Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho đồ thị hàm số như hình vẽ:

    Hỏi hàm số tương ứng là hàm số nào trong các hàm số dưới đây

    Ta thấy hàm số có GTLN bằng 1 và GTNN bằng -1 => Loại đáp án

    y = \sqrt{2}\sin\left( x + \frac{\pi}{4}
ight)

    Tại x = 0 thì y = -
\frac{\sqrt{2}}{2} => Loại đáp án y = \cos\left( x - \frac{\pi}{4}
ight)

    Tại x = \frac{3\pi}{4} \Rightarrow y =
1 ta thấy chỉ có y = \sin\left( x -
\frac{\pi}{4} ight) thỏa mãn

  • Câu 2: Vận dụng cao

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 2;u_{2} = 4 \\
u_{n + 2} = 2u_{n + 1} - u_{n} + 5;(n \geq 1) \\
\end{matrix} ight.. Tính \lim_{n ightarrow\infty}\dfrac{u_{n}}{n^{2}}.

    Ta có:

    \begin{matrix}
  {u_{n + 2}} = 2{u_{n + 1}} - {u_n} + 5 \hfill \\
   \Rightarrow {u_{n + 2}} - {u_{n + 1}} = {u_{n + 1}} - {u_n} + 5 \hfill \\ 
\end{matrix}

    Đặt \Rightarrow v_{n} = u_{n + 1} - u_{n}
\Rightarrow v_{n + 1} = v_{n} + 5;(n \geq 1)

    Từ đó:

    \begin{matrix}
  {u_2} - {u_1} = 2 \hfill \\
  {u_3} - {u_2} = 7 \hfill \\
  {u_4} - {u_3} = 12 \hfill \\
  ... \hfill \\
  {u_{n + 1}} - {u_n} = 5n - 3 \hfill \\ 
\end{matrix}

    Khi đó:

    \begin{matrix}
  {u_{n + 1}} - {u_1} = 2 + 7 + 12 + ... + \left( {5n - 3} ight) \hfill \\
   = \dfrac{{n\left[ {2 + \left( {5n - 3} ight)} ight]}}{2} = \dfrac{{n\left( {5n - 1} ight)}}{2} \hfill \\ 
\end{matrix}

    Từ đó ta có:

    \begin{matrix}
  {u_{n + 1}} = \dfrac{{n\left( {5n - 1} ight)}}{2} + {u_1} \hfill \\
   = \dfrac{{n\left( {5n - 1} ight)}}{2} + 2 = \dfrac{{5{n^2} - n + 4}}{2} \hfill \\ 
\end{matrix}

    Vậy u_{n} = \frac{5n^{2} - 11n +
10}{2}

    => \lim_{n ightarrow
\infty}\frac{u_{n}}{n^{2}} = \lim_{n ightarrow \infty}\left(
\frac{5n^{2} - 11n + 10}{2} ight) = \frac{5}{2}

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có:

    MN // AD (đường trung bình 4SAD)

    OP // AD (đường trung bình 4BAD)

    => MN // OP

    => O, N, M, P cùng nằm trong một mặt phẳng.

    \left\{ \begin{matrix}MN//AD//BC \subset (SBC) \\OM//SC \subset (SBC) \\\end{matrix} ight.

    \Rightarrow (OMN)//(SBC)

  • Câu 4: Thông hiểu

    Thêm hai số thực dương x và y vào giữa hai số 5 và 320 để được bốn số 5;x;y;320 theo thứ tự đó lập thành cấp số nhận. Khẳng định nào sau đây là đúng?

    Ta có:

    Các số hạng 5;x;y;320 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 5 \\\begin{matrix}q = \dfrac{x}{5} \\y = u_{3} = u_{1}q^{2} = \dfrac{x^{2}}{5} \\320 = u_{4} = u_{1}q^{3} = \dfrac{x^{3}}{25} \\\end{matrix} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 20 \\y = 80 \\\end{matrix} ight.

  • Câu 5: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = \frac{3n^{2} - 19n}{4};\left( n
\in \mathbb{N}^{*} ight). Tìm số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    S_{n} = \frac{3n^{2} - 19n}{4} =
\frac{3}{4}n^{2} - \frac{19}{4}n

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = \dfrac{3}{4} \\u_{1} - \dfrac{d}{2} = - \dfrac{19}{4} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 4 \\d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 6: Nhận biết

    Trong không gian, cho tam giác ABC, lấy điểm I trên cạnh AC kéo dài (xem hình bên). Mệnh đề nào sau đây là sai?

    Tìm mệnh đề sai

    Ta có I ∈ (ABC), B ∈ (ABC)

    => BI nằm trong (ABC). Do đó, mệnh đề sai là BI không nằm trên mặt phẳng (ABC).

  • Câu 7: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Vị trí tương đối giữa hai đường thẳng chéo nhau thì không có điểm chung.

  • Câu 8: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Phép chiếu song song theo phương AB lên mặt phẳng (SBC) biến điểm A thành:

    Do AB \cap (SBC) = \left\{ B
ight\} suy ra hình chiếu song song của điểm A theo phương AB lên mặt phẳng (SBC) là điểm B.

  • Câu 9: Thông hiểu

    Phương trình lượng giác \cos \left( {2x + \frac{\pi }{3}} ight) = \cos \left( {x + \frac{\pi }{6}} ight) có nghiệm là:

     \begin{matrix}  \cos \left( {2x + \dfrac{\pi }{3}} ight) = \cos \left( {x + \dfrac{\pi }{6}} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x + \dfrac{\pi }{3} = x + \dfrac{\pi }{6} + k2\pi } \\   {2x + \dfrac{\pi }{3} =  - x - \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - \dfrac{\pi }{6} + k2\pi } \\   {x =  - \dfrac{\pi }{6} + \dfrac{{k2\pi }}{3}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy nghiệm phương trình là: \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \dfrac{{ - \pi }}{6} + \dfrac{{k2\pi }}{3}} \end{array}} ight.

  • Câu 10: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{1}=-3 và d=\frac{1}{2}. Khẳng định nào sau đây là đúng?

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   \Rightarrow {u_n} =  - 3 + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 11: Thông hiểu

    Phương trình \cos^{2}2x+ \cos 2x-\frac{3}{4}=0 có nghiệm là:

     \begin{matrix}  {\cos ^2}2x + \cos 2x - \dfrac{3}{4} = 0 \hfill \\   \Leftrightarrow \left( {\cos 2x - \dfrac{1}{2}} ight).\left( {\cos 2x + \dfrac{3}{2}} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\cos 2x - \dfrac{1}{2} = 0} \\   {\cos 2x + \dfrac{3}{2} = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\cos 2x = \dfrac{1}{2}\left( {tm} ight)} \\   {\cos 2x =  - \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\  \cos 2x = \dfrac{1}{2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x = \dfrac{\pi }{3} + k2\pi } \\   {2x =  - \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{6} + k\pi } \\   {x =  - \dfrac{\pi }{6} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\   \Rightarrow x =  \pm \dfrac{\pi }{6} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 12: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 13: Nhận biết

    Giá trị của \lim\frac{2 - n}{\sqrt{n + 1}}bằng:

    Với mọi M > 0 lớn tùy ý, ta chọn n_{M}
> \left( \frac{1}{a} + 3 ight)^{2} - 1

    Ta có:

    \frac{n - 2}{\sqrt{1 + n}} =
\sqrt{n + 1} - \frac{3}{\sqrt{n + 1}} > \sqrt{1 + n} - 3 > Mvới mọi n > n_{M}

    Suy ra \lim\frac{2 - n}{\sqrt{n + 1}} = -
\infty

  • Câu 14: Nhận biết

    Giá trị của \lim\frac{2}{n + 1} bằng:

    Với mọi a>0 nhỏ tùy ý, ta chọn n_{a} =
\left\lbrack \frac{2}{a} - 1 ightbrack + 1

    Suy ra \frac{2}{n + 1} < a\ ,\ \
\forall n > n_{0} = > \lim\frac{2}{n + 1} = 0

  • Câu 15: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác''?

    Mỗi đường tròn định hướng có bán kính R =
1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.

  • Câu 16: Vận dụng

    Cho cấp số nhân (un) có \left\{ {\begin{array}{*{20}{c}}  {{u_{20}} = 8{u_{17}}} \\   {{u_1} + {u_5} = 272} \end{array}} ight.. Tìm số hạng đầu tiên của dãy biết số đó không lớn hơn 100.

     Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_{20}} = 8{u_{17}}} \\   {{u_1} + {u_5} = 272} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}{q^{19}} = 8{u_1}.{q^{16}}} \\   {{u_1} + {u_1}.{q^4} = 272} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}{q^{16}}\left( {{q^3} - 8} ight) = 0} \\   {{u_1}.\left( {1 + {q^4}} ight) = 272} \end{array}} ight. \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {q = 0 \Rightarrow {u_1} = 272 > 100\left( L ight)} \\   {q = 2 \Rightarrow {u_1} = 16 < 100\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 17: Nhận biết

    Tính giới hạn B =
\lim_{x ightarrow ( - 2)^{-}}\left( \frac{3 + 2x}{x + 2}
ight).

    Ta có:

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {3 + 2x} ight) =  - 1 < 0

    \left\{ {\begin{array}{*{20}{c}}
  {\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {x + 2} ight) = 0} \\ 
  {x \mapsto {{\left( { - 2} ight)}^ - } \Rightarrow x + 2 < 0} 
\end{array}} ight.

    \Rightarrow B = \lim_{x ightarrow ( -
2)^{-}}\left( \frac{3 + 2x}{x + 2} ight) = + \infty

  • Câu 18: Thông hiểu

    Tính giới hạn M =
\lim_{x ightarrow + \infty}\left( \frac{cx^{2} + a}{x^{2} + b}
ight).

    Ta có:

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

  • Câu 19: Nhận biết

    Cho dãy số \left( u_{n} ight) xác định bởi \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n} = \frac{1}{2 - u_{n - 1}},\ \forall n \geq 2 \\
\end{matrix} ight.. Khi đó u_{3} có giá trị bằng

    Theo công thức truy hồi ta có

    u_{2} = \frac{1}{2 - \frac{1}{2}} =
\frac{2}{3} \Rightarrow u_{3} = \frac{1}{2 - \frac{2}{3}} =
\frac{3}{4}.

  • Câu 20: Vận dụng

    Cho hình bình hành ABCD tâm OABEF tâm O' không cùng nằm trong một mặt phẳng. Gọi điểm M là trung điểm của CD. Xác định khẳng định sai trong các khẳng định dưới đây?

    Hình vẽ minh họa

    Gọi K = AM \cap BC

    Theo giả thiết ta có:

    \begin{matrix}
OO'//EC,\ OO'//DF\  \\
\Rightarrow \ \left\{ \begin{matrix}
OO'//(BCE) \\
OO'//(AFD) \\
OO'//(EFM)\  \\
\end{matrix} ight.\  \\
\end{matrix}

    Ta có O'M//KE \Rightarrow
O'M//(EBC)

    Vậy khẳng định sai là: “MO' cắt (ECB)

  • Câu 21: Nhận biết

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Chọn khẳng định đúng trong các khẳng định sau.

    Ta có: \left\{ \begin{matrix}
f(0) = 1 \\
f(1) = - 1 \\
f(2) = 15 \\
\end{matrix} ight.

    => Phương trình có ít nhất hai nghiệm trên khoảng (0;2).

  • Câu 22: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 4. Giá trị nhỏ nhất của u_{1}u_{2} + u_{2}u_{3} +
u_{3}u_{1} bằng:

    Ta gọi d là công sai của cấp số cộng.

    Khi đó:

    u_{1}u_{2} + u_{2}u_{3} +
u_{3}u_{1}

    = 4(4 + d) + (4 + d)(4 + 2d) + 4(4 +
2d)

    = 2d^{2} + 24d + 48 = 2(d + 6)^{2} - 24\geq - 24

    Vậy giá trị nhỏ nhất của u_{1}u_{2} +
u_{2}u_{3} + u_{3}u_{1} là -24 đạt được khi khi d = - 6.

  • Câu 23: Vận dụng cao

    Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?

    Ta có 2sin\frac{x}{2} \cdot S = 2sinx\cdot sin\frac{x}{2} + 2sin2x \cdot sin\frac{x}{2} + .. + 2sinnx \cdotsin\frac{x}{2}

    = \cos\frac{x}{2} - \cos\frac{3x}{2} +\cos\frac{3x}{2} - \cos{x\frac{5x}{2}} + \ldots + \cos{x\frac{2n -1}{2}x} - \cos{\frac{2n + 1}{2}x}

    = cos\frac{x}{2} - cos\frac{2n +1}{2}x

    Vậy S = \frac{cos\frac{x}{2} - cos\frac{2n+ 1}{2}x}{2sin\frac{x}{2}}

  • Câu 24: Vận dụng

    Phương trình \frac{{\sin x - \cos x}}{{1 + \sin x.\cos x}} = 0 có nghiệm là:

     Điều kiện xác định: 1 + \sin x.\cos x e 0

    \begin{matrix}  \dfrac{{\sin x - \cos x}}{{1 + \sin x.\cos x}} = 0 \hfill \\   \Leftrightarrow \sin x - \cos x = 0 \hfill \\   \Leftrightarrow \sqrt 2 \sin \left( {x - \dfrac{\pi }{4}} ight) = 0 \hfill \\   \Leftrightarrow \sin \left( {x - \dfrac{\pi }{4}} ight) = 0 \hfill \\   \Leftrightarrow x - \dfrac{\pi }{4} = \dfrac{\pi }{2} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{3\pi }}{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Kiểm tra điều kiện ta thấy x = \frac{3\pi }{4} + k\pi thỏa mãn

    Vậy nghiệm của phương trình là: x = \frac{3\pi }{4} + k\pi

  • Câu 25: Vận dụng

    Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?

    Phát biểu nào sau đây là đúng

    Đáp án "Giao điểm của (SMC) với BD là giao điểm của CN với BD, trong đó N là giao điểm của SM và AD." đúng.

    Đáp án "Giao điểm của (SAC) với BD là giao điểm của SA và BD." sai vì giao điểm của BD và (SAC) là giao điểm của BD và AC.

    Đáp án "Giao điểm của (SAB) với CM là giao điểm của SA và CM." sai vì CM không cắt SA.

    Đáp án "Đường thẳng DM không cắt mặt phẳng (SBC)." sai vì DM cắt mặt phẳng (SBC) tại giao điểm của DM và giao tuyến của hai mặt phẳng (SAD) và (SBC).

  • Câu 26: Nhận biết

    Có bao nhiêu vị trí tương đối của hai mặt phẳng tùy ý?

    Có 3 vị trí tương đối của hai mặt phẳng trong không gian, đó là “cắt nhau”, “trùng nhau ”và “song song nhau”.

  • Câu 27: Vận dụng

    Tính  \lim_{x
ightarrow 0}\frac{\sqrt{1 + 2x} - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{\sqrt{1 + 2x} - (x + 1) + (x + 1) - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - (x + 1)}{x^{2}}

    = \lim_{x ightarrow 0}\frac{-
x^{2}}{x^{2}\left( \sqrt{1 + 2x} + x + 1 ight)} = -
\frac{1}{2}

    Ta cũng có:

    \lim_{x ightarrow 0}\frac{(x + 1) -
\sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{x^{3} + 3x^{2}}{x^{2}\left\lbrack (x + 1)^{2} + (x +
1)\sqrt[3]{1 + 3x} + \left( \sqrt[3]{1 + 3x} ight)^{2} ightbrack}
= 1

    Vậy  \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}} = \frac{1}{2}

  • Câu 28: Vận dụng cao

    Cho các số thực a,\ b,\ cthỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Số giao điểm của đồ thị hàm số y = x^{3} + ax^{2} + bx + c và trục Ox

    Đáp án: 3

    Đáp án là:

    Cho các số thực a,\ b,\ cthỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Số giao điểm của đồ thị hàm số y = x^{3} + ax^{2} + bx + c và trục Ox

    Đáp án: 3

    Ta có \left\{ \begin{matrix}
y(2) = 8 + 4a + 2b + c < 0 \\
\lim_{x ightarrow + \infty}y = + \infty \\
\end{matrix} ight.\  \Rightarrow \exists x_{1} \in (2; +
\infty)sao cho y\left( x_{1}
ight) = 0(1).

    Ta có \left\{ \begin{matrix}
y(2) = 8 + 4a + 2b + c < 0 \\
y( - 2) = - 2 + 4a - 2b + c > 0 \\
\end{matrix} ight.\  \Rightarrow \exists x_{2} \in ( -
2;2)sao cho y\left( x_{2} ight) =
0(2).

    Ta có \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
\lim_{x ightarrow - \infty}y = - \infty \\
\end{matrix} ight.\  \Rightarrow \exists x_{3} \in ( - \infty; -
2)sao cho y\left( x_{3} ight) =
0(3).

    Từ (1), (2) và (3) ta suy ra số giao điểm của đồ thị hàm số và trục Ox bằng 3.

  • Câu 29: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 30: Thông hiểu

    Cho góc \alpha thỏa mãn \sin\alpha = \frac{3}{5}. Giá trị của biểu thức G = \sin\left( \alpha +\frac{\pi}{6} ight).\sin\left( \alpha - \frac{\pi}{6}ight)

    Ta có:

    G = \sin\left( \alpha + \frac{\pi}{6}ight).\sin\left( \alpha - \frac{\pi}{6} ight)

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}- \cos2\alpha ight)

    Ta có:

    \cos2\alpha = 1 - 2\sin^{2}\alpha = 1 -2.\left( \frac{3}{5} ight)^{2} = \frac{7}{25}

    Khi đó giá trị biểu thức G là:

    G = \frac{1}{2}\left( \cos\frac{\pi}{3}
- \frac{7}{25} ight) = \frac{1}{2}\left( \frac{1}{2} - \frac{7}{25}
ight) = \frac{11}{100}

  • Câu 31: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \frac{{n + 1}}{{2n + 1}}. Số \frac{8}{15} là số hạng thứ mấy của dãy số?

    Ta có: 

    \begin{matrix}  {u_k} = \dfrac{8}{{15}} \hfill \\   \Leftrightarrow \dfrac{{k + 1}}{{2k + 1}} = \dfrac{8}{{15}};\left( {k \in {\mathbb{N}^*}} ight) \hfill \\   \Leftrightarrow 15\left( {k + 1} ight) = 8\left( {2k + 1} ight) \hfill \\   \Leftrightarrow 15k + 15 = 16k + 8 \hfill \\   \Leftrightarrow k = 7 \hfill \\ \end{matrix}

    Vậy số \frac{8}{15} là số hạng thứ 7 của dãy số.

  • Câu 32: Thông hiểu

    Giá trị của giới hạn \lim_{x ightarrow 0}\frac{2\sqrt{1 + x} -
\sqrt[3]{8 - x}}{x} là:

    Ta có:

    \lim_{x ightarrow 0}\frac{2\sqrt{1 +
x} - \sqrt[3]{8 - x}}{x}

    = \lim_{x ightarrow 0}\left(
\frac{2\sqrt{1 + x} - 2}{x} + \frac{2 - \sqrt[3]{8 - x}}{x}
ight)

    = \lim_{x ightarrow 0}\left(
\frac{2}{\sqrt{x + 1} + 1} + \frac{1}{4 + 2\sqrt[3]{8 - x + \sqrt[3]{(8
- x)^{2}}}} ight)

    = 1 + \frac{1}{12} =
\frac{13}{12}

  • Câu 33: Thông hiểu

    Cho m,n là hai đường thẳng phân biệt và mặt phẳng (\alpha). Chọn mệnh đề đúng?

    Ta có:

    \left\{ \begin{matrix}
m ⊄ (\alpha) \\
m\bot n \\
n \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow m\bot(\alpha) sai vì đường vuông góc với mặt điều kiện cần và đủ là vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng đó.

    \left\{ \begin{matrix}
m\bot n \\
n\bot(\alpha) \\
\end{matrix} ight.\  \Rightarrow m\bot(\alpha) sai trong trường hợp

    \left\{ \begin{matrix}
m \cap (\alpha) = H \\
n \cap (\alpha) = H \\
\end{matrix} ight.\  \Rightarrow m \cap n = H đúng vì là hai đường thẳng phân biệt.

    \left\{ \begin{matrix}
m\bot n \\
m \cap (\alpha) = P \\
\end{matrix} ight.\  \Rightarrow n \cap (\alpha) = P sai vì đường thẳng hoặc

  • Câu 34: Nhận biết

    Tìm tập các định D của hàm số y = \frac{1
- \sin x}{\cos x - 1}

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\cos x - 1 eq 0 \hfill \\\Rightarrow \cos x eq 1 \hfill \\\Rightarrow x eq k2\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ k2\pi,k\mathbb{\in Z} ight\}

  • Câu 35: Thông hiểu

    Hàm số đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)là:

    Với x \in \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)  \to 2x \in \left( { - \frac{{2\pi }}{3};\frac{\pi }{3}} ight) \to 2x + \frac{\pi }{6} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin \left( {2x + \frac{\pi }{6}} ight) đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)

  • Câu 36: Nhận biết

    Cho một cấp số nhân \left( u_{n} ight)u_{1} = 1;q = 2019. Tính u_{2019}?

    Ta có:

    u_{n} = u_{1}.q^{n - 1} \Leftrightarrow
u_{2019} = 1.2019^{2018} = 2019^{2018}

  • Câu 37: Thông hiểu

    Tính giá trị của giới hạn sau \lim\frac{10}{\sqrt{n^{4} + n^{2} + 1}} là?

    Ta có:

    \lim\frac{10}{\sqrt{n^{4} + n^{2} + 1}}
= \lim\frac{10}{n^{2}\sqrt{1 + \frac{1}{n^{2}} +
\frac{1}{n^{4}}}}

    Nhưng{\ \lim}\sqrt{1 + \frac{1}{n^{2}} +
\frac{1}{n^{4}}} = 1\lim\frac{10}{n^{2}\ } = 0

    Nên \lim\frac{10}{\sqrt{n^{4} + n^{2} +
1}} = 0

  • Câu 38: Nhận biết

    Cho cấp số nhân có các số hạng lần lượt là 3;9;27;81. Tìm số hạng tổng quát u_{n} của cấp số nhân đã cho.

    Các số hạng lần lượt là 3;9;27;81 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{9}{3} = 3 \\\end{matrix} ight.\  \Rightarrow u_{n} = u_{1}.q^{n - 1} = 3.3^{n - 1}= 3^{n}

  • Câu 39: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 40: Nhận biết

    Tập nghiệm của phương trình \cot x = -
\frac{\sqrt{3}}{3}

    Ta có

    \cot x = -
\frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left( -
\frac{\pi}{3} ight)

    \Leftrightarrow x = - \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight).

  • Câu 41: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\sin \pi x{\text{     khi }}\left| x ight| \leqslant 1} \\   {x + 1{\text{       khi }}\left| x ight| > 1} \end{array}} ight.. Mệnh đề nào sau đây là đúng?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2} \\   {\mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\sin \pi x} ight) = \sin \pi  = 0} \end{array}} ight.

    => Hàm số gián đoạn tại x=1

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {x + 1} ight) = 0 \hfill \\  f\left( { - 1} ight) = \sin \left( { - \pi } ight) = 0 \hfill \\ \end{gathered}  \\   {\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {\sin \pi x} ight) = \sin \left( { - \pi } ight) = 0} \end{array}} ight.

    => Hàm số liên tục tại x=-1

    Vậy hàm số liên tục trên các khoảng \left( { - \infty ; 1} ight)\left( {  1; + \infty } ight).

  • Câu 42: Nhận biết

    Khẳng định nào dưới đây đúng?

    Đáp án: “Không có mặt phẳng nào chứa cả hai đường thẳng a và b thì ta nói a và b chéo nhau” đúng vì theo định nghĩa hai đường thẳng chéo nhau.

    Đáp án: “Hai đường thẳng cùng song song với đường thẳng thứ ba thì song song với nhau” sai vì hai đường thẳng đó chưa chắc đã phân biệt.

    Đáp án: “Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau” sai vì hai đường thẳng đó có thể chéo nhau.

    Đáp án: “Hai đường thẳng song song với nhau nếu chúng không có điểm chung” sai vì hai đường thẳng đó có thể chéo nhau.

  • Câu 43: Thông hiểu

    Cho tứ diện ABCDG;G' lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Gọi M là trung điểm của CD

    Khi đó \frac{MG}{MB} = \frac{1}{3} =
\frac{MG'}{MA} (vì G;G' lần lượt là trọng tâm của hai tam giác BCDACD)

    Suy ra \left\{ \begin{matrix}\dfrac{GG'}{AB} = \dfrac{1}{3} \\GG'//AB \\\end{matrix} ight.\  \Rightarrow GG' = \frac{1}{3}AB

    Vậy khẳng định sai là GG' =
\frac{2}{3}AB.

    Mặt phẳng (ABG) và tứ diện theo một diện diện là tam giác

    Dễ thấy BG;AG';CD đồng quy tại điểm M.

  • Câu 44: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: S \in (SEF) \cap (SCD)\ \
(1)

    Trong (ABCD)I = EF \cap CD

    \Rightarrow \left\{ \begin{matrix}
I \in EF \subset (EFS) \\
I \in CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I \in (EFS) \cap (SCD)\ \ \
(2)

    Từ (1) và (2) suy ra SI = (SEF) \cap
(SCD)

    b) Ta có: \left\{ \begin{matrix}
K \in (EFK) \\
K \in SC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow K \in (EFK) \cap (SAC)

    EF//AC do EF là đường trung bình trong tam giác ABC

    \left\{ \begin{matrix}
EF \subset (EFK) \\
AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (EFK)\bigcap(SAC) =
Kx//EF//AC

    c) Chọn (SBC) chứa FK

    Ta có: \left\{ \begin{matrix}
S \in (SBC) \cap (SAD) \\
BC//AD \\
BC \subset (SBC);AD \subset (SAD) \\
\end{matrix} ight.

    (SBC) \cap (SAD) =
Sy//AD//BC

    d) Đường thẳng AB song song với măt phẳng (SFD) sai.

  • Câu 45: Nhận biết

    Cho góc lượng giác \alpha. Trong các khẳng định sau, khẳng định nào sai?

    Ta có:

    \cos2\alpha = 2\cos^{2}\alpha - 1 = 1 -2\sin^{2}\alpha = \cos^{2}\alpha - \sin^{2}\alpha

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo