Giá trị của giới hạn
bằng:
Ta có:
là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a
=>
Tương tự:
là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b
=>
Giá trị của giới hạn
bằng:
Ta có:
là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a
=>
Tương tự:
là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b
=>
Cho cấp số nhân
với
và
. Công bội của cấp số nhân đã cho bằng
Ta có .
Mệnh đề nào dưới đây SAI?
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đồng quy hoặc đôi một song song.
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy = 0.
Hàm số nào sau đây không liên tục trên
?
Hàm số không xác định tại
nên không liên tục tại
.
Do đó không liên tục trên .
Khẳng định nào sau đây đúng?
Ta có:
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Tính
biết
và
.
Ta có
.
Mà nên
.
Vậy .
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
.
Đáp án: -4||- 4
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
Suy ra .
Vậy .
Giá trị của
bằng:
Ta có:
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng
. Sai||Đúng
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng . Sai||Đúng
Điều kiện: .
Phương trình
.
Yêu cầu bài toán .
Ta có:
Vì .
Kết hợp điều kiện, ta có là những giá trị cần tìm.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Cho cấp số cộng
biết
,
Khi đó
bằng
Ta có
Vậy
Cho tứ diện
. Trung điểm của các cạnh
lần lượt là các điểm
. Giả sử
. Hỏi đường thẳng
đi qua trung điểm của đoạn thẳng nào?
Hình vẽ minh họa
Ta có: nên giao tuyến của hai mặt phẳng
sẽ đi qua điểm
và song song với
.
Do đó giao tuyến sẽ đi qua trung điểm của
.
Cho hình chóp
. Trung điểm của các cạnh
lần lượt là
. Chọn khẳng định đúng.
Hình vẽ minh họa
Ta có:
mà
cắt
nên khẳng định
sai.
cắt
tại
nên khẳng định
sai.
cắt
tại trung điểm của
nên khẳng định
sai.
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 4 của cấp số nhân đã cho.
Ta có:
Khi đó
Cho tứ diện
có
là trọng tâm của
và
là một điểm trên cạnh
sao cho
. Tìm
để đường thẳng
song song với mặt phẳng ![]()
Đáp án: 2
Cho tứ diện có
là trọng tâm của
và
là một điểm trên cạnh
sao cho
. Tìm
để đường thẳng
song song với mặt phẳng
Đáp án: 2
Gọi là trung điểm đoạn
, suy ra
(
là trọng tâm của tam giác
).
Ta có và
.
Do đó .
Suy ra .
Vậy .
Điều kiện xác định của hàm số: 
Điều kiện xác định của hàm số:
Cho cấp số nhân
thỏa mãn
. Tính
?
Đáp án: 4
Cho cấp số nhân thỏa mãn
. Tính
?
Đáp án: 4
Giả sử cấp số nhân có công bội là , khi đó theo bài ra ta có:
do
Ta có:
Trong các phương trình sau có bao nhiêu phương trình có nghiệm?
![]()
Do y = sin (x) có tập giá trị là [-1;1] nên các phương trình có nghiệm;
phương trình vô nghiệm do
Cho mặt phẳng
có các điểm
. Đường thẳng
đi qua hai điểm
. Khi đó giữa mặt phẳng
và đường thẳng
có:
Giữa mặt phẳng và đường thẳng
có đúng một điểm chung.
Hàm số nào sau đây là hàm số chẵn:
Hàm số sinx là hàm số lẻ
=> Hàm số y = sin5x, y = 3sin2x, y = 4sinx là hàm số lẻ
Xét hàm số y = |sinx| ta có:
Hàm số có tập xác định D = R; ∀x ∈ D thì -x ∈ D
Ta có: f(-x) = |sin( -x)| = |- sinx| = |sinx|
=> f(x)= f(-x) nên hàm số y= |sinx| là hàm số chẵn
Vậy hàm số y = |sinx| là hàm số chẵn
Cho các đường thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?
Khẳng định đúng là: "Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau."
Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn
theo thứ tự tăng dần?
Số nguyên tố là số tự nhiên lớn hơn và chỉ có hai ước số là
và chính nó.
Vậy dãy số nguyên tố nhỏ hơn là
,
,
,
.
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Cho tứ diện ABCD, M, N, P, Q, R, S lần lượt là trung điểm của AB, CD, BC, AD, BD, AC. Phát biểu nào sau đây là sai?
Trong tam giác CAD có S và N lần lượt là trung điểm của AC và CD
Suy ra SN là đường trung bình của tam giác CAD
=> SN // AD (1)
Tương tự MR cũng là đường trung bình của tam giác ABD
=> MR // AD (2)
Từ (1) và (2) suy ra: SN // MR nên đáp án "MN, SN song song với nhau"
Chứng minh tương tự ta cũng có: SM // NR //BC
Do đó tứ giác MRNS là hình bình hành nên đáp án "MRNS là hình bình hành"
Hai đường chéo SR và MN cắt nhau tại G với G là trung điểm của mỗi đường chéo.
Lại có: NQ // MP (//AC) và MQ // NP //BD
=> Tứ giác MQNP là hình bình hành
=> Hai đường chéo QP và MN cắt nhau tại trung điểm của mỗi đường
Mà G là trung điểm của MN
Do đó G cũng là trung điểm của QP
Vậy ba đường thẳng MN, PQ, SR đồng quy tại G.
Đáp án "MN, PQ, RS đồng quy'
Đáp án "6 điểm M, N, P, Q, R, S đồng phẳng" sai vì P và Q cùng thuộc một mặt phẳng với M và N nhưng không cùng thuộc một mặt phẳng với hai điểm S và R.
Cho tứ diện
. Gọi
là trọng tâm tam giác
là trung điểm
là điểm ở trên đoạn thẳng
cắt mặt phẳng
tại
. Khẳng định nào sau đây sai?
Ta có là điểm chung thứ nhất giữa hai mặt phẳng
và
.
Do
là điểm chung thứ hai giữa hai mặt phẳng
và
nên
đúng.
thẳng hàng nên
thẳng hàng đúng
Ta có nên
đúng.
Điểm di động trên
nên
có thể không phải là trung điểm của
Nên là trung điểm của
sai.
Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?
Ta thấy ở dãy số có
nên đây là cấp số nhân với công bội
.
Giá trị của giới hạn
là:
Ta có:
Điều kiện để đường thẳng
song song với mặt phẳng
:
Đường thẳng song song với mặt phẳng
khi và chỉ khi
không nằm trong
, đồng thời
song song với một đường thẳng
nằm trong
.
Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.
Ta sẽ chứng minh bằng quy nạp − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Với n = 1 ta có − 2 ≤ u1 ≤ 1 (đúng).
Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là − 2 ≤ uk ≤ 1
Theo nguyên lí quy nạp ta đã chứng minh được − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Vậy (un) là dãy số bị chặn.
Cho các mệnh đề:
1) Nếu hàm số
liên tục trên
và
thì tồn tại
sao cho
.
2) Nếu hàm số
liên tục trên
và
thì phương trình
có nghiệm.
3) Nếu hàm số
đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
.
Trong các mệnh đề trên:
Theo tính chất hàm số liên tục thì
1) Nếu hàm số liên tục trên
và
thì tồn tại
sao cho
. Mệnh đề sai.
2) Nếu hàm số liên tục trên
và
thì phương trình
có nghiệm. Mệnh đề đúng.
3) Nếu hàm số đơn điệu trên
và
thì phương trình
có nghiệm duy nhất trên
. Mệnh đề đúng.
Biết
. Tính
?
Ta có:
Lại có
Vì
Tính giới hạn
.
Ta có:
Cho hình chóp tứ giác
, đáy
là hình bình hành tâm
. Lấy các điểm
sao cho
. Hình chiếu của
qua phép chiếu song song phương
mặt phẳng chiếu
lần lượt là
. Tỉ số độ dài
bằng bao nhiêu?
Hình vẽ minh hoạ
Do là hình chiếu song song của
qua phép chiếu song song phương
Mà
Chứng minh tương tự ta có:
Ta có:
Phương trình lượng giác
có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Ta có:
Vậy phương trình có họ nghiệm là:.
Do đó
.
Xác định số hạng đầu u1 và công sai d của cấp số cộng (un) có u9 = 5u2 và u13 = 2u6 + 5.
Ta có:
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 7 của dãy số.
Nghiệm của phương trình
là?
Ta có:
.
Cho tứ diện
. Gọi
lần lượt là trung điểm các cạnh
và
;
là trọng tâm tam giác
. Khi đó giao điểm của đường thẳng
và
là
Hình vẽ minh họa
Trong gọi
, mà
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Cho cấp số cộng
có
và
. Khẳng định nào sau đây là đúng?
Ta có:
bằng
Ta có:
Cho hàm số
liên tục tại
. Tính giá trị biểu thức
.
Ta có:
Từ điều kiện hàm số liên tục tại ta có hệ phương trình: