Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABC. Tìm giao tuyến của hai mặt phẳng (SBC)(SAC).

    Hình vẽ minh họa

    Ta có: (SBC) \cap (SAC) = SC

  • Câu 2: Vận dụng

    Cho khai triển {\left( {x - 2y + m} ight)^4}. Tìm m để tổng các hệ số của khai triển bằng 0.

    Tổng các hệ số của khai triển là giá trị của biểu thức tại x=y=1

    Vậy tổng các hệ số của khai triển là: {\left( {1 - 2.1 + m} ight)^4} = {\left( {m - 1} ight)^4}

    Để tổng các hệ số khai triển bằng 0 thì {\left( {m - 1} ight)^4} = 0 \Leftrightarrow m = 1

  • Câu 3: Thông hiểu

    Cho tứ diện ABCDE,F lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: E,F lần lượt là trọng tâm hai tam giác BCDACD

    Suy ra BE, AF cắt nhau tại điểm Q.

    Vậy BE,AF,CD đồng quy.

    Lại có: \frac{QF}{QA} = \frac{1}{3} =\dfrac{QE}{QB} \Rightarrow \left\{ \begin{matrix}EF//AB \\\dfrac{EF}{AB} = \dfrac{1}{3} \\\end{matrix} ight.

    Từ đó suy ra EF//(ABD)EF//(ABC).

  • Câu 4: Vận dụng cao

    Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?

    Ta có 2sin\frac{x}{2} \cdot S = 2sinx\cdot sin\frac{x}{2} + 2sin2x \cdot sin\frac{x}{2} + .. + 2sinnx \cdotsin\frac{x}{2}

    = \cos\frac{x}{2} - \cos\frac{3x}{2} +\cos\frac{3x}{2} - \cos{x\frac{5x}{2}} + \ldots + \cos{x\frac{2n -1}{2}x} - \cos{\frac{2n + 1}{2}x}

    = cos\frac{x}{2} - cos\frac{2n +1}{2}x

    Vậy S = \frac{cos\frac{x}{2} - cos\frac{2n+ 1}{2}x}{2sin\frac{x}{2}}

  • Câu 5: Thông hiểu

    Tìm chu kì T của hàm số lượng giác y =cos3x + cos5x

    Hàm số y = cos3x tuần hoàn với chu kì T =\frac{2\pi}{3}

    Hàm số y = cos5x tuần hoàn với chu kì T =\frac{2\pi}{5}

    => Hàm số y = cos3x + cos5x tuần hoàn với chu kì là T =2\pi

  • Câu 6: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 7: Nhận biết

    Phương trình lượng giác \cos 3x = \cos \frac{\pi }{{15}} có nghiệm là ?

     Ta có: \cos 3x = \cos \frac{\pi }{{15}} \Leftrightarrow 3x =  \pm \frac{\pi }{{15}} + k2\pi

    \Leftrightarrow x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}

  • Câu 8: Nhận biết

    Giá trị của C =
\lim\frac{\sqrt{n^{2} + 1}}{n + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{1}{a} - 1

    Ta có:

    \left| \frac{\sqrt{n^{2} + 1}}{n +
1} - 1 ight| < \left| \frac{n + 2}{n - 1} - 1 ight| <
\frac{1}{n_{a} + 1} < a\ với\ mọi\ n > n_{a}

    Vậy C=1.

  • Câu 9: Nhận biết

    Hàm số nào dưới đây gián đoạn tại x = 1?

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2}}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2}}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. nên hàm số y
= \frac{x^{2} + 2}{x - 1} gián đoạn tại điểm x = 1

  • Câu 10: Nhận biết

    Chu kì của hàm số y = 3\sin2x là số nào sau đây?

    Chu kì của hàm số là T = \frac{2\pi}{2} =\pi

  • Câu 11: Vận dụng

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17. Tổng của số hạng thứ hai và số hạng thứ tư là 14. Tính công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_6} = 17} \\   {{u_2} + {u_4} = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {2{u_1} + 5d = 17} \\   {2{u_1} + 6d = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 16} \\   {d =  - 3} \end{array}} ight.

  • Câu 12: Thông hiểu

    Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.

    Ta có:

    Cấp số cộng có k số hạng gồm có u_{1} = -3 và số hạng cuối u_{k} =23.

    Khi đó:

    u_{k + 1} = u_{1} + (k -1)d

    \Leftrightarrow 23 = - 3 + (k -1).2

    \Leftrightarrow k = 14

    Do đó n = k - 2 = 12

  • Câu 13: Nhận biết

    Tìm số hạng thứ 11 của cấp số cộng có số hạng đầu bằng 3 và công sai d = −2?

    Ta có: u_{11} = u_{1} + 10d = -
17

  • Câu 14: Nhận biết

    \mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + 1}}{{{x^2} + x}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^3} + 1}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} ight)\left( {{x^2} - x + 1} ight)}}{{x\left( {x + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} - x + 1}}{x} =  - 3 \hfill \\ \end{matrix}

  • Câu 15: Vận dụng

    Giải phương trình {\sin ^2}x - \left( {\sqrt 3  + 1} ight)\sin x\cos x + \sqrt 3 {\cos ^2}x = 0

     Ta có: {\sin ^2}x - \left( {\sqrt 3  + 1} ight)\sin x\cos x + \sqrt 3 {\cos ^2}x = 0

       \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - \frac{{\left( {\sqrt 3  + 1} ight)\sin x\cos x}}{{{{\cos }^2}x}} + \frac{{\sqrt 3 {{\cos }^2}x}}{{{{\cos }^2}x}} = 0

    \Leftrightarrow {\tan ^2}x - \left( {\sqrt 3  + 1} ight)\tan x + \sqrt 3 \; = 0

             \Leftrightarrow \left[ \begin{gathered}  \tan x = 1 \hfill \\  \tan x = \sqrt 3  \hfill \\ \end{gathered}  ight.

              \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k\pi  \hfill \\  x = \frac{\pi }{3} + k\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight).

  • Câu 16: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm của SA,SB,SCSD. Khi đó (MNP) \cap (SAC) là đường thẳng nào?

    Hình vẽ minh họa:

    M ∈ (MNPQ); MSA; M ∈ (SAC)

    Vậy M là điểm chung thứ nhất. P ∈ (MNPQ); PSC; P ∈ (SAC).

    Vậy P là điểm chung thứ hai.

    Vậy giao tuyến của (MNPQ) và (SAC) là: MP

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABC, tam giác ABC vuông tại A, \widehat{B} = 60^{0},AB = SB =
a. Gọi I là trung điểm của BC, SB ⊥ AI. Giả sử mặt phẳng (P) là mặt phẳng đi qua M và song song với SB, AI. Xác định hình tạo bởi các giao tuyến của mặt phẳng (P) với các mặt của hình chóp.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(P) \cap (ABC) = M \\
(P)//AI \\
AI \subset (ABC) \\
\end{matrix} ight.

    Do đó giao tuyến của (P) với (ABC) là đường thẳng đi qua M và song song với AI cắt BC tại N.

    Tương tự \left\{ \begin{matrix}
(\alpha) \cap (SAB) = MQ//SB;(M \in SA) \\
(\alpha) \cap (SBC) = NP//SB;(P \in SC) \\
\end{matrix} ight.

    Vậy giao tuyến của (P) với hình chóp S.ABC là tứ giác MNPQ.

  • Câu 18: Vận dụng

    Cho f(x) là một đa thức thỏa mãn \lim_{x ightarrow
1}\frac{f(x) - 16}{x - 1} = 24. Tính giá trị

    F = \lim_{x ightarrow 1}\frac{f(x) - 16}{(x -
1)\left( \sqrt{2f(x) + 4} + 6 ight)}

    Ta có: \lim_{x ightarrow 1}\frac{f(x) -
16}{x - 1} = 24 \Rightarrow \lim_{x ightarrow 1}\left\lbrack f(x) - 16
ightbrack = 0

    \Rightarrow \lim_{x ightarrow 1}f(x) =
16

    \Rightarrow \lim_{x ightarrow
1}\frac{1}{\sqrt{2f(x) + 4} + 6} = \frac{1}{12}

    Khi đó

    F = \lim_{x ightarrow 1}\frac{f(x) -
16}{(x - 1)\left\lbrack \sqrt{2f(x) + 4} + 6 ightbrack}

    F = \lim_{x ightarrow 1}\frac{f(x) -
16}{x - 1}.\lim_{x ightarrow 1}\frac{1}{\sqrt{2f(x) + 4} + 6} =
24.\frac{1}{12} = 2

  • Câu 19: Nhận biết

    Xác định mệnh đề đúng trong các mệnh đề sau.

    Khẳng định đúng là: “Nếu hai mặt phẳng (\alpha)(\beta) song song với nhau thì mọi đường thẳng nằm trong (\alpha) đều song song với (\beta).”.

  • Câu 20: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 21: Nhận biết

    Biết ba số m;2;m
+ 3 lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?

    Để ba số m;2;m + 3 lập thành một cấp số nhân thì m.(m + 3) = 2^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 4 \\
\end{matrix} ight.

    Vậy tổng các giá trị của m là S = -
3

  • Câu 22: Thông hiểu

    Phương trình 1 + 2\cos 2x = 0 có nghiệm là:

     Giải phương trình:

    \begin{matrix}  1 + 2\cos 2x = 0 \hfill \\   \Leftrightarrow \cos 2x =  - \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x = \dfrac{{2\pi }}{3} + k2\pi } \\   {2x =  - \dfrac{{2\pi }}{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{3} + k\pi } \\   {x =  - \dfrac{\pi }{3} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

    Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Ta có BDB'D' là hình bình hành nên BD//B'D'

    Tương tự ta có AD'//BC'. Từ đó suy ra BD//\left( {AB'D'} ight)BC'//\left( {AB'D'} ight).

    Vậy \left( {C'BD} ight)//\left( {AB'D'} ight)

  • Câu 24: Nhận biết

    Giá trị của \lim\frac{2}{n + 1} bằng:

    Với mọi a>0 nhỏ tùy ý, ta chọn n_{a} =
\left\lbrack \frac{2}{a} - 1 ightbrack + 1

    Suy ra \frac{2}{n + 1} < a\ ,\ \
\forall n > n_{0} = > \lim\frac{2}{n + 1} = 0

  • Câu 25: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân với u_{n} eq 0;n \in\mathbb{N}^{*}. Dãy số nào sau đây không phải là cấp số nhân?

    Giả sử \left( u_{n} ight) là cấp số nhân công bội q thì:

    Dãy u_{1};u_{3};u_{5} là cấp số nhân công bội q^{2}.

    Dãy 3u_{1};3u_{2};3u_{3} là cấp số nhân với công bội 2q.

    Dãy \frac{1}{u_{1}};\frac{1}{u_{2}};\frac{1}{u_{3}} là cấp số nhân công bội \frac{1}{q}.

    Dãy u_{1} + 2;u_{2} + 2;u_{3} +2 không là cấp số nhân.

  • Câu 26: Nhận biết

    Cho \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây:

    Ta có \alpha thuộc góc phần tư thứ nhất của đường tròn lượng giác

    => \left\{
\begin{matrix}
\sin\alpha > 0 \\
\cos\alpha > 0 \\
\tan\alpha > 0 \\
\cot\alpha > 0 \\
\end{matrix} ight.

  • Câu 27: Thông hiểu

    Cho tam giác ABC nằm trong mặt phẳng (\alpha) và phương l. Biết hình chiếu (theo phương l) của tam giác ABC lên mặt phẳng (\beta) là một đoạn thẳng. Chọn khẳng định đúng?

    Hình vẽ minh họa

    Luyện tập Phép chiếu song song KNTT

    Phương án (\alpha)//(\beta): Hình chiếu của tam giác  ABC  vẫn là một tam giác trên mặt phẳng .

    Phương án (\alpha) \equiv
(\beta): Hình chiếu của tam giác  ABC  vẫn là tam giác  ABC .

    Phương án \left\lbrack \begin{matrix}
(\alpha)//l \\
(\alpha) \supset l \\
\end{matrix} ight. : Khi phương chiếu  l  song song với  (\alpha)  hoặc chứa trong mặt phẳng  (\alpha) . Thì hình chiếu của tam giác  ABC  là một đoạn thẳng trên mặt phẳng (\alpha) .

  • Câu 28: Thông hiểu

    Phương trình \sin x =  - \frac{1}{2} có nghiệm thỏa mãn x nằm trong khoảng \left( {\pi ;\frac{{3\pi }}{2}} ight) là:

     Giải phương trình:

    \begin{matrix}  \sin x =  - \dfrac{1}{2} \Leftrightarrow \sin x = \sin \left( {\dfrac{{ - \pi }}{6}} ight) \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \pi  + \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \dfrac{{7\pi }}{6} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Do x \in \left( {\pi ;\frac{{3\pi }}{2}} ight) => {x = \frac{{7\pi }}{6} + k2\pi } thỏa mãn

  • Câu 29: Thông hiểu

    Cho hàm số f(x)= \left\{ \begin{matrix}x^{2} - 2x + 3\ \ \ khi\ x > 3 \\1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 3 \\3 - 2x^{2}\ \ \ \ \ khi\ x < 3 \\\end{matrix} ight. . Khẳng định nào dưới đây sai?

    Ta có:

    \lim_{x ightarrow 3^{+}}f(x) = \lim_{xightarrow 3^{+}}\left( x^{2} - 2x + 3 ight) = 6

    \lim_{x ightarrow 3^{-}}f(x) = \lim_{xightarrow 3^{-}}\left( 3 - 2x^{2} ight) = - 15

    \Rightarrow \lim_{x ightarrow3^{+}}f(x) eq \lim_{x ightarrow 3^{-}}f(x)

    => Không tồn tại giới hạn khi x dần đến 3.

    Vậy chỉ có khẳng định \lim_{x ightarrow3^{-}}f(x) = 6 sai.

  • Câu 30: Vận dụng

    Cho tứ diện ABCD cạnh bằng 1. Gọi M là trung điểm của AB, E đối xứng với B qua C, F đối xứng với B qua D. Xác định các giao điểm của mặt phẳng (MEF) với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh họa

    Gọi I = MF \cap AD,H = ME \cap
AC

    Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.

    Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.

    Suy ra \frac{HA}{HC} =
\frac{1}{2}. Chứng minh tương tự ta có: \frac{IA}{ID} = \frac{1}{2}. Do đó ta có:

    \frac{HI}{CD} = \frac{2}{3} \Rightarrow
HI = \frac{2}{3}

    Tứ diện đều ABCD có cạnh bằng 1 nên \left\{ \begin{matrix}
\widehat{MAI} = 60^{0} \\
AM = \frac{1}{2};AI = \frac{2}{3} \\
\end{matrix} ight.

    Áp dụng định lí cosin cho tam giác ta có:

    MI^{2} = MA^{2} + IA^{2} -
2MA.IA.cos60^{0}

    \Rightarrow MI^{2} =
\frac{13}{36}

    \Rightarrow MI = \sqrt{\frac{13}{36}} =
\frac{\sqrt{13}}{6} = MH

    Áp dụng công thức Hê- rông tính diện tích tam giác ta được: S_{MHI} = \frac{1}{6}

  • Câu 31: Thông hiểu

    Cho hàm số f(x) = x - 1g(x) = x^{3}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Giới hạn \lim_{x ightarrow 1}f(x) =
3. Sai||Đúng

    b) Giới hạn \lim_{x ightarrow 1}g(x) =
1. Đúng||Sai

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = - 1. Đúng||Sai

    d) \lim_{x ightarrow
1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = 1. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = x - 1g(x) = x^{3}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Giới hạn \lim_{x ightarrow 1}f(x) =
3. Sai||Đúng

    b) Giới hạn \lim_{x ightarrow 1}g(x) =
1. Đúng||Sai

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = - 1. Đúng||Sai

    d) \lim_{x ightarrow
1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = 1. Sai||Đúng

    a) \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}(x - 1) = 1 - 1 = 0.

    b) \lim_{x ightarrow 1}g(x) = \lim_{x
ightarrow 1}x^{3} = 1^{3} = 1.

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = 3.0 - 1 = - 1.

    d) \lim_{x ightarrow1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = \frac{0}{1} =0.

  • Câu 32: Nhận biết

    \tan x có nghĩa khi nào?

    Để \tan x có nghĩa thì \cos x e 0

    => x eq \frac{\pi}{2} +k\pi

  • Câu 33: Vận dụng cao

    Dãy số (un) xác định bởi \left\{ \begin{matrix}u_{1} = \dfrac{1}{3} \\u_{n + 1} = \dfrac{n + 1}{3n}.u_{n} \\\end{matrix} ight. và dãy số (vn) xác định bởi \left\{ \begin{matrix}v_{1} = u_{1} \\v_{n + 1} = v_{n} + \dfrac{u_{n}}{n} \\\end{matrix} ight.. Tính \lim
v_{n}.

    Ta có:

    u_{n + 1} = \frac{n + 1}{3n}.u_{n}
\Leftrightarrow \frac{u_{n + 1}}{n + 1} =
\frac{1}{3}.\frac{u_{n}}{3n} nên dãy \left( \frac{u_{n}}{n} ight)là cấp số nhân với công bội q =
\frac{1}{3}

    Lại có: v_{n + 1} = v_{n} +
\frac{u_{n}}{n} \Leftrightarrow v_{n + 1} - v_{n} =
\frac{u_{n}}{n}, khi đó ta có:

    \begin{matrix}
  {v_2} - {v_1} = \dfrac{{{u_1}}}{1} \hfill \\
  {v_3} - {v_2} = \dfrac{{{u_2}}}{2} \hfill \\
  ..... \hfill \\
  {v_{n + 1}} - {v_n} = \dfrac{{{u_n}}}{n} \hfill \\ 
\end{matrix}

    Cộng vế theo vế ta được

    \begin{matrix}
  {v_{n + 1}} - {v_n} = \dfrac{{{u_1}}}{1} + \dfrac{{{u_2}}}{2} + ... + \dfrac{{{u_n}}}{n} \hfill \\
   = \dfrac{{{u_1}\left[ {1 - {{\left( {\dfrac{1}{3}} ight)}^n}} ight]}}{{1 - \dfrac{1}{3}}} \hfill \\ 
\end{matrix}

    Do đó: v_{n + 1} =
\frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n} ightbrack
+ v_{1} = \frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n}
ightbrack + \frac{1}{3}

    => \lim v_{n} = \lim\left\{
\frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n} ightbrack
+ \frac{1}{3} ight\} = \frac{5}{6}

  • Câu 34: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} = 2001;u_{5} = 1995. Khi đó u_{1001} bằng:

    Ta có:

    \left\{ \begin{matrix}
u_{2} = 2001 \\
u_{5} = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + d = 2001 \\
u_{1} + 4d = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2003 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{1001} = u_{1} + 1000d =
3

  • Câu 35: Vận dụng

    Biết f(x) =
\left\{ \begin{matrix}
\sqrt{x}\ \ \ \ \ \ \ \ khi\ x \in \lbrack 0;4brack \\
1 + m\ \ \ khi\ x \in (4;6brack \\
\end{matrix} ight. liên tục trên \lbrack 0;6brack. Khẳng định nào sau đây đúng?

    Dễ thấy f(x) liên tục trên mỗi khoảng (0;4)(4;6). Khi đó hàm số liên tục trên đoạn \lbrack 0;6brack khi và chỉ khi hàm số liên tục tại x = 4;x = 0;x =
6

    Tức là ta cần có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = f\left( 6 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.\left( * ight)

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt x  = 0 \hfill \\
  f\left( 0 ight) = \sqrt 0  = 0 \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {6^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 6 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \sqrt x  = 2 \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 4 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    Khi đó (*) trở thành 1 + m = 2
\Leftrightarrow m = 1 < 2

  • Câu 36: Thông hiểu

    Đổi số đo của góc 40^{0}35' sang đơn vị radian với độ chính xác đến hàng phần trăm.

    Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Ta có: 40^{0}35' = \left( 40 +
\frac{25}{60} ight)^{0} khi đó:

    \mu = \dfrac{\left( 40 + \dfrac{25}{60}ight).\pi}{180} = \dfrac{97.\pi}{432} \approx 0,71

  • Câu 37: Thông hiểu

    Giá trị của D =
\lim\frac{n^{3} - 3n^{2} + 2}{n^{4} + 4n^{3} + 1} bằng:

    D = \lim\frac{n^{3} - 3n^{2} + 2}{n^{4}
+ 4n^{3} + 1}

    = \dfrac{\dfrac{1}{n} - \dfrac{3}{n^{2}} +\dfrac{2}{n^{4}}}{1 + \dfrac{4}{n} + \dfrac{1}{n^{4}}} = \dfrac{0}{1} =0

  • Câu 38: Thông hiểu

    Dãy số nào sau đây là một cấp số cộng?

    Dãy số ở đáp án A thỏa mãn điều kiện {u_{n + 1}} - {u_1} = 2 với n \geqslant 1 là cấp số cộng.

  • Câu 39: Vận dụng

    Cho hàm số y =f(x) = \cos2x - 4\cos x + 4. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)?

    Ta có:

    y =f(x) = \cos2x - 4\cos x + 4

    = 2\cos^{2}x - 4\cos x + 3

    Đặt \cos x = t,t \in \lbrack -
1;1brack. Xét hàm số f(t) =
2t^{2} - 4t + 3 trên đoạn \lbrack -
1;1brack

    Ta có bảng biến thiên

    Từ bảng biến thiên ta có: \left\{
\begin{matrix}
\max y = \max\underset{t \in \lbrack - 1;1brack}{f(t)} = 9 \\
\min y = \min\underset{t \in \lbrack - 1;1brack}{f(t)} = 1 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.

  • Câu 40: Vận dụng

    Cho hình hộp ABCD.A_{1}B_{1}C_{1}D_{1}. Mặt phẳng (P) qua AB cắt hình hộp theo là hình gì?

    Hình vẽ minh họa

    Luyện tập đường thẳng song song với mặt phẳng

    Giả sử (P) qua AB cắt \left( {{A_1}{B_1}{C_1}{D_1}} ight) theo giao tuyến MN, khi đó thiết diện là tứ giác ABNM.

    AB//{A_1}{B_1}{C_1}{D_1} nên MN // AB.

    Mặt khác MN = {A_1}{B_1} = AB nên ABNM là hình bình hành.

    Lập luận tương tự cho trường hợp (P) qua AB cắt \left( {DC{C_1}{D_1}} ight) theo giao tuyến MN.

  • Câu 41: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SCI là giao điểm của AM và mặt phẳng (SBD). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi SO \cap AM \equiv ISO \subset (SBD)

    \Rightarrow AM \cap (SBD) \equiv \left\{
I ight\} I là trọng tâm tam giác SAC

    \Rightarrow IS = 2IO \Rightarrow IS >
IO

  • Câu 42: Nhận biết

    Dãy số nào sau đây có giới hạn bằng 0?

    \left| q ight| < 1 nên \lim {q^n} = 0.

  • Câu 43: Nhận biết

    Tứ diện ABCD có thể xem là hình chóp tam giác bằng bao nhiêu cách?

    Có 4 cách là: A.BCD,B.ACD,C.ABD,D.ABC.

  • Câu 44: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n + 1} = 2u_{n} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có

    \left\{ \begin{matrix}u_{1} = \frac{1}{2} \\u_{2} = 2u_{1} \\u_{3} = 2u_{2} \\\cdots \\u_{n} = 2u_{n - 1} \\\end{matrix} ight.

    Nhân vế với vế của các đẳng thức trên, ta được: u_{1} \cdot u_{2} \cdot u_{3}\ldots u_{n} =
\frac{1}{2} \cdot 2^{n - 1} \cdot u_{1} \cdot u_{2}\ldots u_{n - 1}
\Leftrightarrow u_{n} = 2^{n - 2}.

  • Câu 45: Vận dụng cao

    Cho hàm số f(x)= \left\{ \begin{matrix}\dfrac{x + x^{2} + ... + x^{n} - n}{x - 1}\ \ khi\ x eq 1 \\15\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tìm số tự nhiên n để hàm số liên tục tại x_{0} = 1.

    Ta có: f(1) = 15

    \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}\frac{x + x^{2} + ... + x^{n} - n}{x - 1}

    = \lim_{x ightarrow 1}\frac{x - 1 +
x^{2} - 1 + ... + x^{n} - 1}{x - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left\lbrack 1 + (x + 1) + \left( x^{2} + x + 1 ight) + ... + \left(
x^{n - 1} + x^{n - 2} + ... + 1 ight) ightbrack}{x -
1}

    = 1 + 2 + ... + n = \frac{n(n +
1)}{2}

    Hàm số f(x) liên tục tại x_{0} =
1 khi và chỉ khi

    \lim_{x ightarrow 1}f(x) =
f(1)

    \Leftrightarrow \frac{n(n + 1)}{2} =
15

    \Leftrightarrow n = 5

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo