Giá trị của
bằng:
Chia cả tử và mẫu cho ta có được.
Giá trị của
bằng:
Chia cả tử và mẫu cho ta có được.
Cho dãy số (un), biết
. Khẳng định nào sau đây đúng về dãy số (un) ?
Ta có
Do un + 1 − un > 0 nên (un) là dãy số tăng.
Lại có suy ra dãy số bị chặn.
Một bánh xe của người đi xe ô tô quay được
vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Một bánh xe của người đi xe ô tô quay được vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Số đo góc quay của vòng là
.
Cho các số thực
thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Cho các số thực thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Xét hàm số
Theo giả thiết
Ta có là hàm đa thức nên liên tục trên
suy ra phương trình
có ít nhất một nghiệm trên
nên phương trình
có ít nhất một nghiệm trên khoảng
suy ra phương trình
có ít nhất một nghiệm trên khoảng
Từ ;
và
ta có phương trình
có ít nhất 3 nghiệm.
Mặt khác là phương trình bậc ba nên có tối đa 3 nghiệm.
Vậy phương trình có đúng 3 nghiệm.
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?
Ta có u2019 = 2.2019 + 1 = 4039
Hình tứ diện có bao nhiêu cạnh?
Hình tứ diện có 6 cạnh.
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Kiểm tra được là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
là hàm số không chẵn không lẻ
là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.
Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?
Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192
Cho cấp số cộng
thỏa mãn
. Tính tổng
của
số hạng đầu tiên của cấp số cộng đã cho.
Ta có:
Khi đó:
Giá trị của
bằng:
Ta có:
Xét đường tròn bán kính
. Cung tròn có số đo
có độ dài tương ứng là:
Độ dài cung tròn góc (với
có đơn vị là độ):
Mệnh đề nào sau đây là đúng?
Từ công thức nên ta có
và
tỉ lệ với nhau.
Chọn khẳng định đúng trong các khẳng định sau đây.
Hình lăng trụ đứng có đáy là một đa giác đều là hình lăng trụ đều.
Cho hình chóp S.ABC, tam giác ABC vuông tại A,
. Gọi I là trung điểm của BC, SB ⊥ AI. Giả sử mặt phẳng
là mặt phẳng đi qua M và song song với SB, AI. Xác định hình tạo bởi các giao tuyến của mặt phẳng
với các mặt của hình chóp.
Hình vẽ minh họa
Ta có:
Do đó giao tuyến của với (ABC) là đường thẳng đi qua M và song song với AI cắt BC tại N.
Tương tự
Vậy giao tuyến của với hình chóp S.ABC là tứ giác
.
Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.
Ta có: d = 6 - 1 = 5
Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng
=> x = 6 + 5 = 11
Vậy x = 11
Giả sử Q là tập hợp con của tập các số nguyên dương sao cho
(a) ![]()
(b) ![]()
Chọn mệnh đề đúng trong các mệnh đề dưới đây.
Mệnh đề " Mọi số nguyên dương đều thuộc " sai vì
là tập con thực sự của
nên tồn tại số nguyên dương không thuộc
.
Mệnh đề "Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc " đúng theo lí thuyết của phương pháp quy nạp.
Mệnh đề "Mọi số nguyên bé hơn k đều thuộc " sai theo giả thiết thì phải là số tự nhiên lớn hơn
.
Mệnh đề "Mọi số nguyên đều thuộc " sai vì số nguyên âm không thuộc
.
Cho phương trình lượng giác ![]()
a) Với
, phương trình (*) có nghiệm là
Đúng||Sai
b) Với
, phương trình (*) có một nghiệm là
Đúng||Sai
c) Với
thì số nghiệm của phương trình (*) trên đoạn
là 3. Sai||Đúng
d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng
Cho phương trình lượng giác
a) Với , phương trình (*) có nghiệm là
Đúng||Sai
b) Với , phương trình (*) có một nghiệm là
Đúng||Sai
c) Với thì số nghiệm của phương trình (*) trên đoạn
là 3. Sai||Đúng
d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng
Thay vào (*) ta được:
Thay vào (*) ta được:
Với thì phương trình có nghiệm
.
Thay vào (*) ta được:
Vì xét nghiệm trên đoạn nên ta có:
Mà
Vậy với thì số nghiệm của phương trình (*) trên đoạn
là 2.
d) Ta có:
Để phương trình có nghiệm thì
mà
Vậy số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 10.
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng
. Sai||Đúng
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng . Sai||Đúng
Điều kiện: .
Phương trình
.
Yêu cầu bài toán .
Ta có:
Vì .
Kết hợp điều kiện, ta có là những giá trị cần tìm.
Kết luận:
|
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Giá trị của
bằng:
Ta có theo tính chất giới hạn, ta có:
Cho các giới hạn
. Tính giá trị biểu thức ![]()
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Ta có:
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Giả sử
theo thứ tự lập thành một cấp số nhân. Khi đó
bằng:
Điều kiện
Theo tính chất của cấp số nhân ta có:
Trong các khẳng định sau, khẳng định nào là đúng?
Khẳng định đúng là “Nếu đường thẳng d song song với mặt phẳng (P) thì trong (P) tồn tại đường thẳng a song song với d”.
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
suy ra
.
Vậy .
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4
Cho hình chóp
có đáy
là hình bình hành. Lấy điểm
, mặt phẳng
đi qua
và song song với
. Giao điểm của mặt phẳng
với các cạnh
lần lượt tại
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Phương trình
có họ nghiệm là
Ta có:
là nghiệm của phương trình.
: Chia 2 vế phương trình cho
ta được:
.
Cho cấp số nhân có số hạng thứ bảy là
và công bội
. Hỏi số hạng đầu tiên của cấp số nhân bằng bao nhiêu?
Ta có:
Dãy số nào sau đây là một cấp số cộng?
Dãy số ở đáp án A thỏa mãn điều kiện với
là cấp số cộng.
Cho hình chóp
có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm
là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có
. Sai||Đúng
c) Cho
thì
. Sai||Đúng
d) Trong mặt phẳng
, gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
Cho hình chóp có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có . Sai||Đúng
c) Cho thì
. Sai||Đúng
d) Trong mặt phẳng , gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
- Xác định :
Trong mặt phẳng , kẻ
cắt
tại
;
Trong mặt phẳng , kẻ
cắt
tại
.
Vì .
Tương tự: .
-Tính theo
:
Gọi là trung điểm
là đường trung bình của tam giác
.
Trong tam giác , ta có
qua trung điểm
của
và
là trung điểm của
.
Hình vẽ minh họa
-Vậy hay
.
Hoàn toàn tương tự, ta chứng minh được .
Khi đó hai tam giác đồng dạng vì có góc
chung và
.
Xét tam giác , theo định lí Thalès, ta có:
- Chứng minh :
Dễ thấy là điểm chung của hai mặt phẳng
và
.
Ta có: .
Vì vậy .
Khi đó:
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Tính
.
Ta chứng minh bằng phương pháp quy nạp, với thì
Với thì
nên (*) đúng với
Giả sử (*) đúng với nghĩa là:
Xét ta có:
Vậy (*) đúng với
Bây giờ ta áp dụng với thì
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
và
. Mặt phẳng qua
cắt
lần lượt tại
. Biết
cắt
tại
. Ba điểm nào sau đây thẳng hàng?
Hình vẽ minh họa
Ta có:
Mà
Vậy ba điểm thẳng hàng.
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Tổng các nghiệm thuộc khoảng
của phương trình: ![]()
Giải phương trình:
Tổng nghiệm của phương trình bằng 0.
Cho hình chóp tứ giác
có đáy
là hình bình hành. Mặt phẳng
song song với
và
đồng thời cắt các đoạn
lần lượt tại
. Ta có các khẳng định sau:
![]()
![]()
: Tứ giác
là hình bình hành.
Có bao nhiêu khẳng định đúng?
Hình vẽ minh họa
Xét
Vì
Vì
Vì nên
đều song song với
điều này suy ra
là hình bình hành.
Vậy tất cả các khẳng định đều đúng.
Hàm số
liên tục trên khoảng nào sau đây?
Ta có:
Hàm số là hàm phân thứ hữu tỉ có tập xác định
nên hàm số
liên tục trên các khoảng
.
Do đó liên tục trên
.
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
Ba cạnh của một tam giác theo thứ tự là với
lập thành một cấp số cộng nên
Ta có:
Trong các dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là một cấp số nhân?
Xét dãy số ta có:
Vậy dãy số là cấp số nhân với q = 1/3
Phương trình nào dưới đây có nghiệm trong khoảng
?
Xét phương án :
có
=> Phương trình vô nghiệm.
Xét phương án :
Đặt , phương trình trở thành:
.
=> Phương trình vô nghiệm.
Xét phương án :
Phương trình vô nghiệm.
Xét phương án :
, xét
.
Mặc khác hàm số liên tục trên
do đó liên tục trên
.
Vậy phương trình có ít nhất một nghiệm trong khoảng
.
Hàm số
có tập xác định là gì?
Hàm số xác định khi
Vậy tập xác định của hàm số là:
.
Có duy nhất một mặt phẳng đi qua
Phương án "Hai đường thẳng " sai vì nếu 2 đường thẳng đó trùng nhau thì có vô số mặt phẳng đi qua 2 đường thẳng đó.
Phương án "Một điểm và một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì có vô số mặt phẳng đi qua điểm và đường thẳng đã cho.
Phương án "Ba điểm" sai vì nếu có 2 trong ba điểm đó trùng nhau hoặc cả 3 điểm đó trùng nhau thì có vô số mặt phẳng thỏa mãn.
Vậy hoàn thành mệnh đề như sau: "Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau."
Tính giới hạn
.
Ta có:
Ta lại có: