Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho cấp số cộng (Un) có {u_1} = 4;{u_2} = 1. Giá trị của {u_{10}} bằng:

    Ta có:

    \begin{matrix}  {u_1} = 4;{u_2} = 1 \Rightarrow d = {u_2} - {u_1} = 1 - 4 =  - 3 \hfill \\   \Rightarrow {u_{10}} = {u_1} + 9d = 4 + 9.\left( { - 3} ight) =  - 23 \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 3: Nhận biết

    Trong các mệnh đề sau đây, mệnh đề nào sai?

    Khẳng định sai: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất”.

    Sửa lại: “Hai mặt phẳng trùng nhau thì có vô số đường thẳng chung.”

  • Câu 4: Nhận biết

    Tính giới hạn L = \lim_{x ightarrow
3}\frac{x - 3}{x + 3}?

    Ta có:

    L = \lim_{x ightarrow 3}\frac{x - 3}{x
+ 3} = \frac{3 - 3}{3 + 3} = 0

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, P,Q lần lượt là trung điểm của SA,SC. Tìm đặc điểm của giao tuyến d của hai mặt phẳng (BPQ)(ABCD).

    Hình vẽ minh họa

    Ta thấy B là một điểm chung của hai mặt phẳng (BMN)(ABCD).

    Do đó d đi qua B.

    Xét ba mặt phẳng (BMN),(ABCD),(SAC).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,AC,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,AC,MN đồng quy hoặc đôi một song song.

    MN//AC (do MN là đường trung bình của tam giác SAC) nên d//AC.

    Vậy giao tuyến của hai mặt phẳng (BPQ)(ABCD) là đường thẳng d đi qua B và song song với CD.

  • Câu 6: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là các điểm thuộc cạnhSB và đoạn AC sao cho \frac{BM}{MS} = x\frac{NC}{NA} = y, (0 < x,\ \ y eq 1). Tìm tỷ số \frac{x}{y} để MN//(SAD).

    Đáp án: 1

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là các điểm thuộc cạnhSB và đoạn AC sao cho \frac{BM}{MS} = x\frac{NC}{NA} = y, (0 < x,\ \ y eq 1). Tìm tỷ số \frac{x}{y} để MN//(SAD).

    Đáp án: 1

    Hình vẽ minh họa

    Trong mặt phẳng (ABCD) giả sử BNAD cắt nhau tại điểm K.

    Dễ thấy SK = (BMN) \cap
(SAD).

    Do đó : MN//(SAD) \Leftrightarrow MN//SK \Leftrightarrow \frac{BM}{MS} =
\frac{BN}{NK} (1)

    Mặt khác tam giác NCB đồng dạng với tam giác NAK \Rightarrow \frac{BN}{NK} = \frac{CN}{NA} (2).

    Từ (1) và (2) \Rightarrow \frac{BM}{MS} =
\frac{NC}{NA} \Leftrightarrow x =
y.

    Vậy MN//(SAD) \Leftrightarrow x = y. Khi đó \frac{x}{y} = 1

  • Câu 7: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác BCD, H là trọng tâm tam giác SCD. M,N lần lượt là trung điểm của SA;SB. I là giao điểm của đường thẳng AN và mặt phẳng (SCD). Các khẳng định dưới đây là đúng hay sai?

    a) MN//CD Đúng||Sai

    b) Tứ giác CDSI là hình thang có đáy SI < CD Sai||Đúng

    c) ME // ( SBC ) Đúng||Sai

    d) HG//(SBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành, G là trọng tâm tam giác BCD, H là trọng tâm tam giác SCD. M,N lần lượt là trung điểm của SA;SB. I là giao điểm của đường thẳng AN và mặt phẳng (SCD). Các khẳng định dưới đây là đúng hay sai?

    a) MN//CD Đúng||Sai

    b) Tứ giác CDSI là hình thang có đáy SI < CD Sai||Đúng

    c) ME // ( SBC ) Đúng||Sai

    d) HG//(SBD) Đúng||Sai

    Hình vẽ minh họa

    a) Đúng

    Ta có MN là đường trung bình của tam giác SAB \Rightarrow MN//ABAB//CD nên MN//CD

    b) Sai

    Ta có \left\{ \begin{matrix}
S \in (SAB) \cap (SCD) \\
AB//CD \\
AB \subset (SAB),CD \subset (SCD) \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
d = (SAB) \cap (SCD) \\
S \in d \\
d//AB//CD \\
\end{matrix} ight.

    Gọi I = AN \cap d \Rightarrow \left\{
\begin{matrix}
I \in AN \\
I \in d,d \subset (SCD) \\
\end{matrix} ight.

    \Rightarrow I = AN \cap
(SCD)

    Ta có SI//BA \Rightarrow \frac{SI}{AB} =
\frac{SN}{NB} = 1

    \Rightarrow SI = AB \Rightarrow SI =
CD

    Vậy SICD là hình bình hành

    c) Đúng

    Gọi F là giao điểm của AEBC trong (ABCD), ta có

    AD//CF \Rightarrow \frac{AE}{EF} =
\frac{ED}{CE} = 1

    \Rightarrow E là trung điểm AF

    Vậy ME là đường trung bình của tam giác SAF

    \Rightarrow EM//SF

    Ta có \left\{ \begin{matrix}
ME//SF \\
ME ⊄ (SCD) \\
SF \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow ME//(SCD)

    d) Đúng

    Gọi E là trung điểm CD ta có

    \frac{EH}{ES} = \frac{EG}{EB}\left( =
\frac{1}{3} ight) \Rightarrow GH//SB

    Ta có \left\{ \begin{matrix}
GH//SB \\
SB \subset (SBD) \\
GH ⊄ (SBD) \\
\end{matrix} ight.\  \Rightarrow GH//(SBD)

  • Câu 8: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên ( - 4; + \infty) với f(x) = \frac{x}{\sqrt{x + 4} - 2} với x eq 0. Tính f(0).

    Ta có hàm số f(x) xác định và liên tục trên ( - 4; + \infty) nên suy ra

    f(0) = \lim_{x ightarrow
0}f(x)

    = \lim_{x ightarrow 0}\left(
\frac{x}{\sqrt{x + 4} - 2} ight)

    = \lim_{x ightarrow 0}\left( \sqrt{x +
4} + 2 ight) = 4

  • Câu 9: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)với u_{n} = 3n - 7. Tìm số hạng đầu u_{1} và công sai d của cấp số cộng trên.

    Ta có:

    u_{n} = 3n - 7 \Rightarrow u_{1} = 3.1 -
7 = - 4

    u_{n} - u_{n - 1} = (3n - 7) - (3n - 3 -
7) = 3 \Rightarrow d = 3

  • Câu 10: Nhận biết

    Có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?

    Có ba vị trí tương đối giữa đường thẳng và mặt phẳng là:

    + Đường thẳng song song với mặt phẳng.

    + Đường thẳng cắt mặt phẳng.

    + Đường thẳng nầm trên mặt phẳng.

  • Câu 11: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 0,17232323... được biểu diễn bởi phân số tối giản \frac{m}{n}. Khẳng định nào dưới đây đúng?

    Ta có:

    \begin{matrix}
  0,17232323.... \hfill \\
   = 0,17 + 23.\left( {\dfrac{1}{{{{10}^4}}} + \dfrac{1}{{{{10}^6}}} + \dfrac{1}{{{{10}^8}}} + ...} ight) \hfill \\ 
\end{matrix}

    \begin{matrix}
   = \dfrac{{17}}{{100}} + 23.\dfrac{{\dfrac{1}{{10000}}}}{{1 - \dfrac{1}{{100}}}} = \dfrac{{17}}{{100}} + \dfrac{{23}}{{100.99}} \hfill \\
   = \dfrac{{1706}}{{9900}} = \dfrac{{853}}{{4950}} \hfill \\ 
\end{matrix}

    \Rightarrow \left\{ \begin{matrix}
m = 853 \\
n = 4950 \\
\end{matrix} \Rightarrow 2^{12} < T = 4097 < 2^{13} ight.

  • Câu 12: Nhận biết

    Cho hai đường thẳng a,b. Phép chiếu song song theo phương l , mặt phẳng chiếu (\alpha) biến hai đường thẳng a,b thành a',b'. Quan hệ nào giữa hai đường thẳng a,b không được bảo toàn trong phép chiếu song song?

    Do hai đường thẳng a',b' cùng thuộc mặt phẳng (\alpha) nên tính chất chéo nhau không được bảo toàn trong phép chiếu song song.

  • Câu 13: Nhận biết

    Giá trị của \lim\frac{2 - n}{\sqrt{n + 1}}bằng:

    Với mọi M > 0 lớn tùy ý, ta chọn n_{M}
> \left( \frac{1}{a} + 3 ight)^{2} - 1

    Ta có:

    \frac{n - 2}{\sqrt{1 + n}} =
\sqrt{n + 1} - \frac{3}{\sqrt{n + 1}} > \sqrt{1 + n} - 3 > Mvới mọi n > n_{M}

    Suy ra \lim\frac{2 - n}{\sqrt{n + 1}} = -
\infty

  • Câu 14: Nhận biết

    Tính giá trị biểu thức A =\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}

    \sin10^{0} eq 0 nên ta có:

    A =\frac{16\sin10^{0}.\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{8\sin20^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{4\sin40^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{2\sin80^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{\sin160^{0}}{16\sin10^{0}}

    A = \frac{\sin20^{0}}{16\sin10^{0}} =\frac{2.\sin10^{0}.\cos10^{0}}{16\sin10^{0}} =\frac{1}{8}.\cos10^{0}

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có các cạnh bên bằng nhau, đáy ABCD là hình vuông cạnh bằng 10cm. Lấy M \in SA sao cho 3SM = 2SA. Giả sử mặt phẳng (\gamma) là mặt phẳng đi qua điểm M và song song với AB,AC. Các giao tuyến của (\gamma) với các mặt của hình chóp tạo thành một tứ giác. Diện tích tứ giác đó là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (\gamma) \\
(\gamma)//(ABCD) \\
\end{matrix} ight.. Gọi N,P,Q lần lượt là các giao điểm của (\gamma) với SB,SC,SD thì \left\{ \begin{matrix}
MN//AB \\
NP//BC \\
NP//BC \\
\end{matrix} ight..

    Do đó MNPQ là hình vuông và \frac{MN}{AB} = \frac{SM}{SA} =
\frac{2}{3}

    Vậy diện tích tứ giác là S =
\frac{400}{9}cm^{2}.

  • Câu 16: Thông hiểu

    Cho cấp số nhân lùi vô hạn \left( {{u_n}} ight) công bội q. Đặt S = {u_1} + {u_2} + ... + {u_n} + ... thì:

    Tổng cấp số nhân là: S = {u_1}.\frac{{1 - {q^n}}}{{1 - q}}

    Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:

    \begin{matrix}  \left| q ight| < 1 \Rightarrow {q^n} \mapsto 0 \hfill \\   \Rightarrow 1 - {q^n} \mapsto 1 \hfill \\   \Rightarrow S = \dfrac{{{u_1}}}{{1 - q}} \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác (AB không song song với CD), O = AC
\cap BD. Lấy M là trung điểm của SD, lấy N \in SB sao cho SN = 2SB. Khi đó các cặp cạnh nào dưới đây cắt nhau?

    Hình vẽ minh hoạ

    Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.

    Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.

  • Câu 18: Vận dụng

    Tìm tập xác định D của hàm số y =
\tan\left( \frac{\pi}{2}.cosx ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\dfrac{\pi}{2}.cosx eq \dfrac{\pi}{2} + k\pi \\\cos x eq 1 + 2k(*) \\\end{matrix}

    Do k là số nguyên => \cos x eq \pm 1\Rightarrow \sin x eq 0 \Rightarrow x eq k\pi,k \in\mathbb{Z}

    Vậy tập xác định D\mathbb{=R}\backslash\left\{ k\pi,k\in\mathbb{ Z} ight\}

  • Câu 19: Nhận biết

    Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?

    Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89

  • Câu 20: Nhận biết

    Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).

    Công thức đúng là:

    \sin^{2}x + \cos^{2}x = 1

  • Câu 21: Vận dụng cao

    Cho phương trình x^{12} + 1 = 4x^{4}.\sqrt{x^{n} + 1}. Tìm số nguyên dương n bé nhất để phương trình có nghiệm.

    Điều kiện xác định x^{n} \geq1

    Nếu n là số lẻ thì x^{n} \geq 1\Rightarrow x \geq 1

    Nếu n là số chẵn và x là nghiệm thì -x cũng là nghiệm của phương trình

    x = 1 không là nghiệm nên ta xét phương trình với x > 1

    \left\{ \begin{matrix}x^{12} + 1 \geq 2x^{2} \\x^{4}\left( x^{4} - 1 ight) + 1 \geq 2\sqrt{x^{4}\left( x^{4} - 1ight)} = 2x^{2}\sqrt{x^{4} - 1} \\\end{matrix} ight.

    \Rightarrow x^{12} + 1 \geq2x^{2}.2x^{2}\sqrt{x^{4} - 1} = 4x^{4}\sqrt{x^{4} - 1} (do x^{12} + 1 \geq 2x^{2} nên dấu bằng không xảy ra)

    Hơn nữa 4x^{4}\sqrt{x^{4} - 1} >4x^{4}\sqrt{x^{3} - 1} > 4x^{4}\sqrt{x^{2} - 1};(\forall x >1)

    Do đó phương trình không có nghiệm x >1 với n = 1,2,3,4

    Khi n = 5 ta có phương trình x^{12} + 1 = 4x^{4}.\sqrt{x^{5} +1}

    Giả sử f(x) = x^{12} + 1 -4x^{4}.\sqrt{x^{5} + 1} khi đó f(x) liên tục trên \lbrack 1; + \infty).

    Ta có: \left\{ \begin{matrix}f(1) = 2 \\f\left( \frac{6}{5} ight) < 0 \\\end{matrix} ight.\  \Rightarrow f(1).f\left( \frac{6}{5} ight) <0

    => f(x) = 0 có nghiệm

    Vậy n = 5.

  • Câu 22: Vận dụng cao

    Tổng S ={4.5}^{100} \cdot \left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}+ \ldots + \frac{1}{5^{100}} ight) + 1 có kết quả bằng?

    Đặt M = \frac{1}{5} + \frac{1}{5^{2}} +\frac{1}{5^{3}} + \ldots + \frac{1}{5^{100}}

    \Rightarrow 5M - M = \left( 1 +\frac{1}{5} + \frac{1}{5^{2}} + \ldots + \frac{1}{5^{99}} ight) -\left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}\ldots +\frac{1}{5^{100}} ight)

    = 1 - \frac{1}{5^{100}}

    \Rightarrow 4M = 1 - \frac{1}{5^{100}}\Rightarrow M = \frac{5^{100} - 1}{{4.5}^{100}}

    \Rightarrow S = {4.5}^{100} \cdot\frac{5^{100} - 1}{{4.5}^{100}} + 1 = 5^{100}

  • Câu 23: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{n} = - 2 \\
u_{n + 1} = - 2 - \frac{1}{u_{n}} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có u_{1} = - \frac{3}{2};u_{2} = -
\frac{4}{3};u_{3} = - \frac{5}{4};\ldots suy ra được u_{n} = - \frac{n + 1}{n}.

  • Câu 24: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 25: Nhận biết

    Hỏi trên đoạn [0; 2023 \pi], phương trình \sqrt 3 \cot x - 3 = 0 có bao nhiêu nghiệm? 

     Ta có \cot x = \sqrt 3  \Leftrightarrow \cot x = \cot \frac{\pi }{6}

    \Leftrightarrow x = \frac{\pi }{6} + k\pi {\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết, ta có

    0 \leqslant \frac{\pi }{6} + k\pi  \leqslant 2023\pi \xrightarrow{{{\text{xap xi}}}} - \frac{1}{6} \leqslant k \leqslant 2022,833

    \xrightarrow{{k \in \mathbb{Z}}}k \in \left\{ {0;1;...;2022} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.

  • Câu 26: Thông hiểu

    Tính giới hạn N =
\lim_{x ightarrow 0}\frac{\sqrt{4x + 1} - 1}{x^{2} - 3x}.

    Ta có:

    N = \lim_{x ightarrow 0}\frac{\sqrt{4x
+ 1} - 1}{x^{2} - 3x}

    N = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x + 1} - 1 ight)\left( \sqrt{4x + 1} + 1 ight)}{\left( x^{2}
- 3x ight)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4x}{x(x
- 3)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4}{(x -
3)\left( \sqrt{4x + 1} + 1 ight)}

    N = - \frac{2}{3}

  • Câu 27: Thông hiểu

    Cho phương trình \sin\left( 2x -
\frac{\pi}{4} ight) = \sin\left( x + \frac{3\pi}{4} ight) (*), vậy:

    a) Phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z}). ight. Đúng||Sai

    b) Trong khoảng (0;\pi) phương trình có 2 nghiệm. Đúng||Sai

    c) Tổng các nghiệm của phương trình trong khoảng (0;\pi) bằng \frac{7\pi}{6}. Sai||Đúng

    d) Trong khoảng (0;\pi) phương trình có nghiệm lớn nhất bằng \frac{5\pi}{6}. Đúng||Sai

    Đáp án là:

    Cho phương trình \sin\left( 2x -
\frac{\pi}{4} ight) = \sin\left( x + \frac{3\pi}{4} ight) (*), vậy:

    a) Phương trình có nghiệm \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z}). ight. Đúng||Sai

    b) Trong khoảng (0;\pi) phương trình có 2 nghiệm. Đúng||Sai

    c) Tổng các nghiệm của phương trình trong khoảng (0;\pi) bằng \frac{7\pi}{6}. Sai||Đúng

    d) Trong khoảng (0;\pi) phương trình có nghiệm lớn nhất bằng \frac{5\pi}{6}. Đúng||Sai

    Ta có:

    \sin\left( 2x - \frac{\pi}{4} ight) =
\sin\left( x + \frac{3\pi}{4} ight)

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}
  {2x - \dfrac{\pi }{4} = x + \dfrac{{3\pi }}{4} + k2\pi } \\ 
  {2x - \dfrac{\pi }{4} = \dfrac{\pi }{4} - x + k2\pi } 
\end{array}(k \in \mathbb{Z})} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = \pi + k2\pi \\
x = \frac{\pi}{6} + k\frac{2\pi}{3} \\
\end{matrix}(k\mathbb{\in Z})\  ight.\

    x \in (0;\pi)\ nên\ x \in \left\{
\frac{\pi}{6};\frac{5\pi}{6} ight\}

    Vậy phương trình có hai nghiệm thuộc khoảng (0;\pi)x
= \frac{\pi}{6};x = \frac{5\pi}{6}.

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 28: Thông hiểu

    Tìm tập giá trị của hàm số y = 3\cos2x + 5

    Ta có:

    - 1 \leq \cos2x \leq 1

    \Rightarrow - 3 \leq 3\cos2x \leq3

    \Rightarrow 2 \leq 3\cos2x + 5 \leq8

    \Rightarrow 2 \leq y \leq 8

    \Rightarrow T = \lbrack
2;8brack

  • Câu 29: Nhận biết

    Cho điểm A, đường thẳng d và mặt phẳng (P). Kí hiệu nào sau đây đúng?

    Kí hiệu đúng là: d \subset
(P)

  • Câu 30: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 31: Vận dụng

    Cho số thực m thỏa mãn \lim_{x ightarrow + \infty}\frac{m\sqrt{2x^{2} +
3} + 2017}{2x + 2018} = \frac{1}{2}. Khi đó giá trị của m là bao nhiêu?

    Ta có:

    \lim_{x ightarrow +
\infty}\frac{m\sqrt{2x^{2} + 3} + 2017}{2x + 2018} =
\frac{1}{2}

    \Leftrightarrow \lim_{x ightarrow +\infty}\dfrac{mx\sqrt{2 + \dfrac{3}{x^{2}}} + 2017}{x\left( 2 +\dfrac{2018}{x} ight)} = \dfrac{1}{2}

    \Leftrightarrow \lim_{x ightarrow +\infty}\dfrac{m\sqrt{2 + \dfrac{3}{x^{2}}} + \dfrac{2017}{x}}{\left( 2 +\dfrac{2018}{x} ight)} = \dfrac{1}{2}

    \Leftrightarrow \frac{m\sqrt{2}}{2} =
\frac{1}{2} \Leftrightarrow m = \frac{\sqrt{2}}{2}

  • Câu 32: Vận dụng

    Cho dãy số {u_n} = \frac{{{2^{n - 1}} + 1}}{n}. Số hạng thứ 10 của dãy số đó là:

    Ta có: {u_{10}} = \frac{{{2^{10 - 1}} + 1}}{{10}} = 51,3

  • Câu 33: Thông hiểu

    Nếu một cung tròn có số đo 3a^{0} thì số đo radian của nó là:

    Áp dụng công thức \mu =
\frac{m.\pi}{180} tương ứng với m =
3a ta được:

    \mu = \frac{m.\pi}{180} =
\frac{3a.\pi}{180} = \frac{a.\pi}{60}

  • Câu 34: Vận dụng

    Số nghiệm của phương trình \sin 5x + \sqrt 3 \cos 5x = 2\sin 7x trên khoảng \left( {0;\frac{\pi }{2}} ight) là? 

     Phương trình \Leftrightarrow \frac{1}{2}\sin 5x + \frac{{\sqrt 3 }}{2}\cos 5x = \sin 7x

    \Leftrightarrow \sin \left( {5x + \frac{\pi }{3}} ight) = \sin 7x

    \Leftrightarrow \sin 7x = \sin \left( {5x + \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  7x = 5x + \frac{\pi }{3} + k2\pi  \hfill \\  7x = \pi  - \left( {5x + \frac{\pi }{3}} ight) + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k\pi  \hfill \\  x = \frac{\pi }{{18}} + \frac{{k\pi }}{6} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    Với  0 < \frac{\pi }{6} + k\pi  < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{6} < k < \frac{1}{3}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6}

    Với 0 < \frac{\pi }{{18}} + k\frac{\pi }{6} < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{3} < k < \frac{8}{3}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k = 0 \to x = \frac{\pi }{{18}} \hfill \\  k = 1 \to x = \frac{{2\pi }}{9} \hfill \\  k = 2 \to x = \frac{{7\pi }}{{18}} \hfill \\ \end{gathered}  ight.

    Vậy có 4 nghiệm thỏa mãn.

  • Câu 35: Vận dụng

    Cho hình chóp S.ABCD, các điểm A’, B’, C’ lần lượt thuộc các cạnh SA, SB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Xác định phát biểu đúng

    Ta có: (SAB) ∩ (A’B’C’) = A’B’

    (SBC) ∩ (A’B’C’) = B’C’

    Gọi O là giao điểm của AC và BD

    Trong mặt phẳng (SAC) gọi I là giao điểm của A’C’ và SO

    Trong mặt phẳng (SBD) gọi D’ là giao điểm của B’I và SD

    Khi đó ta có: (SCD) ∩ (A’B’C’) = C’D’

    (SAD) ∩ (A’B’C’) = A’D’

    => Thiết diện của mặt phẳng (A’B’C’) với hình chóp S.ABCD là tứ giác A’B’C’D’.

  • Câu 36: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 37: Vận dụng

    Cho tam giác ABC vuông tại C có độ dài ba cạnh lập thành một cấp số nhân có công bội lớn hơn 1. Xác định công bội của cấp số nhân đó.

    Giả sử a,b,c là độ dài ba cạnh của tam giác ABC, a < b.

    Do độ lớn ba cạnh tam giác lập thành cấp số nhân, công bội q > 1 nên b = aq;c = aq^{2}

    c^{2} = a^{2} + b^{2}

    \Leftrightarrow a^{2}q^{4} = a^{2} +
a^{2}q^{2}

    \Leftrightarrow q^{4} = 1 +
q^{2}

    \Leftrightarrow q^{2} = \frac{1 +
\sqrt{5}}{2}

    \Leftrightarrow q = \sqrt{\frac{1 +
\sqrt{5}}{2}}

  • Câu 38: Nhận biết

    Tìm tập xác định của hàm số y = \frac{2x-1}{{\sin x - \cos x}}

    Hàm số xác định khi

    \begin{matrix}   \Leftrightarrow \sin x - \cos x e 0 \hfill \\   \Leftrightarrow \tan x e 1 \hfill \\   \Leftrightarrow x e \dfrac{\pi }{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} ight\}

  • Câu 39: Vận dụng

    Biết \lim_{x
ightarrow 0}\frac{\sin x}{x} = 1. Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\tan x}{x}\ khi\ x eq 0 \\0\ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. liên tục trên khoảng nào sau đây?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}có nghĩa là

    D = \underset{k\mathbb{\in
Z}}{\cup}\left( \frac{\pi}{2} + k\pi;\frac{3\pi}{2} + k\pi ight) = ...
\cup \left( - \frac{\pi}{2};\frac{\pi}{2} ight) \cup \left(
\frac{\pi}{2};\frac{3\pi}{2} ight) \cup ...

    Khi đó

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\tan x}{x}

    = \lim_{x ightarrow 0}\frac{\sin
x}{x}.\frac{1}{\cos x} = 1.\frac{1}{cos0} = 1 eq 0 = f(0)

  • Câu 40: Thông hiểu

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Đáp án là:

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Ta có

    \sqrt{n^{2} + an + 5} - \sqrt{n^{2} + 1}ightarrow 0\overset{ightarrow}{}Nhận lượng liên hợp :

    \lim u_{n} = \lim\left( \sqrt{n^{2} + an+ 5} - \sqrt{n^{2} + 1} ight)

    = \lim\frac{an + 4}{\sqrt{n^{2} + an +5} + \sqrt{n^{2} + 1}}

    = \lim\frac{a + \dfrac{4}{n}}{\sqrt{1 +\dfrac{a}{n} + \dfrac{5}{n^{2}}} + \sqrt{1 + \dfrac{1}{n^{2}}}} =\dfrac{a}{2}

  • Câu 41: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với số hạng đầu u_{1} và công bội q. Với n \geq
1, khẳng định nào sau đây đúng?

    Do \left( u_{n} ight) là cấp số nhân nên u_{n + 1} = u_{n}.q\ \ ,\ \ (n
\geq 1).

  • Câu 42: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Ta có: \lim_{x ightarrow 1}\frac{3x +
2}{2 - x} = \frac{3.1 + 2}{3 - 1} = 5

    Xét phương trình x^{2} - 3x^{2} + 3 =
0. Đặt x^{2} - 3x^{2} + 3 =
f(x) là hàm số liên tục trên \mathbb{R} suy ra hàm số cũng liên tục trên \lbrack - 1;3brack.

    Ta có: f( - 1) = - 1;f(1) = 1;f(2) = -
1;f(3) = 3

    Khi đó: \left\{ \begin{matrix}
f( - 1).f(1) < 0 \\
f(1).f(2) < 0 \\
f(2).f(3) < 0 \\
\end{matrix} ight. nên phương trình f(x) = 0 có ít nhất 3 nghiệm

    f(x) = 0 là phương trình bậc 3 có tối đa 3 nghiệm

    Vậy phương trình đã cho có đúng 3 nghiệm.

    Ta có:

    Nếu \lim_{x ightarrow 0}f(x) =
5 suy ra

    \lim_{x ightarrow 0}\left\lbrack 3x -
4f(x) ightbrack

    = \lim_{x ightarrow 0}(3x) - 4\lim_{x
ightarrow 0}f(x) = 3.0 - 4.5 = - 20

    Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1
+ 2x} - 1}{x} = \lim_{x ightarrow 0^{+}}\frac{\left( \sqrt{1 + 2x} - 1
ight)\left( \sqrt{1 + 2x} + 1 ight)}{x\left( \sqrt{1 + 2x} + 1
ight)}

    = \lim_{x ightarrow
0^{+}}\frac{2}{\sqrt{1 + 2x} + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(1 + 3x) = 1

    Vậy hàm số đã cho liên tục tại x = 0.

  • Câu 43: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 44: Thông hiểu

    Cho lăng trụ ABC.A'B'C'. Lấy M là trung điểm của AC. Xác định hình chiếu của điểm M lên mặt phẳng (AA'B') theo phương chiếu CB là:

    Hình vẽ minh họa

    Luyện tập Phép chiếu song song. Hình biểu diễn của một hình không gian

    Gọi N là trung điểm của  AB . Ta có: MN//CB

    Vậy hình chiếu song song của điểm  M  lên \left( {AA'B'} ight) theo phương chiếu CB là điểm N.

  • Câu 45: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo