Tính giới hạn ![]()
Ta có:
Tính giới hạn ![]()
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Gọi
là trọng tâm của tam giác
và
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 6
Cho hình chóp có đáy
là hình bình hành. Gọi
là trọng tâm của tam giác
và
là điểm thuộc cạnh
thỏa mãn
với
là phân số tối giản. Biết rằng
song song với mặt phẳng
. Giá trị của
bằng
Đáp án: 6
Hình vẽ minh họa
Gọi là trung điểm của
,
là giao điểm của
và
trong mặt phẳng
.
Theo định lý Talet, ta có: là trung điểm của
Ta có:
.
Cho mảnh bìa như hình vẽ sau, biết
là hình vuông cạnh
. Các tam giác
là các tam giác cân bằng nhau. Gọi
lần lượt là trọng tâm của hai tam giác
và
. Người ta xếp mảnh bìa này thành hình chóp tứ giác
(các điểm
trùng vào đỉnh
). Khi đó tính độ dài đoạn thẳng
.

Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:
Từ giả thiết ta có:
Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:
Ta có:
Cho
là một đa thức thỏa mãn
. Tính giá trị

Ta có:
Khi đó
bằng:
Ta có:
Cho hai đường thẳng song song
và
. Có bao nhiêu mặt phẳng chứa
và song song với
?
Có vô số mặt phẳng chứa và song song với
(đó là tất cả các mặt phẳng chứa
nhưng không chứa
).
Trên đường tròn bán kính 15dm, cho cung tròn có độ dài
. Số đo của cung tròn đó là:
Độ dài cung tròn là:
=>
Đồ thị hàm số
được suy ra từ đồ thị C của hàm số y = cosx + 1 bằng cách:
Ta có:
Tịnh tiến đồ thị y = cosx + 1 sang phải ta được đồ thị hàm số
Tiếp theo tịnh tiến đồ thị xuống dưới một đơn vị ta được đồ thị hàm số
VD
0
Xét đường tròn lượng giác như hình vẽ. Biết
, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?


Ta có:
Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.
Phương trình lượng giác
có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Ta có:
Vậy phương trình có họ nghiệm là:.
Do đó
.
Tính
.
Ta chứng minh bằng phương pháp quy nạp, với thì
Với thì
nên (*) đúng với
Giả sử (*) đúng với nghĩa là:
Xét ta có:
Vậy (*) đúng với
Bây giờ ta áp dụng với thì
Hàm số
liên tục trên:
Điều kiện
Tập xác định
=> Hàm số liên tục trên
Trong không gian, cho tam giác ABC, lấy điểm I trên cạnh AC kéo dài (xem hình bên). Mệnh đề nào sau đây là sai?

Ta có
=> BI nằm trong (ABC). Do đó, mệnh đề sai là BI không nằm trên mặt phẳng (ABC).
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy = 0.
Cho tổng S(n) = 2 + 4 + 6 + … + 2n. Khi đó S30 bằng?
Ta có S30 = 2 + 4 + 6 + … + 60
⇒ 2S30 = (2+60) + (4+58) + (6+56) + … + (60+2) (có 30 ngoặc đơn)
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
bằng:
Ta có:
Chọn khẳng định sai trong các khẳng định sau.
Khẳng định sai là: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm.”
Sửa lại: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm không thẳng hàng.”
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Cho cấp số nhân (un) có
. Tìm số hạng đầu tiên của dãy biết số đó không lớn hơn 100.
Ta có:
Cho cấp số nhân lùi vô hạn
công bội
. Đặt
thì:
Tổng cấp số nhân là:
Do cấp số đã cho là cấp số nhân lùi vô hạn nên ta có:
Giá trị của
với a> 0 bằng:
Nếu a=1 thì ta có luôn giới hạn bằng 1.
Suy ra: nên
Suy ra:
Tóm lại ta luôn có: với a > 0 .
Tìm chu kì T của hàm số lượng giác ![]()
Hàm số y = cos3x tuần hoàn với chu kì
Hàm số y = cos5x tuần hoàn với chu kì
=> Hàm số tuần hoàn với chu kì là
Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?
Để các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì:
Vậy nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m = 4
Trong không gian, cho tam giác
, lấy điểm
trên cạnh
kéo dài (trong hình vẽ). Mệnh đề nào sau đây sai?

Ta có:
=>
Do đó mệnh đề sai là: “ không nằm trên mặt phẳng
”.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho dãy số
với
. Khẳng định nào sau đây là đúng?
Ta có:
=> là một cấp số nhân với công bội là q = 5
Số hạng đầu tiên của dãy là:
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Nghiệm của phương trình: ![]()
Ta có:
Phương trình
có bao nhiêu nghiệm trên đoạn
?
Cách 1:
Ta có , với
+) .
Lại có nên
+).
Lại có nên
Vậy phương trình có 20 nghiệm trên đoạn
Cách 2:

Dùng đường tròn lượng giác, trên đoạn phương trình
có 2 nghiệm, tương tự với
.
Có 10 đoạn như vậy, trên mỗi đoạn có 2 nghiệm nên suy ra phương trình đã cho có 2.10=20 trên .
Cho hàm số
. Số nghiệm của phương trình
trên tập số thực là:
Hàm số là hàm đa thức có tập xác định
=> Hàm số liên tục trên
=> Hàm số liên tục trên các khoảng
Ta có:
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng . Tuy nhiên phương trình
là phương trình bậc ba có nhiều nhất ba nghiệm
Vậy phương trình có đúng ba nghiệm.
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …
Dễ dàng dự đoán được un = n.
Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:
Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.
Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k
Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1
Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1
Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.
Cho hình hộp
. Mặt phẳng
qua
cắt hình hộp theo là hình gì?
Hình vẽ minh họa

Giả sử qua
cắt
theo giao tuyến
, khi đó thiết diện là tứ giác
.
Vì nên MN // AB.
Mặt khác nên
là hình bình hành.
Lập luận tương tự cho trường hợp qua
cắt
theo giao tuyến
.
Công thức nào sau đây sai?
Ta có:
Tìm được các giới hạn sau:
a)
. Đúng||Sai
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Sai||Đúng
Tìm được các giới hạn sau:
a) . Đúng||Sai
b) . Sai||Đúng
c) . Đúng||Sai
d) . Sai||Đúng
a) , do
và
.
b)
Do và
.
c) .
d) .
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Cho hình chóp
có đáy
là hình bình hành. Lấy
; (
). Khi đó, giao tuyến của mặt phẳng
với các mặt của hình chóp là:
Hình vẽ minh họa
Ta có:
Trong mặt phẳng giả sử
Do đó là giao tuyến của mặt phẳng
với các mặt của hình chóp.
Vì nên
là hình thang.
Với
, cho dãy số
xác định bởi hệ thức truy hồi
,
. Giá trị của số hạng thứ
bằng
Ta có:
,
,
.
Cho các số thực
thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Cho các số thực thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Xét hàm số
Theo giả thiết
Ta có là hàm đa thức nên liên tục trên
suy ra phương trình
có ít nhất một nghiệm trên
nên phương trình
có ít nhất một nghiệm trên khoảng
suy ra phương trình
có ít nhất một nghiệm trên khoảng
Từ ;
và
ta có phương trình
có ít nhất 3 nghiệm.
Mặt khác là phương trình bậc ba nên có tối đa 3 nghiệm.
Vậy phương trình có đúng 3 nghiệm.
Tính giá trị của biểu thức
là:
Ta có:
Vậy
Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?
Gọi H là trung điểm của tam giác AB.
M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.
Khi đó ta có:
Theo định lí Ta - lét ta có:
Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.
Tổng n số hạng đầu tiên của một cấp số cộng là
. Tìm số hạng đầu tiên
và công sai d của cấp số cộng đã cho.
Ta có:
Mặt khác
Cho hình chóp
có đáy
là hình bình hành. Lấy
sao cho
,
là trọng tâm tam giác
. Đường thẳng
song song với mặt phẳng:
Hình vẽ minh họa
Gọi là trung điểm của
, lấy
sao cho
Ta có:
Mặt khác
Xác định mệnh đề đúng trong các mệnh đề sau.
Khẳng định đúng là: “Nếu hai mặt phẳng và
song song với nhau thì mọi đường thẳng nằm trong
đều song song với
.”.