Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 2: Nhận biết

    Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.

    Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì

    \begin{matrix}  {m^2} = \left( {2m - 3} ight)\left( {2m + 3} ight) \hfill \\   \Leftrightarrow {m^2} = 4{m^2} - 9 \hfill \\   \Leftrightarrow {m^2} = 3 \hfill \\   \Leftrightarrow m =  \pm \sqrt 3  \hfill \\ \end{matrix}

    Do m > 0 => m = \sqrt 3

  • Câu 3: Thông hiểu

    Tính giới hạn \lim_{x ightarrow -
2}\frac{2x^{2} + 3x - 2}{x^{2} - 4}?

    Ta có:

    \lim_{x ightarrow - 2}\frac{2x^{2} +
3x - 2}{x^{2} - 4}

    = \lim_{x ightarrow - 2}\frac{(2x -
1)(x + 2)}{(x - 2)(x + 2)}

    = \lim_{x ightarrow - 2}\frac{2x - 1}{x- 2} = \frac{5}{4}.

  • Câu 4: Thông hiểu

    Tính \lim\frac{2n + 1}{1 + n} được kết quả là:

    Ta có

    \lim\frac{2n + 1}{1 + n} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( \frac{1}{n} + 1
ight)} = \lim\frac{2 + \frac{1}{n}}{\frac{1}{n} + 1} = \frac{2 + 0}{0
+ 1} = 2.

  • Câu 5: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

  • Câu 6: Thông hiểu

    Cho tứ diện ABCD. LấyM
\in BC sao cho BM = 2MC, G là trọng tâm tam giác ABD. Xác định mặt phẳng song song với đường thẳng MG?

    Hình vẽ minh họa

    Gọi N là trung điểm của AD.

    Xét tam giác BCN ta có:

    \frac{BG}{BN} = \frac{BM}{BC} =
\frac{2}{3}

    \Rightarrow MG//NC \Rightarrow
MG//(ACD)

  • Câu 7: Vận dụng

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 2\left( u_{3} +
u_{4} + u_{5} ight) = u_{6} + u_{7} + u_{8}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}?

    Đáp án: 4

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 2\left( u_{3} +
u_{4} + u_{5} ight) = u_{6} + u_{7} + u_{8}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}?

    Đáp án: 4

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    2\left( u_{3} + u_{4} + u_{5} ight) =u_{6} + u_{7} + u_{8}

    \Leftrightarrow 2\left( u_{3} + u_{3}q +u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 2u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 2u_{3} = u_{6} do \ 1 + q + q^{2} > 0

    \Leftrightarrow 2u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 2 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = \sqrt[3]{2} \\
\end{matrix} ight.

    Ta có:

    \frac{u_{8} + u_{9} + u_{10}}{u_{2} +
u_{3} + u_{4}} = \frac{u_{8} + u_{8}q + u_{8}q^{2}}{u_{2} + u_{2}q +
u_{2}q^{2}}= \frac{u_{8}\left( 1 + q + q^{2}
ight)}{u_{2}\left( 1 + q + q^{2} ight)} = \frac{u_{2}q^{6}}{u_{2}} =
q^{6} = 4

  • Câu 8: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 9: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{\sqrt {x + 4}  - 2}}{x};x > 0} \\ 
  {mx + m + \dfrac{1}{4};x \leqslant 0} 
\end{array}} ight. với m là tham số. Tính giá trị của tham số m để hàm số có giới hạn tại x = 0.

    Hàm số có giới hạn tại x = 0

    \Leftrightarrow \lim_{x ightarrow
0^{+}}f(x) = \lim_{x ightarrow 0^{-}}f(x)

    \Leftrightarrow \lim_{x ightarrow
0^{+}}\frac{\sqrt{x + 4} - 2}{x} = \lim_{x ightarrow 0^{-}}\left( mx +
m + \frac{1}{4} ight)

    \Leftrightarrow \frac{1}{4} = m +
\frac{1}{4} \Leftrightarrow m = 0

  • Câu 10: Vận dụng

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t \leq 24) cho bởi hàm số h(t) = a\cos\left( \frac{\pi}{6}t
ight) + b có đồ thị như hình bên dưới (a,b là các số thực dương). Gọi S là tập hợp tất cả các thời điểm t trong ngày để chiều cao của mực nước biển là 15 mét. Tổng tất cả phần tử của S bằng.

    Đáp án: 36

    Đáp án là:

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t \leq 24) cho bởi hàm số h(t) = a\cos\left( \frac{\pi}{6}t
ight) + b có đồ thị như hình bên dưới (a,b là các số thực dương). Gọi S là tập hợp tất cả các thời điểm t trong ngày để chiều cao của mực nước biển là 15 mét. Tổng tất cả phần tử của S bằng.

    Đáp án: 36

    Theo đồ thị ta có: \left\{ \begin{matrix}
h(6) = 9 \\
h(24) = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- a + b = 9 \\
a + b = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 12 \\
\end{matrix} ight.

    Suy ra: h(t) = 3cos\left( \frac{\pi}{6}t
ight) + 12.

    Theo đề bài yêu cầu:

    h(t) = 15

    \Leftrightarrow 3cos\left(
\frac{\pi}{6}t ight) + 12 = 15

    \Leftrightarrow \cos\left(
\frac{\pi}{6}t ight) = 1

    \Leftrightarrow \frac{\pi}{6}t = k2\pi
\Leftrightarrow t = 12k\left( k\mathbb{\in Z} ight)

    Vì: 0 \leq t \leq 24 nên t = 0,t = 12,t = 24

    Suy ra: S = \left\{ 0;12;24
ight\}

  • Câu 11: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Kiểm tra được y = \cot4x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    y = \frac{\sin x + 1}{\cos x} là hàm số không chẵn không lẻ

    y = \tan^{2}x,y = \left| \cot xight| là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.

  • Câu 12: Thông hiểu

    Giải phương trình \cot(3x - 1) = -
\sqrt{3}.

    Ta có

    \cot(3x - 1) = - \sqrt{3}

    \Leftrightarrow \cot(3x - 1) =
\cot\left( - \frac{\pi}{6} ight) = \cot\left( \frac{5\pi}{6}
ight)

    \Leftrightarrow 3x - 1 = \frac{5\pi}{6}
+ k\pi

    \Leftrightarrow x = \frac{1}{3} +
\frac{5\pi}{18} + k\frac{\pi}{3},k\mathbb{\in Z}

  • Câu 13: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên ( - 4; + \infty) với f(x) = \frac{x}{\sqrt{x + 4} - 2} với x eq 0. Tính f(0).

    Ta có hàm số f(x) xác định và liên tục trên ( - 4; + \infty) nên suy ra

    f(0) = \lim_{x ightarrow
0}f(x)

    = \lim_{x ightarrow 0}\left(
\frac{x}{\sqrt{x + 4} - 2} ight)

    = \lim_{x ightarrow 0}\left( \sqrt{x +
4} + 2 ight) = 4

  • Câu 14: Vận dụng cao

    Cho các số thực a,\ b,\ cthỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Số giao điểm của đồ thị hàm số y = x^{3} + ax^{2} + bx + c và trục Ox

    Đáp án: 3

    Đáp án là:

    Cho các số thực a,\ b,\ cthỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Số giao điểm của đồ thị hàm số y = x^{3} + ax^{2} + bx + c và trục Ox

    Đáp án: 3

    Ta có \left\{ \begin{matrix}
y(2) = 8 + 4a + 2b + c < 0 \\
\lim_{x ightarrow + \infty}y = + \infty \\
\end{matrix} ight.\  \Rightarrow \exists x_{1} \in (2; +
\infty)sao cho y\left( x_{1}
ight) = 0(1).

    Ta có \left\{ \begin{matrix}
y(2) = 8 + 4a + 2b + c < 0 \\
y( - 2) = - 2 + 4a - 2b + c > 0 \\
\end{matrix} ight.\  \Rightarrow \exists x_{2} \in ( -
2;2)sao cho y\left( x_{2} ight) =
0(2).

    Ta có \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
\lim_{x ightarrow - \infty}y = - \infty \\
\end{matrix} ight.\  \Rightarrow \exists x_{3} \in ( - \infty; -
2)sao cho y\left( x_{3} ight) =
0(3).

    Từ (1), (2) và (3) ta suy ra số giao điểm của đồ thị hàm số và trục Ox bằng 3.

  • Câu 15: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân với u_{n} eq 0;n \in\mathbb{N}^{*}. Dãy số nào sau đây không phải là cấp số nhân?

    Giả sử \left( u_{n} ight) là cấp số nhân công bội q thì:

    Dãy u_{1};u_{3};u_{5} là cấp số nhân công bội q^{2}.

    Dãy 3u_{1};3u_{2};3u_{3} là cấp số nhân với công bội 2q.

    Dãy \frac{1}{u_{1}};\frac{1}{u_{2}};\frac{1}{u_{3}} là cấp số nhân công bội \frac{1}{q}.

    Dãy u_{1} + 2;u_{2} + 2;u_{3} +2 không là cấp số nhân.

  • Câu 16: Thông hiểu

    Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?

    Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.

  • Câu 17: Nhận biết

    Chọn khẳng định đúng?

    \lim_{x ightarrow - \infty}x^{4} = +
\infty

    \lim_{x ightarrow - \infty}x^{3} = -
\infty

    \lim_{x ightarrow x_{0}}x =
x_{0}

    \lim_{x ightarrow + \infty}q^{x} =
0;\left( |q| < 1 ight)

  • Câu 18: Nhận biết

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = cos\alpha(0 < \alpha < \pi) \\
u_{n + 1} = \sqrt{\frac{1 + u_{n}}{2}},\forall n \geq 1 \\
\end{matrix} ight..

    Số hạng thứ 2020 của dãy số đã cho là?

    Do 0 < α < π nên
    u_{2} = \sqrt{\frac{1 + cos\alpha}{2}} =\sqrt{\cos^{2}\frac{\alpha}{2}} = cos\frac{\alpha}{2};

    u_{3} =\sqrt{\frac{1 + cos\frac{\alpha}{2}}{2}} =\sqrt{\cos^{2}\frac{\alpha}{2}} = cos\frac{\alpha}{4}

    Vậy u = cos\left( \frac{\alpha}{2^{n - 1}}
ight) với mọi n ∈ ℕ*. Ta sẽ chứng minh bằng quy nạp.

    Với n = 1 thì u1 = cosα (đúng).

    Giả sử với n = k ∈ ℕ* ta có u_{k} = cos\left( \frac{\alpha}{2^{k - 1}}
ight).

    Ta chứng minh u_{k + 1} =
cos\left( \frac{\alpha}{2^{k - 1}} ight)

    Thật vậy,

    u_{k + 1} = \sqrt{\frac{1 +u_{k}}{2}} = \sqrt{\frac{1 + cos\left( \frac{\alpha}{2^{k - 1}}ight)}{2}}

    = \sqrt{\cos^{2}\left( \frac{\alpha}{2^{k}} ight)} =cos\left( \frac{\alpha}{2^{k}} ight)

    Từ đó ta có u_{2020} = cos\left(
\frac{\alpha}{2^{2019}} ight)

  • Câu 19: Vận dụng

    Cho tứ diện ABCD. Trên các cạnh AB,BC lần lượt lấy các điểm K,L là trung điểm, trên cạnh CD lấy điểm N sao cho \frac{CN}{DN} = 2. Gọi P = AD \cap (NKL), khi đó tỉ số độ dài giữa APDP là:

    Hình vẽ minh họa

    Từ giả thiết bài ra suy ra LK // AC mà (KLN) ∩ (DAC) = d

    => d // AC

    Xét mặt phẳng (DAB) qua N dựng d song song AC

    => {P} = AD ∩ d

    Xét tam giác DAC vì PN // AC theo định lý Ta-lét ta có:

    \frac{DP}{DA} = \frac{DN}{DC} =
\frac{PN}{AC}

    Ta lại có: \frac{CN}{DN} = 2 \Rightarrow
\frac{DN}{DC} = \frac{1}{3} \Rightarrow \frac{DP}{DA} =
\frac{1}{3}

    \Rightarrow \frac{AP}{DP} =
2

  • Câu 20: Nhận biết

    Công thức nào sau đây đúng?

    Ta có:

    \cos3a = 4\cos^{3}a - 3\cos a

  • Câu 21: Nhận biết

    Giới hạn L = \lim\frac{3n - 1}{n +
2} bằng:

    Sử dụng máy tính cầm tay ta được:

    L = \lim\frac{3n - 1}{n + 2} =
3

  • Câu 22: Nhận biết

    \lim(5n-4n^{3}) bằng

    Ta có: 

    \begin{matrix}  \lim \left( {5n - 4{n^3}} ight) \hfill \\   = \lim \left[ {{n^3}\left( {\dfrac{5}{{{n^2}}} - 4} ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} - 2x + 1}
- \sqrt{1 - 2x}}{x}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{4x^{2}
- 2x + 1} - \sqrt{1 - 2x}}{x}

    = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x^{2} - 2x + 1} - \sqrt{1 - 2x} ight)\left( \sqrt{4x^{2} - 2x +
1} + \sqrt{1 - 2x} ight)}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 -
2x} ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x}{\sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}} = \frac{0}{1 + 1} =
0

  • Câu 24: Nhận biết

    Hỏi x = \frac{{7\pi }}{3} là một nghiệm của phương trình nào sau đây?

     Với x = \frac{{7\pi }}{3}, suy ra \left\{ \begin{gathered}  \sin x = \sin \frac{{7\pi }}{3} = \frac{{\sqrt 3 }}{2} \hfill \\  \cos x = \cos \frac{{7\pi }}{3} = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  2\sin x - \sqrt 3  = 0 \hfill \\  2\cos x - 1 = 0 \hfill \\ \end{gathered}  ight.

  • Câu 25: Nhận biết

    Điều kiện để đường thẳng m song song với mặt phẳng (\beta):

    Đường thẳng m song song với mặt phẳng (\beta) khi và chỉ khi m không nằm trong (\beta), đồng thời m song song với một đường thẳng n nằm trong (\beta).

  • Câu 26: Thông hiểu

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) gồm tất cả các số nguyên dương chia 32 theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là

    Các số nguyên dương chia 32 theo thứ tự tăng dần là 5, 8, 11, 14,…

    Ta có 5 = 3.1 + 2, 8 = 3.2 + 2, 11 = 3.3 + 2, 14 = 3.4 + 2, …

    Vậy u_{n} = 3n + 2

  • Câu 27: Vận dụng cao

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 2;u_{2} = 4 \\
u_{n + 2} = 2u_{n + 1} - u_{n} + 5;(n \geq 1) \\
\end{matrix} ight.. Tính \lim_{n ightarrow\infty}\dfrac{u_{n}}{n^{2}}.

    Ta có:

    \begin{matrix}
  {u_{n + 2}} = 2{u_{n + 1}} - {u_n} + 5 \hfill \\
   \Rightarrow {u_{n + 2}} - {u_{n + 1}} = {u_{n + 1}} - {u_n} + 5 \hfill \\ 
\end{matrix}

    Đặt \Rightarrow v_{n} = u_{n + 1} - u_{n}
\Rightarrow v_{n + 1} = v_{n} + 5;(n \geq 1)

    Từ đó:

    \begin{matrix}
  {u_2} - {u_1} = 2 \hfill \\
  {u_3} - {u_2} = 7 \hfill \\
  {u_4} - {u_3} = 12 \hfill \\
  ... \hfill \\
  {u_{n + 1}} - {u_n} = 5n - 3 \hfill \\ 
\end{matrix}

    Khi đó:

    \begin{matrix}
  {u_{n + 1}} - {u_1} = 2 + 7 + 12 + ... + \left( {5n - 3} ight) \hfill \\
   = \dfrac{{n\left[ {2 + \left( {5n - 3} ight)} ight]}}{2} = \dfrac{{n\left( {5n - 1} ight)}}{2} \hfill \\ 
\end{matrix}

    Từ đó ta có:

    \begin{matrix}
  {u_{n + 1}} = \dfrac{{n\left( {5n - 1} ight)}}{2} + {u_1} \hfill \\
   = \dfrac{{n\left( {5n - 1} ight)}}{2} + 2 = \dfrac{{5{n^2} - n + 4}}{2} \hfill \\ 
\end{matrix}

    Vậy u_{n} = \frac{5n^{2} - 11n +
10}{2}

    => \lim_{n ightarrow
\infty}\frac{u_{n}}{n^{2}} = \lim_{n ightarrow \infty}\left(
\frac{5n^{2} - 11n + 10}{2} ight) = \frac{5}{2}

  • Câu 28: Nhận biết

    Trong các dãy số sau dãy số nào là cấp số cộng?

    Ta có:

    u_{n + 1} - u_{n}

    = \left\lbrack 4 + 3(n + 1)
ightbrack - (4 + 3n)

    = 3

    => Dãy số \left( u_{n} ight):u_{n} =
4 + 3n là cấp số cộng.

  • Câu 29: Thông hiểu

    Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?

     Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{12}}{a} = \dfrac{b}{{12}}} \\   {\dfrac{b}{{12}} = \dfrac{{192}}{b}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a = \dfrac{{144}}{y}} \\   {{b^2} = 2034} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {a =  \pm 3} \\   {b =  \pm 48} \end{array}} ight.

  • Câu 30: Thông hiểu

    Thu gọn biểu thức A = \sin(\pi + x) + \cos\left( x + \frac{3\pi}{2}
ight) + \sin(\pi - x) + \cos\left( \frac{\pi}{2} + x ight) thu được kết quả là:

    Áp dụng công thức về cung liên kết ta có:

    \cos\left( \frac{\pi}{2} + x ight) =
\cos\left\lbrack \frac{\pi}{2} - ( - x) ightbrack = \sin( - x) = -
\sin x

    \sin(\pi - x) = \sin x

    \cos\left( x + \frac{3\pi}{2} ight) =
\cos\left( x + \pi + \frac{\pi}{2} ight) = \cos\left( x +
\frac{\pi}{2} ight)

    = - \cos\left\lbrack \frac{\pi}{2} - ( -
x) ightbrack = - \sin( - x) = \sin x

    \sin(\pi + x) = - \sin x

    Suy ra:

    A = \sin(\pi + x) + \cos\left( x +
\frac{3\pi}{2} ight) + \sin(\pi - x) + \cos\left( \frac{\pi}{2} + x
ight)

    A = - \sin x + \sin x + \sin x - \sin x
= 0

  • Câu 31: Nhận biết

    Xác định mệnh đề đúng trong các mệnh đề sau.

    Khẳng định đúng là: “Nếu hai mặt phẳng (\alpha)(\beta) song song với nhau thì mọi đường thẳng nằm trong (\alpha) đều song song với (\beta).”.

  • Câu 32: Thông hiểu

    Cho tứ diện ABCD, M, N, P, Q, R, S lần lượt là trung điểm của AB, CD, BC, AD, BD, AC. Phát biểu nào sau đây là sai?

    Trong tam giác CAD có S và N lần lượt là trung điểm của AC và CD

    Suy ra SN là đường trung bình của tam giác CAD

    => SN // AD (1)

    Tương tự MR cũng là đường trung bình của tam giác ABD

    => MR // AD (2)

    Từ (1) và (2) suy ra: SN // MR nên đáp án "MN, SN song song với nhau"

    Chứng minh tương tự ta cũng có: SM // NR //BC

    Do đó tứ giác MRNS là hình bình hành nên đáp án "MRNS là hình bình hành"

    Hai đường chéo SR và MN cắt nhau tại G với G là trung điểm của mỗi đường chéo.

    Lại có: NQ // MP (//AC) và MQ // NP //BD

    => Tứ giác MQNP là hình bình hành

    => Hai đường chéo QP và MN cắt nhau tại trung điểm của mỗi đường

    Mà G là trung điểm của MN

    Do đó G cũng là trung điểm của QP

    Vậy ba đường thẳng MN, PQ, SR đồng quy tại G.

    Đáp án "MN, PQ, RS đồng quy'

    Đáp án "6 điểm M, N, P, Q, R, S đồng phẳng" sai vì P và Q cùng thuộc một mặt phẳng với M và N nhưng không cùng thuộc một mặt phẳng với hai điểm S và R.

  • Câu 33: Nhận biết

    Điểm cuối của góc lượng giác a ở góc phần tư thứ mấy nếu \sin\alpha;cos\alpha cùng dấu?

    Điểm cuối của góc lượng giác a ở góc phần tư thứ I hoặc thứ III thì \sin\alpha;cos\alpha cùng dấu

  • Câu 34: Nhận biết

    Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    Khẳng định “Ba điểm phân biệt” là sai. Ba điểm phân biệt không thẳng hàng mới xác định một mặt phẳng duy nhất.

    Khẳng định “Một điểm và một đường thẳng” sai. Điểm không nằm trên đường thẳng mới xác định một mặt phẳng duy nhất.

    Khẳng định “Hai đường thẳng cắt nhau” đúng.

    Khẳng định “Bốn điểm phân biệt” sai.

  • Câu 35: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)d = - 2;S_{8} = 72. Tìm số hạng đầu tiên u_{1}.

    Ta có:

    \left\{ \begin{matrix}d = - 2 \\S_{8} = 72 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}d = - 2 \\8u_{1} + \dfrac{8.7.d}{2} = 72 \\\end{matrix} ight.

    \Rightarrow 8u_{1} + 28.( - 2) =
72

    \Rightarrow u_{1} = 16

  • Câu 36: Thông hiểu

    Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).

    Ta có: sina + sinb = 2sin\frac{a +
b}{2}cos\frac{a - b}{2}, do đó đẳng thức sina + sinb = 2sin\frac{a + b}{2} \cdot sin\frac{a
- b}{2} sai.

  • Câu 37: Thông hiểu

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Đáp án là:

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Ta có:

    \tan\left( 2x + \frac{\pi}{3} ight) =
- 1

    \Leftrightarrow \tan\left( 2x +\frac{\pi}{3} ight) = \tan\left( - \frac{\pi}{4} ight)

    \Leftrightarrow 2x + \frac{\pi}{3} = -
\frac{\pi}{4} + k\pi

    \Leftrightarrow 2x = - \frac{7\pi}{12} +
k\pi

    \Leftrightarrow x = - \frac{7\pi}{24} +
\frac{k\pi}{2}\ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có họ nghiệm là:x = -
\frac{7\pi}{24} + \frac{k\pi}{2}\ \left( k\mathbb{\in Z}
ight).

    Do đó a = 7,b = 24

    \Rightarrow T = a^{2} - b = 7^{2} - 24 =
25.

  • Câu 38: Nhận biết

    Tập xác định D của hàm số y =
\frac{1}{\sin x - \cos x} là:

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin x - \cos x eq 0 \hfill \\\Rightarrow \tan x eq 1 \hfill \\\Rightarrow x eq \dfrac{\pi}{4} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ \frac{\pi}{4} + k\pi,k\mathbb{\in Z}ight\}

  • Câu 39: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}
2x^{2} + 3x + 30\ \ \ \ khi\ \ x \geq 2 \\
x + 3a + 4\ \ \ \ khi\ \ x \leq 2 \\
\end{matrix} ight.. Khi hàm số liên tục trên \mathbb{R} thì a \in (m;n) ( với m,n là hai số nguyên liên tiếp). Tính 100(m + n).

    Đáp án: 2500

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
2x^{2} + 3x + 30\ \ \ \ khi\ \ x \geq 2 \\
x + 3a + 4\ \ \ \ khi\ \ x \leq 2 \\
\end{matrix} ight.. Khi hàm số liên tục trên \mathbb{R} thì a \in (m;n) ( với m,n là hai số nguyên liên tiếp). Tính 100(m + n).

    Đáp án: 2500

    TXĐ: D\mathbb{= R}

    Hàm số liên tục khi x eq 2

    Xét tại x = 2

    Ta có: f\left( 2 ight) = 44; \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left( 2x^{2} + 3x + 30 ight) = 44;\lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}(x + 3a + 4) = 3a + 6

    Để hàm số liên tục trên \mathbb{R} thì \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = f(2)

    \Leftrightarrow 3a + 6 = 44
\Leftrightarrow a = \frac{38}{3} \in (12;13)

    \Rightarrow \left\{ \begin{matrix}
m = 12 \\
n = 13 \\
\end{matrix} ight.\  \Rightarrow 100(m + n) = 2500

    Đáp án: 2500.

  • Câu 40: Nhận biết

    Cho \Delta
ABC. Số mặt phẳng chứa tất cả các đỉnh của tam giác ABC là:

    Do ba điểm A,B,C không thẳng hàng nên chỉ có một và chỉ một mặt phẳng đi qua chúng.

  • Câu 41: Vận dụng cao

    Cho tổng S_{n} =
\frac{3}{(1.2)^{2}} + \frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots
+ \frac{2n + 1}{\lbrack n(n + 1)brack^{2}}. Giá trị S10

    Cách 1:

    Ta có \frac{3}{(1.2)^{2}} = \frac{1}{1} -
\frac{1}{4};\frac{5}{(2.3)^{2}} = \frac{1}{4} -
\frac{1}{9};\ldots

    Suy ra S_{n} = \frac{1}{1} - \frac{1}{4} +
\frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{n^{2}} - \frac{1}{(n +
1)^{2}} = \frac{n(n + 2)}{(n + 1)^{2}}

    Vậy S_{10} = \frac{10(10 + 2)}{(10 +
1)^{2}} = \frac{120}{121}.

    Cách 2:

    Ta có S_{10} = \frac{3}{(1.2)^{2}} +
\frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots +
\frac{21}{(10.11)^{2}}

    Suy ra S_{10} = \frac{1}{1} - \frac{1}{4}
+ \frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{10^{2}} -
\frac{1}{11^{2}} = \frac{1}{1} - \frac{1}{11^{2}} =
\frac{120}{121}.

  • Câu 42: Thông hiểu

    Cho hình chóp S.ABC có diện tích đáy bằng 9. Mặt phẳng (P) song song với (ABC) cắt đoạn SA tại M sao cho SM
= 2MA. Diện tích thiết diện của hình chóp S.ABC tạo bởi (P) bằng

    Hình vẽ minh họa:

    Gọi N, P lần lượt là giao điểm của mặt phẳng (P) và các cạnh SB, SC.

    (P)//(ABC) nên theo định lí Talet, ta có \frac{SM}{SA} = \frac{SN}{SB} =
\frac{SP}{SC} = \frac{2}{3}.

    Khi đó (P) cắt hình chóp S.ABC theo thiết diện là tam giác MNP ðồng dạng với tam giác ABC theo tỉ số k = \frac{2}{3}.

    Vậy S_{\Delta MNP} = k^{2}.S_{\Delta ABC}
= \left( \frac{2}{3} ight)^{2}.9 = 4.

  • Câu 43: Vận dụng

    Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

     Phát biểu nào sau đây là đúng

    Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.

    Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.

    Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.

    => H là giao điểm của MN và mặt phẳng (SBD).

  • Câu 44: Vận dụng

    Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:

    Ba cạnh của một tam giác theo thứ tự là a;b;cvới a
< b < c lập thành một cấp số cộng nên

    \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
a + b + c = 3 \\
a + c = 2b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
3b = 3 \\
a + c = 2b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
b = 1 \\
a = 2b - c - 2 - c \\
\end{matrix} ight.

    Ta có:

    a^{2} + b^{2} = c^{2}\overset{b =
1}{\underset{a = 2 - c}{ightarrow}}(2 - c)^{2} + 1 =
c^{2}

    \Rightarrow - 4c = 5 \Rightarrow c =
\frac{5}{4}

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{3}{4} \\b = 1 \\c = \dfrac{5}{4} \\\end{matrix} ight.

  • Câu 45: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 17 lượt xem
Sắp xếp theo