Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Cho hình chóp tứ giác
. Giao tuyến của hai mặt phẳng
và
là:
Hai mặt phẳng và
có hai điểm chung là
và
nên giao tuyến của chúng là đường thẳng
.
Trong các dãy số sau, dãy số nào là cấp số nhân?
Xét dãy số
Ta có: => Dãy số là cấp số nhân
Cho công thức
biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với
là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.
Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số đạt giá trị lớn nhất.
Khi đó .
Vì nên ta có
.
Do đó (tháng đầu tiên của năm)
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của hai tam giác
và
lần lượt là trung điểm của
và
. Khi đó:
a)
. Đúng||Sai
b)
. Đúng||Sai
c)
song song với mặt phẳng
. Đúng||Sai
d)
cắt mặt phẳng
. Sai||Đúng
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của hai tam giác
và
lần lượt là trung điểm của
và
. Khi đó:
a) . Đúng||Sai
b) . Đúng||Sai
c) song song với mặt phẳng
. Đúng||Sai
d) cắt mặt phẳng
. Sai||Đúng
Hình vẽ minh họa
a) Đúng.
Do lần lượt là trọng tâm của tam giác
và
nên
.
b) Đúng.
Do lần lượt là trọng tâm của tam giác
và
nên
Mà
c) Đúng.
Vì .
Vì là đường trung bình của hình bình hành
nên
d) Sai.
Ta có: mà
.
Cho các số thực
thỏa mãn
và
. Tính giá trị biểu thức
.
Ta có:
Khi và chỉ khi: .
Kết hợp với
Khi đó và
(vì
Vậy nên
.
Tính
.
Ta có:
Do đó
Cho phương trình
. Tìm số nguyên dương n bé nhất để phương trình có nghiệm.
Điều kiện xác định
Nếu n là số lẻ thì
Nếu n là số chẵn và x là nghiệm thì -x cũng là nghiệm của phương trình
Vì không là nghiệm nên ta xét phương trình với
(do
nên dấu bằng không xảy ra)
Hơn nữa
Do đó phương trình không có nghiệm với
Khi ta có phương trình
Giả sử khi đó
liên tục trên
.
Ta có:
=> có nghiệm
Vậy .
Trong các mệnh đề sau, mệnh đề nào đúng?
Theo tính chất của phép chiếu song song ta có:
Phép chiếu song song có thể biến hình thoi thành hình bình hành.
Cho dãy số (un) xác định bởi
.
Số hạng thứ 2020 của dãy số đã cho là?
Do 0 < α < π nên
Vậy với mọi n ∈ ℕ*. Ta sẽ chứng minh bằng quy nạp.
Với n = 1 thì u1 = cosα (đúng).
Giả sử với n = k ∈ ℕ* ta có .
Ta chứng minh
Thật vậy,
Từ đó ta có
Cho tứ diện
. Gọi
lần lượt là trung điểm các cạnh
và
;
là trọng tâm tam giác
. Khi đó giao điểm của đường thẳng
và
là
Hình vẽ minh họa
Trong gọi
, mà
Một chiếc đồng hồ đánh chuông, kể từ thời điểm 0 (giờ) thì sau mỗi giờ thì số tiếng chuông được đánh đúng bằng số giờ mà đồng hồ chỉ tại thời điểm đánh chuông. Hỏi một ngày đồng hồ đó đánh bao nhiêu tiếng chuông?
Kể từ lúc 1 (giờ) đến 24 (giời) số tiếng chuông được đánh lập thành cấp số cộng có 24 số hạng với , công sai
.
=> Số tiếng chuông được đánh trong 1 ngày là:
Tìm chu kì T của hàm số ![]()
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
Suy ra hàm số tuần hoàn với chu kì
Cho một cấp số cộng
có
. Tìm
?
Theo bài ra ta có:
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với phương trình
. Sai||Đúng
b) Trong khoảng
phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng
phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên
bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Sai||Đúng
b) Trong khoảng phương trình có 3 nghiệm. Sai||Đúng
c) Trong khoảng phương trình có 1 nghiệm nguyên. Đúng||Sai
d) Tổng các nghiệm của phương trình trên bằng
. Đúng||Sai
Phương trình
Vì nên:
Với ta chỉ chọn được
.
Với ta chỉ chọn được
.
Vậy tổng các nghiệm bằng .
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Cho phương trình
có nghiệm là:
Giải phương trình như sau:
Vì
vậy phương trình lượng giác đã cho vô nghiệm.
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Tính giới hạn ![]()
Ta có:
Dãy số
là cấp số nhân với
Cấp số nhân
Tập nghiệm của phương trình
là?
Ta có:
Có bao nhiêu giá trị nguyên của tham số m để hàm số
liên tục trên
?
Ta có:
Hàm số liên tục trên các khoảng
. Khi đó hàm số đã cho liên tục trên
khi và chỉ khi nó liên tục tại
, tức là ta cần có:
Ta lại có:
Khi đó không thỏa mãn với mọi
Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.
bằng
Ta có:
Dãy số (un) được cho bởi
. Hãy tìm khẳng định sai trong các khẳng định sau.
...
Áp dụng phương pháp quy nạp ta có un = 2n − 1.
Chọn câu đúng:
"Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song với nhau" đúng.
Hai đường thẳng cùng song song với một mặt phẳng thì có thể cắt nhau, song song, trùng nhau hoặc chéo nhau => "Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau." sai.
Hai mặt phẳng không cắt nhau thì song song hoặc trùng nhau => "Hai mặt phẳng không cắt nhau thì song song" sai.
Hai mặt phẳng không song song thì trùng nhau hoặc cắt nhau => "Hai mặt phẳng không song song thì trùng nhau" sai.
Giá trị của giới hạn
là:
Ta có:
Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác
là:
Góc lượng giác chiếm
đường tròn
=> Số đo là: .
Tìm tất cả các giá trị nguyên của a thuộc (0; 2018) để![\lim\sqrt[4]{\dfrac{4^{n} + 2^{n + 1}}{3^{n} + 4^{n+ a}}} \leq \dfrac{1}{1024}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Mà
Vậy có tất cả 2008 giá trị nguyên của a thỏa mãn điều kiện đề bài.
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Cho cấp số cộng (Un) có số hạng tổng quát là
. Xác định công sai của cấp số cộng.
Ta có:
Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

Ta có:
=> Loại đáp án và
Tại x = 0 => y = 1 ta thấy thỏa mãn
Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là:
Ta có:
Hàm số liên tục trên
Điều kiện cần và đủ để hàm số liên tục trên là:
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn thỏa mãn:
Ta có:
Suy ra .
Cho hai đường thẳng song song
và
. Có bao nhiêu mặt phẳng chứa
và song song với
?
Có vô số mặt phẳng chứa và song song với
(đó là tất cả các mặt phẳng chứa
nhưng không chứa
).
Trong các phát biểu sau, phát biểu nào là sai?
Ta lấy một phản ví dụ:
Dãy số (un) với là cấp số cộng có công sai d = 1 > 0
Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AC và BC. Trên đoạn BD lấy P sao cho PB = 2PD. Khi đó giao điểm của đường thẳng CD với (MNP) là:
Hình vẽ minh họa
Trong tam giác , gọi
Khi đó .
Vậy giao điểm của đường thẳng với
là giao điểm của
và
.
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Hình biểu diễn của một hình thoi là hình nào sau đây?
Hình biểu diễn của một hình thoi là hình bình hành.
Cho hình chóp
có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Sai||Đúng
Cho hình chóp có đáy là hình chữ nhật. Mặt phẳng
cắt các cạnh
,
,
,
lần lượt tại
,
,
,
. Gọi
là giao điểm của
và
. Các mệnh đề sau đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Sai||Đúng
Hình vẽ minh họa
Ta có:
Do
.
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Sai |
Hàm số
tuần hoàn có chu kì
khi
Hàm số có nghĩa
.
Chu kì của hàm số .
Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo
.
Độ dài cung tròn là:
Cho cấp số nhân
thỏa mãn
. Tính
?
Đáp án: 4
Cho cấp số nhân thỏa mãn
. Tính
?
Đáp án: 4
Giả sử cấp số nhân có công bội là , khi đó theo bài ra ta có:
do
Ta có:
Cho hình vẽ:

Trên đường tròn lượng giác, số đo của góc lượng giác
là:
Từ hình vẽ ta có:
Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.
Khẳng định nào sau đây đúng với mọi n nguyên dương?
Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n
Từ đó 2Sn = − 1 − 3 − 32 − … − 3n − 1 + n.3n
Cho hình chóp
có đáy
là hình thang (AB // CD). Gọi G là trọng tâm tam giác SAB, các điểm
lần lượt là trung điểm của
. Biết các giao tuyến của hình chóp và mặt phẳng
tạo thành một hình bình hành. Khi đó tìm mối liên hệ độ dài của
và
.
Hình vẽ minh họa
Theo giả thiết bài toán ta suy ra được:
Xét hai mặt phẳng (IGJ), (SAB) có G là điểm chung nên giao tuyến của chúng là đường thẳng EF qua G,
Nối các đoạn thẳng EI, FJ ta được hình tạo bởi giao tuyến của mặt phẳng (IGJ) và các mặt hình chóp là tứ giác EFJI, tứ giác này là hình thang vì EF // IJ.
Vì G là trọng tâm của tam giác SAB và EF // AB nên theo định lý Tha-lét ta có:
Nên để EFJI là hình bình hành ta cần
Trong các giới hạn dưới đây, giới hạn nào không tồn tại?
Ta có:
không xác định.