Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 2: Thông hiểu

    Một cấp số nhân có 6 số hạng với công bội bằng 2 và tổng số các số hạng bằng 189. Tìm số hạng cuối u_{6} của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}q = 2 \\S_{6} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - q^{6}}{1 - q} = 189 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1}.\dfrac{1 - 2^{6}}{1 - 2} = 189 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}q = 2 \\u_{1} = 3 \\\end{matrix} ight.

    \Rightarrow u_{6} = u_{1}.q^{5} =
3.2^{6} = 96

  • Câu 3: Thông hiểu

    Cho tứ diện ABCD, lấy M là trung điểm của AD. Qua phép chiếu song song theo phương AC lên mặt phẳng (BCD) biến điểm M thành điểm nào sau đây?

    Hình vẽ minh họa

    Gọi N là trung điểm của CD. Khi đó MN là đường trung bình của tam giác ACD

    \Rightarrow MN//AC.

    Do đó hình chiếu của điểm M qua phép chiếu song song theo phương AC lên mặt phẳng (BCD) là điểm N.

  • Câu 4: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BCCD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM(SIK). Tính tỉ số \frac{MF}{MD}.

    Đáp án: 1

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I,K lần lượt là trung điểm của BCCD. Gọi M là trung điểm của SB. Gọi F là giao điểm của DM(SIK). Tính tỉ số \frac{MF}{MD}.

    Đáp án: 1

    Hình vẽ minh họa

    -Ta có S \in (SIK) \cap
(SAC).

    Trong mặt phẳng (ABCD), gọi E = IK \cap AC

    \Rightarrow \left\{ \begin{matrix}
E \in IK \subset (SIK) \\
E \in AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow E \in (SIK) \cap (SAC)

    Suy ra SE = (SIK) \cap
(SAC).

    Ta có:

    \left\{ \begin{matrix}
S \in (SIK) \cap (SBD) \\
BD \subset (SBD),IK \subset (SIK) \\
BD//IK \\
\end{matrix} ight.

    \Rightarrow (SIK) \cap (SBD) = Sx,(\
Sx//BD//IK)

    -Trong mp (SBD), gọi F = Sx \cap DM

    \Rightarrow \left\{ \begin{matrix}
S \in DM \\
S \in Sx \subset (SIK) \\
\end{matrix} \Rightarrow F = DM \cap (SIK) ight..

    Ta có SF//BD \Rightarrow \frac{MF}{MD} =
\frac{MS}{MB} = 1.

  • Câu 5: Nhận biết

    Giá trị của \lim(2n + 1) bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} > \frac{M - 1}{2}

    Ta có:

    2n + 1 > 2n_{M} + 1 > M\ ,\
\ \ \forall n > n_{M}.

    = > \lim(2n + 1) = +
\infty

  • Câu 6: Nhận biết

    Khẳng định nào sau đây đúng?

    Đáp án: “Qua hai điểm phân biệt xác định duy nhất một mặt phẳng” sai vì có vô số mặt phẳng đi qua hai điểm đã cho.

    Đáp án: “Qua ba điểm phân biệt bất kì xác định duy nhất một mặt phẳng” sai vì có vô số mặt phẳng đi qua ba điểm phân biệt thẳng hàng.

    Đáp án: “Qua bốn điểm phân biệt bất kì chỉ xác định được duy nhất một mặt phẳng” sai vì trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì không có mặt phẳng nào đi qua 4 điểm đó.

    Vậy khẳng định đúng là: “Qua ba điểm không thẳng hàng xác định duy nhất một mặ

  • Câu 7: Thông hiểu

    Điều kiện xác định của hàm số: y=\frac{{{\sin}^{2}}x+3\cos x+1}{\sin\frac{x}{2}}

     Điều kiện xác định của hàm số:

    \sin \frac{x}{2} e 0

    \Rightarrow \frac{x}{2} e k\pi

    \Rightarrow x e k2\pi

  • Câu 8: Thông hiểu

    Kết luận nào đúng về tập nghiệm của phương trình \cos\left( \frac{\pi}{3} + \pi x
ight) = \sin(\pi x)?

    Ta có:

    \cos\left( \frac{\pi}{3} + \pi x ight)
= \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{2}
- \frac{\pi}{3} - \pi x ight) = \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{6}
- \pi x ight) = \sin(\pi x)

    \Leftrightarrow \left\lbrack\begin{matrix}\pi x = \dfrac{\pi}{6} - \pi x + k2\pi \\\pi x = \pi - \dfrac{\pi}{6} + \pi x + k2\pi(L) \\\end{matrix} ight.

    \Leftrightarrow x = \frac{1}{12} +
k;\left( k\mathbb{\in Z} ight)

    Vậy tập nghiệm của phương trình đã cho là \pi x = \frac{\pi}{6} - \pi x +
k2\pi.

  • Câu 9: Nhận biết

    Với mọi n ∈ ℕ*, khẳng định nào sau đây sai?

    Thử với n = 1, n = 2, n = 3 ta kết luận được đáp án:

    2^{2} + 4^{2} + 6^{2}
+ \ldots + (2n)^{2} = \frac{2n(n + 1)(2n + 1)}{6} sai.

    Suy ra

    2^{2} + 4^{2} + 6^{2} + \ldots +
(2n)^{2} = \frac{2n(n + 1)(2n + 1)}{3} mới là kết quả đúng!

  • Câu 10: Nhận biết

    Giới hạn \lim\frac{2}{n - 3} bằng

    Ta có:

    \lim\frac{2}{n - 3} =\lim\dfrac{\dfrac{2}{n}}{1 - \dfrac{3}{n}} = \dfrac{0}{0 - 0} =0

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Lấy M là trung điểm của SC. Tìm hình chiếu của điểm M qua phép chiếu song song phương AB lên mặt phẳng chiếu (SAD).

    Giả sử N là ảnh của  M  theo phép chiếu song song phương  AB  lên mặt phẳng \left( {SAD} ight).

    Suy ra MN//AB =  > MN//CD

    Do  M  là trung điểm của SC=> N là trung điểm của  SD .

  • Câu 12: Thông hiểu

    Một cấp số cộng có 12 số hạng. Biết rằng tổng của 12 số hạng đó bằng 144 và số hạng thứ mười hai bằng 23. Khi đó công sai d của cấp số cộng đã cho là bao nhiêu?

    Ta có: \left\{ \begin{matrix}u_{12} = 23 \\S_{12} = 144 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + 11d = 23 \\\dfrac{12}{2}.\left( u_{1} + u_{12} ight) = 144 \\\end{matrix} ight.

    => d = 2

  • Câu 13: Vận dụng

    Cho phương trình lượng giác \left(\sqrt{3} - 1 ight)\sin x + \left( \sqrt{3} + 1 ight)\cos x =2\sqrt{2}\sin2x, vậy:

    a) Phương trình đã cho tương đương với \sin(x + \dfrac{7\pi}{12}) = \sin 2x. Đúng||Sai

    b) Trên khoảng (0;2\pi) phương trình có 4 nghiệm. Đúng||Sai

    c) Trên khoảng (0;2\pi) thì x = \frac{5\pi}{36} là nghiệm nhỏ nhất. Sai||Đúng

    d) Tổng các nghiệm nằm trong khoảng (0;2\pi) của phương trình bằng 3\pi. Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác \left(\sqrt{3} - 1 ight)\sin x + \left( \sqrt{3} + 1 ight)\cos x =2\sqrt{2}\sin2x, vậy:

    a) Phương trình đã cho tương đương với \sin(x + \dfrac{7\pi}{12}) = \sin 2x. Đúng||Sai

    b) Trên khoảng (0;2\pi) phương trình có 4 nghiệm. Đúng||Sai

    c) Trên khoảng (0;2\pi) thì x = \frac{5\pi}{36} là nghiệm nhỏ nhất. Sai||Đúng

    d) Tổng các nghiệm nằm trong khoảng (0;2\pi) của phương trình bằng 3\pi. Đúng||Sai

    Phương trình \Leftrightarrow \sqrt{3}\sin x + \cos x + \sqrt{3}\cos x - \sin x = 2\sqrt{2}\sin2x

    \Leftrightarrow sin(x + \frac{\pi}{6}) +
cos(x + \frac{\pi}{6}) = \sqrt{2}sin2x

    \Leftrightarrow \sin\left( x +
\frac{7\pi}{12} ight) = sin2x

    \Leftrightarrow \left\lbrack\begin{matrix}2x = x + \dfrac{7\pi}{12} + k2\pi \\2x = \pi - x - \dfrac{7\pi}{12} + k2\pi \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{7\pi}{12} + k2\pi \\x = \dfrac{5\pi}{36} + k\dfrac{2\pi}{3} \\\end{matrix} ight..

    Do x \in (0;2\pi) nên phương trình có các nghiệm là: \frac{7\pi}{12};\
\frac{5\pi}{36};\ \frac{29\pi}{36};\ \frac{53\pi}{36}.

    Vậy tổng các nghiệm cần tính là: 3\pi.

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 14: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 15: Thông hiểu

    Biết giới hạn \lim\frac{2n^{2} +
1}{3n^{3} - 3n + 3} = a\lim\frac{n\sqrt{n^{2} + 1}}{\sqrt{4n^{4} - n^{2}
+ 3}} = b. Khi đó:

    a) Giá trị a nhỏ hơn 0. Sai||Đúng

    b) Giá trị b lớn hơn 0. Đúng||Sai

    c) Phương trình lượng giác \cos x =
a có một nghiệm là x =
\frac{\pi}{2}. Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d = bu_{1} = a, thì u_{3} = \frac{3}{2}. Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\frac{2n^{2} +
1}{3n^{3} - 3n + 3} = a\lim\frac{n\sqrt{n^{2} + 1}}{\sqrt{4n^{4} - n^{2}
+ 3}} = b. Khi đó:

    a) Giá trị a nhỏ hơn 0. Sai||Đúng

    b) Giá trị b lớn hơn 0. Đúng||Sai

    c) Phương trình lượng giác \cos x =
a có một nghiệm là x =
\frac{\pi}{2}. Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d = bu_{1} = a, thì u_{3} = \frac{3}{2}. Sai||Đúng

    a) Ta có:

    \lim\dfrac{2n^{2} + 1}{3n^{3} - 3n + 3} =\lim\dfrac{n^{3}\left( \dfrac{2}{n} + \dfrac{1}{n^{3}} ight)}{n^{3}\left(3 - \dfrac{3}{n^{2}} + \dfrac{3}{n^{3}} ight)}

    = \lim\dfrac{\dfrac{2}{n} +\dfrac{1}{n^{3}}}{3 - \dfrac{3}{n^{2}} + \dfrac{3}{n^{3}}} = \dfrac{0}{3} =0

    b) Ta có:

    \lim\dfrac{n\sqrt{n^{2} +1}}{\sqrt{4n^{4} - n^{2} + 3}} = \lim\dfrac{n^{2}\sqrt{1 +\dfrac{1}{n^{2}}}}{n^{2}\sqrt{4 - \dfrac{1}{n^{2}} +\dfrac{3}{n^{4}}}}

    = \lim\dfrac{\sqrt{1 +\dfrac{1}{n^{2}}}}{\sqrt{4 - \dfrac{1}{n^{2}} + \dfrac{3}{n^{4}}}} =\dfrac{1}{2}.

    c) Phương trình lượng giác \cos x =
0 có một nghiệm là x =
\frac{\pi}{2}

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = 0, thì u_{3} = 0 + 2.\frac{1}{2} =
1

    Kết luận:

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 16: Vận dụng

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Đáp án là:

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Hàm số y = f(x) có TXĐ D\mathbb{= R}.

    Hàm số f(x) = \frac{x(x + 1)}{x^{2} -
1} liên tục trên mỗi khoảng ( -
\infty; - 1), ( - 1;1)(1; + \infty).

    (i) Xét tại x = - 1, ta có \lim_{x ightarrow - 1}f(x) = \lim_{x ightarrow
- 1}\frac{x(x + 1)}{x^{2} - 1} = \lim_{x ightarrow - 1}\frac{x}{x - 1}
= \frac{1}{2} = f( - 1)\overset{}{ightarrow} Hàm số liên tục tại x = - 1.

    (ii) Xét tại x = 1, ta có 

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{x}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{x}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. \toHàm số y = f(x) gián đoạn tại x = 1.

    Vậy số điểm gián đoạn cần tìm là 1.

  • Câu 17: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 0,5111… được biểu diễn bởi phân số tối giản \frac{m}{n}. Tính tổng T = m + n.

    Ta có:

    0,5111... = 0,5 + 10^{- 2} + 10^{- 3} +
... + 10^{- n} + ...

    Dãy số 10^{- 2};10^{- 3};...;10^{-
n};,,, là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = 10^{- 2}, công sai là q = 10^{- 1}

    => S = \frac{u_{1}}{1 - q} =
\frac{10^{- 2}}{1 - 10^{- 1}} = \frac{1}{90}

    Vậy 0,5111... = 0,5 + S = \frac{46}{90} =
\frac{23}{45}

    \Rightarrow \left\{ \begin{matrix}
m = 23 \\
n = 45 \\
\end{matrix} ight.\  \Rightarrow T = 68

  • Câu 18: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{\sqrt {x + 4}  - 2}}{x};x > 0} \\ 
  {mx + m + \dfrac{1}{4};x \leqslant 0} 
\end{array}} ight. với m là tham số. Tính giá trị của tham số m để hàm số có giới hạn tại x = 0.

    Hàm số có giới hạn tại x = 0

    \Leftrightarrow \lim_{x ightarrow
0^{+}}f(x) = \lim_{x ightarrow 0^{-}}f(x)

    \Leftrightarrow \lim_{x ightarrow
0^{+}}\frac{\sqrt{x + 4} - 2}{x} = \lim_{x ightarrow 0^{-}}\left( mx +
m + \frac{1}{4} ight)

    \Leftrightarrow \frac{1}{4} = m +
\frac{1}{4} \Leftrightarrow m = 0

  • Câu 19: Thông hiểu

    Giải phương trình \cot(3x - 1) = -
\sqrt{3}.

    Ta có

    \cot(3x - 1) = - \sqrt{3}

    \Leftrightarrow \cot(3x - 1) =
\cot\left( - \frac{\pi}{6} ight) = \cot\left( \frac{5\pi}{6}
ight)

    \Leftrightarrow 3x - 1 = \frac{5\pi}{6}
+ k\pi

    \Leftrightarrow x = \frac{1}{3} +
\frac{5\pi}{18} + k\frac{\pi}{3},k\mathbb{\in Z}

  • Câu 20: Nhận biết

    Giá trị của \lim_{x ightarrow 1}\left( 2x^{2} - 3x + 1ight) bằng:

    Ta có: \lim_{x ightarrow 1}\left( 2x^{2} - 3x+ 1 ight) = 0

  • Câu 21: Nhận biết

    Tìm tập các định D của hàm số y =
\frac{2020}{\sin x}

    Hàm số xác định khi và chỉ khi \sin x
eq 0 \Rightarrow x eq k\pi,k\mathbb{\in Z}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ k\pi,k\mathbb{\in Z} ight\}

  • Câu 22: Nhận biết

    Khi điểm M thuộc đường thẳng d, mệnh đề nào sau đây đúng:

    Mệnh đề đúng M \in d.

  • Câu 23: Thông hiểu

    Cho tứ diện ABCD. Các điểm M\ ,\ \ N lần lượt là trung điểm BD\ ,\ \ AD. Các điểm\ H,\ \ G lần lượt là trọng tâm các tam giác BCD\ \ ;\ \ ACD. Các mệnh đề sau đúng hay sai?

    a) Đường thẳng HG chéo với đường thẳng MN Sai||Đúng

    b) Đường thẳng HG chéo với đường thẳng CD Đúng||Sai

    c) Đường thẳng HG chéo với đường thẳng \mathbf{CN} Sai||Đúng

    d) Đường thẳng HG chéo với đường thẳng {AB} Sai||Đúng

    Đáp án là:

    Cho tứ diện ABCD. Các điểm M\ ,\ \ N lần lượt là trung điểm BD\ ,\ \ AD. Các điểm\ H,\ \ G lần lượt là trọng tâm các tam giác BCD\ \ ;\ \ ACD. Các mệnh đề sau đúng hay sai?

    a) Đường thẳng HG chéo với đường thẳng MN Sai||Đúng

    b) Đường thẳng HG chéo với đường thẳng CD Đúng||Sai

    c) Đường thẳng HG chéo với đường thẳng \mathbf{CN} Sai||Đúng

    d) Đường thẳng HG chéo với đường thẳng {AB} Sai||Đúng

    Hình vẽ minh họa

    Do \frac{OG}{OA} = \frac{OH}{OB} =
\frac{1}{3} \Rightarrow
HG//AB (Định lý Talet)

    Xét tam giác ABD có: MN//AB (do MN là đường trung bình của tam giác)\Rightarrow HG//MN

    Lại có: HG \cap CN = G

    Vậy HGCD chéo nhau.

    Kết luận:

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

  • Câu 24: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

  • Câu 25: Thông hiểu

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}\frac{x}{x +1} = \frac{2}{2 + 1} = \frac{2}{3}.

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (2x - 1) \cdot
\frac{1}{x - 1} ightbrack = + \infty (do \lim_{x ightarrow 1^{+}}(2x - 1) = 1\lim_{x ightarrow 1^{+}}\frac{1}{x - 1} =
+ \infty).

    c) Ta có:

    \lim_{x ightarrow 3^{-}}\frac{x^{2}- 3x}{x^{2} - 6x + 9} = \lim_{x ightarrow 3^{-}}\frac{x(x - 3)}{(x -3)^{2}}

    = \lim_{x ightarrow 3^{-}}\frac{x}{x -
3} = \lim_{x ightarrow 3^{-}}\left( x\frac{1}{x - 3} ight) = -
\infty

    Do \lim_{x ightarrow 3^{-}}x =
3\lim_{x ightarrow
3^{-}}\frac{1}{x - 3} = - \infty.

    d) Ta có:

    \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(x - 1)\left( x^{2} + x + 1 ight)\sqrt{\frac{x}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)^{2}}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)}{x + 1}} ightbrack
= 3 \cdot \sqrt{\frac{0}{2}} = 0

  • Câu 26: Vận dụng

    Giá trị lớn nhất của hàm số y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2} tại điểm là nghiệm của phương trình nào dưới đây?

    Theo bài ra ta có:

    y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2}

    \Leftrightarrow y.\left( \sin x + \cos x+ 2 ight) = \sin x + 2\cos x + 1

    \Leftrightarrow (y - 1).\sin x + (y -2)\cos x = 1 - 2y(*)

    Phương trình (*) có nghiệm

    \Leftrightarrow (y - 1)^{2} + (y -
2)^{2} \geq 1 - 2y

    \Leftrightarrow y^{2} + y - 2 \leq
0

    \Leftrightarrow - 2 \leq y \leq
1

    Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó - \cos x = - 1

  • Câu 27: Thông hiểu

    Tìm số cạnh của một hình chóp có đáy là một bát giác:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 28: Nhận biết

    Tính giá trị biểu thức A =\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}

    \sin10^{0} eq 0 nên ta có:

    A =\frac{16\sin10^{0}.\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{8\sin20^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{4\sin40^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{2\sin80^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{\sin160^{0}}{16\sin10^{0}}

    A = \frac{\sin20^{0}}{16\sin10^{0}} =\frac{2.\sin10^{0}.\cos10^{0}}{16\sin10^{0}} =\frac{1}{8}.\cos10^{0}

  • Câu 29: Nhận biết

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Do dãy số là cấp số nhân

    => q = \frac{{36}}{{16}} = \frac{9}{4}

    => Số hạng tiếp theo là: 36.\frac{9}{4} = 81

  • Câu 30: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) có số hạng đầu u_{1} =
5 và công bội q = - 2. Số hạng thứ sáu của \left( u_{n}
ight) là:

    Ta có: u_{6} = u_{1}q^{5} = 5.( - 2)^{5} =
- 160

  • Câu 31: Thông hiểu

    Cho dãy số \left(
u_{n} ight) biết u_{n} = \frac{3n
- 1}{3n + 1}. Dãy số \left( u_{n}
ight) bị chặn trên bởi số nào dưới đây?

    Ta có: u_{n} = \frac{3n - 1}{3n + 1} = 1
- \frac{2}{3n + 1} < 1

    Mặt khác u_{2} = \frac{5}{7} >
\frac{1}{2} > 0

    => Dãy số \left( u_{n}
ight) bị chặn trên bởi số 1.

  • Câu 32: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = n^{2} + 4n^{2};\left( n \in
\mathbb{N}^{*} ight). Tìm số hạng tổng quát u_{n} của cấp số cộng đã cho.

    Ta có:

    S_{n} = n^{2} + 4n^{2}

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = 1 \\u_{1} - \dfrac{d}{2} = 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = 5 \\d = 2 \\\end{matrix} ight.

    \Rightarrow u_{n} = 2n + 3

  • Câu 33: Nhận biết

    Trong không gian cho hai mặt phẳng (P)(Q) song song. Số giao điểm chung của hai mặt phẳng (P)(Q)

    Theo định nghĩa hai mặt phẳng song song.

    Đáp án cần tìm là: 0

  • Câu 34: Thông hiểu

    Chu kì của hàm số y = \sin\left(
\frac{2}{5}x ight).cos\left( \frac{2}{5}x ight)k\pi. Giá trị của k là:

    Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Đáp án là:

    Chu kì của hàm số y = \sin\left(
\frac{2}{5}x ight).cos\left( \frac{2}{5}x ight)k\pi. Giá trị của k là:

    Đáp án: 5/2 (Ghi đáp án dưới dạng phân số tối giản a/b).

    Ta có:

    y = \sin\left( \frac{2}{5}x
ight).cos\left( \frac{2}{5}x ight) = \frac{1}{2}\sin\left(
\frac{4}{5}x ight)

    Hàm số trên có chu kì là T =
\frac{2\pi}{|a|} = \frac{2\pi}{\frac{4}{5}} =
\frac{5\pi}{2}

    Vậy k = \frac{5}{2}.

  • Câu 35: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{1} = 2;u_{8} = 16. Tìm d;S_{10}?

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{8} = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1} + 7d = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
d = 2 \\
\end{matrix} ight.

    \Rightarrow S_{10} = \frac{\left\lbrack
2u_{1} + 9d ightbrack.n}{2} = 110

  • Câu 36: Nhận biết

    Nghiệm của phương trình \cos x = \cos 3x là

     \begin{matrix}  \cos x = \cos 3x \hfill \\   \Leftrightarrow \cos 3x = \cos x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = x + k2\pi } \\   {3x =  - x + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k\pi } \\   {x = \dfrac{{k\pi }}{2}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 37: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 38: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } \left[ {x(\sqrt {{x^2} + 5}  - x)} ight] bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 5}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {{x^2} + 5 - {x^2}} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5x}}{{x\left( {\sqrt {1 + \dfrac{5}{{{x^2}}}}  + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{5}{{\sqrt 1  + 1}} = \dfrac{5}{2} \hfill \\ \end{matrix}

  • Câu 39: Vận dụng cao

    Cho các số thực a,\ b,\ c thỏa mãn 4a + b > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Đáp án là:

    Cho các số thực a,\ b,\ c thỏa mãn 4a + b > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Xét hàm số f(x) = x^{3} + ax^{2} + bx +
c

    Theo giả thiết 4a + c > 2b + 8
\Leftrightarrow - 8 + 4a - 2b + c > 0 \Rightarrow f( - 2) >
0;

    a + b + c < - 1 \Leftrightarrow 1 + a
+ b + c < 0 \Rightarrow f(1) < 0

    Ta có f(x) là hàm đa thức nên liên tục trên \mathbb{R}

    \left\{ \begin{matrix}\lim_{x ightarrow - \infty}f(x) = \lim_{x ightarrow - \infty}\left(x^{3} + ax^{2} + bx + c ight) = - \infty \\f( - 2) > 0 \\\end{matrix} ight.

    Suy ra phương trình f(x) = 0 có ít nhất một nghiệm trên ( - \infty; -
2) (1)

    f( - 2)f(1) < 0 nên phương trình có ít nhất một nghiệm trên khoảng ( -
2;1) (2)

    \left\{ \begin{gathered}
 \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = \mathop {\lim }\limits_{x \to  + \infty } \left( {{x^3} + a{x^2} + bx + c} ight) =  + \infty  \hfill \\
  f\left( 1 ight) < 0 \hfill \\ 
\end{gathered}  ight.

    Suy ra phương trình có ít nhất một nghiệm trên khoảng (1; + \infty) (3)

    Từ (1); (2)(3) ta có phương trình f(x) = 0có ít nhất 3 nghiệm.

    Mặt khác f(x) = 0 là phương trình bậc ba nên có tối đa 3 nghiệm

    Vậy phương trình f(x) = 0 có đúng 3 nghiệm.

  • Câu 40: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành, lấyM \in BC;MC =
MB. Giả sử (\gamma) là mặt phẳng đi qua M song song với hai đường thẳng BDSC. Xác định giao tuyến của (\gamma) với các mặt của hình chóp tứ giác S.ABCD. Hình tạo bởi các giao tuyến là hình

    Hình vẽ minh họa

    Gọi trung điểm CD,SD,SB lần lượt là N,P,R.

    Gọi I = AC \cap MN

    Từ I kẻ QI song song với SC.

    Ta có: MR//QI//NP//SC

    \Rightarrow (MNPQR)//SC (1)

    Ta có MN//DB \Rightarrow
(MNPQR)//BD (2)

    Từ (1) và (2) => Các giao tuyến của (\gamma) với các cạnh của hình chóp là hình ngũ giác MNPQR.

  • Câu 41: Vận dụng cao

    Cho tổng S(n) = 2 + 4 + 6 + … + 2n. Khi đó S30 bằng?

    Ta có S30 = 2 + 4 + 6 + … + 60

     ⇒ 2S30 = (2+60) + (4+58) + (6+56) + … + (60+2) (có 30 ngoặc đơn)

    \Rightarrow S_{30} = \frac{(2 + 60)
\cdot 30}{2} = 930

  • Câu 42: Vận dụng

    Trên một bàn cờ có nhiều ô vuông, người ta đặt 7 hạt dẻ vào ô đầu tiên, sau đó đặt tiếp vào ô thứ hai số hạt nhiều hơn ô thứ nhất là 5, tiếp tục đặt vào ô thứ ba số hạt nhiều hơn ô thứ hai là 5, ... và cứ thế tiếp tục đến ô thứ n. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng 25450 hạt. Hỏi bàn cờ đó có bao nhiêu ô vuông?

    Ta có:

    Số hạt dẻ trên mỗi ô (bắt đầu từ ô thứ nhất) theo thứ tự đó lập thành cấp số cộng \left( u_{n} ight)u_{1} = 7;d = 5.

    Gọi n là số ô trên bàn cờ thì u_{1} +
u_{2} + ... + u_{n} = 25450 = S_{n}

    Ta có:

    25450 = S_{n}

    \Leftrightarrow 25450 = nu_{1} +
\frac{n(n - 1)}{2}.d

    \Leftrightarrow 25450 = 7n + \frac{n^{2}
- n}{2}.5

    \Leftrightarrow 5n^{2} + 9n - 50900 =
0

    \Leftrightarrow n = 100

  • Câu 43: Nhận biết

    Cho 0 <
\alpha < \frac{\pi}{2}. Khẳng định nào sau đây đúng?

    Ta có: 0 < \alpha <
\frac{\pi}{2}

    => 0 - \pi < \alpha - \pi <
\frac{\pi}{2} - \pi

    => - \pi < \alpha - \pi < -
\frac{\pi}{2}

    Điểm cuối cung \alpha - \pi thuộc góc phần tư thứ ba

    => \sin(\alpha - \pi) <
0

  • Câu 44: Vận dụng

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm các cạnh ADBC; G là trọng tâm tam giác BCD. Khi đó giao điểm của đường thẳng MG(ABC)

    Hình vẽ minh họa

    Trong (ADN) gọi K = AN \cap MG, mà AN \subset (ABC)

    \Rightarrow K = MG \cap
(ABC)

  • Câu 45: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
    các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là

    Hình vẽ minh họa

     Đường thẳng và mặt phẳng song song

    Ta có thiết diện của S.ABCD cắt bởi
    mặt phẳng (IJK) là ngũ giác

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo