Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Phương trình  \cos\frac{\pi}{3} = \cos x có nghiệm là:

    Ta có:

    \cos\frac{\pi}{3} = \cos x

    \Leftrightarrow x = \pm \frac{\pi}{3} +k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 2: Nhận biết

    Giới hạn \lim\frac{2}{n - 3} bằng

    Ta có:

    \lim\frac{2}{n - 3} =\lim\dfrac{\dfrac{2}{n}}{1 - \dfrac{3}{n}} = \dfrac{0}{0 - 0} =0

  • Câu 3: Vận dụng cao

    Cho hàm số y = f(x) = ax^{3} +
bx^{2} + cx + 2020. Với a eq
0,a,b,c\mathbb{\in R}a + 2b +
4c - 8 > 0. Biết \lim_{x
ightarrow - \infty}f(x) = + \infty. Hỏi đồ thị hàm số y = g(x) = a(x - 2021)^{3} + b(x - 2021)^{2} + c(x
- 2021) - 1 cắt trục hoành tại bao nhiêu điểm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = ax^{3} +
bx^{2} + cx + 2020. Với a eq
0,a,b,c\mathbb{\in R}a + 2b +
4c - 8 > 0. Biết \lim_{x
ightarrow - \infty}f(x) = + \infty. Hỏi đồ thị hàm số y = g(x) = a(x - 2021)^{3} + b(x - 2021)^{2} + c(x
- 2021) - 1 cắt trục hoành tại bao nhiêu điểm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 5: Thông hiểu

    Tính giới hạn \lim_{x ightarrow -
2}\frac{2x^{2} + 3x - 2}{x^{2} - 4}?

    Ta có:

    \lim_{x ightarrow - 2}\frac{2x^{2} +
3x - 2}{x^{2} - 4}

    = \lim_{x ightarrow - 2}\frac{(2x -
1)(x + 2)}{(x - 2)(x + 2)}

    = \lim_{x ightarrow - 2}\frac{2x - 1}{x- 2} = \frac{5}{4}.

  • Câu 6: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm của SA,SB,SCSD. Khi đó (MNP) \cap (SAC) là đường thẳng nào?

    Hình vẽ minh họa:

    M ∈ (MNPQ); MSA; M ∈ (SAC)

    Vậy M là điểm chung thứ nhất. P ∈ (MNPQ); PSC; P ∈ (SAC).

    Vậy P là điểm chung thứ hai.

    Vậy giao tuyến của (MNPQ) và (SAC) là: MP

  • Câu 7: Nhận biết

    Tìm tất cả các nghiệm của phương trình \sin\left( x + \frac{\pi}{6} ight) =
1.

    Ta có \sin\left( x + \frac{\pi}{6}
ight) = 1

    \Leftrightarrow x + \frac{\pi}{6} =
\frac{\pi}{2} + k2\pi

    \Leftrightarrow x = \frac{\pi}{3} +
k2\pi\left( k\mathbb{\in Z} ight).

  • Câu 8: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 9: Thông hiểu

    Tìm chu kì T của hàm số y =  - \frac{1}{2}\sin \left( {100\pi x + 50\pi } ight)

    Hàm số y =  - \frac{1}{2}\sin \left( {100\pi x + 50\pi } ight) tuần hoàn với chu kì T = \frac{{2\pi }}{{100\pi }} = \frac{1}{{50}}.

  • Câu 10: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Nhắc lại kiến thức cơ bản:

    Hàm số y = \sin x là hàm số lẻ.

    Hàm số y = \cos x là hàm số chẵn.

    Hàm số y = \tan x là hàm số lẻ.

    Hàm số y = \cot x là hàm số lẻ.

  • Câu 11: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 8u_{3} - u_{7} +8u_{5} = u_{6} + u_{8} - 8u_{4}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}

    Đáp án: 64

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    8u_{3} - u_{7} + 8u_{5} = u_{6} + u_{8}
- 8u_{4}

    \Leftrightarrow 8\left( u_{3} + u_{4} +
u_{5} ight) = u_{6} + u_{7} + u_{8}

    \Leftrightarrow 8\left( u_{3} + u_{3}q +
u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 8u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 8u_{3} = u_{6} do 1 + q + q^{2} > 0

    \Leftrightarrow 8u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 8 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = 2 \\
\end{matrix} ight.

    Ta có: \frac{u_{8} + u_{9} +u_{10}}{u_{2} + u_{3} + u_{4}} = \frac{u_{8} + u_{8}q +u_{8}q^{2}}{u_{2} + u_{2}q + u_{2}q^{2}}= \frac{u_{8}\left( 1 + q +q^{2} ight)}{u_{2}\left( 1 + q + q^{2} ight)} =\frac{u_{2}q^{6}}{u_{2}} = q^{6} = 64

  • Câu 12: Nhận biết

    Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội q eq 0. Mệnh đề nào sau đây là đúng?

    Ta có: ac = b^{2} \Rightarrow
\frac{1}{b^{2}} = \frac{1}{ac}

  • Câu 13: Nhận biết

    Tính giá trị của \cot135^{0}

    Ta có: \cot135^{0} = - \tan45^{0} = -1

  • Câu 14: Nhận biết

    Tính giới hạn \lim\frac{n^{2} - 4n^{3}}{2n^{3} + 5n -
2}

    Ta có:

    \lim\dfrac{n^{2} - 4n^{3}}{2n^{3} + 5n -2} = \lim\dfrac{\dfrac{1}{n} - 4}{2 + \dfrac{5}{n^{2}} - \dfrac{2}{n^{3}}} =\dfrac{0 - 4}{2 + 0 - 0} = - 2

  • Câu 15: Vận dụng cao

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để bất phương trình

    \frac{\left( 2m^{2} - 7m + 3
ight)x^{3} + x^{2} - (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq
0

    Đúng với mọi x thuộc tập xác định của bất phương trình đó. Số phần tử S bằng:

    Giả sử m là số thực thỏa mãn yêu cầu bài toán:

    Với m = 2 bất phương trình trở thành \frac{- 3x^{3} + x^{2} - x + 2}{2x -
3} \leq 0, bất phương trình không đúng với \frac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2}
- (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq 0

    => Không thỏa mãn yêu cầu bài toán.

    Với m = 3 bất phương trình trở thành \frac{x^{2} - 2x + 2}{- x^{2} + 2x -
3} \leq 0, tập nghiệm của bất phương trình là \mathbb{R}

    => Thỏa mãn yêu cầu bài toán.

    Với m = \frac{1}{2} bất phương trình trở thành \dfrac{x^{2} + \dfrac{1}{2}x +2}{\dfrac{3}{2}x^{2} + 2x - 3} \leq 0, bất phương trình không đúng với x = 1

    => Không thỏa mãn yêu cầu bài toán.

    Với m eq 2;m eq 3;m eq
\frac{1}{2} đặt \left\{\begin{matrix}f(x) = \dfrac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2} - (m - 1)x +2}{(2 - m)x^{2} + 2x - 3} \\A = 2m^{2} - 7m + 3 \\\end{matrix} ight. thì A eq
0

    Theo giả thiết ta có:

    f(x) \leq 0 với mọi giá trị x thuộc tập xác định (*)

    Nếu A < 0 thì \lim_{x ightarrow - \infty}f(x) = +
\infty mâu thuẫn với (*)

    Nếu A > 0 thì \lim_{x ightarrow + \infty}f(x) = +
\infty mâu thuẫn với (*)

    Vậy S = \left\{ 3 ight\} nên số phần tử của S là 1.

  • Câu 16: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang có đáy nhỏ là BC, lấy điểm P \in SD, sao cho PD = 2SP. Gọi Q = SA \cap (PBC) . Tính tỉ số giữa hai cạnh SQSA.

    Hình vẽ minh họa

    Xét ba mặt phẳng (PBC);(SAD);(ABCD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là PQ;AD;BC.

    Theo định lí về giao tuyến của ba mặt phẳng thì PQ;AD;BC đồng quy hoặc đôi một song song.

    AD//BC \Rightarrow PQ//AD

    Do đó \frac{SQ}{SA} = \frac{SP}{SD} =
\frac{1}{3}

  • Câu 17: Thông hiểu

    Giới hạn \lim_{}\frac{2^{n} -
3^{n}}{2^{n} + 1} bằng

    Ta có:

    \lim\dfrac{2^{n} - 3^{n}}{2^{n} + 1} =\lim\dfrac{1 - \left( \dfrac{3}{2} ight)^{n}}{1 + \left( \dfrac{1}{2}ight)^{n}}

    = \dfrac{\lim\left( 1 - \left(\dfrac{3}{2} ight)^{n} ight)}{\lim\left( 1 + \left( \dfrac{1}{2}ight)^{n} ight)} = \lim\left( 1 - \left( \dfrac{3}{2} ight)^{n}ight) = - \infty

  • Câu 18: Thông hiểu

    Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?

    Để các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì:

    \begin{matrix}  5 + m + 17 + m = 2\left( {7 + 2m} ight) \hfill \\   \Leftrightarrow 5 + m + 17 + m = 2\left( {7 + 2m} ight) \hfill \\   \Leftrightarrow 2m = 8 \Rightarrow m = 4 \hfill \\ \end{matrix}

    Vậy nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m = 4

  • Câu 19: Nhận biết

    Mệnh đề nào sau đây đúng?

    Ta có:

    \sin150^{0} = \sin30^{0}

    \Rightarrow \sin60^{0} >\sin150^{0}

    \cos30^{0} > \cos60^{0}

    \cot60^{0} =\cot240^{0}

    Vậy \tan45^{0} < \tan60^{0} đúng.

  • Câu 20: Thông hiểu

    Cho phương trình lượng giác \sin\left( 3x
+ \frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}

    a) Phương trình có nghiệm \left\lbrack\begin{matrix}x = - \dfrac{\pi}{9} + k\dfrac{2\pi}{3} \\x = \dfrac{\pi}{3} + k\dfrac{2\pi}{3} \\\end{matrix}(k\mathbb{\in Z}) ight. Sai||Đúng

    b) Phương trình có nghiệm âm lớn nhất bằng - \frac{2\pi}{9} Đúng||Sai

    c) Trên khoảng \left( 0;\frac{\pi}{2}
ight) phương trình đã cho có 3 nghiệm Sai||Đúng

    d) Tổng các nghiệm của phương trình trong khoảng \left( 0;\frac{\pi}{2} ight) bằng \frac{7\pi}{9} Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác \sin\left( 3x
+ \frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}

    a) Phương trình có nghiệm \left\lbrack\begin{matrix}x = - \dfrac{\pi}{9} + k\dfrac{2\pi}{3} \\x = \dfrac{\pi}{3} + k\dfrac{2\pi}{3} \\\end{matrix}(k\mathbb{\in Z}) ight. Sai||Đúng

    b) Phương trình có nghiệm âm lớn nhất bằng - \frac{2\pi}{9} Đúng||Sai

    c) Trên khoảng \left( 0;\frac{\pi}{2}
ight) phương trình đã cho có 3 nghiệm Sai||Đúng

    d) Tổng các nghiệm của phương trình trong khoảng \left( 0;\frac{\pi}{2} ight) bằng \frac{7\pi}{9} Đúng||Sai

    Ta có:

    \sin\left( 3x + \frac{\pi}{3} ight) = -\frac{\sqrt{3}}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}3x + \dfrac{\pi}{3} = - \dfrac{\pi}{3} + k2\pi \\3x + \dfrac{\pi}{3} = \dfrac{4\pi}{3} + k2\pi \\\end{matrix}(k\mathbb{\in Z}) ight. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
  {3x =  - \dfrac{{2\pi }}{3} + k2\pi } \\ 
  {3x = \pi  + k2\pi } 
\end{array}(k \in \mathbb{Z}) } ight.

    \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
  {x =  - \dfrac{{2\pi }}{9} + k\dfrac{{2\pi }}{3}} \\ 
  {x = \dfrac{\pi }{3} + k\dfrac{{2\pi }}{3}} 
\end{array}(k \in \mathbb{Z})} ight.

     

    x \in \left( 0;\frac{\pi}{2}
ight) nên x = \frac{\pi}{3},x =
\frac{4\pi}{9}.

    Kết luận:

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 21: Vận dụng cao

    Cho dãy số (un) biết un = a sin(n)+b cos(n). Mệnh đề nào sau đây đúng?

    Xét |un| = |a sin(n)+b cos(n)| ≤ |a| + |b| ⇒  − (|a|+|b|) ≤ un ≤ |a| + |b|

    Vậy dãy số (un) bị chặn.

  • Câu 22: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Ta có:

    Dãy \left( u_{n} ight) là một cấp số cộng

    \Leftrightarrow u_{n} = u_{n - 1} +
d với d là hằng số.

    Hay u_{n} - u_{n - 1} = d

    => Cấp số cộng cần tìm là: \left\{
\begin{matrix}
u_{1} = 1 \\
u_{n} = u_{n - 1} - 1 \\
\end{matrix} ight.

  • Câu 23: Vận dụng

    Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?

    Phát biểu nào sau đây là đúng

    Đáp án "Giao điểm của (SMC) với BD là giao điểm của CN với BD, trong đó N là giao điểm của SM và AD." đúng.

    Đáp án "Giao điểm của (SAC) với BD là giao điểm của SA và BD." sai vì giao điểm của BD và (SAC) là giao điểm của BD và AC.

    Đáp án "Giao điểm của (SAB) với CM là giao điểm của SA và CM." sai vì CM không cắt SA.

    Đáp án "Đường thẳng DM không cắt mặt phẳng (SBC)." sai vì DM cắt mặt phẳng (SBC) tại giao điểm của DM và giao tuyến của hai mặt phẳng (SAD) và (SBC).

  • Câu 24: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N lần lượt là trung điểm các cạnh ABCD, P là trung điểm cạnh SA. Khi đó:

    a) MN//BC Đúng||Sai

    b) PN//SD Sai||Đúng

    c) MN//(SAD) Đúng||Sai

    d) SC cắt mặt phẳng (MNP) Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N lần lượt là trung điểm các cạnh ABCD, P là trung điểm cạnh SA. Khi đó:

    a) MN//BC Đúng||Sai

    b) PN//SD Sai||Đúng

    c) MN//(SAD) Đúng||Sai

    d) SC cắt mặt phẳng (MNP) Sai||Đúng

    Hình vẽ minh họa

    a) Đúng

    M,N lần lượt là trung điểm các cạnh ABCD nên MNCB là hình bình hành nên MN//BC.

    b) Sai

    Do PN,\ \ SD không đồng phẳng nên PN không thể song song với SD

    c) Đúng

    Do MN//BC \Rightarrow MN//ADAD \subset (SAD) \Rightarrow
MN//(SAD).

    d) Sai

    Do OP là đường trung bình của tam giác SAC nên SC//OP, mà OP
\subset (MNP) nên SC//(MNP).

  • Câu 25: Thông hiểu

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Đáp án là:

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Xét từng mệnh đề ta có

    a) “Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau” là mệnh đề sai, vì hai đường thẳng có thể chéo nhau.

    b) “Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó” là mệnh đề sai, vì hai mặt phẳng đó có thể song song nhau.

    c) “Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P)” là mệnh đề sai, vì đường thẳng a vẫn có thể nằm trong mặt phẳng (P).

    d) “Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α)” là mệnh đề sai, vì có vô số đường thẳng đi qua điểm A và song song với (α).

    Vậy không có mệnh đề nào đúng trong các mệnh đề nêu trên

  • Câu 26: Vận dụng

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Đáp án là:

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Tại x = 0,7 ta có:

    T(0,7) = 10000 + a.

    \lim_{x ightarrow 0,7^{-}}T(x) =
\lim_{x ightarrow 0,7^{-}}10\ 000 + a = 10\ 000 + a

     \lim_{x ightarrow 0,7^{+}}T(x) = \lim_{x
ightarrow 0,7^{+}}\left( 11\ 000 + 15100(x - 0,7) ight) = 11\
000.

    Hàm số liên tục tại x = 0,7 thì \lim_{x ightarrow 0,7^{-}}T(x) = \lim_{x
ightarrow 0,7^{+}}T(x) = T(0,7) \Leftrightarrow a = 1000.

  • Câu 27: Vận dụng

    Phương trình \left( \sqrt{3}\tan x - 1 ight)\left( sin^{2}x +
1 ight) = 0 có tổng các nghiệm trên (0;\pi) bằng:

    Điều kiện xác định: \cos x eq 0
\Leftrightarrow x eq \frac{\pi}{2} + k\pi;\left( k\mathbb{\in Z}
ight)

    Do sin^{2}x + 1 > 0,\forall x \in
\mathbb{R} nên phương trình đã cho tương đương với

    \sqrt{3}\tan x - 1 = 0

    \Leftrightarrow \tan x =
\frac{1}{\sqrt{3}}

    \Leftrightarrow x = \frac{\pi}{6} +
k\pi;\left( k\mathbb{\in Z} ight)

    (0;\pi) \Rightarrow x =
\frac{\pi}{6}

  • Câu 28: Thông hiểu

    Tìm khẳng định đúng.

    Qua phép chiếu song song chỉ có thể biến hình chóp cụt thành một đa giác.

    Loại phương án – có thể là một đoạn thẳng, có thể là một điểm.

    ảnh của một hình qua phép chiếu song song không thể là một hình đa diện – loại phương án có thể là một hình chóp cụt.

    => Chọn phương án – có thể là một hình tam giác.

  • Câu 29: Thông hiểu

    Tính giá trị \cos\left\lbrack \frac{\pi}{3} + \pi(2k + 1)ightbrack

    Ta có:

    \cos\left\lbrack \frac{\pi}{3} + \pi(2k+ 1) ightbrack

    = \cos\left\lbrack \frac{\pi}{3} + \pi +k2\pi ightbrack

    = \cos\left\lbrack \frac{\pi}{3} + \piightbrack

    = - \cos\left( \frac{\pi}{3} ight) = -\frac{1}{2}

  • Câu 30: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 31: Nhận biết

    Mệnh đề nào dưới đây SAI?

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy hoặc đôi một song song.

  • Câu 32: Vận dụng

    Tìm tập xác định D của hàm số y =
\tan\left( \frac{\pi}{2}.cosx ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\dfrac{\pi}{2}.cosx eq \dfrac{\pi}{2} + k\pi \\\cos x eq 1 + 2k(*) \\\end{matrix}

    Do k là số nguyên => \cos x eq \pm 1\Rightarrow \sin x eq 0 \Rightarrow x eq k\pi,k \in\mathbb{Z}

    Vậy tập xác định D\mathbb{=R}\backslash\left\{ k\pi,k\in\mathbb{ Z} ight\}

  • Câu 33: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 3\sqrt{2}SA = SD = 3, SB = SC = 3\sqrt{3}. Lấy M,N lần lượt là trung điểm của SA,SD, lấy P
\in AB,AP = 2. Giả sử hình \wp tạo bởi các giao tuyến của mặt phẳng (MNP) với các mặt bên của hình chóp. Tính chu vi của hình \wp.

    Hình vẽ minh họa

    Ta có: AD//(MNP) => Giao tuyến của (MNP)(ABCD) cũng song song với AD.

    Xét mặt phẳng (ABCD) kẻ PQ//AD;Q \in CD

    => Hình \wp là hình thang MNPQ.

    Ta có: MN là đường trung bình của tam giác SAD

    => MN = \frac{AD}{2} =
\frac{3\sqrt{2}}{2}

    Ta có: AB^{2} + SA^{2} = SB^{2} nên tam giác SAB vuông tại A

    Lại có: MA = \frac{3}{2};AP =
2

    \Rightarrow MP^{2} = AP^{2} + MA^{2} =
\frac{25}{4}

    \Rightarrow MP =
\frac{5}{2}

    PQ//AD \Rightarrow PQ = AD =
3\sqrt{2}

    Chứng minh tương tự MP ta tính được NQ = \frac{5}{2}

    => Chu vi hình \wp là: MN + NQ + PQ + PM = 5 +
\frac{9\sqrt{2}}{2}

  • Câu 34: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang ABCD AD ∈ BC. Gọi I là giao điểm của AB và DC, M là trung điểm SC. DM cắt mặt phẳng SAB) tại J. Khẳng định nào sau đây sai?

    Hình vẽ minh họa

    Xác định khẳng định sai

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  S \in \left( {SAB} ight) \cap \left( {SCD} ight) \hfill \\  I = AB \cap CD \hfill \\  AB \subset \left( {SAB} ight) \hfill \\  CD \subset \left( {SCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow \left( {SAB} ight) \cap \left( {SCD} ight) = SI \hfill \\  \left\{ \begin{gathered}  DM \cap \left( {SAB} ight) = J \hfill \\  DM \subset \left( {SCD} ight) \hfill \\ \end{gathered}  ight. \Rightarrow J \in \left( {SAB} ight) \cap \left( {SCD} ight) = SI \hfill \\ \end{matrix}

    Vậy ba điểm S, I, J thẳng hàng.

    Khẳng định sai là: "JM \in \left( {SAB} ight)"

  • Câu 35: Vận dụng

    Tính giới hạn \lim_{x ightarrow 1^{+}}\frac{x^{2} - 3x +
2}{6\sqrt{x + 8} - x - 17}

    Ta có:

    \lim_{x ightarrow 1^{+}}\frac{x^{2} -
3x + 2}{6\sqrt{x + 8} - x - 17}

    = \lim_{x ightarrow 1^{+}}\frac{\left(
x^{2} - 3x + 2 ight)\left( 6\sqrt{x + 8} + x + 17 ight)}{\left(
6\sqrt{x + 8} - x - 17 ight)\left( 6\sqrt{x + 8} + x + 17
ight)}

    = \lim_{x ightarrow 1^{+}}\frac{\left(
x^{2} - 3x + 2 ight)\left( 6\sqrt{x + 8} + x + 17 ight)}{- x^{2} +
2x - 1}

    = \lim_{x ightarrow 1^{+}}\frac{(x -
2)(x - 1)\left( 6\sqrt{x + 8} + x + 17 ight)}{- (x -
1)^{2}}

    = \lim_{x ightarrow 1^{+}}\frac{(x -
2)\left( 6\sqrt{x + 8} + x + 17 ight)}{- x + 1}

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 2} ight)\left( {6\sqrt {x + 8}  + x + 17} ight) =  - 36 < 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ + }} \left( { - x + 1} ight) = 0 \hfill \\
   - x + 1 < 0,\forall x > 1 \hfill \\ 
\end{gathered}  ight.

    =>  \lim_{x
ightarrow 1^{+}}\frac{x^{2} - 3x + 2}{6\sqrt{x + 8} - x - 17} = +
\infty

  • Câu 36: Nhận biết

    Cho cấp số nhân (un) biết u1 = 1; u4 = 64. Tính công bội q của cấp số nhân đó.

    Ta có: 

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Rightarrow {u_4} = {u_1}.{q^{4 - 1}} \hfill \\   \Rightarrow 64 = 1.{q^3} \hfill \\   \Rightarrow {q^3} = 64 \Rightarrow q = 4 \hfill \\ \end{matrix}

  • Câu 37: Nhận biết

    Cho dãy số (un)un =  − n2 + n + 1. Số  − 19 là số hạng thứ mấy của dãy?

    Giả sử un =  − 19(n∈ℕ*) Suy ra - n^{2} + n + 1 = - 19 \Leftrightarrow
- n^{2} + n + 20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
n = 5 \\
n = - 4 \\
\end{matrix} \Leftrightarrow n = 5 ight. (do  n∈ℕ*).

    Vậy số  − 19 là số hạng thứ 5 của dãy.

  • Câu 38: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 6d = 26 \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 13 - 3d \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    Khi đó:

    \Rightarrow (13 - 2d)^{2} + (13 +
2d)^{2} = 466

    \Rightarrow \left\lbrack \begin{matrix}
d = 4 \Rightarrow u_{1} = 1 \\
d = - 4 \Rightarrow u_{1} = 25 \\
\end{matrix} ight.

  • Câu 39: Nhận biết

    Cho mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến a và b. Khi đó.

    Theo lý thuyết ta có: mặt phẳng (R) cắt hai mặt phẳng song song (P) và (Q) theo hai giao tuyến a và b. Khi đó a // b.

    Vậy a và b không có điểm chung nào.

  • Câu 40: Vận dụng

    Cho khai triển {\left( {x - 2y + m} ight)^4}. Tìm m để tổng các hệ số của khai triển bằng 0.

    Tổng các hệ số của khai triển là giá trị của biểu thức tại x=y=1

    Vậy tổng các hệ số của khai triển là: {\left( {1 - 2.1 + m} ight)^4} = {\left( {m - 1} ight)^4}

    Để tổng các hệ số khai triển bằng 0 thì {\left( {m - 1} ight)^4} = 0 \Leftrightarrow m = 1

  • Câu 41: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 42: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    a) Ta có:

    f(x) = \frac{x + 1}{x^{2} + 7x +
12} có điều kiện xác định

    ( - \infty; - 4) \cup ( - 4; - 3) \cup (
- 3; + \infty)

    Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.

    b) Đặt 3x^{4} + 5x^{3} + 10 =
f(x)

    f(x) liên tục trên tập số thực nên f(x) liên tục trên \lbrack - 2; - 1brack\ \ (*)

    Ta có: f( - 2) = - 126;f( - 1) =
2

    \Rightarrow f( - 2).f( - 1) <
0(**)

    Từ (*) và (**) suy ra phương trình f(x) =
0 có nghiệm thuộc ( - 2; -
1).

    c) Ta có:

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left( x^{2} - 3x ight) = - 2

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}(x - 1) = 1

    Vậy không tồn tại giới hạn của hàm số khi x ightarrow 2

    d) Ta có: với n chẵn

    \lim u_{n} = \lim\left\lbrack ( -
1)^{n}\sqrt{n} ightbrack = + \infty

    Với n lẻ \lim u_{n} = \lim\left\lbrack (
- 1)^{n}\sqrt{n} ightbrack = - \infty

    Suy ra dãy số không bị chặn.

  • Câu 43: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{n + 3}{2n^{2} - 1}. Biết rằng u_{k} = \frac{7}{31}. Khi đó u_{k} là số hạng thứ mấy trong dãy số?

    Ta có:

    u_{k} = \frac{7}{31} \Rightarrow \frac{k
+ 3}{2k^{2} - 1} = \frac{7}{31}

    \Leftrightarrow 14k^{2} - 7 = 31k +
93

    \Leftrightarrow 14k^{2} - 31k - 100 = 0\Leftrightarrow \left\lbrack \begin{matrix}k = 4(tm) \\k = - \dfrac{25}{14}(ktm) \\\end{matrix} ight.

    Vậy u_{k} là số hạng thứ tư trong dãy số.

  • Câu 44: Nhận biết

    Tính giới hạn L = \lim_{x ightarrow
3}\frac{x - 3}{x + 3}?

    Ta có:

    L = \lim_{x ightarrow 3}\frac{x - 3}{x
+ 3} = \frac{3 - 3}{3 + 3} = 0

  • Câu 45: Nhận biết

    Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    Hai đường thẳng cắt nhau xác định mộ mặt phẳng duy nhất.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo