Cho cấp số cộng
thỏa mãn
. Tính số hạng đầu tiên
và công sai
của cấp số cộng đã cho.
Ta có:
Cho cấp số cộng
thỏa mãn
. Tính số hạng đầu tiên
và công sai
của cấp số cộng đã cho.
Ta có:
Giá trị của giới hạn
là:
Ta có:
Tìm tập nghiệm của phương trình
?
Ta có:
Vậy phương trình có tập nghiệm là:
Trong các dãy số sau, dãy số nào không phải cấp số nhân?
Xét đáp án có
=> Dãy số không phải là cấp số nhân.
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Trong các mệnh đề sau mệnh đề nào sai?
Khi mặt phẳng chiếu song song với đường thẳng đã cho thì đường thẳng đó song song với hình chiếu của nó.
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Cho các số thực
thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Cho các số thực thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Xét hàm số
Theo giả thiết
Ta có là hàm đa thức nên liên tục trên
suy ra phương trình
có ít nhất một nghiệm trên
nên phương trình
có ít nhất một nghiệm trên khoảng
suy ra phương trình
có ít nhất một nghiệm trên khoảng
Từ ;
và
ta có phương trình
có ít nhất 3 nghiệm.
Mặt khác là phương trình bậc ba nên có tối đa 3 nghiệm.
Vậy phương trình có đúng 3 nghiệm.
Ba số hạng đầu của một cấp số nhân là x - 6; x và y. Tìm y, biết rằng công bội của cấp số nhân là 6
Ta có x = 6(x – 6) => x = 36/5
Từ đó suy ra y = 6x = 216/5
Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

Ta có:
=> Loại đáp án và
Tại x = 0 => y = 1 ta thấy thỏa mãn
Giá trị của
bằng:
Hàm số
liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
Giả sử đường thẳng
cắt mặt phẳng chiếu
tại điểm
thì hình chiếu song song của
trên mặt phẳng
là:
Nếu phương chiếu song song hoặc trùng với đường thẳng thì hình chiếu là điểm
.
Nếu phương chiếu không song song hoặc không trùng với đường thẳng thì hình chiếu là đường thẳng đi qua điểm
.
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Cho hàm số
. Khi đó
bằng:
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Lấy một điểm
trên cạnh
. Thiết diện tạo bởi mặt phẳng
với hình chóp là:
Hình vẽ minh họa
Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.
Ta có: MN // BC // AD nên thiết diện AMND là hình thang.
Trên đường tròn cung có số đo 1 rad là?
Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.
Biết
. Khi đó
có giá trị bằng:
Ta có:
Rút gọn
với ![]()
Ta có:
là một dãy cấp số nhân với
nên
Cho hình chóp
. Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Cho hình chóp . Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Hình vẽ minh họa
Xét và
ta có:
là điểm chung thứ nhất.
Gọi
Có là điểm chung thứ hai.
Gọi . Ta có:
Thiết diện là tứ giác .
Vậy thiết diện là đa giác có 4 cạnh.
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho dãy số vô hạn (un) là cấp số cộng có công sai d, số hạng đầu u1. Hãy chọn khẳng định sai?
Ta có:
Công thức tổng n số hạng đầu tiên của cấp số cộng là:
Hàm số
không xác định trong khoảng nào trong các khoảng sau đây?
Hàm số xác định khi và chỉ khi:
Chọn k = 3 =>
Nhưng điểm thuộc khoảng
Vậy hàm số không xác định trên
Tìm giá trị thực của m để hàm số
liên tục tại
.
Tập xác định của hàm số: chứa
Theo giả thiết thì ta phải có:
Vậy
Hình chóp ngũ giác có bao nhiêu cạnh?
Hình chóp ngũ giác có 10 cạnh.
Cho hình lăng trụ
. Gọi
lần lượt là trọng tâm của các tam giác
. Mặt phẳng nào sau đây song song với
?
Hình vẽ minh họa

Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.
=> (tính chất trọng tâm tam giác)
=>
Xét mặt phẳng ta có:
=>
Mà
=>
Từ (1) và (2) => và
là hai mặt phẳng phân biệt. Khi đó ta có:
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho tứ diện
. Điểm
thuộc đoạn
(
khác
,
khác
). Giả sử mặt phẳng
đi qua M và song song với
và
. Xác định các giao tuyến của mặt phẳng
với tứ diện
. Hình tạo bởi các giao tuyến là hình gì?
Hình vẽ minh họa
Trong mặt phẳng (ACD) kẻ .
Trong mặt phẳng (ABC) kẻ .
Từ đó suy ra
Vậy hình tạo bởi các giao tuyến của (MNP) và tứ diện ABCD là tam giác MNP.
Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội
. Mệnh đề nào sau đây là đúng?
Ta có:
Cho một cấp số cộng có
. Hỏi
bằng bao nhiêu?
Ta có:
Cho hình chóp
có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Sai||Đúng
Cho hình chóp có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Sai||Đúng
Hình vẽ minh họa
Ta có:
Do
.
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Trong các khẳng định sau, khẳng định nào là đúng?
Khẳng định đúng là “Nếu đường thẳng d song song với mặt phẳng (P) thì trong (P) tồn tại đường thẳng a song song với d”.
Giả sử
theo thứ tự lập thành một cấp số nhân. Khi đó
bằng:
Điều kiện
Theo tính chất của cấp số nhân ta có:
Cho dãy số
có số hạng tổng quát
. Khẳng định nào sau đây sai?
Ta có:
Vậy dãy số đã cho không tăng không giảm.
Khẳng định sai là: “Dãy số là dãy giảm”
Cho dãy số
với
. Tính
.
Ta có:
Nghiệm của phương trình
là
Ta có
.
Tính
biết
và
.
Ta có
.
Mà nên
.
Vậy .
Cho các số thực
thỏa mãn
và
. Tính giá trị biểu thức
.
Ta có:
Khi và chỉ khi: .
Kết hợp với
Khi đó và
(vì
Vậy nên
.
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng
. Sai||Đúng
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng . Sai||Đúng
Điều kiện: .
Phương trình
.
Yêu cầu bài toán .
Ta có:
Vì .
Kết hợp điều kiện, ta có là những giá trị cần tìm.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Tổng
có kết quả bằng?
Ta có
Do đó
Trong các hàm số sau, hàm số nào là hàm số chẵn?
Tất các các hàm số đều có TXĐ: .
Do đó
Bây giờ ta kiểm tra hoặc
Với . Ta có
Suy ra hàm số là hàm số lẻ.
Với . Ta có
Suy ra hàm số không chẵn không lẻ.
Với . Ta có
Suy ra hàm số là hàm số chẵn.
Với Ta có
Suy ra hàm số là hàm số lẻ.
Với
là số nguyên dương,
là hằng số, giới hạn
bằng
Ta có và
nên
Nhận định sự đúng sai của các kết luận sau?
a)
. Đúng||Sai
b) Phương trình
có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu
thì
bằng
. Sai||Đúng
d) Hàm số
gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.
Cho hình chóp
có đáy
là hình thang đáy nhỏ
và
là trung điểm của
. Giả sử
là mặt phẳng qua
và song song với
và
, cắt
tại
và cắt
tại
. Hình tạo bởi các giao tuyến của
với các mặt bên của hình chóp là:
Hình vẽ minh họa
Mặt phẳng qua M, song song với BC nên
cắt (ABCD) và (SBC) theo giao tuyến a, qua M và song song BC.
Gọi E = a ∩ AB. Lúc đó qua E và song song SA nên
cắt (SAB) theo giao tuyến b, qua E và song song SA.
Gọi F = b ∩ SB.
Tương tự, ∩ (SBC) = c, với c qua F và song song BC.
Gọi Q = c ∩ SC.
Hình tạo bởi các giao tuyến của với các mặt bên của hình chóp là hình thang MEFQ.
Vì ME = CD > QF nên hình thang MEFQ có đáy lớn là FQ.
Trong các dãy số sau, dãy số nào là cấp số cộng?
Ta có:
Khi đó theo định nghĩa cấp số cộng dãy số là một cấp số cộng với