Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hình lăng trụ tam giác có bao nhiêu mặt?

    Hình lăng trụ tam giác có 5 mặt.

  • Câu 2: Thông hiểu

    Cho dãy số \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_{n + 1}} = {u_n} + n} \end{array}} ight.. Tìm số hạng thứ 5 của dãy số:

    Ta có:

    \begin{matrix}  {u_2} = {u_1} + 1 = 5 \hfill \\  {u_3} = {u_2} + 2 = 7 \hfill \\  {u_4} = {u_3} + 3 = 10 \hfill \\ \end{matrix}

    Do đó số hạng thứ 5 của dãy số là Sử dụng công thức: {u_5} = {u_4} + 4 = 14

  • Câu 3: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = - 2;u_{2} = 2. Khi đó số hạng 2018 là số nào?

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 2 - ( - 2) =
4

    u_{n} = u_{1} + (n - 1)d

    \Rightarrow u_{2018} = u_{1} + 2017d = -
2 + 2017.4 = 8066.

  • Câu 4: Thông hiểu

    Cho dãy số có các số hạng đầu là 0,1; 0,001;0,0001; ... Số hạng tổng quát của dãy số có dạng?

    Ta có:

    Số hạng thứ 1 có 1 chữ số 0;

    Số hạng thứ 2 có 2 chữ số 0;

    Số hạng thứ 3 có 3 chữ số 0;

    Suy ra có chữ số 0.

    Công thức số hạng tổng quát của dãy số là: u_n=\underbrace{0,00...01}_{\text{n chữ số 0}}

  • Câu 5: Thông hiểu

    Xác định \lim_{x
ightarrow 0}\frac{|x|}{x^{2}}.

    Ta có: \lim_{x ightarrow 0}\frac{|x|}{x^{2}}
= \lim_{x ightarrow 0}\frac{1}{|x|} = + \infty.

  • Câu 6: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

     

    a) Xét hàm số \cos^{2}x - \sqrt{x} =f(x) có tập xác định D = \lbrack 0;
+ \infty)

     

    Hàm số liên tục trên \left\lbrack
0;\frac{\pi}{2} ightbrack ta có: f(0) = 1;f\left( \frac{\pi}{2} ight) = -
\sqrt{\frac{\pi}{2}}

    f(0).f\left( \frac{\pi}{2} ight)
< 0 nên phương trình f(x) =
0 có ít nhất một nghiệm trên \left(
0;\frac{\pi}{2} ight).

    b) Ta có:

    x^{4} - 3x^{2} + 2 = 0 \Leftrightarrow
\left( x^{2} - 1 ight)\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x^{2} = 1 \\
x^{2} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Vậy hàm số đã cho có 4 điểm gián đoạn.

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = \lim_{x ightarrow 0}\left\lbrack x.\left(\dfrac{\sin x}{x} ight)^{2}.\dfrac{3}{2}.\left(\dfrac{\sin\dfrac{3x}{2}}{\dfrac{3x}{2}} ight) ightbrack =0

    d) Ta có: D = \mathbb{R}

    với x eq 0 thì f(x) = \frac{x^{2} + 4x}{2x} là hàm phân thức hữu tỉ xác định với mọi x eq
0. Do đó hàm số liên tục trên các khoảng ( - \infty;0),(0; + \infty)

    Tại x = 0 ta có: \lim_{x ightarrow 0}f(x) = \lim_{x ightarrow
0}\left( \frac{x^{2} + 4x}{2x} ight) = \lim_{x ightarrow 0}\left(
\frac{x + 4}{2} ight) = 2

    Để hàm số liên tục trên khoảng ( -
\infty; + \infty) thì hàm số phải liên tục tại x = 0 khi đó:

    \lim_{x ightarrow 0}f(x) = f(0) =
2.

    Vậy để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị là 2.

  • Câu 7: Thông hiểu

    Tính giá trị biểu thức \lim\left\lbrack n\left( \sqrt{n^{2} + 1} -
\sqrt{n^{2} - 3} ight) ightbrack

    \lim\left\lbrack n\left( \sqrt{n^{2} +
1} - \sqrt{n^{2} - 3} ight) ightbrack

    = \lim\frac{n\left( \sqrt{n^{2} + 1} -
\sqrt{n^{2} - 3} ight)\left( \sqrt{n^{2} + 1} + \sqrt{n^{2} - 3}
ight)}{\sqrt{n^{2} + 1} + \sqrt{n^{2} - 3}}

    = \lim\frac{4n}{\sqrt{n^{2} + 1} +
\sqrt{n^{2} - 3}}

    = \lim\dfrac{4}{\sqrt{1 +\dfrac{1}{n^{2}}} + \sqrt{1 - \dfrac{3}{n^{2}}}}

    = \frac{4}{1 + 1} = 2

  • Câu 8: Nhận biết

    Khi điểm M thuộc đường thẳng d, mệnh đề nào sau đây đúng:

    Mệnh đề đúng M \in d.

  • Câu 9: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 10: Vận dụng

    Giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y=\sqrt{4\sin x+5} lần lượt là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \sin x \leqslant 1 \hfill \\   \Rightarrow  - 4 \leqslant 4\sin x \leqslant 4 \hfill \\   \Rightarrow  - 4 + 5 \leqslant 4\sin x + 5 \leqslant 4 + 5 \hfill \\   \Rightarrow 1 \leqslant 4\sin x + 5 \leqslant 9 \hfill \\   \Rightarrow 1 \leqslant \sqrt {4\sin x + 5}  \leqslant 3 \hfill \\ \end{matrix}

  • Câu 11: Vận dụng

    Cho tứ diện ABCD. Các cạnh AC,BD,AB,CD,AD,BC có trung điểm lần lượt là M,N,P,Q,R,S. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?

    Hình vẽ minh họa

    Ta có:

    MP // BC // NQ, MP = \frac{1}{2}BC =
NQ

    => MPNQ là hình bình hành

    => M, N, P, Q thuộc một mặt phẳng.

    MR // CD // SN, MR = \frac{1}{2}CD =
SN

    => MRNS là hình bình hành

    => M, R, S, N thuộc một mặt phẳng.

    PS // AC // RQ, PS = \frac{1}{2}AC =
RQ

    => PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.

    Vậy M,P,R,S không thuộc cùng một mặt phẳng.

  • Câu 12: Vận dụng cao

    Cho dãy số (un) biết u_{n} = \frac{1}{2} + \frac{1}{2^{2}} +
\frac{1}{3^{2}} + \ldots + \frac{1}{n^{2}}. Mệnh đề nào sau đây đúng?

    Xét \frac{1}{k^{2}} < \frac{1}{(k -
1)k} = \frac{1}{k - 1} - \frac{1}{k},\forall \geq 2

    Suy ra 

    u_n<\frac{1}{2}+(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+(\frac{1}{5}-\frac{1}{6})+⋯+(\frac{1}{n-1}-\frac{1}{n})

    =\frac{3}{2}-\frac{1}{n} < \frac{3}{2}

    \Rightarrow 0 < u_n <\frac{3}{2}, \, \, \forall n \in \mathbb{N} ^*

    Vậy dãy số (un) bị chặn.

  • Câu 13: Nhận biết

    Hàm số nào sau đây không liên tục tại x = 2?

    Hàm số y = \frac{x^{2}}{x - 2} có tập xác định D\mathbb{=
R}\backslash\left\{ 2 ight\} nên không liên tục tại x = 2.

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB > CD). Lấy một điểm M thuộc cạnh CD. Mặt phẳng (\alpha) qua M song song với SA và BC. Giả sử (\alpha) \cap (SAD) = d. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (\alpha) \cap (ABCD) \\
(\alpha)//BC \subset (ABCD) \\
\end{matrix} ight.

    \Rightarrow (\alpha) \cap (ABCD) =
MN//BC;(N \in AB)

    Trong mặt phẳng (ABCD) kéo dài AD cắt MN tại E.

    Ta lại có: \left\{ \begin{matrix}
E \in (\alpha) \cap (SAD) \\
(\alpha)//SA \subset (SAD) \\
\end{matrix} ight. suy ra (\alpha) \cap (SAD) = d//SA

  • Câu 15: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p (p là một
    số tự nhiên). Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng:

    Ở bước 1 (bước cơ sở) của chứng minh quy nạp, bắt đầu với n bằng n=p

  • Câu 16: Vận dụng

    Cho dãy số {u_n} = \frac{{{2^{n - 1}} + 1}}{n}. Số hạng thứ 10 của dãy số đó là:

    Ta có: {u_{10}} = \frac{{{2^{10 - 1}} + 1}}{{10}} = 51,3

  • Câu 17: Nhận biết

    Giá trị của C =
lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} bằng:

    Ta có theo tính chất giới hạn, ta có:

    lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} =
0

  • Câu 18: Nhận biết

    Giá trị của \lim\frac{\cos n + \sin n}{n^{2} + 1} bằng:

    Ta có \frac{|\cos n + \sin n|}{n^{2}}
< \frac{2}{n^{2}}\lim\frac{1}{n^{2}} = 0

    Suy ra \lim\frac{\cos n + \sin n}{n^{2} +
1} = 0.

  • Câu 19: Nhận biết

    Dãy số nào sau đây là cấp số nhân?

    Ta có: \left( u_{n} ight) là cấp số nhân \Leftrightarrow u_{n + 1} =
q.u_{n}

    Dãy số lập thành cấp số nhân là \left\{
\begin{matrix}
u_{1} = - 1 \\
u_{n + 1} = - 3u_{n};n \geq 1 \\
\end{matrix} ight.

  • Câu 20: Vận dụng

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 2\left( u_{3} +
u_{4} + u_{5} ight) = u_{6} + u_{7} + u_{8}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}?

    Đáp án: 4

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 2\left( u_{3} +
u_{4} + u_{5} ight) = u_{6} + u_{7} + u_{8}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}?

    Đáp án: 4

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    2\left( u_{3} + u_{4} + u_{5} ight) =u_{6} + u_{7} + u_{8}

    \Leftrightarrow 2\left( u_{3} + u_{3}q +u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 2u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 2u_{3} = u_{6} do \ 1 + q + q^{2} > 0

    \Leftrightarrow 2u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 2 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = \sqrt[3]{2} \\
\end{matrix} ight.

    Ta có:

    \frac{u_{8} + u_{9} + u_{10}}{u_{2} +
u_{3} + u_{4}} = \frac{u_{8} + u_{8}q + u_{8}q^{2}}{u_{2} + u_{2}q +
u_{2}q^{2}}= \frac{u_{8}\left( 1 + q + q^{2}
ight)}{u_{2}\left( 1 + q + q^{2} ight)} = \frac{u_{2}q^{6}}{u_{2}} =
q^{6} = 4

  • Câu 21: Vận dụng cao

    Cho dãy số \left( u_{n}
ight)thỏa mãn \left\{
\begin{matrix}
u_{1} = 3 \\
u_{n + 1} = {u_{n}}^{2} - 3u_{n} + 4 \\
\end{matrix};\left( n \in \mathbb{N}^{*} ight) ight.. Biết dãy số \left( u_{n} ight) là dãy tăng và không bị chặn trên. Đặt v_{n} =
\frac{1}{u_{1} - 1} + \frac{1}{u_{2} - 1} + \frac{1}{u_{3} - 1} + ... +
\frac{1}{u_{n} - 1};\left( n \in \mathbb{N}^{*} ight). Tính \lim_{n ightarrow \infty}\left( v_{n}
ight)

    Ta có: u_{n + 1} = u_{n}^{2} - 3u_{n} +
4

    \Rightarrow u_{n + 1} - 2 = u_{n}^{2} -
3u_{n} + 2 = \left( u_{n} - 1 ight).\left( u_{n} - 2
ight)

    \Leftrightarrow \frac{1}{u_{n + 1} - 2}
= \frac{1}{\left( u_{n} - 1 ight).\left( u_{n} - 2
ight)}

    \Leftrightarrow \frac{1}{u_{n + 1} - 2}
= \frac{1}{n_{n} - 2} - \frac{1}{u_{n} - 1}

    \Leftrightarrow \frac{1}{u_{n} - 1} =
\frac{1}{n_{n} - 2} - \frac{1}{u_{n + 1} - 2}

    \Rightarrow v_{n} = \frac{1}{u_{1} - 2}
- \frac{1}{u_{2} - 2} + \frac{1}{u_{2} - 2} - \frac{1}{u_{3} -
2}

    + \cdots + \frac{1}{u_{n} - 2} -
\frac{1}{u_{n + 1} - 2}

    = \frac{1}{u_{1} - 2} - \frac{1}{u_{n +
1} - 2}

    \Rightarrow \lim_{x ightarrow +
\infty}v_{n} = \lim_{x ightarrow + \infty}\left( \frac{1}{u_{1} - 2} -
\frac{1}{u_{n + 1} - 2} ight) = \frac{1}{u_{1} - 2} = 1

  • Câu 22: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Ta có: \lim_{t ightarrow 10}\frac{g(t)
- g(10)}{t - 10} = \lim_{t ightarrow 10}\frac{45t^{2} - t^{3} - 45
\cdot 10^{2} + 10^{3}}{t - 10}

    \begin{matrix}= \lim_{t ightarrow 10}\dfrac{45(t - 10)(t + 10) - (t - 10)\left( t^{2}+ 10t + 100 ight)}{t - 10}  \\\end{matrix}

    = \lim_{t ightarrow 10}\left( - t^{2} + 35t + 350 ight) = 600

    Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm t = 10 (ngày) là 600 người/ngày.

  • Câu 23: Thông hiểu

    Với giá trị nào của m thì phương trình \cos x + m - 2 = 0 có nghiệm:

     Ta có:

    \begin{matrix}  \cos x + m - 2 = 0 \hfill \\   \Rightarrow \cos x = 2 - m \hfill \\ \end{matrix}

    Do \cos x \in \left[ { - 1;1} ight]

    \begin{matrix}  \Rightarrow  - 1 \leqslant 2 - m \leqslant 1 \hfill \\   \Rightarrow 1 \leqslant m \leqslant 3 \hfill \\ \end{matrix}

    Vậy m \in \left[ {1;3} ight]

  • Câu 24: Vận dụng cao

    Hàm số nào sau đây không liên tục trên \mathbb{R}?

    Hàm số y = \frac{3x}{x + 2} không xác định tại x = - 2 nên không liên tục tại x = - 2.

    Do đó không liên tục trên \mathbb{R}.

  • Câu 25: Thông hiểu

    Đổi số đo của góc \frac{\pi}{12}rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \dfrac{\dfrac{\pi}{12}.180}{\pi}ight)^{0} = 15^{0}

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm (shift π ÷12) shift DRG 2 =

  • Câu 26: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 27: Nhận biết

    Giá trị của \lim_{x ightarrow 1}\left( 2x^{2} - 3x + 1ight) bằng:

    Ta có: \lim_{x ightarrow 1}\left( 2x^{2} - 3x+ 1 ight) = 0

  • Câu 28: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Vì hàm số y = tan x tuần hoàn với chu kì π

    Nên đáp án: “Hàm số y = tanx tuần hoàn với chu kì 2π” là đáp án sai.

  • Câu 29: Thông hiểu

    Cho cấp số cộng (u_{n}) có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát u_{n} của cấp số cộng.

    Theo bài ra ta có:

    Dãy số đã cho là cấp số cộng

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 5} \\   {{u_2} = 9} \end{array} \Rightarrow d = {u_2} - {u_1} = 4} ight.

    => {u_n} = {u_1} + \left( {n - 1} ight).d = 4n + 1

    Vậy số hạng tổng quát của dãy số là: u_n=4n+1

  • Câu 30: Vận dụng

    Cho hàm số f(x)
= x^{3} - 3x - 1. Số nghiệm của phương trình f(x) = 0 trên tập số thực là:

    Hàm số f(x) = x^{3} - 3x - 1 là hàm đa thức có tập xác định \mathbb{R}

    => Hàm số liên tục trên \mathbb{R}

    => Hàm số liên tục trên các khoảng ( -
2; - 1),( - 1;0),(0;2)

    Ta có:

    \left\{ \begin{matrix}
f( - 2) = - 3 < 0 \\
f( - 1) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f( - 2).f( - 1) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
2; - 1)

    \left\{ \begin{matrix}
f( - 1) = 1 > 0 \\
f(0) = - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
1;0)

    \left\{ \begin{matrix}
f(0) = - 1 < 0 \\
f(2) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f(0).f(2) < 0 vậy phương trình có ít nhất một nghiệm trên (0;2)

    Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng ( - 2;2). Tuy nhiên phương trình f(x) = 0 là phương trình bậc ba có nhiều nhất ba nghiệm

    Vậy phương trình f(x) = 0 có đúng ba nghiệm.

  • Câu 31: Nhận biết

    Giải phương trình \cot x = - 1 thu được kết quả là:

    Điều kiện x eq k\pi\left( k\mathbb{\in
Z} ight)

    \cot x = - 1 \Leftrightarrow x = -
\frac{\pi}{4} + k\pi\ \left( k\mathbb{\in Z} ight).

  • Câu 32: Vận dụng

    Số nghiệm thuộc đoạn \left[ {0;15\pi } ight] của phương trình: \tan x - 1 = 0

    Điều kiện xác định x e \dfrac{\pi}{2}+k\pi,(k \in \mathbb{Z})

    \begin{matrix}  \tan x - 1 = 0 \Rightarrow \tan x = 1 \hfill \\   \Rightarrow x = \dfrac{\pi }{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\  x \in \left[ {0;15\pi } ight];k \in \mathbb{Z} \Rightarrow 0 \leqslant \dfrac{\pi }{4} + k\pi  \leqslant 15\pi  \hfill \\   \Rightarrow k \in \left\{ {0;1;...;14} ight\} \hfill \\ \end{matrix}

    Vậy có tất cả 15 nghiệm.

  • Câu 33: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Phép chiếu song song theo phương AB lên mặt phẳng (SBC) biến điểm A thành:

    Do AB \cap (SBC) = \left\{ B
ight\} suy ra hình chiếu song song của điểm A theo phương AB lên mặt phẳng (SBC) là điểm B.

  • Câu 34: Nhận biết

    Một cấp số nhân có ba số hạng là a, b, c (theo thứ tự đó) trong đó các số hạng đều khác 0 và công bội q eq 0. Mệnh đề nào sau đây là đúng?

    Ta có: ac = b^{2} \Rightarrow
\frac{1}{b^{2}} = \frac{1}{ac}

  • Câu 35: Vận dụng

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD. Các khẳng định dưới đây đúng hay sai?

    a) Giao tuyến của hai mặt phẳng (SAB)(ABCD)là đường thẳng AB. Đúng||Sai

    b) Đường thẳng GKAC có một điểm chung. Sai||Đúng

    c) Đường thẳng GK song song với mặt phẳng (ABCD). Đúng||Sai

    d) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA,SB, SC, SD lần lượt tại M, N, E, F. Khi đó, tứ giác MNEFlà hình bình hành. Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD. Các khẳng định dưới đây đúng hay sai?

    a) Giao tuyến của hai mặt phẳng (SAB)(ABCD)là đường thẳng AB. Đúng||Sai

    b) Đường thẳng GKAC có một điểm chung. Sai||Đúng

    c) Đường thẳng GK song song với mặt phẳng (ABCD). Đúng||Sai

    d) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA,SB, SC, SD lần lượt tại M, N, E, F. Khi đó, tứ giác MNEFlà hình bình hành. Đúng||Sai

    Hình vẽ minh họa

    a) Đúng.

    Hai mặt phẳng (SAB)(ABCD) có hai điểm chung là AB nên giao tuyến của hai mặt phẳng (SAB)(ABCD)là đường thẳng AB.

    b) Sai.

    Gọi H là trung điểm của SD. Ta có:

    Trong tam giác SAD, có AH là đường trung tuyến và G là trọng tâm, nên \frac{HG}{HA} = \frac{1}{3}\ \ (1).

    Trong tam giác SCD, có CH là đường trung tuyến và K là trọng tâm, nên \frac{HK}{HC} = \frac{1}{3}\ \ (2).

    Trong tam giác HAC và từ (1), (2) ta có \frac{HG}{HA} = \frac{HK}{HC} =
\frac{1}{3}, suy ra GK//AC.

    c) Đúng.

    Mặt phẳng (ABCD) không chứa đường thẳng GK và theo kết quả câu b) ta có GK//AC.

    AC nằm trong mặt phẳng (ABCD).

    Nên đường thẳng GK song song với mặt phẳng (ABCD).

    d) Đúng.

    Gọi mặt phẳng (P) chứa đường thẳng GK và song song với mặt phẳng (ABCD).

    Nên mặt phẳng (P) cắt mặt phẳng (SAD) theo một giao tuyến d_{1} song song với AD.

    Mà mặt phẳng (P) và mặt phẳng (SAD) có một điểm chung là G, nên đường thẳng d_{1} đi qua G và song song với AD.

    Theo giả thiết, mặt phẳng (P) cắt SA,SD lần lượt tại M,F nên đường thẳng d_{1} cắt SA,SD lần lượt tại M , F. Hay MF//AD.

    Tương tự, ta có FE//CD, EN//BC, NM//AB.

    Do đó, tứ giác MNEF FE//MN (vì cùng song song với AB,CD) và EN//MF (vì cùng song song với AD,BC).

    Vậy tứ giác MNEFlà hình bình hành.

  • Câu 36: Thông hiểu

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \cos xg(x) = \sin x. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?

    a) Hàm số g(x) là hàm số chẵn. Sai||Đúng

    b) Trong khoảng (0 ; 2\pi) đồ thị hai hàm số y = f(x)y = g(x) cắt nhau tại hai điểm. Đúng||Sai

    c) Giá trị lớn nhất của hàm số y = f(x) +
g(x) bằng 2. Sai||Đúng

    d) Hàm số y = f(x) + g(x) đạt giá trị nhỏ nhất khi x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight). Đúng||Sai

    a) Sai

    TXĐ: D\mathbb{= R}. Do đó \forall x \in D \Rightarrow - x \in
D.

    Ta có \forall x \in D:g( - x) = \sin( -
x) = - \sin(x) = - g(x) \Rightarrow g(x) là hàm số lẻ.

    b) Đúng

    Phương trình \sin x = \cos x trong khoảng (0 ; 2\pi) có hai nghiệm x = \frac{\pi}{4}x = \frac{5\pi}{4}

    c) Sai

    Ta có: y = \sin x + \cos x =
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) , mà \forall x: - 1 \leq \sin\left( x + \frac{\pi}{4}
ight) \leq 1

    \Leftrightarrow - \sqrt{2} \leq
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) \leq \sqrt{2}.

    Vậy giá trị lớn nhất của hàm số y = \sin
x + \cos x bằng \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) =
1.

    d) Đúng

    Giá trị nhỏ nhất của hàm số y = \sin x +
\cos x bằng - \sqrt{2}, khi \sin\left( x + \frac{\pi}{4} ight) = -
1

    \Leftrightarrow x + \frac{\pi}{4} = -\frac{\pi}{2} + k2\pi\left( k\mathbb{\in Z} ight)

    \Leftrightarrow x = - \frac{3\pi}{4} +
k2\pi\ \ \left( k\mathbb{\in Z} ight).

  • Câu 37: Thông hiểu

    Trong các dãy số sau, dãy số nào là cấp số nhân?

    Xét dãy số \left\{\begin{matrix}u_0=1 \\ u_n=2u_{n-1}\end{matrix}ight.\forall n\geq1

     Ta có: \frac{{{u_n}}}{{{u_{n - 1}}}} = 2 => Dãy số là cấp số nhân

  • Câu 38: Nhận biết

    Tìm phát biểu sai trong các phát biểu sau?

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi nó đi qua 3 điểm." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết một điểm và một đường thẳng." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết nó chứa hai đường thẳng cắt nhau." đúng.

  • Câu 39: Nhận biết

    Tính giá trị của \cot135^{0}

    Ta có: \cot135^{0} = - \tan45^{0} = -1

  • Câu 40: Thông hiểu

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Đáp án là:

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Ta có:

    \tan\left( 2x + \frac{\pi}{3} ight) =
- 1

    \Leftrightarrow \tan\left( 2x +\frac{\pi}{3} ight) = \tan\left( - \frac{\pi}{4} ight)

    \Leftrightarrow 2x + \frac{\pi}{3} = -
\frac{\pi}{4} + k\pi

    \Leftrightarrow 2x = - \frac{7\pi}{12} +
k\pi

    \Leftrightarrow x = - \frac{7\pi}{24} +
\frac{k\pi}{2}\ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có họ nghiệm là:x = -
\frac{7\pi}{24} + \frac{k\pi}{2}\ \left( k\mathbb{\in Z}
ight).

    Do đó a = 7,b = 24

    \Rightarrow T = a^{2} - b = 7^{2} - 24 =
25.

  • Câu 41: Nhận biết

    Với x là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?

    Đẳng thức đúng: sin2x = 2sinx\cos
x.

  • Câu 42: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SCI là giao điểm của AM và mặt phẳng (SBD). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi SO \cap AM \equiv ISO \subset (SBD)

    \Rightarrow AM \cap (SBD) \equiv \left\{
I ight\} I là trọng tâm tam giác SAC

    \Rightarrow IS = 2IO \Rightarrow IS >
IO

  • Câu 43: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Các điểm I;J lần lượt là trọng tâm các tam giác SAB, SAD, MC =
MD,(M \in CD). Mặt phẳng nào dưới đây song song với đường thẳng IJ?

    Hình vẽ minh họa

    Ta có:

    IJ//EF//BD \Rightarrow
IJ//(SBD)

  • Câu 44: Thông hiểu

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.\ ABCD có đáy là hình bình hành tâm O. Gọi N là trung điểm của cạnh SC. Lấy điểm M đối xứng với B qua A, OMcắt ADtại K. Gọi giao điểm G của đường thẳng MN với mặt phẳng(SAD). Xét tính đúng sai các khẳng định sau:

    a) MD//AC. Đúng||Sai

    b) Đường ONSA cắt nhau. Sai||Đúng

    c) GK//ON. Đúng||Sai

    d) Tỉ số \frac{GM}{GN} = 3. Sai||Đúng

    Hình vẽ minh họa

    a) Xét tứ giác AMDC\left\{ \begin{matrix}
AM//DC \\
AM = DC( = AB) \\
\end{matrix} ight..

    Suy ra tứ giác AMDC là hình bình hành

    Nên MD//AC. Vậy khẳng định a đúng

    b) Vì O là trung điểm AC,N là trung điểm SC nên ON\ //\ SA (tính chất đường trung bình).

    Vậy khẳng định b sai.

    c) \left\{ \begin{matrix}
ON\ //\ SA \\
ON \subset (OMN) \\
SA \subset (SAD) \\
(OMN) \cap (SAD) = GK \\
\end{matrix} ight.\  \Rightarrow GK//ON//SA

    Vậy khẳng định c đúng.

    d) Áp dụng định lí Talet choGK\ //\
ON, ta có:

    \frac{GM}{GN} = \frac{KM}{KO} (1)

    Gọi I là trung điểm của AB, vì O là trung điểm của BD nên theo tính chất đường trung

    bình, OI\ //\ AD, vậy theo định lí Talet:

    \frac{KM}{KO} = \frac{AM}{AI} =
\frac{AB}{AI} = 2. (2)

    Từ (1) và (2), ta có \frac{GM}{GN} =
2.

    Vậy khẳng định d sai.

  • Câu 45: Thông hiểu

    Cho ba mặt phẳng phân biệt \left( \alpha ight),\;{m{ }}\left( \beta ight),{m{ }}\;\left( \gamma ight)\left( \alpha ight) \cap \left( \beta ight) = {d_1}; \left( \beta ight) \cap \left( \gamma ight) = {d_2}; \left( \alpha ight) \cap \left( \gamma ight) = {d_3}. Khi đó ba đường thẳng {d_1},\;{d_2},\;{d_3}:

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song. 

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo