Cho hình chóp S.ABC, đáy ABC cân tại A, tam giác SBC cân tại S. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC, G và F lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Điền Đ vào mệnh đề đúng, điền S vào mệnh đề sai.
(I) AH, SK và BC đồng quy. Đ || Đ || D || đ
(II) AG, SF cắt nhau tại một điểm trên BC. Đ || Đ || D || đ
(III) HF và GK chéo nhau. S
(IV) SH và AK cắt nhau. Đ || Đ || D || đ
Đáp án là:
Cho hình chóp S.ABC, đáy ABC cân tại A, tam giác SBC cân tại S. Gọi H, K lần lượt là trực tâm tam giác ABC và tam giác SBC, G và F lần lượt là trọng tâm của tam giác ABC và tam giác SBC. Điền Đ vào mệnh đề đúng, điền S vào mệnh đề sai.
(I) AH, SK và BC đồng quy. Đ || Đ || D || đ
(II) AG, SF cắt nhau tại một điểm trên BC. Đ || Đ || D || đ
(III) HF và GK chéo nhau. S
(IV) SH và AK cắt nhau. Đ || Đ || D || đ
Hình vẽ minh họa

Gọi M là trung điểm của BC.
Ta có SM ⊥ BC và AM ⊥ BC.
AH, SK và BC đồng qui tại M. Do đó (I) đúng.
AG, SF cắt nhau tại M trên BC. Do đó (II) đúng.
HF và GK cùng nằm trong mặt phẳng (SAM) nên có thể song song hoặc cắt nhau hoặc trùng nhau. Do đó (III) sai.
SH và AK cắt nhau. Do đó (IV) đúng.