Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm?
Áp dụng điều kiện có nghiệm của phương trình .
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Do đó, phương trình có nghiệm khi và chỉ khi
.
Cho hình chóp
có đáy
là hình bình hành tâm
. Giao tuyến của hai mặt phẳng
và
là:
Hình vẽ minh họa
Ta có:
Mặt khác
Từ (*) và (**) ta suy ra
Cho hình chóp
có
lần lượt là trọng tâm của tam giác
và
tam giác. Chọn mệnh đề đúng.
Gọi là trung điểm
.
Xét tam giác có:
(do
lần lượt là trọng tâm của tam giác
và tam giác
)
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn thỏa mãn:
Ta có:
Suy ra .
Phương trình
có bao nhiêu nghiệm thuộc
?
Ta có:
, mà
.
.
Suy ra ,
.
Vậy có 4044 nghiệm thuộc
.
Cho hình chóp
có đáy
là hình bình hành. Lấy một điểm
trên cạnh
. Thiết diện tạo bởi mặt phẳng
với hình chóp là:
Hình vẽ minh họa
Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.
Ta có: MN // BC // AD nên thiết diện AMND là hình thang.
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho
là các số thực khác
. Tìm điều kiện của
để giới hạn ![]()
Ta có:
Hàm số nào sau đây có chu kì khác
?
Hàm số có chu kì
.
Hàm số có chu kì
.
Hàm số có chu kì
.
Hàm số có chu kì
.
Trong các mệnh đề sau mệnh đề nào sai?
Tính chất của phép chiếu song song: Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.
Giá trị nào sau đây của x thỏa mãn
?
Ta có:
bằng:
Ta có:
Cho tứ diện
. Trên các cạnh
lần lượt lấy các điểm
là trung điểm, trên cạnh
lấy điểm
sao cho
. Gọi
, khi đó tỉ số độ dài giữa
và
là:
Hình vẽ minh họa
Từ giả thiết bài ra suy ra LK // AC mà (KLN) ∩ (DAC) = d
=> d // AC
Xét mặt phẳng (DAB) qua N dựng d song song AC
=> {P} = AD ∩ d
Xét tam giác DAC vì PN // AC theo định lý Ta-lét ta có:
Ta lại có:
Số nghiệm của phương trình
trên khoảng
là?
Phương trình
- Với không có giá trị thỏa mãn.
- Với
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là
(người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm
,
là
. Tính
và cho biết ý nghĩa của kết quả tìm được.
Đáp án: 600
Ta có:
Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm (ngày) là 600 người/ngày.
Trong mặt phẳng
, cho tứ giác
có
cắt
tại
,
cắt
tại
,
là điểm không thuộc
. Giao tuyến của
và
là
Hai mặt phẳng và
có hai điểm chung là
và
nên có giao tuyến là đường thẳng
.
Cho hàm số
hàm số f(x) liên tục tại:
Tập xác định:
Vậy hàm số liên tục tại
Hàm số liên tục khi
hàm số liên tục khi
Tại x = 1 ta có:
Vậy hàm số liên tục tại
Hàm số liên tục trên
Số hạng tổng quát của cấp số cộng là
. Gọi
là tổng số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Cấp số cộng
Tính
.
Ta chứng minh bằng phương pháp quy nạp, với thì
Với thì
nên (*) đúng với
Giả sử (*) đúng với nghĩa là:
Xét ta có:
Vậy (*) đúng với
Bây giờ ta áp dụng với thì
Cho mặt phẳng
và điểm
không thuộc mặt phẳng
. Số đường thẳng đi qua
và song song với
là:
Có vô số đường thẳng đi qua và song song với
với điểm
không thuộc mặt phẳng
.
Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?
Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai
Tổng số ghế là
Chọn mệnh đề đúng trong các mệnh đề sau:
Theo nội dung định lý tìm giới hạn, ta có:
Nếu , thì
Giá trị của
là:
Ta có:
Tìm tất cả các giá trị
để phương trình
có nghiệm?
Ta có:
Phương trình có nghiêm
.
Trong các dãy số sau, dãy số nào là dãy số giảm?
Xét đáp án :
Ta có . Khi đó:
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có . Khi đó
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có
Vậy (un) là dãy số giảm.
Xét đáp án :
Ta có
Vậy (un) là dãy số không tăng, không giảm.
Giá trị của giới hạn
là:
Ta có:
Tập nghiệm của phương trình
là?
Ta có: .
Chọn mệnh đề sai?
Xét
Xét
Cho dãy số (un) xác định bởi
. Tìm số hạng thứ 2018 của dãy số đã cho.
Ta có:
Đặt
Khi đó (vn) là một cấp số nhân với và công bội q = 21
Do đó số hạng tổng quát của dãy (vn) là
=>
Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

Ta có:
=> Loại đáp án và
Tại x = 0 => y = 1 ta thấy thỏa mãn
Cho dãy số
là một cấp số nhân với
. Dãy số nào sau đây không phải là cấp số nhân?
Giả sử là cấp số nhân công bội
thì:
Dãy là cấp số nhân công bội
.
Dãy là cấp số nhân với công bội
.
Dãy là cấp số nhân công bội
.
Dãy không là cấp số nhân.
Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.
Khẳng định nào sau đây đúng với mọi n nguyên dương?
Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n
Từ đó 2Sn = − 1 − 3 − 32 − … − 3n − 1 + n.3n
Cho cấp số nhân
có tổng
số hạng đầu tiên là
với
. Tìm số hạng đầu
và công bội
của cấp số nhân đó?
Ta có:
,
.
Cho cấp số cộng
có
và
Mệnh đề nào sau đây đúng?
Ta có
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Cung tròn bán kính bằng 8,43cm có số đo 3,85 rad có độ dài là?
Độ dài cung tròn là
Cho cấp số nhân
có số hạng đầu
và công bội
. Số hạng thứ sáu của
là:
Ta có:
Cho hàm số
liên tục tại
khi đó giá trị của tham số
bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).
Đáp án: -1/1012
Cho hàm số liên tục tại
khi đó giá trị của tham số
bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).
Đáp án: -1/1012
Hàm số xác định tại .
Ta có . Tính
.
Đặt thì
,
thì
.
.
.
Vậy
.
Để hàm số liên tục tại khi
.
Cho dãy số
biết
. Ba số hạng đầu tiên của dãy đó lần lượt là những số nào dưới đây?
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Giả sử
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Ta lại có: suy ra đường thẳng d đi qua S và song song với AB.
Hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Ta thấy hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
nên loại các đáp án
và
.
Tại chỉ có hàm số
thỏa mãn.
Cho cấp số cộng
có số hạng đầu
và công sai
. Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Cho tứ diện
có độ dài tất cả các cạnh bằng
. Gọi
là trọng tâm tam giác
. Tính diện tích thiết diện tạo bởi mặt phẳng
và tứ diện
?
Hình vẽ minh họa:
Gọi lần lượt là trung điểm các cạnh
Ta có:
Suy ra tam giác MCD là thiết diện của mặt phẳng và tứ diện
Tam giác ABD đều cạnh bằng có
là trung điểm của
Tam giác ABC đều cạnh bằng có
là trung điểm của
Gọi H là trung điểm của CD
Ta có:
Chọn câu đúng:
"Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song với nhau" đúng.
Hai đường thẳng cùng song song với một mặt phẳng thì có thể cắt nhau, song song, trùng nhau hoặc chéo nhau => "Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau." sai.
Hai mặt phẳng không cắt nhau thì song song hoặc trùng nhau => "Hai mặt phẳng không cắt nhau thì song song" sai.
Hai mặt phẳng không song song thì trùng nhau hoặc cắt nhau => "Hai mặt phẳng không song song thì trùng nhau" sai.
Cho hình chóp
, có đáy
là hình bình hành. Phép chiếu song song theo phương
lên mặt phẳng
biến điểm
thành:
Do suy ra hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm
.