Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giới hạn \lim_{}\frac{5n^{2} + 6n -
2025}{n^{2}} bằng

    Ta có:

    \lim\frac{5n^{2} + 6n -
2025}{n^{2}}

    = \lim\dfrac{n^{2}\left( 5 + \dfrac{6}{n}- \dfrac{2025}{n^{2}} ight)}{n^{2}}

    = \lim\left( 5 + \frac{6}{n} -
\frac{2025}{n^{2}} ight) = 5.

  • Câu 2: Vận dụng

    Biết f(x) =
\left\{ \begin{matrix}
\sqrt{x}\ \ \ \ \ \ \ \ khi\ x \in \lbrack 0;4brack \\
1 + m\ \ \ khi\ x \in (4;6brack \\
\end{matrix} ight. liên tục trên \lbrack 0;6brack. Khẳng định nào sau đây đúng?

    Dễ thấy f(x) liên tục trên mỗi khoảng (0;4)(4;6). Khi đó hàm số liên tục trên đoạn \lbrack 0;6brack khi và chỉ khi hàm số liên tục tại x = 4;x = 0;x =
6

    Tức là ta cần có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = f\left( 6 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.\left( * ight)

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt x  = 0 \hfill \\
  f\left( 0 ight) = \sqrt 0  = 0 \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {6^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 6 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \sqrt x  = 2 \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 4 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    Khi đó (*) trở thành 1 + m = 2
\Leftrightarrow m = 1 < 2

  • Câu 3: Thông hiểu

    Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x không tuần hoàn. Thật vậy:

    Tập xác định {\text{D}} = \mathbb{R}.

    Giả sử f\left( {x + T} ight) = f\left( x ight),{\text{ }}\forall x \in {\text{D}}

    \Leftrightarrow \left( {x + T} ight) + \sin \left( {x + T} ight) = x + \sin x,{\text{ }}\forall x \in {\text{D}}

    .\Leftrightarrow T + \sin \left( {x + T} ight) = \sin x,{\text{ }}\forall x \in {\text{D}} (*)

    Cho x = 0 và x = π, ta được

    \left\{ \begin{gathered}  T + \sin x = \sin 0 = 0 \hfill \\  T + \sin \left( {\pi  + T} ight) = \sin \pi  = 0 \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}2T + \sin T + \sin \left( {\pi  + T} ight) = 0 \Leftrightarrow T = 0

    Điều này trái với định nghĩa là T > 0

    Vậy hàm số y = x + \sin x không phải là hàm số tuần hoàn.

    Tương tự chứng minh cho các hàm số y = x\cos xy = \frac{{\sin x}}{x} không tuần hoàn.

  • Câu 4: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 5: Nhận biết

    Cho mặt phẳng (P) và đường thẳng d ∈ (P). Mệnh đề nào sau đây đúng:

    Mệnh đề đúng: "\forall A,A \in d \Rightarrow A \in (P)".

  • Câu 6: Nhận biết

    Hình lăng trụ tam giác có bao nhiêu mặt?

    Hình lăng trụ tam giác có 5 mặt.

  • Câu 7: Vận dụng

    Cho phương trình lượng giác \sin\left\lbrack \frac{\pi}{4}\left( 3x -
\sqrt{9x^{2} - 16x - 80} ight) ightbrack = 0, vậy:

    a) Phương trình đã cho tương đương với phương trình \frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80}
ight) = k\pi,\ k\mathbb{\in Z}. Đúng||Sai

    b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng

    c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai

    d) Tổng các nghiệm nguyên dương của phương trình bằng 14. Sai||Đúng

    Đáp án là:

    Cho phương trình lượng giác \sin\left\lbrack \frac{\pi}{4}\left( 3x -
\sqrt{9x^{2} - 16x - 80} ight) ightbrack = 0, vậy:

    a) Phương trình đã cho tương đương với phương trình \frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80}
ight) = k\pi,\ k\mathbb{\in Z}. Đúng||Sai

    b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng

    c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai

    d) Tổng các nghiệm nguyên dương của phương trình bằng 14. Sai||Đúng

    Điều kiện: 9x^{2} - 16x - 80 \geq 0
\Leftrightarrow x \geq 4.

    Phương trình \Leftrightarrow
\frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80} ight) = k\pi,\
k\mathbb{\in Z}

    \Leftrightarrow 3x - \sqrt{9x^{2} - 16x
- 80} = 4k

    \Leftrightarrow \sqrt{9x^{2} - 16x - 80}
= 3x - 4k

    \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{4k}{3} \\9x^{2} - 16x - 80 = (3x - 4k)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{4k}{3} \\x = \dfrac{2k^{2} + 10}{3k - 2} \\\end{matrix} ight..

    Yêu cầu bài toán \Leftrightarrow \left\{\begin{matrix}\dfrac{2k^{2} + 10}{3k - 2} \geq \dfrac{4k}{3} \\x = \dfrac{2k^{2} + 10}{3k - 2} \geq 4 \\\dfrac{2k^{2} + 10}{3k - 2}\mathbb{\in Z} \\\end{matrix} ight..

    Ta có: \left\{ \begin{gathered}
  \frac{{2{k^2} + 10}}{{3k - 2}} \geqslant \frac{{4k}}{3} \hfill \\
  x = \frac{{2{k^2} + 10}}{{3k - 2}} \geqslant 4 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  \frac{{ - 6{k^2} + 8k + 30}}{{3k - 2}} \geqslant 0 \hfill \\
  \frac{{2{k^2} - 12k + 18}}{{3k - 2}} \geqslant 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{2}{3} < k \leqslant 3

    k\mathbb{\in Z \Rightarrow}k =
1,2,3.

    k = 1 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = 12\mathbb{\in Z}

    k = 2 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = \frac{9}{2}\mathbb{otin Z}

    k = 3 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = 4\mathbb{\in Z}

    Kết hợp điều kiện, ta có x=4, x= 12 là những giá trị cần tìm.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

  • Câu 8: Nhận biết

    Đổi số đo của góc - 5rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \frac{- 5.180}{\pi}
ight)^{0} = - 286^{0}28'44''

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm -5 shift DRG 2 =

  • Câu 9: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng cao

    Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

    \begin{matrix}
  P = 1 + a + {a^2} + {a^3} + ... \hfill \\
  Q = 1 + b + {b^2} + {b^3} + ... \hfill \\
  H = 1 + ab + {a^2}{b^2} + {a^3}{b^3} + ... \hfill \\ 
\end{matrix}

    Chọn khẳng định đúng.

    Ta có: \left\{ \begin{matrix}P = \dfrac{1}{1 - a} \\Q = \dfrac{1}{1 - b} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1 - \dfrac{1}{P} \\b = 1 - \dfrac{1}{Q} \\\end{matrix} ight. khi đó:

    \begin{matrix}
  H = \dfrac{1}{{1 - ab}} \hfill \\
   = \dfrac{1}{{1 - \left( {1 - \dfrac{1}{P}} ight).\left( {1 - \dfrac{1}{Q}} ight)}} \hfill \\
   = \dfrac{{PQ}}{{P + Q - 1}} \hfill \\ 
\end{matrix}

  • Câu 11: Thông hiểu

    Cho ba mặt phẳng (\alpha);(\beta);(\gamma) đôi một song song. Hai đường thẳng m,n lần lượt cắt ba mặt phẳng tại  A,B,C A',B',C', (B nằm giữa A C, B' nằm giữa A'C'). Biết rằng AB = 5;BC = 4;A'C' = 8. Tính A'B'.B'C'.

    Ta có: \frac{AB}{A'B'} =
\frac{BC}{B'C'} = \frac{AB + BC}{A'B' + B'C'} =
\frac{AC}{A'C}

    \Rightarrow A'B' =
10;B'C' = 8

    \Rightarrow A'B'.B'C' =
80

  • Câu 12: Thông hiểu

    Tìm x để 2;8;x;128 theo thứ tự đó lập thành một cấp số nhân.

    Cấp số nhân 2;8;x;128 theo thứ tự là u_{1};u_{2};u_{3};u_{4} ta có:

    \left\{ \begin{matrix}\dfrac{u_{2}}{u_{1}} = \dfrac{u_{3}}{u_{2}} \\\dfrac{u_{3}}{u_{2}} = \dfrac{u_{4}}{u_{3}} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}\dfrac{8}{2} = \dfrac{x}{8} \\\dfrac{128}{x} = \dfrac{x}{8} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 32 \\x^{2} = 1024 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 32 \\
\left\lbrack \begin{matrix}
x = 32 \\
x = - 32 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Rightarrow x = 32

  • Câu 13: Vận dụng

    Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng 75\% so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?

    Đáp án: 666

    Đáp án là:

    Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng 75\% so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?

    Đáp án: 666

    Gọi u_{n} là quãng dường người đó dược kéo lên ở lần thứ n (đơn vị tính: mét).

    Ta có u_{1} = 0,75 \cdot 100 = 100 \cdot
1,5 = 75\ mu_{n} = 0,75 \cdot
u_{n - 1}.

    Vậy \left( u_{n} ight) là cấp số nhân với số hạng đầu u_{1} = 75 và công bội q = 0,75.

    Tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống là

    S = 100 + 2u_{1} + 2u_{2} + \cdots +
2u_{10}

    = 100 + 2S_{10} = 100 + 2 \cdot
\frac{75\left( 1 - 0,75^{10} ight)}{1 - 0,75} \approx 666\ \
(m)

  • Câu 14: Nhận biết

    \lim\left( - n^{4} - 50n + 11
ight) bằng

    Ta có:

    \lim\left( - n^{4} - 50n + 11
ight)

    = \lim\left\lbrack n^{4}\left( - 1 -
\frac{50}{n^{3}} + \frac{11}{n^{4}} ight) ightbrack = -
\infty

  • Câu 15: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight). Xác định u_{15} biết rằng u_{2} = 3;u_{4} = 7?

    Ta có:

    u_{4} - u_{2} = u_{1} + 3d - \left(
u_{1} + d ight) = 2d = 4 \Rightarrow d = 2

    Khi đó: u_{1} = u_{2} - d = 3 - 2 =
1

    Suy ra u_{15} = u_{1} + 17d = 1 + 17.2 =
35

  • Câu 16: Vận dụng cao

    Trong các dãy số sau dãy số nào bị chặn?

    Xét dãy (an)a_{n} = \sqrt{n^{3} + n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (an) bị chặn dưới.

    Xét dãy (bn)b_{n} = n^{2} + \frac{1}{2n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (bn) bị chặn dưới.

    Xét dãy (cn)cn = (−2)n + 3, ∀n ∈ ℕ* nên dãy số (cn) không bị chặn.

    Xét dãy (dn)d_{n} = \frac{3n}{n^{2} + 2},\forall n \in
\mathbb{N}^{*}.

    Ta có

    n^3-3n+2=(n-1)^2 (n+2)≥0,∀n∈N^*

    ⇒n^3+2≥3n⇒0<3n/(n^2+2)≤1

    ⇒(d_n ) bị chặn.

  • Câu 17: Vận dụng

    Một hình chóp có tổng số đỉnh và số cạnh bằng 14. Tìm số cạnh của đa giác đáy?

    Một hình chóp có đáy là đa giác n cạnh thì có n + 1 đỉnh và 2n + 1 cạnh

    Tổng số đỉnh và số cạnh bằng 14

    \begin{matrix}
   \Leftrightarrow n + 1 + 2n + 1 = 14 \hfill \\
   \Leftrightarrow 3n + 2 = 14 \hfill \\
   \Leftrightarrow 3n = 12 \hfill \\
   \Leftrightarrow n = 4 \hfill \\ 
\end{matrix}

    => Số cạnh đáy của hình chóp là: 4.

  • Câu 18: Nhận biết

    Cho dãy số \left( u_{n} ight) xác định bởi u_{n} = \frac{n - 1}{n^{2} + 2n
+ 3}. Giá trị u_{21}

    Ta có: u_{21} = \frac{21 - 1}{21^{2} +
2.21 + 3} = \frac{10}{243}.

  • Câu 19: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 20: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Xét đáp án \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};...\Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\pi} eq \frac{1}{\pi^{2}} = \frac{u_{3}}{u_{2}}

    => Dãy số \frac{1}{\pi};\frac{1}{\pi^{2}};\frac{1}{\pi^{4}};\frac{1}{\pi^{6}};... không phải là cấp số nhân.

  • Câu 21: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}\ \ \ khi\ \ x eq
1 \\
2024m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ x = 1 \\
\end{matrix} ight. liên tục tại x = 1 khi đó giá trị của tham số m bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án: -1/1012

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}\ \ \ khi\ \ x eq
1 \\
2024m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ x = 1 \\
\end{matrix} ight. liên tục tại x = 1 khi đó giá trị của tham số m bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án: -1/1012

    Hàm số xác định tại x = 1.

    Ta có f(1) = 2024m. Tính \lim_{x ightarrow 1}\frac{\sqrt[3]{6x - 5} -
\sqrt{4x - 3}}{(x - 1)^{2}}.

    Đặt t = x - 1 thì x = t + 1, x
ightarrow 1 thì t ightarrow
0

    \frac{\sqrt[3]{6x - 5} - \sqrt{4x -
3}}{(x - 1)^{2}} = \frac{\sqrt[3]{6t + 1} - \sqrt{4t +
1}}{t^{2}}

    = \frac{\sqrt[3]{6t + 1} - (2t +
1)}{t^{2}} + \frac{(2t + 1) - \sqrt{4t + 1}}{t^{2}}.

    = \frac{6t + 1 - (8t^{3} + 12t^{2} + 6t +
1)}{t^{2}\left\lbrack \sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1}
+ (2t + 1)^{2} ightbrack} +
\frac{(4t^{2} + 4t + 1) - (4t + 1)}{t^{2}(2t + 1 + \sqrt{4t +
1})}.

    = \frac{- 8t - 12}{\left\lbrack
\sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1} + (2t + 1)^{2}
ightbrack} + \frac{4}{(2t + 1 +
\sqrt{4t + 1})}.

    Vậy \lim_{x ightarrow
1}\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}

    = \lim_{t ightarrow 0}\{\frac{- 8t -
12}{\left\lbrack \sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1} + (2t
+ 1)^{2} ightbrack} +
\frac{4}{(2t + 1 + \sqrt{4t + 1})}\} = - 2.

    Để hàm số liên tục tại x = 1 khi f(1) = \lim_{x ightarrow
1}\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}

    \Leftrightarrow 2024m = - 2
\Leftrightarrow m = \frac{- 1}{1012}.

  • Câu 22: Nhận biết

    Hàm số nào không liên tục tại x = 2?

    Ta có hàm số y = \frac{x^{2}}{x -
2} không xác định tại x =
2 nên hàm số không liên tục tại x =
2

    NB

  • Câu 23: Thông hiểu

    Phương trình cos2x = 1 có một nghiệm thuộc khoảng (\pi;3\pi)

    Ta có cos2x = 1 \Leftrightarrow x =
k\pi(k \in \mathbb{Z}).

    Do đó x = 2\pi là một nghiệm của phương trình cos2x = 1 thuộc khoảng (\pi;3\pi).

  • Câu 24: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = \frac{3n^{2} - 19n}{4};\left( n
\in \mathbb{N}^{*} ight). Tìm số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    S_{n} = \frac{3n^{2} - 19n}{4} =
\frac{3}{4}n^{2} - \frac{19}{4}n

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = \dfrac{3}{4} \\u_{1} - \dfrac{d}{2} = - \dfrac{19}{4} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 4 \\d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 25: Vận dụng

    Cho hàm số y =f(x) = \cos2x - 4\cos x + 4. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)?

    Ta có:

    y =f(x) = \cos2x - 4\cos x + 4

    = 2\cos^{2}x - 4\cos x + 3

    Đặt \cos x = t,t \in \lbrack -
1;1brack. Xét hàm số f(t) =
2t^{2} - 4t + 3 trên đoạn \lbrack -
1;1brack

    Ta có bảng biến thiên

    Từ bảng biến thiên ta có: \left\{
\begin{matrix}
\max y = \max\underset{t \in \lbrack - 1;1brack}{f(t)} = 9 \\
\min y = \min\underset{t \in \lbrack - 1;1brack}{f(t)} = 1 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in AD sao cho \frac{AD}{AM} = 3, G là trọng tâm tam giác SAB. Đường thẳng GM song song với mặt phẳng:

    Hình vẽ minh họa

    Gọi N là trung điểm của AB, lấy K \in
SA sao cho AS = 3AK

    Ta có: \frac{AK}{AS} = \frac{AM}{AD} =
\frac{1}{3} \Rightarrow KM//SD

    Mặt khác \frac{SK}{SA} = \frac{SG}{SM} =
\frac{2}{3} \Rightarrow GK//AN

    \Rightarrow GK//CD

    \Rightarrow (GMK)//(SCD) \Rightarrow
GM//(SCD)

  • Câu 27: Thông hiểu

    Tính giới hạn M =
\lim_{x ightarrow + \infty}\left( \frac{cx^{2} + a}{x^{2} + b}
ight).

    Ta có:

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

    M = \lim_{x ightarrow + \infty}\left(
\frac{cx^{2} + a}{x^{2} + b} ight)

  • Câu 28: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I,K lần lượt là trung điểm các cạnh BC,CDM là điểm trên cạnh SB sao cho\
\frac{SM}{SB} = \frac{1}{3}. Gọi N là gia điểm của MD và mặt phẳng (SIK). Tính tỉ số \frac{ND}{NM}.

    Đáp án: 3

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I,K lần lượt là trung điểm các cạnh BC,CDM là điểm trên cạnh SB sao cho\
\frac{SM}{SB} = \frac{1}{3}. Gọi N là gia điểm của MD và mặt phẳng (SIK). Tính tỉ số \frac{ND}{NM}.

    Đáp án: 3

    Hình vẽ minh họa

    Ta có M là điểm trên cạnh SB, \frac{SM}{SB} = \frac{1}{3} nên \frac{MB}{MS} = 2.

    IK//BD nên IK//(SBD) suy ra (SBD) \cap (SIK) = Sx,\ \ Sx//IK//BD.

    Trong (SBD),\ \ DM \cap Sx =
N.

    N chính là giao điểm của DM(SIK).

    Trong (SBD), có Sx//BD nên hai tam giác \Delta SMN \Delta BMD đồng dạng.

    Do đó \frac{MD}{MN} = 2 \Rightarrow
\frac{ND}{NM} = 3.

  • Câu 29: Nhận biết

    Gọi S là tập nghiệm của phương trình 2\cos x - \sqrt 3  = 0. Khẳng định nào sau đây là đúng?

    Ta có 2\cos x - \sqrt 3  = 0 \Leftrightarrow \cos x = \cos \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x =  - \,\frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Nhận thấy với nghiệm x =  - \,\frac{\pi }{6} + k2\pi \xrightarrow{{k = 1}}x = \frac{{11\pi }}{6} \in S.

  • Câu 30: Thông hiểu

    Cho tứ diện ABCD, lấy điểm M \in BC,(M eq B,M eq C). Mặt phẳng (\beta) đi qua M và song song với ABBC. Xác định các giao tuyến của (\beta) và các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

    Hình vẽ minh họa:

    Mặt phẳng (\beta) qua M và song song với AB

    => Mặt phẳng (\beta) cắt mặt phẳng (ABC) theo giao tuyến MN song song với AB,(N \in AC).

    Mặt khác, (\beta) song song với CD nên (\beta) cắt (ACD)(BCD) theo các giao tuyến NPMQ với P \in
AD;Q \in BD

    => Hình tạo bởi các giao tuyến là tứ giác MNPQ.

    Mặt khác \left\{ \begin{matrix}
MN//PQ(//AB) \\
NP//MQ(//CD) \\
\end{matrix} ight.

    => Tứ giác MNPQ là hình bình hành.

    Vậy hình tạo bởi các giao tuyến của (\beta) và các mặt của hình chóp là hình bình hành.

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in SB; (M
eq B;M eq S). Khi đó, giao tuyến của mặt phẳng (MAD) với các mặt của hình chóp là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (MAD) \cap (SBC) \\
AD//BC \\
\end{matrix} ight.

    \Rightarrow (MAD) \cap (SBC) =
Mx//AD//BC

    Trong mặt phẳng (SBC) giả sử SC \cap Mx = N

    Do đó ADMN là giao tuyến của mặt phẳng (MAD) với các mặt của hình chóp.

    \left\{ \begin{matrix}
AD//MN \\
MN < AD \\
\end{matrix} ight. nên ADMN là hình thang.

  • Câu 32: Nhận biết

    Trên đường tròn cung có số đo 1 rad là?

    Cung có độ dài bằng bán kính (nửa đường kính) thì có số đó bằng 1 rad.

  • Câu 33: Thông hiểu

    Cho bốn cung (trên một đường tròn định hướng) \alpha = - \frac{5\pi}{6};\beta =\frac{\pi}{3};\gamma = \frac{25\pi}{3};\delta =\frac{19\pi}{6}các cung nào có điểm cuối trùng nhau?

    Ta có:

    \delta - \alpha = \frac{19\pi}{6} +\frac{5\pi}{6} = 4\pi

    => \delta\alpha có điểm cuối trùng nhau

    \gamma - \beta = \frac{25\pi}{3} -\frac{\pi}{3} = 8\pi

    => \beta\gamma có điểm cuối trùng nhau.

  • Câu 34: Thông hiểu

    Gọi S là tập nghiệm của phương trình \cos 2x - \sin 2x = 1. Khẳng định nào sau đây là đúng?

     Phương trình \Leftrightarrow \sqrt 2 \cos \left( {2x + \frac{\pi }{4}} ight) = 1 \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} ight) = \frac{1}{{\sqrt 2 }}

    \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} ight) = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  2x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi  \hfill \\  2x + \frac{\pi }{4} =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x =  - \frac{\pi }{4} + k\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}.

    Xét nghiệm x =  - \frac{\pi }{4} + k\pi, với k = 1 ta được x = \frac{{3\pi }}{4}.

  • Câu 35: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 36: Thông hiểu

    Giá trị của giới hạn \lim_{x ightarrow 0}\frac{2\sqrt{1 + x} -
\sqrt[3]{8 - x}}{x} là:

    Ta có:

    \lim_{x ightarrow 0}\frac{2\sqrt{1 +
x} - \sqrt[3]{8 - x}}{x}

    = \lim_{x ightarrow 0}\left(
\frac{2\sqrt{1 + x} - 2}{x} + \frac{2 - \sqrt[3]{8 - x}}{x}
ight)

    = \lim_{x ightarrow 0}\left(
\frac{2}{\sqrt{x + 1} + 1} + \frac{1}{4 + 2\sqrt[3]{8 - x + \sqrt[3]{(8
- x)^{2}}}} ight)

    = 1 + \frac{1}{12} =
\frac{13}{12}

  • Câu 37: Nhận biết

    Giá trị của \lim\frac{1 - n^{2}}{n} bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} thỏa mãn \frac{n_{M}^{2} - 1}{n_{M}} > M

    \Rightarrow n_{M} > \frac{M +
\sqrt{M^{2} + 4}}{2}.

    Ta có:

    \frac{n^{2} - 1}{n} > M\ ,\ \
\forall n > n_{M} = > \lim\frac{n^{2} - 1}{n} = +
\infty

    Vậy \lim\frac{1 - n^{2}}{n} = -
\infty.

  • Câu 38: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{2x + 1}{x - 1}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{2x + 1}{x - 1} ight) = \lim_{x ightarrow +\infty}\left( \dfrac{2 + \dfrac{1}{x}}{1 - \dfrac{1}{x}} ight) =2

  • Câu 39: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai

    a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai

    b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng

    c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai

    d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng

    Đáp án là:

    Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai

    a) Qua ba điểm phân biệt không thẳng hàng có duy nhất một mặt phẳng. Đúng||Sai

    b) Qua một điểm và một đường thẳng có duy nhất một mặt phẳng. Sai||Đúng

    c) Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau. Đúng||Sai

    d) Hai mặt phẳng có một điểm chung thì sẽ có duy nhất một đường thẳng chung gọi là giao tuyến của hai mặt phẳng. Sai||Đúng

    a) Đúng

    Đúng vì theo tính chất thừa nhận: Có một và chỉ một mặt phẳng đi qua 3 điểm không

    thẳng hàng.

    b) Sai

    Sai vì điểm cần thêm điều kiện điểm không thuộc đường thẳng.

    c) Đúng

    Đúng vì theo các cách xác định một mặt phẳng thì có duy nhất một mặt phẳng chứa hai

    đường thẳng cắt nhau.

    d) Sai

    Sai vì cần thêm điều kiện hai mặt phẳng phân biệt.

  • Câu 40: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)có số hạng đầu u_{1} = -
5và công sai d = 3. Số 100 là số hạng thứ mấy của cấp số cộng?

    Ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 100 = - 5 + (n - 1)3
\Leftrightarrow n = 36

  • Câu 41: Thông hiểu

    Cho dãy số (un) biết u_{n} = \frac{5^{n}}{n^{2}}. Mệnh đề nào sau đây đúng?

    Ta có u_{n} = \frac{5^{n}}{n^{2}} >
0,\forall n \in \mathbb{N}^{*} \Rightarrow u_{n + 1} = \frac{5^{n +
1}}{(n + 1)^{2}}

    Xét tỉ số:

    \frac{u_{n + 1}}{u_{n}} = \frac{5^{n +
1}}{(n + 1)^{2}} \cdot \frac{n^{2}}{5^{n}}

    = \frac{5n^{2}}{n^{2} + 2n + 1} =
\frac{n^{2} + 2n + 1 + 4n^{2} - 2n - 1}{n^{2} + 2n + 1}

    = 1 + \frac{2n(n - 1) + 2n^{2} -
1}{n^{2} + 2n + 1} > 1,\forall n \in \mathbb{N}^{*}

    Vậy (un) là dãy số tăng.

  • Câu 42: Nhận biết

    Cho tứ diện ABCD, M, N lần lượt là trọng tâm của tam giác ABC, ABD. Những khẳng định nào sau đây là đúng? (Có thể chọn nhiều đáp án)

    Chọn khẳng định đúng

    Gọi E là trung điểm của AB

    Vì M và N lần lượt là trọng tâm của tam giác ABC, ABD nên:

    \frac{{EM}}{{EC}} = \frac{{EN}}{{ED}} = \frac{1}{3} 

    Theo định lí Ta - lét ta có: MN // CD (1)

    CD \subset \left( {BCD} ight);CD \subset \left( {ACD} ight) (2)

    Từ (1) và (2) => MN // (BCD); MN // (ACD)

  • Câu 43: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy số 1; 2; 3; 4; 5 là một cấp số cộng với công sai là d = 1

    Dãy số 1; 2; 4; 8; 16 là một cấp số nhân với công bội q = 2

    Dãy số 1; -1; 1; -1; 1 là một cấp số nhân với công bội q = -1

    Dãy số 1; -2; 4; -8; 16 là một cấp số nhân với công bội q = -2

  • Câu 44: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 45: Nhận biết

    Hàm số y = \frac{{1 - \sin x}}{{1 + \sin x}} xác định khi và chỉ khi:

     Điều kiện các định:

    \begin{matrix}  1 + \sin x e 0 \hfill \\   \Leftrightarrow \sin x e  - 1 \hfill \\   \Leftrightarrow x e  - \dfrac{\pi }{2} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 3 lượt xem
Sắp xếp theo