Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian, đường thẳng a song song với mặt phẳng (P) nếu

    Đường thẳng  a  song song với mặt phẳng  (P)  khi và chỉ khi  a  không nằm trong (P), đồng thời  a  song song với một đường thẳng b nằm trong  (P) .

  • Câu 2: Vận dụng

    Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào?

    Ta thấy tại x = 0 thì y = 1 => loại đáp án y = \sin\frac{2x}{3}, y = \sin\frac{3x}{2}

    Tại x = 3\pi thì y = 1 thay vào hai đáp án y = \cos\frac{2x}{3}y = \cos\frac{3x}{2} thì chỉ có y = \cos\frac{2x}{3} thỏa mãn

    Vậy đồ thị ở hình vẽ đã cho là đồ thị của hàm số y = \cos\frac{2x}{3}

  • Câu 3: Vận dụng

    Cho tứ diện ABCD. Trên AB, AC lần lượt lấy hai điểm M,N sao cho MN cắt BC tại I. Tìm giao tuyến của hai mặt phẳng (MND)(BCD).

    Hình vẽ minh họa:

    Ta có: D là điểm chung của hai mặt phẳng (MND)(BCD)

    Ta lại có: \left\{ \begin{matrix}
I \in MN \subset (MND) \\
I \in BC \subset (BCD) \\
\end{matrix} ight. nên I là điểm chung thứ hai.

    Vậy giao tuyến của hai mặt phẳng (MND)(BCD) DI

  • Câu 4: Vận dụng

    Tính giới hạn \lim_{x ightarrow 2}\frac{\sqrt{x - 1} + x^{4} -
3x^{3} + x^{2} + 3}{\sqrt{2x} - 2}

    Ta có:

    \frac{\sqrt{x - 1} + x^{4} - 3x^{3} +
x^{2} + 3}{\sqrt{2x} - 2}

    = \frac{\sqrt{x - 1} - 1}{\sqrt{2x} - 2}
+ \frac{x^{4} - 3x^{3} + x^{2} + 4}{\sqrt{2x} - 2}

    = \frac{(x - 2)\left( \sqrt{2x} + 2
ight)}{(2x - 4)\left( \sqrt{x - 1} + 1 ight)} + \frac{(x - 2)\left(
x^{3} - x^{2} - x - 2 ight)\left( \sqrt{2x} + 2 ight)}{2x -
4}

    = \frac{\sqrt{2x} + 2}{2\left( \sqrt{x -
1} + 2 ight)} + \frac{\left( x^{3} - x^{2} - x - 2 ight)\left(
\sqrt{2x} + 2 ight)}{2}

    Do đó \lim_{x ightarrow 2}\frac{\sqrt{x
- 1} + x^{4} - 3x^{3} + x^{2} + 3}{\sqrt{2x} - 2} = 1

  • Câu 5: Thông hiểu

    Đổi số đo của góc 120^{0}sang đơn vị radian?

    Cách 1: Áp dụng công thức \mu = \frac{m.\pi}{180} với m = 120^{0} ta được:

    \mu = \frac{m.\pi}{180} =
\frac{120.\pi}{180} = \frac{2.\pi}{3}

    Cách 2: Bấm máy tính:

    Bước 1: Bấm tổ hợp phím SHIFT MODE 4 chuyển về chế độ rad.

    Bước 2: Bấm 120 SHIFT Ans 1 =

  • Câu 6: Nhận biết

    Khẳng định nào sau đây đúng?

    Đáp án: “Qua hai điểm phân biệt xác định duy nhất một mặt phẳng” sai vì có vô số mặt phẳng đi qua hai điểm đã cho.

    Đáp án: “Qua ba điểm phân biệt bất kì xác định duy nhất một mặt phẳng” sai vì có vô số mặt phẳng đi qua ba điểm phân biệt thẳng hàng.

    Đáp án: “Qua bốn điểm phân biệt bất kì chỉ xác định được duy nhất một mặt phẳng” sai vì trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì không có mặt phẳng nào đi qua 4 điểm đó.

    Vậy khẳng định đúng là: “Qua ba điểm không thẳng hàng xác định duy nhất một mặ

  • Câu 7: Thông hiểu

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{3},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số nguyên dương n nhỏ nhất sao cho \sqrt{u_{n} - 1} \geq 2039190 là?

    Ta có: \left\{ \begin{matrix}
\begin{matrix}
\begin{matrix}
\begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{3} \\
\end{matrix} \\
u_{3} = u_{2} + 2^{3} \\
\end{matrix} \\
\ldots \\
\end{matrix} \\
u_{n + 1} = u_{n} + n^{3} \\
\end{matrix} ight.

     =  > un = 1 + 13 + 23 + … + (n−1)3

    Ta lại có 13 + 23 + … + (n−1)3

    = (1 + 2 + 3 + \ldots + n - 1)^{2} =
\left( \frac{n(n - 1)}{2} ight)^{2}

    Suy ra u_{n} = 1 + \left( \frac{n(n -
1)}{2} ight)^{2}

    Theo giả thiết ta có \sqrt{u_{n} - 1} \geq2039190 \Leftrightarrow \frac{n(n - 1)}{2} \geq 2039190

    \Leftrightarrow n(n - 1) \geq 4078380 \Leftrightarrow \left\lbrack \begin{matrix}n \geq 2020 \ \leq - 2019 \\\end{matrix} ight.

    n là số nguyên dương nhỏ nhất nên n = 2020.

  • Câu 8: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 9: Nhận biết

    Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).

    Công thức đúng là:

    \sin^{2}x + \cos^{2}x = 1

  • Câu 10: Thông hiểu

    Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 8 - 4\cos \left( {\frac{\pi }{4} - 3x} ight) là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \cos \left( {\dfrac{\pi }{4} - 3x} ight) \leqslant 1 \hfill \\   \Rightarrow 4 \geqslant  - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant  - 4 \hfill \\   \Rightarrow 8 + 4 \geqslant 8 - 4\cos \left( {\dfrac{\pi }{4} - 3x} ight) \geqslant 8 - 4 \hfill \\   \Rightarrow 12 \geqslant y \geqslant 4 \hfill \\ \end{matrix}

    => M = 12; m = 4

  • Câu 11: Vận dụng cao

    Rút gọn biểu thức B = 1 - {\sin ^2}x + {\sin ^4}x - {\sin ^6}x + ... + {\left( { - 1} ight)^n}.{\sin ^{2n}}x + ... với \sin x eq \pm 1?

    Ta có:

    \begin{matrix}
  B = \underbrace {1 - {{\sin }^2}x + {{\sin }^4}x - {{\sin }^6}x + ... + {{\left( { - 1} ight)}^n}.{{\sin }^{2n}}x + ...}_{CSN:{u_1};q =  - {{\sin }^2}x} \hfill \\
   = \dfrac{1}{{1 + {{\sin }^2}x}} \hfill \\ 
\end{matrix}

  • Câu 12: Vận dụng

    Tính tổng T tất cả các nghiệm của phương trình 2\cos 2x + 2\cos x - \sqrt 2  = 0 trên đoạn \left[ {0;3\pi } ight].

    Phương trình 2\cos 2x + 2\cos x - \sqrt 2  = 0

    \Leftrightarrow 2\left( {2{{\cos }^2}x - 1} ight) + 2\cos x - \sqrt 2  = 0

    \Leftrightarrow 4{\cos ^2}x + 2\cos x - 2 - \sqrt 2  = 0

    \Leftrightarrow \left[ \begin{gathered}  \cos x = \frac{{\sqrt 2 }}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(TM) \hfill \\  \cos x =  - \frac{{\sqrt 2  + 1}}{2}\,\,\,\,\,\,(L) \hfill \\ \end{gathered}  ight.\,\, \Leftrightarrow \cos x = \frac{{\sqrt 2 }}{2}

     \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi \xrightarrow{{x \in \left[ {0;3\pi } ight]}}x = \frac{\pi }{4};x = \frac{{9\pi }}{4} \hfill \\  x =  - \,\frac{\pi }{4} + k2\pi \xrightarrow{{x \in \left[ {0;3\pi } ight]}}x = \frac{{7\pi }}{4} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}T = \frac{\pi }{4} + \frac{{9\pi }}{4} + \frac{{7\pi }}{4} = \frac{{17\pi }}{4}.

  • Câu 13: Nhận biết

    Xác định bốn số hạng đầu của một dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = sin^{2}\left( \frac{\pi
n}{4} ight) + \cos\left( \frac{2\pi n}{3} ight) với \forall n \in \mathbb{N}^{*}?

    Ta có:

    u_{1} = \sin^{2}\left( \frac{\pi}{4}ight) + \cos\left( \frac{2\pi}{3} ight) = 0

    u_{2} = \sin^{2}\left( \frac{2\pi}{4}ight) + \cos\left( \frac{4\pi}{3} ight) = \frac{1}{2}

    u_{3} = \sin^{2}\left( \frac{3\pi}{4}ight) + \cos\left( \frac{6\pi}{3} ight) = \frac{3}{2}

    u_{4} = \sin^{2}\left( \frac{4\pi}{4}ight) + \cos\left( \frac{8\pi}{3} ight) = \frac{- 1}{2}

  • Câu 14: Nhận biết

    Dãy số nào sau đây không phải là cấp số cộng?

    Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: u_{m + 1} - u_{m}=u_{k + 1} -u_{k} thì kết luận ngay dãy số đó không phải là cấp số cộng.

    Xét đáp án: 2;5;8;11;14...\overset{ightarrow}{}3 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}loại

    Xét đáp án: 2;4;8;10;14...\overset{ightarrow}{}2 = u_{2} -u_{1}=u_{3} - u_{2} = 4\overset{ightarrow}{} Chọn

    Xét đáp án: 1;2;3;4;5;6...\overset{ightarrow}{}1 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}Loại

    Xét đáp án: 15;10;5;0; -
5;...\overset{ightarrow}{} - 5 = u_{2} - u_{1} = u_{3} - u_{2} = u_{4}
- u_{3} = \cdots\overset{ightarrow}{}loại

  • Câu 15: Thông hiểu

    Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?

    Theo bài ra ta có: \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{8} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
d = 5 \\
\end{matrix} ight.

  • Câu 16: Thông hiểu

    Tính giới hạn của hàm số f(x) = \frac{2x + 3}{\sqrt[3]{2x^{2} -
3}} khi x \mapsto -
\infty.

    Ta có:

    \lim_{x ightarrow - \infty}\dfrac{2x +3}{\sqrt[3]{2x^{2} - 3}} = \lim_{x ightarrow - \infty}\dfrac{2 +\dfrac{3}{x}}{- \sqrt{2 - \dfrac{3}{x^{3}}}} = - \sqrt{2}

  • Câu 17: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{2x + 1}{x - 1}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{2x + 1}{x - 1} ight) = \lim_{x ightarrow +\infty}\left( \dfrac{2 + \dfrac{1}{x}}{1 - \dfrac{1}{x}} ight) =2

  • Câu 18: Nhận biết

    Hàm số f(x) =
\sqrt{3 - x} + \frac{1}{\sqrt{x + 4}} liên tục trên:

    Điều kiện \left\{ \begin{matrix}
3 - x \geq 0 \\
x + 4 > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq - 3 \\
x > - 4 \\
\end{matrix} ight.

    Tập xác định D = ( -
4;3brack

    => Hàm số liên tục trên ( -
4;3brack

  • Câu 19: Vận dụng

    Cho cấp số nhân (un) có tổng n số hạng đầu tiên là {S_n} = {5^n} - 1. Tìm số hạng đầu và công bội của cấp số nhân đó?

     Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = {S_1} = 5 - 1 = 4} \\   {{u_1} + {u_2} = {S_2} = {5^2} - 1 = 24} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_2} = 24 - {u_1} = 20} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {q = \dfrac{{{u_2}}}{{{u_1}}} = 5} \end{array}} ight.

  • Câu 20: Vận dụng

    Nếu \frac{1}{b +c};\frac{1}{c + a};\frac{1}{a + b} theo thứ tự lập thành cấp số cộng thì dãy số nào sau đây lập thành một cấp số cộng.

    Theo giả thiết ta có:

    \frac{2}{c + a} = \frac{1}{b + c} +\frac{1}{a + b}

    \Rightarrow \frac{c + a}{2} = \frac{(b +c)(b + a)}{2b + a + c}

    \Leftrightarrow (c + a)^{2} + 2b.(a + c)= 2\left( b^{2} + ab + bc + ac ight)

    \Leftrightarrow a^{2} + c^{2} + 2ac +2bc + 2bc = 2\left( b^{2} + ab + bc + ac ight)

    \Leftrightarrow a^{2} + c^{2} =2b^{2}

  • Câu 21: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi trung điểm của AB,A'B' lần lượt là I,I'. Qua phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành điểm nào?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AI//B'I' \\
AI = B'I' \\
\end{matrix} ight. suy ra AIB'I' là hình bình hành.

    Suy ra phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành B'.

  • Câu 22: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 23: Vận dụng cao

    Cho tổng S(n) =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)}.

    Khi đó công thức tính tổng S(n) là?

    S(n) = \frac{1}{1.2} + \frac{1}{2.3} +
\frac{1}{3.4} + \ldots + \frac{1}{n(n + 1)}

    = \frac{1}{1} - \frac{1}{2} +
\frac{1}{3} - \frac{1}{4} + \ldots + \frac{1}{n - 1} - \frac{1}{n} +
\frac{1}{n} - \frac{1}{n + 1}

    = 1 - \frac{1}{n + 1} = \frac{n}{n +
1}

  • Câu 24: Nhận biết

    \lim \frac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} \hfill \\   = \lim \dfrac{{3 - \dfrac{2}{{{n^3}}} + \dfrac{3}{{{n^4}}}}}{{4 + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}}} = \dfrac{3}{4} \hfill \\ \end{matrix}

  • Câu 25: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O. Các điểm A,D qua phép chiếu song song phương SO trên mặt phẳng (SBC) ta thu được ảnh lần lượt là M,N. Khi đó tứ giác BCMN là hình gì?

    Hình vẽ minh họa

    Theo bài ra ta có: M,N lần lượt là ảnh của A,D qua phép chiếu song song phương SO trên mặt phẳng (SBC).

    Ta có: \left\{ \begin{matrix}
SO//AM \\
SO//DN \\
OA = OC \\
\end{matrix} ight.

    => SO là đường trung bình của các tam giác CAM,BDN

    => \left\{ \begin{matrix}
AM//DN \\
AM = DN \\
\end{matrix} ight.

    => ADMN là hình bình hành

    \Rightarrow \left\{ \begin{matrix}
MN//BC \\
MN = BC \\
\end{matrix} ight. => BCMN là hình bình hành.

  • Câu 26: Nhận biết

    Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội q eq 0. Mệnh đề nào sau đây là đúng?

    Ta có: ac = b^{2} \Rightarrow
\frac{1}{b^{2}} = \frac{1}{ac}

  • Câu 27: Thông hiểu

    Tất cả các nghiệm của phương trình \cot \left( {x - {{15}^{\text{o}}}} ight) - \sqrt 3  = 0 là:

    Ta có: \cot \left( {x - {{15}^{\text{o}}}} ight) - \sqrt 3  = 0 \Leftrightarrow \cot \left( {x - {{15}^{\text{o}}}} ight) = \sqrt 3

    \Leftrightarrow x - {15^{\text{o}}} = {30^{\text{o}}} + k{180^{\text{o}}}

    Vậy suy ra x = {45^{\text{o}}} + k{180^{\text{o}}}, k \in \mathbb Z

    Nghiệm của phương trình đã cho là: x = {45^{\text{o}}} + k{180^{\text{o}}}, k \in \mathbb Z.

  • Câu 28: Nhận biết

    Cho hàm số y = sinx. Mệnh đề nào sau đây đúng?

    Ta có thể hiểu như sau:

    “ Hàm số y = sinx đồng biến khi góc x thuộc góc phần tư thứ IV và thứ I; nghịch biến khi góc x thuộc góc phần tư thứ II và III”.

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Giao tuyến của mặt phẳng (SAB) và mặt phẳng (SCD) là đường thẳng

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
AB//DC \\
AB \subset (SAB) \\
DC \subset (SCD) \\
S \in (SAB) \cap (SCD) \\
\end{matrix} ight. suy ra giao tuyến của mặt phẳng (SAB)và mặt phẳng (SCD) là đường thẳng đi qua điểm S và song song với AB và DC.

  • Câu 30: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2}}}{x}}&{{\text{ khi }}x < 1,x e 0} \\   0&{{\text{ khi }}x = 0} \\   {\sqrt x }&{{\text{  khi }}x \geqslant 1} \end{array}} ight. hàm số f(x) liên tục tại:

    Tập xác định: D = \mathbb{R}

    \mathop {\lim }\limits_{x \to 0} \frac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to 0} x = 0 = f\left( 0 ight)

    Vậy hàm số liên tục tại x = 0

    Hàm số liên tục khi x<1

    hàm số liên tục khi x>1

    Tại x = 1 ta có: f(1)=1

    \begin{matrix}  \mathop {\lim }\limits_{x \to {1^ - }} \dfrac{{{x^2}}}{x} = \mathop {\lim }\limits_{x \to {1^ - }} x = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ + }} \sqrt x  = 1 = f\left( 1 ight) \hfill \\  \mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = f\left( 1 ight) \hfill \\ \end{matrix}

    Vậy hàm số liên tục tại x=1

    Hàm số liên tục trên \mathbb{R}

  • Câu 31: Thông hiểu

    Cho cấp số nhân (un) có u1 = 2 và u2 = -8. Mệnh đề nào sau đây đúng?

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_2} =  - 8 = {u_1}.q = 2q} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 4} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{S_5} = {u_1}.\dfrac{{1 - {q^5}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^5}}}{{1 + 4}} = 410} \\   {{S_6} = {u_1}.\dfrac{{1 - {q^6}}}{{1 - q}} = 2.\dfrac{{1 - {{\left( { - 4} ight)}^6}}}{{1 + 4}} =  - 1638} \\   {{u_5} = {u_1}{q^4} = 2.{{\left( { - 4} ight)}^4} = 512} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 32: Thông hiểu

    Cho cấp số cộng (u_{n}) có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát u_{n} của cấp số cộng.

    Theo bài ra ta có:

    Dãy số đã cho là cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {{u_2} = 9} \end{array} \Rightarrow d = {u_2} - {u_1} = 4} ight.

    => {u_n} = {u_1} + \left( {n - 1} ight).d = 4n + 1

    Vậy số hạng tổng quát của dãy số là: u_n=4n+1

  • Câu 33: Nhận biết

    Hỏi trên đoạn [0; 2023 \pi], phương trình \sqrt 3 \cot x - 3 = 0 có bao nhiêu nghiệm? 

     Ta có \cot x = \sqrt 3  \Leftrightarrow \cot x = \cot \frac{\pi }{6}

    \Leftrightarrow x = \frac{\pi }{6} + k\pi {\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết, ta có

    0 \leqslant \frac{\pi }{6} + k\pi  \leqslant 2023\pi \xrightarrow{{{\text{xap xi}}}} - \frac{1}{6} \leqslant k \leqslant 2022,833

    \xrightarrow{{k \in \mathbb{Z}}}k \in \left\{ {0;1;...;2022} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.

  • Câu 34: Nhận biết

    Cho tam giác ABC. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tam giác ABC?

    Có duy nhất một mặt phẳng chứa tất cả các đỉnh của tam giác ABC.

  • Câu 35: Vận dụng cao

    Cho hàm số y =
2x^{3} + ax^{2} + bx + c;(a,b,c \in R) thỏa mãn 9a + 3b + c < −54a − b + c > 2. Gọi S là số giao điểm của đồ thị hàm số đã cho với trục Ox. Mệnh đề nào dưới đây đúng?

    Hàm số đã cho xác định trên \mathbb{R}.

    Ta có: a − b + c > 2 ⇔ a − b + c − 2 > 0f(−1) = −2 + a − b + c nên f(−1) > 0.

    Mặt khác 9a + 3b + c < −54 ⇔ 9a + 3b + c + 54 < 0f(3) = 54 + 9a + 3b + c nên f(3) < 0.

    Ta lại có \lim_{x ightarrow - \infty}y
= - \infty nên tồn tại số m < −1 sao cho f(m) < 0 và \lim_{x ightarrow + \infty}y = +
\infty nên tồn tại số k > 0 sao cho f(3) > 0.

    Vậy f(m) . f(−1) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm thuộc (m; −1).

    f(−1) . f(3) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm thuộc (−1; 3).

    f(3) . f(k) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm thuộc (3; k).

    Từ đó suy ra đồ thị hàm số có 3 điểm chung với trục hoành.

  • Câu 36: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I,K lần lượt là trung điểm các cạnh BC,CDM là điểm trên cạnh SB sao cho\
\frac{SM}{SB} = \frac{1}{3}. Gọi N là gia điểm của MD và mặt phẳng (SIK). Tính tỉ số \frac{ND}{NM}.

    Đáp án: 3

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I,K lần lượt là trung điểm các cạnh BC,CDM là điểm trên cạnh SB sao cho\
\frac{SM}{SB} = \frac{1}{3}. Gọi N là gia điểm của MD và mặt phẳng (SIK). Tính tỉ số \frac{ND}{NM}.

    Đáp án: 3

    Hình vẽ minh họa

    Ta có M là điểm trên cạnh SB, \frac{SM}{SB} = \frac{1}{3} nên \frac{MB}{MS} = 2.

    IK//BD nên IK//(SBD) suy ra (SBD) \cap (SIK) = Sx,\ \ Sx//IK//BD.

    Trong (SBD),\ \ DM \cap Sx =
N.

    N chính là giao điểm của DM(SIK).

    Trong (SBD), có Sx//BD nên hai tam giác \Delta SMN \Delta BMD đồng dạng.

    Do đó \frac{MD}{MN} = 2 \Rightarrow
\frac{ND}{NM} = 3.

  • Câu 37: Nhận biết

    Cho lăng trụ tam giác ABC.A'B'C'G,G' lần lượt là trọng tâm tam giác ABCA'B'C', M \in AC sao cho \frac{AM}{MC} = 2. Mệnh đề nào sai?

    Hình vẽ minh họa

    GA//(BCC'B') sai vì \left\{ \begin{matrix}
GA \cap BC = N \\
BC \subset (BCC'B') \\
\end{matrix} ight.

  • Câu 38: Nhận biết

    Biết \frac{\pi}{2} < \alpha <
\frac{3\pi}{2}, khẳng định nào sau đây đúng?

    Với \frac{\pi}{2} < \alpha <
\frac{3\pi}{2} thì \cos\alpha <
0.

  • Câu 39: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Giả sử (SAD) \cap (SBC) = d. Đường thẳng nào song song với d trong các đường thẳng dưới đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}AD//BC \\AD \subset (SAD) \\BC \subset (SBC) \\S \in (SAD) \cap (SBC) \\\end{matrix} ight.

    = > (SAD) \cap (SBC) =St//AD//BC

    => (SAD) \cap (SBC) = St hay St \equiv d

    Vậy giao tuyến của hai mặt phẳng (SAD)(SBC) là đường thẳng St song song với đường thẳng AD.

  • Câu 40: Nhận biết

    Tính giới hạn \lim\frac{n + 2}{n^{2} + n + 1}

    Ta có:

    \lim \frac{{n + 2}}{{{n^2} + n + 1}}= \lim \dfrac{{n\left( {1 + \dfrac{2}{n}} ight)}}{{{n^2}\left( {1 + \dfrac{1}{n} + \dfrac{2}{{{n^2}}}} ight)}}

    = \lim\left( \dfrac{1}{n}.\dfrac{1 +\dfrac{2}{n}}{1 + \dfrac{1}{n} + \dfrac{2}{n^{2}}} ight) = 0

  • Câu 41: Thông hiểu

    Cho tứ diện ABCD. Gọi E;F lần lượt là trung điểm của AB,CDG là trọng tâm của tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD) là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
EG \subset (ABF) \\
AF = (ABF) \cap (ABC) \\
\end{matrix} ight.

    => Giao điểm của đường thẳng EG và mặt phẳng (ACD) là giao điểm của đường thẳng EGAF.

  • Câu 42: Thông hiểu

    Điều kiện để phương trình 3.sinx + m.cosx = 5 có nghiệm là:

     Điều kiện để phương trình 3.sinx + m.cosx = 5 có nghiệm là

    \begin{matrix}  {3^2} + {m^2} < {5^2} \hfill \\   \Leftrightarrow {m^2} < 16 \Leftrightarrow  - 4 < m < 4 \hfill \\ \end{matrix}

    Vậy −4 < m < 4 thì phương trình đã cho có nghiệm.

  • Câu 43: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=7.3^n ta có: 

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{7.3}^{n + 1}}}}{{{{7.3}^n}}} = 3

    => Dãy số u_n=7.3^n là một cấp số nhân 

  • Câu 44: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 7}} bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 7}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {4 + \dfrac{1}{{{x^2}}}}  - \sqrt {\dfrac{1}{x} + \dfrac{5}{{{x^2}}}} } ight)}}{{x\left( {2 - \dfrac{7}{x}} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt 4  - 0}}{2} = 1 \hfill \\ \end{matrix}

  • Câu 45: Thông hiểu

    Cho {u_{n} = \dfrac{7^{n} + 2^{2n - 1}+ 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}}. Biết \lim u_{n} = \frac{a}{b} (với a, b\in \mathbb{ Z };\frac{ a}{ b } tối giản). Khi đó:

    a) a + b = 8 Đúng||Sai

    b) a - b = - 7 Sai||Đúng

    c) Bộ ba số a;b;13 tạo thành một cấp số cộng có công sai d = 7 Đúng||Sai

    d) Bộ ba số a;b;49 tạo thành một cấp số nhân có công bội q = 7 Đúng||Sai

    Đáp án là:

    Cho {u_{n} = \dfrac{7^{n} + 2^{2n - 1}+ 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}}. Biết \lim u_{n} = \frac{a}{b} (với a, b\in \mathbb{ Z };\frac{ a}{ b } tối giản). Khi đó:

    a) a + b = 8 Đúng||Sai

    b) a - b = - 7 Sai||Đúng

    c) Bộ ba số a;b;13 tạo thành một cấp số cộng có công sai d = 7 Đúng||Sai

    d) Bộ ba số a;b;49 tạo thành một cấp số nhân có công bội q = 7 Đúng||Sai

    Ta có

    \lim u_{n} = \lim\dfrac{7^{n} + 2^{2n -1} + 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}

    = \lim\dfrac{1 + \dfrac{1}{2}\left(\dfrac{4}{7} ight)^{n} + 3\left( \dfrac{3}{7} ight)^{n}}{7 +\dfrac{1}{5}\left( \dfrac{5}{7} ight)^{n}} = \dfrac{1}{7}.

    Do đó suy ra a = 1,b = 7 \Rightarrow a +
b = 8.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đ

    d) Đúng

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo