Tìm giá trị thực của tham số m để phương trình
nhận
làm nghiệm
Phương trình nhận làm nghiệm
vậy m = -4
Tìm giá trị thực của tham số m để phương trình
nhận
làm nghiệm
Phương trình nhận làm nghiệm
vậy m = -4
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số
liên tục trên khoảng
. Đúng||Sai
b) Biết rằng
khi đó
Đúng||Sai
c)
Sai||Đúng
d) Phương trình
có nghiệm thuộc khoảng
và
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Hàm số liên tục trên khoảng
. Đúng||Sai
b) Biết rằng khi đó
Đúng||Sai
c) Sai||Đúng
d) Phương trình có nghiệm thuộc khoảng
và
Sai||Đúng
a) Hàm số có nghĩa khi
Vậy theo định lí ta có hàm số liên tục trên khoảng
.
b) Ta có:
Khi đó: .
Theo bài ra ta có:
c) Ta có:
s
d) Xét hàm số có tập xác định
Suy ra hàm số cũng liên tục trên các khoảng
và
.
Ta có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Lại có:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng .
Qua phép chiếu song song, tính chất nào không được bảo toàn?
Do hai đường thẳng qua phép chiếu song song ảnh của chúng sẽ cùng thuộc một mặt phẳng.
Suy ra tính chất chéo nhau không được bảo toàn.
Cho hình chóp
có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a)
. Đúng||Sai
b) Đường
và
cắt nhau. Sai||Đúng
c)
. Đúng||Sai
d) Tỉ số
. Sai||Đúng
Cho hình chóp có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a) . Đúng||Sai
b) Đường và
cắt nhau. Sai||Đúng
c) . Đúng||Sai
d) Tỉ số . Sai||Đúng
Hình vẽ minh họa
a) Xét tứ giác có
.
Suy ra tứ giác là hình bình hành
Nên . Vậy khẳng định a đúng
b) Vì là trung điểm
,
là trung điểm
nên
(tính chất đường trung bình).
Vậy khẳng định b sai.
c)
Vậy khẳng định c đúng.
d) Áp dụng định lí Talet cho, ta có:
(1)
Gọi là trung điểm của
, vì
là trung điểm của
nên theo tính chất đường trung
bình, , vậy theo định lí Talet:
. (2)
Từ (1) và (2), ta có .
Vậy khẳng định d sai.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho dãy (un) xác định bởi
và un = un − 1 + 2n với mọi n ≥ 2. Số hạng u50 bằng?
Ta có
Cộng vế với vế các đẳng thức trên, ta được:
.
Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?
Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai
Tổng số ghế là
Tìm
để
theo thứ tự đó lập thành một cấp số nhân.
Cấp số nhân theo thứ tự là
ta có:
Khẳng định nào sau đây là đúng?
Khẳng định đúng: "Hình biểu diễn của một đường tròn là một đường elip."
Cho tứ diện ABCD có M, N là hai điểm phân biệt trên cạnh AB. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Giả sử CM và DN đồng phẳng.
Khi đó, ta có A, B cùng thuộc mặt phẳng (MNDC)
=> A, B, C, D đồng phẳng, trái giả thiết ABCD là tứ diện.
Vậy CM và DN chéo nhau.
Cho hai số thực
thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Cho hai số thực thỏa mãn
. Tính giá trị biểu thức
. (Kết quả ghi dưới dạng số thập phân).
Đáp án: 1,25
Vì là 1 số hữu hạn và
nên
hay
.
Khi đó:
suy ra
.
Vậy .
Cho cấp số nhân
với số hạng đầu
và công bội
. Với
, khẳng định nào sau đây đúng?
Do là cấp số nhân nên
.
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
là trung điểm của cạnh
. Mặt phẳng
chứa
và song song với
cắt các cạnh
lần lượt tại
. Tìm khẳng định đúng dưới dây?
Hình vẽ minh họa:
Ta có: là giao điểm của AI và SO, kẻ đường thẳng qua E song song với BD và cắt SB, SD lần lượt tại M và N. Khi đó:
Dễ thấy E là trọng tâm tam giác SAC nên
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Trong các dãy số sau dãy số nào là cấp số cộng?
Ta có:
=> Dãy số là cấp số cộng.
Khách hàng A gửi 60 triệu đồng vào ngân hàng với kì hạn 1 tháng với lãi suất của loại kì hạn này là
. Ngân hàng đó quy định: “Khi kết thúc kỳ hạn gửi tiền mà người gửi không đến rút tiền thì toàn bộ số tiền (bao gồm cả vốn và lãi) sẽ được chuyển gửi tiếp với kỳ hạn như kỳ hạn mà người gửi đã gửi”. Hỏi nếu sau hai năm, kể từ ngày gửi người đó đến ngân hàng để rút tiền thì số tiền rút được (gồm cả vốn và lãi) là bao nhiêu?
Với số nguyên dương , kí hiệu
là số tiền người đó rút được (gồm cả vốn và lãi) sau
tháng kể từ ngày gửi. khi đó, theo giả thiết của bài toán ta có:
Ta có: là một cấp số nhân với số hạng đầu
với công bội
nên
Số tiền rút được sau 2 năm là:
(đồng)
Cho hình chóp
có đáy là tứ giác
. Giả sử
là một mặt phẳng tùy ý. Giao tuyến của
với các mặt của hình chóp
không thể tạo thành hình nào dưới đây?
Hình chóp tứ giác đã cho có 5 mặt
Do đó có tối đa 5 giao tuyến được tạo thành bởi mặt phẳng tùy ý với các mặt của hình chóp
.
Vậy đáp án là hình lục giác.
Biết
với
. Tập nghiệm của phương trình
trên
có số phần tử là:
Ta có:
Theo đề I tồn tại hữu hạn nên phương trình phải có nghiệm kép
. Tức là:
Khi thì
Do đó nên phương trình
vô nghiệm.
Tính giới hạn ![]()
Ta có:
Đổi số đo
sang số đo theo đơn vị là radian.
Ta có:
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng
khi đó
Đúng||Sai
b) Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c)
Sai||Đúng
d) Cho hàm số
xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Biết rằng khi đó
Đúng||Sai
b) Cho hàm số liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là
. Sai||Đúng
c) Sai||Đúng
d) Cho hàm số xác định với mọi
thỏa mãn
. Khi đó
Sai||Đúng
a) Ta có:
b) Ta có:
Điều kiện cần và đủ để hàm số liên tục trên là
c)
d) Ta có:
Từ (*) và (**) ta có:
Do đó:
Cho hàm số
. Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?
Tập xác định:
Hàm số tuần hoàn với chu kì
, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên
Dựa vào kết quả khảo sát sự biến thiên của hàm số phần lí thuyết ta có thể suy ra với hàm số
đồng biến trên khoảng
và
.
Giá trị của
bằng:
Ta có:
Trong các dãy số sau, dãy số nào là cấp số nhân?
Dãy số 1, 2, 4, 8, 16 tuân theo quy luật
=> Dãy số đó là cấp số nhân
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Cho hàm số
. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Số điểm gián đoạn của hàm số
là:
Đáp án: 1
Số điểm gián đoạn của hàm số là:
Đáp án: 1
Hàm số có TXĐ
.
Hàm số liên tục trên mỗi khoảng
,
và
.
(i) Xét tại , ta có
Hàm số liên tục tại
.
(ii) Xét tại , ta có
Hàm số
gián đoạn tại
.
Vậy số điểm gián đoạn cần tìm là 1.
Khẳng định nào sau đây là đúng khi nói về
đường tròn lượng giác
?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Cho hình chóp
có đáy
là hình thang (AB // CD). Gọi G là trọng tâm tam giác SAB, các điểm
lần lượt là trung điểm của
. Biết các giao tuyến của hình chóp và mặt phẳng
tạo thành một hình bình hành. Khi đó tìm mối liên hệ độ dài của
và
.
Hình vẽ minh họa
Theo giả thiết bài toán ta suy ra được:
Xét hai mặt phẳng (IGJ), (SAB) có G là điểm chung nên giao tuyến của chúng là đường thẳng EF qua G,
Nối các đoạn thẳng EI, FJ ta được hình tạo bởi giao tuyến của mặt phẳng (IGJ) và các mặt hình chóp là tứ giác EFJI, tứ giác này là hình thang vì EF // IJ.
Vì G là trọng tâm của tam giác SAB và EF // AB nên theo định lý Tha-lét ta có:
Nên để EFJI là hình bình hành ta cần
Cho hình chóp
. Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Cho hình chóp . Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Hình vẽ minh họa
Xét và
ta có:
là điểm chung thứ nhất.
Gọi
Có là điểm chung thứ hai.
Gọi . Ta có:
Thiết diện là tứ giác .
Vậy thiết diện là đa giác có 4 cạnh.
Tổng các nghiệm của phương trình
trên đoạn
bằng:
Phương trình tương đương với
Vì nên k = 0
Khi đó phương trình trở thành
Vì nên
=> Tổng các nghiệm của phương trình là:
Cho cấp số cộng
. Xác định
biết rằng
?
Ta có:
Khi đó:
Suy ra
Cho góc lượng giác
thỏa mãn
và
. Tính ![]()
Ta có:
Từ hệ thức
Do nên
Thay vào biểu thức ta được:
Cho hình chóp
, đáy là hình bình hành. Gọi
là giao điểm của
và
,
là trung điểm
. Khằng định nào sau đây là đúng?
Hình vẽ minh họa
Ta có là đường trung bình tam giác
nên
, mà
và
suy ra
.
Cho dãy số (un) có u1 = 7; un + 1 = 2un + 3. Khi đó u3 bằng?
Ta có u3 = 2u2 + 3 = 2 ⋅ (2u1+3) + 3 = 4u1 + 9 − 4 ⋅ 7 + 9 = 37.
Tập nghiệm của phương trình
là?
Ta có:
Hàm số
liên tục trên:
Điều kiện
Tập xác định
=> Hàm số liên tục trên
Cho đường thẳng a thuộc mặt phẳng (Q), khi đó mệnh đề nào sau đây sai?
Mệnh đề sai: "".
Phương trình
có hai họ nghiệm có dạng
và
,
. Khi đó, tính
?
Ta có .
.
Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.
Ta sẽ chứng minh bằng quy nạp − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Với n = 1 ta có − 2 ≤ u1 ≤ 1 (đúng).
Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là − 2 ≤ uk ≤ 1
Theo nguyên lí quy nạp ta đã chứng minh được − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Vậy (un) là dãy số bị chặn.
Hàm số nào sau đây không liên tục trên
?
Hàm số không xác định tại
nên không liên tục tại
.
Do đó không liên tục trên .
Trong hình học không gian
Qua ba điểm phân biệt không thẳng hàng xác định một và chỉ một mặt phẳng. Nếu ba điểm phân biệt thẳng hàng thì có vô số mặt phẳng chứa ba điểm.
Chọn khẳng định đúng?
Tìm chu kì T của hàm số ![]()
Hàm số y = sin(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Một tam giác vuông có chu vi bằng 3 và độ dài các cạnh lập thành một cấp số cộng. Độ dài các cạnh của tam giác đó là:
Ba cạnh của một tam giác theo thứ tự là với
lập thành một cấp số cộng nên
Ta có: