Cho tổng
.
Khi đó công thức tính tổng S(n) là?
Cho tổng
.
Khi đó công thức tính tổng S(n) là?
Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội
. Mệnh đề nào sau đây là đúng?
Ta có:
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Mà
.
Do đó . Vậy
.
Tính giới hạn ![]()
Ta có:
Do đó
Xác định số hạng đầu u1 và công sai d của cấp số cộng (un) có u9 = 5u2 và u13 = 2u6 + 5.
Ta có:
Biết rằng
, với
là phân số tối giản và
. Tính
.
Ta có:
.
Vậy: .
Phương trình
có nghiệm là:
Cho hình lăng trụ
. Gọi
là trung điểm của
. Điểm
là ảnh của điểm
qua phép chiếu song song phương
, mặt phẳng chiếu
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có phép chiếu song song phương , biến
thành
, biến
thành
.
Do là trung điểm của
suy ra
là trung điểm của
vì phép chiếu song song bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số của hai đoạn thẳng nằm trên cùng một đường thẳng hoặc trên hai đường thẳng song song.
Vậy khẳng định đúng là:
Cho các số thực
thỏa mãn
. Số giao điểm của đồ thị hàm số
và trục
là
Đáp án: 3
Cho các số thực thỏa mãn
. Số giao điểm của đồ thị hàm số
và trục
là
Đáp án: 3
Ta có sao cho
(1).
Ta có sao cho
(2).
Ta có sao cho
(3).
Từ (1), (2) và (3) ta suy ra số giao điểm của đồ thị hàm số và trục bằng 3.
Cho phương trình
có nghiệm là:
Giải phương trình như sau:
Vì
vậy phương trình lượng giác đã cho vô nghiệm.
Cho dãy số
biết
. Mệnh đề nào sau đây sai?
Ta có:
Tính giá trị của ![]()
Ta có:
bằng:
Ta có:
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho tứ diện
có
là trọng tâm của
và
là một điểm trên cạnh
sao cho
. Tìm
để đường thẳng
song song với mặt phẳng ![]()
Đáp án: 2
Cho tứ diện có
là trọng tâm của
và
là một điểm trên cạnh
sao cho
. Tìm
để đường thẳng
song song với mặt phẳng
Đáp án: 2
Gọi là trung điểm đoạn
, suy ra
(
là trọng tâm của tam giác
).
Ta có và
.
Do đó .
Suy ra .
Vậy .
Tính giới hạn ![]()
Ta có:
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Cho tứ diện
. Lấy
sao cho
,
là trọng tâm tam giác
. Xác định mặt phẳng song song với đường thẳng
?
Hình vẽ minh họa
Gọi là trung điểm của
.
Xét tam giác ta có:
Trong không gian, cho 3 đường thẳng
, biết
, a và c chéo nhau. Khi đó hai đường thẳng b và c:
Giả sử
(mâu thuẫn với giả thiết).
Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.
Cho hình chóp
, đáy là hình bình hành. Gọi
là giao điểm của
và
,
là trung điểm
. Khằng định nào sau đây là đúng?
Hình vẽ minh họa
Ta có là đường trung bình tam giác
nên
, mà
và
suy ra
.
Cho hình bình hành ABCD. Qua các đỉnh A, B, C, D ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với mặt phẳng (ABCD). Một mặt phẳng (P) cắt bốn đường thẳng nói trên tại A’, B’, C’, D’. Hỏi A’B’C’D’ là hình gì?
Ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Chứng minh tương tự ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Từ (1) và (2) => là hình bình hành.
Tính giới hạn: ![]()
Ta có:
Biểu diễn hai nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác như sau:

Tính
với I là hình chiếu vuông góc của B trên OA bằng:
=>
Rút gọn
với ![]()
Ta có:
là một dãy cấp số nhân với
nên
Cho hàm số
. Tìm
để hàm số liên tục tại ![]()
Đáp án: -3||- 3
Cho hàm số . Tìm
để hàm số liên tục tại
Đáp án: -3||- 3
Xét
Hàm số liên tục tại
.
Nếu các dãy số
thỏa mãn
và
thì
bằng:
Ta có .
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho mặt phẳng
và đường thẳng
. Mệnh đề nào sau đây đúng:
Mệnh đề đúng: "".
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Xét đường tròn lượng giác như hình vẽ. Biết
, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?


Ta có:
Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.
Trong dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là dãy số tăng?
Vì là các dãy dương và tăng nên
là các dãy giảm
=> Loại các đáp án
Xét đáp án ta có:
=> Dãy số không phải dãy tăng.
Xét đáp án
=> Dãy số là dãy tăng.
Giá trị của
bằng:
Ta có:
Dãy số nào sau đây không phải là một cấp số cộng?
Xét đáp án A:
=> Loại đáp án A
Xét đáp án B:
=> Loại đáp án B
Xét đáp án C:
=> Chọn đáp án C
Xét đáp án D:
=> Loại đáp án D
Cho cấp số cộng
có
và công sai
. Tổng 10 số hạng đầu của cấp số cộng bằng:
Tổng 10 số hạng đầu của cấp số cộng là
Cho hai đường thẳng phân biệt a và b trong không gian. Có bao nhiêu vị trí tương đối giữa a và b?
Có 3 vị trí tương đối có thể có giữa a và b là:
a cắt b
a song song với b
a chéo nhau với b
Rút gọn biểu thức
ta được:
Ta có:
Tìm tất cả các giá trị của x để ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân.
Ta có:
Ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân:
Trong không gian cho hai mặt phẳng
và
song song. Số giao điểm chung của hai mặt phẳng
và
là
Theo định nghĩa hai mặt phẳng song song.
Đáp án cần tìm là: 0
Hàm số nào không liên tục tại
?
Ta có hàm số không xác định tại
nên hàm số không liên tục tại
NB
Ba số hạng đầu của một cấp số nhân là
và
. Tìm
biết rằng công bội của cấp số nhân là
?
Ta có:
Ba số hạng đầu của một cấp số nhân là và
có công bội
Cho hình chóp
. Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Cho hình chóp . Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Hình vẽ minh họa
Xét và
ta có:
là điểm chung thứ nhất.
Gọi
Có là điểm chung thứ hai.
Gọi . Ta có:
Thiết diện là tứ giác .
Vậy thiết diện là đa giác có 4 cạnh.
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Do dãy số là cấp số nhân
=>
=> Số hạng tiếp theo là:
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Cho cấp số cộng
có
. Gọi
là tổng 5 số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?
Ta có:
Và