Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách.

    Ta có: y = \sin x = \cos\left(
\frac{\pi}{2} - x ight) = \cos\left( x - \frac{\pi}{2}
ight)

    => Đồ thị hàm số y = sinx được suy ra từ đồ thị C của hàm số y = cosx bằng cách tịnh tiến C qua phải một đoạn có độ dài là \frac{\pi}{2}

  • Câu 2: Thông hiểu

    Biết \lim_{x ightarrow 3}\dfrac{x^{2} +bx + c}{x - 3} = 8\ (b,c\mathbb{\in R}). Giá trị P = b + c bằng

    Đáp án: -13||- 13

    Đáp án là:

    Biết \lim_{x ightarrow 3}\dfrac{x^{2} +bx + c}{x - 3} = 8\ (b,c\mathbb{\in R}). Giá trị P = b + c bằng

    Đáp án: -13||- 13

    \lim_{x ightarrow 3}\frac{x^{2} + bx
+ c}{x - 3} = 8 là hữu hạn nên phương trình x^{2} + bx + c = 0 có nghiệm x = 3

    \Leftrightarrow 3b + c + 9 = 0
\Leftrightarrow c = - 9 - 3b

    Khi đó

    \lim_{x ightarrow 3}\frac{x^{2} + bx +
c}{x - 3} = \lim_{x ightarrow 3}\frac{x^{2} + bx - 9 - 3b}{x - 3} =
\lim_{x ightarrow 3}\frac{(x - 3)(x + 3 + b)}{x - 3}

    = \lim_{x ightarrow 3}(x + 3 + b) = 8
\Leftrightarrow 6 + b = 8 \Leftrightarrow b = 2 \Rightarrow c = -
15

    Vậy P = b + c = - 13.

  • Câu 3: Thông hiểu

    Cho cấp số cộng (Un) có số hạng tổng quát là {u_n} = 3n - 2. Xác định công sai của cấp số cộng.

    Ta có: \begin{matrix}  {u_{n + 1}} - {u_n} = 3\left( {n + 1} ight) - 2 - 3n + 2 = 3 \hfill \\   \Rightarrow d = 3 \hfill \\ \end{matrix}

  • Câu 4: Thông hiểu

    Cho dãy (un) xác định bởi u_{1} = \frac{1}{2}un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{2} = u_{1} + 2 \\
u_{3} = u_{2} + 4 \\
\ldots \\
u_{49} = u_{48} + 2.49 \\
u_{50} = u_{49} + 2.50 \\
\end{matrix} ight.

    Cộng vế với vế các đẳng thức trên, ta được:

    u_{50} = \frac{1}{2} + 2(2 + 3 + \ldots +
50) = \frac{1}{2} + 2(25.51 - 1) = 2548,5.

  • Câu 5: Vận dụng cao

    Xác định công thức tổng quát của dãy số \left\{ \begin{matrix}u_{1} = \dfrac{- 1}{2} \\u_{n + 1} = \sqrt{\dfrac{u_{n} + 1}{2}};n \geq 1 \\\end{matrix} ight..

    Ta có: \left\{ \begin{matrix}u_{2} = \sqrt{\dfrac{u_{1} + 1}{2} = \dfrac{1}{2}} \\u_{3} = \sqrt{\dfrac{u_{2} + 1}{2}} = \dfrac{\sqrt{3}}{2} \\\end{matrix} ight.

    Nhận thấy \left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} = \cos\left( \dfrac{2\pi}{3} ight) \\u_{2} = \dfrac{1}{2} = \cos\left( \dfrac{\pi}{3} ight) \\u_{3} = \dfrac{1}{2} = \dfrac{\sqrt{3}}{2} = \cos\left( \frac{\pi}{6}ight) \\\end{matrix} ight.

    Dự đoán u_{n} = \cos\left(
\frac{4\pi}{3.2^{n}} ight)(*)

    Ta chứng minh bằng quy nạp

    Trước hết u_{1} = \cos\left(
\frac{2\pi}{3} ight) = \cos\left( \frac{4\pi}{3.2^{1}}
ight) đúng với n = 1

    Giả sử (*) đúng khi n = k;k \in \mathbb{N}^{*}. Khi đó u_{k} = \cos\left( \frac{4\pi}{3.2^{k}}
ight)

    Ta có:

    u_{k + 1} = \sqrt{\dfrac{u_{k} + 1}{2}} =\sqrt{\dfrac{\cos\left( \dfrac{4\pi}{3.2^{k}} ight) +1}{2}}

    = \sqrt{\dfrac{\cos\left(2.\dfrac{4\pi}{3.2^{k + 1}} ight) + 1}{2}}

    = \sqrt{\dfrac{2.\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2} - 1 +1}{2}}

    = \sqrt{\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2}}

    = \left| \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight) ight|

    Mặt khác ta có k \geq 1. Do đó 0 \leq \frac{4\pi}{3.2^{k + 1}} \leq
\frac{4\pi}{3.2^{1 + 1}} = \frac{\pi}{3} < \frac{\pi}{2}

    Vậy \cos\left( \dfrac{4\pi}{3.2^{k + 1}}ight) \geq 0 \Rightarrow u_{k + 1} = \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight)

    Vậy (*) đúng với n = k + 1. Theo nguyên lí quy nạp, ta có điều phải chứng minh.

  • Câu 6: Thông hiểu

    Trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack, đồ thị hai hàm số y
= \tan xy = 1 cắt nhau tại bao nhiêu điểm?

    Phương trình hoành độ giao điểm của hai đồ thị hàm số là

    \tan x = 1 \Rightarrow x = \frac{\pi}{4}
+ k\pi;\left( k\mathbb{\in Z} ight)

    Theo bài ra ta có: x \in \left\lbrack -
2\pi;\frac{5\pi}{2} ightbrack

    \Rightarrow - 2\pi \leq \frac{\pi}{4} +
k\pi \leq \frac{5\pi}{2}

    \Rightarrow - \frac{9}{4} \leq k \leq
\frac{9}{4}

    \Rightarrow k \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack.

  • Câu 7: Thông hiểu

    Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?

    Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai d= 3;u_{1} = 25

    Tổng số ghế là

    S_{30} = u_{1} + u_{2} + ... +u_{30}

    = 30u_{1} + \frac{30.29}{2}.d =2055

  • Câu 8: Vận dụng cao

    Tính tổng S = \left( \frac{1}{2} -
\frac{1}{3} ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... +
\left( \frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...:

    Ta có:

    S = \left( \frac{1}{2} - \frac{1}{3}
ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... + \left(
\frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...

    = \left( {\underbrace {\dfrac{1}{2} + \dfrac{1}{4} + ... + \dfrac{1}{{{2^n}}} + ...}_{CSN:{u_1} = q = \dfrac{1}{2}}} ight) - \left( {\underbrace {\dfrac{1}{3} + \dfrac{1}{5} + .... + \dfrac{1}{{{3^n}}}}_{CSN:{u_1} = q = \dfrac{1}{3}}} ight)

    = \dfrac{\dfrac{1}{2}}{1 - \dfrac{1}{2}} -\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = 1 - \dfrac{1}{2} =\dfrac{1}{2}

  • Câu 9: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N tương ứng là hai điểm bất kì trên các đoạn thẳng ACBD. Tìm giao tuyến của hai mặt phẳng (MBD)(NAC).

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (MBD) \cap (NAC) \\
N \in (MBD) \cap (NAC) \\
\end{matrix} ight.

    \Rightarrow (MBD) \cap (NAC) =
MN

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của ABCD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng song song với:

    Hình vẽ minh họa

    Vì hai mặt phẳng (SAB) và (SCD) cùng đi qua S lần lượt chứa 2 đường thẳng song song là ABCD nên giao tuyến của chúng là đường thẳng đi qua S và song song với ABCD tức song song với BI.

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

     Phát biểu nào sau đây là đúng

    Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.

    Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.

    Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.

    => H là giao điểm của MN và mặt phẳng (SBD).

  • Câu 12: Vận dụng cao

    Cho các số thực a,b,c thỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Khi đó số giao điểm của hàm số y = x^{3} + ax^{2} + bx + c với trục Ox là:

    Hàm số y = x^{3} + ax^{2} + bx +
c xác định và liên tục trên \mathbb{R}.

    Hàm số y = x^{3} + ax^{2} + bx +
c bậc ba nên đồ thị hàm số cắt Ox tối đa tại 3 điểm (1)

    Ta có:

    \lim_{x ightarrow - \infty}y = -
\infty suy ra \exists\alpha < -
2 sao cho f(\alpha) <
0

    Lại có: \lim_{x ightarrow + \infty}y =
+ \infty suy ra \exists\beta >
2 sao cho f(\beta) >
0

    Mặt khác \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
y(2) = 8 + 4a + 2b + c < 0 \\
\end{matrix} ight.

    Từ đó suy ra \left\{ \begin{matrix}
y(\alpha).y( - 2) < 0 \\
y( - 2).y(2) < 0 \\
y(2).y(\beta) < 0 \\
\end{matrix} ight.

    Do đó đồ thị hàm số cắt Ox tại ít nhất ba điểm (2)

    Từ (1) và (2) suy ra đồ thị hàm số đã cho cắt trục Ox tại đúng ba điểm.

  • Câu 13: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \cos x=m+1 có nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình \cos x =a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Do đó, phương trình \cos x=m+1 có nghiệm khi và chỉ khi \left| {m + 1} ight| \leqslant 1

    \Leftrightarrow  - 1 \leqslant m + 1 \leqslant 1 \Leftrightarrow  - 2 \leqslant m \leqslant 0\xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ { - 2; - 1;0} ight\}.

  • Câu 14: Nhận biết

    Tính giới hạn L = \lim_{x ightarrow
3}\frac{x - 3}{x + 3}?

    Ta có:

    L = \lim_{x ightarrow 3}\frac{x - 3}{x
+ 3} = \frac{3 - 3}{3 + 3} = 0

  • Câu 15: Nhận biết

    Xác định bốn số hạng đầu của một dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = sin^{2}\left( \frac{\pi
n}{4} ight) + \cos\left( \frac{2\pi n}{3} ight) với \forall n \in \mathbb{N}^{*}?

    Ta có:

    u_{1} = \sin^{2}\left( \frac{\pi}{4}ight) + \cos\left( \frac{2\pi}{3} ight) = 0

    u_{2} = \sin^{2}\left( \frac{2\pi}{4}ight) + \cos\left( \frac{4\pi}{3} ight) = \frac{1}{2}

    u_{3} = \sin^{2}\left( \frac{3\pi}{4}ight) + \cos\left( \frac{6\pi}{3} ight) = \frac{3}{2}

    u_{4} = \sin^{2}\left( \frac{4\pi}{4}ight) + \cos\left( \frac{8\pi}{3} ight) = \frac{- 1}{2}

  • Câu 16: Nhận biết

    Giả sử đường thẳng d cắt mặt phẳng chiếu (\alpha) tại điểm H thì hình chiếu song song của d trên mặt phẳng (\alpha) là:

    Nếu phương chiếu song song hoặc trùng với đường thẳng d thì hình chiếu là điểm H.

    Nếu phương chiếu không song song hoặc không trùng với đường thẳng d thì hình chiếu là đường thẳng đi qua điểm H.

  • Câu 17: Vận dụng

    Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ các nửa đường thẳng Ax, By, Cz, Dt ở cùng phía so với mặt phẳng (ABCD), song song với nhau và không nằm trong (ABCD). Một mặt phẳng (P) cắt Ax, By, Cz, Dt tương ứng tại A', B', C', D' sao cho AA' = 3, BB' = 5, CC' = 4. Tính DD'.

    Đáp án: 2

    Đáp án là:

    Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ các nửa đường thẳng Ax, By, Cz, Dt ở cùng phía so với mặt phẳng (ABCD), song song với nhau và không nằm trong (ABCD). Một mặt phẳng (P) cắt Ax, By, Cz, Dt tương ứng tại A', B', C', D' sao cho AA' = 3, BB' = 5, CC' = 4. Tính DD'.

    Đáp án: 2

    Hình vẽ minh họa

    Do (P) cắt mặt phẳng (Ax,By) theo giao tuyến A'B'; cắt mặt phẳng (Cz,Dt) theo giao tuyến C'D', mà hai mặt phẳng (Ax,By)(Cz,Dt) song song nên A'B'//C'D'.

    Tương tự có A'D'//B'C' nên A'B'C'D' là hình bình hành.

    Gọi O, O' lần lượt là tâm ABCDA'B'C'D'.

    Dễ dàng có OO' là đường trung bình của hai hình thang AA'C'CBB'D'D nên OO' = \frac{AA' + CC'}{2} =
\frac{BB' + DD'}{2}.

    Từ đó ta có DD' = 2.

  • Câu 18: Nhận biết

    Giá trị của B =
\lim\frac{2n + 3}{n^{2} + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn \ \
n_{a} thỏa mãn:

    \frac{2n_{a} +
3}{n_{a}^{2} + 1} < a

    \Leftrightarrow n_{a} > \frac{1 +
\sqrt{a^{2} - 4a + 13}}{a}

    Ta có: \frac{2n + 3}{n^{2} + 1} < a\
với\ mọi\ n > n_{a}

    Suy ra  B =\lim\frac{2n + 3}{n^{2} + 1} =0 .

  • Câu 19: Vận dụng

    Biết \lim_{x
ightarrow 1}\frac{f(x) - 10}{x - 1} = 5. Hỏi giá trị giới hạn \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack} bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5

    \Rightarrow f(1) = 10

    Khi đó: \lim_{x ightarrow 1}\frac{f(x)
- 10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{\left( \sqrt{x} - 1
ight)\left( \sqrt{x} + 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{(x - 1)\left\lbrack
\sqrt{4f(x) + 9} + 3 ightbrack}

    = \frac{5.\left( \sqrt{1} + 1
ight)}{\left\lbrack \sqrt{4f(1) + 9} + 3 ightbrack} =
1

  • Câu 20: Vận dụng

    Nếu \frac{1}{b +c};\frac{1}{c + a};\frac{1}{a + b} theo thứ tự lập thành cấp số cộng thì dãy số nào sau đây lập thành một cấp số cộng.

    Theo giả thiết ta có:

    \frac{2}{c + a} = \frac{1}{b + c} +\frac{1}{a + b}

    \Rightarrow \frac{c + a}{2} = \frac{(b +c)(b + a)}{2b + a + c}

    \Leftrightarrow (c + a)^{2} + 2b.(a + c)= 2\left( b^{2} + ab + bc + ac ight)

    \Leftrightarrow a^{2} + c^{2} + 2ac +2bc + 2bc = 2\left( b^{2} + ab + bc + ac ight)

    \Leftrightarrow a^{2} + c^{2} =2b^{2}

  • Câu 21: Nhận biết

    Giá trị của \lim(2n + 1) bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} > \frac{M - 1}{2}

    Ta có:

    2n + 1 > 2n_{M} + 1 > M\ ,\
\ \ \forall n > n_{M}.

    = > \lim(2n + 1) = +
\infty

  • Câu 22: Vận dụng

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 2\left( u_{3} +
u_{4} + u_{5} ight) = u_{6} + u_{7} + u_{8}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}?

    Đáp án: 4

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 2\left( u_{3} +
u_{4} + u_{5} ight) = u_{6} + u_{7} + u_{8}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}?

    Đáp án: 4

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    2\left( u_{3} + u_{4} + u_{5} ight) =u_{6} + u_{7} + u_{8}

    \Leftrightarrow 2\left( u_{3} + u_{3}q +u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 2u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 2u_{3} = u_{6} do \ 1 + q + q^{2} > 0

    \Leftrightarrow 2u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 2 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = \sqrt[3]{2} \\
\end{matrix} ight.

    Ta có:

    \frac{u_{8} + u_{9} + u_{10}}{u_{2} +
u_{3} + u_{4}} = \frac{u_{8} + u_{8}q + u_{8}q^{2}}{u_{2} + u_{2}q +
u_{2}q^{2}}= \frac{u_{8}\left( 1 + q + q^{2}
ight)}{u_{2}\left( 1 + q + q^{2} ight)} = \frac{u_{2}q^{6}}{u_{2}} =
q^{6} = 4

  • Câu 23: Thông hiểu

    Cho tứ diện ABCD. Các điểm M\ ,\ \ N lần lượt là trung điểm BD\ ,\ \ AD. Các điểm\ H,\ \ G lần lượt là trọng tâm các tam giác BCD\ \ ;\ \ ACD. Các mệnh đề sau đúng hay sai?

    a) Đường thẳng HG chéo với đường thẳng MN Sai||Đúng

    b) Đường thẳng HG chéo với đường thẳng CD Đúng||Sai

    c) Đường thẳng HG chéo với đường thẳng \mathbf{CN} Sai||Đúng

    d) Đường thẳng HG chéo với đường thẳng {AB} Sai||Đúng

    Đáp án là:

    Cho tứ diện ABCD. Các điểm M\ ,\ \ N lần lượt là trung điểm BD\ ,\ \ AD. Các điểm\ H,\ \ G lần lượt là trọng tâm các tam giác BCD\ \ ;\ \ ACD. Các mệnh đề sau đúng hay sai?

    a) Đường thẳng HG chéo với đường thẳng MN Sai||Đúng

    b) Đường thẳng HG chéo với đường thẳng CD Đúng||Sai

    c) Đường thẳng HG chéo với đường thẳng \mathbf{CN} Sai||Đúng

    d) Đường thẳng HG chéo với đường thẳng {AB} Sai||Đúng

    Hình vẽ minh họa

    Do \frac{OG}{OA} = \frac{OH}{OB} =
\frac{1}{3} \Rightarrow
HG//AB (Định lý Talet)

    Xét tam giác ABD có: MN//AB (do MN là đường trung bình của tam giác)\Rightarrow HG//MN

    Lại có: HG \cap CN = G

    Vậy HGCD chéo nhau.

    Kết luận:

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

  • Câu 24: Vận dụng

    Tìm tập xác định D của hàm số y = \sqrt{5
+ 2cot^{2}x - \sin x} + \cot\left( \frac{\pi}{2} + x
ight)

    Hàm số xác định khi và chỉ khi

    5 + 2cot^{2}x - \sin x \geq 0\cot\left( \frac{\pi}{2} + x
ight) xác định và \cot x xác định

    Ta có: \cot\left( \frac{\pi}{2} + x
ight) xác định khi và chỉ khi

    \begin{matrix}\sin\left( \dfrac{\pi}{2} + x ight) eq 0 \hfill \\\Rightarrow \dfrac{\pi}{2} + x eq k\pi\hfill \\\Rightarrow x eq - \dfrac{\pi}{2} + k\pi,k\mathbb{\in Z} \hfill\\\end{matrix}

    Mà cot x xác định khi

    \begin{matrix}\sin x eq 0 \hfill \\\Rightarrow x eq k\pi \hfill \\\Rightarrow x eq + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Do đó hàm số xác định khi và chỉ khi \left\{ \begin{matrix}x eq - \dfrac{\pi}{2} + k\pi \\x eq k\pi \\\end{matrix} ight.\  \Rightarrow x eq \dfrac{k\pi}{2},k \in\mathbb{Z}

    Vậy tập xác định của hàm số là D\mathbb{=R}\backslash\left\{ \frac{k\pi}{2},k \in\mathbb{ Z} ight\}

  • Câu 25: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight) có tổng n số hạng đầu tiên là S_{n} = 5^{n} - 1. Tìm số hạng thứ 4 của cấp số nhân đã cho.

    Ta có:

    S_{n} = 5^{n - 1}

    \Rightarrow u_{1}.\frac{1 - q^{n}}{1 -q} = 5^{n - 1}

    \Rightarrow \left\{ \begin{matrix}u_{1} = q - 1 \\q = 5 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = 5 \\\end{matrix} ight.

    Khi đó u_{4} = u_{1}.q^{3} = 4.5^{3} =500

  • Câu 26: Nhận biết

    Khẳng định nào sau đây sai?

    Trên khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y =
tanx đồng biến.

  • Câu 27: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: S \in (SEF) \cap (SCD)\ \
(1)

    Trong (ABCD)I = EF \cap CD

    \Rightarrow \left\{ \begin{matrix}
I \in EF \subset (EFS) \\
I \in CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I \in (EFS) \cap (SCD)\ \ \
(2)

    Từ (1) và (2) suy ra SI = (SEF) \cap
(SCD)

    b) Ta có: \left\{ \begin{matrix}
K \in (EFK) \\
K \in SC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow K \in (EFK) \cap (SAC)

    EF//AC do EF là đường trung bình trong tam giác ABC

    \left\{ \begin{matrix}
EF \subset (EFK) \\
AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (EFK)\bigcap(SAC) =
Kx//EF//AC

    c) Chọn (SBC) chứa FK

    Ta có: \left\{ \begin{matrix}
S \in (SBC) \cap (SAD) \\
BC//AD \\
BC \subset (SBC);AD \subset (SAD) \\
\end{matrix} ight.

    (SBC) \cap (SAD) =
Sy//AD//BC

    d) Đường thẳng AB song song với măt phẳng (SFD) sai.

  • Câu 28: Nhận biết

    Khẳng định nào dưới đây đúng?

    Đáp án: “Không có mặt phẳng nào chứa cả hai đường thẳng a và b thì ta nói a và b chéo nhau” đúng vì theo định nghĩa hai đường thẳng chéo nhau.

    Đáp án: “Hai đường thẳng cùng song song với đường thẳng thứ ba thì song song với nhau” sai vì hai đường thẳng đó chưa chắc đã phân biệt.

    Đáp án: “Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau” sai vì hai đường thẳng đó có thể chéo nhau.

    Đáp án: “Hai đường thẳng song song với nhau nếu chúng không có điểm chung” sai vì hai đường thẳng đó có thể chéo nhau.

  • Câu 29: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Biết rằng \lim_{x ightarrow 1}f(x)
= 1;\lim_{x ightarrow 1}g(x) = - 2 khi đó \lim_{x ightarrow 1}\left\lbrack f(x) + g(x)
ightbrack = - 1 Đúng||Sai

    b) Cho hàm số y = f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack
a;bbrack\mathop {\lim }\limits_{x \to {a^ - }} f\left( x ight) = f\left( a ight);\mathop {\lim }\limits_{x \to {b^ + }} f\left( x ight) = f\left( b ight). Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{3x^{4} - 2x}{5x + 1} = + \infty Sai||Đúng

    d) Cho hàm số f(x) xác định với mọi x eq 0 thỏa mãn f(x) + 2f\left( \frac{1}{x} ight) = 3x;(x eq
0). Khi đó \mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{f\left( x ight)}}{{x - \sqrt 2 }} = 0 Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Biết rằng \lim_{x ightarrow 1}f(x)
= 1;\lim_{x ightarrow 1}g(x) = - 2 khi đó \lim_{x ightarrow 1}\left\lbrack f(x) + g(x)
ightbrack = - 1 Đúng||Sai

    b) Cho hàm số y = f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack
a;bbrack\mathop {\lim }\limits_{x \to {a^ - }} f\left( x ight) = f\left( a ight);\mathop {\lim }\limits_{x \to {b^ + }} f\left( x ight) = f\left( b ight). Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{3x^{4} - 2x}{5x + 1} = + \infty Sai||Đúng

    d) Cho hàm số f(x) xác định với mọi x eq 0 thỏa mãn f(x) + 2f\left( \frac{1}{x} ight) = 3x;(x eq
0). Khi đó \mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{f\left( x ight)}}{{x - \sqrt 2 }} = 0 Sai||Đúng

    a) Ta có: \lim_{x ightarrow
1}\left\lbrack f(x) + g(x) ightbrack = \lim_{x ightarrow 1}f(x) +
\lim_{x ightarrow 1}g(x) = - 1

    b) Ta có:

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack\lim_{x ightarrow a^{+}}f(x) = f(a);\lim_{x
ightarrow b^{-}}f(x) = f(b)

    c) \lim_{x ightarrow -\infty}\dfrac{3x^{4} - 2x}{5x + 1} = \lim_{x ightarrow -\infty}\dfrac{x^{4}\left( 3 - \dfrac{2}{x^{3}} ight)}{x\left( 5 +\dfrac{1}{x} ight)} = \lim_{x ightarrow - \infty}\left( x^{3}.\dfrac{3- \dfrac{2}{x^{3}}}{5 + \dfrac{1}{x}} ight)

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{{3 - \frac{2}{{{x^3}}}}}{{5 + \frac{1}{x}}}} ight) = \frac{3}{5} > 0 \hfill \\ 
\end{gathered}  ight. \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \frac{{3{x^4} - 2x}}{{5x + 1}} =  - \infty

    d) Ta có:

    f(x) + 2f\left( \frac{1}{x} ight) =
3x;(x eq 0)(*)

    \Rightarrow f\left( \frac{1}{x} ight)
+ 2f(x) = \frac{3}{x};(x eq 0)(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}f(x) + 2f\left( \dfrac{1}{x} ight) = 3x \\f\left( \dfrac{1}{x} ight) + 2f(x) = \dfrac{3}{x} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}f(x) + 2f\left( \dfrac{1}{x} ight) = 3x \\2f\left( \dfrac{1}{x} ight) + 4f(x) = \dfrac{6}{x} \\\end{matrix} ight.

    \Rightarrow f(x) = - x +
\frac{2}{x}

    Do đó: \lim_{x ightarrow\sqrt{2}}\dfrac{f(x)}{x - \sqrt{2}} = \lim_{x ightarrow \sqrt{2}}\left(\dfrac{- x + \dfrac{2}{x}}{x - \sqrt{2}} ight)

    = \lim_{x ightarrow \sqrt{2}}\frac{-
\left( x - \sqrt{2} ight)\left( x + \sqrt{2} ight)}{x\left( x -
\sqrt{2} ight)} = \lim_{x ightarrow \sqrt{2}}\frac{- \left( x -
\sqrt{2} ight)}{x} = - 2

  • Câu 30: Thông hiểu

    Cho ba mặt phẳng (\alpha);(\beta);(\gamma) đôi một song song. Hai đường thẳng m,n lần lượt cắt ba mặt phẳng tại  A,B,C A',B',C', (B nằm giữa A C, B' nằm giữa A'C'). Biết rằng AB = 5;BC = 4;A'C' = 8. Tính A'B'.B'C'.

    Ta có: \frac{AB}{A'B'} =
\frac{BC}{B'C'} = \frac{AB + BC}{A'B' + B'C'} =
\frac{AC}{A'C}

    \Rightarrow A'B' =
10;B'C' = 8

    \Rightarrow A'B'.B'C' =
80

  • Câu 31: Nhận biết

    Biết bốn số 5;x;15;y theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức 3x + 2y bằng

    Ta có:

    x = \frac{5 + 15}{2} = 10 \Rightarrow y= 20

    \Rightarrow 3x + 2y = 70

  • Câu 32: Nhận biết

    Tập nghiệm của phương trình \sin \left( {x + \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2}là?

     Ta có:   \sin \left( {x + \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \left[ \begin{gathered}  x + \frac{\pi }{4} = \frac{\pi }{3} + k2\pi  \hfill \\  x + \frac{\pi }{4} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{12}} + k2\pi  \hfill \\  x = \frac{{5\pi }}{{12}} + k2\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight)

     

  • Câu 33: Nhận biết

    Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

    Xét đồ thị hàm số

    \lim_{x ightarrow 1^{+}}y eq
\lim_{x ightarrow 1^{-}}y nên hàm số không liên tục tại x = 1

  • Câu 34: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại hoặc nằm trong mặt phẳng còn lại.

    Vậy câu sai là: “Nếu một đường thẳng song song với một trong hai mặt phẳng song song thì nó song song với mặt phẳng còn lại”.

  • Câu 35: Nhận biết

    Biết \frac{\pi}{2} < \alpha <
\frac{3\pi}{2}, khẳng định nào sau đây đúng?

    Với \frac{\pi}{2} < \alpha <
\frac{3\pi}{2} thì \cos\alpha <
0.

  • Câu 36: Thông hiểu

    Khẳng định nào đúng trong các khẳng định sau?

    \sin a + \cos a = \sqrt{2}\sin\left( a +
\frac{\pi}{4} ight)

  • Câu 37: Nhận biết

    Tìm b >
0 để các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    Các số \frac{1}{\sqrt{2}};\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân

    \Rightarrow \left( \sqrt{b} ight)^{2}
= \frac{1}{\sqrt{2}}.\sqrt{2}

    \Rightarrow b = 1

  • Câu 38: Thông hiểu

    Giá trị của D =
\lim\frac{n^{3} - 3n^{2} + 2}{n^{4} + 4n^{3} + 1} bằng:

    D = \lim\frac{n^{3} - 3n^{2} + 2}{n^{4}
+ 4n^{3} + 1}

    = \dfrac{\dfrac{1}{n} - \dfrac{3}{n^{2}} +\dfrac{2}{n^{4}}}{1 + \dfrac{4}{n} + \dfrac{1}{n^{4}}} = \dfrac{0}{1} =0

  • Câu 39: Vận dụng

    Tập các giá trị của tham số m để phương trình 2sin\left( {x + \frac{{2017\pi }}{2}} ight) + 3m = 0 có nghiệm là?

    • Ta có: 2 \sin\left( {x + \frac{{2017\pi }}{2}} ight) + 3m = 0

    \Leftrightarrow \sin\left( {x + \frac{{2017\pi }}{2}} ight) =  - \frac{{3m}}{2}(*)

    • Xét (*) có nghiệm khi và chỉ khi: - 1 \leqslant  - \frac{{3m}}{2} \leqslant 1 \Leftrightarrow  - \frac{2}{3} \leqslant m \leqslant \frac{2}{3}.
  • Câu 40: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 41: Nhận biết

    Hình tứ diện có bao nhiêu cạnh?

    Hình tứ diện có 6 cạnh.

  • Câu 42: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) có số hạng đầu u_{1} =
5 và công bội q = - 2. Số hạng thứ sáu của \left( u_{n}
ight) là:

    Ta có: u_{6} = u_{1}q^{5} = 5.( - 2)^{5} =
- 160

  • Câu 43: Thông hiểu

    Số vị trí biểu diễn các nghiệm của phương trình \tan3x = \tan x trên đường tròn lượng giác là?

    ĐK: \left\{ \begin{matrix}cos3x eq 0 \\cosx eq 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{6} + \dfrac{k\pi}{3} \\x eq \dfrac{\pi}{2} + k\pi \\\end{matrix}(*) ight.\  ight.

    Ta có tan3x = tanx \Leftrightarrow 3x = x
+ k\pi \Leftrightarrow x = \frac{k\pi}{2},k \in \mathbb{Z}.

    Kết hợp điều kiện (*) suy ra x = k\pi,k
\in \mathbb{Z} nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.

  • Câu 44: Nhận biết

    Rút gọn biểu thức A = \cos^{4}15^{0} - \sin^{4}15^{0}

    Ta có:

    A = \cos^{4}15^{0} -\sin^{4}15^{0}

    A = \left( \cos^{2}15^{0} + \sin^{2}15^{0}ight)\left( \cos^{2}15^{0} - \sin^{2}15^{0} ight)

    A = \cos^{2}15^{0} -\sin^{2}15^{0}

    A = \cos\left( 2.15^{0} ight) =\cos30^{0} = \frac{\sqrt{3}}{2}

  • Câu 45: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\sin \pi x{\text{     khi }}\left| x ight| \leqslant 1} \\   {x + 1{\text{       khi }}\left| x ight| > 1} \end{array}} ight.. Mệnh đề nào sau đây là đúng?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2} \\   {\mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\sin \pi x} ight) = \sin \pi  = 0} \end{array}} ight.

    => Hàm số gián đoạn tại x=1

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {x + 1} ight) = 0 \hfill \\  f\left( { - 1} ight) = \sin \left( { - \pi } ight) = 0 \hfill \\ \end{gathered}  \\   {\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {\sin \pi x} ight) = \sin \left( { - \pi } ight) = 0} \end{array}} ight.

    => Hàm số liên tục tại x=-1

    Vậy hàm số liên tục trên các khoảng \left( { - \infty ; 1} ight)\left( {  1; + \infty } ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo