Cho dãy số
xác định bởi
. Ba số hạng đầu tiên của dãy là:
Ba số hạng đầu tiên của dãy là
Cho dãy số
xác định bởi
. Ba số hạng đầu tiên của dãy là:
Ba số hạng đầu tiên của dãy là
Phương trình lượng giác
có nghiệm là:
Ta có
Gọi
là nghiệm âm lớn nhất của phương trình
. Mệnh đề nào sau đây là đúng?
Ta có:
TH1. Với
TH2. Với
So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là
Tìm tập giá trị của hàm số ![]()
Ta có:
Cho tứ diện
có độ dài tất cả các cạnh bằng
. Gọi
là trọng tâm tam giác
. Tính diện tích thiết diện tạo bởi mặt phẳng
và tứ diện
?
Hình vẽ minh họa:
Gọi lần lượt là trung điểm các cạnh
Ta có:
Suy ra tam giác MCD là thiết diện của mặt phẳng và tứ diện
Tam giác ABD đều cạnh bằng có
là trung điểm của
Tam giác ABC đều cạnh bằng có
là trung điểm của
Gọi H là trung điểm của CD
Ta có:
Trong các mệnh đề sau mệnh đề nào sai?
Hai đường thẳng cắt nhau thì cùng nằm trong một mặt phẳng.
Khi mặt phẳng đó song song với phương chiếu thì hình chiếu của chúng trùng nhau hoặc là một điểm nằm trên một đường thẳng.
Khi mặt phẳng đó không song song với phương chiếu thì hình chiếu của chúng là hai đường thẳng cắt nhau.
Chọn đẳng thức đúng.
Ta có:
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Kiểm tra được ;
;
là các hàm số chẵn.
là hàm số lẻ.
Ta có:
với
. Xác định giá trị của biểu thức
?
Ta có:
Đổi số đo của góc
sang radian được kết quả là:
Ta có:
Cho cấp số cộng (Un) có
. Giá trị của
bằng:
Ta có:
Biết
liên tục trên
. Khẳng định nào sau đây đúng?
Dễ thấy liên tục trên mỗi khoảng
và
. Khi đó hàm số liên tục trên đoạn
khi và chỉ khi hàm số liên tục tại
Tức là ta cần có:
Ta có:
Khi đó (*) trở thành
Cho tổng S(n) = 2 + 4 + 6 + … + 2n. Khi đó S30 bằng?
Ta có S30 = 2 + 4 + 6 + … + 60
⇒ 2S30 = (2+60) + (4+58) + (6+56) + … + (60+2) (có 30 ngoặc đơn)
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Trong các dãy số sau, dãy số nào là dãy số giảm?
Xét đáp án :
Ta có . Khi đó:
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có . Khi đó
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có
Vậy (un) là dãy số giảm.
Xét đáp án :
Ta có
Vậy (un) là dãy số không tăng, không giảm.
Biết tổng ba số hạng đầu của một cấp số nhân là
, đồng thời theo thứ tự chúng là số hạng thứ nhất, số hạng thứ tư và số hạng thứ tám của một cấp số cộng. Công bội và số hạng đầu tiên của cấp số nhân là:
Gọi là bốn số hạng đầu của cấp số nhân
với công bội
.
Gọi là cấp số cộng tương ứng với công sai
.
Theo bài ra ta có:
Khi ký hợp đồng dài hạn 10 năm với các công nhân tuyển dụng, công ty X, đề xuất phương án trả lương như sau: Người lao động sẽ nhận 7 triệu ở quý đầu tiên (một quý là ba tháng), và kể từ quí làm việc thứ hai mức lương sẽ tăng 500.000 đồng mỗi quý. Như vậy sau 10 năm làm việc, hết hạn hợp đồng, tổng số tiền lương người lao động đã nhận được là bao nhiêu?
Ta có:
Số tiền nhận được hàng quý là một cấp số cộng hữu hạn với số hạng đầu tiên là: (triệu), công sai là 0,5 (triệu).
Trong 10 năm sẽ có 40 quý nên cấp số cộng trên có 40 phần tử.
Từ đó ta có
(triệu đồng)
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề sai: "Có duy nhất một mặt phẳng đi qua hai đường thẳng mà hai đường thẳng này lần lượt nằm trên hai mặt phẳng cắt nhau."
Giả sử có ba đường thẳng a, b, c trong đó b // a và c //a. những phát biểu nào sau đây là sai?
(1) Nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c chéo nhau.
(2) Nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì ba đường thẳng a, b, c song song với nhau từng đôi một.
(3) Dù cho hai mặt phẳng (a, b) và (a, c) có trùng nhau hay không, ta vẫn có b // c.
Phát biểu (1) sai vì nếu mặt phẳng (a, b) không trùng với mặt phẳng (a, c) thì b và c song song
Phát biểu (2) Sai vì nếu mặt phẳng (a, b) trùng với mặt phẳng (a, c) thì b trùng c
Phát biểu (3) Sai vì có thể xảy ra b trùng c.
Mệnh đề nào sau đây đúng?
Mệnh đề “Nếu ba đường thẳng đồng quy thì chúng nằm trên một mặt phẳng” không đúng, vì chúng có thể không đồng phẳng.
Mệnh đề “Nếu một đường thẳng cắt hai đường thẳng cho trước thì cả ba đường thẳng cùng nằm trong một mặt phẳng”, không đúng khi ba đường thẳng cắt nhau và đồng qui nhưng không đồng phẳng.
Mệnh đề “Nếu một đường thẳng cắt một trong hai đường thẳng song song thì nó cũng cắt đường thẳng còn lại” không đúng, vì chúng có thể chéo nhau.
Vậy khẳng định đúng là: “Nếu một đường thẳng cắt hai đường thẳng cắt nhau tại hai điểm phân biệt thì cả ba đường thẳng cùng nằm trong một mặt phẳng.”
Cho lăng trụ tam giác
có
lần lượt là trọng tâm tam giác
và
,
sao cho
. Mệnh đề nào sai?
Hình vẽ minh họa
sai vì
Cho
. Giới hạn
bằng
Đáp án: 1
Cho . Giới hạn
bằng
Đáp án: 1
Ta có:
nên
hay
Do đó
.
Tìm tập nghiệm của phương trình
?
Ta có:
Vậy phương trình có tập nghiệm là:
Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.
Ta có: d = 6 - 1 = 5
Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng
=> x = 6 + 5 = 11
Vậy x = 11
Trong các khẳng định sau, khẳng định nào là đúng?
Khẳng định đúng là “Nếu đường thẳng d song song với mặt phẳng (P) thì trong (P) tồn tại đường thẳng a song song với d”.
Cho tứ diện
. Trên các cạnh
theo thứ tự lấy các điểm
sao cho
. Giả sử mặt phẳng
chứa
và song song với
. Tìm các giao tuyến của tứ diện và mặt phẳng
. Xác định hình tạo bởi các giao tuyến này.
Hình vẽ minh họa:
Qua M, kẻ đường thẳng song song với CD cắt AC tại E.
Qua N, kẻ đường thẳng song song với CD cắt BD tại F.
Khi đó ME // NF // CD và
Ta có:
Vậy hình tạo bởi các giao tuyến của tứ diện và mặt phẳng là hình thang
với đáy lớn gấp đôi đáy nhỏ.
Khẳng định nào dưới đây đúng?
Ta có: tương ứng với
=>
Biết giới hạn
và
. Khi đó:
a) Tích
. Sai||Đúng
b) Hàm số
có tập xác định là
. Đúng||Sai
c) Giá trị
là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác
vô nghiệm. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Tích . Sai||Đúng
b) Hàm số có tập xác định là
. Đúng||Sai
c) Giá trị là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác vô nghiệm. Sai||Đúng
Ta có: ,
Do
a) Tích
b) Hàm số có tập xác định là
c) Giá trị là số lớn hơn
d) Phương trình lượng giác có nghiệm
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy = 0.
Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để
.
Ta có: nên
Theo đề bài ta có
Mặt khác
Vậy có tất cả 2012 giá trị nguyên thỏa mãn.
Mệnh đề nào sau đây đúng?
Mệnh đề đúng: “Qua ba điểm không thẳng hàng xác định được duy nhất một mặt phẳng.”
Tìm tập xác định của hàm số 
Hàm số xác định
Vậy tập xác định
Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?
Từ định nghĩa cấp số nhân ta có các kết quả sau:
Đáp án C sai
Dãy số
là cấp số nhân với
Cấp số nhân
Cho hàm số.![]()
a) Giới hạn:
Sai||Đúng
b) Giới hạn:
Đúng||Sai
c) Giới hạn:
Đúng||Sai
d) Giới hạn:
Sai||Đúng
Cho hàm số.
a) Giới hạn: Sai||Đúng
b) Giới hạn: Đúng||Sai
c) Giới hạn: Đúng||Sai
d) Giới hạn: Sai||Đúng
a) Ta có
b) Xét dãy số bất kì sao cho
và
, ta có:
.
Khi đó: .
c) Xét dãy số bất kì sao cho
và
, ta có
.
Khi đó: .
d) Vì (hay
) nên không tồn tại
.
Cho hàm số
thỏa mãn
và
. Gọi S là số giao điểm của đồ thị hàm số đã cho với trục Ox. Mệnh đề nào dưới đây đúng?
Hàm số đã cho xác định trên .
Ta có:
mà
nên
.
Mặt khác
mà
nên
.
Ta lại có nên tồn tại số
sao cho f(m) < 0 và
nên tồn tại số
sao cho
.
Vậy nên phương trình
có ít nhất một nghiệm thuộc
.
Và nên phương trình
có ít nhất một nghiệm thuộc
.
Và nên phương trình
có ít nhất một nghiệm thuộc
.
Từ đó suy ra đồ thị hàm số có 3 điểm chung với trục hoành.
Biết rằng
, với
là phân số tối giản và
. Tính
.
Ta có:
.
Vậy: .
Tìm
để
theo thứ tự đó lập thành một cấp số nhân.
Cấp số nhân theo thứ tự là
ta có:
Cho
là hằng số,
là một số nguyên dương. Quy tắc nào sau đây sai?
Ta có với
là một số nguyên dương.
Giá trị của
bằng:
Ta có mà
Suy ra
Dãy số nào sau đây là một cấp số cộng?
Dãy số ở đáp án A thỏa mãn điều kiện với
là cấp số cộng.
Trong các mệnh đề sau đây, mệnh đề nào sai?
Khẳng định sai: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất”.
Sửa lại: “Hai mặt phẳng trùng nhau thì có vô số đường thẳng chung.”
Cho hình chóp
, có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của các tam giác
. Các khẳng định dưới đây đúng hay sai?
a) Giao tuyến của hai mặt phẳng
và
là đường thẳng
. Đúng||Sai
b) Đường thẳng
và
có một điểm chung. Sai||Đúng
c) Đường thẳng
song song với mặt phẳng
. Đúng||Sai
d) Mặt phẳng chứa đường thẳng
và song song với mặt phẳng
cắt các cạnh
lần lượt tại
. Khi đó, tứ giác
là hình bình hành. Đúng||Sai
Cho hình chóp , có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của các tam giác
. Các khẳng định dưới đây đúng hay sai?
a) Giao tuyến của hai mặt phẳng và
là đường thẳng
. Đúng||Sai
b) Đường thẳng và
có một điểm chung. Sai||Đúng
c) Đường thẳng song song với mặt phẳng
. Đúng||Sai
d) Mặt phẳng chứa đường thẳng và song song với mặt phẳng
cắt các cạnh
lần lượt tại
. Khi đó, tứ giác
là hình bình hành. Đúng||Sai
Hình vẽ minh họa
a) Đúng.
Hai mặt phẳng và
có hai điểm chung là
và
nên giao tuyến của hai mặt phẳng
và
là đường thẳng
.
b) Sai.
Gọi là trung điểm của
. Ta có:
Trong tam giác , có
là đường trung tuyến và
là trọng tâm, nên
.
Trong tam giác , có
là đường trung tuyến và
là trọng tâm, nên
.
Trong tam giác và từ
,
ta có
, suy ra
.
c) Đúng.
Mặt phẳng không chứa đường thẳng
và theo kết quả câu b) ta có
.
Mà nằm trong mặt phẳng
.
Nên đường thẳng song song với mặt phẳng
d) Đúng.
Gọi mặt phẳng chứa đường thẳng
và song song với mặt phẳng
.
Nên mặt phẳng cắt mặt phẳng
theo một giao tuyến
song song với
.
Mà mặt phẳng và mặt phẳng
có một điểm chung là
, nên đường thẳng
đi qua
và song song với
.
Theo giả thiết, mặt phẳng cắt
lần lượt tại
nên đường thẳng
cắt
lần lượt tại
. Hay
.
Tương tự, ta có ,
,
.
Do đó, tứ giác có
(vì cùng song song với
) và
(vì cùng song song với
).
Vậy tứ giác là hình bình hành.
Cho hàm số
xác định trên tập số thực và có đồ thị như hình vẽ:

Hỏi hàm số
không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.