Tính giới hạn ![]()
Ta có:
Tính giới hạn ![]()
Ta có:
Cho dãy số (un) biết un = a sin(n)+b cos(n). Mệnh đề nào sau đây đúng?
Xét |un| = |a sin(n)+b cos(n)| ≤ |a| + |b| ⇒ − (|a|+|b|) ≤ un ≤ |a| + |b|
Vậy dãy số (un) bị chặn.
Có bao nhiêu giá trị nguyên của
để ba số
lập thành một cấp số cộng?
Để ba số lập thành một cấp số cộng thì
Đặt phương trình trở thành
Với
Do vậy không có giá trị nào của a thỏa mãn yêu cầu để bài.
Giá trị của giới hạn
bằng:
Ta có:
Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC; G là trọng tâm của tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GMN) và (BCD) là

Hình vẽ minh họa
Gọi
Khi đó đi qua
. Xét ba mặt phẳng
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Vậy giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.
Cho cấp số nhân có số hạng thứ bảy là
và công bội
. Hỏi số hạng đầu tiên của cấp số nhân bằng bao nhiêu?
Ta có:
Cho hàm số
. Mệnh đề nào sau đây đúng?
Điều kiện xác định của hàm số là:
Suy ra tập xác định của hàm số là:
Nên hàm số không liên tục tại các điểm .
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Số hạng tổng quát của cấp số cộng là
. Gọi
là tổng số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Cấp số cộng
Một dãy số được xác định bởi
. Số hạng tổng quát
của dãy số đó là:
Ta có:
Cho phương trình
(*), vậy:
a) Phương trình có nghiệm
Đúng||Sai
b) Trong khoảng
phương trình có 2 nghiệm. Đúng||Sai
c) Tổng các nghiệm của phương trình trong khoảng
bằng
. Sai||Đúng
d) Trong khoảng
phương trình có nghiệm lớn nhất bằng
. Đúng||Sai
Cho phương trình (*), vậy:
a) Phương trình có nghiệm Đúng||Sai
b) Trong khoảng phương trình có 2 nghiệm. Đúng||Sai
c) Tổng các nghiệm của phương trình trong khoảng bằng
. Sai||Đúng
d) Trong khoảng phương trình có nghiệm lớn nhất bằng
. Đúng||Sai
Ta có:
Vì
Vậy phương trình có hai nghiệm thuộc khoảng là
.
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Cho tứ diện
có độ dài tất cả các cạnh bằng
. Gọi
là trọng tâm tam giác
. Tính diện tích thiết diện tạo bởi mặt phẳng
và tứ diện
?
Hình vẽ minh họa:
Gọi lần lượt là trung điểm các cạnh
Ta có:
Suy ra tam giác MCD là thiết diện của mặt phẳng và tứ diện
Tam giác ABD đều cạnh bằng có
là trung điểm của
Tam giác ABC đều cạnh bằng có
là trung điểm của
Gọi H là trung điểm của CD
Ta có:
bằng:
Ta có:
Tính giới hạn
?
Ta có:
Cho hình hộp
. Mặt phẳng
qua
cắt hình hộp theo là hình gì?
Hình vẽ minh họa

Giả sử qua
cắt
theo giao tuyến
, khi đó thiết diện là tứ giác
.
Vì nên MN // AB.
Mặt khác nên
là hình bình hành.
Lập luận tương tự cho trường hợp qua
cắt
theo giao tuyến
.
Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).
Công thức đúng là:
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy A=2.
Cho dãy số vô hạn
là một cấp số cộng có số hạng đầu
, công sai
. Gọi
là tổng của n số hạng đầu tiên của cấp số cộng đó.
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Sai||Đúng
Cho dãy số vô hạn là một cấp số cộng có số hạng đầu
, công sai
. Gọi
là tổng của n số hạng đầu tiên của cấp số cộng đó.
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Sai||Đúng
Ta có: đúng
Ta có:
Lại có:
Cho dãy số (un) có un = − n2 + n + 1. Số − 19 là số hạng thứ mấy của dãy?
Giả sử un = − 19(n∈ℕ*) Suy ra (do n∈ℕ*).
Vậy số − 19 là số hạng thứ 5 của dãy.
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
Chọn khẳng định đúng trong các khẳng định sau:
Theo công thức cộng
.
Phương trình
có nghiệm là:
Giải phương trình:
Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội
. Mệnh đề nào sau đây là đúng?
Ta có:
Số thập phân vô hạn tuần hoàn
được biểu diễn bởi phân số tối giản
. Khẳng định nào dưới đây đúng?
Ta có:
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Biết
. Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Chọn đẳng thức đúng.
Ta có:
Cho hình chóp tứ giác
,
. Giả sử mặt phẳng
bất kì cắt các cạnh
lần lượt tại
. Chọn khẳng định đúng trong các khẳng định sau.
Hình vẽ minh hoạ
Ta thấy:
=> Các đường thẳng đồng quy.
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Cho các số thực
thỏa mãn
. Số giao điểm của đồ thị hàm số
và trục
là
Đáp án: 3
Cho các số thực thỏa mãn
. Số giao điểm của đồ thị hàm số
và trục
là
Đáp án: 3
Ta có sao cho
(1).
Ta có sao cho
(2).
Ta có sao cho
(3).
Từ (1), (2) và (3) ta suy ra số giao điểm của đồ thị hàm số và trục bằng 3.
Cho tứ diện
. Gọi
và
lần lượt là trọng tâm các tam giác
và
. Tìm tỉ số
(làm tròn đến hàng phần trăm)
Đáp án: 0,33
Cho tứ diện . Gọi
và
lần lượt là trọng tâm các tam giác
và
. Tìm tỉ số
(làm tròn đến hàng phần trăm)
Đáp án: 0,33
Hình vẽ minh họa
Ta có:
và
lần lượt là trọng tâm các tam giác
và
nên
,
và
đồng qui tại
(là trung điểm của
) .
Vì nên
và
.
Lại có
Cho hai hàm số
. Mệnh đề nào sau đây đúng?
Xét hàm số có tập xác định
Với mọi x thuộc D => -x thuộc D ta có:
Vậy f(x) là hàm số chẵn
Tương tự xét hàm số
Với mọi x thuộc D => -x thuộc D ta có:
Vậy g(x) là hàm số chẵn.
Cho hàm số
. Tính
.
Ta có:
Khi đó:
Đồng thời
Vậy
Chọn khẳng định đúng trong các khẳng định sau đây.
Hình lăng trụ đứng có đáy là một đa giác đều là hình lăng trụ đều.
Cho điểm
, đường thẳng
và mặt phẳng
. Kí hiệu nào sau đây đúng?
Kí hiệu đúng là:
Số nghiệm của phương trình
thuộc
là:
Giải phương trình:
Ta có:
Phương trình nào cùng tập nghiệm với phương trình ![]()
Ta có:
Vậy phương trình có cùng tập nghiệm với phương trình
Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Cho tam giác
. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tam giác
?
Có duy nhất một mặt phẳng chứa tất cả các đỉnh của tam giác .
Cho tứ diện
. Trên các cạnh
theo thứ tự lấy các điểm
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Tìm các giao tuyến của tứ diện và mặt phẳng
. Xác định hình tạo bởi các giao tuyến này.
Hình vẽ minh họa:
Qua M, kẻ đường thẳng song song với CD cắt AC tại E.
Qua N, kẻ đường thẳng song song với CD cắt BD tại F.
Khi đó ME // NF // CD và
Ta có:
Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng là hình thang
với đáy lớn gấp đôi đáy nhỏ.
Cho dãy số (un) xác định bởi
. Tính tổng của 10 số hạng đầu tiên của dãy số?
Ta có:
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cộng vế với vế của các đẳng thức trên, ta được
Tìm chu kì của hàm số
?
Hàm số tuần hoàn với chu kì
Áp dụng công thức trên ta suy ra hàm số tuần hoàn với chu kì
.
Cho hình chóp tứ giác
có đáy là hình bình hành. Gọi
lần lượt là trung điểm của
và
(như hình vẽ). Chọn mệnh đề đúng trong các mệnh đề dưới đây.

Ta có: