Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BCCD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM(SIK). Tính tỉ số \frac{MF}{MD}.

    Đáp án: 1

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BCCD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM(SIK). Tính tỉ số \frac{MF}{MD}.

    Đáp án: 1

    Hình vẽ minh họa

    -Ta có S \in (SIK) \cap
(SAC).

    Trong mặt phẳng (ABCD), gọi E = IK \cap AC

    \Rightarrow \left\{ \begin{matrix}
E \in IK \subset (SIK) \\
E \in AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow E \in (SIK) \cap (SAC)

    Suy ra SE = (SIK) \cap
(SAC).

    Ta có:

    \left\{ \begin{matrix}
S \in (SIK) \cap (SBD) \\
BD \subset (SBD),IK \subset (SIK) \\
BD//IK \\
\end{matrix} ight.

    \Rightarrow (SIK) \cap (SBD) = Sx,(\
Sx//BD//IK)

    -Trong mp (SBD), gọi F = Sx \cap DM

    \Rightarrow \left\{ \begin{matrix}
S \in DM \\
S \in Sx \subset (SIK) \\
\end{matrix} \Rightarrow F = DM \cap (SIK) ight..

    Ta có SF//BD \Rightarrow \frac{MF}{MD} =
\frac{MS}{MB} = 1.

  • Câu 2: Nhận biết

    Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn 10 theo thứ tự tăng dần?

    Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có hai ước số là 1 và chính nó.

    Vậy dãy số nguyên tố nhỏ hơn 102, 3, 5, 7.

  • Câu 3: Nhận biết

    Cho các đường thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?

    Khẳng định đúng là: "Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau."

  • Câu 4: Nhận biết

    Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

    Xét đồ thị hàm số

    \lim_{x ightarrow 1^{+}}y eq
\lim_{x ightarrow 1^{-}}y nên hàm số không liên tục tại x = 1

  • Câu 5: Nhận biết

    Mệnh đề nào sau đây sai?

    Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.

  • Câu 6: Nhận biết

    Cho hai đường thẳng phân biệt m,n và mặt phẳng (\beta). Giả sử m//(\beta);n//(\beta). Mệnh đề nào sau đây đúng?

    Ta có:

    m//(\beta) \Rightarrow \exists
m':\left\{ \begin{matrix}
m'//m \\
m' \subset (\beta) \\
\end{matrix} ight.

    n//(\beta) \Rightarrow \exists
n':\left\{ \begin{matrix}
n'//n \\
n' \subset (\beta) \\
\end{matrix} ight.

    Theo giả thiết m, n là hai đường thẳng phân biệt.

    Nếu m song song với n thì m’ // n’.

    Nếu m’, n’ cắt nhau thì m, n cắt nhau hoặc chéo nhau.

  • Câu 7: Thông hiểu

    Cho dãy số (un) với \ \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n + 1}\text{.~} \\
\end{matrix} ight.

    Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n + 1 = un − 1

    u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1

    Cộng vế với vế của các đẳng thức trên, ta được:

    un = 1 − (n−1) = 2 − n.

  • Câu 8: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về "góc lượng giác"?

    Trên đường tròn định hướng, góc hình học AOB có phân biệt điểm đầu A và điểm cuối B là góc lượng giác.

  • Câu 9: Thông hiểu

    Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?

     Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{12}}{a} = \dfrac{b}{{12}}} \\   {\dfrac{b}{{12}} = \dfrac{{192}}{b}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{144}}{y}} \\   {{b^2} = 2034} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a =  \pm 3} \\   {b =  \pm 48} \end{array}} ight.

  • Câu 10: Thông hiểu

    Cho tứ diện ABCD. Lấy I\in AD,J \in BC sao cho AI = 2DI;BJ= 2CJ. Giả sử (\beta) là mặt phẳng qua IJ song song với AB. Xác định các giao tuyến của tứ diện ABCD và mặt phẳng (\beta). Hình tạo bởi các giao tuyến đó là hình gì?

    Giả sử (\beta) cắt các mặt của tứ diện (ABC)(ABD) theo hai giao tuyến JHIK.

    Ta có: \left\{ \begin{matrix}(\beta) \cap (ABC) = JH \\(\beta) \cap (ABD) = IK \\(ABC) \cap (ABD) = AB \\(\beta)//AB \\\end{matrix} ight.

    \Rightarrow JH//IK//AB

    Theo định lí Ta – lét ta có:

    \left\{ \begin{matrix}\dfrac{HJ}{AB} = \dfrac{CJ}{CB} = \dfrac{1}{3} \Rightarrow HJ =\dfrac{1}{3}AB \\\dfrac{IK}{AB} = \dfrac{DJ}{DA} = \dfrac{1}{3} \Rightarrow KI =\dfrac{1}{3}AB \\\end{matrix} ight.

    \Rightarrow HJ = KI

    => HIKJ là hình bình hành

    Do đó hình tạo bởi các giao tuyến của tứ diện ABCD và mặt phẳng (\beta) là hình bình hành HIKJ.

  • Câu 11: Thông hiểu

    Cho phương trình \sin x.\cos x = 1 có nghiệm là:

     Giải phương trình như sau:

    \begin{matrix}  \sin x.\cos x = 1 \hfill \\   \Leftrightarrow 2\sin x.\cos x = 2 \hfill \\   \Leftrightarrow \sin 2x = 2\left( L ight) \hfill \\ \end{matrix}

    \sin 2x \in \left[ { - 1;1} ight]

    vậy phương trình lượng giác đã cho vô nghiệm.

  • Câu 12: Vận dụng

    Tìm tập xác định D của hàm số y = \sqrt{1- sin2x} - \sqrt{1 + sin2x}

    Hàm số xác định khi và chỉ khi -1\leq \sin2x \leq 1

    Vậy tập xác định của hàm số là D=\mathbb{R}

  • Câu 13: Thông hiểu

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{6} = 17 \\
u_{2} + u_{4} = 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 5d = 17 \\
2u_{1} + 6d = 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 16 \\
d = - 3 \\
\end{matrix} ight.

  • Câu 14: Thông hiểu

    Tính giới hạn E =
\lim_{x ightarrow + \infty}\left( x + 1 - \sqrt{x^{2} - x - 2}
ight)

    Ta có:

    E = \lim_{x ightarrow + \infty}\left(
x + 1 - \sqrt{x^{2} - x - 2} ight)

    E = \lim_{x ightarrow +
\infty}\frac{\left( x + 1 - \sqrt{x^{2} - x - 2} ight)\left( x + 1 +
\sqrt{x^{2} - x - 2} ight)}{x + 1 + \sqrt{x^{2} - x - 2}}

    E = \lim_{x ightarrow +\infty}\dfrac{(x + 1)^{2} - \left( x^{2} - x - 2 ight)^{2}}{x + 1 +\sqrt{x^{2} - x - 2}}

    E = \lim_{x ightarrow +\infty}\dfrac{x\left( 3 + \dfrac{3}{x} ight)}{x\left( 1 + \dfrac{1}{x} +\sqrt{1 - \dfrac{1}{x} - \dfrac{2}{x^{2}}} ight)}

    E = \lim_{x ightarrow + \infty}\dfrac{3+ \dfrac{3}{x}}{1 + \frac{1}{x} + \sqrt{1 - \dfrac{1}{x} -\dfrac{2}{x^{2}}}} = \dfrac{3}{2}

  • Câu 15: Nhận biết

    Với \pi < x< \frac{3\pi}{2} mệnh đề nào sau đây sai?

    Ta có: \pi < x <\frac{3\pi}{2}

    => \left\{ {\begin{array}{*{20}{c}}  {\sin  < 0} \\   {\tan a > 0} \\   {\cos a < 0} \\   {\cot a > 0} \end{array}} ight.

  • Câu 16: Nhận biết

    Cho cấp số nhân có số hạng thứ bảy là \frac{1}{2} và công bội \frac{1}{4}. Hỏi số hạng đầu tiên của cấp số nhân bằng bao nhiêu?

    Ta có: \left\{ \begin{matrix}u_{7} = \dfrac{1}{2} = u_{1}.q^{6} \\q = \dfrac{1}{4} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2048 \\q = \dfrac{1}{4} \\\end{matrix} ight.

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là điểm nào sau đây?

    Do mặt phẳng (MAB) chứa AB // CD nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB.

    Giả sử đường thẳng này cắt SD tại điểm I.

    Khi đó MI là đường trung bình của tam giác SCD

    => I là trung điểm của SD.

    Vậy hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là trung điểm của SD.

  • Câu 18: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, E, F lần lượt là trung điểm SA, SB, SC, SD. Trong các đường thẳng sau, đường thẳng nào không song song với IJ?

    Hình vẽ minh họa

    Tìm đường thẳng không song song với IJ

    Ta có:

    IJ là đường trung bình tam giác SAB nên IJ{m{//}}AB

    ABCD là hình bình hành nên AB{m{//}}CD

    => IJ{m{//}}CD

    EF là đường trung bình tam giác SCD 

    => EF{m{//}}CD => IJ{m{//}}EF

    Vậy AD không song song với IJ.

  • Câu 19: Vận dụng

    Tính giới hạn \lim_{x ightarrow 2}\frac{\sqrt{x - 1} + x^{4} -
3x^{3} + x^{2} + 3}{\sqrt{2x} - 2}

    Ta có:

    \frac{\sqrt{x - 1} + x^{4} - 3x^{3} +
x^{2} + 3}{\sqrt{2x} - 2}

    = \frac{\sqrt{x - 1} - 1}{\sqrt{2x} - 2}
+ \frac{x^{4} - 3x^{3} + x^{2} + 4}{\sqrt{2x} - 2}

    = \frac{(x - 2)\left( \sqrt{2x} + 2
ight)}{(2x - 4)\left( \sqrt{x - 1} + 1 ight)} + \frac{(x - 2)\left(
x^{3} - x^{2} - x - 2 ight)\left( \sqrt{2x} + 2 ight)}{2x -
4}

    = \frac{\sqrt{2x} + 2}{2\left( \sqrt{x -
1} + 2 ight)} + \frac{\left( x^{3} - x^{2} - x - 2 ight)\left(
\sqrt{2x} + 2 ight)}{2}

    Do đó \lim_{x ightarrow 2}\frac{\sqrt{x
- 1} + x^{4} - 3x^{3} + x^{2} + 3}{\sqrt{2x} - 2} = 1

  • Câu 20: Thông hiểu

    Tính giá trị của biểu thức B = \cos^{4}15^{0} - \sin^{4}15^{0} + \cos^{2}15^{0}- \sin^{2}15^{0}

    Ta có:

    B = \cos^{4}15^{0} - \sin^{4}15^{0} +\cos^{2}15^{0} - \sin^{2}15^{0}

    B = \left( \cos^{2}15^{0} - \sin^{2}15^{0}ight)\left( \cos^{2}15^{0} + \sin^{2}15^{0} ight) + \left(\cos^{2}15^{0} - \sin^{2}15^{0} ight)

    B = \left( \cos^{2}15^{0} - \sin^{2}15^{0}ight) + \left( \cos^{2}15^{0} - \sin^{2}15^{0} ight)

    B = 2\left( \cos^{2}15^{0} -\sin^{2}15^{0} ight)

    B =2 \cos30^{0}  =\sqrt{3}

  • Câu 21: Nhận biết

    \mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 2x - 15}}{{2x - 10}} bằng

     \begin{matrix}  \mathop {\lim }\limits_{x \to 5} \dfrac{{{x^2} - 2x - 15}}{{2x - 10}} \hfill \\   = \mathop {\lim }\limits_{x \to 5} \dfrac{{\left( {x - 5} ight)\left( {x + 3} ight)}}{{2\left( {x - 5} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 5} \dfrac{{x + 3}}{2} = 4 \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 23: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in AD sao cho \frac{AD}{AM} = 3, G là trọng tâm tam giác SAB. Đường thẳng GM song song với mặt phẳng:

    Hình vẽ minh họa

    Gọi N là trung điểm của AB, lấy K \in
SA sao cho AS = 3AK

    Ta có: \frac{AK}{AS} = \frac{AM}{AD} =
\frac{1}{3} \Rightarrow KM//SD

    Mặt khác \frac{SK}{SA} = \frac{SG}{SM} =
\frac{2}{3} \Rightarrow GK//AN

    \Rightarrow GK//CD

    \Rightarrow (GMK)//(SCD) \Rightarrow
GM//(SCD)

  • Câu 24: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{2n + 9}{n + 2}},\left( n \in
\mathbb{N}^{*} ight)

    Ta có: \lim\sqrt{\frac{2n + 9}{n + 2}} =\lim\sqrt{\dfrac{2 + \dfrac{9}{n}}{1 + \dfrac{2}{n}}} = \sqrt{\frac{2 +0}{1 + 0}} = \sqrt{2}

  • Câu 25: Thông hiểu

    Số nghiệm của phương trình \cot (x+ \frac{\pi}{4})+1=0 trên khoảng ( -\pi ;3\pi ) là?

     Ta có:\cot (x+\frac{\pi}{4})+1=0 \Leftrightarrow \cot (x+\frac{\pi}{4})=-1

    \Leftrightarrow x+\frac{\pi}{4}=-\frac{\pi}{4}+k \pi  \Leftrightarrow x= -\frac{\pi}{2} +k\pi, k \in \mathbb{Z}

    ycbt\Leftrightarrow -\pi< -\frac{\pi}{2} +k \pi  <3\pi\Leftrightarrow  -\frac{1}{2} < k < \frac{7}{2}, k \in \mathbb{Z}

    nên k \in \{0;1;2;3\}.

  • Câu 26: Nhận biết

    Nghiệm của phương trình \sin x. \cos x = \frac{1}{2} là?

     Ta có: \sin x.cosx = \frac{1}{2} \Leftrightarrow \sin 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi  \Leftrightarrow x = \frac{\pi }{4} + k\pi.

  • Câu 27: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} =
2 và công sai d = 3. Giá trị u_{2024} bằng

    Áp dụng công thức số hạng tổng quát

    u_{2024} = u_{1} + 2023d = 2 + 2023.3 = 6071.

  • Câu 28: Thông hiểu

    Giá trị của C =\lim\ \frac{n^{3} + 1}{n(2n + 1)^{2}} bằng:

    C = \lim\ \frac{n^{3} + 1}{n(2n +1)^{2}}

    = \lim\frac{n^{3} + 1}{n(4n^{2} + 4n +1)} = \lim\frac{n^{3} + 1}{4n^{3} + 4n^{2} + n}

    = \lim\frac{1 + \dfrac{1}{n^{3}}}{4 +\dfrac{4}{n} + \dfrac{1}{n^{2}}} = \frac{1}{4}

  • Câu 29: Vận dụng

    Tổng các nghiệm của phương trình \cos\left( \sin x ight) = 1 trên đoạn (0;2\pibrack bằng:

    Phương trình tương đương với \sin x =
k2\pi;k\mathbb{\in Z}

    - 1 \leq \sin x \leq 1 nên k = 0

    Khi đó phương trình trở thành \sin x = 0
\Rightarrow x = l\pi;\left( l\mathbb{\in Z} ight)

    x \in (0;2\pibrack nên x \in \left\{ 0;\pi ight\}

    => Tổng các nghiệm của phương trình là: 0 + \pi = \pi

  • Câu 30: Thông hiểu

    Biết \lim_{x ightarrow 3}\dfrac{x^{2} +bx + c}{x - 3} = 8\ (b,c\mathbb{\in R}). Giá trị P = b + c bằng

    Đáp án: -13||- 13

    Đáp án là:

    Biết \lim_{x ightarrow 3}\dfrac{x^{2} +bx + c}{x - 3} = 8\ (b,c\mathbb{\in R}). Giá trị P = b + c bằng

    Đáp án: -13||- 13

    \lim_{x ightarrow 3}\frac{x^{2} + bx
+ c}{x - 3} = 8 là hữu hạn nên phương trình x^{2} + bx + c = 0 có nghiệm x = 3

    \Leftrightarrow 3b + c + 9 = 0
\Leftrightarrow c = - 9 - 3b

    Khi đó

    \lim_{x ightarrow 3}\frac{x^{2} + bx +
c}{x - 3} = \lim_{x ightarrow 3}\frac{x^{2} + bx - 9 - 3b}{x - 3} =
\lim_{x ightarrow 3}\frac{(x - 3)(x + 3 + b)}{x - 3}

    = \lim_{x ightarrow 3}(x + 3 + b) = 8
\Leftrightarrow 6 + b = 8 \Leftrightarrow b = 2 \Rightarrow c = -
15

    Vậy P = b + c = - 13.

  • Câu 31: Vận dụng cao

    Rút gọn S = 1 - {\sin ^2}x + {\sin ^4}x - {\sin ^6}x + ... + {( - 1)^n}.{\sin ^{2n}}x + ... với \sin x e  \pm 1

    Ta có: 

     S = 1 - {\sin ^2}x + {\sin ^4}x - {\sin ^6}x + ... + {( - 1)^n}.{\sin ^{2n}}x + ... là một dãy cấp số nhân với {u_1} = 1,q =  - {\sin ^2}x nên

    S = \frac{1}{{1 + {{\sin }^2}x}}

  • Câu 32: Vận dụng

    Cho tập hợp M =
\left\{ 2^{1};2^{2};2^{3};...;2^{2020} ight\}. Số tập hợp con của tập hợp M gồm ba phần tử có thể sắp xếp thành một cấp số nhân tăng là:

    Gọi ba phần tử thỏa mãn yêu cầu bài toán là 2^{a} < 2^{b} < 2^{c} với a,b,c \in \left\{ 1;2;...;2020
ight\}

    2^{a};2^{b};2^{c} lập thành một cấp số nhân

    Suy ra a,b,c lập thành một cấp số cộng

    \Rightarrow a + b = 2c

    Thấy rằng a và c phải cùng tính chẵn lẻ.

    Khi đó số tập con thỏa mãn yêu cầu bài toán là C_{1010}^{2} + C_{1010}^{2} = 1019090

  • Câu 33: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 34: Vận dụng cao

    Cho hàm số y =f(x) = \left\{ \begin{matrix}\dfrac{x^{2016} + x - 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}}\ \ khi\ xeq 1 \\m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tìm giá trị k để hàm số y = f(x) liên tục tại x = 1

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2016} + x
- 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}}

    = \lim_{x ightarrow 1}\frac{\left(
x^{2016} - 1 + x - 1 ight)\left( \sqrt{2018x + 1} + \sqrt{x + 2018}
ight)}{2018x + 1 - (x + 2018)}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left\lbrack \left( x^{2015} + x^{2014} + ... + 1 ight) + 1
ightbrack\left( \sqrt{2018x + 1} + \sqrt{x + 2018} ight)}{2018(x -
1) - (x - 1)}

    = \lim_{x ightarrow
1}\frac{\left\lbrack \left( x^{2015} + x^{2014} + ... + 1 ight) + 1
ightbrack\left( \sqrt{2018x + 1} + \sqrt{x + 2018}
ight)}{2017}

    = \frac{2017.2\sqrt{2019}}{2017} =
2\sqrt{2019}

  • Câu 35: Vận dụng cao

    Biết rằng phương trình \dfrac{1}{\sin x} + \dfrac{1}{\sin2x} + \dfrac{1}{\sin4x}+ \cdots + \dfrac{1}{\sin\left( 2^{2018}x ight)} = 0 có nghiệm dạng x = \frac{2k\pi}{2^{a} - b} với k \in \mathbb{Z}a,b \in \mathbb{N}^{*}. Tính S = a + b

    Điều kiện \left\{ \begin{matrix}\sin x eq 0 \\\sin2x eq 0 \\\sin4x eq 0 \\\cdots \\\sin\left( 2^{2018}x ight) eq 0 \\\end{matrix} ight.

    \Leftrightarrow sin\left( 2^{2018}x
ight) eq 0

    \Leftrightarrow 2^{2018}x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2^{2018}},k \in
\mathbb{Z}

    Ta có:

    \frac{1}{\sin x} = \frac{1 + \cos x -\cos x}{\sin x}

    =\dfrac{2\cos^{2}\dfrac{x}{2}}{2\sin\dfrac{x}{2}cos\dfrac{x}{2}} -cotx

    = cot\frac{x}{2} - cotx

    Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành

    \cot\frac{x}{2} - \cot x + \cot x -\cot2x

    {+ \cdots \cot\left( 2^{2017}x ight) -\cot\left( 2^{2018}x ight) = 0}{\Leftrightarrow \cot\frac{x}{2} - \cot\left( 2^{2018}x ight) =0}

    {\Leftrightarrow \cot\frac{x}{2} =\cot\left( 2^{2018}x ight)}{\Leftrightarrow \frac{x}{2} = 2^{2018}x + k\pi,k \in\mathbb{Z}}

    {\Leftrightarrow x = \frac{2k\pi}{1 -
2^{2019}},k \in \mathbb{Z}
}{\Leftrightarrow x = \frac{2k\pi}{2^{2019} - 1},k \in
\mathbb{Z}}

    Vậy a = 2019,b = 1 nên a + b = 2020.

  • Câu 36: Nhận biết

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) tuần hoàn có chu kì T =
3\pi khi

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) có nghĩa \forall
x\mathbb{\in R \Leftrightarrow}D\mathbb{= R}.

    Chu kì của hàm số T = \frac{2\pi}{| - m|}
= 3\pi \Leftrightarrow m = \pm \frac{2}{3}.

  • Câu 37: Vận dụng cao

    Cho xeq 0 và x+\frac{1}{x} là một số nguyên. Khi đó với mọi số nguyên dương n, có kết luận gì về T(n,x)=x^{n}+\frac{1}{x^{n}}?

    Ta có:

    T\left( {1;x} ight) = x + \frac{1}{x} là một số nguyên

    T\left( {2;x} ight) = {x^2} + \frac{1}{{{x^2}}} = {\left( {x + \frac{1}{x}} ight)^2} - 2 cũng là một số nguyên

    Ta sẽ chứng minh T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

    Ta có: 

    T\left( {1;x} ight) là một số nguyên 

    Giả sử T(n,x) là số nguyên với n \ge1. Ta sẽ chứng minh T\left( {n + 1;x} ight) cũng là số nguyên.

    Ta có: 

    \begin{matrix}  T\left( {n + 1;x} ight) = {x^{n + 1}} + \dfrac{1}{{{x^{n + 1}}}} \hfill \\   = \left( {x + \dfrac{1}{x}} ight).\left( {{x^n} + \dfrac{1}{{{x^n}}}} ight) - \left( {{x^{n - 1}} + \dfrac{1}{{{x^{n - 1}}}}} ight) \hfill \\   = T\left( {1;x} ight).T\left( {n;x} ight) - T\left( {n - 1;x} ight) \hfill \\ \end{matrix}

    Theo giả thiết quy nạp ta có: 

    \left\{ \begin{gathered}  T\left( {1;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n - 1;x} ight) \in \mathbb{Z} \hfill \\ \end{gathered}  ight. \Rightarrow T\left( {n + 1;x} ight) \in \mathbb{Z}

    Vậy T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

  • Câu 38: Thông hiểu

    Tìm chu kì T của hàm số y = \tan 3\pi x.

    Hàm số y = \tan \left( {ax + b} ight) tuần hoàn với chu kì T\,\, = \,\,\frac{\pi }{{\left| a ight|}}

    Áp dụng: Hàm số y = \tan 3\pi x tuần hoàn với chu kì T = \frac{1}{3}

  • Câu 39: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{8n + 2}{2n - 1}}

    Ta có: \lim\sqrt{\dfrac{8n + 2}{2n - 1}} =\lim\sqrt{\dfrac{8 + \dfrac{2}{n}}{2 - \dfrac{1}{n}}} = \sqrt{\dfrac{8 +0}{2 - 0}} = 2

  • Câu 40: Vận dụng

    Cho hàm số f(x) liên tục trên đoạn [-1;4] sao cho f(-1) = 2, f(4) = 7. Có thể nói gì về số nghiệm của phương trình f(x) = 5 trên đoạn [-1;4] :

    Ta có: f(x)=5 =>f(x)−5=0

    Đặt g(x)=f(x)−5

    Khi đó:

    \begin{matrix}\left\{ \begin{gathered}g( - 1) = f( - 1) - 5 = 2 - 5 = - 3 \hfill \\g(4) = f(4) - 5 = 7 - 5 = 2 \hfill \\\end{gathered} ight. \hfill \\\Rightarrow g( - 1).g(4) < 0 \hfill \\\end{matrix}

    Vậy phương trình g(x)=0 có ít nhất một nghiệm thuộc khoảng (1;4) hay phương trình f(x)=5 có ít nhất một nghiệm thuộc khoảng (1;4).

  • Câu 41: Vận dụng

    Một cấp số cộng có số hạng đầu là 1, công sai là 4, tổng của n số hạng đầu là 561. Khi đó số hạng thứ n của cấp số cộng đó là u_{n} có giá trị là bao nhiêu?

    Ta có: \left\{ \begin{matrix}
u_{1} = 1;d = 4 \\
S_{m} = 561 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 1;d = 4 \.u_{1} + \dfrac{n(n - 1)}{2}.d = 561 \\\end{matrix} ight.

    \Leftrightarrow n + \frac{n^{2} -
n}{2}.4 = 561

    \Leftrightarrow 2n^{2} - n - 561 =
0

    \Leftrightarrow n = 17

    \Rightarrow u_{n} = u_{17} = u_{1} + 16d
= 1 + 16.4 = 65

  • Câu 42: Thông hiểu

    Cho tứ diện ABCD có M, N là hai điểm phân biệt trên cạnh AB. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Giả sử CM và DN đồng phẳng.

    Khi đó, ta có A, B cùng thuộc mặt phẳng (MNDC)

    => A, B, C, D đồng phẳng, trái giả thiết ABCD là tứ diện.

    Vậy CM và DN chéo nhau.

  • Câu 43: Vận dụng

    Cho tứ diện ABCD. Các cạnh AC,BD,AB,CD,AD,BC có trung điểm lần lượt là M,N,P,Q,R,S. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?

    Hình vẽ minh họa

    Ta có:

    MP // BC // NQ, MP = \frac{1}{2}BC =
NQ

    => MPNQ là hình bình hành

    => M, N, P, Q thuộc một mặt phẳng.

    MR // CD // SN, MR = \frac{1}{2}CD =
SN

    => MRNS là hình bình hành

    => M, R, S, N thuộc một mặt phẳng.

    PS // AC // RQ, PS = \frac{1}{2}AC =
RQ

    => PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.

    Vậy M,P,R,S không thuộc cùng một mặt phẳng.

  • Câu 44: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh bên SA, SB, SC, SD. Tứ giác MNPQ là hình gì?

    Hình vẽ minh họa

    Tứ giác MNPQ là hình bình hành.

  • Câu 45: Nhận biết

    Cho cấp số nhân (un) biết u1 = 1; u4 = 64. Tính công bội q của cấp số nhân đó.

    Ta có: 

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Rightarrow {u_4} = {u_1}.{q^{4 - 1}} \hfill \\   \Rightarrow 64 = 1.{q^3} \hfill \\   \Rightarrow {q^3} = 64 \Rightarrow q = 4 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo