Hình chóp ngũ giác có bao nhiêu cạnh?
Hình chóp ngũ giác có 10 cạnh.
Hình chóp ngũ giác có bao nhiêu cạnh?
Hình chóp ngũ giác có 10 cạnh.
Dãy số (un) xác định bởi
và dãy số (vn) xác định bởi
. Tính
.
Ta có:
nên dãy
là cấp số nhân với công bội
Lại có: , khi đó ta có:
Cộng vế theo vế ta được
Do đó:
=>
Cho phương trình
với
là tham số. Tìm tất cả các giá trị của tham số
để phương trình đã cho có nghiệm?
Ta có:
thì phương trình có nghiệm.
Cho dãy số
xác định bởi công thức
. Khẳng định nào sau đây sai?
Ta có:
Với ta thấy
Suy ra dãy số đã cho là dãy số giảm.
Khẳng định nào sau đây đúng khi nói về mặt phẳng?
Theo cách xác định mặt phẳng thì “Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau”.
Chọn công thức đúng trong các công thức cho sau đây?
Công thức đúng là:
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Hàm số
có chu kì bằng bao nhiêu?
Chu kì của hàm số là:
Cho hình chóp
có
lần lượt là trọng tâm các tam giác
và
. Gọi
là trung điểm cạnh
. Mặt phẳng
cắt
tại
. Tỉ số
bằng:
Hình vẽ minh họa
Ta có: là trọng tâm tam giác
và
là trung điểm của
.
=> thẳng hàng hay
Ta lại có là trọng tâm tam giác
nên
kéo dài cắt
tại trung điểm của
.
Vậy là trung điểm của
suy ra
Tính giới hạn của hàm số
khi
.
Ta có:
Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi
.
Theo bài ra ta có:
Nghiệm của phương trình sinx + cosx = 1 là:
Trong các dãy số sau, dãy số nào là cấp số nhân?
Ta có:
=> là cấp số nhân
Một chiếc đồng hồ đánh chuông, kể từ thời điểm 0 (giờ) thì sau mỗi giờ thì số tiếng chuông được đánh đúng bằng số giờ mà đồng hồ chỉ tại thời điểm đánh chuông. Hỏi một ngày đồng hồ đó đánh bao nhiêu tiếng chuông?
Kể từ lúc 1 (giờ) đến 24 (giời) số tiếng chuông được đánh lập thành cấp số cộng có 24 số hạng với , công sai
.
=> Số tiếng chuông được đánh trong 1 ngày là:
Một hãng taxi đưa ra giá cước
(đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Một hãng taxi đưa ra giá cước (đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Tại ta có:
.
.
Hàm số liên tục tại thì
.
Cho tứ diện
. Gọi
lần lượt là trung điểm của
, điểm
là trọng tâm tam giác
. Khi đó giao điểm của
và mặt phẳng
là:
Hình vẽ minh họa:
Trong tam giác ta có:
Vậy
Giới hạn cần tìm của
bằng:
Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Tìm thiết diện của (MAB) với hình chóp.
Do (MAB) chứa AB // CD, nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB. Đường thẳng này cắt SD tại điểm N.
Vậy thiết diện của (MAB) với hình chóp là tứ giác ABMN, với N là giao điểm của SD với đường thẳng đi qua M và song song với AB.
Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNC) và (ABD) là đường nào trong các đường thẳng sau đây?
Hình vẽ minh họa

Xét tam giác SAB có:
M và N lần lượt là trung điểm của SA và SB
=> MN là đường trung bình của tam giác SAB
Mà (ABCD là hình bình hành)
=>
Mặt phẳng (MNC) và (ABD) (hay (ABCD)) lần lượt chứa hai đường thẳng MN và CD song song với nhau và điểm C chung
=> Giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung C và song song với AB là đường thẳng CD
Hay
Cho cấp số cộng
. Xác định
biết rằng
?
Ta có:
Khi đó:
Suy ra
Mệnh đề nào trong các mệnh đề sau đây là sai?
Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy.
Chọn mệnh đề đúng trong các mệnh đề sau:
Theo nội dung định lý tìm giới hạn, ta có:
Nếu , thì
Cho
. Tính giá trị
bằng
Ta có:
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Giá trị của
bằng:
Với mọi số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
với mọi
Suy ra
Tổng Sn = 1.3 + 2.5 + 3.7 + … + n(2n+1) có công thức thu gọn là?
Sn = Σi = 1n i(2i+1) = Σi = 1n (2i2+1)
Cho tứ diện
. Trên các cạnh
theo thứ tự lấy các điểm
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Tìm các giao tuyến của tứ diện và mặt phẳng
. Xác định hình tạo bởi các giao tuyến này.
Hình vẽ minh họa:
Qua M, kẻ đường thẳng song song với CD cắt AC tại E.
Qua N, kẻ đường thẳng song song với CD cắt BD tại F.
Khi đó ME // NF // CD và
Ta có:
Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng là hình thang
với đáy lớn gấp đôi đáy nhỏ.
Cho cấp số nhân (un) có
. Tìm công bội q và số hạng đầu u1.
Ta có:
Tính giới hạn
ta được kết quả bằng
Ta có:
.
Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2 và
với n ≥ 2. Công thức tổng quát của hai dãy (un) và (vn) là?
Chứng minh
Ta có
Mặt khác nên (1) đúng với n = 1 Giả sử
, ta có
Vậy (1) đúng với ∀n ≥ 1
Ta có
Do đó ta suy ra:
Cho cấp số nhân (un) có
. Biết
. Tính
?
Ta có:
Xét (*)
Cho hình chóp
. Trung điểm của các cạnh
lần lượt là
. Chọn khẳng định đúng.
Hình vẽ minh họa
Ta có:
mà
cắt
nên khẳng định
sai.
cắt
tại
nên khẳng định
sai.
cắt
tại trung điểm của
nên khẳng định
sai.
Cho hàm số
xác định trên
thỏa mãn
. Tính giới hạn
?
Cho hàm số xác định trên
thỏa mãn
. Tính giới hạn
?
Có tất cả bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Ta có:
Mặt khác
Vậy để phương trình lượng giác có nghiệm thì
Vậy có 3 giá trị nguyên của tham số m thỏa mãn điều kiện đề bài.
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Cho hàm số
xác định trên tập số thực và có đồ thị như hình vẽ:

Hỏi hàm số
không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.
Cho các hàm số sau, hàm số nào là hàm số lẻ?
Ta có:
Ta kiểm tra được và
là hàm số không chẵn không lẻ
là hàm số chẵn
là hàm số lẻ
Vậy là hàm số lẻ
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Cho hình hộp
. Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa

Mặt phẳng song song với mặt phẳng
.
Vì và
.
Trong các giới hạn dưới đây, giới hạn nào không tồn tại?
Ta có:
không xác định.
Cho các số thực
thỏa mãn
. Khi đó số giao điểm của hàm số
với trục
là:
Hàm số xác định và liên tục trên
.
Hàm số bậc ba nên đồ thị hàm số cắt Ox tối đa tại 3 điểm (1)
Ta có:
suy ra
sao cho
Lại có: suy ra
sao cho
Mặt khác
Từ đó suy ra
Do đó đồ thị hàm số cắt Ox tại ít nhất ba điểm (2)
Từ (1) và (2) suy ra đồ thị hàm số đã cho cắt trục Ox tại đúng ba điểm.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho cấp số cộng
có
. Tìm công sai
của cấp số cộng?
Gọi d là công sai của cấp số cộng khi đó ta có:
Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:
Ta có:
Cho hình chóp
có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm
là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có
. Sai||Đúng
c) Cho
thì
. Sai||Đúng
d) Trong mặt phẳng
, gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
Cho hình chóp có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có . Sai||Đúng
c) Cho thì
. Sai||Đúng
d) Trong mặt phẳng , gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
- Xác định :
Trong mặt phẳng , kẻ
cắt
tại
;
Trong mặt phẳng , kẻ
cắt
tại
.
Vì .
Tương tự: .
-Tính theo
:
Gọi là trung điểm
là đường trung bình của tam giác
.
Trong tam giác , ta có
qua trung điểm
của
và
là trung điểm của
.
Hình vẽ minh họa
-Vậy hay
.
Hoàn toàn tương tự, ta chứng minh được .
Khi đó hai tam giác đồng dạng vì có góc
chung và
.
Xét tam giác , theo định lí Thalès, ta có:
- Chứng minh :
Dễ thấy là điểm chung của hai mặt phẳng
và
.
Ta có: .
Vì vậy .
Khi đó:
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |