Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Trong các mệnh đề sau, mệnh đề nào là đúng?
Đáp án: "Nếu và
;
thì
" và "Nếu
và
thì
" sai vì hai đường thẳng
có thể chéo nhau.
Đáp án: "Nếu và
,
thì
" sai vì hai mặt phẳng
có thể cắt nhau.
Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có thuộc gốc phần tư thứ I
=> Hàm số đồng biến trên khoảng
Trong các khẳng định sau khẳng định nào sai?
Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại hoặc nằm trong mặt phẳng còn lại.
Vậy câu sai là: “Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại”.
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.
Ta có:
Giá trị của
bằng:
Ta có:
Cho hàm số
. Số nghiệm của phương trình
trên tập số thực là:
Hàm số là hàm đa thức có tập xác định
=> Hàm số liên tục trên
=> Hàm số liên tục trên các khoảng
Ta có:
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng . Tuy nhiên phương trình
là phương trình bậc ba có nhiều nhất ba nghiệm
Vậy phương trình có đúng ba nghiệm.
Dãy số nào dưới đây có giới hạn bằng 0?
Ta có:
Do là dãy cấp số nhân có
Cho hình chóp
. Gọi
lần lượt là trung điểm
. Bốn điểm nào sau đây đồng phẳng?
Hình vẽ minh họa

Ta có: là đường trung bình của tam giác
nên.
là đường trung bình của tam giác
nên
.
=>
=> đồng phẳng.
Thêm hai số thực dương x và y vào giữa hai số 5 và 320 để được bốn số
theo thứ tự đó lập thành cấp số nhận. Khẳng định nào sau đây là đúng?
Ta có:
Các số hạng lập thành cấp số nhân
Cho hình chóp
, biết
và
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có là điểm chung của hai mặt phẳng
và
.
Vì nên
là điểm chung của hai mặt phẳng
và
.
Do đó giao tuyến của hai mặt phẳng và
là
.
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Khẳng định nào dưới đây sai?
Số hạng tổng quát của cấp số cộng (un) là với công sai d và số hạng đầu u1
Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
Khẳng định nào sau đây là đúng khi nói về "góc lượng giác"?
Trên đường tròn định hướng, góc hình học có phân biệt điểm đầu
và điểm cuối
là góc lượng giác.
Cho cấp số cộng (un) có u3 = -15; u20 = 60. Tổng của 10 số hạng đầu tiên của cấp số cộng này là:
Gọi u1, d lần lượt là số hạng đầu và công sai của cấp số cộng
Ta có:
=> Tổng của 10 số hạng đầu tiên của cấp số cộng này là:
Tìm được các giới hạn một bên sau:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Sai||Đúng
d)
Sai||Đúng
Tìm được các giới hạn một bên sau:
a) Đúng||Sai
b) Sai||Đúng
c) Sai||Đúng
d) Sai||Đúng
a) Ta có:
.
b) (do
và
).
c) Ta có:
Do và
.
d) Ta có:
Cho biết mệnh đề nào sau đây sai?
Trường hợp hai đường thẳng chéo nhau thì không xác định được mặt phẳng chứa cả hai đường thẳng đó. Hoặc 2 đường thẳng trùng nhau thì xác định được vô số mặt phẳng.
Cho tứ diện
. Trên các cạnh
lần lượt lấy các điểm
là trung điểm, trên cạnh
lấy điểm
sao cho
. Gọi
, khi đó tỉ số độ dài giữa
và
là:
Hình vẽ minh họa
Từ giả thiết bài ra suy ra LK // AC mà (KLN) ∩ (DAC) = d
=> d // AC
Xét mặt phẳng (DAB) qua N dựng d song song AC
=> {P} = AD ∩ d
Xét tam giác DAC vì PN // AC theo định lý Ta-lét ta có:
Ta lại có:
Cho hình hộp
. Xác định mệnh đề sai?
Hình vẽ minh họa
Theo bài ra ta có:
Mặt khác
=> là mệnh đề sai.
Chu kì của hàm số
là số nào sau đây?
Chu kì của hàm số là
Tính giá trị biểu thức ![]()
Vì nên ta có:
Tìm giới hạn ![]()
Ta có:
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
Ta có

Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.
bằng:
Ta có:
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho phương trình
. Tìm số nguyên dương n bé nhất để phương trình có nghiệm.
Điều kiện xác định
Nếu n là số lẻ thì
Nếu n là số chẵn và x là nghiệm thì -x cũng là nghiệm của phương trình
Vì không là nghiệm nên ta xét phương trình với
(do
nên dấu bằng không xảy ra)
Hơn nữa
Do đó phương trình không có nghiệm với
Khi ta có phương trình
Giả sử khi đó
liên tục trên
.
Ta có:
=> có nghiệm
Vậy .
Giá trị của
bằng:
Ta có mà
Suy ra
Cho phương trình
(*), vậy:
a) Phương trình có nghiệm
Đúng||Sai
b) Trong khoảng
phương trình có 2 nghiệm. Đúng||Sai
c) Tổng các nghiệm của phương trình trong khoảng
bằng
. Sai||Đúng
d) Trong khoảng
phương trình có nghiệm lớn nhất bằng
. Đúng||Sai
Cho phương trình (*), vậy:
a) Phương trình có nghiệm Đúng||Sai
b) Trong khoảng phương trình có 2 nghiệm. Đúng||Sai
c) Tổng các nghiệm của phương trình trong khoảng bằng
. Sai||Đúng
d) Trong khoảng phương trình có nghiệm lớn nhất bằng
. Đúng||Sai
Ta có:
Vì
Vậy phương trình có hai nghiệm thuộc khoảng là
.
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Cho bốn điểm không đồng phẳng trong không gian. Hỏi từ các điểm đã cho có thể xác định được bao nhiêu mặt phẳng phân biệt?
Vì 4 điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có 4 mặt.
Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?
Theo bài ra ta có:
Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.
=>
=> Số tiền phải trả khi khoan giếng sâu 20m là:
Vậy muốn khoan 20 mét thì mất 255000 đồng.
Cho
. Giới hạn
bằng
Đáp án: 1
Cho . Giới hạn
bằng
Đáp án: 1
Ta có:
nên
hay
Do đó
.
Tính ![]()
Ta có:
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính
.
Ta có: xác định và liên tục trên
nên suy ra
Vậy
Cho phương trình lượng giác ![]()
a) Phương trình có nghiệm
Sai||Đúng
b) Phương trình có nghiệm âm lớn nhất bằng
Đúng||Sai
c) Trên khoảng
phương trình đã cho có 3 nghiệm Sai||Đúng
d) Tổng các nghiệm của phương trình trong khoảng
bằng
Đúng||Sai
Cho phương trình lượng giác
a) Phương trình có nghiệm Sai||Đúng
b) Phương trình có nghiệm âm lớn nhất bằng Đúng||Sai
c) Trên khoảng phương trình đã cho có 3 nghiệm Sai||Đúng
d) Tổng các nghiệm của phương trình trong khoảng bằng
Đúng||Sai
Ta có:
Vì nên
.
Kết luận:
|
a) Sai |
b) Đúng |
c) Sai |
d) Đúng |
Cho hình chóp
có đáy
là hình bình hành. Gọi
là trọng tâm của tam giác
và
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 6
Cho hình chóp có đáy
là hình bình hành. Gọi
là trọng tâm của tam giác
và
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 6
Hình vẽ minh họa
Gọi là trung điểm của
,
là giao điểm của
và
trong mặt phẳng
.
Theo định lý Talet, ta có: là trung điểm của
Ta có:
.
Cho dãy số
biết
. Số hạng có ba chữ số lớn nhất của dãy là:
Tìm số hạng tổng quát của dãy số
Dự đoán
Ta chứng minh theo phương pháp quy nạp
Với ta có:
Giả sử , khi đó ta có:
Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.
Ta có:
Mà
Nên ta chọn
Vậy là số hạng cần tìm.
Cho hai hình bình hành ABCD và ABEF không đồng phẳng có tâm lần lượt là I và J. Chọn
khẳng định sai.
Hình vẽ minh họa
Do và
là trung điểm của
và
, nên
mà
, suy ra IJ / /(ADF) và IJ / / DF đúng.
Do và
là trung điểm của
và
, nên
mà
, suy ra IJ / /(CEB) đúng.
Vậy IJ / / ADsai
Trong các dãy số
cho bởi số hạng tổng quát
sau, dã số nào là dãy số tăng?
Xét đáp án ta có:
=> Dãy số là dãy tăng.
Phương trình
có tổng các nghiệm trên
bằng:
Điều kiện xác định:
Do nên phương trình đã cho tương đương với
Vì
Cho cấp số cộng
với
. Tổng 10 số hạng đầu tiên của dãy là:
Tổng 10 số hạng đầu tiên của dãy là:
Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau không?
Hình chiếu song song của hai đường thẳng chéo nhau có thể song song với nhau.
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Do k là số nguyên =>
Vậy tập xác định
Với giá trị
nào dưới đây thì các số
theo thứ tự đó lập thành một cấp số nhân?
Ta có: lập thành một cấp số nhân