Cho mặt phẳng
và điểm
không thuộc mặt phẳng
. Số đường thẳng đi qua
và song song với
là
Có vô số đường thẳng đi qua và song song với
với điểm
không thuộc mặt phẳng
.
Cho mặt phẳng
và điểm
không thuộc mặt phẳng
. Số đường thẳng đi qua
và song song với
là
Có vô số đường thẳng đi qua và song song với
với điểm
không thuộc mặt phẳng
.
Tổng n số hạng đầu tiên của một cấp số cộng là
. Tìm số hạng tổng quát
của cấp số cộng đã cho.
Ta có:
Mặt khác
Tổng giá trị lớn nhất và nhỏ nhất của hàm số
là
Do nên
.
Nên đạt được khi
.
đạt được khi
.
Suy ra .
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Cho một cấp số nhân
có
. Tính
?
Ta có:
Trong các khẳng định sau, khẳng định nào sai?
Ta có .
Trong các dãy số sau dãy số nào bị chặn?
Xét dãy (an) có nên dãy số (an) bị chặn dưới.
Xét dãy (bn) có nên dãy số (bn) bị chặn dưới.
Xét dãy (cn) có cn = (−2)n + 3, ∀n ∈ ℕ* nên dãy số (cn) không bị chặn.
Xét dãy (dn) có .
Ta có
bị chặn.
Cho hình hộp
. Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa

Ta có là hình bình hành nên
Tương tự ta có . Từ đó suy ra
và
.
Vậy
Cho hình vẽ:

Trên đường tròn lượng giác, số đo của góc lượng giác
là:
Từ hình vẽ ta có:
Cho hàm số 
Có bao nhiêu giá trị nguyên của
để hàm số gián đoạn tại ![]()
Đáp án: 2024
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
TXĐ:
Ta có:
Để hàm số gián đoạn tại thì
Vậy có giá trị nguyên của
để hàm số gián đoạn tại
Chu kì của hàm số
là
Hàm số tuần hoàn với chu kỳ
.
Cho hàm số
. Tìm giá trị k để hàm số
liên tục tại ![]()
Ta có:
Hình chiếu của hình lập phương
qua phép chiếu song song phương
lên mặt phẳng chiếu
là:
Phép chiếu song song phương lên mặt phẳng
sẽ biến
thành
, biến
thành
, biến
thành
, biến
thành
.
Nên hình chiếu song song của hình lập phương là hình vuông.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Cho tứ diện
. Trên các cạnh
theo thứ tự lấy các điểm
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Tìm các giao tuyến của tứ diện và mặt phẳng
. Xác định hình tạo bởi các giao tuyến này.
Hình vẽ minh họa:
Qua M, kẻ đường thẳng song song với CD cắt AC tại E.
Qua N, kẻ đường thẳng song song với CD cắt BD tại F.
Khi đó ME // NF // CD và
Ta có:
Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng là hình thang
với đáy lớn gấp đôi đáy nhỏ.
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Do k là số nguyên =>
Vậy tập xác định
Tập nghiệm của phương trình
là?
Ta có:
Số đo ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân. Biết thể tích của khối hộp là
và diện tích toàn phần là
. Tính tổng số đo ba kích thước của hình hộp chữ nhật đó.
Ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân nên ta có thể gọi ba kích thước đó là .
Thể tích khối hộp chữ nhật:
Diện tích toàn phần của hình hộp chữ nhật là
Theo giả thiết ta có:
Với hoặc
thì kích thước của hình hộp chữ nhật là
=> Tổng các kích thước là 17,5cm.
Biết giới hạn
và
. Khi đó:
a) Tích
. Sai||Đúng
b) Hàm số
có tập xác định là
. Đúng||Sai
c) Giá trị
là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác
vô nghiệm. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Tích . Sai||Đúng
b) Hàm số có tập xác định là
. Đúng||Sai
c) Giá trị là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác vô nghiệm. Sai||Đúng
Ta có: ,
Do
a) Tích
b) Hàm số có tập xác định là
c) Giá trị là số lớn hơn
d) Phương trình lượng giác có nghiệm
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?
Ta có:
Dãy là một cấp số cộng
với d là hằng số.
Hay
=> Cấp số cộng cần tìm là:
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai
a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai
b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng
c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai
d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng
Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai
a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai
b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng
c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai
d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng
a) Đúng
Đúng vì theo tính chất thừa nhận: Có một và chỉ một mặt phẳng đi qua 3 điểm không
thẳng hàng.
b) Sai
Sai vì điểm cần thêm điều kiện điểm không thuộc đường thẳng.
c) Đúng
Đúng vì theo các cách xác định một mặt phẳng thì có duy nhất một mặt phẳng chứa hai
đường thẳng cắt nhau.
d) Sai
Sai vì cần thêm điều kiện hai mặt phẳng phân biệt.
Cho hàm số
xác định trên
thỏa mãn
. Tính giới hạn
?
Cho hàm số xác định trên
thỏa mãn
. Tính giới hạn
?
Cho hình chóp
có
là hình bình hành. Lấy
sao cho
. Giả sử
qua M và song song với hai đường thẳng
. Tìm khẳng định đúng.
Hình vẽ minh họa:
Trong mặt phẳng (ABCD), kẻ đường thẳng qua M và song song với BD cắt các cạnh CD, CB lần lượt tại E, F.
Xét mặt phẳng (SBC), kẻ FG // SC (G ∈ SB).
Xét mặt phẳng (SCD), kẻ EK // SC (K ∈ SD).
Gọi I là giao điểm của AC và EF, trong mặt phẳng (SAC) kẻ đường thẳng qua I và song song với SC cắt SA tại điểm H.
Khi đó EFGHK là hình tạo bởi các giao tuyến của mặt phẳng (P) với các mặt của hình chóp.
Với giá trị nào của x và y thì các số -7; x; 11; y theo thứ tự đó lập thành một cấp số cộng?
Ta có:
Các số -7; x; 11 theo thứ tự đó lập thành một cấp số cộng
=>
Tương tự các số 2; 11; y theo thứ tự đó lập thành một cấp số cộng
=>
Vậy x = 2; y = 20
Cho cấp số cộng
có
. Gọi
là tổng 5 số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Ta có:
Và
Cho hình chóp
, gọi
là trung điểm của
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có: là điểm chung của mặt phẳng
và
(*)
Ta có:
=> là điểm chung của mặt phẳng
và
(**)
Từ (*) và (**) suy ra
Phương trình
có nghiệm là:
Điều kiện xác định:
Kiểm tra điều kiện ta thấy thỏa mãn
Vậy nghiệm của phương trình là:
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số
liên tục trên khoảng
Sai||Đúng
b) Phương trình
có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số
khi
bằng -1. Sai||Đúng
d) Dãy số
với
là dãy số không bị chặn. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
Sai||Đúng
b) Phương trình có nghiệm thuộc khoảng
. Đúng||Sai
c) Giới hạn của hàm số khi
bằng -1. Sai||Đúng
d) Dãy số với
là dãy số không bị chặn. Đúng||Sai
a) Ta có:
có điều kiện xác định
Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.
b) Đặt
f(x) liên tục trên tập số thực nên f(x) liên tục trên
Ta có:
Từ (*) và (**) suy ra phương trình có nghiệm thuộc
.
c) Ta có:
Vậy không tồn tại giới hạn của hàm số khi
d) Ta có: với n chẵn
Với n lẻ
Suy ra dãy số không bị chặn.
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho dãy số (un) có un = − n2 + n + 1. Số − 19 là số hạng thứ mấy của dãy?
Giả sử un = − 19(n∈ℕ*) Suy ra (do n∈ℕ*).
Vậy số − 19 là số hạng thứ 5 của dãy.
Cho phương trình lượng giác ![]()
a) Phương trình có nghiệm
Sai||Đúng
b) Phương trình có nghiệm âm lớn nhất bằng
Đúng||Sai
c) Trên khoảng
phương trình đã cho có 3 nghiệm Sai||Đúng
d) Tổng các nghiệm của phương trình trong khoảng
bằng
Đúng||Sai
Cho phương trình lượng giác
a) Phương trình có nghiệm Sai||Đúng
b) Phương trình có nghiệm âm lớn nhất bằng Đúng||Sai
c) Trên khoảng phương trình đã cho có 3 nghiệm Sai||Đúng
d) Tổng các nghiệm của phương trình trong khoảng bằng
Đúng||Sai
Ta có:
Vì nên
.
Kết luận:
|
a) Sai |
b) Đúng |
c) Sai |
d) Đúng |
bằng
Ta có:
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Giá trị của
với
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy .
Cho
với
. Phải bổ sung thêm giá trị
bằng bao nhiêu thì hàm số
liên tục trên
?
Ta có:
Với hàm số xác định => Hàm số liên tục khi x > 0 và x < 0
Với x = 0 ta có:
Để hàm số liên tục tại x = 0 thì
Cho ba mặt phẳng phân biệt
có
. Khi đó ba đường thẳng
:
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song.
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số
liên tục trên khoảng
. Đúng||Sai
b) Biết rằng
khi đó
Đúng||Sai
c)
Sai||Đúng
d) Phương trình
có nghiệm thuộc khoảng
và
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
a) Hàm số có nghĩa khi
Vậy theo định lí ta có hàm số liên tục trên khoảng
.
b) Ta có:
Khi đó: .
Theo bài ra ta có:
c) Ta có:
s
d) Xét hàm số có tập xác định
Suy ra hàm số cũng liên tục trên các khoảng
và
.
Ta có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Lại có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Có bao nhiêu hình chóp tứ giác trong các hình sau?

Có 2 hình chóp tứ giác
Cho hình chóp
có đáy
là hình thang
. Lấy một điểm
thuộc cạnh
. Mặt phẳng
qua M song song với SA và BC. Giả sử
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Trong mặt phẳng (ABCD) kéo dài AD cắt MN tại E.
Ta lại có: suy ra
Cho hình chóp S.ABCD, các điểm A’, B’, C’ lần lượt thuộc các cạnh SA, SB, SC. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Ta có: (SAB) ∩ (A’B’C’) = A’B’
(SBC) ∩ (A’B’C’) = B’C’
Gọi O là giao điểm của AC và BD
Trong mặt phẳng (SAC) gọi I là giao điểm của A’C’ và SO
Trong mặt phẳng (SBD) gọi D’ là giao điểm của B’I và SD
Khi đó ta có: (SCD) ∩ (A’B’C’) = C’D’
(SAD) ∩ (A’B’C’) = A’D’
=> Thiết diện của mặt phẳng (A’B’C’) với hình chóp S.ABCD là tứ giác A’B’C’D’.
bằng:
Ta có:
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 7 của dãy số.
Từ độ cao 55,8m của tháp nghiêng Pisa nước Italia người ta thả một quả bóng cao su chạm xuống đất. Giả sử mỗi lần chạm đất quả bóng lại nảy lên độ cao bằng
độ cao mà quả bóng đạt trước đó. Tổng độ dài hành trình của quả bóng được thả từ lúc ban đầu cho đến khi nó nằm yên trên mặt đất thuộc khoảng nào trong các khoảng sau đây?

Ta có:
Độ cao của quả bóng sau mỗi lần nảy lên là một cấp số nhân lùi vô hạn (un) với u1 = 55,8m,
Sau khi nảy lên, qua bóng rơi xuống một quãng đường đúng bằng chiều cao.
Từ đó tổng quãng đường mà quả bóng đã di chuyển là
Vậy tổng quãng đường quả bóng di chuyển nằm trong khoảng .
Cho vòng tròn lượng giác được kí hiệu như sau:

Điểm nào biểu diễn nghiệm của phương trình
?
Ta có:
Vậy chỉ có hai điểm C và điểm D thỏa mãn yêu cầu bài toán.
Cho góc
thỏa mãn
. Tính giá trị biểu thức
.
Ta có: