Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp A.BCDH,K lần lượt là trọng tâm của tam giác ABCABD tam giác. Chọn mệnh đề đúng.

    Gọi I là trung điểm AB.

    Xét tam giác MCD có:

    \frac{IH}{IC} = \frac{IK}{ID} =
\frac{1}{3} (do H,K lần lượt là trọng tâm của tam giác ABD và tam giác ABC)

    \  = > HK//CD

  • Câu 2: Thông hiểu

    Cho phương trình lượng giác \sin\left( 3x
+ \frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}

    a) Phương trình có nghiệm \left\lbrack\begin{matrix}x = - \dfrac{\pi}{9} + k\dfrac{2\pi}{3} \\x = \dfrac{\pi}{3} + k\dfrac{2\pi}{3} \\\end{matrix}(k\mathbb{\in Z}) ight. Sai||Đúng

    b) Phương trình có nghiệm âm lớn nhất bằng - \frac{2\pi}{9} Đúng||Sai

    c) Trên khoảng \left( 0;\frac{\pi}{2}
ight) phương trình đã cho có 3 nghiệm Sai||Đúng

    d) Tổng các nghiệm của phương trình trong khoảng \left( 0;\frac{\pi}{2} ight) bằng \frac{7\pi}{9} Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác \sin\left( 3x
+ \frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}

    a) Phương trình có nghiệm \left\lbrack\begin{matrix}x = - \dfrac{\pi}{9} + k\dfrac{2\pi}{3} \\x = \dfrac{\pi}{3} + k\dfrac{2\pi}{3} \\\end{matrix}(k\mathbb{\in Z}) ight. Sai||Đúng

    b) Phương trình có nghiệm âm lớn nhất bằng - \frac{2\pi}{9} Đúng||Sai

    c) Trên khoảng \left( 0;\frac{\pi}{2}
ight) phương trình đã cho có 3 nghiệm Sai||Đúng

    d) Tổng các nghiệm của phương trình trong khoảng \left( 0;\frac{\pi}{2} ight) bằng \frac{7\pi}{9} Đúng||Sai

    Ta có:

    \sin\left( 3x + \frac{\pi}{3} ight) = -\frac{\sqrt{3}}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}3x + \dfrac{\pi}{3} = - \dfrac{\pi}{3} + k2\pi \\3x + \dfrac{\pi}{3} = \dfrac{4\pi}{3} + k2\pi \\\end{matrix}(k\mathbb{\in Z}) ight. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
  {3x =  - \dfrac{{2\pi }}{3} + k2\pi } \\ 
  {3x = \pi  + k2\pi } 
\end{array}(k \in \mathbb{Z}) } ight.

    \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
  {x =  - \dfrac{{2\pi }}{9} + k\dfrac{{2\pi }}{3}} \\ 
  {x = \dfrac{\pi }{3} + k\dfrac{{2\pi }}{3}} 
\end{array}(k \in \mathbb{Z})} ight.

     

    x \in \left( 0;\frac{\pi}{2}
ight) nên x = \frac{\pi}{3},x =
\frac{4\pi}{9}.

    Kết luận:

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 3: Thông hiểu

    Giá trị của giới hạn \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) là:

    Ta có:

    \begin{matrix}  \lim \left( {\sqrt {{n^2} - n + 1}  - n} ight) \hfill \\   = \lim \dfrac{{\left( {\sqrt {{n^2} - n + 1}  - n} ight)\left( {\sqrt {{n^2} - n + 1}  + n} ight)}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\ \end{matrix}

    \begin{matrix}   = \lim \dfrac{{{n^2} - n + 1 - {n^2}}}{{\left( {\sqrt {{n^2} - n + 1}  + n} ight)}} \hfill \\   = \lim \dfrac{{ - n + 1}}{{\sqrt {{n^2} - n + 1}  + n}} \hfill \\   = \lim \dfrac{{n\left( { - 1 + \dfrac{1}{n}} ight)}}{{n\left( {\sqrt {1 - \frac{1}{n} + \dfrac{1}{{{n^2}}}}  + 1} ight)}} =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 4: Vận dụng cao

    Hàm số nào sau đây không liên tục trên \mathbb{R}?

    Hàm số y = \frac{3x}{x + 2} không xác định tại x = - 2 nên không liên tục tại x = - 2.

    Do đó không liên tục trên \mathbb{R}.

  • Câu 5: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 6: Nhận biết

    Mệnh đề nào sau đây đúng?

    Đáp án đúng là: \sin(a + b) = \sin a\cos b + \sin b\cos a

  • Câu 7: Nhận biết

    Đổi số đo 365^{0} sang số đo theo đơn vị là radian.

    Ta có: 365^{0} = \frac{365\pi}{180}rad =
\frac{73\pi}{36}rad

  • Câu 8: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

    Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Ta có BDB'D' là hình bình hành nên BD//B'D'

    Tương tự ta có AD'//BC'. Từ đó suy ra BD//\left( {AB'D'} ight)BC'//\left( {AB'D'} ight).

    Vậy \left( {C'BD} ight)//\left( {AB'D'} ight)

  • Câu 9: Vận dụng

    Tập giá trị của hàm số y = \frac{\sin3x -2\cos3x + 10}{6\cos x\cos2x - 4\cos^{3}x + 3} có bao nhiêu số nguyên?

    Ta có:

    y = \frac{sin3x - 2cos3x +
10}{6cosxcos2x - 4cos^{3}x + 3}

    = \frac{sin3x - 2cos3x + 10}{3(cos3x +
\cos x) - (cos3x + 3cosx) + 3}

    = \frac{sin3x - 2cos3x + 10}{2cos3x +
3}

    \Leftrightarrow (2\cos3x + 3)y = \sin3x -2\cos3x + 10

    \Leftrightarrow (2y + 2)cos3x - sin3x =
10 - 3y

    Điều kiện có nghiệm của phương trình là:

    (2y + 2)^{2} + ( - 1)^{2} \geq (10 -
3y)^{2}

    \Leftrightarrow 4y^{2} + 8y + 4 + 1 \geq
100 - 60y + 9y^{2}

    \Leftrightarrow 5y^{2} - 68y + 95 \leq
0

    \Leftrightarrow \frac{34 -
\sqrt{681}}{5} \leq y \leq \frac{34 + \sqrt{681}}{5}.

    y\mathbb{\in Z} nên y = \{ 2;3;4;\ldots;12\}.

    Vậy tập giá trị của y có 11 số nguyên.

  • Câu 10: Vận dụng

    Cho phương trình lượng giác 2(\sin x +1)(\sin^{2}2x - 3\sin x + 1) = \sin4x.\cos x, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( \frac{x}{2} - \frac{\pi}{4}
ight).cos^{3}\left( \frac{3x}{2} + \frac{\pi}{4} ight) = 0. Đúng||Sai

    b) Trên khoảng ( - \pi;\pi) phương trình có 2 nghiệm. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên khoảng ( - \pi;\pi) bằng \frac{7\pi}{6}. Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác 2(\sin x +1)(\sin^{2}2x - 3\sin x + 1) = \sin4x.\cos x, vậy:

    a) Phương trình đã cho tương đương với phương trình \cos\left( \frac{x}{2} - \frac{\pi}{4}
ight).cos^{3}\left( \frac{3x}{2} + \frac{\pi}{4} ight) = 0. Đúng||Sai

    b) Trên khoảng ( - \pi;\pi) phương trình có 2 nghiệm. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình có 3 nghiệm. Đúng||Sai

    d) Tổng các nghiệm của phương trình trên khoảng ( - \pi;\pi) bằng \frac{7\pi}{6}. Đúng||Sai

    Ta có phương trình đã cho tương đương với

    2\left( \sin x + 1 ight)\left( \frac{1
- cos4x}{2} - 3sinx + 1 ight) = sin4x.cosx

    \Leftrightarrow \left( \sin x + 1
ight)(3 - 6sinx - cos4x) = sin4x.cosx

    \Leftrightarrow (sinx + 1)(3 - 6sinx) -
sinx.cos4x - cos4x = sin4x.cosx

    \Leftrightarrow 3(1 - 2sin^{2}x) - 3sinx
= sin5x + cos4x

    \Leftrightarrow 3cos2x + 3cos\left( x +
\frac{\pi}{2} ight) = \cos\left( 5x - \frac{\pi}{2} ight) +
cos4x

    \Leftrightarrow 3.2.cos\left(
\frac{3x}{2} + \frac{\pi}{4} ight).cos\left( \frac{x}{2} -
\frac{\pi}{4} ight) = 2.cos\left( \frac{9x}{2} - \frac{\pi}{4}
ight).cos\left( \frac{x}{2} - \frac{\pi}{4} ight)

    \Leftrightarrow \cos\left( \frac{x}{2} -
\frac{\pi}{4} ight)\left\lbrack 3cos\left( \frac{3x}{2} +
\frac{\pi}{4} ight) + \cos\left( \frac{9x}{2} + \frac{3\pi}{4} ight)
ightbrack = 0

    \Leftrightarrow \cos\left( \frac{x}{2} -
\frac{\pi}{4} ight).cos^{3}\left( \frac{3x}{2} + \frac{\pi}{4} ight)
= 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\cos\left( \frac{x}{2} - \frac{\pi}{4} ight) = 0 \\
\cos\left( \frac{3x}{2} + \frac{\pi}{4} ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{3\pi}{2} + k2\pi \\
x = \frac{\pi}{6} + k2\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight).

    x \in ( - \pi;\pi) nên suy ra x = - \frac{\pi}{2},x = \frac{\pi}{6},x =
\frac{3\pi}{2}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 11: Thông hiểu

    Cho cấp số cộng {u_1} =  - 3;d = 4. Chọn khẳng định đúng trong các khẳng định sau?

     Ta có: {u_3} = {u_1} + 2d =  - 3 + 2.4 = 5

  • Câu 12: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu và công sai lần lượt là - 2;3. Số hạng thứ 10 bằng:

    Ta có: u_{1} = - 2;d = 3

    \Rightarrow u_{10} = u_{1} + 9d =
25

  • Câu 13: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD' mặt phẳng chiếu (ABB'A') lần lượt là:

    Hình vẽ minh họa

    Do CD'//\ BA' = >CD'//(ABB'A')

    Nên phương chiếu CD' không cắt mặt phẳng chiếu (ABB'A').

    Vì vậy ta không xác định được ảnh của A, B’ qua phép chiếu song song phương CD' mặt phẳng chiếu (ABB'A').

  • Câu 14: Nhận biết

    Giá trị của {D =
\lim}\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}} bằng:

    Ta có:

    \lim\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}}= \lim \dfrac{4+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{n}+\dfrac{2}{n^2}}}=4

  • Câu 15: Thông hiểu

    Phương trình 2\sin x - 1 = 0 có bao nhiêu nghiệm thuộc khoảng ( - \pi;\pi)?

    Ta có:

    \sin x = \frac{1}{2} \Leftrightarrow\left\lbrack \begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x \in ( - \pi;\pi) \Rightarrow x =
\frac{\pi}{6};x = \frac{5\pi}{6}

    Vậy phương trình có hai nghiệm thuộc khoảng ( - \pi;\pi).

  • Câu 16: Vận dụng

    Cho tứ diện ABCD. Trên AB, AC lần lượt lấy hai điểm M,N sao cho MN cắt BC tại I. Tìm giao tuyến của hai mặt phẳng (MND)(BCD).

    Hình vẽ minh họa:

    Ta có: D là điểm chung của hai mặt phẳng (MND)(BCD)

    Ta lại có: \left\{ \begin{matrix}
I \in MN \subset (MND) \\
I \in BC \subset (BCD) \\
\end{matrix} ight. nên I là điểm chung thứ hai.

    Vậy giao tuyến của hai mặt phẳng (MND)(BCD) DI

  • Câu 17: Nhận biết

    Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa

    Vậy \left\{ \begin{matrix}
d//(\alpha) \\
d \subset (\beta) \\
(\alpha) \cap (\beta) = a \\
\end{matrix} ight.\  \Rightarrow d//a

  • Câu 18: Vận dụng

    Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:

    Ba cạnh của một tam giác theo thứ tự là a;b;cvới a
< b < c lập thành một cấp số cộng nên

    \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
a + b + c = 3 \\
a + c = 2b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
3b = 3 \\
a + c = 2b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} = c^{2} \\
b = 1 \\
a = 2b - c - 2 - c \\
\end{matrix} ight.

    Ta có:

    a^{2} + b^{2} = c^{2}\overset{b =
1}{\underset{a = 2 - c}{ightarrow}}(2 - c)^{2} + 1 =
c^{2}

    \Rightarrow - 4c = 5 \Rightarrow c =
\frac{5}{4}

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{3}{4} \\b = 1 \\c = \dfrac{5}{4} \\\end{matrix} ight.

  • Câu 19: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) với u_{1} = - 2;q = - 5. Viết bốn số hạng đầu tiên của cấp số nhân.

    Ta có: \left\{ \begin{matrix}
u_{1} = - 2 \\
q = - 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{2} = u_{1}q = 10 \\
u_{3} = u_{1}q^{2} = - 50 \\
u_{4} = u_{1}q^{3} = 250 \\
\end{matrix} ight.

  • Câu 20: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 1^{+}}\frac{2x + 1}{x -
1}

    Khi x \mapsto 1^{+} ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \left( {2x + 1} ight) = 3 > 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} ight) = 0 \hfill \\
  x - 1 > 0 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \lim_{x ightarrow
1^{+}}\frac{2x + 1}{x - 1} = + \infty

  • Câu 21: Thông hiểu

    Biết  \lim_{x
ightarrow 0}\frac{\sqrt{3x + 1} - 1}{x} = \frac{a}{b}, trong đó a,b là hai số nguyên dương và phân số \frac{a}{b} tối giản. Tính giá trị của biểu thức T = a^{2} +
b^{2}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{3x +
1} - 1}{x}

    = \lim_{x ightarrow 0}\frac{\left(
\sqrt{3x + 1} - 1 ight)\left( \sqrt{3x + 1} + 1 ight)}{x\left(
\sqrt{3x + 1} + 1 ight)}

    = \lim_{x ightarrow 0}\frac{3x + 1 -
1}{x\left( \sqrt{3x + 1} + 1 ight)} = \lim_{x ightarrow
0}\frac{3x}{x\left( \sqrt{3x + 1} + 1 ight)}

    = \lim_{x ightarrow
0}\frac{1}{\sqrt{3x + 1} + 1} = \frac{3}{2}

    \Rightarrow a = 3;b = 2

    \Rightarrow T = 3^{2} + 2^{2} =
13

  • Câu 22: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Trên các cạnh AB,CD lần lượt lấy các điểm M,N làm trung điểm. Xác định giao tuyến hai mặt phẳng (SAC)(SMN)?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}AM//NC;(AB//CD) \\AM = NC = \dfrac{AB}{2} = \dfrac{DC}{2} \\\end{matrix} ight. suy ra tứ giác AMCN là hình bình hành.

    Do đó AC và MN cắt nhau tại trung điểm của mỗi đường.

    Mà O là trung điểm của AC nên O cũng là trung điểm của MN, hay ba điểm M, O, N thẳng hàng.

    Ta có: S \in (SAC) \cap
(SMN)(*)

    Mặt khác \left\{ \begin{matrix}
O \in (SAC);AC \subset (SAC) \\
O \in (SMN);MN \subset (SMN) \\
\end{matrix} ight.

    \Leftrightarrow O \in (SAC) \cap
(SMN)(**)

    Từ (*)(**) \Rightarrow (SAC) \cap (SMN) =
SO

  • Câu 23: Nhận biết

    Xét tính liên tục của hàm số f(x) = \left\{ \begin{matrix}
1 - \cos x\ \ \ khi\ x \leq 0 \\
\sqrt{x + 1}\ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x > 0 \\
\end{matrix} ight.. Khẳng định nào sau đây đúng?

    Hàm số xác định với mọi x\mathbb{\in
R}

    Ta có: f(x) liên tục trên ( - \infty;0)(0; + \infty)

    Mặt khác

    f(0) = 1

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\sqrt{x + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\left( 1 - \cos x ight) = 0

    Vậy hàm số gián đoạn tại x = 1

  • Câu 24: Thông hiểu

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    a) Sai

    TXĐ: D\mathbb{= R}. Do đó \forall x \in D \Rightarrow - x \in
D.

    Ta có \forall x \in D:g( - x) = \sin( -
x) = - \sin(x) = - g(x) \Rightarrow g(x) là hàm số lẻ.

    b) Đúng

    Phương trình \sin x = \cos x trong khoảng (0 ; 2\pi) có hai nghiệm x = \frac{\pi}{4}x = \frac{5\pi}{4}

    c) Sai

    Ta có: y = \sin x + \cos x =
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) , mà \forall x: - 1 \leq \sin\left( x + \frac{\pi}{4}
ight) \leq 1

    \Leftrightarrow - \sqrt{2} \leq
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) \leq \sqrt{2}.

    Vậy giá trị lớn nhất của hàm số y = \sin
x + \cos x bằng \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) =
1.

    d) Đúng

    Giá trị nhỏ nhất của hàm số y = \sin x +
\cos x bằng - \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) = -
1

    \Leftrightarrow x + \frac{\pi}{4} = -\frac{\pi}{2} + k2\pi\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight).

  • Câu 25: Nhận biết

    Khẳng định nào sau đây sai?

    Đáp án: “Hai mặt phẳng có một điểm chung thì chúng còn có vô số điểm chung khác nữa.” đúng vì:

    TH1: Hai mặt phẳng phân biệt nếu có một điểm chung thì hai mặt phẳng đó có một đường thẳng chung (giao tuyến của hai mặt phẳng) do đó có hai mặt phẳng có vô số điểm chung.

    TH2: Hai mặt phẳng không phân biệt thì chúng có vô số điểm chung (vì hai mặt phẳng trùng nhau)”

    Đáp án: “Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất” đúng vì tập hợp các điểm chung của hai mặt phẳng phân biệt là một đường thẳng.

    Đáp án: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất.” sai vì chưa xét đến trường hợp hai mặt phẳng không phân biệt.

    Đáp án: “Nếu ba điểm A, B, C phân biệt cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng.” đúng vì khi đó ba điểm A, B, C cùng nằm trên giao tuyến của hai mặt phẳng do đó ba điểm A, B, C thẳng hàng.

  • Câu 26: Thông hiểu

    Cho hình bình hành ABCD. Qua các đỉnh A, B, C, D ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với mặt phẳng (ABCD). Một mặt phẳng (P) cắt bốn đường thẳng nói trên tại A’, B’, C’, D’. Hỏi A’B’C’D’ là hình gì?

    Ta có: (ABB'A') // (CDD'C')

    => (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến A'B'C'D'

    => A'B' // C'D' (1)

    Chứng minh tương tự ta có: (AA'D'D) // (BB'C'C)

    => (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến A'D'B'C'

    => A'D' // B'C' (2)

    Từ (1) và (2) => A'B'C'D' là hình bình hành.

  • Câu 27: Nhận biết

    Xác định giới hạn D = \lim_{x ightarrow 0}\frac{(1 + 2x)^{2} -
1}{x}

    Ta có:

    D = \lim_{x ightarrow 0}\frac{(1 +
2x)^{2} - 1}{x}

    = \lim_{x ightarrow 0}\frac{4x^{2} +
4x}{x} = \lim_{x ightarrow 0}(4 + 4x) = 4

  • Câu 28: Nhận biết

    Chọn đáp án sai

    Trong khoảng \left( {0;\frac{\pi }{2}} ight), hàm số y = \sin x - \cos x là hàm số:

    Ta thấy:

    Trên khoảng \left( {0;\frac{\pi }{2}} ight) hàm y =f(x)= \sin x đồng biến và hàm y= g(x)= - \cos x đồng biến

    => Trên \left( {0;\frac{\pi }{2}} ight) hàm số y = \sin x - \cos x đồng biến.

  • Câu 29: Vận dụng cao

    Biết rằng phương trình \dfrac{1}{\sin x} + \dfrac{1}{\sin2x} + \dfrac{1}{\sin4x}+ \cdots + \dfrac{1}{\sin\left( 2^{2018}x ight)} = 0 có nghiệm dạng x = \frac{2k\pi}{2^{a} - b} với k \in \mathbb{Z}a,b \in \mathbb{N}^{*}. Tính S = a + b

    Điều kiện \left\{ \begin{matrix}\sin x eq 0 \\\sin2x eq 0 \\\sin4x eq 0 \\\cdots \\\sin\left( 2^{2018}x ight) eq 0 \\\end{matrix} ight.

    \Leftrightarrow sin\left( 2^{2018}x
ight) eq 0

    \Leftrightarrow 2^{2018}x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2^{2018}},k \in
\mathbb{Z}

    Ta có:

    \frac{1}{\sin x} = \frac{1 + \cos x -\cos x}{\sin x}

    =\dfrac{2\cos^{2}\dfrac{x}{2}}{2\sin\dfrac{x}{2}cos\dfrac{x}{2}} -cotx

    = cot\frac{x}{2} - cotx

    Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành

    \cot\frac{x}{2} - \cot x + \cot x -\cot2x

    {+ \cdots \cot\left( 2^{2017}x ight) -\cot\left( 2^{2018}x ight) = 0}{\Leftrightarrow \cot\frac{x}{2} - \cot\left( 2^{2018}x ight) =0}

    {\Leftrightarrow \cot\frac{x}{2} =\cot\left( 2^{2018}x ight)}{\Leftrightarrow \frac{x}{2} = 2^{2018}x + k\pi,k \in\mathbb{Z}}

    {\Leftrightarrow x = \frac{2k\pi}{1 -
2^{2019}},k \in \mathbb{Z}
}{\Leftrightarrow x = \frac{2k\pi}{2^{2019} - 1},k \in
\mathbb{Z}}

    Vậy a = 2019,b = 1 nên a + b = 2020.

  • Câu 30: Vận dụng

    Một bệnh nhân hàng ngày phải uống 150mg thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 2 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 4 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57mg. Đúng||Sai

    Đáp án là:

    Một bệnh nhân hàng ngày phải uống 150mg thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 2 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 4 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57mg. Đúng||Sai

    a) Ta có hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau ngày đầu còn 150 \times 6\%= 9(mg), suy ra mệnh đề đúng.

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 2 là: 150 \times 6\% + 150 = 159(mg) suy ra mệnh đề đúng.

    c) Gọi u_{n} là lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể bệnh nhân sau khi uống ở ngày thứ n

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 1 là: u_{1} = 150(mg)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 2 là:

    u_{2} = u_{1} \times 6\% + 150= 150 \times 6\% + 150 = 150 \times (0,06 + 1)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 3 là:

    u_{3} = u_{2}.6\% + 150 = 150\times (0,06 + 1) \times 0,06 + 150

    = 150 \times (0,06^{2} + 0,06 +
1)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 4 là:

    u_{4} = u_{3} \times 6\% + 150= 150 \times (0,06^{2} + 0,06 + 1) \times 0,06 + 150

    = 150 \times (0,06^{3} + 0,06^{2} + 0,06
+ 1) = 159,5724(mg)

    Suy ra mệnh đề sai.

    d) Nếu bệnh nhân sử dụng thuốc trong thời gian 30 ngày. Khi đó lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng là:

    S = 150 \times \left( 1 + 0,06 +
0,06^{2} + \ldots + 0,06^{29} ight)

    = 150 \times u_{1}\frac{1 - q^{30}}{1 -
q} = 150 \times 1 \times \frac{1 - 0,06^{30}}{1 - 0,06}

    = \frac{7500}{47} \approx
159,57mg

    Vậy lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng trong 30 ngày là 159,57mg, suy ra mệnh đề đúng.

  • Câu 31: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2}}}{x}}&{{\text{ khi }}x < 1,x e 0} \\   0&{{\text{ khi }}x = 0} \\   {\sqrt x }&{{\text{  khi }}x \geqslant 1} \end{array}} ight. hàm số f(x) liên tục tại:

    Tập xác định: D = \mathbb{R}

    \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to 0} x = 0 = f\left( 0 ight)

    Vậy hàm số liên tục tại x = 0

    Hàm số liên tục khi x<1

    hàm số liên tục khi x>1

    Tại x = 1 ta có: f(1)=1

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to {1^ - }} x = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} \sqrt x  = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = f\left( 1 ight) \hfill \\ \end{matrix}

    Vậy hàm số liên tục tại x=1

    Hàm số liên tục trên \mathbb{R}

  • Câu 33: Thông hiểu

    Cho mặt phẳng (\alpha) và hai đường thẳng m,n. Khẳng định nào sau đây đúng?

    “Nếu m//(\alpha)n//(\alpha) thì m,n đồng phẳng.” sai vì có thể chéo nhau.

    “Nếu m \subset (\alpha)m cắt n thì n cắt (\alpha).” sai vì có thể nằm trên (\alpha) 

    “Nếu m//nn//(\alpha) thì m//(\alpha).” sai vì có thể nằm trên (\alpha) .

  • Câu 34: Vận dụng cao

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 2;u_{2} = 4 \\
u_{n + 2} = 2u_{n + 1} - u_{n} + 5;(n \geq 1) \\
\end{matrix} ight.. Tính \lim_{n ightarrow\infty}\dfrac{u_{n}}{n^{2}}.

    Ta có:

    \begin{matrix}
  {u_{n + 2}} = 2{u_{n + 1}} - {u_n} + 5 \hfill \\
   \Rightarrow {u_{n + 2}} - {u_{n + 1}} = {u_{n + 1}} - {u_n} + 5 \hfill \\ 
\end{matrix}

    Đặt \Rightarrow v_{n} = u_{n + 1} - u_{n}
\Rightarrow v_{n + 1} = v_{n} + 5;(n \geq 1)

    Từ đó:

    \begin{matrix}
  {u_2} - {u_1} = 2 \hfill \\
  {u_3} - {u_2} = 7 \hfill \\
  {u_4} - {u_3} = 12 \hfill \\
  ... \hfill \\
  {u_{n + 1}} - {u_n} = 5n - 3 \hfill \\ 
\end{matrix}

    Khi đó:

    \begin{matrix}
  {u_{n + 1}} - {u_1} = 2 + 7 + 12 + ... + \left( {5n - 3} ight) \hfill \\
   = \dfrac{{n\left[ {2 + \left( {5n - 3} ight)} ight]}}{2} = \dfrac{{n\left( {5n - 1} ight)}}{2} \hfill \\ 
\end{matrix}

    Từ đó ta có:

    \begin{matrix}
  {u_{n + 1}} = \dfrac{{n\left( {5n - 1} ight)}}{2} + {u_1} \hfill \\
   = \dfrac{{n\left( {5n - 1} ight)}}{2} + 2 = \dfrac{{5{n^2} - n + 4}}{2} \hfill \\ 
\end{matrix}

    Vậy u_{n} = \frac{5n^{2} - 11n +
10}{2}

    => \lim_{n ightarrow
\infty}\frac{u_{n}}{n^{2}} = \lim_{n ightarrow \infty}\left(
\frac{5n^{2} - 11n + 10}{2} ight) = \frac{5}{2}

  • Câu 35: Nhận biết

    Cho mặt phẳng (\alpha) có các điểm A \in (\alpha);B otin (\alpha). Đường thẳng t đi qua hai điểm A;B. Khi đó giữa mặt phẳng (\alpha) và đường thẳng t có:

    Giữa mặt phẳng (\alpha) và đường thẳng t có đúng một điểm chung.

  • Câu 36: Thông hiểu

    Biểu thức nào sau đây cho ta tập giá trị của tổng S = 1 - 2 + 3 - 4+ ...- 2n + (2n+1)

    Ta có:

    Với n=0=>S=1

    Với n = 1 \Rightarrow S = 1 - 2 + 3 = 2

    Với n = 2 \Rightarrow S = 1 - 2 + 3 - 4 + 5 = 3

    Dự đoán S = n + 1\left( * ight) ta sẽ chứng minh (*) đúng bằng phương pháo quy nạp.

    Với n = 0 đương nhiên (*) đúng.

    Giả sử (*) đúng với n=k tức là:

    \begin{matrix}  {S_k} = 1 - 2 + 3 - 4 + ... - 2k + \left( {2k + 1} ight) \hfill \\   = k + 1 \hfill \\ \end{matrix}

    Ta chứng minh (*) đúng với n = k + 1

    Ta có:

    \begin{matrix}  {S_{k + 1}} = 1 - 2 + 3 - 4 + ... - 2\left( {k + 1} ight) + \left[ {2\left( {k + 1} ight) + 1} ight] \hfill \\   = \left( {1 - 2 + 3 - 4... - 2k + 2k + 1} ight) - \left( {2k + 2} ight) + \left( {2k + 3} ight) \hfill \\   = {S_k} +  - \left( {2k + 2} ight) + \left( {2k + 3} ight) \hfill \\   = k + 1 + 1 \hfill \\ \end{matrix}

    Vậy (*) đúng với mọi số tự nhiên n tức là S=n+1

  • Câu 37: Nhận biết

    Hỏi trên đoạn [0; 2023 \pi], phương trình \sqrt 3 \cot x - 3 = 0 có bao nhiêu nghiệm? 

     Ta có \cot x = \sqrt 3  \Leftrightarrow \cot x = \cot \frac{\pi }{6}

    \Leftrightarrow x = \frac{\pi }{6} + k\pi {\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết, ta có

    0 \leqslant \frac{\pi }{6} + k\pi  \leqslant 2023\pi \xrightarrow{{{\text{xap xi}}}} - \frac{1}{6} \leqslant k \leqslant 2022,833

    \xrightarrow{{k \in \mathbb{Z}}}k \in \left\{ {0;1;...;2022} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.

  • Câu 38: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = 9. Khi đó số 2018 là số hạng thứ mấy trong dãy?

    Theo bài ra ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 2018 = 2 + (n -
1)d

    \Leftrightarrow n = 225

  • Câu 39: Vận dụng

    Cho tứ diện ABCD. Gọi M
\in AD,N \in BC sao cho AD = 3MA;CB
= 3NC. Mặt phẳng (\beta) chứa đường thẳng MNđồng thời song song với đường thẳng CD. Khi đó hình tạo bởi các giao tuyến của mặt phẳng (\beta) và các mặt của tứ diện ABCD là:

    Hình vẽ minh họa:

    Xét (\beta) và (BCD), ta có điểm N chung, CD // (\beta)

    => (\beta) ∩ (BCD) = NF // CD, với F ∈ BD.

    Xét (\beta) và (ACD), ta có điểm M chung, CD // (\beta)

    => (\beta) ∩ (ACD) = ME // CD, với E ∈ AC.

    Từ đó ta được MF = (\beta) ∩ (ABD) và EN = (\beta) ∩ (ABC)

    => Hình tạo bởi các giao tuyến của mặt phẳng (\beta) và các mặt của tứ diện ABCD là tứ giác ENFM

    Ta lại có ME // CD // NF nên ENFM là hình thang.

    Từ giả thiết ta có: \frac{{EM}}{{CD}} = \frac{{AM}}{{AD}} = \frac{1}{3}

    \frac{{FN}}{{CD}} = \frac{{BN}}{{BC}} = \frac{{BC - NC}}{{BC}} = \frac{2}{3}

    \Rightarrow \frac{{EM}}{{FN}} = \frac{1}{2}

    Vậy hình thang có đáy lớn gấp đôi đáy nhỏ.

  • Câu 40: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 1;5;16;64. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?

    Cấp số nhân đã cho có: \left\{
\begin{matrix}
u_{1} = 1 \\
q = 4 \\
\end{matrix} ight.

    \Rightarrow S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q} = 1.\frac{1 - 4^{n}}{1 - 4} = \frac{4^{n} -
1}{3}

  • Câu 41: Nhận biết

    Dãy số nào sau đây có giới hạn bằng 0?

    \left| q ight| < 1 nên \lim {q^n} = 0.

  • Câu 42: Thông hiểu

    Đổi số đo của góc \frac{\pi}{12}rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \dfrac{\dfrac{\pi}{12}.180}{\pi}ight)^{0} = 15^{0}

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm (shift π ÷12) shift DRG 2 =

  • Câu 43: Vận dụng cao

    Tổng S ={4.5}^{100} \cdot \left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}+ \ldots + \frac{1}{5^{100}} ight) + 1 có kết quả bằng?

    Đặt M = \frac{1}{5} + \frac{1}{5^{2}} +\frac{1}{5^{3}} + \ldots + \frac{1}{5^{100}}

    \Rightarrow 5M - M = \left( 1 +\frac{1}{5} + \frac{1}{5^{2}} + \ldots + \frac{1}{5^{99}} ight) -\left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}\ldots +\frac{1}{5^{100}} ight)

    = 1 - \frac{1}{5^{100}}

    \Rightarrow 4M = 1 - \frac{1}{5^{100}}\Rightarrow M = \frac{5^{100} - 1}{{4.5}^{100}}

    \Rightarrow S = {4.5}^{100} \cdot\frac{5^{100} - 1}{{4.5}^{100}} + 1 = 5^{100}

  • Câu 44: Nhận biết

    Cấp số nhân \left( u_{n} ight) có số hạng tổng quát là u_{n} =
\frac{3}{5}.2^{n - 1},n \in \mathbb{N}^{*}. Số hạng đầu tiên và công bội của cấp số nhân đó là

    Theo công thức số hạng tổng quát của cấp số nhân ta suy ra u_{1} = \frac{3}{5}q = 2.

  • Câu 45: Nhận biết

    \lim\left( - n^{4} - 50n + 11
ight) bằng

    Ta có:

    \lim\left( - n^{4} - 50n + 11
ight)

    = \lim\left\lbrack n^{4}\left( - 1 -
\frac{50}{n^{3}} + \frac{11}{n^{4}} ight) ightbrack = -
\infty

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo