Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

    Ta có: y = 1 + \left| \cos x ight| \geq1;y = 1 + \left| \sin x ight| \geq 1

    => Loại đáp án y = 1 + \left| \cos xight|y = 1 + \left| \sin xight|

    Tại x = 0 => y = 1 ta thấy y = 1 +\sin|x| thỏa mãn

  • Câu 2: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

     Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2

    => u_n=2^n là cấp số nhân

  • Câu 3: Thông hiểu

    Giả sử có ba đường thẳng a, b, c trong đó b // a và c //a. những phát biểu nào sau đây là sai?

    (1) Nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c chéo nhau.

    (2) Nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì ba đường thẳng a, b, c song song với nhau từng đôi một.

    (3) Dù cho hai mặt phẳng (a, b) và (a, c) có trùng nhau hay không, ta vẫn có b // c.

    Phát biểu (1) sai vì nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c song song

    Phát biểu (2) Sai vì nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì b trùng c

    Phát biểu (3) Sai vì có thể xảy ra b trùng c.

  • Câu 4: Nhận biết

    Giá trị của \lim\frac{3n^{3} + n}{n^{2}} bằng:

    Với mọi M >0 lớn tùy ý, ta chọn n_{M}
= \left\lbrack \frac{M}{3} ightbrack + 1

    Ta có:

    \frac{3n^{3} + n}{n^{2}} = 3n +
\frac{1}{n} > M với mọi n >
n_{M}

    Vậy \lim\frac{3n^{3} + n}{n^{2}} = +
\infty.

  • Câu 5: Vận dụng cao

    Cho phương trình x^{12} + 1 = 4x^{4}.\sqrt{x^{n} + 1}. Tìm số nguyên dương n bé nhất để phương trình có nghiệm.

    Điều kiện xác định x^{n} \geq1

    Nếu n là số lẻ thì x^{n} \geq 1\Rightarrow x \geq 1

    Nếu n là số chẵn và x là nghiệm thì -x cũng là nghiệm của phương trình

    x = 1 không là nghiệm nên ta xét phương trình với x > 1

    \left\{ \begin{matrix}x^{12} + 1 \geq 2x^{2} \\x^{4}\left( x^{4} - 1 ight) + 1 \geq 2\sqrt{x^{4}\left( x^{4} - 1ight)} = 2x^{2}\sqrt{x^{4} - 1} \\\end{matrix} ight.

    \Rightarrow x^{12} + 1 \geq2x^{2}.2x^{2}\sqrt{x^{4} - 1} = 4x^{4}\sqrt{x^{4} - 1} (do x^{12} + 1 \geq 2x^{2} nên dấu bằng không xảy ra)

    Hơn nữa 4x^{4}\sqrt{x^{4} - 1} >4x^{4}\sqrt{x^{3} - 1} > 4x^{4}\sqrt{x^{2} - 1};(\forall x >1)

    Do đó phương trình không có nghiệm x >1 với n = 1,2,3,4

    Khi n = 5 ta có phương trình x^{12} + 1 = 4x^{4}.\sqrt{x^{5} +1}

    Giả sử f(x) = x^{12} + 1 -4x^{4}.\sqrt{x^{5} + 1} khi đó f(x) liên tục trên \lbrack 1; + \infty).

    Ta có: \left\{ \begin{matrix}f(1) = 2 \\f\left( \frac{6}{5} ight) < 0 \\\end{matrix} ight.\  \Rightarrow f(1).f\left( \frac{6}{5} ight) <0

    => f(x) = 0 có nghiệm

    Vậy n = 5.

  • Câu 6: Vận dụng cao

    Tìm tất các các giá trị thực của tham số m để phương trình \cos x -m =0 vô nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình cos x = a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Phương trình \cos x - m = 0 \Leftrightarrow \cos x = m

    Do đó, phương trình \cos x -m =0 vô nghiệm \Leftrightarrow \left| m ight| > 1 \Leftrightarrow \left[ \begin{gathered}  m <  - 1 \hfill \\  m > 1 \hfill \\ \end{gathered}  ight..

  • Câu 7: Nhận biết

    Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    Trong không gian, yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.

  • Câu 8: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} - 2x + 1}
- \sqrt{1 - 2x}}{x}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{4x^{2}
- 2x + 1} - \sqrt{1 - 2x}}{x}

    = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x^{2} - 2x + 1} - \sqrt{1 - 2x} ight)\left( \sqrt{4x^{2} - 2x +
1} + \sqrt{1 - 2x} ight)}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 -
2x} ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x}{\sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}} = \frac{0}{1 + 1} =
0

  • Câu 9: Nhận biết

    Trong mặt phẳng (\alpha), cho tứ giác ABCDABcắt CDtại E, ACcắt BD tại F, S là điểm không thuộc (\alpha). Giao tuyến của (SAB) (SCD)

    Hai mặt phẳng (SAB) (SCD) có hai điểm chung là S E nên có giao tuyến là đường thẳng SE.

  • Câu 10: Nhận biết

    Dãy số có các số hạng cho bởi - 1;1; - 1;1;... có số hạng tổng quát là công thức nào dưới đây?

    Vì dãy số đã cho không phải là dãy hằng nên loại các đáp án u_{n} = 1u_{n} = - 1

    Ta có: u_{1} = - 1 ở các đáp án u_{n} = ( - 1)^{n}u_{n} = ( - 1)^{n + 1}

    Xét đáp án u_{n} = ( - 1)^{n} \Rightarrowu_{1} = - 1

    Xét đáp án u_{n} = ( - 1)^{n + 1}\Rightarrow u_{1} = ( - 1)^{2} = 1 eq - 1

    Vậy công thức tổng quát của dãy số đã cho là u_{n} = ( - 1)^{n}

  • Câu 11: Thông hiểu

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    Đáp án là:

    Giải phương trình \frac{2\sin x}{\cot x} -\frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight) ta được họ nghiệm x = \frac{\pi}{a} +
\frac{k\pi}{b},k,a,b \in Z. Tính P = 2a + 3b?

    Đáp án: 11

    ĐKXĐ: \left\{ \begin{matrix}
\sin x eq 0 \\
\cos x eq 0 \\
\end{matrix} ight..

    \frac{2\sin x}{\cot x} - \frac{\tan x}{\sin x} = 2\left( \sin x - \cos x ight)

    \Leftrightarrow 2\sin^{2}x - \tan x\cot x= 2\left( \sin x - \cos x ight)\sin x\cot x

    \Leftrightarrow 2sin^{2}x - 1 = 2\left(
\sin x - \cos x ight)\cos x

    \Leftrightarrow 2\sin^{2}x - 1 =2\sin x.\cos x - 2\cos^{2}x

    \Leftrightarrow 2\sin^{2}x + 2\cos^{2}x -1 = \sin2x \Leftrightarrow \sin2x = 1

    \Leftrightarrow 2x = \frac{\pi}{2} +
k2\pi \Leftrightarrow x = \frac{\pi}{4} + k\pi\left( k\mathbb{\in Z}
ight)

    Đối chiếu điều kiện, nghiệm phương trình là x = \frac{\pi}{4} + k\pi,k\mathbb{\in
Z}

    \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow P = 2a + 3b = 2.4 + 3.1 =
11.

  • Câu 12: Thông hiểu

    Giá trị của giới hạn \lim_{x ightarrow 0}\frac{2\sqrt{1 + x} -
\sqrt[3]{8 - x}}{x} là:

    Ta có:

    \lim_{x ightarrow 0}\frac{2\sqrt{1 +
x} - \sqrt[3]{8 - x}}{x}

    = \lim_{x ightarrow 0}\left(
\frac{2\sqrt{1 + x} - 2}{x} + \frac{2 - \sqrt[3]{8 - x}}{x}
ight)

    = \lim_{x ightarrow 0}\left(
\frac{2}{\sqrt{x + 1} + 1} + \frac{1}{4 + 2\sqrt[3]{8 - x + \sqrt[3]{(8
- x)^{2}}}} ight)

    = 1 + \frac{1}{12} =
\frac{13}{12}

  • Câu 13: Vận dụng

    Với x thuộc \left ( 0;1  ight ) hỏi phương trình cos^{2}\left ( 6\pi x ight )=\frac{3}{4} có bao nhiêu nghiệm:

     Giải phương trình:

    \begin{matrix}  {\cos ^2}\left( {6\pi x} ight) = \dfrac{3}{4} \hfill \\   \Leftrightarrow \dfrac{{\cos \left( {12\pi x} ight) + 1}}{2} = \dfrac{3}{4} \hfill \\   \Leftrightarrow 2\cos \left( {12\pi x} ight) + 2 = 3 \hfill \\   \Leftrightarrow \cos \left( {12\pi x} ight) = \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {12\pi x = \dfrac{\pi }{3} + k2\pi } \\   {12\pi x =  - \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{1}{{36}} + \dfrac{k}{6}} \\   {x =  - \dfrac{1}{{36}} + \dfrac{k}{6}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Xét nghiệm {x = \frac{1}{{36}} + \frac{k}{6}}

    Do x \in \left( {0;1} ight) => 0 < \frac{1}{{36}} + \frac{k}{6} < 1 \Rightarrow k \in \left\{ {0;1;2;3;4;5} ight\}

    Xét nghiệm {x = -\frac{1}{{36}} + \frac{k}{6}}

    Do x \in \left( {0;1} ight) =>0 < -\frac{1}{{36}} + \frac{k}{6} < 1 \Rightarrow k \in \left\{ {1;2;3;4;5;6} ight\}

    Vậy có tất cả 12 giá trị x thỏa mãn

  • Câu 14: Thông hiểu

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Thực hiện kiểm tra đáp án ta thấy:

    Hàm số y = \cot x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    Hàm số y = \frac{\sin x + 1}{\cosx} không chẵn không lẻ

    Hàm số y = tan^{2}x và hàm số y = \left| \cot x ight| là hàm số chẵn.

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử (SAD) \cap (SBC) = d. Đường thẳng nào song song với d trong các đường thẳng dưới đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}AD//BC \\AD \subset (SAD) \\BC \subset (SBC) \\S \in (SAD) \cap (SBC) \\\end{matrix} ight.

    = > (SAD) \cap (SBC) =St//AD//BC

    => (SAD) \cap (SBC) = St hay St \equiv d

    Vậy giao tuyến của hai mặt phẳng (SAD)(SBC) là đường thẳng St song song với đường thẳng AD.

  • Câu 16: Vận dụng

    Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:

    Ba cạnh của một tam giác theo thứ tự là a;b;cvới a
< b < c lập thành một cấp số cộng nên

    \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
a + b + c = 3 \\
a + c = 2b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
3b = 3 \\
a + c = 2b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
b = 1 \\
a = 2b - c - 2 - c \\
\end{matrix} ight.

    Ta có:

    a^{2} + b^{2} = c^{2}\overset{b =
1}{\underset{a = 2 - c}{ightarrow}}(2 - c)^{2} + 1 =
c^{2}

    \Rightarrow - 4c = 5 \Rightarrow c =
\frac{5}{4}

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{3}{4} \\b = 1 \\c = \dfrac{5}{4} \\\end{matrix} ight.

  • Câu 17: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\sin \pi x{\text{     khi }}\left| x ight| \leqslant 1} \\   {x + 1{\text{       khi }}\left| x ight| > 1} \end{array}} ight.. Mệnh đề nào sau đây là đúng?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2} \\   {\mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\sin \pi x} ight) = \sin \pi  = 0} \end{array}} ight.

    => Hàm số gián đoạn tại x=1

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {x + 1} ight) = 0 \hfill \\  f\left( { - 1} ight) = \sin \left( { - \pi } ight) = 0 \hfill \\ \end{gathered}  \\   {\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {\sin \pi x} ight) = \sin \left( { - \pi } ight) = 0} \end{array}} ight.

    => Hàm số liên tục tại x=-1

    Vậy hàm số liên tục trên các khoảng \left( { - \infty ; 1} ight)\left( {  1; + \infty } ight).

  • Câu 18: Thông hiểu

    Trên đường tròn lượng giác có bao nhiêu vị trí biểu diện nghiệm của phương trình \tan3x= \tan x?

    Điều kiện xác định:

    \left\{ \begin{matrix}\cos3x eq 0 \\\cos x eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{6} + \dfrac{k\pi}{3} \\x eq \dfrac{\pi}{2} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan3x = \tan x

    \Leftrightarrow 3x = x +
k\pi

    \Leftrightarrow x =
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Kết hợp với điều kiện xác định suy ra phương trình có nghiệm x = k\pi;\left( k\mathbb{\in Z} ight) nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.

  • Câu 19: Thông hiểu

    Khẳng định nào đúng trong các khẳng định sau?

    \sin a + \cos a = \sqrt{2}\sin\left( a +
\frac{\pi}{4} ight)

  • Câu 20: Thông hiểu

    Cho một cấp số cộng có {u_4} = 2;{u_2} = 4. Hỏi {u_1} bằng bao nhiêu?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_4} = 2} \\   {{u_2} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + 3d = 2} \\   {{u_1} + d = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {d =  - 1} \end{array}} ight.

  • Câu 21: Vận dụng

    Cho hình chóp S.ABCDAD không song song với BC. Gọi M,N,P,Q,R,T lần lượt là trung điểm AC,BD,BC,CD,SA,SD. Các mệnh đề sau đúng hay sai?

    a) MP không song song RT.Đúng||Sai

    b) MQ song song RT. Đúng||Sai

    c) MN song song RT. Sai||Đúng

    d) PQ song song RT. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCDAD không song song với BC. Gọi M,N,P,Q,R,T lần lượt là trung điểm AC,BD,BC,CD,SA,SD. Các mệnh đề sau đúng hay sai?

    a) MP không song song RT.Đúng||Sai

    b) MQ song song RT. Đúng||Sai

    c) MN song song RT. Sai||Đúng

    d) PQ song song RT. Sai||Đúng

    Hình vẽ minh họa

    Ta có: M,Q lần lượt là trung điểm của AC,CD

    \Rightarrow MQ là đường trung bình của tam giác CAD

    \Rightarrow MQ \parallel AD\ \ \ \
(1)

    Ta có: R,T lần lượt là trung điểm của SA,SD

    \Rightarrow RT là đường trung bình của tam giác SAD

    \Rightarrow RT \parallel AD\ \ \
(2)

    Từ (1),(2) suy ra: MQ \parallel RT.

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Sai

  • Câu 22: Thông hiểu

    Cho lăng trụ ABC.A'B'C'. Lấy M là trung điểm của AC. Xác định hình chiếu của điểm M lên mặt phẳng (AA'B') theo phương chiếu CB là:

    Hình vẽ minh họa

    Luyện tập Phép chiếu song song. Hình biểu diễn của một hình không gian

    Gọi N là trung điểm của  AB . Ta có: MN//CB

    Vậy hình chiếu song song của điểm  M  lên \left( {AA'B'} ight) theo phương chiếu CB là điểm N.

  • Câu 23: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD' mặt phẳng chiếu (ABB'A') lần lượt là:

    Hình vẽ minh họa

    Do CD'//\ BA' = >CD'//(ABB'A')

    Nên phương chiếu CD' không cắt mặt phẳng chiếu (ABB'A').

    Vì vậy ta không xác định được ảnh của A, B’ qua phép chiếu song song phương CD' mặt phẳng chiếu (ABB'A').

  • Câu 24: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos6a = \cos^{2}3a -\sin^{2}3a

    = 2\cos^{2}3a - 1 = 1 -2\sin^{2}3a

  • Câu 25: Vận dụng cao

    Tính tổng S = \left( \frac{1}{2} -
\frac{1}{3} ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... +
\left( \frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...:

    Ta có:

    S = \left( \frac{1}{2} - \frac{1}{3}
ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... + \left(
\frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...

    = \left( {\underbrace {\dfrac{1}{2} + \dfrac{1}{4} + ... + \dfrac{1}{{{2^n}}} + ...}_{CSN:{u_1} = q = \dfrac{1}{2}}} ight) - \left( {\underbrace {\dfrac{1}{3} + \dfrac{1}{5} + .... + \dfrac{1}{{{3^n}}}}_{CSN:{u_1} = q = \dfrac{1}{3}}} ight)

    = \dfrac{\dfrac{1}{2}}{1 - \dfrac{1}{2}} -\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = 1 - \dfrac{1}{2} =\dfrac{1}{2}

  • Câu 26: Nhận biết

    Nghiệm của phương trình tan (2x) -1 = 0 là?

     Ta có: \tan 2x - 1 = 0 \Leftrightarrow \tan 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{4} + k\pi  \Leftrightarrow x = \frac{\pi }{8} + k\frac{\pi }{2}.

  • Câu 27: Nhận biết

    Giới hạn \lim\frac{2}{n - 3} bằng

    Ta có:

    \lim\frac{2}{n - 3} =\lim\dfrac{\dfrac{2}{n}}{1 - \dfrac{3}{n}} = \dfrac{0}{0 - 0} =0

  • Câu 28: Nhận biết

    Trong các hàm số sau hàm số nào là hàm số lẻ?

    Xét hàm số y = sinx:

    Lấy x \in D \Rightarrow  - x \in D ta có:

    \sin \left( { - x} ight) =  - \sin x \Rightarrow f\left( { - x} ight) =  - x

    Vậy hàm số y = sinx là hàm số lẻ.

  • Câu 29: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 30: Thông hiểu

    Tính giới hạn \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}}.

    Ta có:

    \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}} = \lim\dfrac{\dfrac{4^{n + 1} + 6^{n + 2}}{8^{n}}}{\dfrac{5^{n} +8^{n}}{8^{n}}}

    = \lim\dfrac{4.\left( \dfrac{1}{2}ight)^{n} + 36.\left( \dfrac{3}{4} ight)^{n}}{\left( \dfrac{5}{8}ight)^{n} + 1} = 0

  • Câu 31: Nhận biết

    Cho cấp số cộng có số hạng đầu {u_1} =  - \frac{1}{2} công sai d = \frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số này là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d,\left( {{u_1} =  - \dfrac{1}{2};d = \dfrac{1}{2}} ight) \hfill \\   \Rightarrow {u_n} =  - \dfrac{1}{2} + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 0} \\   {{u_3} = {u_2} + d = \dfrac{1}{2}} \\   {{u_4} = {u_3} + d = 1} \\   {{u_5} = {u_4} + d = \dfrac{3}{2}} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của ACBC. Trên đoạn BD lấy P sao cho PB = 2PD. Khi đó giao điểm của đường thẳng CD với (MNP) là:

    Hình vẽ minh họa

    Trong tam giác BCD, gọi I = NP \cap CD

    Khi đó \left\{ \begin{matrix}
I \in CD \\
I \in NP,NP \subset (MNP) \\
\end{matrix} \Rightarrow I = CD \cap (MNP) ight..

    Vậy giao điểm của đường thẳng CD với (MNP) là giao điểm của NPCD.

  • Câu 33: Thông hiểu

    Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10

    Ta có: {u_{10}} = {u_1} + \left( {10 - 1} ight)d = {u_{10}} =  - 2 + 9.3 = 25

  • Câu 34: Vận dụng

    Số đo ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân. Biết thể tích của khối hộp là 125cm^{3} và diện tích toàn phần là 175cm^{2}. Tính tổng số đo ba kích thước của hình hộp chữ nhật đó.

    Ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân nên ta có thể gọi ba kích thước đó là \frac{a}{q};q;aq.

    Thể tích khối hộp chữ nhật: V =
\frac{a}{q}.a.a.q = a^{3} = 125 \Rightarrow a = 5

    Diện tích toàn phần của hình hộp chữ nhật là

    S_{tp} = 2.\left( \frac{a}{q}.a + a.a.q
+ a.q + \frac{a}{q} ight)

    = 2a^{2}\left( 1 + q + \frac{1}{q}
ight) = 50.\left( 1 + q + \frac{1}{q} ight)

    Theo giả thiết ta có:

    50.\left( 1 + q + \frac{1}{q} ight) =175 \Rightarrow \left\lbrack \begin{matrix}q = 2 \\q = \dfrac{1}{2} \\\end{matrix} ight.

    Với q = 2 hoặc q = \frac{1}{2} thì kích thước của hình hộp chữ nhật là 2,5cm;5cm;10cm

    => Tổng các kích thước là 17,5cm.

  • Câu 35: Nhận biết

    Trên đường tròn bán kính 15dm, cho cung tròn có độ dài l = 25\pi(dm). Số đo của cung tròn đó là:

    Độ dài cung tròn là: l =
R.\alpha

    => \alpha = \frac{l}{R} =
\frac{25\pi}{15} = \frac{5\pi}{3}

  • Câu 36: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Các điểm I;J lần lượt là trọng tâm các tam giác SAB, SAD, MC =
MD,(M \in CD). Mặt phẳng nào dưới đây song song với đường thẳng IJ?

    Hình vẽ minh họa

    Ta có:

    IJ//EF//BD \Rightarrow
IJ//(SBD)

  • Câu 37: Vận dụng cao

    Cho tổng S_{n} =
\frac{3}{(1.2)^{2}} + \frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots
+ \frac{2n + 1}{\lbrack n(n + 1)brack^{2}}. Giá trị S10

    Cách 1:

    Ta có \frac{3}{(1.2)^{2}} = \frac{1}{1} -
\frac{1}{4};\frac{5}{(2.3)^{2}} = \frac{1}{4} -
\frac{1}{9};\ldots

    Suy ra S_{n} = \frac{1}{1} - \frac{1}{4} +
\frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{n^{2}} - \frac{1}{(n +
1)^{2}} = \frac{n(n + 2)}{(n + 1)^{2}}

    Vậy S_{10} = \frac{10(10 + 2)}{(10 +
1)^{2}} = \frac{120}{121}.

    Cách 2:

    Ta có S_{10} = \frac{3}{(1.2)^{2}} +
\frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots +
\frac{21}{(10.11)^{2}}

    Suy ra S_{10} = \frac{1}{1} - \frac{1}{4}
+ \frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{10^{2}} -
\frac{1}{11^{2}} = \frac{1}{1} - \frac{1}{11^{2}} =
\frac{120}{121}.

  • Câu 38: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 5 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có u_{n} = 5 + 1 + 2 + 3 + \ldots + n -
1 = 5 + \frac{n(n - 1)}{2}

  • Câu 39: Vận dụng

    Cho tứ diện ABCD. Các cạnh AC,BD,AB,CD,AD,BC có trung điểm lần lượt là M,N,P,Q,R,S. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?

    Hình vẽ minh họa

    Ta có:

    MP // BC // NQ, MP = \frac{1}{2}BC =
NQ

    => MPNQ là hình bình hành

    => M, N, P, Q thuộc một mặt phẳng.

    MR // CD // SN, MR = \frac{1}{2}CD =
SN

    => MRNS là hình bình hành

    => M, R, S, N thuộc một mặt phẳng.

    PS // AC // RQ, PS = \frac{1}{2}AC =
RQ

    => PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.

    Vậy M,P,R,S không thuộc cùng một mặt phẳng.

  • Câu 40: Nhận biết

    Cho c là hằng số, k là số nguyên dương khác không. Tìm khẳng định sai.

    Mệnh đề \lim_{x ightarrow -
\infty}x^{k} = - \infty sai khi k là số chẵn.

  • Câu 41: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có:

    MN // AD (đường trung bình 4SAD)

    OP // AD (đường trung bình 4BAD)

    => MN // OP

    => O, N, M, P cùng nằm trong một mặt phẳng.

    \left\{ \begin{matrix}MN//AD//BC \subset (SBC) \\OM//SC \subset (SBC) \\\end{matrix} ight.

    \Rightarrow (OMN)//(SBC)

  • Câu 42: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{\sqrt {x + 4}  - 2}}{x};x > 0} \\ 
  {mx + m + \dfrac{1}{4};x \leqslant 0} 
\end{array}} ight. với m là tham số. Tính giá trị của tham số m để hàm số có giới hạn tại x = 0.

    Hàm số có giới hạn tại x = 0

    \Leftrightarrow \lim_{x ightarrow
0^{+}}f(x) = \lim_{x ightarrow 0^{-}}f(x)

    \Leftrightarrow \lim_{x ightarrow
0^{+}}\frac{\sqrt{x + 4} - 2}{x} = \lim_{x ightarrow 0^{-}}\left( mx +
m + \frac{1}{4} ight)

    \Leftrightarrow \frac{1}{4} = m +
\frac{1}{4} \Leftrightarrow m = 0

  • Câu 43: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là S_{n} = 5^{n} - 1. Tìm số hạng thứ 4 của cấp số nhân đã cho.

    Ta có:

    S_{n} = 5^{n - 1}

    \Rightarrow u_{1}.\frac{1 - q^{n}}{1 -q} = 5^{n - 1}

    \Rightarrow \left\{ \begin{matrix}u_{1} = q - 1 \\q = 5 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = 5 \\\end{matrix} ight.

    Khi đó u_{4} = u_{1}.q^{3} = 4.5^{3} =500

  • Câu 44: Nhận biết

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Chọn khẳng định đúng trong các khẳng định sau.

    Ta có: \left\{ \begin{matrix}
f(0) = 1 \\
f(1) = - 1 \\
f(2) = 15 \\
\end{matrix} ight.

    => Phương trình có ít nhất hai nghiệm trên khoảng (0;2).

  • Câu 45: Nhận biết

    Một cấp số nhân có số hạng thứ hai bằng 4 và số hạng thứ sáu bằng 64. Khi đó, số hạng tổng quát của cấp số nhân đó có thể tính theo công thức nào dưới đây?

    Ta có: \left\{ \begin{matrix}
u_{2} = 4 \\
u_{6} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1}q = 4 \\
u_{1}q^{5} = 64 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
q = 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = u_{1}.q^{n - 1} =
2.2^{n - 1} = 2^{n}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo