Cho cấp số nhân (un) có tổng n số hạng đầu tiên là
. Tìm số hạng đầu và công bội của cấp số nhân đó?
Ta có:
Cho cấp số nhân (un) có tổng n số hạng đầu tiên là
. Tìm số hạng đầu và công bội của cấp số nhân đó?
Ta có:
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Xác định
.
Ta có: .
Hỏi trên đoạn [-2023; 2023], phương trình
có tất cả bao nhiêu nghiệm?
Ta xét phương trình
Theo giả thiết
Vậy có tất cả 644 giá trị nguyên của k tương úng có 644 nghiệm thỏa mãn yêu cầu bài toán.
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính
.
Điều kiện xác định
Ta có:
=> Phương trình tương đương
=>
Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:
Ta có:
Cho hình lăng trụ
. Gọi trung điểm của
lần lượt là
. Qua phép chiếu song song phương
, mặt phẳng chiếu
biến điểm
thành điểm nào?
Hình vẽ minh họa
Ta có: suy ra
là hình bình hành.
Suy ra phép chiếu song song phương , mặt phẳng chiếu
biến điểm
thành
.
Xét tính liên tục của hàm số
. Khẳng định nào sau đây đúng?
Hàm số xác định với mọi
Ta có: liên tục trên
và
Mặt khác
Vậy hàm số gián đoạn tại x = 1
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Cho
thuộc góc phần tư thứ nhất của đường tròn lượng giác. Hãy chọn kết quả đúng trong các kết quả sau đây:
Ta có thuộc góc phần tư thứ nhất của đường tròn lượng giác
=>
Cho cấp số nhân
có tổng
số hạng đầu tiên là
với
. Tìm số hạng đầu
và công bội
của cấp số nhân đó?
Ta có:
,
.
Cho dãy số
có số hạng tổng quát
. Biết rằng
. Khi đó
là số hạng thứ mấy trong dãy số?
Ta có:
Vậy là số hạng thứ tư trong dãy số.
Điều kiện xác định của hàm số ![]()
Điều kiện xác định của hàm số:
Dãy số nào là dãy số tăng?
Xét ta có:
Vậy là dãy số tăng.
Cho tứ diện
cạnh bằng 1. Gọi
là trung điểm của
,
đối xứng với
qua
,
đối xứng với
qua
. Xác định các giao điểm của mặt phẳng
với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh họa
Gọi
Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.
Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.
Suy ra . Chứng minh tương tự ta có:
. Do đó ta có:
Tứ diện đều ABCD có cạnh bằng 1 nên
Áp dụng định lí cosin cho tam giác ta có:
Áp dụng công thức Hê- rông tính diện tích tam giác ta được:
Biết rằng
với
và
tối giản. Khi đó kết quả nào sau đây đúng?
Ta có:
Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?
Ta có
Vậy
Tính giới hạn
.
Ta có:
Tính giá trị của ![]()
Ta có:
Cho hàm số
. Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Cho hàm số . Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Tập xác định của hàm số là
.
Ta có
Hàm số đã cho liên tục tại
.
Cho hình chóp S.ABC có diện tích đáy bằng 9. Mặt phẳng
song song với
cắt đoạn SA tại
sao cho
. Diện tích thiết diện của hình chóp S.ABC tạo bởi
bằng
Hình vẽ minh họa:
Gọi N, P lần lượt là giao điểm của mặt phẳng và các cạnh SB, SC.
Vì nên theo định lí Talet, ta có
.
Khi đó cắt hình chóp S.ABC theo thiết diện là tam giác MNP ðồng dạng với tam giác ABC theo tỉ số
.
Vậy .
Phương trình
có họ nghiệm là
Ta có:
là nghiệm của phương trình.
: Chia 2 vế phương trình cho
ta được:
.
Cho hàm số
. Tìm giá trị k để hàm số
liên tục tại ![]()
Ta có:
Kết quả của giới hạn
bằng
Có nếu
.
Vì nên
.
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Hình lăng trụ tam giác có bao nhiêu mặt?
Hình lăng trụ tam giác có 5 mặt.
Phương trình
có nghiệm là:
Ta có:
Tính giới hạn ![]()
Ta có:
Cho cấp số cộng
thỏa mãn
. Khi đó
bằng:
Ta có:
Tính giá trị ![]()
Ta có:
Tìm giới hạn ![]()
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Lấy một điểm
trên cạnh
. Thiết diện tạo bởi mặt phẳng
với hình chóp là:
Hình vẽ minh họa
Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.
Ta có: MN // BC // AD nên thiết diện AMND là hình thang.
Trong các dãy số sau, dãy số nào là cấp số nhân?
Dãy số 1, 2, 4, 8, 16 tuân theo quy luật
=> Dãy số đó là cấp số nhân
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm của SA,SB,SC và SD. Khi đó
là đường thẳng nào?
Hình vẽ minh họa:
M ∈ (MNPQ); M ∈ SA; M ∈ (SAC)
Vậy M là điểm chung thứ nhất. P ∈ (MNPQ); P ∈ SC; P ∈ (SAC).
Vậy P là điểm chung thứ hai.
Vậy giao tuyến của (MNPQ) và (SAC) là: MP
Cho hình chóp
có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm
là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có
. Sai||Đúng
c) Cho
thì
. Sai||Đúng
d) Trong mặt phẳng
, gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
Cho hình chóp có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có . Sai||Đúng
c) Cho thì
. Sai||Đúng
d) Trong mặt phẳng , gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
- Xác định :
Trong mặt phẳng , kẻ
cắt
tại
;
Trong mặt phẳng , kẻ
cắt
tại
.
Vì .
Tương tự: .
-Tính theo
:
Gọi là trung điểm
là đường trung bình của tam giác
.
Trong tam giác , ta có
qua trung điểm
của
và
là trung điểm của
.
Hình vẽ minh họa
-Vậy hay
.
Hoàn toàn tương tự, ta chứng minh được .
Khi đó hai tam giác đồng dạng vì có góc
chung và
.
Xét tam giác , theo định lí Thalès, ta có:
- Chứng minh :
Dễ thấy là điểm chung của hai mặt phẳng
và
.
Ta có: .
Vì vậy .
Khi đó:
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Cho cấp số cộng
có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát
của cấp số cộng.
Theo bài ra ta có:
Dãy số đã cho là cấp số cộng
=>
=>
Vậy số hạng tổng quát của dãy số là:
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Biết
. Hỏi giá trị giới hạn
bằng bao nhiêu?
Ta có:
Khi đó:
Cho tứ diện
. Gọi
lần lượt là các điểm nằm trên các cạnh
. Giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng
Hình vẽ minh họa
Ta có:
=> J là điểm chung của hai mặt phẳng và
.
Ta lại có:
=> K là điểm chung của hai mặt phẳng và
.
Vậy giao tuyến của mặt phẳng và mặt phẳng
là đường thẳng
.
Nếu
theo thứ tự lập thành cấp số cộng thì dãy số nào sau đây lập thành một cấp số cộng.
Theo giả thiết ta có:
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Trong không gian, cho ba đường thẳng phân biệt
trong đó
. Khẳng định nào sau đây sai?
Nếu c cắt a thì c cắt b hoặc c chéo b.
Vậy khẳng định sai là: "Nếu c cắt a thì c cắt b."
Xác định chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì