6}

    \Leftrightarrow x = \frac{\pi }{6} + k\pi {\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết, ta có

    0 \leqslant \frac{\pi }{6} + k\pi  \leqslant 2023\pi \xrightarrow{{{\text{xap xi}}}} - \frac{1}{6} \leqslant k \leqslant 2022,833

    \xrightarrow{{k \in \mathbb{Z}}}k \in \left\{ {0;1;...;2022} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.

  • Câu 2: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N,K lần lượt là trung điểm của CD,CB,SA. Gọi H là giao điểm của ACMN. Giao điểm của SO với (MNK) là điểm E. Hãy chọn cách xác định điểm E đúng nhất trong bốn phương án sau.

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi E = KH \cap SO.

    HK \subset (MNK) nên E = SO \cap (MNK)

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm của SA,SB,SCSD. Khi đó (MNP) \cap (SAC) là đường thẳng nào?

    Hình vẽ minh họa:

    M ∈ (MNPQ); MSA; M ∈ (SAC)

    Vậy M là điểm chung thứ nhất. P ∈ (MNPQ); PSC; P ∈ (SAC).

    Vậy P là điểm chung thứ hai.

    Vậy giao tuyến của (MNPQ) và (SAC) là: MP

  • Câu 4: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 5d = 3. Mệnh đề nào sau đây đúng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = - 5 \\
d = 3 \\
\end{matrix} ight.\ \overset{CTTQ}{ightarrow}u_{13} = u_{1} + (13 -
1)d = - 5 + 3(13 - 1) = 31

  • Câu 5: Nhận biết

    Giá trị của \lim\frac{3n^{3} + n}{n^{2}} bằng:

    Với mọi M >0 lớn tùy ý, ta chọn n_{M}
= \left\lbrack \frac{M}{3} ightbrack + 1

    Ta có:

    \frac{3n^{3} + n}{n^{2}} = 3n +
\frac{1}{n} > M với mọi n >
n_{M}

    Vậy \lim\frac{3n^{3} + n}{n^{2}} = +
\infty.

  • Câu 6: Nhận biết

    Khi điểm M thuộc đường thẳng d, mệnh đề nào sau đây đúng:

    Mệnh đề đúng M \in d.

  • Câu 7: Nhận biết

    Giá trị của \lim\frac{1 - n^{2}}{n} bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} thỏa mãn \frac{n_{M}^{2} - 1}{n_{M}} > M

    \Rightarrow n_{M} > \frac{M +
\sqrt{M^{2} + 4}}{2}.

    Ta có:

    \frac{n^{2} - 1}{n} > M\ ,\ \
\forall n > n_{M} = > \lim\frac{n^{2} - 1}{n} = +
\infty

    Vậy \lim\frac{1 - n^{2}}{n} = -
\infty.

  • Câu 8: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = \frac{1}{4};d = - \frac{1}{4}. Gọi S_{5} là tổng 5 số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}u_{1} = \dfrac{1}{4} \\d = - \dfrac{1}{4} \\\end{matrix} ight.

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{5} = 5u_{1} +
\frac{5.4.d}{2}

    \Leftrightarrow S_{5} = 5.\frac{1}{4} +
10.\left( - \frac{1}{4} ight) = - \frac{5}{4}

  • Câu 9: Vận dụng

    Cho dãy số (un) xác định bởi {u_1} = 2;{u_{n + 1}} =  - 2{u_n};\left( {n \geqslant 1,n \in \mathbb{N}} ight). Tính tổng của 10 số hạng đầu tiên của dãy số?

     Ta có:

    \begin{matrix}  \dfrac{{{u_{n + 1}}}}{{{u_n}}} =  - 2 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 2} \end{array}} ight. \hfill \\   \Rightarrow {S_{10}} = \dfrac{{{u_1}.\left( {1 - {q^{10}}} ight)}}{{1 - q}} =  - 682 \hfill \\ \end{matrix}

  • Câu 10: Vận dụng

    Cho tứ diện ABCD. Trên các cạnh AB,BC lần lượt lấy các điểm K,L là trung điểm, trên cạnh CD lấy điểm N sao cho \frac{CN}{DN} = 2. Gọi P = AD \cap (NKL), khi đó tỉ số độ dài giữa APDP là:

    Hình vẽ minh họa

    Từ giả thiết bài ra suy ra LK // AC mà (KLN) ∩ (DAC) = d

    => d // AC

    Xét mặt phẳng (DAB) qua N dựng d song song AC

    => {P} = AD ∩ d

    Xét tam giác DAC vì PN // AC theo định lý Ta-lét ta có:

    \frac{DP}{DA} = \frac{DN}{DC} =
\frac{PN}{AC}

    Ta lại có: \frac{CN}{DN} = 2 \Rightarrow
\frac{DN}{DC} = \frac{1}{3} \Rightarrow \frac{DP}{DA} =
\frac{1}{3}

    \Rightarrow \frac{AP}{DP} =
2

  • Câu 11: Thông hiểu

    Giá trị của C =\lim\frac{\sqrt[4]{3n^{3} + 1} - n}{\sqrt{2n^{4} + 3n + 1} + n} bằng:

    Chia cả tử và mẫu cho n^{2} ta có được.

    C = \lim\frac{\sqrt[4]{\dfrac{3}{n^{5}} +\dfrac{1}{n^{8}}} - \dfrac{1}{n}}{\sqrt{2 + \dfrac{3}{n^{3}} +\dfrac{1}{n^{4}}} + \dfrac{1}{n}} = 0

  • Câu 12: Thông hiểu

    Cho cấp số nhân lùi vô hạn \left( {{u_n}} ight) công bội q. Đặt S = {u_1} + {u_2} + ... + {u_n} + ... thì:

    Tổng cấp số nhân là: S = {u_1}.\frac{{1 - {q^n}}}{{1 - q}}

    Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:

    \begin{matrix}  \left| q ight| < 1 \Rightarrow {q^n} \mapsto 0 \hfill \\   \Rightarrow 1 - {q^n} \mapsto 1 \hfill \\   \Rightarrow S = \dfrac{{{u_1}}}{{1 - q}} \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Ta có: \sin\frac{90^{0}}{4}.\cos\frac{270^{0}}{4} =\frac{1}{2}\left( c - \frac{\sqrt{a}}{b} ight) với a,b,c\in \mathbb{N},a \leq 5. Xác định giá trị của biểu thức T = a - b +
c?

    Ta có:

    \sin\frac{90^{0}}{4}.\cos\frac{270^{0}}{4}

    = \frac{1}{2}.\left( \sin\frac{90^{0} -
270^{0}}{4} + \sin\frac{90^{0} + 270^{0}}{4} ight)

    = \frac{1}{2}.\left\lbrack \sin\left( -
45^{0} ight) + \sin\left( 90^{0} ight) ightbrack

    = \frac{1}{2}.\left( -
\frac{\sqrt{2}}{2} + 1 ight) = \frac{1}{2}\left( 1 -
\frac{\sqrt{2}}{2} ight)

    \Rightarrow \left\{ \begin{matrix}
a = 2 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 1

  • Câu 14: Vận dụng

    Cho dãy số (Un) là một cấp số cộng có u1 = 3 và công sai d = 4. Biết rằng tổng n số hạng đầu của dãy số (Un) là {S_n} = 253. Giá trị của n là:

     Ta có:

    \begin{matrix}  {S_n} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} ight)d} ight]}}{2} \hfill \\   \Leftrightarrow \dfrac{{n\left[ {2.3 + \left( {n - 1} ight).4} ight]}}{2} = 253 \hfill \\   \Leftrightarrow 4{n^2} + 2n - 506 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 11} \\   {n =  - \dfrac{{23}}{2}\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Tìm tất cả các giá trị m để phương trình \sin{2x}.cos2x + m - 1 = 0 có nghiệm?

    Ta có:

    \sin{2x}.cos2x + m - 1 = 0

    \Leftrightarrow \frac{1}{2}sin4x + m - 1
\Leftrightarrow sin4x = 2 - 2m\ (*)

    Phương trình (*) có nghiêm \Leftrightarrow - 1 \leq 2 - 2m \leq 1
\Leftrightarrow \frac{1}{2} \leq m \leq \frac{3}{2}.

  • Câu 16: Vận dụng cao

    Cho phương trình x^{12} + 1 = 4x^{4}.\sqrt{x^{n} + 1}. Tìm số nguyên dương n bé nhất để phương trình có nghiệm.

    Điều kiện xác định x^{n} \geq1

    Nếu n là số lẻ thì x^{n} \geq 1\Rightarrow x \geq 1

    Nếu n là số chẵn và x là nghiệm thì -x cũng là nghiệm của phương trình

    x = 1 không là nghiệm nên ta xét phương trình với x > 1

    \left\{ \begin{matrix}x^{12} + 1 \geq 2x^{2} \\x^{4}\left( x^{4} - 1 ight) + 1 \geq 2\sqrt{x^{4}\left( x^{4} - 1ight)} = 2x^{2}\sqrt{x^{4} - 1} \\\end{matrix} ight.

    \Rightarrow x^{12} + 1 \geq2x^{2}.2x^{2}\sqrt{x^{4} - 1} = 4x^{4}\sqrt{x^{4} - 1} (do x^{12} + 1 \geq 2x^{2} nên dấu bằng không xảy ra)

    Hơn nữa 4x^{4}\sqrt{x^{4} - 1} >4x^{4}\sqrt{x^{3} - 1} > 4x^{4}\sqrt{x^{2} - 1};(\forall x >1)

    Do đó phương trình không có nghiệm x >1 với n = 1,2,3,4

    Khi n = 5 ta có phương trình x^{12} + 1 = 4x^{4}.\sqrt{x^{5} +1}

    Giả sử f(x) = x^{12} + 1 -4x^{4}.\sqrt{x^{5} + 1} khi đó f(x) liên tục trên \lbrack 1; + \infty).

    Ta có: \left\{ \begin{matrix}f(1) = 2 \\f\left( \frac{6}{5} ight) < 0 \\\end{matrix} ight.\  \Rightarrow f(1).f\left( \frac{6}{5} ight) <0

    => f(x) = 0 có nghiệm

    Vậy n = 5.

  • Câu 17: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy là tứ giác ABCD. Giả sử (\alpha) là một mặt phẳng tùy ý. Giao tuyến của (\alpha) với các mặt của hình chóp S.ABCD không thể tạo thành hình nào dưới đây?

    Hình chóp tứ giác đã cho có 5 mặt

    Do đó có tối đa 5 giao tuyến được tạo thành bởi mặt phẳng (\alpha) tùy ý với các mặt của hình chóp S.ABCD.

    Vậy đáp án là hình lục giác.

  • Câu 19: Vận dụng

    Cho tứ diện ABCD có độ dài tất cả các cạnh bằng x. Gọi G là trọng tâm tam giác ABC. Tính diện tích thiết diện tạo bởi mặt phẳng (CDG) và tứ diện ABCD?

    Hình vẽ minh họa:

    Gọi M,N lần lượt là trung điểm các cạnh AB,BC

    \Rightarrow AN \cap MC = G

    Ta có: (CDG) \cap AB = M

    Suy ra tam giác MCD là thiết diện của mặt phẳng (CDG) và tứ diện ABCD

    Tam giác ABD đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MD =
\frac{x\sqrt{3}}{2}

    Tam giác ABC đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MC =
\frac{x\sqrt{3}}{2}

    Gọi H là trung điểm của CD \Rightarrow
MH\bot CD

    \Rightarrow S_{MCD} =
\frac{1}{2}MH.CD

    Ta có: MH = \sqrt{MC^{2} -
HC^{2}}

    \Leftrightarrow MH = \sqrt{MC^{2} -
\frac{CD^{2}}{2}}

    \Leftrightarrow MH =
\frac{x\sqrt{2}}{2}

    \Rightarrow S_{MCD} =
\frac{1}{2}.\frac{x\sqrt{2}}{2}.x = \frac{x^{2}\sqrt{2}}{4}

  • Câu 20: Vận dụng

    Số nghiệm của phương trình \cos 2x +1=0 trên đoạn [0; 1000 \pi] là?

    Ta có: \cos 2x + 1 = 0 \Leftrightarrow \cos 2x =  - 1 \Leftrightarrow 2x = \pi  + k2\pi

    \Leftrightarrow x = \frac{\pi }{2} + k\pi ,\,\,k \in \mathbb{Z}

    Ta có: 0 \leqslant \frac{\pi }{2} + k\pi  \leqslant 1000\pi  \Leftrightarrow  - \frac{1}{2} \leqslant k \leqslant \frac{{1999}}{2}.

    Ta được k \in \left\{ {0;1;2;...999} ight\}.

    Có 1000 giá trị k, ứng với 1000 nghiệm của phương trình trên [0; 1000 \pi].

  • Câu 21: Thông hiểu

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành. Gọi là giao điểm của hai đường chéo hình bình hành. Một mặt phẳng (\alpha) qua O, song song với SA,CD. Thiết diện tạo bởi (\alpha) và hình chóp là hình gì?

    Hình vẽ minh họa

    Do (a) // CD nên giao tuyến d = (a) ∩ (ABCD) là đường thẳng qua O và song song với CD. Gọi G, H lần lượt là giao điểm của d với BC,AD.

    Do (a) // SA nên giao tuyến a = (a) ∩ (SAB) là đường thẳng qua H và song song với SA.

    Gọi I là giao điểm của a với SD.

    Do (a) // CD nên giao tuyến b = (a) ∩ (SCD) là đường thẳng qua I và song song với CD.

    Gọi J lần lượt là giao điểm của b với SC.

    Vậy thiết diện tạo bởi (a) và hình chóp là hình thang GHIJGH // IJ //CD.

  • Câu 22: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.2n. Mệnh đề nào sau đây sai?

    Ta có:

    \begin{matrix}  {u_n} = {( - 1)^n}.2n \hfill \\   \Rightarrow {u_1} = {( - 1)^1}.2.1 =  - 2 \hfill \\   \Rightarrow {u_2} = {( - 1)^2}.2.2 = 4 \hfill \\   \Rightarrow {u_3} = {( - 1)^3}.2.3 =  - 6 \hfill \\   \Rightarrow {u_4} = {( - 1)^4}.2.4 = 8 \hfill \\ \end{matrix}

    Vậy mệnh đề sai là: u_{4}=-8

  • Câu 23: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 24: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (\alpha) song song với ACSB đồng thời cắt các đoạn SA,AB,BC,SC,SD,BD lần lượt tại M,N,E,F,I,J. Ta có các khẳng định sau:

    (i):IJ//AB

    (ii):MF//AC

    (iii): Tứ giác MNEF là hình bình hành.

    Có bao nhiêu khẳng định đúng?

    Hình vẽ minh họa

    Xét (\alpha) \equiv (MNEFI)

    (\alpha)//AC \Rightarrow
MF//AC

    (\alpha)//SB \Rightarrow
IJ//SB

    (\alpha)//SB nên MN,EF đều song song với SB điều này suy ra MNEF là hình bình hành.

    Vậy tất cả các khẳng định đều đúng.

  • Câu 25: Vận dụng

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    Đáp án là:

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    \lim_{x ightarrow 2}(x - 2) =
0 nên \lim_{x ightarrow 2}\left(
\sqrt{3x + 3} + a ight) = 0.

    Suy ra a = - 3.

    Với a = - 3 ta được

    \lim_{x ightarrow 2}\frac{\sqrt{3x +
3} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{\left( \sqrt{3x + 3} - 3
ight)\left( \sqrt{3x + 3} + 3 ight)}{(x - 2)\left( \sqrt{3x + 3} + 3
ight)}

    = \lim_{x ightarrow 2}\frac{3x - 6}{(x
- 2)\left( \sqrt{3x + 3} + 3 ight)} = \lim_{x ightarrow
2}\frac{3}{\sqrt{3x + 3} + 3} = \frac{1}{2}.

    Vậy b = 1;c = 2.

    Suy ra a + b + c = 0.

  • Câu 26: Nhận biết

    Trong các phát biểu sau, phát biểu nào là sai?

    Ta lấy một phản ví dụ:

    Dãy số (un) với {u_n} = n - 2 là cấp số cộng có công sai d = 1 > 0

    Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.

  • Câu 27: Thông hiểu

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{3},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số nguyên dương n nhỏ nhất sao cho \sqrt{u_{n} - 1} \geq 2039190 là?

    Ta có: \left\{ \begin{matrix}
\begin{matrix}
\begin{matrix}
\begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{3} \\
\end{matrix} \\
u_{3} = u_{2} + 2^{3} \\
\end{matrix} \\
\ldots \\
\end{matrix} \\
u_{n + 1} = u_{n} + n^{3} \\
\end{matrix} ight.

     =  > un = 1 + 13 + 23 + … + (n−1)3

    Ta lại có 13 + 23 + … + (n−1)3

    = (1 + 2 + 3 + \ldots + n - 1)^{2} =
\left( \frac{n(n - 1)}{2} ight)^{2}

    Suy ra u_{n} = 1 + \left( \frac{n(n -
1)}{2} ight)^{2}

    Theo giả thiết ta có \sqrt{u_{n} - 1} \geq2039190 \Leftrightarrow \frac{n(n - 1)}{2} \geq 2039190

    \Leftrightarrow n(n - 1) \geq 4078380 \Leftrightarrow \left\lbrack \begin{matrix}n \geq 2020 \ \leq - 2019 \\\end{matrix} ight.

    n là số nguyên dương nhỏ nhất nên n = 2020.

  • Câu 28: Thông hiểu

    Mệnh đề nào dưới đây đúng?

    Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + x} - x ight) = + \infty

    \lim_{x ightarrow + \infty}\left(
\sqrt{x^{2} + x} - 2x ight) = - \infty

    \lim_{x ightarrow + \infty}\left(
\sqrt{x^{2} + x} - x ight) = \frac{1}{2}

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + x} - 2x ight) = + \infty

  • Câu 29: Nhận biết

    Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?

    i) \cos^{2}\alpha =
\frac{1}{\tan^{2}\alpha + 1}.

    iii) \sqrt{2}\cos\left( \alpha +
\frac{\pi}{4} ight) = \cos\alpha + \sin\alpha.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - cos\alpha.

    iv) cot2\alpha = 2\cot^{2}\alpha -
1.

    i) Ta có: \frac{1}{\cos^{2}\alpha} = 1 +
\tan^{2}\alpha \Leftrightarrow \cos^{2}\alpha = \frac{1}{1 +
\tan^{2}\alpha}

    Vậy i) đúng.

    ii) sin\left( \alpha - \frac{\pi}{2}
ight) = - sin\left( \frac{\pi}{2} - \alpha ight) = -
cos\alpha.

    Vậy ii) đúng.

    iii) \sqrt{2}cos\left( \alpha +
\frac{\pi}{4} ight) = \sqrt{2}\left( cos\alpha cos\frac{\pi}{4} -
sin\alpha sin\frac{\pi}{4} ight) = cos\alpha - sin\alpha.

    Vậy iii) sai.

    iv) Ta lấy \alpha =
\frac{\pi}{3}. Ta có VP =
cot2\alpha = cot2 \cdot \frac{\pi}{3} = - \frac{\sqrt{3}}{3},VT =
2\cot^{2}\left( \frac{\pi}{3} ight) - 1 = - \frac{1}{3}.

    Ta có VP eq VT.

    Do đó iv) sai.

    Vậy có 2 đẳng thức đúng.

  • Câu 30: Nhận biết

    \mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + 1}}{{{x^2} + x}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^3} + 1}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} ight)\left( {{x^2} - x + 1} ight)}}{{x\left( {x + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} - x + 1}}{x} =  - 3 \hfill \\ \end{matrix}

  • Câu 31: Vận dụng

    Tìm tập xác định D của hàm số y = \sqrt{1- sin2x} - \sqrt{1 + sin2x}

    Hàm số xác định khi và chỉ khi -1\leq \sin2x \leq 1

    Vậy tập xác định của hàm số là D=\mathbb{R}

  • Câu 32: Nhận biết

    Trong các mệnh đề sau mệnh đề nào sai?

    Tính chất của phép chiếu song song: Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.

  • Câu 33: Nhận biết

    Với \pi < x< \frac{3\pi}{2} mệnh đề nào sau đây sai?

    Ta có: \pi < x <\frac{3\pi}{2}

    => \left\{ {\begin{array}{*{20}{c}}  {\sin  < 0} \\   {\tan a > 0} \\   {\cos a < 0} \\   {\cot a > 0} \end{array}} ight.

  • Câu 34: Nhận biết

    Hàm số nào sau đây có chu kì khác 2\pi?

    Hàm số y = \cos^{3}x = \frac{1}{4}(\cos3x +3\cos x) có chu kì 2\pi.

    Hàm số y = \sin\frac{x}{2}\cos\frac{x}{2}
= \frac{1}{2}\sin x có chu kì 2\pi.

    Hàm số y = \sin^{2}(x + 2) = \frac{1}{2} -\frac{1}{2}\cos(2x + 4) có chu kì \pi.

    Hàm số y = \cos^{2}\left( \frac{x}{2} + 1ight) = \frac{1}{2} + \frac{1}{2}\cos(x + 2) có chu kì 2\pi.

  • Câu 35: Thông hiểu

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Hình vẽ minh họa

    a) Xét tứ giác AMDC\left\{ \begin{matrix}
AM//DC \\
AM = DC( = AB) \\
\end{matrix} ight..

    Suy ra tứ giác AMDC là hình bình hành

    Nên MD//AC. Vậy khẳng định a đúng

    b) Vì O là trung điểm AC,N là trung điểm SC nên ON\ //\ SA (tính chất đường trung bình).

    Vậy khẳng định b sai.

    c) \left\{ \begin{matrix}
ON\ //\ SA \\
ON \subset (OMN) \\
SA \subset (SAD) \\
(OMN) \cap (SAD) = GK \\
\end{matrix} ight.\  \Rightarrow GK//ON//SA

    Vậy khẳng định c đúng.

    d) Áp dụng định lí Talet choGK\ //\
ON, ta có:

    \frac{GM}{GN} = \frac{KM}{KO} (1)

    Gọi I là trung điểm của AB, vì O là trung điểm của BD nên theo tính chất đường trung

    bình, OI\ //\ AD, vậy theo định lí Talet:

    \frac{KM}{KO} = \frac{AM}{AI} =
\frac{AB}{AI} = 2. (2)

    Từ (1) và (2), ta có \frac{GM}{GN} =
2.

    Vậy khẳng định d sai.

  • Câu 36: Nhận biết

    Kí hiệu nào sau đây là tên của mặt phẳng

     Kí hiệu tên của mặt phẳng là (P).

  • Câu 37: Thông hiểu

    Đơn giản biểu thức A = cos\left( \alpha - \frac{\pi}{2} ight) +
sin(\alpha + \pi), ta có

    Ta có:

    A = cos\left( \alpha - \frac{\pi}{2}
ight) + sin(\alpha + \pi)

    = cos\left( \frac{\pi}{2} - \alpha
ight) - sin\alpha = sin\alpha - sin\alpha = 0

  • Câu 38: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{4} = - 12;u_{14} = 18. Giá trị S_{16} bằng bao nhiêu?

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

    Tổng của 16 số hạng đầu tiên của cấp số cộng là:

    S_{16} = \frac{\left( 2u_{1} + 15d
ight).16}{2} = 24

  • Câu 39: Nhận biết

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{1 - {x^3}}}{{1 - x}}{\text{        khi }}x < 1} \\ 
  {{\text{1            khi }}x \geqslant 1} 
\end{array}} ight. . Hãy chọn kết luận đúng.

    Ta có: f(x) = \left\{ \begin{matrix}
1 + x + x^{2}\ \ \ \ \ \ \ \ khi\ x < 1 \\
1\ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 1 \\
\end{matrix} ight.

    Lại có:

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( 1 + x + x^{2} ight) = 3

    \lim_{x ightarrow 1^{+}}f(x) = 1 eq
3

    => Hàm số liên tục phải tại x = 1

  • Câu 40: Thông hiểu

    Tính giới hạn N =
\lim_{x ightarrow 0}\frac{\sqrt{4x + 1} - 1}{x^{2} - 3x}.

    Ta có:

    N = \lim_{x ightarrow 0}\frac{\sqrt{4x
+ 1} - 1}{x^{2} - 3x}

    N = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x + 1} - 1 ight)\left( \sqrt{4x + 1} + 1 ight)}{\left( x^{2}
- 3x ight)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4x}{x(x
- 3)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4}{(x -
3)\left( \sqrt{4x + 1} + 1 ight)}

    N = - \frac{2}{3}

  • Câu 41: Vận dụng cao

    Cho dãy số (un) biết u_{n} = \frac{1}{2} + \frac{1}{2^{2}} +
\frac{1}{3^{2}} + \ldots + \frac{1}{n^{2}}. Mệnh đề nào sau đây đúng?

    Xét \frac{1}{k^{2}} < \frac{1}{(k -
1)k} = \frac{1}{k - 1} - \frac{1}{k},\forall \geq 2

    Suy ra 

    u_n<\frac{1}{2}+(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+(\frac{1}{5}-\frac{1}{6})+⋯+(\frac{1}{n-1}-\frac{1}{n})

    =\frac{3}{2}-\frac{1}{n} < \frac{3}{2}

    \Rightarrow 0 < u_n <\frac{3}{2}, \, \, \forall n \in \mathbb{N} ^*

    Vậy dãy số (un) bị chặn.

  • Câu 42: Nhận biết

    Trong các dãy số \left( u_{n} ight) cho bởi số hạng tổng quát u_{n}, dãy nào là cấp số nhân?

    Dãy u_{n} = \frac{1}{3^{n - 2}} =
9.\left( \frac{1}{3} ight)^{n} là cấp số nhân có \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{1}{3} \\\end{matrix} ight.

  • Câu 43: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{3}{5}. Giá trị của biểu thức G = \sin\left( \alpha +\frac{\pi}{6} ight).\sin\left( \alpha - \frac{\pi}{6}ight)

    Ta có:

    G = \sin\left( \alpha + \frac{\pi}{6}ight).\sin\left( \alpha - \frac{\pi}{6} ight)

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}- \cos2\alpha ight)

    Ta có:

    \cos2\alpha = 1 - 2\sin^{2}\alpha = 1 -2.\left( \frac{3}{5} ight)^{2} = \frac{7}{25}

    Khi đó giá trị biểu thức G là:

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}
- \frac{7}{25} ight) = \frac{1}{2}\left( \frac{1}{2} - \frac{7}{25}
ight) = \frac{11}{100}

  • Câu 44: Vận dụng

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Đáp án là:

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Để hàm số P(x) liên tục trên (0; + \infty) thì hàm số phải liên tục tại x_{0} = 400 hay \lim_{xightarrow 400} P(x)=P( 400 )

    Ta có:

    \lim_{x ightarrow 400^{-}}P(x) =
\lim_{x ightarrow 400^{-}}4,5x = 4,5.400 = 1800

    \lim_{x ightarrow 400^{+}}P(x) =
\lim_{x ightarrow 400^{-}}(4x + k) = 4.400 + k = 1600 + k

    Để tồn tại \lim_{xightarrow 400} P( x ) thì 1800 = 1600 +
k.

    Suy ra k = 200

  • Câu 45: Vận dụng cao

    Giá trị của giới hạn \lim\frac{1 + a +
a^{2} + ... + a^{n}}{1 + b + b^{2} + ... + b^{n}};\left( |a| < 1,|b|
< 1 ight) bằng:

    Ta có:

    1 + a + a^{2} + ... + a^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a

    => 1 + a + a^{2} + ... + a^{n} =
\frac{1.\left( 1 - a^{n + 1} ight)}{1 - a} = \frac{1 - a^{n + 1}}{1 -
a}

    Tương tự:

    1 + b + b^{2} + ... + b^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b

    => 1 + b + b^{2} + ... + b^{n} =
\frac{1.\left( 1 - b^{n + 1} ight)}{1 - b} = \frac{1 - b^{n + 1}}{1 -
b}

    \Rightarrow \lim\frac{1 + a + a^{2} +
... + a^{n}}{1 + b + b^{2} + ... + b^{n}}

    \begin{matrix}
   = \lim \dfrac{{\dfrac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\dfrac{{1 - {b^{n + 1}}}}{{1 - b}}}} \hfill \\
   = \lim \dfrac{{1 - b}}{{1 - a}}.\dfrac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}} = \dfrac{{1 - b}}{{1 - a}} \hfill \\ 
\end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 9 lượt xem
Sắp xếp theo