Cho hai đường thẳng song song
và
. Có bao nhiêu mặt phẳng chứa
và song song với
?
Có vô số mặt phẳng chứa và song song với
(đó là tất cả các mặt phẳng chứa
nhưng không chứa
).
Cho hai đường thẳng song song
và
. Có bao nhiêu mặt phẳng chứa
và song song với
?
Có vô số mặt phẳng chứa và song song với
(đó là tất cả các mặt phẳng chứa
nhưng không chứa
).
Giải phương trình
thu được kết quả là:
Điều kiện
.
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
là trọng tâm của tam giác
. Giao điểm của đường thẳng
và mặt phẳng
là:
Hình vẽ minh họa
Ta có:
=> Giao điểm của đường thẳng và mặt phẳng
là giao điểm của đường thẳng
và
.
Cho hình lập phương
. Khẳng định nào sau đây sai?
Ta có: luôn đúng
=> Hai mặt phẳng không song song với nhau.
Tổng n số hạng đầu tiên của một cấp số cộng là
. Tìm số hạng đầu tiên
và công sai d của cấp số cộng đã cho.
Ta có:
Mặt khác
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính
.
Ta có: xác định và liên tục trên
nên suy ra
Vậy
Cho hàm số
. Với
và
. Biết
. Hỏi đồ thị hàm số
cắt trục hoành tại bao nhiêu điểm?
Cho hàm số . Với
và
. Biết
. Hỏi đồ thị hàm số
cắt trục hoành tại bao nhiêu điểm?
Cho cấp số nhân
với
và
. Công bội của cấp số nhân đã cho bằng
Ta có .
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn
Ta có:
.
Cho dãy số
xác định bởi
với
. Khi đó số hạng
của dãy
là
Ta có:
Đổi số đo của góc
sang đơn vị radian với độ chính xác đến hàng phần trăm.
Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Ta có: khi đó:
Cho tứ diện
. Trung điểm các cạnh
lần lượt là các điểm
. Giả sử
. Chọn khẳng định đúng.
Hình vẽ minh họa
Ta có:
=> là đường thẳng song song với
và
.
=> song song với
Trong không gian có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?
Trong không gian có 3 vị trí tương đối giữa đường thẳng và mặt phẳng
Tính tổng
?
Xét dãy số là cấp số nhân với
Ba số hạng đầu của một cấp số nhân là x - 6; x và y. Tìm y, biết rằng công bội của cấp số nhân là 6
Ta có x = 6(x – 6) => x = 36/5
Từ đó suy ra y = 6x = 216/5
Dãy số nào sau đây là cấp số nhân?
Ta có: là cấp số nhân
Dãy số lập thành cấp số nhân là
Cho cấp số cộng (Un) có
. Giá trị của
bằng:
Ta có:
bằng
Ta có:
Giá trị của giới hạn
là:
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Trung điểm của các cạnh
lần lượt là
. Chọn đáp án đúng.
Ta có:
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Cho mặt phẳng
có các điểm
. Đường thẳng
đi qua hai điểm
. Khi đó giữa mặt phẳng
và đường thẳng
có:
Giữa mặt phẳng và đường thẳng
có đúng một điểm chung.
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Phương trình
Xét nghiệm , với k = 1 ta được
.
Xác định
.
Ta có:
Phương trình
có bao nhiêu nghiệm thuộc
?
Ta có:
, mà
.
.
Suy ra ,
.
Vậy có 4044 nghiệm thuộc
.
Chu kì của hàm số
là
Hàm số tuần hoàn với chu kỳ
.
Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính ![]()
Điều kiện
Ta có:
Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành
Vậy nên
.
bằng
Đặt .
Ta có khi
Vậy .
Cho tứ diện
có độ dài tất cả các cạnh bằng
. Gọi
là trọng tâm tam giác
. Tính diện tích thiết diện tạo bởi mặt phẳng
và tứ diện
?
Hình vẽ minh họa:
Gọi lần lượt là trung điểm các cạnh
Ta có:
Suy ra tam giác MCD là thiết diện của mặt phẳng và tứ diện
Tam giác ABD đều cạnh bằng có
là trung điểm của
Tam giác ABC đều cạnh bằng có
là trung điểm của
Gọi H là trung điểm của CD
Ta có:
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi
dần về dương vô cùng?
Đáp án: 30
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Sau phút bơm nước vào hồ thì lượng nước là
(lít) và lượng muối có được là
(gam).
Nồng độ muối của nước là
(gam/lít).
Khi dần về dương vô cùng, ta có
Đổi số đo của góc
sang radian được kết quả là:
Ta có:
Cho dãy số
, biết
. Dãy số
bị chặn trên bởi số nào dưới đây?
Ta có:
Với mọi n ta có:
Vậy dãy số bị chặn trên bởi
Tổng giá trị lớn nhất và nhỏ nhất của hàm số
là
Do nên
.
Nên đạt được khi
.
đạt được khi
.
Suy ra .
Cho dãy số (un) xác định bởi
. Tính
.
Ta có:
Đặt
Từ đó:
Khi đó:
Từ đó ta có:
Vậy
=>
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Trong các mệnh đề sau, những mệnh đề nào đúng? (Có thể chọn nhiều đáp án)
"Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau." sai vì hai mặt phẳng đó có thể cắt nhau.
"Hai mặt phẳng cùng song song với một mặt phảng thứ ba thì song song với nhau." sai vì hai mặt phẳng có thể trùng nhau.
Cho hình chóp
có đáy
là hình bình hành. Giả sử
. Đường thẳng nào song song với
trong các đường thẳng dưới đây?
Hình vẽ minh họa
Ta có:
=> hay
Vậy giao tuyến của hai mặt phẳng và
là đường thẳng
song song với đường thẳng
.
Có bao nhiêu giá trị thực của tham số m để hàm số
liên tục trên
?
Tập xác định
Hàm số liên tục trên mỗi khoảng
Khi đó hàm số liên tục trên
khi và chỉ khi
liên tục tại
Hay
Ta lại có:
Khi đó
Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.
Cho tứ diện
. Gọi
sao cho
. Mặt phẳng
chứa đường thẳng
đồng thời song song với đường thẳng
. Khi đó hình tạo bởi các giao tuyến của mặt phẳng
và các mặt của tứ diện
là:
Hình vẽ minh họa:
Xét và (BCD), ta có điểm N chung, CD //
=> ∩ (BCD) = NF // CD, với F ∈ BD.
Xét và (ACD), ta có điểm M chung, CD //
=> ∩ (ACD) = ME // CD, với E ∈ AC.
Từ đó ta được MF = ∩ (ABD) và EN =
∩ (ABC)
=> Hình tạo bởi các giao tuyến của mặt phẳng và các mặt của tứ diện
là tứ giác ENFM
Ta lại có ME // CD // NF nên ENFM là hình thang.
Từ giả thiết ta có:
Mà
Vậy hình thang có đáy lớn gấp đôi đáy nhỏ.
Tính giới hạn
.
Ta có:
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Do k là số nguyên =>
Vậy tập xác định
Tổng
có công thức thu gọn là?
Cho một cấp số cộng
có
. Tìm
?
Theo bài ra ta có: