Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 2: Nhận biết

    Điểm cuối của góc lượng giác a ở góc phần tư thứ mấy nếu \sin\alpha;cos\alpha cùng dấu?

    Điểm cuối của góc lượng giác a ở góc phần tư thứ I hoặc thứ III thì \sin\alpha;cos\alpha cùng dấu

  • Câu 3: Nhận biết

    Cho dãy số \left(
u_{n} ight) biết \left\{\begin{matrix}u_{1} = 3 \\u_{n + 1} = \dfrac{u_{n}}{2} + 2 \\\end{matrix} ight.. Mệnh đề nào sau đây sai?

    Ta có:

    u_{2} = \frac{u_{1}}{2} + 2 =
\frac{3}{2} + 2 = \frac{7}{2}

    u_{3} = \frac{u_{3}}{2} + 2 =
\frac{7}{4} + 2 = \frac{15}{4}

    u_{4} = \frac{u_{3}}{2} + 2 =
\frac{15}{8} + 2 = \frac{31}{8}

    u_{5} = \frac{u_{4}}{2} + 2 =
\frac{31}{16} + 2 = \frac{63}{16}

  • Câu 4: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Ta có: \lim_{t ightarrow 10}\frac{g(t)
- g(10)}{t - 10} = \lim_{t ightarrow 10}\frac{45t^{2} - t^{3} - 45
\cdot 10^{2} + 10^{3}}{t - 10}

    \begin{matrix}= \lim_{t ightarrow 10}\dfrac{45(t - 10)(t + 10) - (t - 10)\left( t^{2}+ 10t + 100 ight)}{t - 10}  \\\end{matrix}

    = \lim_{t ightarrow 10}\left( - t^{2} + 35t + 350 ight) = 600

    Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm t = 10 (ngày) là 600 người/ngày.

  • Câu 5: Thông hiểu

    Đổi số đo của góc - \frac{3\pi}{16}rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \dfrac{\dfrac{-3\pi}{16}.180}{\pi} ight)^{0} = \left( - \dfrac{135}{4} ight)^{0} = -33^{0}45'

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm (shift -3π ÷16) shift DRG 2 =

  • Câu 6: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{7} = 26 \\
{u_{2}}^{2} + {u_{6}}^{2} = 466 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 6d = 26 \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 13 - 3d \\
\left( u_{1} + d ight)^{2} + \left( u_{1} + 5d ight)^{2} = 466 \\
\end{matrix} ight.

    Khi đó:

    \Rightarrow (13 - 2d)^{2} + (13 +
2d)^{2} = 466

    \Rightarrow \left\lbrack \begin{matrix}
d = 4 \Rightarrow u_{1} = 1 \\
d = - 4 \Rightarrow u_{1} = 25 \\
\end{matrix} ight.

  • Câu 7: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có cấp số nhân (un) nên khi đó:

    \begin{matrix}\left\{ {\begin{array}{*{20}{c}}  {{u_m} = 16} \\   {{u_{m + 1}} = 36} \end{array}} ight. \Leftrightarrow \dfrac{{{u_{m + 1}}}}{{{u_m}}} = \dfrac{{36}}{{16}} = \dfrac{9}{4} \Rightarrow q = \dfrac{9}{4} \hfill \\   \Rightarrow {u_{m + 2}} = {u_{m + 1}}.q = 36.\dfrac{9}{4} = 81 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Khẳng định nào dưới đây đúng?

    Ta có: \pi rad tương ứng với 180^{0}

    => 1rad ightarrow x^{0}

    \Rightarrow x^{0} = \frac{180.1}{\pi} =\frac{180}{\pi}

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm AD và BC (xem hình vẽ bên). Giao tuyến của hai mặt phẳng (SMN) và (SAC) là

    Giao tuyến của hai mặt phẳng (SMN) và (SAC)

    Ta có: S là điểm chung thứ nhất giữa hai mặt phẳng (SMN) và (SAC).

    Ta có O = AC ∩ BD là tâm của hình hình hành

    => O = AC ∩ MN (do M, N lần lượt là trung điểm của AD và BC).

    Trong mặt phẳng (ABCD), ta có:

    \left\{ {\begin{array}{*{20}{l}}{O \in AC \subset \left( {SAC} ight) \Rightarrow O \in \left( {SAC} ight)} \\{O \in MN \subset \left( {SMN} ight) \Rightarrow O \in \left( {SMN} ight)}\end{array}} ight.

    => O là điểm chung thứ hai giữa hai mặt phẳng (SMN) và (SAC).

    Vậy (SMN) ∩ (SAC) = SO

  • Câu 10: Vận dụng

    Xác định chu kì T của hàm số y = 3\cos(2x+ 1) - 2\sin\left( \dfrac{x}{2} - 3 ight)

    Hàm số y = 3\cos(2x + 1) tuần hoàn với chu kì T_{1} = \pi

    Hàm số y = - 2\sin\left( \frac{x}{2} - 3ight) tuần hoàn với chu kì T_{2}
= 4\pi

    Suy ra hàm số y = 3\cos(2x + 1) -2\sin\left( \frac{x}{2} - 3 ight) tuần hoàn với chu kì T = 4\pi

  • Câu 11: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản \frac{a}{b}. Tính tổng Q = a - b.

    Ta có:

    \begin{matrix}
  5,231231... = 5 + 0,231 + 0,000231 + ... \hfill \\
   = 5 + \dfrac{{231}}{{{{10}^3}}} + \dfrac{{231}}{{{{10}^6}}} + ... \hfill \\ 
\end{matrix}

    Dãy số \frac{231}{10^{3}};\frac{231}{10^{6}};... là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = \frac{231}{10^{3}}, công sai là q = 10^{- 3}

    \begin{matrix}
   \Rightarrow Q = 5 + \dfrac{{\dfrac{{231}}{{{{10}^3}}}}}{{1 - \dfrac{1}{{{{10}^{ - 3}}}}}} = 5 + \dfrac{{231}}{{999}} = \dfrac{{1742}}{{333}} \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {a = 1742} \\ 
  {b = 333} 
\end{array}} ight. \Rightarrow Q = 1409 \hfill \\ 
\end{matrix}

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có các cạnh bên bằng nhau, đáy ABCD là hình vuông cạnh bằng 10cm. Lấy M \in SA sao cho 3SM = 2SA. Giả sử mặt phẳng (\gamma) là mặt phẳng đi qua điểm M và song song với AB,AC. Các giao tuyến của (\gamma) với các mặt của hình chóp tạo thành một tứ giác. Diện tích tứ giác đó là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (\gamma) \\
(\gamma)//(ABCD) \\
\end{matrix} ight.. Gọi N,P,Q lần lượt là các giao điểm của (\gamma) với SB,SC,SD thì \left\{ \begin{matrix}
MN//AB \\
NP//BC \\
NP//BC \\
\end{matrix} ight..

    Do đó MNPQ là hình vuông và \frac{MN}{AB} = \frac{SM}{SA} =
\frac{2}{3}

    Vậy diện tích tứ giác là S =
\frac{400}{9}cm^{2}.

  • Câu 13: Thông hiểu

    \lim\sqrt{4-\frac{\cos2n}{n}} bằng số nào sau đây?

    Ta có: 0 \leqslant \left| {\frac{{\cos 2n}}{n}} ight| \leqslant \frac{1}{n} \to 0

    \Rightarrow \lim \sqrt {4 - \frac{{\cos 2n}}{n}}  = 2

  • Câu 14: Thông hiểu

    Cho dãy số có các số hạng đầu là 0,1; 0,001;0,0001; ... Số hạng tổng quát của dãy số có dạng?

    Ta có:

    Số hạng thứ 1 có 1 chữ số 0;

    Số hạng thứ 2 có 2 chữ số 0;

    Số hạng thứ 3 có 3 chữ số 0;

    Suy ra có chữ số 0.

    Công thức số hạng tổng quát của dãy số là: u_n=\underbrace{0,00...01}_{\text{n chữ số 0}}

  • Câu 15: Nhận biết

    Trong các dãy số sau dãy số nào là cấp số cộng?

    Ta có:

    u_{n + 1} - u_{n}

    = \left\lbrack 4 + 3(n + 1)
ightbrack - (4 + 3n)

    = 3

    => Dãy số \left( u_{n} ight):u_{n} =
4 + 3n là cấp số cộng.

  • Câu 16: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (\alpha) song song với ACSB đồng thời cắt các đoạn SA,AB,BC,SC,SD,BD lần lượt tại M,N,E,F,I,J. Ta có các khẳng định sau:

    (i):IJ//AB

    (ii):MF//AC

    (iii): Tứ giác MNEF là hình bình hành.

    Có bao nhiêu khẳng định đúng?

    Hình vẽ minh họa

    Xét (\alpha) \equiv (MNEFI)

    (\alpha)//AC \Rightarrow
MF//AC

    (\alpha)//SB \Rightarrow
IJ//SB

    (\alpha)//SB nên MN,EF đều song song với SB điều này suy ra MNEF là hình bình hành.

    Vậy tất cả các khẳng định đều đúng.

  • Câu 17: Thông hiểu

    Cho hình chóp S.ABCD. Gọi A′,B′,C′,D′lần lượt là trung điểm của các cạnh SA,SB,SCSD. Trong các đường thẳng sau đây, đường thẳng nào không song song với A'B'?

    Hình vẽ minh họa

    Tìm đường thẳng không song song với A'B'

    Ta có: A′,B′,C′,D′ lần lượt là trung điểm của các cạnh SA,SB,SC,SD

    => A'B', B'C', C'D', A'D' lần lượt là đường trung bình của tam giác SAB, SBC, SCD, SAD.

    ABCD là hình bình hành

    => \left\{ \begin{gathered}  AB//A\prime B\prime  \hfill \\  CD//A\prime B\prime  \hfill \\  C'D'//A\prime B\prime  \hfill \\ \end{gathered}  ight.

    Vậy SC không song song với A'B'.

  • Câu 18: Nhận biết

    Dãy số u_{n} = 2^{n} là cấp số nhân với

    Cấp số nhân 1;2;4;8;16;32;...

    \Rightarrow \left\{ \begin{matrix}u_{1} = 1 \\q = \dfrac{u_{2}}{u_{1}} = 2 \\\end{matrix} ight.

  • Câu 19: Thông hiểu

    Nghiệm của phương trình \sin x = \frac{\sqrt{2}}{2} được biểu diễn trên đường tròn lượng giác ở hình bên là những điểm nào?

    Ta có:

    \sin x = \frac{\sqrt{2}}{2}

    \Rightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{4} + k2\pi \\x = \dfrac{3\pi}{4} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy điểm biểu diễn nghiệm phương trình là điểm A, điểm B.

  • Câu 20: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hai đường thẳng không có điểm chung thì chúng có thể song song với nhau (khi chúng đồng phẳng) hoặc chéo nhau (khi chúng không đồng phẳng).

    Vậy mệnh đề sai: "Hai đường thẳng không có điểm chung thì chéo nhau."

  • Câu 21: Nhận biết

    Trong không gian cho hai mặt phẳng (P)(Q) song song. Số giao điểm chung của hai mặt phẳng (P)(Q)

    Theo định nghĩa hai mặt phẳng song song.

    Đáp án cần tìm là: 0

  • Câu 22: Nhận biết

    Cho hai đường thẳng song song ab. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Có vô số mặt phẳng chứa a và song song với b (đó là tất cả các mặt phẳng chứa a nhưng không chứa b).

  • Câu 23: Vận dụng

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 2\left( u_{3} +
u_{4} + u_{5} ight) = u_{6} + u_{7} + u_{8}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}?

    Đáp án: 4

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) thỏa mãn 2\left( u_{3} +
u_{4} + u_{5} ight) = u_{6} + u_{7} + u_{8}. Tính \frac{u_{8} + u_{9} + u_{10}}{u_{2} + u_{3} +
u_{4}}?

    Đáp án: 4

    Giả sử cấp số nhân có công bội là q, khi đó theo bài ra ta có:

    2\left( u_{3} + u_{4} + u_{5} ight) =u_{6} + u_{7} + u_{8}

    \Leftrightarrow 2\left( u_{3} + u_{3}q +u_{3}q^{2} ight) = u_{6} + u_{6}q + u_{6}q^{2}

    \Leftrightarrow 2u_{3}\left( 1 + q +
q^{2} ight) = u_{6}\left( 1 + q + q^{2} ight)

    \Leftrightarrow 2u_{3} = u_{6} do \ 1 + q + q^{2} > 0

    \Leftrightarrow 2u_{3} = u_{3}q^{3}
\Leftrightarrow u_{3}\left( 2 - q^{3} ight) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
u_{3} = 0 \\
q = \sqrt[3]{2} \\
\end{matrix} ight.

    Ta có:

    \frac{u_{8} + u_{9} + u_{10}}{u_{2} +
u_{3} + u_{4}} = \frac{u_{8} + u_{8}q + u_{8}q^{2}}{u_{2} + u_{2}q +
u_{2}q^{2}}= \frac{u_{8}\left( 1 + q + q^{2}
ight)}{u_{2}\left( 1 + q + q^{2} ight)} = \frac{u_{2}q^{6}}{u_{2}} =
q^{6} = 4

  • Câu 24: Vận dụng cao

    Trong các dãy số sau dãy số nào bị chặn?

    Xét dãy (an)a_{n} = \sqrt{n^{3} + n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (an) bị chặn dưới.

    Xét dãy (bn)b_{n} = n^{2} + \frac{1}{2n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (bn) bị chặn dưới.

    Xét dãy (cn)cn = (−2)n + 3, ∀n ∈ ℕ* nên dãy số (cn) không bị chặn.

    Xét dãy (dn)d_{n} = \frac{3n}{n^{2} + 2},\forall n \in
\mathbb{N}^{*}.

    Ta có

    n^3-3n+2=(n-1)^2 (n+2)≥0,∀n∈N^*

    ⇒n^3+2≥3n⇒0<3n/(n^2+2)≤1

    ⇒(d_n ) bị chặn.

  • Câu 25: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào sai?

    Ta có:

    \lim_{x ightarrow + \infty}\dfrac{3x +2}{x - 1} = \lim_{x ightarrow + \infty}\dfrac{3 + \dfrac{2}{x}}{1 -\dfrac{1}{x}} = \dfrac{3 + 0}{1 - 0} = 3

  • Câu 26: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 27: Thông hiểu

    Xác định hàm số chẵn trong các hàm số dưới đây?

    Ta có:

    Hàm số y = \sin x.cos3x có tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow -}x\mathbb{\in
R}

    y( - x) = \sin( - x).\cos( -3x) = - \sin x.\cos3x = - y(x)

    Suy ra hàm số y = \sin x.\cos3x là hàm số lẻ.

    Hàm số y = \cos2x là hàm số chẵn vì tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow
-}x\mathbb{\in R}

    y( - x) = \cos( - 2x) = cos2x =
y(x)

    Tương tự ta có hàm số y = \sin x là hàm số lẻ, hàm số y = \sin x + \cos
x không chẵn cũng không lẻ.

  • Câu 28: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi G là trọng tâm tam giác SAB, các điểm I;Jlần lượt là trung điểm của AD,BC. Biết các giao tuyến của hình chóp và mặt phẳng (IGJ)tạo thành một hình bình hành. Khi đó tìm mối liên hệ độ dài của ABCD.

    Hình vẽ minh họa

    Theo giả thiết bài toán ta suy ra được: \left\{ \begin{matrix}IJ//AB//CD \\JI = \dfrac{AB + CD}{2} \\\end{matrix} ight.

    Xét hai mặt phẳng (IGJ), (SAB) có G là điểm chung nên giao tuyến của chúng là đường thẳng EF qua G, EF//AB//CD//IJ\ ;(E \in SA,\ F \in
SB)

    Nối các đoạn thẳng EI, FJ ta được hình tạo bởi giao tuyến của mặt phẳng (IGJ) và các mặt hình chóp là tứ giác EFJI, tứ giác này là hình thang vì EF // IJ.

    Vì G là trọng tâm của tam giác SAB và EF // AB nên theo định lý Tha-lét ta có: EF =
\frac{2}{3}AB

    Nên để EFJI là hình bình hành ta cần

    EF = IJ \Rightarrow \frac{AB + CD}{2} =
\frac{2AB}{3}

    \Leftrightarrow AB = 3CD

  • Câu 29: Thông hiểu

    Xác định \lim_{x
ightarrow - 2}\frac{x + 1}{(x + 2)^{2}}.

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - 2} \left( {x + 1} ight) =  - 1 < 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - 2} {\left( {x + 2} ight)^2} = 0 \hfill \\
  {\left( {x + 2} ight)^2} > 0,\forall x e  - 2 \hfill \\ 
\end{gathered}  ight. \Rightarrow \mathop {\lim }\limits_{x \to  - 2} \frac{{x + 1}}{{{{\left( {x + 2} ight)}^2}}} =  - \infty

  • Câu 30: Nhận biết

    Phát biểu nào dưới đây sai?

    Ta có phát biểu sai là: \lim_{x
ightarrow + \infty}q^{n} = 0;\left( |q| > 1 ight)

    Sửa lại là: \lim_{x ightarrow +
\infty}q^{n} = 0;\left( |q| < 1 ight)

  • Câu 31: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \cos x=m+1 có nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình \cos x =a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Do đó, phương trình \cos x=m+1 có nghiệm khi và chỉ khi \left| {m + 1} ight| \leqslant 1

    \Leftrightarrow  - 1 \leqslant m + 1 \leqslant 1 \Leftrightarrow  - 2 \leqslant m \leqslant 0\xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ { - 2; - 1;0} ight\}.

  • Câu 32: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn [-10;10] để phương trình \sin \left( {x - \frac{\pi }{3}} ight) - \sqrt 3 \cos \left( {x - \frac{\pi }{3}} ight) = 2m vô nghiệm?

     Phương trình vô nghiệm

    \Leftrightarrow {1^2} + {\left( { - \sqrt 3 } ight)^2} < {\left( {2m} ight)^2} \Leftrightarrow 4{m^2} - 4 > 0 \Leftrightarrow \left[ \begin{gathered}  m <  - 1 \hfill \\  m > 1 \hfill \\ \end{gathered}  ight.

    \xrightarrow[{m \in \left[ { - 10;10} ight]}]{{m \in \mathbb{Z}}}m \in \left\{ { - 10; - 9; - 8;...; - 2;2;...;8;9;10} ight\}

    \xrightarrow{{}} có 18 giá trị.

  • Câu 33: Nhận biết

    Số cạnh của một hình chóp có đáy là một bát giác là:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 34: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Nhắc lại kiến thức cơ bản:

    Hàm số y = \sin x là hàm số lẻ.

    Hàm số y = \cos x là hàm số chẵn.

    Hàm số y = \tan x là hàm số lẻ.

    Hàm số y = \cot x là hàm số lẻ.

  • Câu 35: Nhận biết

    Hàm số y =
\frac{- 5}{x\left( x^{2} - 4 ight)} liên tục tại điểm nào dưới đây?

    Hàm số y = \frac{- 5}{x\left( x^{2} - 4
ight)} có tập xác định D\mathbb{=
R}\backslash\left\{ - 2;0;2 ight\}

    Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định D.

    Khi đó x = 1 \in D suy ra hàm số đã cho liên tục tại điểm x = 1.

  • Câu 36: Thông hiểu

    Cho tứ diện ABCD. LấyM
\in BC sao cho BM = 2MC, G là trọng tâm tam giác ABD. Xác định mặt phẳng song song với đường thẳng MG?

    Hình vẽ minh họa

    Gọi N là trung điểm của AD.

    Xét tam giác BCN ta có:

    \frac{BG}{BN} = \frac{BM}{BC} =
\frac{2}{3}

    \Rightarrow MG//NC \Rightarrow
MG//(ACD)

  • Câu 37: Nhận biết

    Tổng các nghiệm thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) của phương trình: \cos x = \frac{1}{2}

     Giải phương trình:

    \begin{matrix}  \cos x = \dfrac{1}{2} \hfill \\   \Leftrightarrow \cos x = \cos \left( {\dfrac{\pi }{3}} ight) \hfill \\   \Leftrightarrow x =  \pm \dfrac{\pi }{3} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Tổng nghiệm của phương trình bằng 0.

  • Câu 38: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    TXĐ: D\mathbb{= R}

    Ta có:

    f( - 1) = 2a + 4

    \lim_{x ightarrow - 1}f(x) = \lim_{x
ightarrow - 1}\frac{x^{2} - 2x - 3}{x + 1}

    = \lim_{x ightarrow - 1}\frac{(x +
1)(x - 3)}{x + 1} = \lim_{x ightarrow - 1}(x - 3) = - 4

    Để hàm số gián đoạn tại x = - 1 thì \lim_{x ightarrow - 1}f(x) eq
f(1)

    \Leftrightarrow 2a - 4 eq - 4
\Leftrightarrow a eq - 4

    Vậy có 2024 giá trị nguyên của a \in (0;2025) để hàm số gián đoạn tại x = 1

  • Câu 39: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Hình vẽ minh họa

    Ta kẻ MN\ //\ AB\ \ (M \in SA), NP\ //BC\ \ (P \in SC), MQ\ //\ BC\ //\ AD\ \ (Q \in SD).

    Vì mặt phẳng (\alpha) đi qua N, song song với ABAD nên M,\ \
P,\ \ Q đều thuộc (\alpha) và thiết diện của hình chóp cắt bởi mặt phẳng (\alpha) là tứ giác MNPQ.

    Khi đó MN//AB \Rightarrow \frac{SM}{SA} = \frac{MN}{AB} =\frac{2}{3}.

    Tương tự, ta có được \frac{NP}{BC} =
\frac{PQ}{CD} = \frac{QM}{DA} = \frac{2}{3}.

    Suy ra MN = NP = PQ = QM = \frac{2}{3}AB
= \frac{20}{3}MNPQ là hình vuông.

    Suy ra S_{MNPQ} = \left( \frac{20}{3}
ight)^{2} = \frac{400}{9}.

    Khi đó a = 100,b = 9

    Vậy P = a + b + 1 = 110.

  • Câu 40: Thông hiểu

    Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10

    Ta có: {u_{10}} = {u_1} + \left( {10 - 1} ight)d = {u_{10}} =  - 2 + 9.3 = 25

  • Câu 41: Nhận biết

    Cho cấp số nhân có các số hạng lần lượt là 3;9;27;81. Tìm số hạng tổng quát u_{n} của cấp số nhân đã cho.

    Các số hạng lần lượt là 3;9;27;81 lập thành cấp số nhân

    \Rightarrow \left\{ \begin{matrix}u_{1} = 3 \\q = \dfrac{9}{3} = 3 \\\end{matrix} ight.\  \Rightarrow u_{n} = u_{1}.q^{n - 1} = 3.3^{n - 1}= 3^{n}

  • Câu 42: Thông hiểu

    Với giá trị nào của m thì phương trình \cos x + m - 2 = 0 có nghiệm:

     Ta có:

    \begin{matrix}  \cos x + m - 2 = 0 \hfill \\   \Rightarrow \cos x = 2 - m \hfill \\ \end{matrix}

    Do \cos x \in \left[ { - 1;1} ight]

    \begin{matrix}  \Rightarrow  - 1 \leqslant 2 - m \leqslant 1 \hfill \\   \Rightarrow 1 \leqslant m \leqslant 3 \hfill \\ \end{matrix}

    Vậy m \in \left[ {1;3} ight]

  • Câu 43: Vận dụng cao

    Cho hàm số y =f(x) = \left\{ \begin{matrix}\dfrac{x^{2016} + x - 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}}\ \ khi\ xeq 1 \\m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.. Tìm giá trị k để hàm số y = f(x) liên tục tại x = 1

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2016} + x
- 2}{\sqrt{2018x + 1} - \sqrt{x + 2018}}

    = \lim_{x ightarrow 1}\frac{\left(
x^{2016} - 1 + x - 1 ight)\left( \sqrt{2018x + 1} + \sqrt{x + 2018}
ight)}{2018x + 1 - (x + 2018)}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left\lbrack \left( x^{2015} + x^{2014} + ... + 1 ight) + 1
ightbrack\left( \sqrt{2018x + 1} + \sqrt{x + 2018} ight)}{2018(x -
1) - (x - 1)}

    = \lim_{x ightarrow
1}\frac{\left\lbrack \left( x^{2015} + x^{2014} + ... + 1 ight) + 1
ightbrack\left( \sqrt{2018x + 1} + \sqrt{x + 2018}
ight)}{2017}

    = \frac{2017.2\sqrt{2019}}{2017} =
2\sqrt{2019}

  • Câu 44: Thông hiểu

    Một cấp số cộng gồm 5 số hạng. Hiệu số hạng đầu và số hạng cuối bằng 20. Tìm công sai d của cấp số cộng đã cho?

    Gọi năm số hạng của cấp số cộng đã cho là: u_{1}^{};u_{2}^{};u_{3}^{};u_{4}^{};u_{5}^{}.

    Theo đề bài ta có:

    u_{1} - u_{5} = 20

    \Leftrightarrow u_{1} - (u_{1} + 4d) =
20

    \Leftrightarrow d = - 5

    Vậy công sai của cấp số cộng đã cho là d
= - 5

  • Câu 45: Nhận biết

    Nếu các dãy số \left( u_{n}
ight),\left( v_{n} ight) thỏa mãn \lim u_{n} = 4 và \lim v_{n} = 3 thì \lim\left( u_{n} + v_{n} ight) bằng:

    Ta có \lim\left( u_{n} + v_{n} ight) =
\lim u_{n} + \lim v_{n} = 7.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo