Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có 10^{22} tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?

    Ban đầu có 10^{22} tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với u_{1} = 10^{22} và công bội q = 2.

    Theo bài ra ta có:

    Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.

    Ta có: u_{7} là số tế bào nhận được sau 2 giờ.

    Vậy số tế bào nhận được sau 2 giờ là u_{7} = u_{1}.q^{6} = 10^{22}.2^{6} =
64.10^{22}

  • Câu 2: Thông hiểu

    Cho cấp số cộng u_{3} = 15;d = - 2. Tính u_{n}

    Ta có:

    \left\{ \begin{matrix}u_{3} = 15 \\d = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + 2d = 15 \\d = - 2 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 19 \\d = - 2 \\\end{matrix} ight.

    \Rightarrow u_{n} = u_{1} + (n - 1)d = -2n + 21

  • Câu 3: Vận dụng

    Tính  \lim_{x
ightarrow 0}\frac{\sqrt{1 + 2x} - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{\sqrt{1 + 2x} - (x + 1) + (x + 1) - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - (x + 1)}{x^{2}}

    = \lim_{x ightarrow 0}\frac{-
x^{2}}{x^{2}\left( \sqrt{1 + 2x} + x + 1 ight)} = -
\frac{1}{2}

    Ta cũng có:

    \lim_{x ightarrow 0}\frac{(x + 1) -
\sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{x^{3} + 3x^{2}}{x^{2}\left\lbrack (x + 1)^{2} + (x +
1)\sqrt[3]{1 + 3x} + \left( \sqrt[3]{1 + 3x} ight)^{2} ightbrack}
= 1

    Vậy  \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}} = \frac{1}{2}

  • Câu 4: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Tập xác định của hàm số f(x)\mathbb{R}.

    Ta có f(1) = \frac{a +
15}{4}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x + 3} - 2}{x - 1} = \lim_{x ightarrow
1^{+}}\frac{1}{\left( \sqrt{x + 3} + 2 ight)} =
\frac{1}{4}

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( \frac{ax + 15}{4} ight) = \frac{a +
15}{4}

    Hàm số đã cho liên tục tại x =
1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow \frac{1}{4} = \frac{a +
15}{4} \Leftrightarrow a = - 14.

  • Câu 5: Thông hiểu

    Xác định \lim_{x
ightarrow + \infty}\left( \sqrt{x + 1} - \sqrt{x - 3}
ight)

    Ta có:

    \lim_{x ightarrow + \infty}\left(
\sqrt{x + 1} - \sqrt{x - 3} ight)

    = \lim_{x ightarrow +
\infty}\frac{\left( \sqrt{x + 1} - \sqrt{x - 3} ight)\left( \sqrt{x +
1} + \sqrt{x - 3} ight)}{\sqrt{x + 1} + \sqrt{x - 3}}

    = \lim_{x ightarrow + \infty}\frac{x +
1 - (x - 3)}{\sqrt{x + 1} + \sqrt{x - 3}}

    = \lim_{x ightarrow +
\infty}\frac{4}{\sqrt{x + 1} + \sqrt{x - 3}}

    = \lim_{x ightarrow +\infty}\dfrac{4}{\sqrt{x}\left( \sqrt{1 + \dfrac{1}{x}} + \sqrt{1 -\dfrac{3}{x}} ight)} = 0

  • Câu 6: Nhận biết

    Cho hình chóp S.ABC. Lấy M là trung điểm của các đoạn thẳng SA, N là trung điểm của SB, P \in
SC sao cho \frac{PS}{PC} =
2. Chọn khẳng định sai.

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
(MNP) \cap (SAC) = MP \\
(MNP) \cap (SAB) = MN \\
(MNP) \cap (SBC) = NP \\
\end{matrix} ight.

    Vậy các giao tuyến tạo bởi (MNP) và hình chóp S.ABC tạo thành là tam giác MNP.

  • Câu 7: Vận dụng cao

    Cho hàm số y =f(x) = \left\{ \begin{matrix}\dfrac{x^{2016} + x - 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}}\ \ khi\ xeq 1 \\m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tìm giá trị k để hàm số y = f(x) liên tục tại x = 1

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2016} + x
- 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}}

    = \lim_{x ightarrow 1}\frac{\left(
x^{2016} - 1 + x - 1 ight)\left( \sqrt{2018x + 1} + \sqrt{x + 2018}
ight)}{2018x + 1 - (x + 2018)}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left\lbrack \left( x^{2015} + x^{2014} + ... + 1 ight) + 1
ightbrack\left( \sqrt{2018x + 1} + \sqrt{x + 2018} ight)}{2018(x -
1) - (x - 1)}

    = \lim_{x ightarrow
1}\frac{\left\lbrack \left( x^{2015} + x^{2014} + ... + 1 ight) + 1
ightbrack\left( \sqrt{2018x + 1} + \sqrt{x + 2018}
ight)}{2017}

    = \frac{2017.2\sqrt{2019}}{2017} =
2\sqrt{2019}

  • Câu 8: Vận dụng

    Cho dãy số vô hạn (un) là cấp số cộng có công sai d, số hạng đầu u1. Hãy chọn khẳng định sai?

     Ta có:

    Công thức tổng n số hạng đầu tiên của cấp số cộng là:

    \begin{matrix}  {S_n} = n{u_1} + \dfrac{{n\left( {n - 1} ight)d}}{2} \hfill \\   \Rightarrow {S_{12}} = 12{u_1} + \dfrac{{12.11.d}}{2} = 6\left( {2{u_1} + 11d} ight) e \dfrac{n}{2}.\left( {2{u_1} + 11d} ight) \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Một bánh xe của người đi xe ô tô quay được 1 vòng trong 0,1giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).

    Đáp án: 6,28

    Đáp án là:

    Một bánh xe của người đi xe ô tô quay được 1 vòng trong 0,1giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).

    Đáp án: 6,28

    Số đo góc quay của 1 vòng là 2\pi.

  • Câu 10: Nhận biết

    Biết ba số m;2;m
+ 3 lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?

    Để ba số m;2;m + 3 lập thành một cấp số nhân thì m.(m + 3) = 2^{2}
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = - 4 \\
\end{matrix} ight.

    Vậy tổng các giá trị của m là S = -
3

  • Câu 11: Thông hiểu

    \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {x^3}}}{{3{x^2} + x}}} bằng:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {x^3}}}{{3{x^2} + x}}}  = \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {1^3}}}{{{{3.1}^2} + 1}}}  = 0

  • Câu 12: Thông hiểu

    Giải phương trình \cot(3x - 1) = -
\sqrt{3}.

    Ta có

    \cot(3x - 1) = - \sqrt{3}

    \Leftrightarrow \cot(3x - 1) =
\cot\left( - \frac{\pi}{6} ight) = \cot\left( \frac{5\pi}{6}
ight)

    \Leftrightarrow 3x - 1 = \frac{5\pi}{6}
+ k\pi

    \Leftrightarrow x = \frac{1}{3} +
\frac{5\pi}{18} + k\frac{\pi}{3},k\mathbb{\in Z}

  • Câu 13: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O. Lấy các điểm M \in SB,N \in SD sao cho \frac{SM}{MB} = 2;\frac{SN}{SD} =
\frac{1}{3}. Hình chiếu của M,N qua phép chiếu song song phương SO mặt phẳng chiếu (ABCD)lần lượt là P,Q. Tỉ số độ dài \frac{PO}{QO} bằng bao nhiêu?

    Hình vẽ minh hoạ

    Do P là hình chiếu song song của M qua phép chiếu song song phương SO

    \Rightarrow \frac{MB}{SB} =
\frac{BP}{BO}

    \frac{SM}{MB} = 2 \Rightarrow SM =
2MB

    \Rightarrow \frac{BP}{BO} = \frac{1}{3}
\Rightarrow \frac{OP}{OB} = \frac{2}{3}

    Chứng minh tương tự ta có: \frac{OQ}{OD}
= \frac{1}{3}

    Ta có: BO = DO \Rightarrow \frac{OP}{OQ}
= \frac{1}{2}

  • Câu 14: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{\frac{1 - \sin x}{1 + \sin
x}}?

    Ta có: - 1 \leq \sin x \leq 1
\Leftrightarrow \left\{ \begin{matrix}
1 - \sin x \geq 0 \\
1 + \sin x \geq 0 \\
\end{matrix} ight.

    Hàm số được xác định khi 1 + \sin x eq
0 \Leftrightarrow x eq - \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ - \frac{\pi}{2} + k2\pi|k\mathbb{\in Z}
ight\}

  • Câu 15: Nhận biết

    Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình \sqrt 3 \cos x + m - 1 = 0 có nghiệm?

     Ta có \sqrt 3 \cos x + m - 1 = 0 \Leftrightarrow \cos x = \frac{{1 - m}}{{\sqrt 3 }}.

    Phương trình có nghiệm \Leftrightarrow  - 1 \leqslant \frac{{1 - m}}{{\sqrt 3 }} \leqslant 1

    \Leftrightarrow 1 - \sqrt 3  \leqslant m \leqslant 1 + \sqrt 3 \xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ {0;1;2} ight\}

    Vậy có tất cả 3 giá trị nguyên của tham số m.

  • Câu 16: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành, lấyM \in BC;MC =
MB. Giả sử (\gamma) là mặt phẳng đi qua M song song với hai đường thẳng BDSC. Xác định giao tuyến của (\gamma) với các mặt của hình chóp tứ giác S.ABCD. Hình tạo bởi các giao tuyến là hình

    Hình vẽ minh họa

    Gọi trung điểm CD,SD,SB lần lượt là N,P,R.

    Gọi I = AC \cap MN

    Từ I kẻ QI song song với SC.

    Ta có: MR//QI//NP//SC

    \Rightarrow (MNPQR)//SC (1)

    Ta có MN//DB \Rightarrow
(MNPQR)//BD (2)

    Từ (1) và (2) => Các giao tuyến của (\gamma) với các cạnh của hình chóp là hình ngũ giác MNPQR.

  • Câu 17: Thông hiểu

    Cho một cấp số cộng (Un) có {u_1} = \frac{1}{3};{u_8} = 26. Công sai d của cấp số cộng là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d \hfill \\   \Rightarrow {u_8} = {u_1} + 7d \hfill \\   \Rightarrow 26 = \dfrac{1}{3} + 7.d \hfill \\   \Rightarrow d = \dfrac{{11}}{3} \hfill \\ \end{matrix}

  • Câu 18: Vận dụng

    Cho \widehat {AOC} = \widehat {AOF} = \frac{\pi }{6}như hình vẽ dưới đây. Nghiệm của phương trình 2 \sin x +1 =0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     Ta có: 2\sin x + 1 = 0 \Leftrightarrow \sin x = \frac{{ - 1}}{2}

    \Leftrightarrow \left[ \begin{gathered}  x =  - \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{7\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\left( {k \in \mathbb{Z}} ight).

    Các cung lượng giác x =  - \frac{\pi }{6} + k2\pi, x = \frac{{7\pi }}{6} + k2\pi lần lượt được biểu diễn trên đường tròn lượng giác bởi các điểm F và E.

  • Câu 19: Nhận biết

    Tìm chu kì T của hàm số y = \sin\left( 5x- \frac{\pi}{4} ight)

    Hàm số y = sin(ax + b) tuần hoàn với chu kì T = \frac{2\pi}{|a|}

    => y = \sin\left( 5x- \frac{\pi}{4} ight) tuần hoàn với chu kì T =\frac{2\pi}{5}

  • Câu 20: Nhận biết

    Cho f(x)=\frac{x^{2}+5x}{7x} với xeq 0. Phải bổ sung thêm giá trị f(0) bằng bao nhiêu thì hàm số f(x) liên tục trên \mathbb{R}?

     Ta có: 

    Với xeq 0 hàm số xác định => Hàm số liên tục khi x > 0 và x < 0

    Với x = 0 ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to 0} f\left( x ight) = \mathop {\lim }\limits_{x \to 0} \dfrac{{{x^2} + 5x}}{{7x}} \hfill \\   = \mathop {\lim }\limits_{x \to 0} \dfrac{{x + 5}}{7} = \dfrac{5}{7} \hfill \\ \end{matrix}

    Để hàm số liên tục tại x = 0 thì

    \Leftrightarrow \mathop {\lim }\limits_{x \to 0} f\left( x ight) = f\left( 0 ight) \Rightarrow f\left( 0 ight) = \frac{5}{7}

  • Câu 21: Nhận biết

    Kết quả của giới hạn \lim\left(
\frac{1}{2} ight)^{n} bằng

    \lim q^{n} = 0 nếu |q| < 1.

    \left| \frac{1}{2} ight| <
1 nên \lim\left( \frac{1}{2}
ight)^{n} = 0.

  • Câu 22: Nhận biết

    Công thức nào sau đây đúng?

    Công thức đúng là: \cos3a = 4\cos^{3}a -3\cos a

  • Câu 23: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?

    Xét dãy số  u_{n}=-2^{n}+15 ta có:

     \begin{matrix}  {u_{n + 1}} =  - {2^{n + 1}} + 15 \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} =  - {2^{n + 1}} + 15 + {2^n} - 15 \hfill \\   =  - {2^{n + 1}} + {2^n}=d \hfill \\ \end{matrix}

    d không cố định => Dãy số u_{n}=-2^{n}+15 không phải là một cấp số cộng.

  • Câu 24: Thông hiểu

    Mệnh đề nào sau đây đúng?

    Mệnh đề “Nếu ba đường thẳng đồng quy thì chúng nằm trên một mặt phẳng” không đúng, vì chúng có thể không đồng phẳng.

    Mệnh đề “Nếu một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng cùng nằm trong một mặt phẳng”, không đúng khi ba đường thẳng cắt nhau và đồng qui nhưng không đồng phẳng.

    Mệnh đề “Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại” không đúng, vì chúng có thể chéo nhau.

    Vậy khẳng định đúng là: Nếu một đường thẳng cắt hai đường thẳng cắt nhau tại hai điểm phân biệt thì cả ba đường thẳng cùng nằm trong một mặt phẳng.”

  • Câu 25: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

     Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng cho trước

    Mặt phẳng (AB’D’) song song với mặt phẳng (BDC’).

    AB’//DC’AD’// BC’.

  • Câu 26: Nhận biết

    Cho bốn điểm không đồng phẳng trong không gian. Hỏi từ các điểm đã cho có thể xác định được bao nhiêu mặt phẳng phân biệt?

    Vì 4 điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có 4 mặt.

  • Câu 27: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy 1;\ \ 2;\ \ 4;\ \ 8;\ \ 16 là cấp số nhân với công bội q =
2.

    Dãy 1;  - 1; 1;  - 1;1 là cấp số nhân với công bội q = -
1.

    Dãy 1;\ \  - 2;\ \ 4;\ \  - 8;\ \
16 là cấp số nhân với công bội q =
- 2.

    Dãy 1;2;3; 4;5 là cấp số cộng với công sai d = 1.

  • Câu 28: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = \frac{4^{n - 1}}{5^{n -
2}}. Tính \lim_{n ightarrow +
\infty}u_{n}.

    Ta có:

    \lim_{n ightarrow + \infty}u_{n} =
\lim_{n ightarrow + \infty}\frac{4^{n - 1}}{5^{n - 2}} = \lim_{n
ightarrow + \infty}\left( \left( \frac{4}{5} ight)^{n}.\frac{4^{-
1}}{5^{- 2}} ight) = 0

  • Câu 29: Thông hiểu

    Cho dãy số (un) thỏa mãn u_{1} = \sqrt{2}u_{n + 1} = \sqrt{2 + u_{n}} với mọi n ≥ 1. Số hạng u2018

    Ta có u_{1} = \sqrt{2} =
2\cos\frac{\pi}{4} = 2\cos\frac{\pi}{2^{2}};

    u_{2} = \sqrt{2 + \sqrt{2}} =
2cos\frac{\pi}{8} = 2cos\frac{\pi}{2^{3}}

    Dự đoán u_{n} = 2cos\frac{\pi}{2^{n +
1}}

    Áp dụng theo quy nạp ta có: u_{1} =
2cos\frac{\pi}{4} = \sqrt{2}, công thức (1) đúng với n = 1.

    Giả sử công thức (1) đúng với n = k, k ≥ 1 ta có u_{k} = 2cos\frac{\pi}{2^{k + 1}}

    Ta có u_{k + 1} = \sqrt{2 + u_{k}} =
\sqrt{2 + 2\cos\frac{\pi}{2^{k + 1}}}

    = \sqrt{2\left( 1 + \cos\frac{\pi}{2^{k
+ 2}} ight)}

    = \sqrt{4\cos^{2}\left( \frac{\pi}{2^{k
+ 2}} ight)}

    = 2cos\frac{\pi}{2^{k + 2}}

    (vì 0 < \frac{\pi}{2^{k + 2}} <
\frac{\pi}{2} với mọi k ≥ 1 ).

    Suy ra công thức (1) đúng với n = k + 1

    Vậy u_{n} = 2cos\frac{\pi}{2^{n +
1}},\forall n \in \mathbb{N}^{*}. Suy ra u_{2018} = 2cos\frac{\pi}{2^{2019}}

  • Câu 30: Vận dụng cao

    Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

    \begin{matrix}
  P = 1 + a + {a^2} + {a^3} + ... \hfill \\
  Q = 1 + b + {b^2} + {b^3} + ... \hfill \\
  H = 1 + ab + {a^2}{b^2} + {a^3}{b^3} + ... \hfill \\ 
\end{matrix}

    Chọn khẳng định đúng.

    Ta có: \left\{ \begin{matrix}P = \dfrac{1}{1 - a} \\Q = \dfrac{1}{1 - b} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1 - \dfrac{1}{P} \\b = 1 - \dfrac{1}{Q} \\\end{matrix} ight. khi đó:

    \begin{matrix}
  H = \dfrac{1}{{1 - ab}} \hfill \\
   = \dfrac{1}{{1 - \left( {1 - \dfrac{1}{P}} ight).\left( {1 - \dfrac{1}{Q}} ight)}} \hfill \\
   = \dfrac{{PQ}}{{P + Q - 1}} \hfill \\ 
\end{matrix}

  • Câu 31: Nhận biết

    Cho hàm số y =
f(x) = \frac{2x + 3}{x - 1}. Tính \lim_{x ightarrow - \infty}f(x).

    Hàm số đã cho xác định trên ( -
\infty;1)(1; +
\infty)

    Giả sử \left( x_{n} ight) là một dãy số bất kì, thỏa mãn x_{n} <
1;x_{n} ightarrow - \infty

    Ta có: \lim f\left( x_{n} ight) =\lim\dfrac{2x_{n} + 3}{x_{n} - 1} = \lim\dfrac{2 + \dfrac{3}{x_{n}}}{1 -\dfrac{1}{x_{n}}} = 2

    Vậy \lim_{x ightarrow - \infty}\frac{2x
+ 3}{x - 1} = 2

  • Câu 32: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'M là trung điểm của A'D'. Gọi mặt phẳng (\gamma) đi qua M và song song với AC,BB'. Giả sử BC \cap (\gamma) = \left\{ T ight\}. Tỉ lệ độ dài của TBTC là:

    Hình vẽ minh họa:

    Gọi trung điểm của AD,DC,D'C' lần lượt là N,P,E.

    Dễ thấy (MNPE) \in (\gamma)

    Xét mặt phẳng (ABCD), gọi BC \cap NP = T

    Xét tam giác \Delta NDP và tam giác \Delta PCT ta có:

    \widehat{DPN} = \widehat{TPC} (đối đỉnh)

    DP = PC

    \widehat{NDP} = \widehat{PCT}(so le trong)

    \Rightarrow \Delta NDP\sim\Delta
PCT

    \Rightarrow DN = TC = \frac{1}{2}AD =
\frac{1}{2}BC

    Vậy TB = 3TC hay \frac{TB}{TC} = 3

  • Câu 33: Thông hiểu

    Cho cấp số nhân lùi vô hạn \left( {{u_n}} ight) công bội q. Đặt S = {u_1} + {u_2} + ... + {u_n} + ... thì:

    Tổng cấp số nhân là: S = {u_1}.\frac{{1 - {q^n}}}{{1 - q}}

    Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:

    \begin{matrix}  \left| q ight| < 1 \Rightarrow {q^n} \mapsto 0 \hfill \\   \Rightarrow 1 - {q^n} \mapsto 1 \hfill \\   \Rightarrow S = \dfrac{{{u_1}}}{{1 - q}} \hfill \\ \end{matrix}

  • Câu 34: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 35: Thông hiểu

    Tính \lim\frac{2n + 1}{1 + n} được kết quả là:

    Ta có

    \lim\frac{2n + 1}{1 + n} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( \frac{1}{n} + 1
ight)} = \lim\frac{2 + \frac{1}{n}}{\frac{1}{n} + 1} = \frac{2 + 0}{0
+ 1} = 2.

  • Câu 36: Nhận biết

    Cho tứ diện S.\  ABC. Trên SA,SC lần lượt lấy các điểm MN sao cho MN cắt AC tại E. Điểm E không thuộc mặt phẳng nào trong các mặt phẳng sau?

    Hình vẽ minh họa

    Do E \in AC \Rightarrow E \in
(SAC)E \in (ABC).

    Do E \in MN \Rightarrow E \in
(BMN).

  • Câu 37: Thông hiểu

    Tất cả các nghiệm của phương trình \cot \left( {x - {{15}^{\text{o}}}} ight) - \sqrt 3  = 0 là:

    Ta có: \cot \left( {x - {{15}^{\text{o}}}} ight) - \sqrt 3  = 0 \Leftrightarrow \cot \left( {x - {{15}^{\text{o}}}} ight) = \sqrt 3

    \Leftrightarrow x - {15^{\text{o}}} = {30^{\text{o}}} + k{180^{\text{o}}}

    Vậy suy ra x = {45^{\text{o}}} + k{180^{\text{o}}}, k \in \mathbb Z

    Nghiệm của phương trình đã cho là: x = {45^{\text{o}}} + k{180^{\text{o}}}, k \in \mathbb Z.

  • Câu 38: Vận dụng

    Tìm tập xác định D của hàm số y = \sqrt{5
+ 2cot^{2}x - \sin x} + \cot\left( \frac{\pi}{2} + x
ight)

    Hàm số xác định khi và chỉ khi

    5 + 2cot^{2}x - \sin x \geq 0\cot\left( \frac{\pi}{2} + x
ight) xác định và \cot x xác định

    Ta có: \cot\left( \frac{\pi}{2} + x
ight) xác định khi và chỉ khi

    \begin{matrix}\sin\left( \dfrac{\pi}{2} + x ight) eq 0 \hfill \\\Rightarrow \dfrac{\pi}{2} + x eq k\pi\hfill \\\Rightarrow x eq - \dfrac{\pi}{2} + k\pi,k\mathbb{\in Z} \hfill\\\end{matrix}

    Mà cot x xác định khi

    \begin{matrix}\sin x eq 0 \hfill \\\Rightarrow x eq k\pi \hfill \\\Rightarrow x eq + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Do đó hàm số xác định khi và chỉ khi \left\{ \begin{matrix}x eq - \dfrac{\pi}{2} + k\pi \\x eq k\pi \\\end{matrix} ight.\  \Rightarrow x eq \dfrac{k\pi}{2},k \in\mathbb{Z}

    Vậy tập xác định của hàm số là D\mathbb{=R}\backslash\left\{ \frac{k\pi}{2},k \in\mathbb{ Z} ight\}

  • Câu 39: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Hình vẽ minh họa

    Ta kẻ MN\ //\ AB\ \ (M \in SA), NP\ //BC\ \ (P \in SC), MQ\ //\ BC\ //\ AD\ \ (Q \in SD).

    Vì mặt phẳng (\alpha) đi qua N, song song với ABAD nên M,\ \
P,\ \ Q đều thuộc (\alpha) và thiết diện của hình chóp cắt bởi mặt phẳng (\alpha) là tứ giác MNPQ.

    Khi đó MN//AB \Rightarrow \frac{SM}{SA} = \frac{MN}{AB} =\frac{2}{3}.

    Tương tự, ta có được \frac{NP}{BC} =
\frac{PQ}{CD} = \frac{QM}{DA} = \frac{2}{3}.

    Suy ra MN = NP = PQ = QM = \frac{2}{3}AB
= \frac{20}{3}MNPQ là hình vuông.

    Suy ra S_{MNPQ} = \left( \frac{20}{3}
ight)^{2} = \frac{400}{9}.

    Khi đó a = 100,b = 9

    Vậy P = a + b + 1 = 110.

  • Câu 40: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 41: Vận dụng cao

    Trong các dãy số sau dãy số nào bị chặn?

    Xét dãy (an)a_{n} = \sqrt{n^{3} + n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (an) bị chặn dưới.

    Xét dãy (bn)b_{n} = n^{2} + \frac{1}{2n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (bn) bị chặn dưới.

    Xét dãy (cn)cn = (−2)n + 3, ∀n ∈ ℕ* nên dãy số (cn) không bị chặn.

    Xét dãy (dn)d_{n} = \frac{3n}{n^{2} + 2},\forall n \in
\mathbb{N}^{*}.

    Ta có

    n^3-3n+2=(n-1)^2 (n+2)≥0,∀n∈N^*

    ⇒n^3+2≥3n⇒0<3n/(n^2+2)≤1

    ⇒(d_n ) bị chặn.

  • Câu 42: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SCI là giao điểm của AM và mặt phẳng (SBD). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi SO \cap AM \equiv ISO \subset (SBD)

    \Rightarrow AM \cap (SBD) \equiv \left\{
I ight\} I là trọng tâm tam giác SAC

    \Rightarrow IS = 2IO \Rightarrow IS >
IO

  • Câu 43: Nhận biết

    Cho dãy số u_{n}
= \frac{n^{2} + 2n - 1}{n + 1}. Giá trị u11

    Ta có u_{11} = \frac{11^{2} + 2.11 - 1}{11
+ 1} = \frac{71}{6}

  • Câu 44: Thông hiểu

    Chọn công thức đúng trong các công thức dưới đây.

    Công thức đúng là \sin a - \sin b =2\sin\frac{a + b}{2}.\cos\frac{a - b}{2}

  • Câu 45: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là các điểm thuộc cạnhSB và đoạn AC sao cho \frac{BM}{MS} = x\frac{NC}{NA} = y, (0 < x,\ \ y eq 1). Tìm tỷ số \frac{x}{y} để MN//(SAD).

    Đáp án: 1

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi M, N lần lượt là các điểm thuộc cạnhSB và đoạn AC sao cho \frac{BM}{MS} = x\frac{NC}{NA} = y, (0 < x,\ \ y eq 1). Tìm tỷ số \frac{x}{y} để MN//(SAD).

    Đáp án: 1

    Hình vẽ minh họa

    Trong mặt phẳng (ABCD) giả sử BNAD cắt nhau tại điểm K.

    Dễ thấy SK = (BMN) \cap
(SAD).

    Do đó : MN//(SAD) \Leftrightarrow MN//SK \Leftrightarrow \frac{BM}{MS} =
\frac{BN}{NK} (1)

    Mặt khác tam giác NCB đồng dạng với tam giác NAK \Rightarrow \frac{BN}{NK} = \frac{CN}{NA} (2).

    Từ (1) và (2) \Rightarrow \frac{BM}{MS} =
\frac{NC}{NA} \Leftrightarrow x =
y.

    Vậy MN//(SAD) \Leftrightarrow x = y. Khi đó \frac{x}{y} = 1

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo