Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?
Ta có:
Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?
Ta có:
Hàm số
liên tục trên:
Ta có:
=> Tập xác định
Vậy hàm số liên tục trên
Tính giới hạn của hàm số
.
Ta có:
Giải phương trình
.
Phương trình
Vậy đáp án cần tìm là:
Tính
được kết quả là:
Ta có
.
Cho cấp số nhân (un) biết u1 = 12;
. Tính ![]()
Gọi q là công bội của cấp số nhân (un)
Ta có:
Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?
Ta có
Vậy
Cho hàm số
với
là tham số. Tính giá trị của tham số
để hàm số có giới hạn tại
.
Hàm số có giới hạn tại
Cho dãy số
với mọi
. Khi đó số hạng thứ 5 của dãy là:
Ta có:
Khi đó số hạng thứ 5 của dãy là 48
Cho tứ diện
. Trên
,
lần lượt lấy hai điểm
sao cho
cắt
tại
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa:
Ta có: là điểm chung của hai mặt phẳng
và
Ta lại có: nên
là điểm chung thứ hai.
Vậy giao tuyến của hai mặt phẳng và
là
Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là điểm nào sau đây?
Do mặt phẳng (MAB) chứa AB // CD nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB.
Giả sử đường thẳng này cắt SD tại điểm I.
Khi đó MI là đường trung bình của tam giác SCD
=> I là trung điểm của SD.
Vậy hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là trung điểm của SD.
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Giải phương trình ![]()
Ta có
Cho mặt phẳng
và hai đường thẳng
. Khẳng định nào sau đây đúng?
Xét phương án “Nếu và
thì
” ta có:
Nếu thì
hoặc
chéo
, vậy phương án sai.
Xét phương án “Nếu và
thì
.” ta có:
Nếu thì
hoặc
, vậy phương án sai.
Xét phương án “Nếu và
thì
.” ta có:
Nếu , vậy phương án đúng.
Xét phương án “Nếu và
thì
” ta có:
Nếu thì
hoặc
chéo
hoặc
cắt
, vậy phương án sai.
Trong các dãy số sau, dãy số nào là dãy số giảm?
Xét đáp án :
Ta có . Khi đó:
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có . Khi đó
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có
Vậy (un) là dãy số giảm.
Xét đáp án :
Ta có
Vậy (un) là dãy số không tăng, không giảm.
Giá trị của
với
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy .
Cho hàm số
. Khẳng định nào dưới đây sai?
Ta có:
=> Không tồn tại giới hạn khi x dần đến 3.
Vậy chỉ có khẳng định sai.
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trung điểm
. Trong các đường thẳng sau, đường thẳng nào không song song với
?
Hình vẽ minh họa

Ta có:
là đường trung bình tam giác SAB nên
là hình bình hành nên
=>
là đường trung bình tam giác
=> =>
Vậy không song song với
.
Khi ký hợp đồng dài hạn 10 năm với các công nhân tuyển dụng, công ty X, đề xuất phương án trả lương như sau: Người lao động sẽ nhận 7 triệu ở quý đầu tiên (một quý là ba tháng), và kể từ quí làm việc thứ hai mức lương sẽ tăng 500.000 đồng mỗi quý. Như vậy sau 10 năm làm việc, hết hạn hợp đồng, tổng số tiền lương người lao động đã nhận được là bao nhiêu?
Ta có:
Số tiền nhận được hàng quý là một cấp số cộng hữu hạn với số hạng đầu tiên là: (triệu), công sai là 0,5 (triệu).
Trong 10 năm sẽ có 40 quý nên cấp số cộng trên có 40 phần tử.
Từ đó ta có
(triệu đồng)
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Khẳng định nào sau đây sai?
Trên khoảng thì hàm số
đồng biến.
Chọn mệnh đề đúng trong các mệnh đề sau:
Theo nội dung định lý tìm giới hạn, ta có:
Nếu , thì
Quy ước chọn chiều dương của một đường tròn định hướng là
Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ
Cho hình hộp
. Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa

Ta có là hình bình hành nên
Tương tự ta có . Từ đó suy ra
và
.
Vậy
Hỏi trên đoạn [-2023; 2023], phương trình
có tất cả bao nhiêu nghiệm?
Ta xét phương trình
Theo giả thiết
Vậy có tất cả 644 giá trị nguyên của k tương úng có 644 nghiệm thỏa mãn yêu cầu bài toán.
Phương trình nào dưới đây có nghiệm trong khoảng
?
Xét phương án :
có
=> Phương trình vô nghiệm.
Xét phương án :
Đặt , phương trình trở thành:
.
=> Phương trình vô nghiệm.
Xét phương án :
Phương trình vô nghiệm.
Xét phương án :
, xét
.
Mặc khác hàm số liên tục trên
do đó liên tục trên
.
Vậy phương trình có ít nhất một nghiệm trong khoảng
.
Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Cho hình chóp
có đáy
là hình bình hành tâm
. Giao tuyến của hai mặt phẳng
và
là:
Hình vẽ minh họa
Ta có:
Mặt khác
Từ (*) và (**) ta suy ra
Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?
Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a
Theo bài ra ta có:
Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng
=> u3 – u2 = u4 – u3
=> 6 – 1 = a – 6
=> a = 11
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho dãy số (un) xác định bởi
. Tính
.
Ta có:
Đặt
Từ đó:
Khi đó:
Từ đó ta có:
Vậy
=>
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.
Ta có:
Cho hàm số
. Khi đó
bằng:
Ta có:
Cho tứ diện
có cạnh
. Mặt phẳng
song song với
cắt tứ diện tạo thành một hình thoi. Tính độ dài cạnh hình thoi.
Hình vẽ minh họa

Gọi M, N, P, Q lần lượt là giao điểm của mặt phẳng chứa thiết diện với các cạnh AC, BC, BD, AD, khi đó theo giả thiết tứ giác MNPQ là hình thoi.
Cũng từ giả thiết ta suy ra nên ta có
Vậy cạnh của hình thoi là
Đơn giản biểu thức
, ta có
Ta có:
Cho
. Giá trị
bằng:
Ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Khẳng định đúng là “Nếu đường thẳng d song song với mặt phẳng (P) thì trong (P) tồn tại đường thẳng a song song với d”.
Giá trị lớn nhất của hàm số
tại điểm là nghiệm của phương trình nào dưới đây?
Theo bài ra ta có:
Phương trình (*) có nghiệm
Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó
Cho
. Số mặt phẳng chứa tất cả các đỉnh của tam giác
là:
Do ba điểm không thẳng hàng nên chỉ có một và chỉ một mặt phẳng đi qua chúng.
Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?
Ta có:
Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng
so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?

Đáp án: 666
Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?
Đáp án: 666
Gọi là quãng dường người đó dược kéo lên ở lần thứ
(đơn vị tính: mét).
Ta có và
.
Vậy là cấp số nhân với số hạng đầu
và công bội
.
Tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống là
Cho hai đường thẳng
và
lần lượt nằm trên hai mặt phẳng song song
và
.
Mệnh đề đúng là: "Nếu và
không song song với nhau, điểm
không nằm trên
và
thì luôn có duy nhất một đường thẳng đi qua
cắt cả
và
."
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc khoảng (−10; 10) để phương trình
có ba nghiệm phân biệt
thỏa mãn
?
Xét hàm số liên tục trên
Giả sử phương trình có ba nghiệm thỏa mãn
. Khi đó
Ta có:
(do
)
Mà nên suy ra
Với ta có:
nên tồn tại
sao cho
Do nên
nên tồn tại
sao cho
Từ (1) và (2) suy ra phương tình có nghiệm thuộc khoảng
Từ (2) và (3) suy ra phương tình có nghiệm thuộc khoảng
Từ (3) và (4) suy ra phương tình có nghiệm thuộc khoảng
Vậy thỏa mãn