Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 5 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có u_{n} = 5 + 1 + 2 + 3 + \ldots + n -
1 = 5 + \frac{n(n - 1)}{2}

  • Câu 2: Nhận biết

    Hàm số f(x) =\dfrac{x^{2} + x\cos x + \sin x}{2sinx + 3} liên tục trên:

    Ta có: 2sinx + 3 eq 0,\forall
x\mathbb{\in R}

    => Tập xác định D\mathbb{=
R}

    Vậy hàm số liên tục trên \mathbb{R}

  • Câu 3: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Có hai trong ba hàm số y = \sin;y =\cos\sqrt{x};y = \tan x liên tục trên tập số thực. Sai||Đúng

    b) \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = - 1 Đúng||Sai

    c) Phương trình 2x^{4} - 5x^{2} + x + 1
= 0 có ít nhất hai nghiệm thuộc khoảng (0;2).Đúng||Sai

    d) Biết hàm số f\left( x ight) = \left\{ \begin{gathered}
  \dfrac{{{x^2} + 1}}{{1 - x}}{\text{       khi x < 1}} \hfill \\
  \sqrt {2x - 2} {\text{   khi x}} \geqslant {\text{1}} \hfill \\ 
\end{gathered}  ight.. Khi đó \lim_{x ightarrow 1^{-}}f(x) = -
\infty. Sai||Đúng

    a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.

    Hàm số y = \sin xác định trên tập số thực suy ra hàm số liên tục trên \mathbb{R}

    Hàm số y = \cos\sqrt{x} xác định trên D = \lbrack 0; + \infty)

    Hàm sốy = \tan x xác định trên D\mathbb{= R}\backslash\left\{ \frac{\pi}{2}
+ k\pi|k\mathbb{\in Z} ight\}

    Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.

    b) Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x - 1 ight) = \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + 1} + x ight) - \lim_{x ightarrow -
\infty}1

    = \lim_{x ightarrow - \infty}\left(
\frac{1}{\sqrt{x^{2} + 1} - x} ight) - 1 = \lim_{x ightarrow -
\infty}\left( \frac{\frac{1}{x}}{- \sqrt{1 + \frac{1}{x}} - 1} ight) -
1 = - 1

    c) Xét hàm số 2x^{4} - 5x^{2} + x + 1 =
f(x) liên tục trên \mathbb{R}

    Ta có: \left\{ \begin{matrix}
f( - 2) = 11;f( - 1) = - 3 \\
f(0) = 1;f(1) = - 1;f(2) = 15 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
f(0).f( - 1) < 0 \\
f(1).f(2) < 0 \\
\end{matrix} ight. nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng (0;2).

    d) Ta có: \left\{ \begin{matrix}
\lim_{x ightarrow 1^{-}}\left( x^{2} + 1 ight) = 2 > 0 \\
\lim_{x ightarrow 1^{-}}(1 - x) = 0 \\
\end{matrix} ight.. Khi x
ightarrow 1^{-} \Leftrightarrow x < 1 \Leftrightarrow 1 - x >
0

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\frac{x^{2} + 1}{1 - x} = + \infty.

  • Câu 4: Vận dụng

    Biết \lim_{x
ightarrow - \infty}\frac{\sqrt{4x^{2} + x + 1} + 4}{ax - 2} =
\frac{1}{2}. Hỏi giá trị a thuộc tập hợp nào dưới đây?

    Ta có:

    \lim_{x ightarrow -\infty}\dfrac{\sqrt{4x^{2} + x + 1} + 4}{ax - 2} =\dfrac{1}{2}

    \Leftrightarrow \lim_{x ightarrow -\infty}\dfrac{- x\left( \sqrt{4 + \dfrac{1}{x} + \dfrac{1}{x^{2}}} +\dfrac{4}{x} ight)}{x\left( a - \dfrac{2}{x} ight)} =\dfrac{1}{2}

    \Leftrightarrow \frac{- 2}{a} =
\frac{1}{2}

    \Leftrightarrow a = - 4 \Rightarrow a
\in \lbrack - 6; - 3brack

  • Câu 5: Nhận biết

    \lim(5n-4n^{3}) bằng

    Ta có: 

    \begin{matrix}  \lim \left( {5n - 4{n^3}} ight) \hfill \\   = \lim \left[ {{n^3}\left( {\dfrac{5}{{{n^2}}} - 4} ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Đáp án là:

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Hình vẽ minh họa

    Không mất tính tổng quát, xét mặt bên \Delta ABC.

    Giả sử MN song song với BC. Khi đó, số tam giác có cạnh MN nằm trong mặt phẳng song song với đúng một cạnh của tứ diện là 6 tam giác, gồm \Delta PMN, \Delta QMN, \Delta IMN,\Delta JMN, \Delta KMN, \Delta LMN.

    Trong mặt bên \Delta ABC, nối các điểm chia đều các cạnh AB,BC,CA ta thấy có 3 đoạn thẳng song song với AB, 3 đoạn thẳng song song với BC và 3 đoạn thẳng song song với CA.

    Mặt khác, vai trò 4 mặt của tứ diện là như nhau.

    Vậy, số tam giác thỏa mãn yêu cầu đề bài là 6.(3 + 3 + 3).4 = 216.

  • Câu 7: Thông hiểu

    Giải phương trình \tan x - \sqrt{3} = 0 ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:

    Ta có:

    \tan x - \sqrt{3} = 0

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi;\left( k\mathbb{\in Z} ight)

    Suy ra:

    Nghiệm âm lớn nhất của phương trình là: x
= \frac{- 2\pi}{3} ứng với k = -
1

    Nghiệm dương nhỏ nhất của phương trình là: x = \frac{\pi}{3} ứng với k = 0

  • Câu 8: Vận dụng

    Một cấp số nhân có 5 số hạng, công bội q bằng \frac{1}{4} số hạng thứ nhất, tổng hai số hạng đầu bằng 24. Xác định cấp số nhân?

    Theo bài ra ta có:

    u_{1} + u_{2} = u_{1} + u_{1}.q =
24

    \Rightarrow u_{1} +
\frac{1}{4}{u_{1}}^{2} = 24

    \Rightarrow \left\lbrack \begin{matrix}
u_{1} = - 12;q = - 3 \\
u_{1} = 8;q = 2 \\
\end{matrix} ight.

  • Câu 9: Vận dụng

    Cho hai hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x};g(x) = \frac{|sin2x| - cos3x}{2 + tan^{2}x}. Mệnh đề nào sau đây đúng?

    Xét hàm số f(x) = \frac{cos2x}{1 +
sin^{2}3x} có tập xác định D=\mathbb{ R}

    Với mọi x thuộc D => -x thuộc D ta có:

    f( - x) = \frac{\cos( - 2x)}{1 +
sin^{2}( - 3x)} = \frac{cos2x}{1 + sin^{2}3x} = f(x)

    Vậy f(x) là hàm số chẵn

    Tương tự xét hàm số g(x) = \frac{|sin2x|
- cos3x}{2 + tan^{2}x};D\mathbb{= R}\backslash\left\{ \frac{\pi}{2} +
k\pi,k\mathbb{\in Z} ight\}

    Với mọi x thuộc D => -x thuộc D ta có:

    \begin{matrix}g( - x) = \dfrac{\left| \sin( - 2x) ight| - \cos( - 3x)}{2 + tan^{2}( -x)}\hfill \\= \dfrac{|sin2x| - cos3x}{2 + tan^{2}x} = g(x) \hfill\\\end{matrix}

    Vậy g(x) là hàm số chẵn.

  • Câu 10: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight)u_{2} = - 6,u_{5} =
48. Tính S_{5}.

    Ta có \left\{ \begin{matrix}
u_{1}.q = - 6 \\
u_{1}.q^{4} = 48 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1}.q = - 6 \\
q^{3} = - 8 \\
\end{matrix} \Rightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
q = - 2 \\
\end{matrix} ight.\  ight.\  ight.

    Vậy S_{5} = \frac{3\left( 1 - ( - 2)^{5}
ight)}{1 - ( - 2)} = 33.

  • Câu 11: Vận dụng

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Đáp án là:

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Tại x = 0,7 ta có:

    T(0,7) = 10000 + a.

    \lim_{x ightarrow 0,7^{-}}T(x) =
\lim_{x ightarrow 0,7^{-}}10\ 000 + a = 10\ 000 + a

     \lim_{x ightarrow 0,7^{+}}T(x) = \lim_{x
ightarrow 0,7^{+}}\left( 11\ 000 + 15100(x - 0,7) ight) = 11\
000.

    Hàm số liên tục tại x = 0,7 thì \lim_{x ightarrow 0,7^{-}}T(x) = \lim_{x
ightarrow 0,7^{+}}T(x) = T(0,7) \Leftrightarrow a = 1000.

  • Câu 12: Vận dụng cao

    Cho tổng S(n) =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)}.

    Khi đó công thức tính tổng S(n) là?

    S(n) = \frac{1}{1.2} + \frac{1}{2.3} +
\frac{1}{3.4} + \ldots + \frac{1}{n(n + 1)}

    = \frac{1}{1} - \frac{1}{2} +
\frac{1}{3} - \frac{1}{4} + \ldots + \frac{1}{n - 1} - \frac{1}{n} +
\frac{1}{n} - \frac{1}{n + 1}

    = 1 - \frac{1}{n + 1} = \frac{n}{n +
1}

  • Câu 13: Nhận biết

    Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.

    Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:

    u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4

    Ta có:

    \begin{matrix}  {u_5} = {u_1} + 4d \Rightarrow d = \dfrac{{{u_5} - {u_1}}}{4} = \dfrac{{22 - 2}}{4} = 5 \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 7} \\   {{u_3} = {u_1} + 2d = 12} \\   {{u_4} = {u_1} + 3d = 17} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.2n. Mệnh đề nào sau đây sai?

    Ta có:

    \begin{matrix}  {u_n} = {( - 1)^n}.2n \hfill \\   \Rightarrow {u_1} = {( - 1)^1}.2.1 =  - 2 \hfill \\   \Rightarrow {u_2} = {( - 1)^2}.2.2 = 4 \hfill \\   \Rightarrow {u_3} = {( - 1)^3}.2.3 =  - 6 \hfill \\   \Rightarrow {u_4} = {( - 1)^4}.2.4 = 8 \hfill \\ \end{matrix}

    Vậy mệnh đề sai là: u_{4}=-8

  • Câu 15: Vận dụng cao

    Cho các số thực a,b,c thỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Khi đó số giao điểm của hàm số y = x^{3} + ax^{2} + bx + c với trục Ox là:

    Hàm số y = x^{3} + ax^{2} + bx +
c xác định và liên tục trên \mathbb{R}.

    Hàm số y = x^{3} + ax^{2} + bx +
c bậc ba nên đồ thị hàm số cắt Ox tối đa tại 3 điểm (1)

    Ta có:

    \lim_{x ightarrow - \infty}y = -
\infty suy ra \exists\alpha < -
2 sao cho f(\alpha) <
0

    Lại có: \lim_{x ightarrow + \infty}y =
+ \infty suy ra \exists\beta >
2 sao cho f(\beta) >
0

    Mặt khác \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
y(2) = 8 + 4a + 2b + c < 0 \\
\end{matrix} ight.

    Từ đó suy ra \left\{ \begin{matrix}
y(\alpha).y( - 2) < 0 \\
y( - 2).y(2) < 0 \\
y(2).y(\beta) < 0 \\
\end{matrix} ight.

    Do đó đồ thị hàm số cắt Ox tại ít nhất ba điểm (2)

    Từ (1) và (2) suy ra đồ thị hàm số đã cho cắt trục Ox tại đúng ba điểm.

  • Câu 16: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau:

    Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong một mặt phẳng.

    Do đó mệnh đề "Trong không gian hai đường thẳng chéo nhau thì không có điểm chung" đúng.

  • Câu 17: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau?

    Phép chiếu song song chỉ có thể biến đường thẳng thành đường thẳng hoặc thành một điểm.

  • Câu 18: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 1^{+}}\frac{2x + 1}{x -
1}

    Khi x \mapsto 1^{+} ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \left( {2x + 1} ight) = 3 > 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} ight) = 0 \hfill \\
  x - 1 > 0 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \lim_{x ightarrow
1^{+}}\frac{2x + 1}{x - 1} = + \infty

  • Câu 19: Thông hiểu

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành. Gọi là giao điểm của hai đường chéo hình bình hành. Một mặt phẳng (\alpha) qua O, song song với SA,CD. Thiết diện tạo bởi (\alpha) và hình chóp là hình gì?

    Hình vẽ minh họa

    Do (a) // CD nên giao tuyến d = (a) ∩ (ABCD) là đường thẳng qua O và song song với CD. Gọi G, H lần lượt là giao điểm của d với BC,AD.

    Do (a) // SA nên giao tuyến a = (a) ∩ (SAB) là đường thẳng qua H và song song với SA.

    Gọi I là giao điểm của a với SD.

    Do (a) // CD nên giao tuyến b = (a) ∩ (SCD) là đường thẳng qua I và song song với CD.

    Gọi J lần lượt là giao điểm của b với SC.

    Vậy thiết diện tạo bởi (a) và hình chóp là hình thang GHIJGH // IJ //CD.

  • Câu 20: Thông hiểu

    Tìm số nghiệm của phương trình \sin(\cos x) = 0 trên đoạn x \in \lbrack 0;2\pibrack.

    Ta có: sin(cosx) = 0 \Leftrightarrow cosx
= k\pi\ (k \in \mathbb{Z})

    |cosx| \leq 1 nên k = 0. Do đó phương trình \Leftrightarrow cosx = 0 \Leftrightarrow x =
\frac{\pi}{2} + m\pi(m \in \mathbb{Z})

    x \in \lbrack 0;2\pibrack nên x = \frac{\pi}{2},x =
\frac{3\pi}{2}.

  • Câu 21: Thông hiểu

    Cho cấp số cộng u_{3} = 15;d = - 2. Tính u_{n}

    Ta có:

    \left\{ \begin{matrix}u_{3} = 15 \\d = - 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + 2d = 15 \\d = - 2 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = 19 \\d = - 2 \\\end{matrix} ight.

    \Rightarrow u_{n} = u_{1} + (n - 1)d = -2n + 21

  • Câu 22: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 23: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} = 2001;u_{5} = 1995. Khi đó u_{1001} bằng:

    Ta có:

    \left\{ \begin{matrix}
u_{2} = 2001 \\
u_{5} = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + d = 2001 \\
u_{1} + 4d = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2003 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{1001} = u_{1} + 1000d =
3

  • Câu 24: Nhận biết

    Khi điểm M thuộc đường thẳng d, mệnh đề nào sau đây đúng:

    Mệnh đề đúng M \in d.

  • Câu 25: Thông hiểu

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

    Đáp án là:

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

     Hình vẽ minh họa

    Gọi I là trung điểm của AC_{1} .

    \Rightarrow \left\{ \begin{matrix}OI//CC_{1}//BB_{1}//DD_{1} \\OI = \dfrac{1}{2}CC_{1} = 3 \\\end{matrix} ight.

    \Rightarrow I \in \left( BB_{1}D_{1}D
ight) . Mà I \in AC_{1} \subset
(P) nên I \in
B_{1}D_{1}

    Hình thang BB_{1}D_{1}DOI là đường trung bình nên OI = \frac{1}{2}\left( BB_{1} + DD_{1} ight)
\Rightarrow DD_{1} = 2

  • Câu 26: Thông hiểu

    Cho \sin x +
\cos x = \sqrt{2}. Tính giá trị \sin2x bằng

    Ta có:

    \sin x + \cos x = \sqrt{2}

    \Rightarrow \left( \sin x + \cos x
ight)^{2} = 2

    \Rightarrow 1 + 2\sin x.\cos x =2

    \Rightarrow \sin2x = 1

  • Câu 27: Vận dụng

    Cho tứ diện ABCD. Gọi M
\in AD,N \in BC sao cho AD = 3MA;CB
= 3NC. Mặt phẳng (\beta) chứa đường thẳng MNđồng thời song song với đường thẳng CD. Khi đó hình tạo bởi các giao tuyến của mặt phẳng (\beta) và các mặt của tứ diện ABCD là:

    Hình vẽ minh họa:

    Xét (\beta) và (BCD), ta có điểm N chung, CD // (\beta)

    => (\beta) ∩ (BCD) = NF // CD, với F ∈ BD.

    Xét (\beta) và (ACD), ta có điểm M chung, CD // (\beta)

    => (\beta) ∩ (ACD) = ME // CD, với E ∈ AC.

    Từ đó ta được MF = (\beta) ∩ (ABD) và EN = (\beta) ∩ (ABC)

    => Hình tạo bởi các giao tuyến của mặt phẳng (\beta) và các mặt của tứ diện ABCD là tứ giác ENFM

    Ta lại có ME // CD // NF nên ENFM là hình thang.

    Từ giả thiết ta có: \frac{{EM}}{{CD}} = \frac{{AM}}{{AD}} = \frac{1}{3}

    \frac{{FN}}{{CD}} = \frac{{BN}}{{BC}} = \frac{{BC - NC}}{{BC}} = \frac{2}{3}

    \Rightarrow \frac{{EM}}{{FN}} = \frac{1}{2}

    Vậy hình thang có đáy lớn gấp đôi đáy nhỏ.

  • Câu 28: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=\frac{1}{3^{n-2}} ta có:

    \dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{1}{{{3^{n + 1 - 2}}}}}}{{\dfrac{1}{{{3^{n - 2}}}}}} = \dfrac{{{3^{n - 2}}}}{{{3^{n - 1}}}} = {3^{ - 1}} = \frac{1}{3}

    Vậy dãy số u_n=\frac{1}{3^{n-2}} là cấp số nhân với q = 1/3

  • Câu 29: Nhận biết

    Giá trị của \lim\frac{{(\sin n)}^{2}}{n + 2}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a}
> \frac{1}{a} - 2

    Suy ra

    \frac{\left( \sin n ight)^{2}}{n
+ 2} < \frac{1}{n + 2} < \frac{1}{n_{a} + 2} < a\ \forall n
> n_{a}

    Vậy:  \lim\frac{{{(sin}n)}^{2}}{n + 2} = 0 .

  • Câu 30: Nhận biết

    Tính A = \lim_{x
ightarrow - 1}\left( x^{2} - x + 7 ight).

    Ta có: A = \lim_{x ightarrow - 1}\left(
x^{2} - x + 7 ight) = 1 + 1 + 7 = 9

  • Câu 31: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản \frac{m}{n}. Tính P = mn

    Ta có:

    \begin{matrix}
  0,353535 = 0,35 + 0,0035 + ... \hfill \\
   = \dfrac{{35}}{{{{10}^2}}} + \dfrac{{35}}{{{{10}^4}}} + ... + \dfrac{{35}}{{{{10}^n}}} + ... \hfill \\ 
\end{matrix}

    Dãy số \frac{35}{10^{2}};\frac{35}{10^{4}};...;\frac{35}{10^{n}};... là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = \frac{35}{10^{2}}, công sai là q = 10^{- 2}

    => S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{35}{10^{2}}}{1 - 10^{- 2}} = \dfrac{35}{99}

    Vậy 0,353535 = \frac{35}{99}

    \Rightarrow \left\{ \begin{matrix}
m = 35 \\
n = 99 \\
\end{matrix} ight.\  \Rightarrow P = 3465

  • Câu 32: Nhận biết

    Phương trình \sin x + 1 = 0 có nghiệm là:

    Ta có:

    \sin x = - 1 \Leftrightarrow x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

    Vậy phương trình có nghiệm là x = -
\frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z} ight)

  • Câu 33: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 34: Nhận biết

    Mệnh đề nào trong các mệnh đề sau đây là sai?

    Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy.

  • Câu 35: Thông hiểu

    Đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị (C) của hàm số bằng cách:

    Nhắc lại lý thuyết:

    Cho (C) là đồ thị của hàm số y = f\left( x ight)p > 0, ta có:

    + Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số y = f\left( x ight) + p.

    + Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số y = f\left( x ight) - p

    + Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số y = f\left( {x + p} ight)

    + Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số y = f\left( {x - p} ight)

    Vậy đồ thị hàm số y = \cos \left( {x - \frac{\pi }{2}} ight) được suy từ đồ thị hàm số y = \cos x bằng cách tịnh tiến sang phải \frac{\pi }{2} đơn vị.

  • Câu 36: Thông hiểu

    Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD và BC; G là trọng tâm của tam giác BCD. Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC).

    Hình vẽ minh họa

    Giao điểm của đường thẳng MG và đường thẳng AN là giao điểm của đường thẳng MG và đường thẳng AN.

  • Câu 37: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) với u_{1} = - 2;q = - 5. Viết bốn số hạng đầu tiên của cấp số nhân.

    Ta có: \left\{ \begin{matrix}
u_{1} = - 2 \\
q = - 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{2} = u_{1}q = 10 \\
u_{3} = u_{1}q^{2} = - 50 \\
u_{4} = u_{1}q^{3} = 250 \\
\end{matrix} ight.

  • Câu 38: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

    Công thức đúng là: sin(\alpha + \pi) = -
sin\alpha

  • Câu 39: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi trung điểm của AB,A'B' lần lượt là I,I'. Qua phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành điểm nào?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AI//B'I' \\
AI = B'I' \\
\end{matrix} ight. suy ra AIB'I' là hình bình hành.

    Suy ra phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành B'.

  • Câu 40: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = \frac{3n^{2} - 19n}{4};\left( n
\in \mathbb{N}^{*} ight). Tìm số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    S_{n} = \frac{3n^{2} - 19n}{4} =
\frac{3}{4}n^{2} - \frac{19}{4}n

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = \dfrac{3}{4} \\u_{1} - \dfrac{d}{2} = - \dfrac{19}{4} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 4 \\d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 41: Nhận biết

    Khẳng định nào sau đây đúng?

    Trong khoảng \left( 0;\frac{\pi}{2}
ight) thì hàm số y = \sin
x đồng biến.

  • Câu 42: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Khẳng định nào sau đây sai?

    Ta có: \left\{ \begin{matrix}
(ABCD)//(A’B’C’D’) \\
(AA’D’D)//(BCC’B’) \\
(ABB’A’)//(CDD’C’) \\
\end{matrix} ight. luôn đúng

    => Hai mặt phẳng (BDD'B');(ACC'A') không song song với nhau.

  • Câu 43: Vận dụng

    Phương trình \tan x = \sqrt 3 có bao nhiêu nghiệm thuộc khoảng \left( { - 20\pi ;18\pi } ight)?

     Điều kiện xác định: x e \frac{\pi }{2} + k\pi

    \tan x = \sqrt 3  \Leftrightarrow x = \frac{\pi }{3} + k\pi

    Do x \in \left( { - 20\pi ;18\pi } ight)

    \begin{matrix}   \Rightarrow  - 20\pi  < \dfrac{\pi }{3} + k\pi  < 18\pi  \hfill \\   \Leftrightarrow \dfrac{{ - 61}}{3} < k < \dfrac{{53}}{3} \Rightarrow k \in \left\{ { - 20; - 19;...;17} ight\} \hfill \\ \end{matrix}

    Vậy có tất cả 38 nghiệm

  • Câu 44: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos6a = \cos^{2}3a -\sin^{2}3a

    = 2\cos^{2}3a - 1 = 1 -2\sin^{2}3a

  • Câu 45: Thông hiểu

    Tính giới hạn của hàm số \lim_{x ightarrow - 2}\frac{2x^{4} + 9x^{3} +
11x^{2} - 4}{(x + 2)^{2}}.

    Ta có:

    \lim_{x ightarrow - 2}\frac{2x^{4} +
9x^{3} + 11x^{2} - 4}{(x + 2)^{2}}

    = \lim_{x ightarrow - 2}\frac{(x +
2)^{2}\left( 2x^{2} + x - 1 ight)}{(x + 2)^{2}}

    = \lim_{x ightarrow - 2}\left\lbrack
2x^{2} + x - 1 ightbrack = 5

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo