Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (m) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t < 24) cho bởi công thức h = 3cos\left( \frac{\pi t}{6} + 1 ight) +
12. Có bao nhiêu giá trị của t thỏa mãn để độ sâu của mực nước là 15\ m?

    Độ sâu của mực nước là 15\ m thì h = 15.

    Khi đó

    15 = 3cos\left( \frac{\pi t}{6} + 1
ight) + 12n \Leftrightarrow \cos\left( \frac{\pi t}{6} + 1 ight) =
1

    \Leftrightarrow \cos\left( \frac{\pi
t}{6} + 1 ight) = cos0 \Leftrightarrow \frac{\pi t}{6} + 1 =
k2\pi

    \Leftrightarrow t = \frac{6(k2\pi -
1)}{\pi};k \in Z

    0 \leq t < 24 nên

    0 \leq \frac{6(k2\pi - 1)}{\pi} \leq 24
\Leftrightarrow 0 < k \leq 2

    Lại do k \in Z \Rightarrow k \in \{ 1;2\}
\Rightarrow t \in \left\{ \frac{6(2\pi - 1)}{\pi};\frac{6(4\pi -
1)}{\pi} ight\}

  • Câu 2: Nhận biết

    Trong không gian, cho ba đường thẳng a,\
\ b,\ \ c. Trong các mệnh đề sau mệnh đề nào đúng?

    Nếu bc chéo nhau thì bc không cùng thuộc một mặt phẳng.

  • Câu 3: Thông hiểu

    Kết quả của giới hạn \lim \left( {\frac{{\sin 5n}}{{3n}} - 2} ight) bằng:

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  0 \leqslant \left| {\dfrac{{\sin 5n}}{{3n}}} ight| \leqslant \dfrac{1}{{3n}} \to 0 \hfill \\  \lim \left( { - 2} ight) =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim \left( {\dfrac{{\sin 5n}}{{3n}} - 2} ight) =  - 2 \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Cho cấp số cộng {u_1} =  - 3;d = 4. Chọn khẳng định đúng trong các khẳng định sau?

     Ta có: {u_3} = {u_1} + 2d =  - 3 + 2.4 = 5

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in AD sao cho \frac{AD}{AM} = 3, G là trọng tâm tam giác SAB. Đường thẳng GM song song với mặt phẳng:

    Hình vẽ minh họa

    Gọi N là trung điểm của AB, lấy K \in
SA sao cho AS = 3AK

    Ta có: \frac{AK}{AS} = \frac{AM}{AD} =
\frac{1}{3} \Rightarrow KM//SD

    Mặt khác \frac{SK}{SA} = \frac{SG}{SM} =
\frac{2}{3} \Rightarrow GK//AN

    \Rightarrow GK//CD

    \Rightarrow (GMK)//(SCD) \Rightarrow
GM//(SCD)

  • Câu 6: Nhận biết

    Hàm số nào sau đây có chu kì khác 2\pi?

    Hàm số y = \cos^{3}x = \frac{1}{4}(\cos3x +3\cos x) có chu kì 2\pi.

    Hàm số y = \sin\frac{x}{2}\cos\frac{x}{2}
= \frac{1}{2}\sin x có chu kì 2\pi.

    Hàm số y = \sin^{2}(x + 2) = \frac{1}{2} -\frac{1}{2}\cos(2x + 4) có chu kì \pi.

    Hàm số y = \cos^{2}\left( \frac{x}{2} + 1ight) = \frac{1}{2} + \frac{1}{2}\cos(x + 2) có chu kì 2\pi.

  • Câu 7: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản \frac{m}{n}. Tính P = mn

    Ta có:

    \begin{matrix}
  0,353535 = 0,35 + 0,0035 + ... \hfill \\
   = \dfrac{{35}}{{{{10}^2}}} + \dfrac{{35}}{{{{10}^4}}} + ... + \dfrac{{35}}{{{{10}^n}}} + ... \hfill \\ 
\end{matrix}

    Dãy số \frac{35}{10^{2}};\frac{35}{10^{4}};...;\frac{35}{10^{n}};... là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = \frac{35}{10^{2}}, công sai là q = 10^{- 2}

    => S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{35}{10^{2}}}{1 - 10^{- 2}} = \dfrac{35}{99}

    Vậy 0,353535 = \frac{35}{99}

    \Rightarrow \left\{ \begin{matrix}
m = 35 \\
n = 99 \\
\end{matrix} ight.\  \Rightarrow P = 3465

  • Câu 8: Nhận biết

    \tan x có nghĩa khi nào?

    Để \tan x có nghĩa thì \cos x e 0

    => x eq \frac{\pi}{2} +k\pi

  • Câu 9: Thông hiểu

    Xác định \lim_{x
ightarrow - 2}\frac{x + 1}{(x + 2)^{2}}.

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - 2} \left( {x + 1} ight) =  - 1 < 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - 2} {\left( {x + 2} ight)^2} = 0 \hfill \\
  {\left( {x + 2} ight)^2} > 0,\forall x e  - 2 \hfill \\ 
\end{gathered}  ight. \Rightarrow \mathop {\lim }\limits_{x \to  - 2} \frac{{x + 1}}{{{{\left( {x + 2} ight)}^2}}} =  - \infty

  • Câu 10: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau đây.

    Hình lăng trụ đứng có đáy là một đa giác đều là hình lăng trụ đều.

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I,K lần lượt là trung điểm các cạnh BC,CDM là điểm trên cạnh SB sao cho\
\frac{SM}{SB} = \frac{1}{3}. Gọi N là gia điểm của MD và mặt phẳng (SIK). Tính tỉ số \frac{ND}{NM}.

    Đáp án: 3

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I,K lần lượt là trung điểm các cạnh BC,CDM là điểm trên cạnh SB sao cho\
\frac{SM}{SB} = \frac{1}{3}. Gọi N là gia điểm của MD và mặt phẳng (SIK). Tính tỉ số \frac{ND}{NM}.

    Đáp án: 3

    Hình vẽ minh họa

    Ta có M là điểm trên cạnh SB, \frac{SM}{SB} = \frac{1}{3} nên \frac{MB}{MS} = 2.

    IK//BD nên IK//(SBD) suy ra (SBD) \cap (SIK) = Sx,\ \ Sx//IK//BD.

    Trong (SBD),\ \ DM \cap Sx =
N.

    N chính là giao điểm của DM(SIK).

    Trong (SBD), có Sx//BD nên hai tam giác \Delta SMN \Delta BMD đồng dạng.

    Do đó \frac{MD}{MN} = 2 \Rightarrow
\frac{ND}{NM} = 3.

  • Câu 12: Thông hiểu

    Chọn mệnh đề sai?

    Xét n = 2k

    \Rightarrow \lim( - 2)^{n} = \lim( -
2)^{2k}

    = \lim\left\lbrack ( - 2)^{2}
ightbrack^{k} = \lim 4^{k} = + \infty

    Xét n = 2k + 1

    \Rightarrow \lim( - 2)^{n} = \lim( -
2)^{2k + 1}

    = \lim\left\lbrack ( - 2)^{2k}.( - 2)
ightbrack = \lim\left\lbrack 4^{k}.( - 2) ightbrack = -
\infty

  • Câu 13: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.\frac{{{2^n}}}{n}. Tìm số hạng u_{3}

    Ta có:

    {u_3} = {( - 1)^3}.\frac{{{2^3}}}{3} =  - \frac{8}{3}

  • Câu 14: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 15: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 16: Vận dụng

    Cho hàm số f(x) liên tục trên đoạn [-1;4] sao cho f(-1) = 2, f(4) = 7. Có thể nói gì về số nghiệm của phương trình f(x) = 5 trên đoạn [-1;4] :

    Ta có: f(x)=5 =>f(x)−5=0

    Đặt g(x)=f(x)−5

    Khi đó:

    \begin{matrix}\left\{ \begin{gathered}g( - 1) = f( - 1) - 5 = 2 - 5 = - 3 \hfill \\g(4) = f(4) - 5 = 7 - 5 = 2 \hfill \\\end{gathered} ight. \hfill \\\Rightarrow g( - 1).g(4) < 0 \hfill \\\end{matrix}

    Vậy phương trình g(x)=0 có ít nhất một nghiệm thuộc khoảng (1;4) hay phương trình f(x)=5 có ít nhất một nghiệm thuộc khoảng (1;4).

  • Câu 17: Thông hiểu

    Thiết diện của hình chóp tứ giác (cắt bởi một mặt phẳng) không thể là hình nào dưới đây?

    Vì hình chóp tứ giác có tối đa 5 mặt nên thiết diện không thể là lục giác.

  • Câu 18: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 19: Nhận biết

    Có bao nhiêu hình chóp tứ giác trong các hình sau?

    Có 2 hình chóp tứ giác

  • Câu 20: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{2x + 1}{x - 1}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{2x + 1}{x - 1} ight) = \lim_{x ightarrow +\infty}\left( \dfrac{2 + \dfrac{1}{x}}{1 - \dfrac{1}{x}} ight) =2

  • Câu 21: Vận dụng

    Tìm tập xác định D của hàm số y = \sqrt{5
+ 2cot^{2}x - \sin x} + \cot\left( \frac{\pi}{2} + x
ight)

    Hàm số xác định khi và chỉ khi

    5 + 2cot^{2}x - \sin x \geq 0\cot\left( \frac{\pi}{2} + x
ight) xác định và \cot x xác định

    Ta có: \cot\left( \frac{\pi}{2} + x
ight) xác định khi và chỉ khi

    \begin{matrix}\sin\left( \dfrac{\pi}{2} + x ight) eq 0 \hfill \\\Rightarrow \dfrac{\pi}{2} + x eq k\pi\hfill \\\Rightarrow x eq - \dfrac{\pi}{2} + k\pi,k\mathbb{\in Z} \hfill\\\end{matrix}

    Mà cot x xác định khi

    \begin{matrix}\sin x eq 0 \hfill \\\Rightarrow x eq k\pi \hfill \\\Rightarrow x eq + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Do đó hàm số xác định khi và chỉ khi \left\{ \begin{matrix}x eq - \dfrac{\pi}{2} + k\pi \\x eq k\pi \\\end{matrix} ight.\  \Rightarrow x eq \dfrac{k\pi}{2},k \in\mathbb{Z}

    Vậy tập xác định của hàm số là D\mathbb{=R}\backslash\left\{ \frac{k\pi}{2},k \in\mathbb{ Z} ight\}

  • Câu 22: Thông hiểu

    Tập giá trị của hàm số y = {\sin ^2}x - \sin x - 1 là:

     Ta có: y = {\sin ^2}x + \sin x + 1 = {\left( {\sin x - \frac{1}{2}} ight)^2} - \frac{5}{4}

    \sin x \in \left[ { - 1;1} ight]

    => - \frac{5}{4} \leqslant {\left( {\sin x - \frac{1}{2}} ight)^2} - \frac{5}{4} \leqslant 1

  • Câu 23: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi M là trung điểm của BC. Điểm M' là ảnh của điểm M qua phép chiếu song song phương CC', mặt phẳng chiếu (A'B'C'). Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có phép chiếu song song phương CC', biến C thành C', biến B thành B'.

    Do M là trung điểm của BC suy ra M' là trung điểm của B'C' vì phép chiếu song song bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số của hai đoạn thẳng nằm trên cùng một đường thẳng hoặc trên hai đường thẳng song song.

    Vậy khẳng định đúng là: M'C' =
M'B'

  • Câu 24: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 25: Vận dụng

    Cho tứ diện ABCD. Trên AB, AC lần lượt lấy hai điểm M,N sao cho MN cắt BC tại I. Tìm giao tuyến của hai mặt phẳng (MND)(BCD).

    Hình vẽ minh họa:

    Ta có: D là điểm chung của hai mặt phẳng (MND)(BCD)

    Ta lại có: \left\{ \begin{matrix}
I \in MN \subset (MND) \\
I \in BC \subset (BCD) \\
\end{matrix} ight. nên I là điểm chung thứ hai.

    Vậy giao tuyến của hai mặt phẳng (MND)(BCD) DI

  • Câu 26: Vận dụng cao

    Tổng Sn = 1.3 + 2.5 + 3.7 + … + n(2n+1) có công thức thu gọn là?

    Sn = Σi = 1ni(2i+1) = Σi = 1n (2i2+1)

    = 2\Sigma_{i = 1}^{n}\mspace{2mu} i^{2}
+ \Sigma_{i = 1}^{n}\mspace{2mu} i = \frac{2n(n + 1)(2n +
1)}{6}

    = \frac{n(n + 1)}{2} = \frac{n(n + 1)(4n
+ 5)}{6}

  • Câu 27: Vận dụng

    Tính giới hạn \lim_{x ightarrow 2}\frac{\sqrt{x - 1} + x^{4} -
3x^{3} + x^{2} + 3}{\sqrt{2x} - 2}

    Ta có:

    \frac{\sqrt{x - 1} + x^{4} - 3x^{3} +
x^{2} + 3}{\sqrt{2x} - 2}

    = \frac{\sqrt{x - 1} - 1}{\sqrt{2x} - 2}
+ \frac{x^{4} - 3x^{3} + x^{2} + 4}{\sqrt{2x} - 2}

    = \frac{(x - 2)\left( \sqrt{2x} + 2
ight)}{(2x - 4)\left( \sqrt{x - 1} + 1 ight)} + \frac{(x - 2)\left(
x^{3} - x^{2} - x - 2 ight)\left( \sqrt{2x} + 2 ight)}{2x -
4}

    = \frac{\sqrt{2x} + 2}{2\left( \sqrt{x -
1} + 2 ight)} + \frac{\left( x^{3} - x^{2} - x - 2 ight)\left(
\sqrt{2x} + 2 ight)}{2}

    Do đó \lim_{x ightarrow 2}\frac{\sqrt{x
- 1} + x^{4} - 3x^{3} + x^{2} + 3}{\sqrt{2x} - 2} = 1

  • Câu 28: Vận dụng

    Số hạng tổng quát của cấp số cộng là {u_n} = 3n + 4,n \in {\mathbb{N}^*}. Gọi {S_n} là tổng số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?

    Cấp số cộng {u_n} = an + b \to \left\{ {\begin{array}{*{20}{c}}  {{u_1} = a + b} \\   {d = a} \end{array}} ight.

    \begin{matrix}  {u_n} = 3n + 4 \to \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 7} \\   {d = 3} \end{array}} ight. \hfill \\   \Rightarrow {S_n} = n{u_1} + \dfrac{{n\left( {n - 1} ight)d}}{2} = 7n + \dfrac{{3\left( {{n^2} - n} ight)}}{2} = \dfrac{{3{n^2} + 11n}}{2} \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = - 2;u_{2} = 2. Khi đó số hạng 2018 là số nào?

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 2 - ( - 2) =
4

    u_{n} = u_{1} + (n - 1)d

    \Rightarrow u_{2018} = u_{1} + 2017d = -
2 + 2017.4 = 8066.

  • Câu 30: Thông hiểu

    Cho tứ diện ABCD, M, N, P, Q, R, S lần lượt là trung điểm của AB, CD, BC, AD, BD, AC. Phát biểu nào sau đây là sai?

    Trong tam giác CAD có S và N lần lượt là trung điểm của AC và CD

    Suy ra SN là đường trung bình của tam giác CAD

    => SN // AD (1)

    Tương tự MR cũng là đường trung bình của tam giác ABD

    => MR // AD (2)

    Từ (1) và (2) suy ra: SN // MR nên đáp án "MN, SN song song với nhau"

    Chứng minh tương tự ta cũng có: SM // NR //BC

    Do đó tứ giác MRNS là hình bình hành nên đáp án "MRNS là hình bình hành"

    Hai đường chéo SR và MN cắt nhau tại G với G là trung điểm của mỗi đường chéo.

    Lại có: NQ // MP (//AC) và MQ // NP //BD

    => Tứ giác MQNP là hình bình hành

    => Hai đường chéo QP và MN cắt nhau tại trung điểm của mỗi đường

    Mà G là trung điểm của MN

    Do đó G cũng là trung điểm của QP

    Vậy ba đường thẳng MN, PQ, SR đồng quy tại G.

    Đáp án "MN, PQ, RS đồng quy'

    Đáp án "6 điểm M, N, P, Q, R, S đồng phẳng" sai vì P và Q cùng thuộc một mặt phẳng với M và N nhưng không cùng thuộc một mặt phẳng với hai điểm S và R.

  • Câu 31: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi, AC \cap BD = O. Gọi (\alpha) là mặt phẳng qua O song song với các đường thẳng AB,SC. Xác định các giao tuyến của (\alpha) với các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

    Hình vẽ minh hoạ

    Xét mặt phẳng (ABCD), kẻ đường thẳng qua O và song song với AB, cắt BC;AD lần lượt tại E,F.

    Trong mặt phẳng (SBC), kẻ đường thẳng song song với SC, cắt SB tại I.

    Trong mặt phẳng (SAB), kẻ đường thẳng song song với AB, cắt SA tại K.

    Vậy hình tạo bởi các giao tuyến là hình thang EFKI với IK//EF.

  • Câu 32: Vận dụng cao

    Cho các số thực a,\ b,\ c thỏa mãn 4a + c > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Đáp án là:

    Cho các số thực a,\ b,\ c thỏa mãn 4a + c > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Xét hàm số f(x) = x^{3} + ax^{2} + bx +
c

    Theo giả thiết 4a + c > 2b + 8
\Leftrightarrow - 8 + 4a - 2b + c > 0 \Rightarrow f( - 2) >
0

    a + b + c < - 1 \Leftrightarrow 1 + a
+ b + c < 0 \Rightarrow f(1) < 0

    Ta có f(x) là hàm đa thức nên liên tục trên \mathbb{R}

    \left\{ \begin{matrix}
\lim_{x ightarrow - \infty}f(x) = - \infty \\
f( - 2) > 0 \\
\end{matrix} ight. suy ra phương trình f(x) = 0 có ít nhất một nghiệm trên ( - \infty; - 2)(1)

    f( - 2)f(1) < 0nên phương trình f(x) = 0 có ít nhất một nghiệm trên khoảng ( - 2;1)(2)

    \left\{ \begin{matrix}
\lim_{x ightarrow + \infty}f(x) = + \infty \\
f(1) < 0 \\
\end{matrix} ight.suy ra phương trình f(x) = 0 có ít nhất một nghiệm trên khoảng (1; + \infty)(3)

    Từ (1); (2)(3) ta có phương trình f(x) = 0 có ít nhất 3 nghiệm.

    Mặt khác f(x) = 0 là phương trình bậc ba nên có tối đa 3 nghiệm.

    Vậy phương trình f(x) = 0 có đúng 3 nghiệm.

  • Câu 33: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 34: Nhận biết

    Giải phương trình \cot x = - 1 thu được kết quả là:

    Điều kiện x eq k\pi\left( k\mathbb{\in
Z} ight)

    \cot x = - 1 \Leftrightarrow x = -
\frac{\pi}{4} + k\pi\ \left( k\mathbb{\in Z} ight).

  • Câu 35: Nhận biết

    Giá trị của A =
\lim\frac{2n + 1}{n - 2} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{5}{a} + 2 > 2

    Ta có:

    \left| \frac{2n + 1}{n - 2} - 2
ight| = \frac{5}{|n - 2|} < \frac{5}{n_{a} - 2} < a\ với\ mọi\ n
> n_{a}

    Vậy A=2.

  • Câu 36: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{4}{5}\frac{\pi}{2} < \alpha < \pi. Tính giá trị của biểu thức P = \sin2(\alpha +\pi).

    Ta có:

    P = \sin2(\alpha + \pi) = \sin(2\alpha +2\pi) = \sin2\alpha = 2\sin\alpha.\cos\alpha

    Theo bài ra ta có:

    \frac{\pi}{2} < \alpha < \pi
\Rightarrow \cos\alpha < 0

    \cos^{2}\alpha = 1 - \sin^{2}\alpha =\frac{9}{25}

    \Rightarrow \cos\alpha = -
\frac{3}{5}

    => P = 2.\frac{4}{5}.\left( -
\frac{3}{5} ight) = - \frac{24}{25}

  • Câu 37: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=\frac{1}{3^{n-2}} ta có:

    \dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{1}{{{3^{n + 1 - 2}}}}}}{{\dfrac{1}{{{3^{n - 2}}}}}} = \dfrac{{{3^{n - 2}}}}{{{3^{n - 1}}}} = {3^{ - 1}} = \frac{1}{3}

    Vậy dãy số u_n=\frac{1}{3^{n-2}} là cấp số nhân với q = 1/3

  • Câu 38: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Theo công thức cộng

    \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 39: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 40: Nhận biết

    Hàm số y =
\frac{- 5}{x\left( x^{2} - 4 ight)} liên tục tại điểm nào dưới đây?

    Hàm số y = \frac{- 5}{x\left( x^{2} - 4
ight)} có tập xác định D\mathbb{=
R}\backslash\left\{ - 2;0;2 ight\}

    Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định D.

    Khi đó x = 1 \in D suy ra hàm số đã cho liên tục tại điểm x = 1.

  • Câu 41: Nhận biết

    Để kết luận đường thẳng a song song với đường thẳng b ta cần giả thiết nào dưới đây?

    Ta có tính chất:

    Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

    Vậy \left\{ \begin{matrix}
a//(\alpha);a//(\beta) \\
(\alpha) \cap (\beta) = b \\
\end{matrix} ight.\  \Rightarrow a//b

  • Câu 42: Thông hiểu

    Cho phương trình {\cot ^2}3x - 3\cot 3x + 2 = 0. Đặt t = \cot 3x, ta được phương trình nào sau đây? 

     Ta có: {\cot ^2}3x - 3\cot 3x + 2 = 0  trở thành {t^2} - 3t + 2 = 0.

  • Câu 43: Vận dụng

    Biết tổng ba số hạng đầu của một cấp số nhân là 16, đồng thời theo thứ tự chúng là số hạng thứ nhất, số hạng thứ tư và số hạng thứ tám của một cấp số cộng. Công bội và số hạng đầu tiên của cấp số nhân là:

    Gọi u_{1};u_{2};u_{3};u_{4} là bốn số hạng đầu của cấp số nhân \left( u_{n}
ight) với công bội q.

    Gọi \left( v_{n} ight) là cấp số cộng tương ứng với công sai d.

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} + u_{2} + u_{3} = 16 \\
u_{1} = v_{1} \\
u_{2} = v_{4} = v_{1} + 3d \\
u_{3} = v_{8} = v_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + u_{1}.q + u_{1}.q^{2} = 16 \\
u_{1}.q = v_{1} + 3d \\
u_{1}.q^{2} = v_{1} + 7d \\
\end{matrix} ight.

    \left( u_{1} eq 0 ight) \Rightarrow\left\lbrack \begin{matrix}q = 1(ktm) \\q = \dfrac{10}{3}(tm) \\\end{matrix} ight.

    q = \frac{10}{3} \Rightarrow u_{1} =
\frac{144}{139}

  • Câu 44: Thông hiểu

    Cho một cấp số cộng có {u_4} = 2;{u_2} = 4. Hỏi {u_1} bằng bao nhiêu?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_4} = 2} \\   {{u_2} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + 3d = 2} \\   {{u_1} + d = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {d =  - 1} \end{array}} ight.

  • Câu 45: Thông hiểu

    Điều kiện để phương trình 3.sinx + m.cosx = 5 có nghiệm là:

     Điều kiện để phương trình 3.sinx + m.cosx = 5 có nghiệm là

    \begin{matrix}  {3^2} + {m^2} < {5^2} \hfill \\   \Leftrightarrow {m^2} < 16 \Leftrightarrow  - 4 < m < 4 \hfill \\ \end{matrix}

    Vậy −4 < m < 4 thì phương trình đã cho có nghiệm.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo