Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Cho hình chóp
có đáy
là hình bình hành tâm
,
là trung điểm của
. Các giao tuyến của hình chóp
với mặt phẳng đi qua điểm
và song song với
và
là hình gì?
Hình vẽ minh họa:
Gọi mặt phẳng đi qua điểm và song song với
và
là mặt phẳng
.
với
hay
là trung điểm của
.
Suy ra với NP//SB hay P là trung điểm của SA.
Suy ra với PQ//AC hay Q là trung điểm của SC.
Xét mặt phẳng (ABCD) gọi , trong (SCD) gọi
suy ra
Vậy các giao tuyến tạo bởi hình chóp và mặt phẳng là ngũ giác MNPHQ.
Cho cấp số cộng
có
và
Mệnh đề nào sau đây đúng?
Ta có
Giá trị của
bằng:
Ta có theo tính chất giới hạn, ta có:
Cho hình chóp
có đáy
là hình bình hành. Gọi
,
,
,
lần lượt là trung điểm của các cạnh bên
,
,
,
. Tứ giác
là hình gì?
Hình vẽ minh họa
Tứ giác là hình bình hành.
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho cấp số cộng
thỏa mãn
có công sai
, các số hạng của cấp số cộng đã cho đều khác 0. Với giá trị nào của
thì dãy số
là một cấp số cộng?
Ta có:
Theo yêu cầu bài toán thì ta phải có:
Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ:
Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ Song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
Giá trị của
bằng:
Trong không gian có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?
Trong không gian có 3 vị trí tương đối giữa đường thẳng và mặt phẳng
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho hình chóp
. Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Cho hình chóp . Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Hình vẽ minh họa
Xét và
ta có:
là điểm chung thứ nhất.
Gọi
Có là điểm chung thứ hai.
Gọi . Ta có:
Thiết diện là tứ giác .
Vậy thiết diện là đa giác có 4 cạnh.
Phương trình
có bao nhiêu nghiệm thuộc khoảng
?
Điều kiện xác định:
Do
Vậy có tất cả 38 nghiệm
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi
dần về dương vô cùng?
Đáp án: 30
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Sau phút bơm nước vào hồ thì lượng nước là
(lít) và lượng muối có được là
(gam).
Nồng độ muối của nước là
(gam/lít).
Khi dần về dương vô cùng, ta có
Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?
Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.
Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10
Ta có:
Khẳng định nào sau đây là đúng?
Câu đúng là: “Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song”.
Cho dãy số
là một cấp số nhân có số hạng đầu
và công bội
. Đẳng thức nào sau đây đúng?
Cho dãy số là một cấp số nhân có số hạng đầu
và công bội
.
Theo công thức số hạng tổng quát ta có ,
.
Cho hai hình bình hành ABCD và ABEF không đồng phẳng có tâm lần lượt là I và J. Chọn
khẳng định sai.
Hình vẽ minh họa
Do và
là trung điểm của
và
, nên
mà
, suy ra IJ / /(ADF) và IJ / / DF đúng.
Do và
là trung điểm của
và
, nên
mà
, suy ra IJ / /(CEB) đúng.
Vậy IJ / / ADsai
Số hạng đầu tiên của cấp số nhân
thỏa mãn hệ
là:
Ta có:
Tính giới hạn
.
Ta có:
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Ta có
=>Đồ thị hàm số được suy từ đồ thị (C) của hàm số bằng cách tịnh tiến (C) qua phải một đoạn có độ dài là
Cho hai đường thẳng
và
chéo nhau. Có bao nhiêu mặt phẳng chứa
và song song với
?
Ta có định lí: “Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia”.
Xác định giới hạn ![]()
Ta có:
Người ta thiết kế một cái tháp gồm 11 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích mặt trên của tầng ngay bên dưới và diện tích bề mặt trên của tầng 1 bằng nửa diện tích đế tháp. Biết diện tích đế tháp là
, tính diện tích mặt trên cùng gần nhất với giá trị nào sau đây?
Gọi là diện tích đế tháp và
là diện tích bề mặt trên của tầng thứ n, với
.
Theo giả thiết ta có:
Dãy số lập thành sấp số nhân với số hạng đầu tiên là
, công sai
.
Diện tích mặt trên cùng của tháp là:
Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Tính giới hạn
.
Ta có:
Cho góc
thỏa mãn
và
. Tính giá trị của biểu thức
?
Do =>
Ta lại có:
Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Chi hai vế phương trình cho
, ta được
.
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
bằng:
Ta có:
Trong các dãy số sau, dãy số nào bị chặn trên?
Ta có:
.
Vậy đây là dãy số bị chặn trên.
Cho cấp số nhân
với số hạng đầu
và công bội
. Với
, khẳng định nào sau đây đúng?
Do là cấp số nhân nên
.
Phương trình nào cùng tập nghiệm với phương trình ![]()
Ta có:
Vậy phương trình có cùng tập nghiệm với phương trình
Cho hình lập phương
. Khẳng định nào sau đây sai?
Ta có: luôn đúng
=> Hai mặt phẳng không song song với nhau.
Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2 và
với n ≥ 2. Công thức tổng quát của hai dãy (un) và (vn) là?
Chứng minh
Ta có
Mặt khác nên (1) đúng với n = 1 Giả sử
, ta có
Vậy (1) đúng với ∀n ≥ 1
Ta có
Do đó ta suy ra:
Cho phương trình
. Tìm số nguyên dương n bé nhất để phương trình có nghiệm.
Điều kiện xác định
Nếu n là số lẻ thì
Nếu n là số chẵn và x là nghiệm thì -x cũng là nghiệm của phương trình
Vì không là nghiệm nên ta xét phương trình với
(do
nên dấu bằng không xảy ra)
Hơn nữa
Do đó phương trình không có nghiệm với
Khi ta có phương trình
Giả sử khi đó
liên tục trên
.
Ta có:
=> có nghiệm
Vậy .
Góc
đổi sang độ bằng bao nhiêu?
Ta có: .
Cho dãy số
biết
. Số hạng có ba chữ số lớn nhất của dãy là:
Tìm số hạng tổng quát của dãy số
Dự đoán
Ta chứng minh theo phương pháp quy nạp
Với ta có:
Giả sử , khi đó ta có:
Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.
Ta có:
Mà
Nên ta chọn
Vậy là số hạng cần tìm.
Cho hàm số
. Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Cho hàm số . Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Tập xác định của hàm số là
.
Ta có
Hàm số đã cho liên tục tại
.
Cho tứ diện
. Gọi
lần lượt là trọng tâm tam giác
và
. Xét các mệnh đề sau:
![]()
![]()
![]()
Các mệnh đề đúng là:
Gọi lần lượt là trung điểm
.
Ta có
nên mệnh đề
đúng.
Ta lại có:
=> Mệnh đề đúng
Mặt khác nên mệnh đề
sai.
Hàm số
liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
Trong các khẳng định sau, khẳng định nào sai?
Ta có .
Dãy số nào sau đây là một cấp số cộng?
Dãy số ở đáp án A thỏa mãn điều kiện với
là cấp số cộng.