Tìm giới hạn ![]()
Ta có:
Tìm giới hạn ![]()
Ta có:
Cho cấp số cộng
với
. Khi đó số hạng
là số nào?
Theo bài ra ta có:
.
Cho cấp số cộng
thỏa mãn
. Tính số hạng đầu tiên
và công sai
của cấp số cộng đã cho.
Ta có:
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
“Ba điểm phân biệt” sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.
“Một điểm và một đường thẳng” sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ra chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.
“Bốn điểm phân biệt” sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì sẽ không tạo được mặt phẳng nào đi qua cả 4 điểm.
Cho hình chóp
, biết
và
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa
Ta có là điểm chung của hai mặt phẳng
và
.
Vì nên
là điểm chung của hai mặt phẳng
và
.
Do đó giao tuyến của hai mặt phẳng và
là
.
Cho dãy số (un), biết
. Khẳng định nào sau đây đúng về dãy số (un) ?
Ta có
Do un + 1 − un > 0 nên (un) là dãy số tăng.
Lại có suy ra dãy số bị chặn.
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số
được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số
được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân. Đúng||Sai
b) Cho dãy số được xác định bởi công thức
có số hạng thứ 3 là:
. Đúng||Sai
c) Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới. Sai||Đúng
d) Tổng . Đúng||Sai
Dãy số có tất cả các số hạng bằng nhau là một cấp số nhân đúng vì dãy số đã cho là cấp số nhân với công bội q = 1.
Số hạng thứ ba của dãy số là:
.
Xét ta có:
suy ra
là dãy số giảm
Lại có suy ra
là dãy số bị chặn trên.
Suy ra phát biểu “Cho dãy số được xác định bởi công thức
là dãy số giảm và bị chặn dưới.” là phát biểu sai.
Ta có: là tổng cấp số nhân lùi vô hạn
với
có số hạng đầu và công bội lần lượt là:
Cho hình chóp S.ABC có diện tích đáy bằng 9. Mặt phẳng
song song với
cắt đoạn SA tại
sao cho
. Diện tích thiết diện của hình chóp S.ABC tạo bởi
bằng
Hình vẽ minh họa:
Gọi N, P lần lượt là giao điểm của mặt phẳng và các cạnh SB, SC.
Vì nên theo định lí Talet, ta có
.
Khi đó cắt hình chóp S.ABC theo thiết diện là tam giác MNP ðồng dạng với tam giác ABC theo tỉ số
.
Vậy .
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng
khi đó
Đúng||Sai
b) Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c)
Sai||Đúng
d) Cho hàm số
xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng khi đó
Đúng||Sai
b) Cho hàm số liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c) Sai||Đúng
d) Cho hàm số xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
a) Ta có:
b) Ta có:
Điều kiện cần và đủ để hàm số liên tục trên là
c)
d) Ta có:
Từ (*) và (**) ta có:
Do đó:
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Điều kiện để đường thẳng
song song với mặt phẳng
:
Đường thẳng song song với mặt phẳng
khi và chỉ khi
không nằm trong
, đồng thời
song song với một đường thẳng
nằm trong
.
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính
.
Điều kiện xác định
Ta có:
=> Phương trình tương đương
=>
Tính giới hạn
.
Ta có:
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy A=2.
Chu kì của hàm số
là
Hàm số tuần hoàn với chu kỳ
.
Cho tứ diện
. Trên các cạnh
lần lượt lấy các điểm
là trung điểm, trên cạnh
lấy điểm
sao cho
. Gọi
, khi đó tỉ số độ dài giữa
và
là:
Hình vẽ minh họa
Từ giả thiết bài ra suy ra LK // AC mà (KLN) ∩ (DAC) = d
=> d // AC
Xét mặt phẳng (DAB) qua N dựng d song song AC
=> {P} = AD ∩ d
Xét tam giác DAC vì PN // AC theo định lý Ta-lét ta có:
Ta lại có:
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
. Lấy các điểm
sao cho
. Hình chiếu của
qua phép chiếu song song phương
mặt phẳng chiếu
lần lượt là
. Tỉ số độ dài
bằng bao nhiêu?
Hình vẽ minh hoạ
Do là hình chiếu song song của
qua phép chiếu song song phương
Mà
Chứng minh tương tự ta có:
Ta có:
Cho hàm số
thỏa mãn
và
. Gọi S là số giao điểm của đồ thị hàm số đã cho với trục Ox. Mệnh đề nào dưới đây đúng?
Hàm số đã cho xác định trên .
Ta có:
mà
nên
.
Mặt khác
mà
nên
.
Ta lại có nên tồn tại số
sao cho f(m) < 0 và
nên tồn tại số
sao cho
.
Vậy nên phương trình
có ít nhất một nghiệm thuộc
.
Và nên phương trình
có ít nhất một nghiệm thuộc
.
Và nên phương trình
có ít nhất một nghiệm thuộc
.
Từ đó suy ra đồ thị hàm số có 3 điểm chung với trục hoành.
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của
(kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của (kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Để hàm số liên tục trên
thì hàm số phải liên tục tại
hay
Ta có:
Để tồn tại thì
.
Suy ra
Biết các số
theo thứ tự lập thành một cấp số cộng với n > 3. Tìm n
Ta có:
Các số theo thứ tự lập thành một cấp số cộng với n > 3
Cho hàm số
với
là tham số. Tính giá trị của tham số
để hàm số có giới hạn tại
.
Hàm số có giới hạn tại
Cho dãy số
với
. Khẳng định nào sau đây là đúng?
Ta có:
=> là một cấp số nhân với công bội là q = 5
Số hạng đầu tiên của dãy là:
Cho hai đường thẳng chéo nhau a và b. Lấy A, B thuộc a và C, D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?
Ta có:
Hai đường thẳng a và b chéo nhau nên A, B, C, D không đồng phẳng.
=> Hai đường thẳng AD và BC chéo nhau.
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 5 của cấp số nhân đã cho.
Mặt khác
Cho hàm số
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy là mệnh đề đúng.
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu
(mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.

Đáp án: 36
Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu (mét) của mực nước trong kênh tính theo thời gian
(giờ) trong một ngày
cho bởi hàm số
có đồ thị như hình bên dưới (
là các số thực dương). Gọi
là tập hợp tất cả các thời điểm
trong ngày để chiều cao của mực nước biển là
mét. Tổng tất cả phần tử của
bằng.
Đáp án: 36
Theo đồ thị ta có:
Suy ra: .
Theo đề bài yêu cầu:
Vì: nên
Suy ra:
Cho dãy số
với
. Tính
.
Ta có:
Cho dãy số
biết
. Mệnh đề nào sau đây sai?
Ta có:
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Tìm phát biểu sai trong các phát biểu sau?
Phát biểu: "Mặt phẳng hoàn toàn xác định khi nó đi qua 3 điểm." đúng
Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết một điểm và một đường thẳng." đúng
Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết nó chứa hai đường thẳng cắt nhau." đúng.
Cho hình chóp
có đáy là hình bình hành,
là trọng tâm tam giác
,
là trọng tâm tam giác
.
lần lượt là trung điểm của
.
là giao điểm của đường thẳng
và mặt phẳng
. Các khẳng định dưới đây là đúng hay sai?
a)
Đúng||Sai
b) Tứ giác
là hình thang có đáy
Sai||Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Cho hình chóp có đáy là hình bình hành,
là trọng tâm tam giác
,
là trọng tâm tam giác
.
lần lượt là trung điểm của
.
là giao điểm của đường thẳng
và mặt phẳng
. Các khẳng định dưới đây là đúng hay sai?
a) Đúng||Sai
b) Tứ giác là hình thang có đáy
Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
Hình vẽ minh họa
a) Đúng
Ta có là đường trung bình của tam giác
mà
nên
b) Sai
Ta có
Gọi
Ta có
Vậy là hình bình hành
c) Đúng
Gọi là giao điểm của
và
trong
, ta có
là trung điểm
Vậy là đường trung bình của tam giác
Ta có
d) Đúng
Gọi là trung điểm
ta có
Ta có
Phương trình
có nghiệm là:
Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:
Ta có:
Cho
. Tính giá trị
bằng
Ta có:
Cho hình chóp
, đáy là hình bình hành tâm
, gọi
lần lượt là trung điểm
và
. Chọn khẳng định sai.
Hình vẽ minh họa
Ta có là điểm chung của
và
.
Do lần lượt là trung điểm
và
nên ta có
là hình bình hành.
Vì .
Khi đó cắt
theo giao tuyến đi qua
và song song với
là
.
Từ đó ta thấy đáp án
, với
là trung điểm
.
, với
là trung điểm
.
, với
là trung điểm
.
Là các đáp án đúng
Vì là trung điểm
suy ra
.
Nghiệm của phương trình
là
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Hình biểu diễn của một tam giác đều là hình nào sau đây?
Hình biểu diễn của một tam giác đều là hình tam giác.
Trên đoạn
, đồ thị hai hàm số
và
cắt nhau tại bao nhiêu điểm?
Phương trình hoành độ giao điểm của hai đồ thị hàm số là
Theo bài ra ta có:
Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn .
Tế bào E. Coli trong điều kiện nuôi cấy thích hợp cứ 20 phút lại nhân đôi một lần. Nếu lúc đầu có
tế bào thì sau 2 giờ sẽ phân chia thành bao nhiêu tế bào?
Ban đầu có tế bào và mỗi lần phân chia thì một tế bào tách thành hai tế bào nên ta có cấp số nhân với
và công bội
.
Theo bài ra ta có:
Cứ 20 phút phân đôi một lần nên sau 2 giờ có 6 lần phân chia tế bào.
Ta có: là số tế bào nhận được sau 2 giờ.
Vậy số tế bào nhận được sau 2 giờ là
Công thức nào sau đây đúng?
Ta có:
bằng:
Ta có:
Tính tổng
:
Ta có:
Cho dãy số
biết
. Dãy số
bị chặn trên bởi số nào dưới đây?
Ta có:
Mặt khác
=> Dãy số bị chặn trên bởi số
.