Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Mệnh đề nào sau đây sai?

    Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.

  • Câu 2: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác''?

    Mỗi đường tròn định hướng có bán kính R =
1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.

  • Câu 3: Thông hiểu

    Cho cấp số cộng (u_{n}) có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát u_{n} của cấp số cộng.

    Theo bài ra ta có:

    Dãy số đã cho là cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {{u_2} = 9} \end{array} \Rightarrow d = {u_2} - {u_1} = 4} ight.

    => {u_n} = {u_1} + \left( {n - 1} ight).d = 4n + 1

    Vậy số hạng tổng quát của dãy số là: u_n=4n+1

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Trên các cạnh AB,CD lần lượt lấy các điểm M,N làm trung điểm. Xác định giao tuyến hai mặt phẳng (SAC)(SMN)?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}AM//NC;(AB//CD) \\AM = NC = \dfrac{AB}{2} = \dfrac{DC}{2} \\\end{matrix} ight. suy ra tứ giác AMCN là hình bình hành.

    Do đó AC và MN cắt nhau tại trung điểm của mỗi đường.

    Mà O là trung điểm của AC nên O cũng là trung điểm của MN, hay ba điểm M, O, N thẳng hàng.

    Ta có: S \in (SAC) \cap
(SMN)(*)

    Mặt khác \left\{ \begin{matrix}
O \in (SAC);AC \subset (SAC) \\
O \in (SMN);MN \subset (SMN) \\
\end{matrix} ight.

    \Leftrightarrow O \in (SAC) \cap
(SMN)(**)

    Từ (*)(**) \Rightarrow (SAC) \cap (SMN) =
SO

  • Câu 5: Vận dụng

    Tính  \lim_{x
ightarrow 0}\frac{\sqrt{1 + 2x} - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{\sqrt{1 + 2x} - (x + 1) + (x + 1) - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - (x + 1)}{x^{2}}

    = \lim_{x ightarrow 0}\frac{-
x^{2}}{x^{2}\left( \sqrt{1 + 2x} + x + 1 ight)} = -
\frac{1}{2}

    Ta cũng có:

    \lim_{x ightarrow 0}\frac{(x + 1) -
\sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{x^{3} + 3x^{2}}{x^{2}\left\lbrack (x + 1)^{2} + (x +
1)\sqrt[3]{1 + 3x} + \left( \sqrt[3]{1 + 3x} ight)^{2} ightbrack}
= 1

    Vậy  \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}} = \frac{1}{2}

  • Câu 6: Nhận biết

    Tìm b >
0 để các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    Các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân

    \Rightarrow \left( \sqrt{b} ight)^{2}
= \frac{1}{\sqrt{2}}.\sqrt{2}

    \Rightarrow b = 1

  • Câu 7: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) có số hạng đầu u_{1} =
5 và công bội q = - 2. Số hạng thứ sáu của \left( u_{n}
ight) là:

    Ta có: u_{6} = u_{1}q^{5} = 5.( - 2)^{5} =
- 160

  • Câu 8: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 9: Thông hiểu

    \mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 2x}  + 3x}}{{\sqrt {4{x^2} + 1}  - x + 2}} bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {{x^2} + 2x}  + 3x}}{{\sqrt {4{x^2} + 1}  - x + 2}} \hfill \\   = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\left| x ight|\sqrt {1 + \dfrac{2}{x}}  + 3x}}{{\left| x ight|\sqrt {1 + \dfrac{1}{x}}  - x + 2}} \hfill \\ \end{matrix}

    = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {1 + \dfrac{2}{x}}  + 3}}{{\sqrt {1 + \dfrac{1}{x}}  - 1 + \dfrac{2}{x}}} = \frac{{ - 2}}{3}

  • Câu 10: Thông hiểu

    Nghiệm của phương trình 2cos (2x) =-2

    Ta có: 2 \cos 2x = -2 \Leftrightarrow \cos 2x=-1 \Leftrightarrow 2 x= \pi + k2\pi

    \Leftrightarrow x = \frac{\pi}{2} +k \pi , \, k \in \mathbb{Z}.

  • Câu 11: Thông hiểu

    Trong các giới hạn dưới đây, giới hạn nào không tồn tại?

    Ta có:

    \lim_{x ightarrow - 1}\frac{x}{(x +
1)^{2}} = - \infty

    \lim_{x ightarrow - \infty}\dfrac{2x +1}{x^{2} + 1} = \lim_{x ightarrow - \infty}\dfrac{\dfrac{2}{x} +\dfrac{1}{x^{2}}}{1 + \dfrac{1}{x^{2}}} = 0

    \lim_{x ightarrow 0}\frac{x}{\sqrt{x +
1}} = 0

    \lim_{x ightarrow + \infty}\left( \cos
x ight) không xác định.

  • Câu 12: Vận dụng

    Tính tổng A =
1000^{2} - 999^{2} + 998^{2} - 997^{2} + ... + 2^{2} -
1^{2}

    Ta có:

    A = 1000^{2} - 999^{2} + 998^{2} -
997^{2} + ... + 2^{2} - 1^{2}

    A = 1.(1000 + 999) + 1.(998 + 997) + ...
+ 1.(2 + 1)

    A = 1999 + 1995 + ... + 3

    Ta thấy các số hạng của tổng T tạo thành một cấp số cộng với số hạng đầu u_{1} = 1999 và công sai d = −4. Giả sử tổng trên có n số hạng thì

    u_{n} = 3

    \Leftrightarrow u_{1} + (n - 1) =
3

    \Leftrightarrow 1999 + (n - 1)( - 4) =
3

    \Leftrightarrow n = 500

    \Rightarrow T = S_{500} = \frac{\left(
u_{1} + u_{500} ight).500}{2} = \frac{(1999 + 3).500}{2} =
500500

  • Câu 13: Vận dụng cao

    Xác định công thức tổng quát của dãy số \left\{ \begin{matrix}u_{1} = \dfrac{- 1}{2} \\u_{n + 1} = \sqrt{\dfrac{u_{n} + 1}{2}};n \geq 1 \\\end{matrix} ight..

    Ta có: \left\{ \begin{matrix}u_{2} = \sqrt{\dfrac{u_{1} + 1}{2} = \dfrac{1}{2}} \\u_{3} = \sqrt{\dfrac{u_{2} + 1}{2}} = \dfrac{\sqrt{3}}{2} \\\end{matrix} ight.

    Nhận thấy \left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} = \cos\left( \dfrac{2\pi}{3} ight) \\u_{2} = \dfrac{1}{2} = \cos\left( \dfrac{\pi}{3} ight) \\u_{3} = \dfrac{1}{2} = \dfrac{\sqrt{3}}{2} = \cos\left( \frac{\pi}{6}ight) \\\end{matrix} ight.

    Dự đoán u_{n} = \cos\left(
\frac{4\pi}{3.2^{n}} ight)(*)

    Ta chứng minh bằng quy nạp

    Trước hết u_{1} = \cos\left(
\frac{2\pi}{3} ight) = \cos\left( \frac{4\pi}{3.2^{1}}
ight) đúng với n = 1

    Giả sử (*) đúng khi n = k;k \in \mathbb{N}^{*}. Khi đó u_{k} = \cos\left( \frac{4\pi}{3.2^{k}}
ight)

    Ta có:

    u_{k + 1} = \sqrt{\dfrac{u_{k} + 1}{2}} =\sqrt{\dfrac{\cos\left( \dfrac{4\pi}{3.2^{k}} ight) +1}{2}}

    = \sqrt{\dfrac{\cos\left(2.\dfrac{4\pi}{3.2^{k + 1}} ight) + 1}{2}}

    = \sqrt{\dfrac{2.\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2} - 1 +1}{2}}

    = \sqrt{\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2}}

    = \left| \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight) ight|

    Mặt khác ta có k \geq 1. Do đó 0 \leq \frac{4\pi}{3.2^{k + 1}} \leq
\frac{4\pi}{3.2^{1 + 1}} = \frac{\pi}{3} < \frac{\pi}{2}

    Vậy \cos\left( \dfrac{4\pi}{3.2^{k + 1}}ight) \geq 0 \Rightarrow u_{k + 1} = \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight)

    Vậy (*) đúng với n = k + 1. Theo nguyên lí quy nạp, ta có điều phải chứng minh.

  • Câu 14: Thông hiểu

    Tổng giá trị lớn nhất và nhỏ nhất của hàm số y = 3cosx + 4

    Do - 1 \leq cosx \leq 1\forall x \in
\mathbb{R} nên 1 \leq 3cosx + 4
\leq 7,\forall x \in \mathbb{R}.

    Nên \max_{\mathbb{R}}\mspace{2mu} y =
7 đạt được khi cosx = 1
\Leftrightarrow x = k2\pi\ (k \in \mathbb{Z}).

    \min_{\mathbb{R}}\mspace{2mu} y =
1 đạt được khi cosx = - 1
\Leftrightarrow x = \pi + k2\pi(k \in \mathbb{Z}).

    Suy ra \max_{\mathbb{R}}\mspace{2mu} y +
\min_{\mathbb{R}}\mspace{2mu} y = 8.

  • Câu 15: Nhận biết

    Hàm số f(x) =
\sqrt{3 - x} + \frac{1}{\sqrt{x + 4}} liên tục trên:

    Điều kiện \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq - 3 \\
x > - 4 \\
\end{matrix} ight.

    Tập xác định D = ( -
4;3brack

    => Hàm số liên tục trên ( -
4;3brack

  • Câu 16: Vận dụng cao

    Tính \lim_{xightarrow 0}\dfrac{(1 + x)(1 + 2x)(1 + 3x)...(1 + 2018x) -1}{x}.

    Ta chứng minh bằng phương pháp quy nạp, với \forall n \geq 1;n\mathbb{\in N} thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + nx) - 1}{x} = \frac{n(n + 1)}{2}(*)

    Với n = 1 thì \left\{ \begin{gathered}
  VT = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 + x - 1}}{x} = \mathop {\lim }\limits_{x \to 0} 1 = 1 \hfill \\
  VP = \dfrac{{1\left( {1 + 1} ight)}}{2} = 1 \hfill \\ 
\end{gathered}  ight. \Rightarrow VT = VP nên (*) đúng với n = 1

    Giả sử (*) đúng với n = k,k \geq
1;k\mathbb{\in N} nghĩa là:

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + kx) - 1}{x} = \frac{k(k + 1)}{2}

    Xét n = k + 1 ta có:

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx + x) - 1}{x}

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx) - 1}{x}

    + \lim_{x ightarrow 0}\frac{(1 + x)(1
+ 2x)(1 + 3x)...(x + kx) - 1}{x}

    VT = \frac{k(k + 1)}{2} + \lim_{x
ightarrow 0}\left\lbrack (1 + x)(1 + 2x)(1 + 3x)...(1 + k)
ightbrack

    VT = \frac{k(k + 1)}{2} + k + 1 =
\frac{(k + 1)(k + 2)}{2} = VP

    Vậy (*) đúng với n = k + 1;k \geq
1;k\mathbb{\in N}

    Bây giờ ta áp dụng với n = 2018 thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + 2018x) - 1}{x}

    = \frac{2018.(2018 + 1)}{2} =
1009.2019

  • Câu 17: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?

    Mệnh đề A(n) đúng với n = k với k ≥ p.

  • Câu 18: Thông hiểu

    Cho \left( u_{n} ight) là cấp số cộng biết u_{3} + u_{13} = 80. Tổng 15 số hạng đầu của cấp số cộng đó bằng

    Ta có:

    u_{3} + u_{13} = 80

    \Leftrightarrow (u_{1} + 2d) + (u_{1} +
12d) = 80

    \Leftrightarrow 2u_{1} + 14d =
80

    Vậy S_{15} = \frac{15}{2}\left( 2u_{1} +
14d ight) = \frac{15}{2}.80 = 600

  • Câu 19: Thông hiểu

    Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.

    Ta có:

    Cấp số cộng có k số hạng gồm có u_{1} = -3 và số hạng cuối u_{k} =23.

    Khi đó:

    u_{k + 1} = u_{1} + (k -1)d

    \Leftrightarrow 23 = - 3 + (k -1).2

    \Leftrightarrow k = 14

    Do đó n = k - 2 = 12

  • Câu 20: Vận dụng

    Giá trị lớn nhất của hàm số y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2} tại điểm là nghiệm của phương trình nào dưới đây?

    Theo bài ra ta có:

    y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2}

    \Leftrightarrow y.\left( \sin x + \cos x+ 2 ight) = \sin x + 2\cos x + 1

    \Leftrightarrow (y - 1).\sin x + (y -2)\cos x = 1 - 2y(*)

    Phương trình (*) có nghiệm

    \Leftrightarrow (y - 1)^{2} + (y -
2)^{2} \geq 1 - 2y

    \Leftrightarrow y^{2} + y - 2 \leq
0

    \Leftrightarrow - 2 \leq y \leq
1

    Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó - \cos x = - 1

  • Câu 21: Thông hiểu

    Trong không gian, cho 3 đường thẳng a, b, c, biết a//b, a và c chéo nhau. Khi đó hai đường thẳng b và c:

    Giả sử b//c

    => c // a (mâu thuẫn với giả thiết). 

    Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.

  • Câu 22: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{( - 1)^{n}}{1 + n}. Khẳng định nào sau đây sai?

    Ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4}

    \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight.

    Vậy dãy số đã cho không tăng không giảm.

    Khẳng định sai là: “Dãy số \left( u_{n}
ight) là dãy giảm”

  • Câu 23: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 24: Thông hiểu

    Cho \sin a =
\frac{3}{5};cosa < 0;cosb = \frac{3}{5};sinb > 0. Giá trị sin(a - b) bằng:

    Ta có:

    \left\{ \begin{matrix}
\sin a = \frac{3}{5} \\
\cos a < 0 \\
\end{matrix} \Rightarrow cosa = - \sqrt{1 - \sin^{2}a} = - \frac{4}{5}
ight.

    \left\{ \begin{matrix}
\cos b = \frac{3}{5} \\
\sin b > 0 \\
\end{matrix} \Rightarrow sinb = \sqrt{1 - \cos^{2}b} = \frac{4}{5}
ight.

    sin(a - b) = sina\cos b - cosa\sin b =
\frac{3}{5} \cdot \frac{3}{5} - \left( - \frac{4}{5} ight) \cdot
\frac{4}{5} = 1

  • Câu 25: Nhận biết

    Nghiệm của phương trình \sin x. \cos x = \frac{1}{2} là?

     Ta có: \sin x.cosx = \frac{1}{2} \Leftrightarrow \sin 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi  \Leftrightarrow x = \frac{\pi }{4} + k\pi.

  • Câu 26: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu là u_{1} = 3;d = 5. Hỏi số hạng thứ tư là số nào dưới đây?

    Ta có: u_{4} = u_{1} + 3d = 3 + 3.5 =
18

    Vậy u_{4} = 18

  • Câu 27: Nhận biết

    Hình lăng trụ tam giác có bao nhiêu mặt?

    Hình lăng trụ tam giác có 5 mặt.

  • Câu 28: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ?

    Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.

  • Câu 29: Nhận biết

    Xác định giới hạn D = \lim_{x ightarrow 0}\frac{(1 + 2x)^{2} -
1}{x}

    Ta có:

    D = \lim_{x ightarrow 0}\frac{(1 +
2x)^{2} - 1}{x}

    = \lim_{x ightarrow 0}\frac{4x^{2} +
4x}{x} = \lim_{x ightarrow 0}(4 + 4x) = 4

  • Câu 30: Thông hiểu

    Hình biểu diễn của một hình thoi là hình nào sau đây?

    Hình biểu diễn của một hình thoi là hình bình hành.

  • Câu 31: Thông hiểu

    Giá trị của B =
\lim\frac{4n^{2} + 3n + 1}{(3n - 1)^{2}\ } bằng:

    B = \lim\frac{4n^{2} + 3n + 1}{(3n -
1)^{2}\ }

    = \lim\frac{4n^{2} + 3n + 1}{{9n}^{2} -6n + 1 }

    = \lim\frac{4 + \frac{3}{n} + \frac{1}{n^{2}}}{9 -\frac{6}{n} + \frac{1}{n^{2}}} = - \frac{4}{9}

  • Câu 32: Vận dụng

    Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?

    Phát biểu nào sau đây là đúng

    Đáp án "Giao điểm của (SMC) với BD là giao điểm của CN với BD, trong đó N là giao điểm của SM và AD." đúng.

    Đáp án "Giao điểm của (SAC) với BD là giao điểm của SA và BD." sai vì giao điểm của BD và (SAC) là giao điểm của BD và AC.

    Đáp án "Giao điểm của (SAB) với CM là giao điểm của SA và CM." sai vì CM không cắt SA.

    Đáp án "Đường thẳng DM không cắt mặt phẳng (SBC)." sai vì DM cắt mặt phẳng (SBC) tại giao điểm của DM và giao tuyến của hai mặt phẳng (SAD) và (SBC).

  • Câu 33: Nhận biết

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) tuần hoàn có chu kì T =
3\pi khi

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) có nghĩa \forall
x\mathbb{\in R \Leftrightarrow}D\mathbb{= R}.

    Chu kì của hàm số T = \frac{2\pi}{| - m|}
= 3\pi \Leftrightarrow m = \pm \frac{2}{3}.

  • Câu 34: Vận dụng

    Tính tổng S = 1 + 11 + 111 + ... + \underbrace {1111...11}_n?

    Xét dãy số \left( U_{n} ight) là cấp số nhân với u_{1} = 1;q =
10

    \Rightarrow S_{n} = \frac{1}{9}.\left(
10^{n} - 1 ight)

    \Rightarrow S = S_{1} + S_{2} + ... +
S_{n}

    = \sum_{k = 1}^{n}{\frac{1}{9}\left(
10^{n} - 1 ight)} = \frac{1}{9}\left( \sum_{k = 1}^{n}{10^{n} - n}
ight)

    = \frac{1}{9}\left( 10.\frac{10^{n} -
1}{9} - n ight) = \frac{1}{9}\left( \frac{10^{n + 1} - 1}{9} - n
ight)

  • Câu 35: Vận dụng cao

    Cho các số thực a,\ b,\ cthỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Số giao điểm của đồ thị hàm số y = x^{3} + ax^{2} + bx + c và trục Ox

    Đáp án: 3

    Đáp án là:

    Cho các số thực a,\ b,\ cthỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Số giao điểm của đồ thị hàm số y = x^{3} + ax^{2} + bx + c và trục Ox

    Đáp án: 3

    Ta có \left\{ \begin{matrix}
y(2) = 8 + 4a + 2b + c < 0 \\
\lim_{x ightarrow + \infty}y = + \infty \\
\end{matrix} ight.\  \Rightarrow \exists x_{1} \in (2; +
\infty)sao cho y\left( x_{1}
ight) = 0(1).

    Ta có \left\{ \begin{matrix}
y(2) = 8 + 4a + 2b + c < 0 \\
y( - 2) = - 2 + 4a - 2b + c > 0 \\
\end{matrix} ight.\  \Rightarrow \exists x_{2} \in ( -
2;2)sao cho y\left( x_{2} ight) =
0(2).

    Ta có \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
\lim_{x ightarrow - \infty}y = - \infty \\
\end{matrix} ight.\  \Rightarrow \exists x_{3} \in ( - \infty; -
2)sao cho y\left( x_{3} ight) =
0(3).

    Từ (1), (2) và (3) ta suy ra số giao điểm của đồ thị hàm số và trục Ox bằng 3.

  • Câu 36: Thông hiểu

    Cho tứ diện ABCD. Gọi K,L lần lượt là trung điểm của ABBC,N là điểm thuộc đoạn CD sao cho CN
= 2ND. Gọi P là giao điểm của AD với mặt phẳng (KLN). Tính tỉ số \frac{PA}{PD}.

    Hình vẽ minh họa

    Giả sử LN \cap BD = I. Nối K với I cắt AD tại P Suy ra (KLN) \cap AD = P
    Ta có: KL//AC \Rightarrow PN//AC. Suy ra \frac{PA}{PD} = \frac{NC}{ND} =
2.

  • Câu 37: Vận dụng

    Cho tứ diện ABCD. Trên các cạnh AB,BC lần lượt lấy các điểm K,L là trung điểm, trên cạnh CD lấy điểm N sao cho \frac{CN}{DN} = 2. Gọi P = AD \cap (NKL), khi đó tỉ số độ dài giữa APDP là:

    Hình vẽ minh họa

    Từ giả thiết bài ra suy ra LK // AC mà (KLN) ∩ (DAC) = d

    => d // AC

    Xét mặt phẳng (DAB) qua N dựng d song song AC

    => {P} = AD ∩ d

    Xét tam giác DAC vì PN // AC theo định lý Ta-lét ta có:

    \frac{DP}{DA} = \frac{DN}{DC} =
\frac{PN}{AC}

    Ta lại có: \frac{CN}{DN} = 2 \Rightarrow
\frac{DN}{DC} = \frac{1}{3} \Rightarrow \frac{DP}{DA} =
\frac{1}{3}

    \Rightarrow \frac{AP}{DP} =
2

  • Câu 38: Nhận biết

    Cho hình chóp S.ABCD. Gọi MN lần lượt là trung điểm của SA SC. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    MNlà đường trung bình của tam giác SAC nên MN//ACAC
\in (ABCD) \Rightarrow MN//(ABCD).

  • Câu 39: Thông hiểu

    Tìm số nghiệm của phương trình \sin(\cos x) = 0 trên đoạn x \in \lbrack 0;2\pibrack.

    Ta có: sin(cosx) = 0 \Leftrightarrow cosx
= k\pi\ (k \in \mathbb{Z})

    |cosx| \leq 1 nên k = 0. Do đó phương trình \Leftrightarrow cosx = 0 \Leftrightarrow x =
\frac{\pi}{2} + m\pi(m \in \mathbb{Z})

    x \in \lbrack 0;2\pibrack nên x = \frac{\pi}{2},x =
\frac{3\pi}{2}.

  • Câu 40: Nhận biết

    Tính giới hạn \lim\sqrt{\frac{2n + 9}{n + 2}},\left( n \in
\mathbb{N}^{*} ight)

    Ta có: \lim\sqrt{\frac{2n + 9}{n + 2}} =\lim\sqrt{\dfrac{2 + \dfrac{9}{n}}{1 + \dfrac{2}{n}}} = \sqrt{\frac{2 +0}{1 + 0}} = \sqrt{2}

  • Câu 41: Nhận biết

    Nếu các dãy số \left( u_{n}
ight),\left( v_{n} ight) thỏa mãn \lim u_{n} = 4 và \lim v_{n} = 3 thì \lim\left( u_{n} + v_{n} ight) bằng:

    Ta có \lim\left( u_{n} + v_{n} ight) =
\lim u_{n} + \lim v_{n} = 7.

  • Câu 42: Vận dụng

    Tổng các nghiệm của phương trình \cos 2x - \sin 2x = 1 trong khoảng \left ( 0;2\pi  ight ) là:

     Giải phương trình:

    \begin{matrix}  \cos 2x - \sin 2x = 1 \hfill \\   \Leftrightarrow \sqrt 2 \cos \left( {2x + \dfrac{\pi }{4}} ight) = 1 \hfill \\   \Leftrightarrow \cos \left( {2x + \dfrac{\pi }{4}} ight) = \dfrac{1}{{\sqrt 2 }} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x + \dfrac{\pi }{4} = \dfrac{\pi }{4} + k2\pi } \\   {2x + \dfrac{\pi }{4} =  - \dfrac{\pi }{4} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k\pi } \\   {x =  - \dfrac{\pi }{4} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Xét nghiệm x = k\pi

    Do x \in \left ( 0;2\pi  ight ) => 0 < k\pi  < 2\pi  \Rightarrow k = 1

    => x = \pi

    Xét nghiệm {x =  - \frac{\pi }{4} + k\pi }

    Do x \in \left ( 0;2\pi  ight )

    \begin{matrix}  0 <  - \dfrac{\pi }{4} + k\pi  < 2\pi  \Rightarrow k \in \left\{ {1;2} ight\} \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {k = 1 \Rightarrow x = \dfrac{{3\pi }}{4}} \\   {k = 2 \Rightarrow x = \dfrac{{7\pi }}{4}} \end{array}} ight. \hfill \\ \end{matrix}

    vậy tổng tất cả các nghiệm của phương trình là: \frac{14\pi}{4}

  • Câu 43: Thông hiểu

    Khẳng định nào sau đây là sai.

    Khẳng định sai: "Nếu 3 đường thẳng chắn trên hai cát tuyến những đoạn thẳng tương ứng tỉ lệ thì ba đường thẳng đó song song với nhau."

  • Câu 44: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2}}}{x}}&{{\text{ khi }}x < 1,x e 0} \\   0&{{\text{ khi }}x = 0} \\   {\sqrt x }&{{\text{  khi }}x \geqslant 1} \end{array}} ight. hàm số f(x) liên tục tại:

    Tập xác định: D = \mathbb{R}

    \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to 0} x = 0 = f\left( 0 ight)

    Vậy hàm số liên tục tại x = 0

    Hàm số liên tục khi x<1

    hàm số liên tục khi x>1

    Tại x = 1 ta có: f(1)=1

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to {1^ - }} x = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} \sqrt x  = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = f\left( 1 ight) \hfill \\ \end{matrix}

    Vậy hàm số liên tục tại x=1

    Hàm số liên tục trên \mathbb{R}

  • Câu 45: Nhận biết

    Cho tứ diện ABCD như hình vẽ.

    Khẳng định nào sau đây đúng?

    Khẳng định đúng là (MND) \cap (ABC) =
MN

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo