Giải phương trình
?
Phương trình
.
Giải phương trình
?
Phương trình
.
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
.
Ta có:
Mặt khác
Mà
Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:
Hình vẽ minh họa

Xét ΔBFD có OO’ là đường trung bình => OO’ // DF
Mà DF ⊂ (ADF)
=> OO' // (ADF)
Hàm số đồng biến trên khoảng
là:
Với thuộc góc phần tư thứ IV và thứ nhất nên hàm số
đồng biến trên khoảng
Cho cấp số nhân
có số hạng đầu là
, công bội là
. Tính
?
Theo công thức cấp số nhân ta có:
Tính giá trị ![]()
Ta có:
Tính giới hạn ![]()
Ta có:
Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

Ta có:
Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m,
Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.
Từ đó tổng quãng đường mà quả bóng đã di chuyển là
Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng .
Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; …. Tìm số hạng tổng quát un của cấp số cộng.
Các số 5; 9; 13; 17; …. theo thứ tự lập thành một cấp số cộng (un) nên:
Cho hàm số
liên tục tại
khi đó giá trị của tham số
bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).
Đáp án: -1/1012
Cho hàm số liên tục tại
khi đó giá trị của tham số
bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).
Đáp án: -1/1012
Hàm số xác định tại .
Ta có . Tính
.
Đặt thì
,
thì
.
.
.
Vậy
.
Để hàm số liên tục tại khi
.
Cho hàm số
hàm số f(x) liên tục tại:
Tập xác định:
Vậy hàm số liên tục tại
Hàm số liên tục khi
hàm số liên tục khi
Tại x = 1 ta có:
Vậy hàm số liên tục tại
Hàm số liên tục trên
Cho phương trình lượng giác ![]()
a) Với
, phương trình (*) có nghiệm là
Đúng||Sai
b) Với
, phương trình (*) có một nghiệm là
Đúng||Sai
c) Với
thì số nghiệm của phương trình (*) trên đoạn
là 3. Sai||Đúng
d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng
Cho phương trình lượng giác
a) Với , phương trình (*) có nghiệm là
Đúng||Sai
b) Với , phương trình (*) có một nghiệm là
Đúng||Sai
c) Với thì số nghiệm của phương trình (*) trên đoạn
là 3. Sai||Đúng
d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng
Thay vào (*) ta được:
Thay vào (*) ta được:
Với thì phương trình có nghiệm
.
Thay vào (*) ta được:
Vì xét nghiệm trên đoạn nên ta có:
Mà
Vậy với thì số nghiệm của phương trình (*) trên đoạn
là 2.
d) Ta có:
Để phương trình có nghiệm thì
mà
Vậy số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 10.
Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.
Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.
Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.
=> H là giao điểm của MN và mặt phẳng (SBD).
Biết ba số
lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?
Để ba số lập thành một cấp số nhân thì
Vậy tổng các giá trị của m là
Cho đường thẳng a thuộc mặt phẳng (Q), khi đó mệnh đề nào sau đây sai?
Mệnh đề sai: "".
Tính
biết
và
.
Ta có
.
Mà nên
.
Vậy .
Cho dãy số (un), biết
. Khẳng định nào sau đây đúng về dãy số (un) ?
Ta có
Do un + 1 − un > 0 nên (un) là dãy số tăng.
Lại có suy ra dãy số bị chặn.
Hình chiếu của hình vuông không thể là hình nào trong các hình sau?
Theo tính chất của phép chiếu song song ta được
Hình chiếu của hình vuông không thể là hình thang có hai cạnh đáy không bằng nhau.
Kí hiệu nào sau đây là tên của mặt phẳng
Kí hiệu tên của mặt phẳng là .
Tìm giới hạn
.
Ta có ,
và
nên
.
Một chất điểm chuyển động trên một đường tròn đường kính 80cm. Biết chất điểm chạy được 5 vòng. Tính quãng đường chuyển động của chất điểm?
Ta có:
Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:
Ta có:
Số nguyên dương chia hết cho 3 có dạng nên chúng lập thành cấp số cộng
Cho hai hình bình hành
và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a)
. Sai||Đúng
b)
. Đúng||Sai
c)
. Sai||Đúng
d) Sáu điểm
là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Cho hai hình bình hành và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) Sáu điểm là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Hình vẽ minh họa
a) Sai: và
cắt nhau tại
.
b) Đúng.
Vì là hình bình hành nên
, suy ra
.
Vì là hình bình hành nên
, suy ra
.
Mà và
cắt nhau nên
.
c) Sai: Vì và
có điểm
chung.
d) Đúng:
Vì và
là hình bình hành nên
đôi một song song
Mặt khác (theo câu b)
Do đó 6 điểm là 6 đỉnh của một hình lăng trụ tam giác
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Gọi
là nghiệm âm lớn nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Ta có:
TH1. Với
TH2. Với
So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là
Một chiếc đồng hồ đánh chuông, kể từ thời điểm 0 (giờ) thì sau mỗi giờ thì số tiếng chuông được đánh đúng bằng số giờ mà đồng hồ chỉ tại thời điểm đánh chuông. Hỏi một ngày đồng hồ đó đánh bao nhiêu tiếng chuông?
Kể từ lúc 1 (giờ) đến 24 (giời) số tiếng chuông được đánh lập thành cấp số cộng có 24 số hạng với , công sai
.
=> Số tiếng chuông được đánh trong 1 ngày là:
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn
Ta có:
.
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số:
. Tính
và cho biết ý nghĩa của kết quả.
Đáp án: 105
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: . Tính
và cho biết ý nghĩa của kết quả.
Đáp án: 105
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có là đường trung bình tam giác
(1)
Ta có là đường trung bình của tam giác
.
.
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Cho hình chóp
có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Cho hình chóp có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Hình vẽ minh họa
Ta có là điểm trên cạnh
,
nên
.
nên
suy ra
.
Trong
chính là giao điểm của
và
.
Trong , có
nên hai tam giác
và
đồng dạng.
Do đó .
Cho tứ diện
. Gọi
là trọng tâm của tam giác
và
là điểm trên cạnh
sao cho
. Đường thẳng
song song với
Hình vẽ minh họa
Gọi E là trung điểm của AD. Do G là trọng tâm của tam giác ABD và M là điểm trên cạnh BC sao cho nên trong mặt phẳng (BCE) ta có:
Cho cấp số nhân có các số hạng lần lượt là
. Mệnh đề nào sau đây đúng?
Cấp số nhân
Vậy
Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức
với
tính bằng
và
là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:
Do nên
Do đó nhiệt độ thấp nhất trong ngày là .
Dấu bằng xảy ra
Do .
Mà nên
.
Khi đó .
Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.
Cho khai triển
. Tìm m để tổng các hệ số của khai triển bằng 0.
Tổng các hệ số của khai triển là giá trị của biểu thức tại
Vậy tổng các hệ số của khai triển là:
Để tổng các hệ số khai triển bằng 0 thì
bằng:
Ta có:
Dãy số nào sau đây là một cấp số cộng?
Dãy số ở đáp án A thỏa mãn điều kiện với
là cấp số cộng.
Hàm số nào không liên tục tại
?
Ta có hàm số không xác định tại
nên hàm số không liên tục tại
NB
Cho dãy số
. Giá trị u11 là
Ta có
Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.
a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S
b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S
c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S
d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S
Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.
a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S
b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S
c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S
d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S
Xét từng mệnh đề ta có
a) “Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau” là mệnh đề sai, vì hai đường thẳng có thể chéo nhau.
b) “Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó” là mệnh đề sai, vì hai mặt phẳng đó có thể song song nhau.
c) “Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P)” là mệnh đề sai, vì đường thẳng a vẫn có thể nằm trong mặt phẳng (P).
d) “Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α)” là mệnh đề sai, vì có vô số đường thẳng đi qua điểm A và song song với (α).
Vậy không có mệnh đề nào đúng trong các mệnh đề nêu trên
Với mọi số nguyên dương
thì
chia hết cho
Với chia hết cho 3, ta sẽ chứng minh
chia hết cho 3 với mọi
.
Giả sử khẳng định đúng với tức là
chia hết cho 3, ta chứng minh
cũng chia hết cho 3.
Ta có:
Vậy với mọi số nguyên dương thì chia hết cho 3.
Xác định chu kì T của hàm số lượng giác
?
Hàm số y = cos(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Số nghiệm của phương trình: ![]()
Điều kiện xác định:
Với k = 0 => x = 0 (thỏa mãn)
Vậy phương trình có tất cả 3 nghiệm.
Tính giới hạn ![]()
Ta có: