Cho tam giác ABC vuông tại C có độ dài ba cạnh lập thành một cấp số nhân có công bội lớn hơn 1. Xác định công bội của cấp số nhân đó.
Giả sử là độ dài ba cạnh của tam giác ABC,
.
Do độ lớn ba cạnh tam giác lập thành cấp số nhân, công bội nên
Cho tam giác ABC vuông tại C có độ dài ba cạnh lập thành một cấp số nhân có công bội lớn hơn 1. Xác định công bội của cấp số nhân đó.
Giả sử là độ dài ba cạnh của tam giác ABC,
.
Do độ lớn ba cạnh tam giác lập thành cấp số nhân, công bội nên
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Khẳng định nào sau đây đúng?
Ta có:
Cho các số thực
thỏa mãn
. Số giao điểm của đồ thị hàm số
và trục
là
Đáp án: 3
Cho các số thực thỏa mãn
. Số giao điểm của đồ thị hàm số
và trục
là
Đáp án: 3
Ta có sao cho
(1).
Ta có sao cho
(2).
Ta có sao cho
(3).
Từ (1), (2) và (3) ta suy ra số giao điểm của đồ thị hàm số và trục bằng 3.
Tính giá trị biểu thức
. Biết
?.
Ta có:
Cho tổng S(n) = 2 + 4 + 6 + … + 2n. Khi đó S30 bằng?
Ta có S30 = 2 + 4 + 6 + … + 60
⇒ 2S30 = (2+60) + (4+58) + (6+56) + … + (60+2) (có 30 ngoặc đơn)
bằng:
Ta có:
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
bằng:
Ta có:
Cho hình chóp
có đáy
là hình bình hành tâm
,
là trung điểm của
. Các giao tuyến của hình chóp
với mặt phẳng đi qua điểm
và song song với
và
là hình gì?
Hình vẽ minh họa:
Gọi mặt phẳng đi qua điểm và song song với
và
là mặt phẳng
.
với
hay
là trung điểm của
.
Suy ra với NP//SB hay P là trung điểm của SA.
Suy ra với PQ//AC hay Q là trung điểm của SC.
Xét mặt phẳng (ABCD) gọi , trong (SCD) gọi
suy ra
Vậy các giao tuyến tạo bởi hình chóp và mặt phẳng là ngũ giác MNPHQ.
Hình biểu diễn của một hình thoi là hình nào sau đây?
Hình biểu diễn của một hình thoi là hình bình hành.
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Cho dãy số (un) với
. Công thức số hạng tổng quát của dãy số là?
Ta có suy ra được
.
Ta có:
với
. Xác định giá trị của biểu thức
?
Ta có:
Đồ thị hàm số
được suy ra từ đồ thị C của hàm số y = cosx + 1 bằng cách:
Ta có:
Tịnh tiến đồ thị y = cosx + 1 sang phải ta được đồ thị hàm số
Tiếp theo tịnh tiến đồ thị xuống dưới một đơn vị ta được đồ thị hàm số
VD
0
Cho hình hộp
có
là trung điểm của
. Gọi mặt phẳng
đi qua
và song song với
. Giả sử
. Tỉ lệ độ dài của
và
là:
Hình vẽ minh họa:
Gọi trung điểm của lần lượt là
.
Dễ thấy
Xét mặt phẳng , gọi
Xét tam giác và tam giác
ta có:
(đối đỉnh)
(so le trong)
Vậy hay
Cho dãy số
là một cấp số nhân có số hạng đầu
và công bội
. Đẳng thức nào sau đây đúng?
Cho dãy số là một cấp số nhân có số hạng đầu
và công bội
.
Theo công thức số hạng tổng quát ta có ,
.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Phương trình
có nghiệm là:
Ta có:
Trong các dãy số sau, dãy số nào là cấp số cộng?
Ta có:
Khi đó theo định nghĩa cấp số cộng dãy số là một cấp số cộng với
Cho cấp số cộng
có
. Gọi
là tổng 5 số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Ta có:
Và
Cho cấp số nhân
với
và
. Công bội của cấp số nhân đã cho bằng
Ta có .
Tính giới hạn ![]()
Ta có:
Kiểm tra sự đúng sai của các kết luận sau?
a)
Sai||Đúng
b)
khi
Đúng||Sai
c) Hàm số
liên tục tại
Đúng||Sai
c)
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Sai||Đúng
b) khi
Đúng||Sai
c) Hàm số liên tục tại
Đúng||Sai
c) Sai||Đúng
Ta có:
Ta có: Khi thì
Ta có:
Vậy hàm số liên túc tại
Ta có:
Cho hình chóp
có đáy
là hình bình hành tâm
. Giao tuyến của hai mặt phẳng
và
là:
Hình vẽ minh họa
Ta có:
Mặt khác
Từ (*) và (**) ta suy ra
Cho hình chóp
có đáy là hình bình hành. Gọi
lần lượt là trung điểm của
. Mệnh đề nào dưới đây là mệnh đề sai?

Hình vẽ minh họa:
Ta có:
Ta có: là đường trung bình trong tam giác SAC
Ta có: là đường trung bình trong tam giác
=>
=>
Dễ thấy cắt
tại trung điểm
của
.
Do đó mệnh đề là mệnh đề sai.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số
được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số
được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng . Đúng||Sai
Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.
Số hạng thứ ba của dãy số là:
.
Xét ta có:
suy ra
là dãy số giảm
Lại có suy ra
là dãy số bị chặn trên.
Suy ra phát biểu “Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới.” là phát biểu sai.
Ta có: là tổng cấp số nhân lùi vô hạn
với
có số hạng đầu và công bội lần lượt là:
Xác định hàm số chẵn trong các hàm số dưới đây?
Ta có:
Hàm số có tập xác định
nên
và
Suy ra hàm số là hàm số lẻ.
Hàm số là hàm số chẵn vì tập xác định
nên
và
Tương tự ta có hàm số là hàm số lẻ, hàm số
không chẵn cũng không lẻ.
Cho hàm số 
Có bao nhiêu giá trị nguyên của
để hàm số gián đoạn tại ![]()
Đáp án: 2024
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
TXĐ:
Ta có:
Để hàm số gián đoạn tại thì
Vậy có giá trị nguyên của
để hàm số gián đoạn tại
Cho hai số -3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số tạo thành cấp số cộng có công sai d = 2. Tìm n
Xen kẽ giữa hai số -3 và 23 n số hạng để tạo thành một cấp số cộng thì:
Tập các giá trị của tham số m để phương trình
có nghiệm là?
(*)
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Cho tứ diện
. Trên
,
lần lượt lấy hai điểm
sao cho
cắt
tại
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa:
Ta có: là điểm chung của hai mặt phẳng
và
Ta lại có: nên
là điểm chung thứ hai.
Vậy giao tuyến của hai mặt phẳng và
là
Cho hình chóp
có đáy
là hình bình hành. Giả sử
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Ta lại có: suy ra đường thẳng d đi qua S và song song với AB.
Cho dãy số
biết
. Ba số hạng đầu tiên của dãy đó lần lượt là những số nào dưới đây?
Ta có:
Cho một cấp số cộng có
. Hỏi
bằng bao nhiêu?
Ta có:
Cho tam giác
. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tam giác
?
Có duy nhất một mặt phẳng chứa tất cả các đỉnh của tam giác .
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là
Hình vẽ minh họa

Ta có thiết diện của S.ABCD cắt bởi
mặt phẳng (IJK) là ngũ giác
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để
.
Ta có: nên
Theo đề bài ta có
Mặt khác
Vậy có tất cả 2012 giá trị nguyên thỏa mãn.
Tính giới hạn ![]()
Ta có:
Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?
i)
.
iii) ![]()
ii)
.
iv)
.
i) Ta có:
Vậy i) đúng.
ii) .
Vậy ii) đúng.
iii) .
Vậy iii) sai.
iv) Ta lấy . Ta có
.
Ta có VP VT.
Do đó iv) sai.
Vậy có 2 đẳng thức đúng.
Kí hiệu nào sau đây là tên của mặt phẳng
Kí hiệu tên của mặt phẳng là .
Tính giới hạn ![]()
Ta có:
Cho số thực m thỏa mãn
. Khi đó giá trị của m là bao nhiêu?
Ta có:
Qua phép chiếu song song, tính chất nào không được bảo toàn?
Do hai đường thẳng qua phép chiếu song song ảnh của chúng sẽ cùng thuộc một mặt phẳng.
Suy ra tính chất chéo nhau không được bảo toàn.