Trong các dãy số sau, dãy số nào là cấp số nhân?
Dãy số 1, 2, 4, 8, 16 tuân theo quy luật
=> Dãy số đó là cấp số nhân
Trong các dãy số sau, dãy số nào là cấp số nhân?
Dãy số 1, 2, 4, 8, 16 tuân theo quy luật
=> Dãy số đó là cấp số nhân
Cho hình chóp
, có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của các tam giác
. Các khẳng định dưới đây đúng hay sai?
a) Giao tuyến của hai mặt phẳng
và
là đường thẳng
. Đúng||Sai
b) Đường thẳng
và
có một điểm chung. Sai||Đúng
c) Đường thẳng
song song với mặt phẳng
. Đúng||Sai
d) Mặt phẳng chứa đường thẳng
và song song với mặt phẳng
cắt các cạnh
lần lượt tại
. Khi đó, tứ giác
là hình bình hành. Đúng||Sai
Cho hình chóp , có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của các tam giác
. Các khẳng định dưới đây đúng hay sai?
a) Giao tuyến của hai mặt phẳng và
là đường thẳng
. Đúng||Sai
b) Đường thẳng và
có một điểm chung. Sai||Đúng
c) Đường thẳng song song với mặt phẳng
. Đúng||Sai
d) Mặt phẳng chứa đường thẳng và song song với mặt phẳng
cắt các cạnh
lần lượt tại
. Khi đó, tứ giác
là hình bình hành. Đúng||Sai
Hình vẽ minh họa
a) Đúng.
Hai mặt phẳng và
có hai điểm chung là
và
nên giao tuyến của hai mặt phẳng
và
là đường thẳng
.
b) Sai.
Gọi là trung điểm của
. Ta có:
Trong tam giác , có
là đường trung tuyến và
là trọng tâm, nên
.
Trong tam giác , có
là đường trung tuyến và
là trọng tâm, nên
.
Trong tam giác và từ
,
ta có
, suy ra
.
c) Đúng.
Mặt phẳng không chứa đường thẳng
và theo kết quả câu b) ta có
.
Mà nằm trong mặt phẳng
.
Nên đường thẳng song song với mặt phẳng
d) Đúng.
Gọi mặt phẳng chứa đường thẳng
và song song với mặt phẳng
.
Nên mặt phẳng cắt mặt phẳng
theo một giao tuyến
song song với
.
Mà mặt phẳng và mặt phẳng
có một điểm chung là
, nên đường thẳng
đi qua
và song song với
.
Theo giả thiết, mặt phẳng cắt
lần lượt tại
nên đường thẳng
cắt
lần lượt tại
. Hay
.
Tương tự, ta có ,
,
.
Do đó, tứ giác có
(vì cùng song song với
) và
(vì cùng song song với
).
Vậy tứ giác là hình bình hành.
Cho hình hộp
. Ảnh của
qua phép chiếu song song với phương
mặt phẳng chiếu
lần lượt là:
Hình vẽ minh họa
Do
Nên phương chiếu không cắt mặt phẳng chiếu
.
Vì vậy ta không xác định được ảnh của A, B’ qua phép chiếu song song phương mặt phẳng chiếu
.
Trong không gian cho các đường thẳng a, b và các mặt phẳng (α), (β). Trong các khẳng định sau đây, đâu là khẳng định đúng?
Mệnh đề “a // (β) và (β) // b thì a // b” là sai vì a và b có thể cắt nhau.
Mệnh đề “a // b và b ⊂ (α) thì a // (α)” là sai vì có thể a ⊂ (α).
Mệnh đề “a // b và b // (α) thì a // (α)” là sai vì có thể a ⊂ (α).
Cho
là nghiệm của phương trình nào sau đây?
Giải PT, ta có:
Kết quả của giới hạn
bằng
Có nếu
.
Vì nên
.
Tìm được các giới hạn một bên sau:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Sai||Đúng
d)
Sai||Đúng
Tìm được các giới hạn một bên sau:
a) Đúng||Sai
b) Sai||Đúng
c) Sai||Đúng
d) Sai||Đúng
a) Ta có:
.
b) (do
và
).
c) Ta có:
Do và
.
d) Ta có:
Cho dãy số
. Chọn khẳng định sai trong các khẳng định sau đây.
Ta có: nên
đúng.
Do nên dãy số bị chặn, do đó “Dãy số (un) bị chặn” đúng.
.
Do nên dãy số không tăng, không giảm.
Vậy “Dãy số (un) không tăng, không giảm” đúng.
Do đó “Dãy số (un) tăng” sai.
Cho hàm số 
Có bao nhiêu giá trị nguyên của
để hàm số gián đoạn tại ![]()
Đáp án: 2024
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
TXĐ:
Ta có:
Để hàm số gián đoạn tại thì
Vậy có giá trị nguyên của
để hàm số gián đoạn tại
Cho dãy số
với mọi
. Khi đó số hạng thứ 5 của dãy là:
Ta có:
Khi đó số hạng thứ 5 của dãy là 48
Cho hình chóp
có đáy
là hình bình hành. Trung điểm của các cạnh
lần lượt là
. Chọn đáp án đúng.
Ta có:
Giới hạn
bằng
Ta có:
.
Vì .
Trong các hàm sau hàm nào là hàm số chẵn?
Xét hàm số y = -cosx
Lấy ta có:
=> Hàm số y = -cosx là hàm số chẵn.
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình
bằng?
Ta có
TH1. Với
TH2. Với
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là và nghiệm dương nhỏ nhất là
.
Khi đó tổng hai nghiệm này bằng .
Chọn mệnh đề sai?
Xét
Xét
Cho tứ diện
có
lần lượt là trọng tâm tam giác
và
. Chọn kết luận đúng?
Hình vẽ minh họa
Gọi M, N lần lượt là trung điểm của BD và BC
Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)
Do I, J là trọng tâm tam giác ABC và ABD suy ra
Từ (*) và (**) suy ra TH
1
Tính
.
Ta có:
Khẳng định nào sau đây sai?
Đáp án: “Hai mặt phẳng có một điểm chung thì chúng còn có vô số điểm chung khác nữa.” đúng vì:
TH1: Hai mặt phẳng phân biệt nếu có một điểm chung thì hai mặt phẳng đó có một đường thẳng chung (giao tuyến của hai mặt phẳng) do đó có hai mặt phẳng có vô số điểm chung.
TH2: Hai mặt phẳng không phân biệt thì chúng có vô số điểm chung (vì hai mặt phẳng trùng nhau)”
Đáp án: “Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất” đúng vì tập hợp các điểm chung của hai mặt phẳng phân biệt là một đường thẳng.
Đáp án: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất.” sai vì chưa xét đến trường hợp hai mặt phẳng không phân biệt.
Đáp án: “Nếu ba điểm A, B, C phân biệt cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng.” đúng vì khi đó ba điểm A, B, C cùng nằm trên giao tuyến của hai mặt phẳng do đó ba điểm A, B, C thẳng hàng.
Cho tứ diện đều
. Trên mỗi cạnh của tứ diện, ta đánh dấu
điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có
đỉnh lấy từ
điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?
Đáp án: 216
Cho tứ diện đều . Trên mỗi cạnh của tứ diện, ta đánh dấu
điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có
đỉnh lấy từ
điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?
Đáp án: 216
Hình vẽ minh họa
Không mất tính tổng quát, xét mặt bên .
Giả sử song song với
. Khi đó, số tam giác có cạnh
nằm trong mặt phẳng song song với đúng một cạnh của tứ diện là 6 tam giác, gồm
,
,
,
,
.
Trong mặt bên , nối các điểm chia đều các cạnh
ta thấy có 3 đoạn thẳng song song với
, 3 đoạn thẳng song song với
và 3 đoạn thẳng song song với
.
Mặt khác, vai trò 4 mặt của tứ diện là như nhau.
Vậy, số tam giác thỏa mãn yêu cầu đề bài là .
Biết số đo một góc
. Giá trị tổng quát của góc
là
Ta có:
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn thỏa mãn
.
Ta có:
Vậy .
Điểm cuối của góc lượng giác a ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của góc lượng giác a ở góc phần tư thứ I hoặc thứ III thì cùng dấu
Tìm tất cả các nghiệm của phương trình
.
Ta có
.
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:
;
. Khi đó:
a)
. Đúng||Sai
b) Ba số
tạo thành một cấp số cộng. Sai||Đúng
c)
. Sai||Đúng
d)
. Đúng||Sai
Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:;
. Khi đó:
a) . Đúng||Sai
b) Ba số tạo thành một cấp số cộng. Sai||Đúng
c) . Sai||Đúng
d) . Đúng||Sai
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội .
Vì vậy
.
Ta có:
Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là
Vì vậy
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Cho hàm số
. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Tìm số nghiệm của phương trình
trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Cho cấp số cộng
có
. Giá trị nhỏ nhất của
bằng:
Ta gọi là công sai của cấp số cộng.
Khi đó:
Vậy giá trị nhỏ nhất của là -24 đạt được khi khi
.
Có bao nhiêu hình chóp tứ giác trong các hình sau?

Có 2 hình chóp tứ giác
Tính tổng
?
Xét dãy số là cấp số nhân với
Chọn khẳng định sai trong các khẳng định sau.
Khẳng định sai là: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm.”
Sửa lại: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm không thẳng hàng.”
Cho cấp số cộng (un) biết u1 = -5 và công sai d = 2. Số 81 là số hạng thứ bao nhiêu?
Ta có:
Vậy 81 là số hạng thứ 44
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
,
. Mệnh đề nào sau đây là mệnh đề sai?
Hình vẽ minh họa
Ta có:
là đáp án sai.
Dãy số nào là cấp số nhân?
Theo bài ra ta có:
(loại)
(loại)
(thỏa mãn)
(loại)
Cho hình hộp
. Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa

Ta có là hình bình hành nên
Tương tự ta có . Từ đó suy ra
và
.
Vậy
Cho
và
là một số nguyên. Khi đó với mọi số nguyên dương
, có kết luận gì về
?
Ta có:
là một số nguyên
cũng là một số nguyên
Ta sẽ chứng minh là một số nguyên.
Ta có:
là một số nguyên
Giả sử là số nguyên với
. Ta sẽ chứng minh
cũng là số nguyên.
Ta có:
Theo giả thiết quy nạp ta có:
Vậy là một số nguyên.
Dãy số nào sau đây là một cấp số cộng?
Dãy số ở đáp án A thỏa mãn điều kiện với
là cấp số cộng.
Khẳng định nào sau đây là khẳng định sai?
Khẳng định sai là: “Số hạng tổng quát của cấp số cộng là
với công sai
và số hạng đầu
.”
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Tập giá trị của hàm số
là:
Ta có:
Mà
=>
Kết quả giới hạn
, với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Kết quả giới hạn , với
là phân số tối giản
. Tổng
bằng bao nhiêu?
Đáp án: 3
Ta có
.
Suy ra .
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc khoảng (−10; 10) để phương trình
có ba nghiệm phân biệt
thỏa mãn
?
Xét hàm số liên tục trên
Giả sử phương trình có ba nghiệm thỏa mãn
. Khi đó
Ta có:
(do
)
Mà nên suy ra
Với ta có:
nên tồn tại
sao cho
Do nên
nên tồn tại
sao cho
Từ (1) và (2) suy ra phương tình có nghiệm thuộc khoảng
Từ (2) và (3) suy ra phương tình có nghiệm thuộc khoảng
Từ (3) và (4) suy ra phương tình có nghiệm thuộc khoảng
Vậy thỏa mãn
Tính tổng
:
Ta có:
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy