Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đổi số đo của góc 70^{0} sang đơn vị radian

    Cách 1: Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Khi đó:\mu = \frac{70.\pi}{180} =
\frac{7.\pi}{18}

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 4 để chuyển về chế độ rad.

    Bước 2. Bấm 70 shift DRG 1 =

  • Câu 2: Thông hiểu

    Số hạng đầu tiên của cấp số nhân (u_{n}) thỏa mãn hệ \left\{\begin{matrix}u_{4}-u_{2}=72\\ u_{5}-u_{3}=144\end{matrix}ight. là:

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_4} - {u_2} = 72} \\   {{u_5} - {u_3} = 144} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}.{q^3} - {u_1}.q = 72} \\   {{u_1}.{q^4} - {u_1}.{q^2} = 144} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}q.\left( {{q^2} - 1} ight) = 72} \\   {{u_1}.{q^2}\left( {{q^2} - 1} ight) = 144} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {q = 2} \\   {{u_1} = 12} \end{array}} ight.

  • Câu 3: Vận dụng

    Tính  \lim_{x
ightarrow 0}\frac{\sqrt{1 + 2x} - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{\sqrt{1 + 2x} - (x + 1) + (x + 1) - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - (x + 1)}{x^{2}}

    = \lim_{x ightarrow 0}\frac{-
x^{2}}{x^{2}\left( \sqrt{1 + 2x} + x + 1 ight)} = -
\frac{1}{2}

    Ta cũng có:

    \lim_{x ightarrow 0}\frac{(x + 1) -
\sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{x^{3} + 3x^{2}}{x^{2}\left\lbrack (x + 1)^{2} + (x +
1)\sqrt[3]{1 + 3x} + \left( \sqrt[3]{1 + 3x} ight)^{2} ightbrack}
= 1

    Vậy  \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}} = \frac{1}{2}

  • Câu 4: Nhận biết

    Cho hai đường thẳng ab lần lượt nằm trên hai mặt phẳng song song (P)(Q).

    Mệnh đề đúng là: "Nếu ab không song song với nhau, điểm M không nằm trên (P)(Q) thì luôn có duy nhất một đường thẳng đi qua M cắt cả ab ."

  • Câu 5: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: S \in (SEF) \cap (SCD)\ \
(1)

    Trong (ABCD)I = EF \cap CD

    \Rightarrow \left\{ \begin{matrix}
I \in EF \subset (EFS) \\
I \in CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I \in (EFS) \cap (SCD)\ \ \
(2)

    Từ (1) và (2) suy ra SI = (SEF) \cap
(SCD)

    b) Ta có: \left\{ \begin{matrix}
K \in (EFK) \\
K \in SC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow K \in (EFK) \cap (SAC)

    EF//AC do EF là đường trung bình trong tam giác ABC

    \left\{ \begin{matrix}
EF \subset (EFK) \\
AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (EFK)\bigcap(SAC) =
Kx//EF//AC

    c) Chọn (SBC) chứa FK

    Ta có: \left\{ \begin{matrix}
S \in (SBC) \cap (SAD) \\
BC//AD \\
BC \subset (SBC);AD \subset (SAD) \\
\end{matrix} ight.

    (SBC) \cap (SAD) =
Sy//AD//BC

    d) Đường thẳng AB song song với măt phẳng (SFD) sai.

  • Câu 7: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Tập xác định của hàm số f(x)\mathbb{R}.

    Ta có f(1) = \frac{a +
15}{4}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x + 3} - 2}{x - 1} = \lim_{x ightarrow
1^{+}}\frac{1}{\left( \sqrt{x + 3} + 2 ight)} =
\frac{1}{4}

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( \frac{ax + 15}{4} ight) = \frac{a +
15}{4}

    Hàm số đã cho liên tục tại x =
1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow \frac{1}{4} = \frac{a +
15}{4} \Leftrightarrow a = - 14.

  • Câu 8: Nhận biết

    Giá trị của \lim\frac{1}{n + 1} bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\frac{1}{a} - 1

    Suy ra:

    \frac{1}{n +
1} < \frac{1}{n_{a} + 1} < a\ \forall n > n_{0}

    Vậy \lim\frac{1}{n + 1} = 0.

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là điểm nào sau đây?

    Do mặt phẳng (MAB) chứa AB // CD nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB.

    Giả sử đường thẳng này cắt SD tại điểm I.

    Khi đó MI là đường trung bình của tam giác SCD

    => I là trung điểm của SD.

    Vậy hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là trung điểm của SD.

  • Câu 10: Vận dụng

    Cho cấp số cộng (un) có u1 = 1 và công sai d = 2. Tổng {S_{10}} = {u_1} + {u_2} + {u_3} + ... + {u_{10}} bằng:

    Ta có: 

    \begin{matrix}  {S_n} = \dfrac{{n\left( {{u_n} + {u_1}} ight)}}{2} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} ight)d} ight]}}{2} \hfill \\   \Rightarrow {S_{10}} = \dfrac{{10\left[ {2 + \left( {10 - 1} ight).2} ight]}}{2} = 100 \hfill \\ \end{matrix}

  • Câu 11: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos3x = 4\cos^{3}x - 3\cos x

  • Câu 12: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu là u_{1} = 3;d = 5. Hỏi số hạng thứ tư là số nào dưới đây?

    Ta có: u_{4} = u_{1} + 3d = 3 + 3.5 =
18

    Vậy u_{4} = 18

  • Câu 13: Thông hiểu

    Tính giới hạn  \lim_{x ightarrow 2}\frac{\sqrt{x + 2} - 2}{x -
2}

    Ta có:

    \lim_{x ightarrow 2}\frac{\sqrt{x + 2}
- 2}{x - 2} = \lim_{x ightarrow 3}\frac{\left( \sqrt{x + 2} - 2
ight)\left( \sqrt{x + 2} + 2 ight)}{(x - 2)\left( \sqrt{x + 2} + 2
ight)}

    = \lim_{x ightarrow 2}\frac{x - 2}{(x
- 2)\left( \sqrt{x + 2} + 2 ight)}

    = \lim_{x ightarrow 2}\frac{1}{\sqrt{x
+ 2} + 2} = \frac{1}{4}

  • Câu 14: Nhận biết

    Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?

    Từ định nghĩa cấp số nhân ta có các kết quả sau:

    \begin{matrix}  {u_{n + 1}} = {u_n}.q;\left( {n \geqslant 1} ight) \hfill \\  {u_n} = {u_1}.{q^{n - 1}};\left( {n \geqslant 2} ight) \hfill \\  {u_k}^2 = {u_{k - 1}}.{u_{k + 1}};\left( {k \geqslant 2} ight) \hfill \\ \end{matrix}

    Đáp án C sai

  • Câu 15: Nhận biết

    Cho f(x)=\frac{x^{2}+5x}{7x} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

     Ta có: 

    Với xeq 0 hàm số xác định => Hàm số liên tục khi x > 0 và x < 0

    Với x = 0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2} + 5x}}{{7x}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x + 5}}{7} = \dfrac{5}{7} \hfill \\ \end{matrix}

    Để hàm số liên tục tại x = 0 thì

    \Leftrightarrow \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) \Rightarrow f\left( 0 ight) = \frac{5}{7}

  • Câu 16: Vận dụng

    Cho tam giác ABC vuông tại C có độ dài ba cạnh lập thành một cấp số nhân có công bội lớn hơn 1. Xác định công bội của cấp số nhân đó.

    Giả sử a,b,c là độ dài ba cạnh của tam giác ABC, a < b.

    Do độ lớn ba cạnh tam giác lập thành cấp số nhân, công bội q > 1 nên b = aq;c = aq^{2}

    c^{2} = a^{2} + b^{2}

    \Leftrightarrow a^{2}q^{4} = a^{2} +
a^{2}q^{2}

    \Leftrightarrow q^{4} = 1 +
q^{2}

    \Leftrightarrow q^{2} = \frac{1 +
\sqrt{5}}{2}

    \Leftrightarrow q = \sqrt{\frac{1 +
\sqrt{5}}{2}}

  • Câu 17: Vận dụng cao

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để bất phương trình

    \frac{\left( 2m^{2} - 7m + 3
ight)x^{3} + x^{2} - (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq
0

    Đúng với mọi x thuộc tập xác định của bất phương trình đó. Số phần tử S bằng:

    Giả sử m là số thực thỏa mãn yêu cầu bài toán:

    Với m = 2 bất phương trình trở thành \frac{- 3x^{3} + x^{2} - x + 2}{2x -
3} \leq 0, bất phương trình không đúng với \frac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2}
- (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq 0

    => Không thỏa mãn yêu cầu bài toán.

    Với m = 3 bất phương trình trở thành \frac{x^{2} - 2x + 2}{- x^{2} + 2x -
3} \leq 0, tập nghiệm của bất phương trình là \mathbb{R}

    => Thỏa mãn yêu cầu bài toán.

    Với m = \frac{1}{2} bất phương trình trở thành \dfrac{x^{2} + \dfrac{1}{2}x +2}{\dfrac{3}{2}x^{2} + 2x - 3} \leq 0, bất phương trình không đúng với x = 1

    => Không thỏa mãn yêu cầu bài toán.

    Với m eq 2;m eq 3;m eq
\frac{1}{2} đặt \left\{\begin{matrix}f(x) = \dfrac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2} - (m - 1)x +2}{(2 - m)x^{2} + 2x - 3} \\A = 2m^{2} - 7m + 3 \\\end{matrix} ight. thì A eq
0

    Theo giả thiết ta có:

    f(x) \leq 0 với mọi giá trị x thuộc tập xác định (*)

    Nếu A < 0 thì \lim_{x ightarrow - \infty}f(x) = +
\infty mâu thuẫn với (*)

    Nếu A > 0 thì \lim_{x ightarrow + \infty}f(x) = +
\infty mâu thuẫn với (*)

    Vậy S = \left\{ 3 ight\} nên số phần tử của S là 1.

  • Câu 18: Vận dụng

    Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

     Phát biểu nào sau đây là đúng

    Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.

    Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.

    Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.

    => H là giao điểm của MN và mặt phẳng (SBD).

  • Câu 19: Vận dụng cao

    Hàm số nào sau đây không liên tục trên \mathbb{R}?

    Hàm số y = \frac{3x}{x + 2} không xác định tại x = - 2 nên không liên tục tại x = - 2.

    Do đó không liên tục trên \mathbb{R}.

  • Câu 20: Nhận biết

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …

    Dễ dàng dự đoán được un = n.

    Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:

    Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.

    Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k

    Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1

    Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1

    Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.

  • Câu 21: Nhận biết

    Giải phương trình: \sqrt 3 \tan 2x - 3 = 0

     Giải phương trình:

    \begin{matrix}  \sqrt 3 \tan 2x - 3 = 0 \hfill \\   \Leftrightarrow \tan 2x = \sqrt 3  \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{3} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Trọng tâm các tam giác ABC,ACC',A'B'C' lần lượt là I,J,K. Tìm mặt phẳng song song với mặt phẳng (IJK).

    Theo bài ra ta có:

    Các điểm I,J,K lần lượt là trọng tâm các tam giác ABC,ACC',A'B'C' .

    \Rightarrow \frac{AI}{AM} = \frac{AJ}{AN}
= \frac{2}{3} \Rightarrow IJ//MN.

    \Rightarrow
IJ//(BCC'B')

    Chứng minh tương tự IK//(BCC'B')
\Rightarrow (IJK)//(BCC'B')

    \Rightarrow
(IJK)//(BC'B')

  • Câu 23: Nhận biết

    Cho tứ diện ABCD, M, N lần lượt là trọng tâm của tam giác ABC, ABD. Những khẳng định nào sau đây là đúng? (Có thể chọn nhiều đáp án)

    Chọn khẳng định đúng

    Gọi E là trung điểm của AB

    Vì M và N lần lượt là trọng tâm của tam giác ABC, ABD nên:

    \frac{{EM}}{{EC}} = \frac{{EN}}{{ED}} = \frac{1}{3} 

    Theo định lí Ta - lét ta có: MN // CD (1)

    CD \subset \left( {BCD} ight);CD \subset \left( {ACD} ight) (2)

    Từ (1) và (2) => MN // (BCD); MN // (ACD)

  • Câu 24: Thông hiểu

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    Đáp án là:

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    a) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{6} = u_{1} + 5d = 5 + 5.2 =
15.

    b) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{n} = u_{1} + (n - 1)d = 5 + (n - 1).2
= 2n + 3.

    c) Áp dụng công thức tính tổng nsố hạng đầu tiên của cấp số cộng ta có:

    S_{n} = nu_{1} + \frac{(n - 1)n}{2}d = 5n
+ \frac{(n - 1)n}{2}.2 = n^{2} + 4n.

    d) Ta viết lại

    S = u_{10} + u_{11} + .. +
u_{20}

    = \left( u_{1} + u_{2} + .. + u_{20}
ight) - \left( u_{1} + u_{2} + .. + u_{9} ight)

    = S_{20} - S_{9} = 480 - 117 =
363.

  • Câu 25: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \sin x. \cos x - \sin x - \cos x + m = 0 có nghiệm:

     Đặt t = \sin x + \cos x;\left( {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]} ight)

    => \sin x.\cos x = \frac{{{t^2} - 1}}{2}

    Phương trình trở thành:

    \begin{matrix}  \dfrac{{{t^2} - 1}}{2} - t + m = 0 \hfill \\   \Rightarrow  - 2m = {t^2} - 2t - 1 \hfill \\   \Rightarrow {\left( {t - 1} ight)^2} =  - 2m + 2 \hfill \\ \end{matrix}

    Do  {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]}

    \begin{matrix}   \Leftrightarrow  - \sqrt 2  - 1 \leqslant t - 1 \leqslant \sqrt 2  - 1 \hfill \\   \Leftrightarrow 0 \leqslant {\left( {t - 1} ight)^2} \leqslant 3 + 2\sqrt 2  \hfill \\ \end{matrix}

    Vậy để phương trình có nghiệm

    \begin{matrix}   \Leftrightarrow 0 \leqslant  - 2m + 2 \leqslant 3 + 2\sqrt 2  \hfill \\   \Leftrightarrow  - \dfrac{{1 + 2\sqrt 2 }}{2} \leqslant m \leqslant 1 \hfill \\  m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} ight\} \hfill \\ \end{matrix}

  • Câu 26: Thông hiểu

    Tìm nghiệm dương nhỏ nhất của phương trình 2\sin \left( {4x - \frac{\pi }{3}} ight) - 1 = 0.

     Ta có 2\sin \left( {4x - \frac{\pi }{3}} ight) - 1 = 0 \Leftrightarrow \sin \left( {4x - \frac{\pi }{3}} ight) = \frac{1}{2}

    \Leftrightarrow \sin \left( {4x - \frac{\pi }{3}} ight) = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  4x - \frac{\pi }{3} = \frac{\pi }{6} + k2\pi  \hfill \\  4x - \frac{\pi }{3} = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  4x = \frac{\pi }{2} + k2\pi  \hfill \\  4x = \frac{{7\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{8} + \frac{{k\pi }}{2} \hfill \\  x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    TH1. Với x = \frac{\pi }{8} + \frac{{k\pi }}{2}\xrightarrow{{{\text{Cho}} > 0}}\frac{\pi }{8} + \frac{{k\pi }}{2} > 0

    \Leftrightarrow k >  - \frac{1}{4} \to {k_{\min }} = 0 \Rightarrow x = \frac{\pi }{8}

    TH2. Với x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2}\xrightarrow{{{\text{Cho}} > 0}}\frac{{7\pi }}{{24}} + \frac{{k\pi }}{2} > 0

    \Leftrightarrow k >  - \frac{7}{{12}} \to {k_{\min }} = 0 \Rightarrow x = \frac{{7\pi }}{{24}}

    So sánh hai nghiệm ta được x = \frac{\pi }{8} là nghiệm dương nhỏ nhất.

  • Câu 27: Thông hiểu

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{3},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số nguyên dương n nhỏ nhất sao cho \sqrt{u_{n} - 1} \geq 2039190 là?

    Ta có: \left\{ \begin{matrix}
\begin{matrix}
\begin{matrix}
\begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{3} \\
\end{matrix} \\
u_{3} = u_{2} + 2^{3} \\
\end{matrix} \\
\ldots \\
\end{matrix} \\
u_{n + 1} = u_{n} + n^{3} \\
\end{matrix} ight.

     =  > un = 1 + 13 + 23 + … + (n−1)3

    Ta lại có 13 + 23 + … + (n−1)3

    = (1 + 2 + 3 + \ldots + n - 1)^{2} =
\left( \frac{n(n - 1)}{2} ight)^{2}

    Suy ra u_{n} = 1 + \left( \frac{n(n -
1)}{2} ight)^{2}

    Theo giả thiết ta có \sqrt{u_{n} - 1} \geq2039190 \Leftrightarrow \frac{n(n - 1)}{2} \geq 2039190

    \Leftrightarrow n(n - 1) \geq 4078380 \Leftrightarrow \left\lbrack \begin{matrix}n \geq 2020 \ \leq - 2019 \\\end{matrix} ight.

    n là số nguyên dương nhỏ nhất nên n = 2020.

  • Câu 28: Nhận biết

    Tính giới hạn của hàm số \lim_{x ightarrow + \infty}\frac{3}{x^{2} - 2x +
6}

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{{x^2} - 2x + 6}} = 0\mathop {\lim }\limits_{x \to  + \infty } \left( {{x^2} - 2x + 6} ight) =  + \infty

  • Câu 29: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 30: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên khoảng \left( - \frac{\pi}{3};\frac{\pi}{6}
ight)?

    Với x \in \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

    \begin{matrix}ightarrow 2x \in \left( - \dfrac{2\pi}{3};\dfrac{\pi}{3} ight) \hfill\\ightarrow 2x + \dfrac{\pi}{6} \in \left( - \dfrac{\pi}{2};\dfrac{\pi}{2}ight) \hfill\\\end{matrix}

    Thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin\left( 2x + \frac{\pi}{6} ight) đồng biến trên khoảng \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

  • Câu 31: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = 3u_{2} = 12. Công bội của cấp số nhân đã cho bằng

    Ta có u_{2} = u_{1}.q \Rightarrow q =
\frac{u_{2}}{u_{1}} = \frac{12}{3} = 4.

  • Câu 32: Nhận biết

    Đồ thị hàm số y = \cos x - \frac{\pi }{4} đi qua điểm nào sau đây?

     Thay giá trị x =  - \frac{\pi }{2};y = \frac{\pi }{4} vào hàm số ta có:

    \cos \left( { - \frac{\pi }{2}} ight) - \frac{\pi }{4} =- \frac{\pi }{4}

    Vậy điểm thuộc đồ thị hàm số là: y = \cos x - \frac{\pi }{4}

  • Câu 33: Nhận biết

    Cho bốn điểm không đồng phẳng trong không gian. Hỏi từ các điểm đã cho có thể xác định được bao nhiêu mặt phẳng phân biệt?

    Vì 4 điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có 4 mặt.

  • Câu 34: Thông hiểu

    Một bánh xe đạp trong 5 giây quay được 2 vòng. Hỏi bánh xe quay được 1 góc bao nhiêu độ trong 2 giây?

    Trong 1 giây bánh xe quay được \frac{2}{5} vòng

    Suy ra trong 2 giây bánh xe quay được \frac{4}{5} vòng

    Vậy góc bánh xe quay được là: \frac{4}{5}.360^{0} = 288^{0}

  • Câu 35: Vận dụng

    Phương trình \sin2x + 3\cos x = 0 có bao nhiêu nghiệm trong khoảng (0;2018)?

    Ta có:

    \sin2x + 3\cos x = 0

    \Rightarrow 2\sin x\cos x + 3\cos x =0

    \Rightarrow \cos x(2\sin x + 3) =0

    \Rightarrow \left\lbrack \begin{matrix}\cos x = 0 \\2\cos x + 3 = 0 \\\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{2} + k\pi;\left( k\mathbb{\in Z} ight) \\\sin x = - \dfrac{3}{2}(L) \\\end{matrix} ight.

    Theo bài ra ta có: x \in
(0;2018)

    \Rightarrow 0 < \frac{\pi}{2} + k\pi
< 2018

    \Rightarrow - \frac{1}{2} < k <
641,849...

    \Rightarrow k \in \lbrack
0;641brack

    Vậy phương trình có 642 nghiệm.

  • Câu 36: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm giao tuyến của MA và SD.

    Hình vẽ minh họa:

    Tìm giao tuyến của MA và SD

    Xét hình thang ABCD có I và J lần lượt là trung điểm của AD; BC nên:

    IJ là đường trung bình hình thang ABCD => IJ // AB

    Hai mặt phẳng (GIJ) và (SAB): lần lượt chứa hai đường thẳng song song (là IJ và AB) và có điểm G chung

    => Giao tuyến của chúng là đường thẳng đi qua G và song song với AB.

    Đường thẳng này cắt SA tại M và cắt SB tại N.

  • Câu 37: Thông hiểu

    Cho tứ diện ABCD, lấy M,N lần lượt là trung điểm của BCCD. Giả sử d
= (MNA) \cap (ABD). Khẳng định nào đúng về đặc điểm của đường thẳng d?

    Hình vẽ minh họa

    Xét ba mặt phẳng (AMN),(ABD),(BCD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,BD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,BD,MN đồng quy hoặc đôi một song song.

    BD//MN nên d//BD.

    Vậy đường thẳng d đi qua A và song song với BD.

  • Câu 38: Nhận biết

    Khẳng định nào sau đây sai?

    Đáp án: “Hai mặt phẳng có một điểm chung thì chúng còn có vô số điểm chung khác nữa.” đúng vì:

    TH1: Hai mặt phẳng phân biệt nếu có một điểm chung thì hai mặt phẳng đó có một đường thẳng chung (giao tuyến của hai mặt phẳng) do đó có hai mặt phẳng có vô số điểm chung.

    TH2: Hai mặt phẳng không phân biệt thì chúng có vô số điểm chung (vì hai mặt phẳng trùng nhau)”

    Đáp án: “Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất” đúng vì tập hợp các điểm chung của hai mặt phẳng phân biệt là một đường thẳng.

    Đáp án: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất.” sai vì chưa xét đến trường hợp hai mặt phẳng không phân biệt.

    Đáp án: “Nếu ba điểm A, B, C phân biệt cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng.” đúng vì khi đó ba điểm A, B, C cùng nằm trên giao tuyến của hai mặt phẳng do đó ba điểm A, B, C thẳng hàng.

  • Câu 39: Thông hiểu

    Phương trình \sin x =  - \frac{1}{2} có nghiệm thỏa mãn x nằm trong khoảng \left( {\pi ;\frac{{3\pi }}{2}} ight) là:

     Giải phương trình:

    \begin{matrix}  \sin x =  - \dfrac{1}{2} \Leftrightarrow \sin x = \sin \left( {\dfrac{{ - \pi }}{6}} ight) \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \pi  + \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \dfrac{{7\pi }}{6} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Do x \in \left( {\pi ;\frac{{3\pi }}{2}} ight) => {x = \frac{{7\pi }}{6} + k2\pi } thỏa mãn

  • Câu 40: Nhận biết

    Giới hạn L = \lim\frac{3n - 1}{n +
2} bằng:

    Sử dụng máy tính cầm tay ta được:

    L = \lim\frac{3n - 1}{n + 2} =
3

  • Câu 41: Thông hiểu

    Tính giới hạn \lim_{x ightarrow -
2}\frac{2x^{2} + 3x - 2}{x^{2} - 4}?

    Ta có:

    \lim_{x ightarrow - 2}\frac{2x^{2} +
3x - 2}{x^{2} - 4}

    = \lim_{x ightarrow - 2}\frac{(2x -
1)(x + 2)}{(x - 2)(x + 2)}

    = \lim_{x ightarrow - 2}\frac{2x - 1}{x- 2} = \frac{5}{4}.

  • Câu 42: Vận dụng

    Trong các hàm số sau, hàm số nào là hàm số lẻ?

    Kiểm tra được y = 1 - sin^{2}x; y = \left| \cot x ight|.sin^{2}x; y = 1 + \left| \cot x + \tan x
ight| là các hàm số chẵn.

    y = x^{2}tan2x - \cot x là hàm số lẻ.

  • Câu 43: Vận dụng cao

    Cho dãy số =\left( x_{n} ight) thỏa mãn điều kiện x_{1} = 1; x_{n + 1} - x_{n} = \frac{1}{n(n + 1)} với n = 1;2;3;... số hạng x_{2018} bằng:

    Ta có:

    x_{n + 1} - x_{n} = \frac{1}{n(n + 1)} =\frac{1}{n} - \frac{1}{n + 1}

    \Leftrightarrow \sum_{k = 1}^{n -1}\left( x_{k + 1} - x_{k} ight) = \sum_{k = 1}^{n - 1}\left(\frac{1}{k} - \frac{1}{k + 1} ight)

    \Leftrightarrow x_{n} - x_{1} = 1 -\frac{1}{n}

    \Leftrightarrow x_{n} = \frac{2n -1}{n}

    Vậy x_{2018} =\frac{4035}{2018}

  • Câu 44: Thông hiểu

    Tính giới hạn của \lim\frac{1 + 3 + 5 + \ldots + (2n + 1)}{3n^{2} +
4}

    Ta có:

    \lim\frac{1 + 3 + 5 + \ldots + (2n +1)}{3n^{2} + 4}

    = \lim\dfrac{n^{2}}{3n^{2} + 4}

    = \lim\dfrac{1}{3 +\dfrac{4}{n^{2}}} = \frac{1}{3}

  • Câu 45: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo