Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 8 của dãy số.
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 8 của dãy số.
Tính giới hạn
.
Ta có:
Cho tứ diện
. Lấy
sao cho
,
là trọng tâm tam giác
. Xác định mặt phẳng song song với đường thẳng
?
Hình vẽ minh họa
Gọi là trung điểm của
.
Xét tam giác ta có:
Cho mảnh bìa như hình vẽ sau, biết
là hình vuông cạnh
. Các tam giác
là các tam giác cân bằng nhau. Gọi
lần lượt là trọng tâm của hai tam giác
và
. Người ta xếp mảnh bìa này thành hình chóp tứ giác
(các điểm
trùng vào đỉnh
). Khi đó tính độ dài đoạn thẳng
.

Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:
Từ giả thiết ta có:
Cho đồ thị hàm số như hình vẽ:

Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây
Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án
Tại x = 0 thì => Loại đáp án
Tại ta thấy chỉ có
thỏa mãn
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Cho hình hộp
. Mặt phẳng
qua
cắt hình hộp theo là hình gì?
Hình vẽ minh họa

Giả sử qua
cắt
theo giao tuyến
, khi đó thiết diện là tứ giác
.
Vì nên MN // AB.
Mặt khác nên
là hình bình hành.
Lập luận tương tự cho trường hợp qua
cắt
theo giao tuyến
.
Trong các dãy số sau, dãy số nào là một cấp số nhân?
Ta có:
Dãy số là cấp số nhân
Gọi là công bội.
Xét đáp án
Xét đáp án
Xét đáp án
Xét đáp án
Trong không gian, cho ba đường thẳng
. Trong các mệnh đề sau mệnh đề nào đúng?
Nếu và
chéo nhau thì
và
không cùng thuộc một mặt phẳng.
bằng:
Ta có:
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Cho hàm số
. Tìm số tự nhiên n để hàm số liên tục tại
.
Ta có:
Hàm số f(x) liên tục tại khi và chỉ khi
Cho các hàm số
. Trong các hàm số trên, có bao nhiêu hàm số lẻ?
Ta có:
là hàm số chẵn vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì:
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
là hàm số lẻ vì
Tập xác định của hàm số
Với
Cho hình bình hành ABCD. Qua các đỉnh A, B, C, D ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với mặt phẳng (ABCD). Một mặt phẳng (P) cắt bốn đường thẳng nói trên tại A’, B’, C’, D’. Hỏi A’B’C’D’ là hình gì?
Ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Chứng minh tương tự ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Từ (1) và (2) => là hình bình hành.
Cho hình chóp
có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a)
. Đúng||Sai
b) Đường
và
cắt nhau. Sai||Đúng
c)
. Đúng||Sai
d) Tỉ số
. Sai||Đúng
Cho hình chóp có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a) . Đúng||Sai
b) Đường và
cắt nhau. Sai||Đúng
c) . Đúng||Sai
d) Tỉ số . Sai||Đúng
Hình vẽ minh họa
a) Xét tứ giác có
.
Suy ra tứ giác là hình bình hành
Nên . Vậy khẳng định a đúng
b) Vì là trung điểm
,
là trung điểm
nên
(tính chất đường trung bình).
Vậy khẳng định b sai.
c)
Vậy khẳng định c đúng.
d) Áp dụng định lí Talet cho, ta có:
(1)
Gọi là trung điểm của
, vì
là trung điểm của
nên theo tính chất đường trung
bình, , vậy theo định lí Talet:
. (2)
Từ (1) và (2), ta có .
Vậy khẳng định d sai.
Tính tổng ![]()
Ta có:
Ta thấy các số hạng của tổng T tạo thành một cấp số cộng với số hạng đầu và công sai d = −4. Giả sử tổng trên có n số hạng thì
Số nghiệm của phương trình: ![]()
Điều kiện xác định:
Với k = 0 => x = 0 (thỏa mãn)
Vậy phương trình có tất cả 3 nghiệm.
Cho tổng S(n) = 2 + 4 + 6 + … + 2n. Khi đó S30 bằng?
Ta có S30 = 2 + 4 + 6 + … + 60
⇒ 2S30 = (2+60) + (4+58) + (6+56) + … + (60+2) (có 30 ngoặc đơn)
Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có
tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?
Ban đầu có tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với
và công bội
.
Theo bài ra ta có:
Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.
Ta có: là số tế bào nhận được sau 2 giờ.
Vậy số tế bào nhận được sau 2 giờ là
Cho hình chóp
có đáy
là hình thang
. Lấy một điểm
thuộc cạnh
. Mặt phẳng
qua M song song với SA và BC. Giả sử
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Trong mặt phẳng (ABCD) kéo dài AD cắt MN tại E.
Ta lại có: suy ra
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có:
Mặt khác
Mà
Khẳng định nào dưới đây sai?
Số hạng tổng quát của cấp số cộng (un) là với công sai d và số hạng đầu u1
Tính giới hạn của hàm số
.
Ta có:
Cho
là hằng số,
là một số nguyên dương. Quy tắc nào sau đây sai?
Ta có với
là một số nguyên dương.
Nghiệm của phương trình
là?
Ta có:
.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Giá trị của
bằng:
Ta có:
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy = 0.
Cho hàm số
. Khi hàm số liên tục trên
thì
( với
là hai số nguyên liên tiếp). Tính
.
Đáp án: 2500
Cho hàm số . Khi hàm số liên tục trên
thì
( với
là hai số nguyên liên tiếp). Tính
.
Đáp án: 2500
TXĐ:
Hàm số liên tục khi
Xét tại
Ta có: ;
;
Để hàm số liên tục trên thì
Đáp án: .
Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Cho đường tròn đường kính
. Tìm số đo
của cung có độ dài
?
mà
vậy số đo
cần tìm là
.
Mệnh đề nào sau đây đúng?
Ta có:
Vậy đúng.
Cho hình lăng trụ
. Tìm mệnh đề sai trong các mệnh đề dưới đây:
Khẳng định sai là:
Cho cấp số cộng
có
. Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Tìm tất cả các giá trị của tham số
để phương trình
vô nghiệm?
Ta có:
Phương trình vô nghiệm
Cho hình chóp
. Trong các khẳng định sau, khẳng định nào đúng?
Hình vẽ minh họa
Khẳng định đúng là “ và
là hai đường thẳng chéo nhau.”
Hàm số
tuần hoàn có chu kì
khi
Hàm số có nghĩa
.
Chu kì của hàm số .
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.
Ta có:
Ta có:
với
. Xác định giá trị của biểu thức
?
Ta có:
Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của AB, CD và G là trọng tâm của tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD) là
Hình vẽ minh họa

Ta có và
=> Giao điểm của đường thẳng EG và mặt phẳng (ACD) là giao điểm của đường thẳng EG và AF.
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Cho hình chóp
. Gọi
và
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
là đường trung bình của tam giác
nên
mà
.
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:
;
. Khi đó:
a)
. Đúng||Sai
b) Ba số
tạo thành một cấp số cộng. Sai||Đúng
c)
. Sai||Đúng
d)
. Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?
Ta có u2019 = 2.2019 + 1 = 4039
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi
dần về dương vô cùng?
Đáp án: 30
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Sau phút bơm nước vào hồ thì lượng nước là
(lít) và lượng muối có được là
(gam).
Nồng độ muối của nước là
(gam/lít).
Khi dần về dương vô cùng, ta có