Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho dãy số \left( u_{n}
ight)thỏa mãn \left\{
\begin{matrix}
u_{1} = 3 \\
u_{n + 1} = {u_{n}}^{2} - 3u_{n} + 4 \\
\end{matrix};\left( n \in \mathbb{N}^{*} ight) ight.. Biết dãy số \left( u_{n} ight) là dãy tăng và không bị chặn trên. Đặt v_{n} =
\frac{1}{u_{1} - 1} + \frac{1}{u_{2} - 1} + \frac{1}{u_{3} - 1} + ... +
\frac{1}{u_{n} - 1};\left( n \in \mathbb{N}^{*} ight). Tính \lim_{n ightarrow \infty}\left( v_{n}
ight)

    Ta có: u_{n + 1} = u_{n}^{2} - 3u_{n} +
4

    \Rightarrow u_{n + 1} - 2 = u_{n}^{2} -
3u_{n} + 2 = \left( u_{n} - 1 ight).\left( u_{n} - 2
ight)

    \Leftrightarrow \frac{1}{u_{n + 1} - 2}
= \frac{1}{\left( u_{n} - 1 ight).\left( u_{n} - 2
ight)}

    \Leftrightarrow \frac{1}{u_{n + 1} - 2}
= \frac{1}{n_{n} - 2} - \frac{1}{u_{n} - 1}

    \Leftrightarrow \frac{1}{u_{n} - 1} =
\frac{1}{n_{n} - 2} - \frac{1}{u_{n + 1} - 2}

    \Rightarrow v_{n} = \frac{1}{u_{1} - 2}
- \frac{1}{u_{2} - 2} + \frac{1}{u_{2} - 2} - \frac{1}{u_{3} -
2}

    + \cdots + \frac{1}{u_{n} - 2} -
\frac{1}{u_{n + 1} - 2}

    = \frac{1}{u_{1} - 2} - \frac{1}{u_{n +
1} - 2}

    \Rightarrow \lim_{x ightarrow +
\infty}v_{n} = \lim_{x ightarrow + \infty}\left( \frac{1}{u_{1} - 2} -
\frac{1}{u_{n + 1} - 2} ight) = \frac{1}{u_{1} - 2} = 1

  • Câu 2: Thông hiểu

    Nghiệm của phương trình \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

     Ta có \sin \left( {\frac{{2x}}{3} + \frac{\pi }{3}} ight) = 0

    \Leftrightarrow \frac{{2x}}{3} + \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} =  - \frac{\pi }{3} + k\pi

    \Leftrightarrow x =  - \frac{\pi }{2} + \frac{{k3\pi }}{2}\left( {k \in \mathbb{Z}} ight).

  • Câu 3: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = 2n - 1. Dãy số \left( u_{n} ight) là dãy số

    Ta có:

    u_{n + 1} - u_{n} = \left\lbrack 2(n +
1) - 1 ightbrack - (2n - 1)

    = 2n + 2 - 1 - 2n + 1 = 2 >
0

    Vậy dãy số \left( u_{n} ight) là dãy số tăng.

  • Câu 4: Vận dụng

    Cho cấp số nhân (un) có {S_2} = 4;{S_3} = 13. Biết {u_2} < 0. Tính {S_5}?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{S_2} = 4} \\   {{S_3} = 13} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{u_1}\left( {1 - {q^2}} ight)}}{{1 - q}} = 4} \\   {\dfrac{{{u_1}\left( {1 - {q^3}} ight)}}{{1 - q}} = 13} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}\left( {1 + q} ight) = 4} \\   {{u_1}\left( {1 + q + {q^2}} ight) = 13} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{1 + q}}{{1 + q + {q^2}}} = \dfrac{4}{{13}}\left( * ight)} \\   {{u_1} = \dfrac{4}{{1 + q}}\left( {**} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Xét (*)

    \begin{matrix}  \dfrac{{1 + q}}{{1 + q + {q^2}}} = \dfrac{4}{{13}}a \hfill \\   \Leftrightarrow 4{q^2} - 9q - 9 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {q = 3 \Rightarrow {u_1} = 1 \Rightarrow {u_2} = {u_1}.q = 3 > 0\left( L ight)} \\   {q =  - \dfrac{3}{4} \Rightarrow {u_1} = 16 \Rightarrow {u_2} = {u_1}.q =  - 12 < 0\left( {tm} ight)} \end{array}} ight. \hfill \\   \Rightarrow {S_5} = \dfrac{{{u_1}\left( {1 - {q^5}} ight)}}{{1 - q}} = \dfrac{{16.\left[ {1 - {{\left( {\dfrac{{ - 3}}{4}} ight)}^5}} ight]}}{{1 + \dfrac{3}{4}}} = \dfrac{{181}}{{16}} \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Chọn khẳng định đúng.

    Ta có: \pi rad tương ứng với 180^{0}.

  • Câu 6: Thông hiểu

    Phương trình \sin \left( {\frac{\pi }{6} + x} ight) = \cos 2x có nghiệm là

     Giải phương trình:

    \begin{matrix}  \sin \left( {\dfrac{\pi }{6} + x} ight) = \cos 2x \hfill \\   \Leftrightarrow \sin \left( {\dfrac{\pi }{6} + x} ight) = \sin \left( {\dfrac{\pi }{2} - 2x} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{\pi }{6} + x = \dfrac{\pi }{2} - 2x + k2\pi } \\   {\dfrac{\pi }{6} + x = \pi  - \left( {\dfrac{\pi }{2} - 2x} ight) + k2\pi } \end{array}} ight. \hfill  \\ \end{matrix}

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = \dfrac{\pi }{3} + k2\pi } \\   { - x = \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{9} + \dfrac{{k2\pi }}{3}} \\   {x =  - \dfrac{\pi }{3} + k'2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight)

  • Câu 7: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc khoảng (−10; 10) để phương trình x^{3} - 3x^{2} + (2m - 2)x + m - 3 = 0 có ba nghiệm phân biệt x_{1},x_{2},x_{3} thỏa mãn x_{1} < - 1 < x_{2} < x_{3}?

    Xét hàm số f(x) = x^{3} - 3x^{2} + (2m -
2)x + m - 3 liên tục trên \mathbb{R}

    Giả sử phương trình có ba nghiệm x_{1},x_{2},x_{3} thỏa mãn x_{1} < - 1 < x_{2} < x_{3}. Khi đó f(x) = \left( x - x_{1} ight)\left( x -
x_{2} ight)\left( x - x_{3} ight)

    Ta có:

    f( - 1) = \left( - 1 - x_{1}
ight)\left( - 1 - x_{2} ight)\left( - 1 - x_{3} ight) >
0 (do x_{1} < - 1 < x_{2}
< x_{3})

    f( - 1) = - m - 5 nên suy ra - m - 5 > 0 \Rightarrow m < -
5

    Với m < - 5 ta có:

    \lim_{x ightarrow - \infty}f(x) = -
\infty nên tồn tại a < -
1 sao cho f(x) < 0\ \
(1)

    Do m < - 5 nên f( - 1) = - m - 5 > 0\ \ \ (2)

    f(0) = m - 3 < 0;\ \ \ \
(3)

    \lim_{x ightarrow + \infty}f(x) = +
\infty nên tồn tại b >
0 sao cho f(b) > 0\ \
(4)

    Từ (1) và (2) suy ra phương tình có nghiệm thuộc khoảng ( - \infty; - 1)

    Từ (2) và (3) suy ra phương tình có nghiệm thuộc khoảng ( - 1;0)

    Từ (3) và (4) suy ra phương tình có nghiệm thuộc khoảng (0; + \infty)

    Vậy m < - 5 thỏa mãn m \in ( - 10;10);m\mathbb{\in Z}

    \Rightarrow m \in \left\{ - 9; - 8; - 7;
- 6 ight\}

  • Câu 8: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=\frac{1}{3^{n-2}} ta có:

    \dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{1}{{{3^{n + 1 - 2}}}}}}{{\dfrac{1}{{{3^{n - 2}}}}}} = \dfrac{{{3^{n - 2}}}}{{{3^{n - 1}}}} = {3^{ - 1}} = \frac{1}{3}

    Vậy dãy số u_n=\frac{1}{3^{n-2}} là cấp số nhân với q = 1/3

  • Câu 9: Nhận biết

    Tính giới hạn \lim_{x ightarrow -
\infty}\frac{2x + 1}{x + 1}.

    Ta có: \lim_{x ightarrow -\infty}\dfrac{2x + 1}{x + 1} = \lim_{x ightarrow - \infty}\dfrac{2 +\dfrac{1}{x}}{1 + \dfrac{1}{x}} = 2.

  • Câu 10: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight) biết u_{5} = 5, u_{10} = 15 Khi đó u_{7} bằng

    Ta có

    \left\{ \begin{matrix}
u_{5} = 5 \\
u_{10} = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 4d = 5 \\
u_{1} + 9d = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 3 \\
d = 2 \\
\end{matrix} ight.

    Vậy u_{7} = u_{1} + 6d = - 3 + 6.2 =
9

  • Câu 11: Thông hiểu

    Chọn công thức đúng trong các công thức dưới đây.

    Công thức đúng là \sin a - \sin b =2\sin\frac{a + b}{2}.\cos\frac{a - b}{2}

  • Câu 12: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Xét đáp án \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};...\Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\pi} eq \frac{1}{\pi^{2}} = \frac{u_{3}}{u_{2}}

    => Dãy số \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};... không phải là cấp số nhân.

  • Câu 13: Vận dụng

    Số nghiệm của phương trình 2 \sin^{2}x-5 \sin x+3=0 thuộc \left [ 0;2\pi  ight ] là:

     Giải phương trình:

    \begin{matrix}  2{\sin ^2}x - 5\sin x + 3 = 0 \hfill \\   \Leftrightarrow \left( {\sin x - 1} ight)\left( {2\sin x - 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x - 1 = 0} \\   {2\sin x - 3 = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x = 1} \\   {\sin x = \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\  \sin x = 1 \Rightarrow x = \dfrac{\pi }{2} + k2\pi ,\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Ta có: x \in \left[ {0;2\pi } ight]

    \begin{matrix}   \Rightarrow 0 \leqslant \dfrac{\pi }{2} + k2\pi  \leqslant 2\pi  \hfill \\   \Rightarrow  - \dfrac{1}{4} \leqslant k \leqslant \dfrac{3}{4} \Rightarrow k = 0 \hfill \\ \end{matrix}

  • Câu 14: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \cos x=m+1 có nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình \cos x =a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Do đó, phương trình \cos x=m+1 có nghiệm khi và chỉ khi \left| {m + 1} ight| \leqslant 1

    \Leftrightarrow  - 1 \leqslant m + 1 \leqslant 1 \Leftrightarrow  - 2 \leqslant m \leqslant 0\xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ { - 2; - 1;0} ight\}.

  • Câu 15: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 16: Thông hiểu

    Tính giới hạn của hàm số \lim_{x ightarrow 1}\frac{2x^{5} + x^{4} -
4x^{2} + 1}{x^{3} - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{5} +
x^{4} - 4x^{2} + 1}{x^{3} - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( 2x^{4} + 3x^{3} + 3x^{2} - x - 1 ight)}{(x - 1)\left( x^{2} +
x + 1 ight)}

    = \lim_{x ightarrow 1}\frac{2x^{4} +
3x^{3} + 3x^{2} - x - 1}{x^{2} + x + 1} = 2

  • Câu 17: Nhận biết

    Cho hình chóp S.ABCD. Trong các khẳng định sau, khẳng định nào đúng?

    Hình vẽ minh họa

    Khẳng định đúng là “SACD là hai đường thẳng chéo nhau.”

  • Câu 18: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 19: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi I là trung điểm của cạnh SC. Mặt phẳng (\alpha) chứa AI và song song với BD cắt các cạnh SB,SD lần lượt tại M,N. Tìm khẳng định đúng dưới dây?

    Hình vẽ minh họa:

    Ta có: E là giao điểm của AI và SO, kẻ đường thẳng qua E song song với BD và cắt SB, SD lần lượt tại M và N. Khi đó: (\alpha) \equiv
(AMIN)

    Dễ thấy E là trọng tâm tam giác SAC nên \frac{OS}{OE} = \frac{1}{3}

    MN//BD \Rightarrow \frac{MB}{SB} =
\frac{OE}{SO} = \frac{1}{3}

  • Câu 20: Thông hiểu

    Tính tổng sau S =
1 + 5 + 9 + ... + 397

    Ta có:

    S = 1 + 5 + 9 + ... + 397 là tổng của 100 số hạng đầu tiên của cấp số cộng có u_{1} = 1;d = 4

    \Rightarrow S = S_{100} =
\frac{100}{2}.(2.1 + 99.4) = 19900.

  • Câu 21: Vận dụng

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Kiểm tra được y = 1 - sin^{2}x; y = \left| \cot x ight|.sin^{2}x; y = 1 + \left| \cot x + \tan x
ight| là các hàm số chẵn.

    y = x^{2}tan2x - \cot x là hàm số lẻ.

  • Câu 22: Nhận biết

    Trong mặt phẳng (\alpha), cho tứ giác ABCDABcắt CDtại E, ACcắt BD tại F, S là điểm không thuộc (\alpha). Giao tuyến của (SAB) (SCD)

    Hai mặt phẳng (SAB) (SCD) có hai điểm chung là S E nên có giao tuyến là đường thẳng SE.

  • Câu 23: Vận dụng

    Biết f(x) =
\left\{ \begin{matrix}
\sqrt{x}\ \ \ \ \ \ \ \ khi\ x \in \lbrack 0;4brack \\
1 + m\ \ \ khi\ x \in (4;6brack \\
\end{matrix} ight. liên tục trên \lbrack 0;6brack. Khẳng định nào sau đây đúng?

    Dễ thấy f(x) liên tục trên mỗi khoảng (0;4)(4;6). Khi đó hàm số liên tục trên đoạn \lbrack 0;6brack khi và chỉ khi hàm số liên tục tại x = 4;x = 0;x =
6

    Tức là ta cần có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = f\left( 6 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.\left( * ight)

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt x  = 0 \hfill \\
  f\left( 0 ight) = \sqrt 0  = 0 \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {6^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 6 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \sqrt x  = 2 \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 4 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    Khi đó (*) trở thành 1 + m = 2
\Leftrightarrow m = 1 < 2

  • Câu 24: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = n^{2} + 4n^{2};\left( n \in
\mathbb{N}^{*} ight). Tìm số hạng tổng quát u_{n} của cấp số cộng đã cho.

    Ta có:

    S_{n} = n^{2} + 4n^{2}

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = 1 \\u_{1} - \dfrac{d}{2} = 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = 5 \\d = 2 \\\end{matrix} ight.

    \Rightarrow u_{n} = 2n + 3

  • Câu 25: Nhận biết

    Nghiệm của phương trình \sin x. \cos x = \frac{1}{2} là?

     Ta có: \sin x.cosx = \frac{1}{2} \Leftrightarrow \sin 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi  \Leftrightarrow x = \frac{\pi }{4} + k\pi.

  • Câu 26: Thông hiểu

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = 1. Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = + \infty. Đúng||Sai

    c) \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight) = - \infty. Đúng||Sai

    d) \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = - \infty. Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn sau:

    a) \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = 1. Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = + \infty. Đúng||Sai

    c) \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight) = - \infty. Đúng||Sai

    d) \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = - \infty. Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}(\sqrt{x +
2} - 1) = \sqrt{2 + 2} - 1 = 1.

    b) Ta có:

    \lim_{x ightarrow 1^{+}}\frac{4x -
3}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (4x - 3) \cdot
\frac{1}{x - 1} ightbrack = + \infty\lim_{x ightarrow 1^{+}}(4x - 3) = 1,\lim_{x
ightarrow 1^{+}}\frac{1}{x - 1} = + \infty.

    c) Ta có:

    \lim_{x ightarrow 2^{-}}\left(
\frac{1}{x - 2} - \frac{1}{x^{2} - 4} ight)

    = \lim_{x ightarrow 2^{-}}\frac{x + 2
- 1}{(x - 2)(x + 2)} = \lim_{x ightarrow 2^{-}}\frac{x + 1}{(x - 2)(x
+ 2)}

    = \lim_{x ightarrow 2^{-}}\left\lbrack
\frac{x + 1}{x + 2} \cdot \frac{1}{(x - 2)} ightbrack = -
\infty, do \left\{ \begin{matrix}\lim_{x ightarrow 2^{-}}\dfrac{x + 1}{x + 2} = \dfrac{3}{4} \\\lim_{x ightarrow 2^{-}}\dfrac{1}{x - 2} = - \infty \\\end{matrix} ight.

    d) Ta có:

    \lim_{x ightarrow - 1^{-}}\frac{|x +
1|}{x^{2} - 1} = \lim_{x ightarrow - 1^{-}}\frac{- x - 1}{(x - 1)(x +
1)} = \lim_{x ightarrow - 1^{-}}\frac{- 1}{x - 1} =
\frac{1}{2}.

  • Câu 27: Thông hiểu

    Giả sử Q là tập hợp con của tập các số nguyên dương sao cho

    (a) k ∈ \mathbb{ Q}

    (b) n ∈ \mathbb{Q} => n + 1 ∈ \mathbb{Q} ,∀ n ≥ k.

    Chọn mệnh đề đúng trong các mệnh đề dưới đây.

     Mệnh đề " Mọi số nguyên dương đều thuộc \mathbb{Q}" sai vì \mathbb{Q} là tập con thực sự của \mathbb{N^*} nên tồn tại số nguyên dương không thuộc \mathbb{Q}.

    Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc \mathbb{Q}" đúng theo lí thuyết của phương pháp quy nạp.

    Mệnh đề "Mọi số nguyên bé hơn k đều thuộc \mathbb{Q}" sai theo giả thiết thì phải là số tự nhiên lớn hơn k \in \mathbb{Q}.

    Mệnh đề "Mọi số nguyên đều thuộc \mathbb{Q}" sai vì số nguyên âm không thuộc \mathbb{Q}.

  • Câu 28: Nhận biết

    Tập xác định D của hàm số y =
\frac{1}{\sin x - \cos x} là:

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin x - \cos x eq 0 \hfill \\\Rightarrow \tan x eq 1 \hfill \\\Rightarrow x eq \dfrac{\pi}{4} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ \frac{\pi}{4} + k\pi,k\mathbb{\in Z}ight\}

  • Câu 29: Thông hiểu

    Cho tứ diện ABCD. Gọi I;J lần lượt là trọng tâm tam giác ABC;ABD. Khi đó đường thẳng IJ song song với đường thẳng:

    Hình vẽ minh họa

    Gọi M, N lần lượt là trung điểm các cạnh BD và BC nên ta có MN // CD (1)

    Vì I; J lần lượt là trọng tâm tam giác ABC và ABD nên ta có:

    \frac{AI}{AN} = \frac{AJ}{AM} =
\frac{2}{3} \Rightarrow IJ//MN\ (2)

    Từ (1) và (2) suy ra IJ//CD.

  • Câu 30: Thông hiểu

    Cho cấp số nhân có 6 số hạng với cộng bội bằng 2 và tổng số các số hạng bằng 189. Số hạng cuối cùng của cấp số nhân có giá trị là:

    Ta có: S_{n} = \frac{u_{1}\left( 1 -
q^{n} ight)}{1 - q}n = 6;q =
2;S_{n} = 189

    \Rightarrow 189 = \frac{u_{1}\left( 1 -
2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{6} =
96

  • Câu 31: Vận dụng

    Xét tính đúng sai của các khẳng định sau:

    a) \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 9. Đúng||Sai

    b) Biết rằng \lim_{x ightarrow 1}f(x) =
2, \lim_{x ightarrow 1}g(x) =
4. Khi đó \lim_{x ightarrow
1}\left( 3f(x) - 5g(x) ight) = - 13. Sai||Đúng

    c) \lim_{x ightarrow 2}\frac{\sqrt{4x +1} - 3}{x^{2} - 4} = 1. Sai||Đúng

    d) Biết \lim_{x ightarrow
2}\frac{2x^{2} - ax + 4}{x^{2} - 3x + 2} = b(với a;b\mathbb{\in R}). Khi đó a^{2} + b^{2} = 40. Đúng||Sai

    Đáp án là:

    Xét tính đúng sai của các khẳng định sau:

    a) \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 9. Đúng||Sai

    b) Biết rằng \lim_{x ightarrow 1}f(x) =
2, \lim_{x ightarrow 1}g(x) =
4. Khi đó \lim_{x ightarrow
1}\left( 3f(x) - 5g(x) ight) = - 13. Sai||Đúng

    c) \lim_{x ightarrow 2}\frac{\sqrt{4x +1} - 3}{x^{2} - 4} = 1. Sai||Đúng

    d) Biết \lim_{x ightarrow
2}\frac{2x^{2} - ax + 4}{x^{2} - 3x + 2} = b(với a;b\mathbb{\in R}). Khi đó a^{2} + b^{2} = 40. Đúng||Sai

    a) Đúng.

    \lim_{x ightarrow 3}\left( x^{2} - x
+ 3 ight) = 3^{2} - 3 + 3 = 9

    b) Sai.

    \lim_{x ightarrow 1}\left( 3f(x) -
5g(x) ight) = 3.2 - 5.4 = - 14

    c) Sai.

    \lim_{x ightarrow 2}\frac{\sqrt{4x +
1} - 3}{x^{2} - 4} = \lim_{x ightarrow 2}\frac{4x + 1 - 9}{(x - 2)(x +
2)(\sqrt{4x + 1} + 3)}

    = \lim_{x ightarrow 2}\frac{4}{(x +
2)(\sqrt{4x + 1} + 3)} = \frac{1}{6}

    d) Đúng.

    Xét thấy x = 2 là nghiệm của phương trình x^{2} - 3x + 2 = 0 (mẫu số) nên x = 2 cũng là một nghiệm của phương trình 2x^{2} - ax + 4 =
0 (tử số) \Rightarrow a = 6.

    Khi đó:

    \lim_{x ightarrow 2}\frac{2x^{2} - ax +4}{x^{2} - 3x + 2} = \lim_{x ightarrow 2}\frac{2x^{2} - 6x + 4}{x^{2}- 3x + 2} = 2.

    Vậy a = 6;b = 2 \Rightarrow a^{2} + b^{2}
= 36 + 4 = 40.

  • Câu 32: Thông hiểu

    Cho {u_{n} = \dfrac{7^{n} + 2^{2n - 1}+ 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}}. Biết \lim u_{n} = \frac{a}{b} (với a, b\in \mathbb{ Z };\frac{ a}{ b } tối giản). Khi đó:

    a) a + b = 8 Đúng||Sai

    b) a - b = - 7 Sai||Đúng

    c) Bộ ba số a;b;13 tạo thành một cấp số cộng có công sai d = 7 Đúng||Sai

    d) Bộ ba số a;b;49 tạo thành một cấp số nhân có công bội q = 7 Đúng||Sai

    Đáp án là:

    Cho {u_{n} = \dfrac{7^{n} + 2^{2n - 1}+ 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}}. Biết \lim u_{n} = \frac{a}{b} (với a, b\in \mathbb{ Z };\frac{ a}{ b } tối giản). Khi đó:

    a) a + b = 8 Đúng||Sai

    b) a - b = - 7 Sai||Đúng

    c) Bộ ba số a;b;13 tạo thành một cấp số cộng có công sai d = 7 Đúng||Sai

    d) Bộ ba số a;b;49 tạo thành một cấp số nhân có công bội q = 7 Đúng||Sai

    Ta có

    \lim u_{n} = \lim\dfrac{7^{n} + 2^{2n -1} + 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}

    = \lim\dfrac{1 + \dfrac{1}{2}\left(\dfrac{4}{7} ight)^{n} + 3\left( \dfrac{3}{7} ight)^{n}}{7 +\dfrac{1}{5}\left( \dfrac{5}{7} ight)^{n}} = \dfrac{1}{7}.

    Do đó suy ra a = 1,b = 7 \Rightarrow a +
b = 8.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đ

    d) Đúng

  • Câu 33: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos3x = 4\cos^{3}x - 3\cos x

  • Câu 34: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{\tan x - 1}{\sin x} + \cos\left( x +
\frac{\pi}{3} ight)?

    Hàm số y = \frac{\tan x - 1}{\sin x} +
\cos\left( x + \frac{\pi}{3} ight) xác định khi:

    \left\{ \begin{matrix}\sin x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \sin2x eq 0

    \Leftrightarrow 2x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2}\left( k\mathbb{\in Z}
ight)

    Vậy D=\mathbb{ R}\backslash\left\{\frac{k\pi}{2}|k\in\mathbb{ Z} ight\}

  • Câu 35: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'M là trung điểm của AB, BC \cap
(MA'C') = \left\{ N ight\}. Tính tỉ số độ dài hai cạnh MNA'C'.

    Hình vẽ minh họa

    Ba mặt phẳng phân biệt (ABCD), (ACC’A’), (MA’C’) đôi một cắt nhau theo ba giao tuyến AC, A’C’MN.

    Theo tính chất hình hộp ta có AC // A’C’ nên MN // AC // A’C’

    Lại có M là trung điểm của AB nên MN là đường trung bình trong tam giác ABC.

    Vậy MN = \frac{1}{2}AC =
\frac{1}{2}A'C' hay \frac{MN}{A'C'} =
\frac{1}{2}.

  • Câu 36: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Chọn khẳng định sai

    Từ hình vẽ ta thấy DC'//AB' => "DC', AB' chéo nhau" sai.

  • Câu 37: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?

    Đáp án \left\{ \begin{matrix}
a//b \\
b//(\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//b \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//(\alpha) sai: Trường hợp a \subset (\alpha).

    Đáp án \left\{ \begin{matrix}
a//(\alpha) \\
b \subset (\alpha) \\
\end{matrix} ight.\  \Rightarrow a//b sai: Trường hợp a,b chéo nhau.

  • Câu 38: Nhận biết

    Cho hai đường thẳng a,b. Phép chiếu song song theo phương l , mặt phẳng chiếu (\alpha) biến hai đường thẳng a,b thành a',b'. Quan hệ nào giữa hai đường thẳng a,b không được bảo toàn trong phép chiếu song song?

    Do hai đường thẳng a',b' cùng thuộc mặt phẳng (\alpha) nên tính chất chéo nhau không được bảo toàn trong phép chiếu song song.

  • Câu 39: Thông hiểu

    Cho tứ giác ABCDO là giao điểm của AC;BD. Lấy một điểm S bất kì không thuộc (ABCD), một điểm M bất kì thuộc cạnh SC (M eqS,M eq C). Gọi K là giao điểm của SOAM. Khi đó giao điểm của SD và mặt phẳng (ABM) là:

    Hình vẽ minh họa

    Chọn mặt phẳng phụ (SBD) chứa SD.

    Tìm giao tuyến của hai mặt phẳng (SBD) và ( ABM ).

    Ta có B là điểm chung thứ nhất của (SBD) và ( ABM ).

    Trong mặt phẳng ( ABCD) có O = AC \capBD

    Trong mặt phẳng (SAC) có K = AM \capSO

    Suy ra BK = (SBD) \cap (ABM)

    Trong mặt phẳng (SBD) gọi N = SD \capBK và do BK \subset(ABM)

    N = SD \cap (ABM)

  • Câu 40: Vận dụng cao

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = \frac{1}{2}u_{n} - 1 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.

    Ta sẽ chứng minh bằng quy nạp  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Với n = 1 ta có  − 2 ≤ u1 ≤ 1 (đúng).

    Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là  − 2 ≤ uk ≤ 1

    \Rightarrow - 1 \leq \frac{1}{2}u_{k}
\leq \frac{1}{2} \Rightarrow - 2 \leq \frac{1}{2}u_{k} - 1 \leq -
\frac{1}{2} \Rightarrow - 2 \leq u_{k + 1} \leq 1

    Theo nguyên lí quy nạp ta đã chứng minh được  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Vậy (un) là dãy số bị chặn.

  • Câu 41: Nhận biết

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 42: Vận dụng

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Đáp án là:

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Hình vẽ minh họa

    Xét (ABA')(SCD) ta có:

    \left\{ \begin{matrix}
A' \in SC,SC \subset (SCD) \\
A' \in (ABA') \\
\end{matrix} ight.\  \Rightarrow A' là điểm chung thứ nhất.

    Gọi I = AB \cap CD

    \left\{ \begin{matrix}
I \in AB,AB \subset (ABA') \\
I \in CD,CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I là điểm chung thứ hai.

    \Rightarrow (ABA') \cap (SCD) =
IA'

    Gọi M = IA' \cap SD. Ta có:

    (ABA') \cap (SCD) = A'M

    (ABA')\cap (SAD)=AM

    (ABA') \cap (ABCD) = AB

    (ABA') \cap (SBC) =
BA'

    Thiết diện là tứ giác ABA'M.

    Vậy thiết diện là đa giác có 4 cạnh.

  • Câu 43: Nhận biết

    Kết quả của giới hạn \lim\left(
\frac{1}{2} ight)^{n} bằng

    \lim q^{n} = 0 nếu |q| < 1.

    \left| \frac{1}{2} ight| <
1 nên \lim\left( \frac{1}{2}
ight)^{n} = 0.

  • Câu 44: Nhận biết

    Giá trị của \lim\frac{\cos n + \sin n}{n^{2} + 1} bằng:

    Ta có \frac{|\cos n + \sin n|}{n^{2}}
< \frac{2}{n^{2}}\lim\frac{1}{n^{2}} = 0

    Suy ra \lim\frac{\cos n + \sin n}{n^{2} +
1} = 0.

  • Câu 45: Vận dụng

    Cho hình bình hành ABCD tâm OABEF tâm O' không cùng nằm trong một mặt phẳng. Gọi điểm M là trung điểm của CD. Xác định khẳng định sai trong các khẳng định dưới đây?

    Hình vẽ minh họa

    Gọi K = AM \cap BC

    Theo giả thiết ta có:

    \begin{matrix}
OO'//EC,\ OO'//DF\  \\
\Rightarrow \ \left\{ \begin{matrix}
OO'//(BCE) \\
OO'//(AFD) \\
OO'//(EFM)\  \\
\end{matrix} ight.\  \\
\end{matrix}

    Ta có O'M//KE \Rightarrow
O'M//(EBC)

    Vậy khẳng định sai là: “MO' cắt (ECB)

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo