Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?

    Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.

  • Câu 2: Nhận biết

    Số cạnh của một hình chóp có đáy là một bát giác là:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 3: Vận dụng cao

    Cho tổng S_{n} =
\frac{3}{(1.2)^{2}} + \frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots
+ \frac{2n + 1}{\lbrack n(n + 1)brack^{2}}. Giá trị S10

    Cách 1:

    Ta có \frac{3}{(1.2)^{2}} = \frac{1}{1} -
\frac{1}{4};\frac{5}{(2.3)^{2}} = \frac{1}{4} -
\frac{1}{9};\ldots

    Suy ra S_{n} = \frac{1}{1} - \frac{1}{4} +
\frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{n^{2}} - \frac{1}{(n +
1)^{2}} = \frac{n(n + 2)}{(n + 1)^{2}}

    Vậy S_{10} = \frac{10(10 + 2)}{(10 +
1)^{2}} = \frac{120}{121}.

    Cách 2:

    Ta có S_{10} = \frac{3}{(1.2)^{2}} +
\frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots +
\frac{21}{(10.11)^{2}}

    Suy ra S_{10} = \frac{1}{1} - \frac{1}{4}
+ \frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{10^{2}} -
\frac{1}{11^{2}} = \frac{1}{1} - \frac{1}{11^{2}} =
\frac{120}{121}.

  • Câu 4: Thông hiểu

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{3},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số nguyên dương n nhỏ nhất sao cho \sqrt{u_{n} - 1} \geq 2039190 là?

    Ta có: \left\{ \begin{matrix}
\begin{matrix}
\begin{matrix}
\begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{3} \\
\end{matrix} \\
u_{3} = u_{2} + 2^{3} \\
\end{matrix} \\
\ldots \\
\end{matrix} \\
u_{n + 1} = u_{n} + n^{3} \\
\end{matrix} ight.

     =  > un = 1 + 13 + 23 + … + (n−1)3

    Ta lại có 13 + 23 + … + (n−1)3

    = (1 + 2 + 3 + \ldots + n - 1)^{2} =
\left( \frac{n(n - 1)}{2} ight)^{2}

    Suy ra u_{n} = 1 + \left( \frac{n(n -
1)}{2} ight)^{2}

    Theo giả thiết ta có \sqrt{u_{n} - 1} \geq2039190 \Leftrightarrow \frac{n(n - 1)}{2} \geq 2039190

    \Leftrightarrow n(n - 1) \geq 4078380 \Leftrightarrow \left\lbrack \begin{matrix}n \geq 2020 \ \leq - 2019 \\\end{matrix} ight.

    n là số nguyên dương nhỏ nhất nên n = 2020.

  • Câu 5: Vận dụng

    Tìm tập xác định D của hàm số y =
\tan\left( \frac{\pi}{2}.cosx ight)

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\dfrac{\pi}{2}.cosx eq \dfrac{\pi}{2} + k\pi \\\cos x eq 1 + 2k(*) \\\end{matrix}

    Do k là số nguyên => \cos x eq \pm 1\Rightarrow \sin x eq 0 \Rightarrow x eq k\pi,k \in\mathbb{Z}

    Vậy tập xác định D\mathbb{=R}\backslash\left\{ k\pi,k\in\mathbb{ Z} ight\}

  • Câu 6: Thông hiểu

    Cho hàm số f(x) = x - 1g(x) = x^{3}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Giới hạn \lim_{x ightarrow 1}f(x) =
3. Sai||Đúng

    b) Giới hạn \lim_{x ightarrow 1}g(x) =
1. Đúng||Sai

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = - 1. Đúng||Sai

    d) \lim_{x ightarrow
1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = 1. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = x - 1g(x) = x^{3}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Giới hạn \lim_{x ightarrow 1}f(x) =
3. Sai||Đúng

    b) Giới hạn \lim_{x ightarrow 1}g(x) =
1. Đúng||Sai

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = - 1. Đúng||Sai

    d) \lim_{x ightarrow
1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = 1. Sai||Đúng

    a) \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}(x - 1) = 1 - 1 = 0.

    b) \lim_{x ightarrow 1}g(x) = \lim_{x
ightarrow 1}x^{3} = 1^{3} = 1.

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = 3.0 - 1 = - 1.

    d) \lim_{x ightarrow1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = \frac{0}{1} =0.

  • Câu 7: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x^2} - 3x + 2}}{{\left| {x - 1} ight|}}{\text{   khi }}x e 1} \\   {{\text{m                  khi }}x = 1} \end{array}} ight. liên tục trên \mathbb{R}?

    Ta có:

    Hàm số f(x) liên tục trên các khoảng ( - \infty;1),(1; + \infty). Khi đó hàm số đã cho liên tục trên \mathbb{R} khi và chỉ khi nó liên tục tại x = 1, tức là ta cần có:

    \lim_{x ightarrow 1}f(x) =f(1)

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{-}}f(x) = f(1)\ \ (*)

    Ta lại có:

    f(x) = \left\{ \begin{matrix}x - 2\ \ \ khi\ x > 1 \\m\ \ \ \ \ \ \ \ khi\ x < 1 \\2 - x\ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{+}}(x - 2) = - 1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{xightarrow 1^{-}}(2 - x) = 1

    Khi đó (*) không thỏa mãn với mọi m\mathbb{\in R}

    Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.

  • Câu 8: Nhận biết

    Hàm số f(x) =
\sqrt{3 - x} + \frac{1}{\sqrt{x + 4}} liên tục trên:

    Điều kiện \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq - 3 \\
x > - 4 \\
\end{matrix} ight.

    Tập xác định D = ( -
4;3brack

    => Hàm số liên tục trên ( -
4;3brack

  • Câu 9: Thông hiểu

    Cho tứ diện ABCD. Gọi E,F lần lượt là trung điểm của ADBC, G là trọng tâm tam giác BCD. Khi đó, giao điểm của EG(ABC) là:

    Hình vẽ minh họa

    Kéo dài EG cắt AF tại I.

    Khi đó I là giao điểm của EG(ABC).

  • Câu 10: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)d = - 2;S_{8} = 72. Tìm số hạng đầu tiên u_{1}.

    Ta có:

    \left\{ \begin{matrix}d = - 2 \\S_{8} = 72 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}d = - 2 \\8u_{1} + \dfrac{8.7.d}{2} = 72 \\\end{matrix} ight.

    \Rightarrow 8u_{1} + 28.( - 2) =
72

    \Rightarrow u_{1} = 16

  • Câu 11: Nhận biết

    Điều kiện để đường thẳng m song song với mặt phẳng (\beta):

    Đường thẳng m song song với mặt phẳng (\beta) khi và chỉ khi m không nằm trong (\beta), đồng thời m song song với một đường thẳng n nằm trong (\beta).

  • Câu 12: Nhận biết

    Phương án nào sau đây sai với mọi k\in\mathbb{ Z}?

    Ta có:

    \sin x = 0 \Leftrightarrow x =
k\pi;\left( k\mathbb{\in Z} ight)

    Vậy đáp án sai là: \sin x = 0
\Leftrightarrow x = \frac{\pi}{2} + k\pi

  • Câu 13: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Tính giới hạn của hàm số \lim_{x ightarrow + \infty}\frac{3}{x^{2} - 2x +
6}

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{{x^2} - 2x + 6}} = 0\mathop {\lim }\limits_{x \to  + \infty } \left( {{x^2} - 2x + 6} ight) =  + \infty

  • Câu 15: Nhận biết

    Cho dãy số có các số hạng đầu là 0;\frac{1}{2};\frac{2}{3};\frac{3}{4};\frac{4}{5};\ldots Số hạng tổng quát của dãy số này là

    Ta có 0=\frac{0}{0+1};\frac{1}{2}=\frac{1}{1+1};\frac{2}{3}=\frac{2}{2+1};

    \frac{3}{4}=\frac{3}{3+1};\frac{4}{5}=\frac{4}{4+1}

    Suy ra u_{n} = \frac{n}{n + 1}

  • Câu 16: Thông hiểu

    Giải phương trình \sin\left( \frac{2x}{3}
- \frac{\pi}{3} ight) = 0.

    Phương trình

    \sin\left( \frac{2x}{3} - \frac{\pi}{3}
ight) = 0 \Leftrightarrow \frac{2x}{3} - \frac{\pi}{3} =
k\pi

    \Leftrightarrow \frac{2x}{3} =
\frac{\pi}{3} + k\pi \Leftrightarrow x = \frac{\pi}{2} +
\frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

    Vậy đáp án cần tìm là: x = \frac{\pi}{2}
+ \frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

  • Câu 17: Thông hiểu

    Tìm nghiệm dương nhỏ nhất của phương trình 2\sin \left( {4x - \frac{\pi }{3}} ight) - 1 = 0.

     Ta có 2\sin \left( {4x - \frac{\pi }{3}} ight) - 1 = 0 \Leftrightarrow \sin \left( {4x - \frac{\pi }{3}} ight) = \frac{1}{2}

    \Leftrightarrow \sin \left( {4x - \frac{\pi }{3}} ight) = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  4x - \frac{\pi }{3} = \frac{\pi }{6} + k2\pi  \hfill \\  4x - \frac{\pi }{3} = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  4x = \frac{\pi }{2} + k2\pi  \hfill \\  4x = \frac{{7\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{8} + \frac{{k\pi }}{2} \hfill \\  x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    TH1. Với x = \frac{\pi }{8} + \frac{{k\pi }}{2}\xrightarrow{{{\text{Cho}} > 0}}\frac{\pi }{8} + \frac{{k\pi }}{2} > 0

    \Leftrightarrow k >  - \frac{1}{4} \to {k_{\min }} = 0 \Rightarrow x = \frac{\pi }{8}

    TH2. Với x = \frac{{7\pi }}{{24}} + \frac{{k\pi }}{2}\xrightarrow{{{\text{Cho}} > 0}}\frac{{7\pi }}{{24}} + \frac{{k\pi }}{2} > 0

    \Leftrightarrow k >  - \frac{7}{{12}} \to {k_{\min }} = 0 \Rightarrow x = \frac{{7\pi }}{{24}}

    So sánh hai nghiệm ta được x = \frac{\pi }{8} là nghiệm dương nhỏ nhất.

  • Câu 18: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy 1;\ \ 2;\ \ 4;\ \ 8;\ \ 16 là cấp số nhân với công bội q =
2.

    Dãy 1;  - 1; 1;  - 1;1 là cấp số nhân với công bội q = -
1.

    Dãy 1;\ \  - 2;\ \ 4;\ \  - 8;\ \
16 là cấp số nhân với công bội q =
- 2.

    Dãy 1;2;3; 4;5 là cấp số cộng với công sai d = 1.

  • Câu 19: Vận dụng

    Cho cấp số nhân (un) có \left\{ {\begin{array}{*{20}{c}}  {{u_{20}} = 8{u_{17}}} \\   {{u_1} + {u_5} = 272} \end{array}} ight.. Tìm số hạng đầu tiên của dãy biết số đó không lớn hơn 100.

     Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_{20}} = 8{u_{17}}} \\   {{u_1} + {u_5} = 272} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}{q^{19}} = 8{u_1}.{q^{16}}} \\   {{u_1} + {u_1}.{q^4} = 272} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}{q^{16}}\left( {{q^3} - 8} ight) = 0} \\   {{u_1}.\left( {1 + {q^4}} ight) = 272} \end{array}} ight. \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {q = 0 \Rightarrow {u_1} = 272 > 100\left( L ight)} \\   {q = 2 \Rightarrow {u_1} = 16 < 100\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 20: Nhận biết

    Cho hai đường thẳng chéo nhau a và b. (P) chứa a và song song với b, Q chứa b và song song với a. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Chọn phát biểu đúng

    Hai đường thẳng chéo nhau a và b. (P) chứa a và song song với b, Q chứa b và song song với a thì (P) và (Q) song song với nhau.

     

  • Câu 21: Nhận biết

    Trên đường tròn bán kính 15dm, cho cung tròn có độ dài l = 25\pi(dm). Số đo của cung tròn đó là:

    Độ dài cung tròn là: l =
R.\alpha

    => \alpha = \frac{l}{R} =
\frac{25\pi}{15} = \frac{5\pi}{3}

  • Câu 22: Nhận biết

    Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?

    Từ định nghĩa cấp số nhân ta có các kết quả sau:

    \begin{matrix}  {u_{n + 1}} = {u_n}.q;\left( {n \geqslant 1} ight) \hfill \\  {u_n} = {u_1}.{q^{n - 1}};\left( {n \geqslant 2} ight) \hfill \\  {u_k}^2 = {u_{k - 1}}.{u_{k + 1}};\left( {k \geqslant 2} ight) \hfill \\ \end{matrix}

    Đáp án C sai

  • Câu 23: Thông hiểu

    Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_2} =  - 8 = {u_1}.q = 2q} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 4} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{S_5} = {u_1}.\dfrac{{1 - {q^5}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^5}}}{{1 + 4}} = 410} \\   {{S_6} = {u_1}.\dfrac{{1 - {q^6}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^6}}}{{1 + 4}} =  - 1638} \\   {{u_5} = {u_1}{q^4} = 2.{{\left( { - 4} ight)}^4} = 512} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 24: Vận dụng cao

    Tính \lim_{xightarrow 0}\dfrac{(1 + x)(1 + 2x)(1 + 3x)...(1 + 2018x) -1}{x}.

    Ta chứng minh bằng phương pháp quy nạp, với \forall n \geq 1;n\mathbb{\in N} thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + nx) - 1}{x} = \frac{n(n + 1)}{2}(*)

    Với n = 1 thì \left\{ \begin{gathered}
  VT = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 + x - 1}}{x} = \mathop {\lim }\limits_{x \to 0} 1 = 1 \hfill \\
  VP = \dfrac{{1\left( {1 + 1} ight)}}{2} = 1 \hfill \\ 
\end{gathered}  ight. \Rightarrow VT = VP nên (*) đúng với n = 1

    Giả sử (*) đúng với n = k,k \geq
1;k\mathbb{\in N} nghĩa là:

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + kx) - 1}{x} = \frac{k(k + 1)}{2}

    Xét n = k + 1 ta có:

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx + x) - 1}{x}

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx) - 1}{x}

    + \lim_{x ightarrow 0}\frac{(1 + x)(1
+ 2x)(1 + 3x)...(x + kx) - 1}{x}

    VT = \frac{k(k + 1)}{2} + \lim_{x
ightarrow 0}\left\lbrack (1 + x)(1 + 2x)(1 + 3x)...(1 + k)
ightbrack

    VT = \frac{k(k + 1)}{2} + k + 1 =
\frac{(k + 1)(k + 2)}{2} = VP

    Vậy (*) đúng với n = k + 1;k \geq
1;k\mathbb{\in N}

    Bây giờ ta áp dụng với n = 2018 thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + 2018x) - 1}{x}

    = \frac{2018.(2018 + 1)}{2} =
1009.2019

  • Câu 25: Vận dụng

    Cho mảnh bìa như hình vẽ sau, biết ABCD là hình vuông cạnh a. Các tam giác S_{1}AB;S_{2}BC;S_{3}CD;S_{4}DA là các tam giác cân bằng nhau. Gọi G;G' lần lượt là trọng tâm của hai tam giác S_{1}ABS_{3}CD. Người ta xếp mảnh bìa này thành hình chóp tứ giác S.ABCD (các điểm S_{1};S_{2};S_{3};S_{4}trùng vào đỉnh S). Khi đó tính độ dài đoạn thẳng GG'.

    Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:

    Từ giả thiết ta có:

    \frac{SG}{SM} = \frac{SG'}{SN} =
\frac{GG'}{MN} = \frac{2}{3}

    \Rightarrow GG' = \frac{2}{3}MN =
\frac{2a}{3}

  • Câu 26: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N lần lượt là trọng tâm tam giác ABDACD. Xét các mệnh đề sau:

    \ (i):MN//(ABC)

    (ii):MN//(BCD)

    (iii):MN//(ACD)

    Các mệnh đề đúng là:

    Gọi E,F lần lượt là trung điểm CD,BD.

    Ta có \frac{AN}{AE} = \frac{AM}{AF} =
\frac{2}{3} \Rightarrow MN//EF

    \Rightarrow MN//(BCD)nên mệnh đề (ii):MN//(BCD) đúng.

    Ta lại có:

    EF//BC \Rightarrow MN//BC

    \Rightarrow MN//(ABC)

    => Mệnh đề\
(i):MN//(ABC) đúng

    Mặt khác MN \cap (ACD) = \left\{ N
ight\} nên mệnh đề (iii):MN//(ACD) sai.

  • Câu 27: Nhận biết

    \lim(5n-4n^{3}) bằng

    Ta có: 

    \begin{matrix}  \lim \left( {5n - 4{n^3}} ight) \hfill \\   = \lim \left[ {{n^3}\left( {\dfrac{5}{{{n^2}}} - 4} ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, E, F lần lượt là trung điểm SA, SB, SC, SD. Trong các đường thẳng sau, đường thẳng nào không song song với IJ?

    Hình vẽ minh họa

    Tìm đường thẳng không song song với IJ

    Ta có:

    IJ là đường trung bình tam giác SAB nên IJ{m{//}}AB

    ABCD là hình bình hành nên AB{m{//}}CD

    => IJ{m{//}}CD

    EF là đường trung bình tam giác SCD 

    => EF{m{//}}CD => IJ{m{//}}EF

    Vậy AD không song song với IJ.

  • Câu 29: Vận dụng

    Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi t dần về dương vô cùng?

    Đáp án: 30

    Đáp án là:

    Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi t dần về dương vô cùng?

    Đáp án: 30

    Sau t phút bơm nước vào hồ thì lượng nước là 600 + 15t (lít) và lượng muối có được là 30.15t (gam).

    Nồng độ muối của nước là

    C(t) = \frac{30.15t}{600 + 15t} =
\frac{30t}{40 + t} (gam/lít).

    Khi t dần về dương vô cùng, ta có

    \lim_{t ightarrow + \infty}C(t) =
\lim_{t ightarrow + \infty}\frac{30t}{40 + t} = \lim_{t ightarrow +
\infty}\frac{30t}{t\left( \frac{40}{t} + 1 ight)}

    = \lim_{t ightarrow +
\infty}\frac{30}{\frac{40}{t} + 1} = 30\ (gam/lít).

  • Câu 30: Nhận biết

    Cho đường thẳng a thuộc mặt phẳng (Q), khi đó mệnh đề nào sau đây sai?

     Mệnh đề sai: "a //(Q)".

  • Câu 31: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 32: Thông hiểu

    Cho một cấp số cộng (Un) có {u_1} = \frac{1}{3};{u_8} = 26. Công sai d của cấp số cộng là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d \hfill \\   \Rightarrow {u_8} = {u_1} + 7d \hfill \\   \Rightarrow 26 = \dfrac{1}{3} + 7.d \hfill \\   \Rightarrow d = \dfrac{{11}}{3} \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Kết quả của giới hạn \lim \left( {\frac{{\sin 5n}}{{3n}} - 2} ight) bằng:

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  0 \leqslant \left| {\dfrac{{\sin 5n}}{{3n}}} ight| \leqslant \dfrac{1}{{3n}} \to 0 \hfill \\  \lim \left( { - 2} ight) =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim \left( {\dfrac{{\sin 5n}}{{3n}} - 2} ight) =  - 2 \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Đổi số đo của góc 40^{0}35' sang đơn vị radian với độ chính xác đến hàng phần trăm.

    Áp dụng công thức \mu =
\frac{m.\pi}{180} với \mu tính bằng rad và m tính bằng độ.

    Ta có: 40^{0}35' = \left( 40 +
\frac{25}{60} ight)^{0} khi đó:

    \mu = \dfrac{\left( 40 + \dfrac{25}{60}ight).\pi}{180} = \dfrac{97.\pi}{432} \approx 0,71

  • Câu 35: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?

    Xét dãy số  u_{n}=-2^{n}+15 ta có:

     \begin{matrix}  {u_{n + 1}} =  - {2^{n + 1}} + 15 \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} =  - {2^{n + 1}} + 15 + {2^n} - 15 \hfill \\   =  - {2^{n + 1}} + {2^n}=d \hfill \\ \end{matrix}

    d không cố định => Dãy số u_{n}=-2^{n}+15 không phải là một cấp số cộng.

  • Câu 36: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Phép chiếu song song theo phương AB lên mặt phẳng (SBC) biến điểm A thành:

    Do AB \cap (SBC) = \left\{ B
ight\} suy ra hình chiếu song song của điểm A theo phương AB lên mặt phẳng (SBC) là điểm B.

  • Câu 37: Vận dụng cao

    Cho hàm số y =f(x) = \left\{ \begin{matrix}\dfrac{x^{2016} + x - 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}}\ \ khi\ xeq 1 \\m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tìm giá trị k để hàm số y = f(x) liên tục tại x = 1

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2016} + x
- 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}}

    = \lim_{x ightarrow 1}\frac{\left(
x^{2016} - 1 + x - 1 ight)\left( \sqrt{2018x + 1} + \sqrt{x + 2018}
ight)}{2018x + 1 - (x + 2018)}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left\lbrack \left( x^{2015} + x^{2014} + ... + 1 ight) + 1
ightbrack\left( \sqrt{2018x + 1} + \sqrt{x + 2018} ight)}{2018(x -
1) - (x - 1)}

    = \lim_{x ightarrow
1}\frac{\left\lbrack \left( x^{2015} + x^{2014} + ... + 1 ight) + 1
ightbrack\left( \sqrt{2018x + 1} + \sqrt{x + 2018}
ight)}{2017}

    = \frac{2017.2\sqrt{2019}}{2017} =
2\sqrt{2019}

  • Câu 38: Vận dụng

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD. Các khẳng định dưới đây đúng hay sai?

    a) Giao tuyến của hai mặt phẳng (SAB)(ABCD)là đường thẳng AB. Đúng||Sai

    b) Đường thẳng GKAC có một điểm chung. Sai||Đúng

    c) Đường thẳng GK song song với mặt phẳng (ABCD). Đúng||Sai

    d) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA,SB, SC, SD lần lượt tại M, N, E, F. Khi đó, tứ giác MNEFlà hình bình hành. Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD. Các khẳng định dưới đây đúng hay sai?

    a) Giao tuyến của hai mặt phẳng (SAB)(ABCD)là đường thẳng AB. Đúng||Sai

    b) Đường thẳng GKAC có một điểm chung. Sai||Đúng

    c) Đường thẳng GK song song với mặt phẳng (ABCD). Đúng||Sai

    d) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA,SB, SC, SD lần lượt tại M, N, E, F. Khi đó, tứ giác MNEFlà hình bình hành. Đúng||Sai

    Hình vẽ minh họa

    a) Đúng.

    Hai mặt phẳng (SAB)(ABCD) có hai điểm chung là AB nên giao tuyến của hai mặt phẳng (SAB)(ABCD)là đường thẳng AB.

    b) Sai.

    Gọi H là trung điểm của SD. Ta có:

    Trong tam giác SAD, có AH là đường trung tuyến và G là trọng tâm, nên \frac{HG}{HA} = \frac{1}{3}\ \ (1).

    Trong tam giác SCD, có CH là đường trung tuyến và K là trọng tâm, nên \frac{HK}{HC} = \frac{1}{3}\ \ (2).

    Trong tam giác HAC và từ (1), (2) ta có \frac{HG}{HA} = \frac{HK}{HC} =
\frac{1}{3}, suy ra GK//AC.

    c) Đúng.

    Mặt phẳng (ABCD) không chứa đường thẳng GK và theo kết quả câu b) ta có GK//AC.

    AC nằm trong mặt phẳng (ABCD).

    Nên đường thẳng GK song song với mặt phẳng (ABCD).

    d) Đúng.

    Gọi mặt phẳng (P) chứa đường thẳng GK và song song với mặt phẳng (ABCD).

    Nên mặt phẳng (P) cắt mặt phẳng (SAD) theo một giao tuyến d_{1} song song với AD.

    Mà mặt phẳng (P) và mặt phẳng (SAD) có một điểm chung là G, nên đường thẳng d_{1} đi qua G và song song với AD.

    Theo giả thiết, mặt phẳng (P) cắt SA,SD lần lượt tại M,F nên đường thẳng d_{1} cắt SA,SD lần lượt tại M , F. Hay MF//AD.

    Tương tự, ta có FE//CD, EN//BC, NM//AB.

    Do đó, tứ giác MNEF FE//MN (vì cùng song song với AB,CD) và EN//MF (vì cùng song song với AD,BC).

    Vậy tứ giác MNEFlà hình bình hành.

  • Câu 39: Nhận biết

    Giới hạn \lim\frac{2}{n - 3} bằng

    Ta có:

    \lim\frac{2}{n - 3} =\lim\dfrac{\dfrac{2}{n}}{1 - \dfrac{3}{n}} = \dfrac{0}{0 - 0} =0

  • Câu 40: Thông hiểu

    Hàm số y = \sin 2x nghịch biến trên khoảng nào sau đây?

     Hàm số y = \sin 2x tuần hoàn với chu kì T = \frac{{2\pi }}{2} = \pi

    Do hàm số y=\sin x nghịch biến trên \left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } ight)

    => Hàm số y = \sin{2x} nghịch biến khi 

    \begin{matrix}  \dfrac{\pi }{2} + k2\pi  < 2x < \dfrac{{3\pi }}{2} + k2\pi  \hfill \\   \Rightarrow \dfrac{\pi }{4} + k\pi  < x < \dfrac{{3\pi }}{4} + k\pi  \hfill \\ \end{matrix}

    Vậy đáp án đúng là \left( {\frac{\pi }{2};\pi } ight)

  • Câu 41: Nhận biết

    Tìm chu kì của hàm số y = \sin\left( 5x - \frac{\pi}{4}
ight)?

    Hàm số y = \sin(ax + b) tuần hoàn với chu kì T =
\frac{2\pi}{|a|}

    Áp dụng công thức trên ta suy ra hàm số y
= \sin\left( 5x - \frac{\pi}{4} ight) tuần hoàn với chu kì T = \frac{2\pi}{5}.

  • Câu 42: Vận dụng

    Gọi x_0 là nghiệm âm lớn nhất của  \sin 9x + \sqrt 3 \cos 7x = \sin 7x + \sqrt 3 \cos 9x. Mệnh đề nào sau đây là đúng?

     Phương trình \Leftrightarrow \sin 9x - \sqrt 3 \cos 9x = \sin 7x - \sqrt 3 \cos 7x

    \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} ight) = \sin \left( {7x - \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  9x - \frac{\pi }{3} = 7x - \frac{\pi }{3} + k2\pi  \hfill \\  9x - \frac{\pi }{3} = \pi  - \left( {7x - \frac{\pi }{3}} ight) + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{{\text{Cho}} < 0}}\left[ \begin{gathered}  k\pi  < 0 \Leftrightarrow k < 0\xrightarrow{{k \in \mathbb{Z}}}{k_{\max }} =  - 1 \to x =  - \pi  \hfill \\  \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8} < 0 \Leftrightarrow k <  - \frac{5}{6}\xrightarrow{{k \in \mathbb{Z}}}{k_{\max }} =  - 1 \to x =  - \frac{\pi }{{48}} \hfill \\ \end{gathered}  ight.

    So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là x =  - \frac{\pi }{{48}} \in \left( { - \frac{\pi }{{12}};0} ight)

  • Câu 43: Nhận biết

    Công thức nào sau đây đúng?

    Công thức đúng là: \cos3a = 4\cos^{3}a -3\cos a

  • Câu 44: Thông hiểu

    Tính giới hạn E =
\lim_{x ightarrow + \infty}\left( x + 1 - \sqrt{x^{2} - x - 2}
ight)

    Ta có:

    E = \lim_{x ightarrow + \infty}\left(
x + 1 - \sqrt{x^{2} - x - 2} ight)

    E = \lim_{x ightarrow +
\infty}\frac{\left( x + 1 - \sqrt{x^{2} - x - 2} ight)\left( x + 1 +
\sqrt{x^{2} - x - 2} ight)}{x + 1 + \sqrt{x^{2} - x - 2}}

    E = \lim_{x ightarrow +\infty}\dfrac{(x + 1)^{2} - \left( x^{2} - x - 2 ight)^{2}}{x + 1 +\sqrt{x^{2} - x - 2}}

    E = \lim_{x ightarrow +\infty}\dfrac{x\left( 3 + \dfrac{3}{x} ight)}{x\left( 1 + \dfrac{1}{x} +\sqrt{1 - \dfrac{1}{x} - \dfrac{2}{x^{2}}} ight)}

    E = \lim_{x ightarrow + \infty}\dfrac{3+ \dfrac{3}{x}}{1 + \frac{1}{x} + \sqrt{1 - \dfrac{1}{x} -\dfrac{2}{x^{2}}}} = \dfrac{3}{2}

  • Câu 45: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.. Tính u_{2}.

    Ta có:

    \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + \left( u_{1} + d ight) + \left( u_{1} + 2d ight) = 27 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + d = 9 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}d = 9 - u_{1} \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    Khi đó:

    \Rightarrow {u_{1}}^{2} + \left( u_{1} +9 - u_{1} ight)^{2} + \left\lbrack u_{1} + 2\left( 9 - u_{1} ight)ightbrack^{2} = 275

    \Leftrightarrow {u_{1}}^{2} - 18u_{1} +65 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}u_{1} = 13 \Rightarrow d = - 4 \\u_{1} = 5 \Rightarrow d = 4 \\\end{matrix} ight.=> u_{2} = 9

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo