Phương trình
có nghiệm là:
Giải phương trình:
Phương trình
có nghiệm là:
Giải phương trình:
Cho cấp số cộng
có
. Tìm số hạng đầu tiên
.
Ta có:
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Cho
với
. Phải bổ sung thêm giá trị
bằng bao nhiêu thì hàm số
liên tục trên
?
Ta có:
Với hàm số xác định => Hàm số liên tục khi x > 0 và x < 0
Với x = 0 ta có:
Để hàm số liên tục tại x = 0 thì
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
Ta có:
Cấp số nhân có số hạng đầu bằng 2 và số hạng thứ sáu bằng 486
=>
=>
=> =>
Vậy công bội q của cấp số nhân đã cho là q = 3
Cho hình chóp
có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Sai||Đúng
Cho hình chóp có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Sai||Đúng
Hình vẽ minh họa
Ta có:
Do
.
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Giải phương trình
ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:
Ta có:
Suy ra:
Nghiệm âm lớn nhất của phương trình là: ứng với
Nghiệm dương nhỏ nhất của phương trình là: ứng với
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn thỏa mãn
.
Ta có:
Vậy .
Cho tứ diện
, lấy điểm
. Mặt phẳng
đi qua
và song song với
và
. Xác định các giao tuyến của
và các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?
Hình vẽ minh họa:
Mặt phẳng qua
và song song với
=> Mặt phẳng cắt mặt phẳng
theo giao tuyến
song song với
.
Mặt khác, song song với
nên
cắt
và
theo các giao tuyến
và
với
=> Hình tạo bởi các giao tuyến là tứ giác .
Mặt khác
=> Tứ giác là hình bình hành.
Vậy hình tạo bởi các giao tuyến của và các mặt của hình chóp là hình bình hành.
Tìm chu kì T của hàm số ![]()
Hàm số y = sin(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Mệnh đề nào sau đây là đúng?
Từ công thức nên ta có
và
tỉ lệ với nhau.
Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:
Ta có:
Trong các khẳng định sau khẳng định nào sai?
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song hoặc đồng quy.
Cho phương trình
. Tìm số nguyên dương n bé nhất để phương trình có nghiệm.
Điều kiện xác định
Nếu n là số lẻ thì
Nếu n là số chẵn và x là nghiệm thì -x cũng là nghiệm của phương trình
Vì không là nghiệm nên ta xét phương trình với
(do
nên dấu bằng không xảy ra)
Hơn nữa
Do đó phương trình không có nghiệm với
Khi ta có phương trình
Giả sử khi đó
liên tục trên
.
Ta có:
=> có nghiệm
Vậy .
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Với
Thuộc góc phần tư thứ IV và thứ nhất nên hàm số đồng biến trên khoảng
Cho hình chóp
có đáy
là hình thang
. Gọi
lần lượt là các điểm thuộc các cạnh
thỏa mãn ![]()
. Biết
và
là trung điểm của
. Phân tích sự đúng sai của các phát biểu dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Đúng||Sai
d) Thiết diện tạo bởi mặt phẳng
và mặt phẳng
là một hình thang. Sai||Đúng
Cho hình chóp có đáy
là hình thang
. Gọi
lần lượt là các điểm thuộc các cạnh
thỏa mãn
. Biết
và
là trung điểm của
. Phân tích sự đúng sai của các phát biểu dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Thiết diện tạo bởi mặt phẳng và mặt phẳng
là một hình thang. Sai||Đúng
Hình vẽ minh họa
Xét tam giác DBC có
Xét tam giác ABC có:
Suy ra ba điểm O; K; J thẳng hàng
Suy ra đúng
Tương tự ta cũng chúng minh được (Vì
)
Suy ra
Gọi F là trung điểm của SA khi đó
Mà tứ giác CDEF là hình bình hành nên CE // DF. Từ đó suy ra IH // CE.
Ta lại có: IJKH là thiết diện của hình chóp S.ABCD và (IJK) và nó không là hình thang.
Cho
là các số thực khác
. Tìm điều kiện của
để giới hạn ![]()
Ta có:
Cho cấp số cộng
có
. Giá trị nhỏ nhất của
bằng:
Ta gọi là công sai của cấp số cộng.
Khi đó:
Vậy giá trị nhỏ nhất của là -24 đạt được khi khi
.
Trong các dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là một cấp số nhân?
Xét dãy số ta có:
Vậy dãy số là cấp số nhân với q = 1/3
Cho hàm số
. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Rút gọn biểu thức
.
Ta có:
Giá trị của
bằng:
Với mọi a>0 nhỏ tùy ý, ta chọn
Suy ra
Cho hình chóp
có đáy
là hình bình hành. Lấy
sao cho
,
là trọng tâm tam giác
. Đường thẳng
song song với mặt phẳng:
Hình vẽ minh họa
Gọi là trung điểm của
, lấy
sao cho
Ta có:
Mặt khác
Cho dãy số có các số hạng đầu là 8, 15, 22, 29, 36, … Số hạng tổng quát của dãy số này là
Ta có 8 = 7.1 + 1; 15 = 7.2 + 1; 22 = 7.3 + 1; 29 = 7.4 + 1; 36 = 7.5 + 1
Suy ra số hạng tổng quát un = 7n + 1
Cho hình chóp S.ABCD có đáy là hình thang với các cạnh đáy là AB, CD. Gọi I, J lần lượt là trung điểm của AD, BC và G là trọng tâm của tam giác SAB. Tìm giao tuyến của MA và SD.
Hình vẽ minh họa:

Xét hình thang ABCD có I và J lần lượt là trung điểm của AD; BC nên:
IJ là đường trung bình hình thang ABCD => IJ // AB
Hai mặt phẳng (GIJ) và (SAB): lần lượt chứa hai đường thẳng song song (là IJ và AB) và có điểm G chung
=> Giao tuyến của chúng là đường thẳng đi qua G và song song với AB.
Đường thẳng này cắt SA tại M và cắt SB tại N.
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
suy ra
.
Vậy .
Cho
và
là một số nguyên. Khi đó với mọi số nguyên dương
, có kết luận gì về
?
Ta có:
là một số nguyên
cũng là một số nguyên
Ta sẽ chứng minh là một số nguyên.
Ta có:
là một số nguyên
Giả sử là số nguyên với
. Ta sẽ chứng minh
cũng là số nguyên.
Ta có:
Theo giả thiết quy nạp ta có:
Vậy là một số nguyên.
Người ta trồng 3003 cây theo hình tam giác như sau: Hàng thứ nhất có 1 cây. hàng thứ hai có hai cây, hàng thứ ba có ba cây,.... Vậy có tất cả bao nhiêu hàng?
Gọi số hàng cây được trồng là x (hàng)
Số cây các hàng là: 1; 2; 3; 4; ...; x - 1; x
Số cây của mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng
=>
Khi đó ta có:
Vậy có tất cả 77 hàng cây được trồng.
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?
Hình vẽ minh họa
Ta có:
, d đi qua S và
.
Phương trình
có nghiệm là:
Điều kiện xác định:
Kiểm tra điều kiện ta thấy thỏa mãn
Vậy nghiệm của phương trình là:
Cho hình chóp
có
lần lượt là trọng tâm các tam giác
và
. Gọi
là trung điểm cạnh
. Mặt phẳng
cắt
tại
. Tỉ số
bằng:
Hình vẽ minh họa
Ta có: là trọng tâm tam giác
và
là trung điểm của
.
=> thẳng hàng hay
Ta lại có là trọng tâm tam giác
nên
kéo dài cắt
tại trung điểm của
.
Vậy là trung điểm của
suy ra
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Biết
với
. Tập nghiệm của phương trình
trên
có số phần tử là:
Ta có:
Theo đề I tồn tại hữu hạn nên phương trình phải có nghiệm kép
. Tức là:
Khi thì
Do đó nên phương trình
vô nghiệm.
Cho dãy số
với
. Chọn kết quả đúng của
là:
Ta có:
= 0
Cho hàm số
liên tục trên đoạn
sao cho
. Có thể nói gì về số nghiệm của phương trình
trên đoạn
:
Ta có:
Đặt
Khi đó:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng
hay phương trình
có ít nhất một nghiệm thuộc khoảng
.
Giá trị của
bằng:
Ta có:
Cho cấp số cộng (un) có
;
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Tìm tập nghiệm của phương trình
?
Ta có:
Vậy phương trình có tập nghiệm là:
Cho
. Số mặt phẳng chứa tất cả các đỉnh của tam giác
là:
Do ba điểm không thẳng hàng nên chỉ có một và chỉ một mặt phẳng đi qua chúng.
Hình biểu diễn của một tam giác đều là hình nào sau đây?
Hình biểu diễn của một tam giác đều là hình tam giác.
Tính giới hạn
.
Ta có:
Mệnh đề nào sau đây đúng?
Ta có:
Vậy đúng.
Biết tổng ba số hạng đầu của một cấp số nhân là
, đồng thời theo thứ tự chúng là số hạng thứ nhất, số hạng thứ tư và số hạng thứ tám của một cấp số cộng. Công bội và số hạng đầu tiên của cấp số nhân là:
Gọi là bốn số hạng đầu của cấp số nhân
với công bội
.
Gọi là cấp số cộng tương ứng với công sai
.
Theo bài ra ta có: