Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho dãy (un) xác định bởi u_{1} = \frac{1}{2}un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{2} = u_{1} + 2 \\
u_{3} = u_{2} + 4 \\
\ldots \\
u_{49} = u_{48} + 2.49 \\
u_{50} = u_{49} + 2.50 \\
\end{matrix} ight.

    Cộng vế với vế các đẳng thức trên, ta được:

    u_{50} = \frac{1}{2} + 2(2 + 3 + \ldots +
50) = \frac{1}{2} + 2(25.51 - 1) = 2548,5.

  • Câu 2: Thông hiểu

    Có bao nhiêu mặt phẳng đi qua 3 điểm không thẳng hàng?

    Có duy nhất 1 mặt phẳng đi qua ba điểm không thẳng hàng.

  • Câu 3: Nhận biết

    Kết quả của giới hạn \lim\left(
\frac{1}{2} ight)^{n} bằng

    \lim q^{n} = 0 nếu |q| < 1.

    \left| \frac{1}{2} ight| <
1 nên \lim\left( \frac{1}{2}
ight)^{n} = 0.

  • Câu 4: Nhận biết

    Hình tứ diện có bao nhiêu cạnh?

    Hình tứ diện có 6 cạnh.

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: S \in (SEF) \cap (SCD)\ \
(1)

    Trong (ABCD)I = EF \cap CD

    \Rightarrow \left\{ \begin{matrix}
I \in EF \subset (EFS) \\
I \in CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I \in (EFS) \cap (SCD)\ \ \
(2)

    Từ (1) và (2) suy ra SI = (SEF) \cap
(SCD)

    b) Ta có: \left\{ \begin{matrix}
K \in (EFK) \\
K \in SC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow K \in (EFK) \cap (SAC)

    EF//AC do EF là đường trung bình trong tam giác ABC

    \left\{ \begin{matrix}
EF \subset (EFK) \\
AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (EFK)\bigcap(SAC) =
Kx//EF//AC

    c) Chọn (SBC) chứa FK

    Ta có: \left\{ \begin{matrix}
S \in (SBC) \cap (SAD) \\
BC//AD \\
BC \subset (SBC);AD \subset (SAD) \\
\end{matrix} ight.

    (SBC) \cap (SAD) =
Sy//AD//BC

    d) Đường thẳng AB song song với măt phẳng (SFD) sai.

  • Câu 6: Vận dụng

    Tập các giá trị của tham số m để phương trình 2sin\left( {x + \frac{{2017\pi }}{2}} ight) + 3m = 0 có nghiệm là?

    • Ta có: 2 \sin\left( {x + \frac{{2017\pi }}{2}} ight) + 3m = 0

    \Leftrightarrow \sin\left( {x + \frac{{2017\pi }}{2}} ight) =  - \frac{{3m}}{2}(*)

    • Xét (*) có nghiệm khi và chỉ khi: - 1 \leqslant  - \frac{{3m}}{2} \leqslant 1 \Leftrightarrow  - \frac{2}{3} \leqslant m \leqslant \frac{2}{3}.
  • Câu 7: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{3}=15 và d=-2 . Tìm u_{n} 

    Ta có: 

    \begin{matrix}  {u_3} = 15 \hfill \\   \Leftrightarrow {u_1} + 2d = 15 \hfill \\   \Rightarrow {u_1} = 19 \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   = 19 + \left( {n - 1} ight).\left( { - 2} ight) \hfill \\   = 21 - 2n \hfill \\   \Rightarrow {u_n} =  - 2n + 21 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Mệnh đề nào sau đây là sai?

    Hàm số  y = \cot x tuần hoàn với chu kì \pi

  • Câu 9: Nhận biết

    Có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?

    Có ba vị trí tương đối giữa đường thẳng và mặt phẳng là:

    + Đường thẳng song song với mặt phẳng.

    + Đường thẳng cắt mặt phẳng.

    + Đường thẳng nầm trên mặt phẳng.

  • Câu 10: Nhận biết

    Hình chiếu của hình chữ nhật không thể là hình nào trong các hình sau?

    Theo tính chất của phép chiếu song song ta thấy:

    Hình chiếu của hình chữ nhật không thể là hình thang có hai đáy không bằng nhau.

  • Câu 11: Thông hiểu

    Tập nghiệm của phương trình \tan^{2}x + 3 = 0 là:

    Ta có: \tan^{2}x + 3 \geq 3

    => Phương trình vô nghiêm.

  • Câu 12: Vận dụng

    Trên một bàn cờ có nhiều ô vuông, người ta đặt 7 hạt dẻ vào ô đầu tiên, sau đó đặt tiếp vào ô thứ hai số hạt nhiều hơn ô thứ nhất là 5, tiếp tục đặt vào ô thứ ba số hạt nhiều hơn ô thứ hai là 5, ... và cứ thế tiếp tục đến ô thứ n. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng 25450 hạt. Hỏi bàn cờ đó có bao nhiêu ô vuông?

    Ta có:

    Số hạt dẻ trên mỗi ô (bắt đầu từ ô thứ nhất) theo thứ tự đó lập thành cấp số cộng \left( u_{n} ight)u_{1} = 7;d = 5.

    Gọi n là số ô trên bàn cờ thì u_{1} +
u_{2} + ... + u_{n} = 25450 = S_{n}

    Ta có:

    25450 = S_{n}

    \Leftrightarrow 25450 = nu_{1} +
\frac{n(n - 1)}{2}.d

    \Leftrightarrow 25450 = 7n + \frac{n^{2}
- n}{2}.5

    \Leftrightarrow 5n^{2} + 9n - 50900 =
0

    \Leftrightarrow n = 100

  • Câu 13: Thông hiểu

    Thêm hai số thực dương x và y vào giữa hai số 5 và 320 để được bốn số 5;x;y;320 theo thứ tự đó lập thành cấp số nhận. Khẳng định nào sau đây là đúng?

    Ta có:

    Các số hạng 5;x;y;320 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 5 \\\begin{matrix}q = \dfrac{x}{5} \\y = u_{3} = u_{1}q^{2} = \dfrac{x^{2}}{5} \\320 = u_{4} = u_{1}q^{3} = \dfrac{x^{3}}{25} \\\end{matrix} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = 20 \\y = 80 \\\end{matrix} ight.

  • Câu 14: Vận dụng cao

    Biết rằng phương trình \dfrac{1}{\sin x} + \dfrac{1}{\sin2x} + \dfrac{1}{\sin4x}+ \cdots + \dfrac{1}{\sin\left( 2^{2018}x ight)} = 0 có nghiệm dạng x = \frac{2k\pi}{2^{a} - b} với k \in \mathbb{Z}a,b \in \mathbb{N}^{*}. Tính S = a + b

    Điều kiện \left\{ \begin{matrix}\sin x eq 0 \\\sin2x eq 0 \\\sin4x eq 0 \\\cdots \\\sin\left( 2^{2018}x ight) eq 0 \\\end{matrix} ight.

    \Leftrightarrow sin\left( 2^{2018}x
ight) eq 0

    \Leftrightarrow 2^{2018}x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2^{2018}},k \in
\mathbb{Z}

    Ta có:

    \frac{1}{\sin x} = \frac{1 + \cos x -\cos x}{\sin x}

    =\dfrac{2\cos^{2}\dfrac{x}{2}}{2\sin\dfrac{x}{2}cos\dfrac{x}{2}} -cotx

    = cot\frac{x}{2} - cotx

    Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành

    \cot\frac{x}{2} - \cot x + \cot x -\cot2x

    {+ \cdots \cot\left( 2^{2017}x ight) -\cot\left( 2^{2018}x ight) = 0}{\Leftrightarrow \cot\frac{x}{2} - \cot\left( 2^{2018}x ight) =0}

    {\Leftrightarrow \cot\frac{x}{2} =\cot\left( 2^{2018}x ight)}{\Leftrightarrow \frac{x}{2} = 2^{2018}x + k\pi,k \in\mathbb{Z}}

    {\Leftrightarrow x = \frac{2k\pi}{1 -
2^{2019}},k \in \mathbb{Z}
}{\Leftrightarrow x = \frac{2k\pi}{2^{2019} - 1},k \in
\mathbb{Z}}

    Vậy a = 2019,b = 1 nên a + b = 2020.

  • Câu 15: Thông hiểu

    Hình biểu diễn của một hình thoi là hình nào sau đây?

    Hình biểu diễn của một hình thoi là hình bình hành.

  • Câu 16: Nhận biết

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …

    Dễ dàng dự đoán được un = n.

    Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:

    Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.

    Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k

    Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1

    Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1

    Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.

  • Câu 17: Thông hiểu

    Tính \lim_{x
ightarrow + \infty}\left( \sqrt{x^{2} + 2x - 1} - x - 1
ight)

    Ta có:

    \lim_{x ightarrow + \infty}\left(
\sqrt{x^{2} + 2x - 1} - x - 1 ight)

    = \lim_{x ightarrow +
\infty}\frac{\left( \sqrt{x^{2} + 2x - 1} + x + 1 ight)\left(
\sqrt{x^{2} + 2x - 1} - x - 1 ight)}{\sqrt{x^{2} + 2x - 1} + x +
1}

    = \lim_{x ightarrow + \infty}\frac{-
2}{\sqrt{x^{2} + 2x - 1} + x + 1} = 0

  • Câu 18: Nhận biết

    Cho cấp số nhân có các số hạng lần lượt là 3;9;27;81. Tìm số hạng tổng quát u_{n} của cấp số nhân đã cho.

    Các số hạng lần lượt là 3;9;27;81 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{9}{3} = 3 \\\end{matrix} ight.\  \Rightarrow u_{n} = u_{1}.q^{n - 1} = 3.3^{n - 1}= 3^{n}

  • Câu 19: Thông hiểu

    Với giá trị nào của x và y thì các số -7; x; 11; y theo thứ tự đó lập thành một cấp số cộng?

    Ta có:

    Các số -7; x; 11 theo thứ tự đó lập thành một cấp số cộng

    => - 7 + 11 = 2.x \Rightarrow x = 2

    Tương tự các số 2; 11; y theo thứ tự đó lập thành một cấp số cộng

    => 2 + y = 2.11 \Rightarrow y = 20

    Vậy x = 2; y = 20

  • Câu 20: Nhận biết

    Cho hàm số f(x) xác định trên tập số thực và có đồ thị như hình vẽ:

    Hỏi hàm số f(x) không liên tục tại điểm nào sau đây?

    Quan sát đồ thị hàm số ta thấy: \left\{
\begin{matrix}
\lim_{x ightarrow 1^{-}}f(x) = 3 \\
\lim_{x ightarrow 1^{+}}f(x) = 0 \\
\end{matrix} ight.

    Vậy \lim_{x ightarrow 1^{-}}f(x) eq
\lim_{x ightarrow 1^{+}}f(x) nên không tồn tại \lim_{x ightarrow 1}f(x). Do đó hàm số gián đoạn tại x_{0} = 1.

  • Câu 21: Vận dụng

    Cho các số thực a,b,c thỏa mãn c^{2} + a = 18\lim_{x ightarrow + \infty}\left( \sqrt{ax^{2} +
bx} - cx ight) = - 2. Tính giá trị biểu thức P = a + b + 5c.

    Ta có:

    \lim_{x ightarrow + \infty}\left(\sqrt{ax^{2} + bx} - cx ight)= \lim_{x ightarrow +\infty}\frac{\left( a - c^{2} ight).x^{2} + bx}{\sqrt{ax^{2} + bx} +cx}= \lim_{x ightarrow + \infty}\frac{\left( a - c^{2} ight).x +b}{\sqrt{a + \frac{b}{x}} + c} = - 2

    Khi và chỉ khi: \left\{ \begin{matrix}a - c^{2} = 0 \\\dfrac{b}{\sqrt{a} + c} = - 2 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = c^{2} \\b = - 2\sqrt{a} - 2c \\\end{matrix} ight.\  ight..

    Kết hợp với c^{2} + a = 18

    Khi đó 2c^{2} = 18 \Leftrightarrow c^{2}
= 9 ightarrow a = 9c= 3 (vì c eq -
\sqrt{a})

    Vậy b = - 2\sqrt{a} - 2c = - 2\sqrt{9} -
2.3 = - 12 nên a + b + 5c = 9 - 12
+ 5.3 = 12.

  • Câu 22: Thông hiểu

    Cho góc \alpha thỏa mãn \tan\alpha = 2. Tính giá trị biểu thức P = \frac{sin2\alpha}{cos4\alpha +1}.

    Ta có:

    P = \dfrac{\sin2\alpha}{\cos4\alpha +1}

    P =\dfrac{\sin2\alpha}{2\cos^{2}2\alpha}

    P =\tan2\alpha.\dfrac{1}{\cos2\alpha}

    P = \dfrac{2\tan\alpha}{1 -\tan^{2}\alpha}.\dfrac{\sin^{2}\alpha + \cos^{2}\alpha}{2\left(\cos^{2}\alpha - \sin^{2}\alpha ight)}

    P = \dfrac{2}{1 -4}.\dfrac{\tan^{2}\alpha + 1}{1 - \tan^{2}\alpha} = \dfrac{10}{9}

  • Câu 23: Thông hiểu

    Tìm tập giá trị của hàm số y = 5\sin x - 12\cos x?

    Ta có:

    y = 5\sin x - 12\cos x

    =>y = 13\left( \frac{5\sin x - 12\cos x}{13}ight)

    => y = 13\left( \sin\alpha.\sin x -\cos\alpha.\cos x ight)

    y = 13cos(x + \alpha) (với \sin\alpha = \frac{5}{13};\cos\alpha =\frac{12}{13})

    Lại có:

    - 1 \leq \cos(x + \alpha) \leq
1

    \Leftrightarrow - 13 \leq 13cos(x +
\alpha) \leq 13

    \Leftrightarrow - 13 \leq y \leq
13

    Vậy tập giá trị của hàm số là \lbrack -
13;13brack

  • Câu 24: Nhận biết

    Giá trị của {D =
\lim}\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}} bằng:

    Ta có:

    \lim\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}}= \lim \dfrac{4+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{n}+\dfrac{2}{n^2}}}=4

  • Câu 25: Thông hiểu

    Giải phương trình 4{\sin ^2}x = 3.

    Ta có 4{\sin ^2}x = 3 \Leftrightarrow {\sin ^2}x = \frac{3}{4} \Leftrightarrow \sin x =  \pm \frac{{\sqrt 3 }}{2}.

    Với \sin x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x = \frac{{2\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Với \sin x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin x = \sin \left( { - \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  x =  - \frac{\pi }{3} + k2\pi  \hfill \\  x = \frac{{4\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Nhận thấy chưa có đáp án nào phù hợp. Ta biểu diễn các nghiệm trên đường tròn lượng giác (hình vẽ).

    Nếu tính luôn hai điểm A, B thì có tất cả 6 điểm cách đều nhau nên ta gộp được 6 điểm này thành một họ nghiệm, đó là x = k\frac{\pi }{3}.

    Suy ra nghiệm của phương trình \left\{ \begin{gathered}  x = k\frac{\pi }{3} \hfill \\  k\frac{\pi }{3} e l\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x = \frac{{k\pi }}{3} \hfill \\  k e 3\ell  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k,\ell  \in \mathbb{Z}} ight)

  • Câu 26: Vận dụng

    Tìm chu kì T của hàm số y = 2\sin^{2}x +3\cos^{2}3x

    Ta có:

    \begin{matrix}y = 2\sin^{2}x + 3\cos^{2}3x \hfill \\= 2.\dfrac{1 - \cos2x}{2} + 3.\dfrac{1 + \cos6x}{2} \hfill\\= \dfrac{1}{2}(3.\cos6x - 2\cos2x + 5)\hfill \\\end{matrix}

    Hàm số y = 3.\cos6x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = - 2\cos2x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \dfrac{1}{2}(3.\cos6x -2\cos2x + 5) tuần hoàn với chu kì T
= \pi

  • Câu 27: Nhận biết

    \mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + 1}}{{{x^2} + x}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^3} + 1}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} ight)\left( {{x^2} - x + 1} ight)}}{{x\left( {x + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} - x + 1}}{x} =  - 3 \hfill \\ \end{matrix}

  • Câu 28: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 29: Vận dụng cao

    Hàm số nào sau đây không liên tục trên \mathbb{R}?

    Hàm số y = \frac{3x}{x + 2} không xác định tại x = - 2 nên không liên tục tại x = - 2.

    Do đó không liên tục trên \mathbb{R}.

  • Câu 30: Vận dụng

    Cho hình chóp S.ABCDABCD là hình bình hành. Lấy M \in AB sao cho \overrightarrow{AM} =
3\overrightarrow{BM}. Giả sử (\alpha)qua M và song song với hai đường thẳng SC,BD. Tìm khẳng định đúng.

    Hình vẽ minh họa:

    Trong mặt phẳng (ABCD), kẻ đường thẳng qua M và song song với BD cắt các cạnh CD, CB lần lượt tại E, F.

    Xét mặt phẳng (SBC), kẻ FG // SC (G ∈ SB).

    Xét mặt phẳng (SCD), kẻ EK // SC (K ∈ SD).

    Gọi I là giao điểm của AC và EF, trong mặt phẳng (SAC) kẻ đường thẳng qua I và song song với SC cắt SA tại điểm H.

    Khi đó EFGHK là hình tạo bởi các giao tuyến của mặt phẳng (P) với các mặt của hình chóp.

  • Câu 31: Vận dụng cao

    Tổng S =\frac{2}{1.3} + \frac{2}{3.5} + \frac{2}{5.7} + \ldots +\frac{2}{97.99} có kết quả bằng?

    Ta có \frac{2}{1.3} = \frac{1}{1} -\frac{1}{3};\frac{2}{3.5} = \frac{1}{3} - \frac{1}{5};\ldots

    Do đó S = \frac{1}{1} - \frac{1}{3} +\frac{1}{3} - \frac{1}{5} + \ldots + \frac{1}{97} - \frac{1}{99} = 1 -\frac{1}{99} = \frac{98}{99}

  • Câu 32: Nhận biết

    Điểm cuối của góc lượng giác a ở góc phần tư thứ mấy nếu \sin\alpha;cos\alpha cùng dấu?

    Điểm cuối của góc lượng giác a ở góc phần tư thứ I hoặc thứ III thì \sin\alpha;cos\alpha cùng dấu

  • Câu 33: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = 3u_{2} = 12. Công bội của cấp số nhân đã cho bằng

    Ta có u_{2} = u_{1}.q \Rightarrow q =
\frac{u_{2}}{u_{1}} = \frac{12}{3} = 4.

  • Câu 34: Thông hiểu

    Khẳng định nào sau đây là đúng?

    Khẳng định đúng: "Hình biểu diễn của một đường tròn là một đường elip."

  • Câu 35: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để\lim\sqrt{\frac{9^{n} + 3^{n +
1}}{5^{n} + 9^{n + a}}} \leq \frac{1}{2187}.

    Ta có: \dfrac{9^{n} + 3^{n + 1}}{5^{n} +9^{n + a}} > 0;\forall n \in \mathbb{N}^{*}nên

    \lim\sqrt{\dfrac{9^{n} + 3^{n + 1}}{5^{n}+ 9^{n + a}}} = \sqrt{\lim\dfrac{9^{n} + 3^{n + 1}}{5^{n} + 9^{n +a}}}

    = \sqrt{\lim\dfrac{1 + 3.\left(\dfrac{1}{3} ight)^{n}}{\left( \dfrac{5}{9} ight)^{n} + 9^{a}}} =\sqrt{\dfrac{1}{9^{a}}} = \dfrac{1}{3^{a}}

    Theo đề bài ta có

    \lim\sqrt{\dfrac{9^{n} + 3^{n + 1}}{5^{n}+ 9^{n + a}}} \leq \dfrac{1}{2187}

    \begin{matrix}
   \Leftrightarrow \dfrac{1}{{{3^a}}} \leqslant \dfrac{1}{{2187}} \Leftrightarrow {3^a} \geqslant 2187 \hfill \\
   \Leftrightarrow a \geqslant 7 \hfill \\ 
\end{matrix}

    Mặt khác \left\{ \begin{matrix}
a\mathbb{\in Z} \\
a \in (0;2019) \\
\end{matrix} \Rightarrow a \in \left\{ 7;8;9;...;2018 ight\} ight.

    Vậy có tất cả 2012 giá trị nguyên thỏa mãn.

  • Câu 36: Thông hiểu

    Giá trị của B =
\frac{\sqrt{n^{2} + 2n}}{n - \sqrt{3n^{2} + 1}}bằng:

    Ta có:

    B = \lim\dfrac{\dfrac{\sqrt{n^{2} +n}}{n}}{\dfrac{n - \sqrt{3n^{2} + 1}}{n}}

    = \lim\frac{\sqrt{1 +\frac{1}{n}}}{1 - \sqrt{3 + \frac{1}{n^{2}}}} = \frac{1}{1 -\sqrt{3}}

  • Câu 37: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2} +
5x + 6} có nghĩa khi x^{2} + 5x + 6
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq - 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy theo định lí ta có hàm số f(x) =
\frac{x^{2} + 1}{x^{2} + 5x + 6} liên tục trên khoảng ( - \infty; - 3),( - 3; - 2),( - 2; +
\infty).

    b) Ta có: \lim\frac{an + 4}{4n + 3} =
\lim\frac{a + \frac{4}{n}}{4 + \frac{3}{n}} = \frac{a}{4}

    Khi đó: 2a + 1 = - 15.

    Theo bài ra ta có:

    \lim\frac{an + 4}{4n + 3} = - 2
\Leftrightarrow \frac{a}{4} = - 2 \Leftrightarrow a = - 8

    c) Ta có: x ightarrow 1^{+} \Rightarrow
x > 1 \Rightarrow x - 1 > 0

    \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x^{2}(x - 1)}}{\sqrt{x - 1} - (x -
1)}

    = \lim_{x ightarrow
1^{+}}\frac{x\sqrt{x - 1}}{\sqrt{x - 1}\left( 1 - \sqrt{x - 1} ight)}
= \lim_{x ightarrow 1^{+}}\frac{x}{1 - \sqrt{x - 1}} = 1s

    d) Xét hàm số x^{2} - 1000x^{2} + 0,01 =
f(x) có tập xác định D\mathbb{=
R}

    Suy ra hàm số f(x) cũng liên tục trên các khoảng ( - 1;0)(0;1).

    Ta có:

    \left\{ \begin{matrix}
f( - 1) = - 1000,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng ( - 1;0).

    Lại có: \left\{ \begin{matrix}
f(1) = - 999,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f(1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 38: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    TXĐ: D\mathbb{= R}

    Ta có:

    f( - 1) = 2a + 4

    \lim_{x ightarrow - 1}f(x) = \lim_{x
ightarrow - 1}\frac{x^{2} - 2x - 3}{x + 1}

    = \lim_{x ightarrow - 1}\frac{(x +
1)(x - 3)}{x + 1} = \lim_{x ightarrow - 1}(x - 3) = - 4

    Để hàm số gián đoạn tại x = - 1 thì \lim_{x ightarrow - 1}f(x) eq
f(1)

    \Leftrightarrow 2a - 4 eq - 4
\Leftrightarrow a eq - 4

    Vậy có 2024 giá trị nguyên của a \in (0;2025) để hàm số gián đoạn tại x = 1

  • Câu 39: Thông hiểu

    Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10

    Ta có: {u_{10}} = {u_1} + \left( {10 - 1} ight)d = {u_{10}} =  - 2 + 9.3 = 25

  • Câu 40: Nhận biết

    Số cạnh của một hình chóp có đáy là một bát giác là:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 41: Nhận biết

    Nghiệm của phương trình \sin x = -
1

    Ta có: \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight).

  • Câu 42: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.. Tính u_{2}.

    Ta có:

    \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + \left( u_{1} + d ight) + \left( u_{1} + 2d ight) = 27 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + d = 9 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}d = 9 - u_{1} \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    Khi đó:

    \Rightarrow {u_{1}}^{2} + \left( u_{1} +9 - u_{1} ight)^{2} + \left\lbrack u_{1} + 2\left( 9 - u_{1} ight)ightbrack^{2} = 275

    \Leftrightarrow {u_{1}}^{2} - 18u_{1} +65 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}u_{1} = 13 \Rightarrow d = - 4 \\u_{1} = 5 \Rightarrow d = 4 \\\end{matrix} ight.=> u_{2} = 9

  • Câu 43: Nhận biết

    Cho đường tròn đường kính 12cm. Tìm số đo (rad) của cung có độ dài 3cm ?

    d = 12 \Rightarrow R = 6\alpha = \frac{l}{R} vậy số đo (rad) cần tìm là \frac{1}{2}.

  • Câu 44: Thông hiểu

    Cho tứ diện ABCD, lấy M,N lần lượt là trung điểm của BCCD. Giả sử d
= (MNA) \cap (ABD). Khẳng định nào đúng về đặc điểm của đường thẳng d?

    Hình vẽ minh họa

    Xét ba mặt phẳng (AMN),(ABD),(BCD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,BD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,BD,MN đồng quy hoặc đôi một song song.

    BD//MN nên d//BD.

    Vậy đường thẳng d đi qua A và song song với BD.

  • Câu 45: Vận dụng

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh ADBC; G là trọng tâm tam giác BCD. Khi đó giao điểm của đường thẳng MG(ABC)

    Hình vẽ minh họa

    Trong (ADN) gọi K = AN \cap MG, mà AN \subset (ABC)

    \Rightarrow K = MG \cap
(ABC)

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo