Cho cấp số cộng (Un) có số hạng tổng quát là
. Xác định công sai của cấp số cộng.
Ta có:
Cho cấp số cộng (Un) có số hạng tổng quát là
. Xác định công sai của cấp số cộng.
Ta có:
Tổng các nghiệm của phương trình
trên đoạn
bằng:
Phương trình tương đương với
Vì nên k = 0
Khi đó phương trình trở thành
Vì nên
=> Tổng các nghiệm của phương trình là:
Giá trị của
bằng:
Với mọi a>0 nhỏ tùy ý, ta chọn
Suy ra
Tìm tập xác định của hàm số 
Hàm số xác định
Vậy tập xác định
Cho dãy số
là cấp số cộng với:
Ta có: là một cấp số cộng
=>
Tập giá trị của hàm số
có bao nhiêu số nguyên?
Ta có:
Điều kiện có nghiệm của phương trình là:
Mà nên
.
Vậy tập giá trị của có 11 số nguyên.
Cho các số thực
thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Cho các số thực thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Xét hàm số
Theo giả thiết
Ta có là hàm đa thức nên liên tục trên
suy ra phương trình
có ít nhất một nghiệm trên
nên phương trình
có ít nhất một nghiệm trên khoảng
suy ra phương trình
có ít nhất một nghiệm trên khoảng
Từ ;
và
ta có phương trình
có ít nhất 3 nghiệm.
Mặt khác là phương trình bậc ba nên có tối đa 3 nghiệm.
Vậy phương trình có đúng 3 nghiệm.
Trong các dãy số sau dãy số nào bị chặn?
Xét dãy (an) có nên dãy số (an) bị chặn dưới.
Xét dãy (bn) có nên dãy số (bn) bị chặn dưới.
Xét dãy (cn) có cn = (−2)n + 3, ∀n ∈ ℕ* nên dãy số (cn) không bị chặn.
Xét dãy (dn) có .
Ta có
bị chặn.
Phương trình nào dưới đây có nghiệm trong khoảng
?
Xét phương án :
có
=> Phương trình vô nghiệm.
Xét phương án :
Đặt , phương trình trở thành:
.
=> Phương trình vô nghiệm.
Xét phương án :
Phương trình vô nghiệm.
Xét phương án :
, xét
.
Mặc khác hàm số liên tục trên
do đó liên tục trên
.
Vậy phương trình có ít nhất một nghiệm trong khoảng
.
Biết
với
. Tập nghiệm của phương trình
trên
có số phần tử là:
Ta có:
Theo đề I tồn tại hữu hạn nên phương trình phải có nghiệm kép
. Tức là:
Khi thì
Do đó nên phương trình
vô nghiệm.
Cho cấp số cộng
với
. Công thức số hạng tổng quát của cấp số cộng này là:
Ta có:
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho hình chóp
có đáy
là hình bình hành. Gọi là giao điểm của hai đường chéo hình bình hành. Một mặt phẳng
qua
, song song với
. Thiết diện tạo bởi
và hình chóp là hình gì?
Hình vẽ minh họa
Do (a) // CD nên giao tuyến d = (a) ∩ (ABCD) là đường thẳng qua O và song song với CD. Gọi G, H lần lượt là giao điểm của d với BC,AD.
Do (a) // SA nên giao tuyến a = (a) ∩ (SAB) là đường thẳng qua H và song song với SA.
Gọi I là giao điểm của a với SD.
Do (a) // CD nên giao tuyến b = (a) ∩ (SCD) là đường thẳng qua I và song song với CD.
Gọi J lần lượt là giao điểm của b với SC.
Vậy thiết diện tạo bởi (a) và hình chóp là hình thang GHIJ vì GH // IJ //CD.
Trong hình học không gian
Qua ba điểm phân biệt không thẳng hàng xác định một và chỉ một mặt phẳng. Nếu ba điểm phân biệt thẳng hàng thì có vô số mặt phẳng chứa ba điểm.
Tính giới hạn ![]()
Ta có:
Do đó
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6
Cho dãy số
với
. Số
là số hạng thứ bao nhiêu của dãy số đó?
Ta có
.
Vậy 19 là số hạng thứ 7 của dãy số đã cho.
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Rút gọn biểu thức: ![]()
Ta có:
Cho hình chóp
có đáy
là hình bình hành tâm
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm. Biết rằng
. Khi đó điểm E là giao điểm của hai đường thẳng:
Hình vẽ minh họa:
Ta có:
Cho cấp số nhân (un) có tổng n số hạng đầu tiên là
. Tìm số hạng đầu và công bội của cấp số nhân đó?
Ta có:
Cho hình lăng trụ
. Gọi
là trung điểm của
. Điểm
là ảnh của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có phép chiếu song song phương , biến
thành
, biến
thành
.
Do là trung điểm của
suy ra
là trung điểm của
vì phép chiếu song song bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số của hai đoạn thẳng nằm trên cùng một đường thẳng hoặc trên hai đường thẳng song song.
Vậy khẳng định đúng là:
Cho hình chóp
có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Đúng||Sai
Cho hình chóp có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
Hình vẽ minh họa
Ta có EF là đường trung bình tam giác SAD nên EF // SD
Ta có:
Xét tứ giác BFDC có: suy ra tứ giác BFDC là hình bình hành
=> BF // DC
Ta có:
Ta có:
Do AD // BC nên theo định lí Ta- let ta có:
Mặt khác
Xét tam giác SAC có
Ta có:
Cho phương trình
, nghiệm của phương trình là:
Ta có:
Tính giới hạn
?
Ta có:
Khẳng định nào sau đây là đúng?
Câu đúng là: “Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song”.
Biết
là các góc của tam giác
, mệnh đề nào sau đây đúng?
Vì là các góc của tam giác
nên
.
Khi đó .
.
Cho hình chóp
có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm
là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có
. Sai||Đúng
c) Cho
thì
. Sai||Đúng
d) Trong mặt phẳng
, gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
Cho hình chóp có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có . Sai||Đúng
c) Cho thì
. Sai||Đúng
d) Trong mặt phẳng , gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
- Xác định :
Trong mặt phẳng , kẻ
cắt
tại
;
Trong mặt phẳng , kẻ
cắt
tại
.
Vì .
Tương tự: .
-Tính theo
:
Gọi là trung điểm
là đường trung bình của tam giác
.
Trong tam giác , ta có
qua trung điểm
của
và
là trung điểm của
.
Hình vẽ minh họa
-Vậy hay
.
Hoàn toàn tương tự, ta chứng minh được .
Khi đó hai tam giác đồng dạng vì có góc
chung và
.
Xét tam giác , theo định lí Thalès, ta có:
- Chứng minh :
Dễ thấy là điểm chung của hai mặt phẳng
và
.
Ta có: .
Vì vậy .
Khi đó:
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Cho tứ diện
như hình vẽ.

Khẳng định nào sau đây đúng?
Khẳng định đúng là
Đổi số đo của góc
sang đơn vị radian
Cách 1: Áp dụng công thức với
tính bằng rad và
tính bằng độ.
Khi đó:
Cách 2: Bấm máy tính:
Bước 1. Bấm shift mode 4 để chuyển về chế độ rad.
Bước 2. Bấm 70 shift DRG 1 =
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Sai||Đúng
b) Trong khoảng
phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng
phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên
bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Sai||Đúng
b) Trong khoảng phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên bằng
. Đúng||Sai
Phương trình
Vì nên:
Với ta chỉ chọn được
.
Với ta chỉ chọn được
.
Vậy tổng các nghiệm bằng .
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là:
Ta có:
Vậy công sai của cấp số nhân là
Vậy số hạng tiếp theo sẽ là:
Cấp số nhân
có số hạng tổng quát là
. Số hạng đầu tiên và công bội của cấp số nhân đó là
Theo công thức số hạng tổng quát của cấp số nhân ta suy ra và
.
Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo
.
Độ dài cung tròn là:
Biểu thức nào sau đây cho ta tập giá trị của tổng ![]()
Ta có:
Với
Với
Với
Dự đoán ta sẽ chứng minh (*) đúng bằng phương pháo quy nạp.
Với đương nhiên (*) đúng.
Giả sử (*) đúng với tức là:
Ta chứng minh (*) đúng với
Ta có:
Vậy (*) đúng với mọi số tự nhiên n tức là
Cho hình chóp tứ giác
. Gọi
là trung điểm của
,
. Xác định các giao tuyến của mặt phẳng
với các mặt của hình chóp. Khi đó hình tạo bởi các giao tuyến trên là:
Trường hợp 1:
Hình vẽ minh hoạ
Nếu . Gọi
Nếu
=> Hình tạo bởi các giao tuyến của mặt phẳng với hình chóp là tứ giác
Nếu . Gọi
Hình tạo bởi các giao tuyến của mặt phẳng với hình chóp là tứ giác
Trường hợp 2:
Hình vẽ minh hoạ
Nếu . Hình tạo bởi các giao tuyến của mặt phẳng
với hình chóp là tam giác
.
Vậy hình tạo bởi các giao tuyến trên có thể là tứ giác hoặc tam giác.
Cho cấp số cộng (un) biết u1 = -5 và công sai d = 2. Số 81 là số hạng thứ bao nhiêu?
Ta có:
Vậy 81 là số hạng thứ 44
bằng:
Ta có:
Phương án nào sau đây sai với mọi
?
Ta có:
Vậy đáp án sai là:
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Cho hình chóp
có đáy
là hình thang
. Lấy một điểm
thuộc cạnh
. Mặt phẳng
qua M song song với SA và BC. Giả sử
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Trong mặt phẳng (ABCD) kéo dài AD cắt MN tại E.
Ta lại có: suy ra
Trong không gian cho các đường thẳng a, b và các mặt phẳng (α), (β). Trong các khẳng định sau đây, đâu là khẳng định đúng?
Mệnh đề “a // (β) và (β) // b thì a // b” là sai vì a và b có thể cắt nhau.
Mệnh đề “a // b và b ⊂ (α) thì a // (α)” là sai vì có thể a ⊂ (α).
Mệnh đề “a // b và b // (α) thì a // (α)” là sai vì có thể a ⊂ (α).
Cho
. Biết
(với
tối giản). Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c) Bộ ba số
tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số
tạo thành một cấp số nhân có công bội
Đúng||Sai
Cho . Biết
(với
tối giản). Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Bộ ba số tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số tạo thành một cấp số nhân có công bội
Đúng||Sai
Ta có
.
Do đó suy ra .
Kết luận:
|
a) Đúng |
b) Sai |
c) Đ |
d) Đúng |
bằng
Ta có:
Giá trị của
bằng:
Với mọi M > 0 lớn tùy ý, ta chọn
Ta có:
với mọi
Suy ra