Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo
.
Độ dài cung tròn là:
Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo
.
Độ dài cung tròn là:
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
là trọng tâm của tam giác
. Giao điểm của đường thẳng
và mặt phẳng
là:
Hình vẽ minh họa
Ta có:
=> Giao điểm của đường thẳng và mặt phẳng
là giao điểm của đường thẳng
và
.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
và
. Mặt phẳng qua
cắt
lần lượt tại
. Biết
cắt
tại
. Ba điểm nào sau đây thẳng hàng?
Hình vẽ minh họa
Ta có:
Mà
Vậy ba điểm thẳng hàng.
Tìm giá trị thực của m để hàm số
liên tục tại
.
Tập xác định của hàm số: chứa
Theo giả thiết thì ta phải có:
Vậy
Cho cấp số cộng
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
Khẳng định nào sau đây đúng?
Đáp án: “Qua hai điểm phân biệt xác định duy nhất một mặt phẳng” sai vì có vô số mặt phẳng đi qua hai điểm đã cho.
Đáp án: “Qua ba điểm phân biệt bất kì xác định duy nhất một mặt phẳng” sai vì có vô số mặt phẳng đi qua ba điểm phân biệt thẳng hàng.
Đáp án: “Qua bốn điểm phân biệt bất kì chỉ xác định được duy nhất một mặt phẳng” sai vì trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì không có mặt phẳng nào đi qua 4 điểm đó.
Vậy khẳng định đúng là: “Qua ba điểm không thẳng hàng xác định duy nhất một mặ
Cho cấp số nhân
có
và công bội
. Số hạng tổng quát của cấp số nhân
là
Số hạng tổng quát của cấp số nhân là
.
Cho dãy số
với
. Tính
.
Ta có:
Cho cấp số cộng
có số hạng đầu
và tổng
số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức:
?
Cho cấp số cộng có số hạng đầu
và tổng
số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức:
?
Gọi d là công sai của cấp số cộng. ta có:
mà
Ta có:
Với
Phương trình
có bao nhiêu nghiệm trong khoảng
?
Ta có:
Theo bài ra ta có:
Vậy phương trình có 642 nghiệm.
Hàm số nào dưới đây gián đoạn tại
?
Ta có: nên hàm số
gián đoạn tại điểm
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6
Xét đường tròn bán kính
. Cung tròn có số đo
có độ dài tương ứng là:
Độ dài cung tròn góc (với
có đơn vị là độ):
Biết
(biết
là các số nguyên dương). Tính
?
Đáp án: 14
Biết (biết
là các số nguyên dương). Tính
?
Đáp án: 14
Ta có:
Do đó
Cho một cấp số nhân có các số hạng đều không âm thỏa mãn
. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.
Giả sử công bội của cấp số nhân là q
Ta có:
=>
Do cấp số nhân có các số hạng không âm nên q = 2
Ta có:
Công thức nào sau đây sai?
Ta có:
Cho cấp số cộng
có
. Tính tổng 100 số hạng đầu tiên của cấp số cộng.
Ta có:
Hàm số
có chu kì bằng bao nhiêu?
Chu kì của hàm số là:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Cho hình chóp
đáy
là hình bình hành tâm
. Chọn khẳng định sai?
Hình vẽ minh họa
Ta có: nên đường thẳng
cắt mặt phẳng
tại điểm
.
Vậy khẳng định sai là “”
Tính giới hạn của ![]()
Ta có:
Cho lăng trụ
. Lấy
là trung điểm của
. Xác định hình chiếu của điểm
lên mặt phẳng
theo phương chiếu
là:
Hình vẽ minh họa

Gọi là trung điểm của
. Ta có:
Vậy hình chiếu song song của điểm lên
theo phương chiếu
là điểm
.
Trong không gian, cho ba đường thẳng phân biệt
trong đó
. Khẳng định nào sau đây sai?
Nếu c cắt a thì c cắt b hoặc c chéo b.
Vậy khẳng định sai là: "Nếu c cắt a thì c cắt b."
Cho dãy số (un) biết un = a sin(n)+b cos(n). Mệnh đề nào sau đây đúng?
Xét |un| = |a sin(n)+b cos(n)| ≤ |a| + |b| ⇒ − (|a|+|b|) ≤ un ≤ |a| + |b|
Vậy dãy số (un) bị chặn.
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn thỏa mãn:
Ta có:
Suy ra .
Tìm được các giới hạn một bên sau:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Sai||Đúng
d)
Sai||Đúng
Tìm được các giới hạn một bên sau:
a) Đúng||Sai
b) Sai||Đúng
c) Sai||Đúng
d) Sai||Đúng
a) Ta có:
.
b) (do
và
).
c) Ta có:
Do và
.
d) Ta có:
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Hình vẽ minh họa
-Ta có .
Trong mặt phẳng , gọi
Suy ra .
Ta có:
-Trong mp , gọi
.
Ta có .
Cho
là các số thực khác
. Tìm điều kiện của
để giới hạn ![]()
Ta có:
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Cho hàm số
. Tìm số tự nhiên n để hàm số liên tục tại
.
Ta có:
Hàm số f(x) liên tục tại khi và chỉ khi
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 7 của dãy số.
Cho hai đường thẳng
và
lần lượt nằm trên hai mặt phẳng song song
và
.
Mệnh đề đúng là: "Nếu và
không song song với nhau, điểm
không nằm trên
và
thì luôn có duy nhất một đường thẳng đi qua
cắt cả
và
."
Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
Trong không gian, yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.
Khách hàng A gửi 60 triệu đồng vào ngân hàng với kì hạn 1 tháng với lãi suất của loại kì hạn này là
. Ngân hàng đó quy định: “Khi kết thúc kỳ hạn gửi tiền mà người gửi không đến rút tiền thì toàn bộ số tiền (bao gồm cả vốn và lãi) sẽ được chuyển gửi tiếp với kỳ hạn như kỳ hạn mà người gửi đã gửi”. Hỏi nếu sau hai năm, kể từ ngày gửi người đó đến ngân hàng để rút tiền thì số tiền rút được (gồm cả vốn và lãi) là bao nhiêu?
Với số nguyên dương , kí hiệu
là số tiền người đó rút được (gồm cả vốn và lãi) sau
tháng kể từ ngày gửi. khi đó, theo giả thiết của bài toán ta có:
Ta có: là một cấp số nhân với số hạng đầu
với công bội
nên
Số tiền rút được sau 2 năm là:
(đồng)
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.
Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Tập giá trị của hàm số
có bao nhiêu số nguyên?
Ta có:
Điều kiện có nghiệm của phương trình là:
Mà nên
.
Vậy tập giá trị của có 11 số nguyên.
bằng
Ta có:
Giải phương trình ![]()
Ta có
Cho hình chóp tứ giác
đáy là hình bình hành,
là trung điểm của
. Giả sử
là mặt phẳng đi qua
đồng thời song song với
và
. Xác định các giao tuyến của mặt phẳng
và các mặt của hình chóp. Hỏi hình tạo bởi các giao tuyến trên là hình gì?
Hình vẽ minh họa
Ta có:
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
nên
cắt mặt phẳng
theo giao tuyến
đi qua
và song song với
, với
là trung điểm của
.
Các giao tuyến của mặt phẳng và hình chóp là tứ giác
Lại có nên
là hình thang.