Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Trong các phương trình sau có bao nhiêu phương trình có nghiệm?
![]()
Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình có nghiệm;
phương trình vô nghiệm do
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O, gọi M là trung điểm của CD. Giao điểm của BM với mặt phẳng (SAD) là điểm:
Hình vẽ minh họa
Trong mặt phẳng (ABCD), gọi K = BM ∩ AD
Ta có: mà
nên K là giao điểm của BM với mặt phẳng (SAD).
Cho hai mặt phẳng phân biệt (P) và (Q)
(1) nếu hai mặt phẳng (P) và (Q) song song với nhay thì mọi đường thẳng nằm trên (P) đều song song với mọi đường thẳng nằm trên (Q).
(2) nếu mọi đường thẳng nằm trong mặt phẳng (P) đều song song với (Q) thì (P) song song với (Q).
Trong hai phát biểu trên.
Theo định lý, nếu mặt phẳng (P) chứa hai đường thẳng cắt nhau và cùng song song với mặt phẳng (Q) thì (P) song song với (Q), do đó nếu lấy mọi đường thẳng nằm trong mặt phẳng (P) thì tồn tại hai đường thẳng cắt nhau thỏa mãn định lý, vậy phát biểu (2) đúng.
Phát biểu (1) sai vì hai đường thẳng đó có thể chéo nhau.
Khẳng định nào dưới đây sai?
Số hạng tổng quát của cấp số cộng (un) là với công sai d và số hạng đầu u1
Giá trị của
bằng:
Ta có:
Tìm tất cả các giá trị nguyên của a thuộc (0; 2018) để![\lim\sqrt[4]{\dfrac{4^{n} + 2^{n + 1}}{3^{n} + 4^{n+ a}}} \leq \dfrac{1}{1024}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Mà
Vậy có tất cả 2008 giá trị nguyên của a thỏa mãn điều kiện đề bài.
Giá trị của
là:
Ta có:
Trong các giới hạn dưới đây, giới hạn nào không tồn tại?
Ta có:
không xác định.
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Cho cấp số cộng có
,
. Khi đó:
a)
. Đúng||Sai
b) Số hạng tổng quát thứ
của cấp số cộng là
. Đúng||Sai
c) Tổng
số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng
. Sai||Đúng
Cho cấp số cộng có ,
. Khi đó:
a) . Đúng||Sai
b) Số hạng tổng quát thứ của cấp số cộng là
. Đúng||Sai
c) Tổng số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng . Sai||Đúng
a) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
b) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
c) Áp dụng công thức tính tổng số hạng đầu tiên của cấp số cộng ta có:
.
d) Ta viết lại
.
Số hạng âm trong dãy số x1; x2; x3; …; xn với
là?
Ta có
Vậy các số hạng âm là x1; x2; x3.
Cho hình chóp
có đáy
là hình bình hành. Xác định giao tuyến của hai mặt phẳng
và
:
Hình vẽ minh họa
Gọi
Khi đó đi qua
.
Xét ba mặt phẳng .
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Cho hàm số
thỏa mãn
và
. Gọi S là số giao điểm của đồ thị hàm số đã cho với trục Ox. Mệnh đề nào dưới đây đúng?
Hàm số đã cho xác định trên .
Ta có:
mà
nên
.
Mặt khác
mà
nên
.
Ta lại có nên tồn tại số
sao cho f(m) < 0 và
nên tồn tại số
sao cho
.
Vậy nên phương trình
có ít nhất một nghiệm thuộc
.
Và nên phương trình
có ít nhất một nghiệm thuộc
.
Và nên phương trình
có ít nhất một nghiệm thuộc
.
Từ đó suy ra đồ thị hàm số có 3 điểm chung với trục hoành.
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Nếu một cung tròn có số đo
thì số đo radian của nó là:
Áp dụng công thức tương ứng với
ta được:
Cho hai số -3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số tạo thành cấp số cộng có công sai d = 2. Tìm n
Xen kẽ giữa hai số -3 và 23 n số hạng để tạo thành một cấp số cộng thì:
Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình
?
Ta có
Vậy .
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính ![]()
Điều kiện
Ta có:
Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành
Vậy nên
.
Cho tứ diện ABCD. Giả sử M thuộc đoạn BC. Một mặt
qua M song song với AB và CD. Thiết diện của
và hình tứ diện ABCD là hình gì?
Hình vẽ minh họa

=> Giao tuyến của
với (ABC) là đường thẳng đi qua M, song song với AB và cắt AC tại Q.
=> Giao tuyến của
với (BCD) là đường thẳng đi qua M, song song với CD và cắt BD tại N.
=> Giao tuyến của
với (ABD) là đường thẳng đi qua N, song song với AB và cắt AD tại P.
=> Thiết diện của hình chóp cắt bởi là tứ giác MNPQ.
Ta lại có:
Vậy thiết diện là hình bình hành MNPQ.
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:
;
. Khi đó:
a)
. Đúng||Sai
b) Ba số
tạo thành một cấp số cộng. Sai||Đúng
c)
. Sai||Đúng
d)
. Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng
. Sai||Đúng
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng . Sai||Đúng
Điều kiện: .
Phương trình
.
Yêu cầu bài toán .
Ta có:
Vì .
Kết hợp điều kiện, ta có là những giá trị cần tìm.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây sai?
Ta có:
Cho tứ diện
. Gọi
là trung điểm
là điểm thuộc cạnh
sao cho
, gọi
. Tìm giao tuyến của
và
. Giao tuyến của
và
cắt đoạn
tại mấy điểm.
Đáp án: 0
Cho tứ diện . Gọi
là trung điểm
là điểm thuộc cạnh
sao cho
, gọi
. Tìm giao tuyến của
và
. Giao tuyến của
và
cắt đoạn
tại mấy điểm.
Đáp án: 0
Hình vẽ minh họa
Trong mặt phẳng , có
.
Suy ra không thuộc đoạn
.
Ta có:
Mà không thuộc đoạn
nên giao tuyến của
và
không cắt đoạn
.
Trong các mệnh đề sau đây, mệnh đề nào sai?
Hai đường thẳng phân biệt cùng song song với
thì
có thể cắt nhau cùng nằm trong
.
Cường độ dòng điện trong một đoạn mạch là
(A). Tại thời điểm
thì cường độ trong mạch có giá trị bằng.
Thay vào biểu thức cường độ dòng điện ta được:
.
Phương trình
có nghiệm là:
Ta có:
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Do k là số nguyên =>
Vậy tập xác định
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn thỏa mãn
.
Ta có:
Vậy .
Tứ diện
có thể xem là hình chóp tam giác bằng bao nhiêu cách?
Có 4 cách là: .
Xác định
.
Ta có: .
Tìm x và y để dãy số
là một cấp số cộng?
Để dãy số là một cấp số cộng thì
Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Xét
Suy ra
Vậy dãy số (un) bị chặn.
Cho hàm số
. Mệnh đề nào sau đây là đúng?
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Vậy hàm số liên tục trên các khoảng và
.
Cho hình chóp
có đáy
là hình vuông cạnh
và
,
. Lấy
lần lượt là trung điểm của
, lấy
. Giả sử hình
tạo bởi các giao tuyến của mặt phẳng
với các mặt bên của hình chóp. Tính chu vi của hình
.
Hình vẽ minh họa
Ta có: => Giao tuyến của
và
cũng song song với
.
Xét mặt phẳng kẻ
=> Hình là hình thang
.
Ta có: là đường trung bình của tam giác
=>
Ta có: nên tam giác
vuông tại
Lại có:
Vì
Chứng minh tương tự ta tính được
=> Chu vi hình là:
Trong các dãy số sau, dãy số nào là cấp số nhân?
Ta có:
=> là cấp số nhân
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Cho hình chóp
có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Đúng||Sai
Cho hình chóp có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
Hình vẽ minh họa
Ta có EF là đường trung bình tam giác SAD nên EF // SD
Ta có:
Xét tứ giác BFDC có: suy ra tứ giác BFDC là hình bình hành
=> BF // DC
Ta có:
Ta có:
Do AD // BC nên theo định lí Ta- let ta có:
Mặt khác
Xét tam giác SAC có
Ta có:
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho tứ diện
. Trên
,
lần lượt lấy hai điểm
sao cho
cắt
tại
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa:
Ta có: là điểm chung của hai mặt phẳng
và
Ta lại có: nên
là điểm chung thứ hai.
Vậy giao tuyến của hai mặt phẳng và
là
Hàm số nào trong các hàm số dưới đây không liên tục trên
?
Hàm số có tập xác định
nên hàm số không liên tục trên
.
Tính giới hạn ![]()
Ta có:
Tính
.
Ta có:
Tính giới hạn ![]()
Ta có:
Do đó