Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
,
. Mệnh đề nào sau đây là mệnh đề sai?
Hình vẽ minh họa
Ta có:
là đáp án sai.
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
,
. Mệnh đề nào sau đây là mệnh đề sai?
Hình vẽ minh họa
Ta có:
là đáp án sai.
Số nghiệm của phương trình: ![]()
Điều kiện xác định:
Với k = 0 => x = 0 (thỏa mãn)
Vậy phương trình có tất cả 3 nghiệm.
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Số vị trí biểu diễn các nghiệm của phương trình trên đường tròn lượng giác là?
1 || 1 vị trí || một || một vị trí || Một vị trí
Phương trình
Suy ra có duy nhất 1 vị trí biểu diễn nghiệm của phương trình trên đường tròn lượng giác.
Với
là số nguyên dương,
là hằng số, giới hạn
bằng
Ta có và
nên
Cho cấp số cộng (Un) có
. Giá trị của
bằng:
Ta có:
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính
.
Ta có: xác định và liên tục trên
nên suy ra
Vậy
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có là đường trung bình tam giác
(1)
Ta có là đường trung bình của tam giác
.
.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Cho cấp số nhân lùi vô hạn
công bội
. Đặt
thì:
Tổng cấp số nhân là:
Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:
Cho hình chóp
có đáy là hình thang đáy lớn là
. Gọi
là trung điểm của cạnh
,
là giao điểm của cạnh
và mặt phẳng
. Các mệnh đề sau đúng hay sai?
a)
và
cắt nhau.Sai||Đúng
b)
.Đúng||Sai
c)
và
cắt nhau.Sai||Đúng
d)
và
chéo nhau. Sai||Đúng
Cho hình chóp có đáy là hình thang đáy lớn là
. Gọi
là trung điểm của cạnh
,
là giao điểm của cạnh
và mặt phẳng
. Các mệnh đề sau đúng hay sai?
a) và
cắt nhau.Sai||Đúng
b) .Đúng||Sai
c) và
cắt nhau.Sai||Đúng
d) và
chéo nhau. Sai||Đúng
Hình vẽ minh họa
Ta có:
.
Kết luận:
|
a) Sai |
b) Đúng |
c) Sai |
d) Sai |
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho cấp số cộng (un) biết u1 = -5 và công sai d = 2. Số 81 là số hạng thứ bao nhiêu?
Ta có:
Vậy 81 là số hạng thứ 44
Tập nghiệm của phương trình
là?
Ta có: .
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Cho cấp số nhân
với
và
. Công bội của cấp số nhân đã cho bằng
Ta có .
Cho hình chóp S.ABC có diện tích đáy bằng 9. Mặt phẳng
song song với
cắt đoạn SA tại
sao cho
. Diện tích thiết diện của hình chóp S.ABC tạo bởi
bằng
Hình vẽ minh họa:
Gọi N, P lần lượt là giao điểm của mặt phẳng và các cạnh SB, SC.
Vì nên theo định lí Talet, ta có
.
Khi đó cắt hình chóp S.ABC theo thiết diện là tam giác MNP ðồng dạng với tam giác ABC theo tỉ số
.
Vậy .
Với
, cho dãy số
gồm các số nguyên dương chia hết cho
:
,
,
,
, …Công thức số hạng tổng quát của dãy số này là:
Ta có ,
,
,
,…
Suy ra .
Cho cấp số nhân (un) có tổng n số hạng đầu tiên là
. Tìm số hạng đầu và công bội của cấp số nhân đó?
Ta có:
Khẳng định nào sau đây là đúng?
Khẳng định đúng: "Hình biểu diễn của một đường tròn là một đường elip."
Tính giá trị biểu thức ![]()
Cho các số thực
thỏa mãn
. Số giao điểm của đồ thị hàm số
và trục
là
Đáp án: 3
Cho các số thực thỏa mãn
. Số giao điểm của đồ thị hàm số
và trục
là
Đáp án: 3
Ta có sao cho
(1).
Ta có sao cho
(2).
Ta có sao cho
(3).
Từ (1), (2) và (3) ta suy ra số giao điểm của đồ thị hàm số và trục bằng 3.
Cho dãy số
là một cấp số nhân có số hạng đầu
và công bội
. Đẳng thức nào sau đây đúng?
Cho dãy số là một cấp số nhân có số hạng đầu
và công bội
.
Theo công thức số hạng tổng quát ta có ,
.
Giải phương trình
?
Ta có và .
Do đó phương trình
Xét nghiệm .
Vậy phương trình có nghiệm .
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Ta kiểm tra được và
là hàm số chẵn
Hàm số không chẵn không lẻ
=> Hàm số là hàm số lẻ.
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?
Dãy (un) là một cấp số cộng
=> với a, b là hằng số
=>
Cho hai đường thẳng phân biệt a và b trong không gian. Có bao nhiêu vị trí tương đối giữa a và b?
Có 3 vị trí tương đối có thể có giữa a và b là:
a cắt b
a song song với b
a chéo nhau với b
Giá trị của
là:
Ta có:
Tính giới hạn của hàm số
khi
.
Ta có:
Cho hàm số
. Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Cho hàm số . Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Tập xác định của hàm số là
.
Ta có
Hàm số đã cho liên tục tại
.
Tìm giới hạn ![]()
Ta có:
Cho tứ diện
. Trên các cạnh
lần lượt lấy các điểm
là trung điểm, trên cạnh
lấy điểm
sao cho
. Gọi
, khi đó tỉ số độ dài giữa
và
là:
Hình vẽ minh họa
Từ giả thiết bài ra suy ra LK // AC mà (KLN) ∩ (DAC) = d
=> d // AC
Xét mặt phẳng (DAB) qua N dựng d song song AC
=> {P} = AD ∩ d
Xét tam giác DAC vì PN // AC theo định lý Ta-lét ta có:
Ta lại có:
Cho hình chóp
có đáy là hình bình hành. Qua
kẻ
lần lượt song song với
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) Giao tuyến của
và
là đường thẳng
. Sai||Đúng
b) Giao tuyến của
và
là đường thẳng
. Sai||Đúng
c) Giao tuyến của
và
là đường thẳng
. Đúng||Sai
d) Giao tuyến của
và
là đường thẳng
. Sai||Đúng
Cho hình chóp có đáy là hình bình hành. Qua
kẻ
lần lượt song song với
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) Giao tuyến của và
là đường thẳng
. Sai||Đúng
b) Giao tuyến của và
là đường thẳng
. Sai||Đúng
c) Giao tuyến của và
là đường thẳng
. Đúng||Sai
d) Giao tuyến của và
là đường thẳng
. Sai||Đúng
Hình vẽ minh họa
Ta có:
với
.
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Với
là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?
Đẳng thức đúng: .
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
suy ra
.
Vậy .
bằng
Ta có:
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi
Vậy tập xác định
Tính giới hạn ![]()
Ta có:
Do đó
Rút gọn biểu thức ![]()
Ta có:
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.
Ta có:
Hình chiếu của hình vuông không thể là hình nào trong các hình sau?
Theo tính chất của phép chiếu song song ta được
Hình chiếu của hình vuông không thể là hình thang có hai cạnh đáy không bằng nhau.
Trong không gian, cho tam giác
, lấy điểm
trên cạnh
kéo dài (trong hình vẽ). Mệnh đề nào sau đây sai?

Ta có:
=>
Do đó mệnh đề sai là: “ không nằm trên mặt phẳng
”.
Cho hình chóp
, biết
và
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có là điểm chung của hai mặt phẳng
và
.
Vì nên
là điểm chung của hai mặt phẳng
và
.
Do đó giao tuyến của hai mặt phẳng và
là
.
Xác định công thức tổng quát của dãy số
.
Ta có:
Nhận thấy
Dự đoán
Ta chứng minh bằng quy nạp
Trước hết đúng với
Giả sử đúng khi
. Khi đó
Ta có:
Mặt khác ta có . Do đó
Vậy
Vậy (*) đúng với . Theo nguyên lí quy nạp, ta có điều phải chứng minh.