Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
,
. Mệnh đề nào sau đây là mệnh đề sai?
Hình vẽ minh họa
Ta có:
là đáp án sai.
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
,
. Mệnh đề nào sau đây là mệnh đề sai?
Hình vẽ minh họa
Ta có:
là đáp án sai.
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Trong các khẳng định sau, khẳng định nào là đúng?
Khẳng định đúng là “Nếu đường thẳng d song song với mặt phẳng (P) thì trong (P) tồn tại đường thẳng a song song với d”.
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Cho dãy số (un) xác định bởi
. Tính
.
Ta có:
Đặt
Từ đó:
Khi đó:
Từ đó ta có:
Vậy
=>
Dãy số nào sau đây là một cấp số cộng?
Dãy số ở đáp án A thỏa mãn điều kiện với
là cấp số cộng.
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho dãy số
, biết
. Dãy số
bị chặn trên bởi số nào dưới đây?
Ta có:
Với mọi n ta có:
Vậy dãy số bị chặn trên bởi
Tìm chu kì T của hàm số ![]()
Ta có:
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Cho tam giác
. Khẳng định nào sau đây sai?
Ta có:
Do đó
Vậy khẳng định sai là:
Cho hàm số
. Tìm giá trị k để hàm số
liên tục tại ![]()
Ta có:
Cho cấp số cộng
có số hạng đầu
và tổng
số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức:
?
Cho cấp số cộng có số hạng đầu
và tổng
số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức:
?
Gọi d là công sai của cấp số cộng. ta có:
mà
Ta có:
Với
Phương trình
có bao nhiêu nghiệm trên khoảng
?
Ta có:
* Trường hợp 1: ,
Vì
.
Vậy có tất cả 8 giá trị k tương ứng với trường hợp 1 có 8 nghiệm là:
;
;
;
;
;
;
;
.
* Trường hợp 2: ,
Vì
.
Vậy có tất cả 8 giá trị k tương ứng với trường hợp 2 có 8 nghiệm là:
;
;
;
;
;
;
;
.
Vậy trên khoảng phương trình đã cho có tất cả là 16 nghiệm.
Cho cấp số cộng
thỏa mãn
. Tính công sai
của cấp số cộng đó:
Ta có:
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
Hai đường thẳng cắt nhau xác định mộ mặt phẳng duy nhất.
Phương trình
có nghiệm là:
Giải phương trình:
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Cho cấp số nhân
có
. Số
là số hạng thứ mấy của cấp số nhân đã cho?
Ta có:
Mà n là số chẵn và
Trong phát biểu sau đây, phát biểu nào đúng?
Phương án "Hình chóp có tất cả các mặt là hình tam giác" sai vì mặt đáy có thể không là tam giác.
Phương án "Tất cả các mặt bên của hình chóp là hình tam giác" đúng vì theo định nghĩa
Phương án "Tồn tại một mặt bên của hình chóp không phải là hình tam giác" sai vì theo định nghĩa mặt bên của hình chóp luôn là tam giác
Phương án "Số cạnh bên của hình chóp bằng số mặt của nó" sai vì số cạnh bên bằng số mặt bên trong khi các mặt hình chóp gồm các mặt bên và mặt đáy.
Có thể giải thích "Số cạnh bên của hình chóp bằng số mặt của nó" sai vì xét với hình chóp tam giác số cạnh bên bằng 3 nhưng số mặt bằng 4.
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Hình vẽ minh họa
-Ta có .
Trong mặt phẳng , gọi
Suy ra .
Ta có:
-Trong mp , gọi
.
Ta có .
Cho hình lăng trụ
. Tìm mệnh đề sai trong các mệnh đề dưới đây:
Khẳng định sai là:
Cho hai hình bình hành
và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a)
. Sai||Đúng
b)
. Đúng||Sai
c)
. Sai||Đúng
d) Sáu điểm
là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Cho hai hình bình hành và
nằm trong hai mặt phẳng phân biệt. Xét tính đúng sai của các mệnh đề sau:
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) Sáu điểm là 6 đỉnh của một hình lăng trụ tam giác. Đúng||Sai
Hình vẽ minh họa
a) Sai: và
cắt nhau tại
.
b) Đúng.
Vì là hình bình hành nên
, suy ra
.
Vì là hình bình hành nên
, suy ra
.
Mà và
cắt nhau nên
.
c) Sai: Vì và
có điểm
chung.
d) Đúng:
Vì và
là hình bình hành nên
đôi một song song
Mặt khác (theo câu b)
Do đó 6 điểm là 6 đỉnh của một hình lăng trụ tam giác
Tìm số cạnh của một hình chóp có đáy là một bát giác:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Tính giới hạn ![]()
Ta có:
Tập nghiệm của phương trình
là?
Ta có: .
Cho dãy số (un) biết un = a sin(n)+b cos(n). Mệnh đề nào sau đây đúng?
Xét |un| = |a sin(n)+b cos(n)| ≤ |a| + |b| ⇒ − (|a|+|b|) ≤ un ≤ |a| + |b|
Vậy dãy số (un) bị chặn.
Giới hạn cần tìm của
bằng:
Cho tứ diện
có
lần lượt là trọng tâm tam giác
và
. Chọn kết luận đúng?
Hình vẽ minh họa
Gọi M, N lần lượt là trung điểm của BD và BC
Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)
Do I, J là trọng tâm tam giác ABC và ABD suy ra
Từ (*) và (**) suy ra TH
1
Với
là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?
Đẳng thức đúng: .
Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là điểm nào sau đây?
Do mặt phẳng (MAB) chứa AB // CD nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB.
Giả sử đường thẳng này cắt SD tại điểm I.
Khi đó MI là đường trung bình của tam giác SCD
=> I là trung điểm của SD.
Vậy hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là trung điểm của SD.
Một bánh xe của người đi xe ô tô quay được
vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Một bánh xe của người đi xe ô tô quay được vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Số đo góc quay của vòng là
.
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Có bao nhiêu giá trị thực của tham số m để hàm số
liên tục trên
?
Tập xác định
Hàm số liên tục trên mỗi khoảng
Khi đó hàm số liên tục trên
khi và chỉ khi
liên tục tại
Hay
Ta lại có:
Khi đó
Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.
Cho hàm số
. Khẳng định nào dưới đây sai?
Ta có:
=> Không tồn tại giới hạn khi x dần đến 3.
Vậy chỉ có khẳng định sai.
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Một người xếp chồng những khúc gỗ có kích thước như nhau thành
hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Mỗi hàng liền phía trên ít hơn hàng dưới khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có:
.
Khi đó, tổng số khúc gỗ là:
(khúc gỗ).
Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.
Ta có:
=> Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là
bằng:
Ta có:
Khi sử dụng phương pháp quy nạp để chứng minh mệnh đề chứa biến A(n) đúng với mọi giá trị nguyên n ≥ p, với p là số nguyên dương ta sẽ tiến hành 2 bước
Bước 1 (bước cơ sở). Chứng minh rằng A(n) đúng khi n = 1
Bước 2 (bước quy nạp). Với số nguyên dương tùy ý k, ta giả sử A(n) đúng khi n = k (theo giả thiết quy nạp). Ta sẽ chứng minh rằng A(n) đúng khi n = k + 1
Hãy chọn câu trả lời đúng tương ứng với lí luận trên.
Bước 1 sai, vì theo bài toán n ≥ p nên ta phải chứng minh rằng A(n) đúng khi n = p.
Bước 2 sai, không thể "Với số nguyên dương tùy ý k " mà phải là "Với số nguyên dương k, (k ≥ p) ".
Trong các phát biểu sau, phát biểu nào là sai?
Ta lấy một phản ví dụ:
Dãy số (un) với là cấp số cộng có công sai d = 1 > 0
Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.
Cho dãy số
thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Cho dãy số thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Tính giới hạn
.
Ta có:
Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.
Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.
Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.
=> H là giao điểm của MN và mặt phẳng (SBD).
Hỏi trên
, phương trình
có bao nhiêu nghiệm?
Phương trình
Theo giả thiết
Vậy phương trình có duy nhất một nghiệm trên .
Chọn mệnh đề đúng trong các mệnh đề sau:
Theo nội dung định lý tìm giới hạn, ta có:
Nếu , thì