Tính giới hạn của hàm số
.
Ta có:
Tính giới hạn của hàm số
.
Ta có:
Tính giới hạn
ta được kết quả bằng
Ta có:
.
Số hạng âm trong dãy số x1; x2; x3; …; xn với
là?
Ta có
Vậy các số hạng âm là x1; x2; x3.
Cho cấp số cộng
thỏa mãn
. Khi đó
bằng:
Ta có:
Cho hình chóp
có đáy
là hình bình hành,
lần lượt là trung điểm của
. Tìm đặc điểm của giao tuyến
của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta thấy là một điểm chung của hai mặt phẳng
và
.
Do đó đi qua
.
Xét ba mặt phẳng .
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà (do
là đường trung bình của tam giác
) nên
.
Vậy giao tuyến của hai mặt phẳng và
là đường thẳng
đi qua
và song song với
.
Cho tứ diện
có độ dài tất cả các cạnh bằng
. Gọi
là trọng tâm tam giác
. Tính diện tích thiết diện tạo bởi mặt phẳng
và tứ diện
?
Hình vẽ minh họa:
Gọi lần lượt là trung điểm các cạnh
Ta có:
Suy ra tam giác MCD là thiết diện của mặt phẳng và tứ diện
Tam giác ABD đều cạnh bằng có
là trung điểm của
Tam giác ABC đều cạnh bằng có
là trung điểm của
Gọi H là trung điểm của CD
Ta có:
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Giá trị của
bằng:
Ta có:
Số nghiệm của phương trình
trên khoảng
là?
Phương trình
Với
Với
Vậy có 4 nghiệm thỏa mãn.
Cho cấp số cộng (un) biết u1 = -5 và công sai d = 2. Số 81 là số hạng thứ bao nhiêu?
Ta có:
Vậy 81 là số hạng thứ 44
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Hình vẽ minh họa
-Ta có .
Trong mặt phẳng , gọi
Suy ra .
Ta có:
-Trong mp , gọi
.
Ta có .
Cho hàm số
có đồ thị như hình dưới đây. Chọn khẳng định đúng.

Dựa vào đồ thị ta thấy hàm số liên tục trên
Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình
?
Điều kiện xác định:
Ta có:
Kết hợp với điều kiện xác định suy ra phương trình có nghiệm nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn
theo thứ tự tăng dần?
Số nguyên tố là số tự nhiên lớn hơn và chỉ có hai ước số là
và chính nó.
Vậy dãy số nguyên tố nhỏ hơn là
,
,
,
.
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề sai: "Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì cắt mặt phẳng còn lại." vì hai mặt phẳng cùng vuông góc với một mặt phẳng có thể cắt nhau.
Tập nghiệm của phương trình
là?
Giá trị của giới hạn
là:
Ta có:
Cho cấp số cộng
có số hạng đầu
công sai
Năm số hạng liên tiếp đầu tiên của cấp số cộng là:
Ta dùng công thức tổng quát , hoặc
để tính các số hạng của một cấp số cộng.
Ta có
Dãy số nào dưới đây có giới hạn bằng 0?
Ta có:
Do là dãy cấp số nhân có
Tổng
có kết quả bằng?
Đặt
Tập xác định của hàm số
là:
Ta có: xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Kiểm tra được là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
là hàm số không chẵn không lẻ
là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.
Cho tứ diện
. Gọi
lần lượt là trung điểm
và
, G là trọng tâm tam giác BCD. Tìm giao tuyến d của hai mặt phẳng
và
.
Hình vẽ minh họa
Hai mặt phẳng phân biệt (GMN) và (BCD) chứa hai đường thẳng song song MN và CD, đồng thời có điểm chung là G
=> Giao tuyến của chúng là đường thẳng d qua G và song song với CD (cắt BC, BD lần lượt tại P và Q).
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Cho hàm số
. Với
và
. Biết
. Hỏi đồ thị hàm số
cắt trục hoành tại bao nhiêu điểm?
Cho hàm số . Với
và
. Biết
. Hỏi đồ thị hàm số
cắt trục hoành tại bao nhiêu điểm?
Cho hình lập phương
. Khẳng định nào sau đây sai?
Ta có: luôn đúng
=> Hai mặt phẳng không song song với nhau.
Cho hình chóp tứ giác
. Giao tuyến của hai mặt phẳng
và
là:
Hai mặt phẳng và
có hai điểm chung là
và
nên giao tuyến của chúng là đường thẳng
.
Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.
Đáp án: 20
Một kiến trúc sư thiết kế một hội trường với 15 ghế ngồi ở hàng thứ nhất, 18 ghế ngồi ở hàng thứ hai, 21 ghế ngồi ở hàng thứ ba và cứ như vậy (số ghế ngồi ở hàng sau nhiều hơn 3 ghế so với số ghế ngồi ở hàng liền trước nó). Nếu muốn hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì kiến trúc sư phải thiết kế tối thiểu bao nhiêu hàng ghế.
Đáp án: 20
Số ghế ở các hàng tạo thành một cấp số cộng có và công sai
.
Giả sử hội trường có hàng ghế
.
Tổng số ghế có trong hội trường là:
Để hội trường đó có số sức chứa ít nhất 870 ghế ngồi thì
Vậy kiến trúc sư phải thiết kế tối thiểu 20 hàng ghế.
Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.
Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …
Biết
. Hỏi giá trị giới hạn
bằng bao nhiêu?
Ta có:
Khi đó:
Giá trị của
bằng:
Với mọi a>0 nhỏ tùy ý, ta chọn
Suy ra
Giá trị của giới hạn
bằng:
Ta có:
là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a
=>
Tương tự:
là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b
=>
Có bao nhiêu giá trị nguyên của tham số m để hàm số
liên tục trên
?
Ta có:
Hàm số liên tục trên các khoảng
. Khi đó hàm số đã cho liên tục trên
khi và chỉ khi nó liên tục tại
, tức là ta cần có:
Ta lại có:
Khi đó không thỏa mãn với mọi
Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
có nghĩa khi nào?
Để có nghĩa thì
=>
Cho biết mệnh đề nào sau đây sai?
Trường hợp hai đường thẳng chéo nhau thì không xác định được mặt phẳng chứa cả hai đường thẳng đó. Hoặc 2 đường thẳng trùng nhau thì xác định được vô số mặt phẳng.
Cho hai đường thẳng
và
chéo nhau. Có bao nhiêu mặt phẳng chứa
và song song với
?
Ta có định lí: “Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia”.
Cấp số nhân
có số hạng tổng quát là
. Số hạng đầu tiên và công bội của cấp số nhân đó là
Theo công thức số hạng tổng quát của cấp số nhân ta suy ra và
.
Cho góc
thỏa mãn
. Tính giá trị biểu thưc
.
Theo bài ra ta có:
Cho tứ diện
, lấy
là trung điểm của
. Qua phép chiếu song song theo phương
lên mặt phẳng
biến điểm
thành điểm nào sau đây?
Hình vẽ minh họa
Gọi là trung điểm của
. Khi đó
là đường trung bình của tam giác
.
Do đó hình chiếu của điểm qua phép chiếu song song theo phương
lên mặt phẳng
là điểm
.
Cho mặt phẳng
và hai đường thẳng
. Khẳng định nào sau đây đúng?
Xét phương án “Nếu và
thì
” ta có:
Nếu thì
hoặc
chéo
, vậy phương án sai.
Xét phương án “Nếu và
thì
.” ta có:
Nếu thì
hoặc
, vậy phương án sai.
Xét phương án “Nếu và
thì
.” ta có:
Nếu , vậy phương án đúng.
Xét phương án “Nếu và
thì
” ta có:
Nếu thì
hoặc
chéo
hoặc
cắt
, vậy phương án sai.
Với
mệnh đề nào sau đây sai?
Ta có:
=>
Dãy số nào sau đây là cấp số nhân?
Ta có: là cấp số nhân
Dãy số lập thành cấp số nhân là
Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Giả sử
theo thứ tự lập thành một cấp số nhân. Khi đó
bằng:
Điều kiện
Theo tính chất của cấp số nhân ta có: