Thu gọn biểu thức
thu được kết quả là:
Áp dụng công thức về cung liên kết ta có:
Suy ra:
Thu gọn biểu thức
thu được kết quả là:
Áp dụng công thức về cung liên kết ta có:
Suy ra:
Trong các dãy số (un) cho bởi số hạng tổng quát un sau, dãy số nào tăng?
Ta xét đáp án Loại
Ta xét đáp án Loại
Ta xét đáp án Thỏa mãn!
Ta xét đáp án : Loại
Cho
. Số mặt phẳng chứa tất cả các đỉnh của tam giác
là:
Do ba điểm không thẳng hàng nên chỉ có một và chỉ một mặt phẳng đi qua chúng.
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề sai: "Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì cắt mặt phẳng còn lại." vì hai mặt phẳng cùng vuông góc với một mặt phẳng có thể cắt nhau.
Tìm tất cả các giá trị của tham số m để phương trình
có nghiệm?
Phương trình
Để phương trình có nghiệm
là giá trị cần tìm.
Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là
đô la mỗi năm và được tăng thêm
đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là
đô la?
Đáp án: 8
Nếu anh Nam nhận được lời mời làm việc cho một công ty nước ngoài với mức lương khởi điểm là đô la mỗi năm và được tăng thêm
đô la lương mỗi năm, thì sẽ mất bao nhiêu năm làm việc để tổng lương mà anh Nam nhận được là
đô la?
Đáp án: 8
Gọi là tiền lương anh Nam nhận được vào năm thứ
.
Tại năm đầu tiên, lương anh Nam nhận được là .
Vì mỗi năm, anh Nam được tăng lương thêm đô, nên ta có
Do đó là cấp số cộng với
.
Tổng lương mà anh Nam nhận được là đô, áp dụng công thức tính tổng
số hạng đầu của cấp số cộng:
.
Vậy anh Nam mất 8 năm làm việc để được tổng lương là .
Cho cấp số cộng
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là:
Ta có:
Hàm số liên tục trên
Điều kiện cần và đủ để hàm số liên tục trên là:
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy A=2.
Tìm giới hạn ![]()
Ta có:
Tính được các giới hạn sau, khi đó:
a)
Sai||Đúng
b)
Sai||Đúng
c)
Đúng||Sai
d)
Đúng||Sai
Tính được các giới hạn sau, khi đó:
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
a) (do
b) do
c) .
Vì
d) .
Vì
Kết luận:
|
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Tính giới hạn ![]()
Ta có:
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Cho hàm số
hàm số f(x) liên tục tại:
Tập xác định:
Vậy hàm số liên tục tại
Hàm số liên tục khi
hàm số liên tục khi
Tại x = 1 ta có:
Vậy hàm số liên tục tại
Hàm số liên tục trên
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho
là một đa thức thỏa mãn
. Tính giá trị

Ta có:
Khi đó
Cho cấp số cộng
thỏa mãn
. Khi đó
bằng:
Ta có:
Cho hình chóp
có
lần lượt là trọng tâm của tam giác
và
tam giác. Chọn mệnh đề đúng.
Gọi là trung điểm
.
Xét tam giác có:
(do
lần lượt là trọng tâm của tam giác
và tam giác
)
bằng:
Ta có:
Cho tứ diện
. Trên các cạnh
lần lượt lấy các điểm
là trung điểm, trên cạnh
lấy điểm
sao cho
. Gọi
, khi đó tỉ số độ dài giữa
và
là:
Hình vẽ minh họa
Từ giả thiết bài ra suy ra LK // AC mà (KLN) ∩ (DAC) = d
=> d // AC
Xét mặt phẳng (DAB) qua N dựng d song song AC
=> {P} = AD ∩ d
Xét tam giác DAC vì PN // AC theo định lý Ta-lét ta có:
Ta lại có:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J lần lượt là trung điểm của AB và CD. Giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng song song với:
Hình vẽ minh họa
Vì hai mặt phẳng (SAB) và (SCD) cùng đi qua S lần lượt chứa 2 đường thẳng song song là AB và CD nên giao tuyến của chúng là đường thẳng đi qua S và song song với AB và CD tức song song với BI.
Công thức nào sau đây đúng?
Ta có:
Dãy số
là cấp số nhân với
Cấp số nhân
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Cho hàm số
. Tìm số tự nhiên n để hàm số liên tục tại
.
Ta có:
Hàm số f(x) liên tục tại khi và chỉ khi
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD và BC; G là trọng tâm của tam giác BCD. Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC).
Hình vẽ minh họa
Giao điểm của đường thẳng MG và đường thẳng AN là giao điểm của đường thẳng MG và đường thẳng AN.
Người ta trồng 3003 cây theo hình tam giác như sau: Hàng thứ nhất có 1 cây. hàng thứ hai có hai cây, hàng thứ ba có ba cây,.... Vậy có tất cả bao nhiêu hàng?
Gọi số hàng cây được trồng là x (hàng)
Số cây các hàng là: 1; 2; 3; 4; ...; x - 1; x
Số cây của mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng
=>
Khi đó ta có:
Vậy có tất cả 77 hàng cây được trồng.
bằng
Ta có:
Giải phương trình
?
Ta có:
PT
Vậy phương trình có nghiệm
Tổng
có kết quả bằng?
Đặt
Cho dãy số có các số hạng đầu là
. Số hạng tổng quát của dãu số này là đẳng thức nào dưới đây?
Ta có: loại các đáp án
và
. Ta kiểm tra
Xét đáp án có
Xét đáp án có
là đáp án đúng.
Cho
. Tính giá trị biểu thức ![]()
Do nên bình phương hai vế ta được:
Vậy
Chọn mệnh đề sai trong các mệnh đề sau:
Nếu hình chiếu song song của hai đường thẳng là một đường thẳng thì hai đường thẳng đó phải nằm trong một mặt phẳng song song hoặc chứa phương chiếu.
Mặt khác hai đường thẳng chéo nhau không cùng nằm trong bất kì mặt phẳng nào.
Do đó mệnh đề sai là: “Hình chiếu song song của hai đường thẳng chéo nhau có thể trùng nhau.”.
Cho hình chóp
có đáy
là hình vuông cạnh bằng
là điểm trên cạnh
sao cho
Một mặt phẳng
đi qua
, song song với
và
cắt hình chóp theo một tứ giác. Gọi
là diện tích tứ giác thiết diện và
, với
là phân số tối giản,
. Tính giá trị của biểu thức
?
Đáp án: 110
Cho hình chóp có đáy
là hình vuông cạnh bằng
là điểm trên cạnh
sao cho
Một mặt phẳng
đi qua
, song song với
và
cắt hình chóp theo một tứ giác. Gọi
là diện tích tứ giác thiết diện và
, với
là phân số tối giản,
. Tính giá trị của biểu thức
?
Đáp án: 110
Hình vẽ minh họa
Ta kẻ ,
,
.
Vì mặt phẳng đi qua
, song song với
và
nên
đều thuộc
và thiết diện của hình chóp cắt bởi mặt phẳng
là tứ giác
.
Khi đó //
Tương tự, ta có được .
Suy ra và
là hình vuông.
Suy ra
Khi đó
Vậy
Một mặt phẳng hoàn toàn được xác định nếu biết điều nào sau đây?
Phương án "Ba điểm mà nó đi qua" sai vì nếu ba điểm đó thẳng hàng thì chưa thể xác định được mặt phẳng.
Phương án "Một điểm và một đường thẳng thuộc nó" sai vì nếu điểm đó nằm trên đường thẳng thì ta chưa thể xác định được.
Phương án "Ba điểm không thẳng hàng" đúng (theo tính chất thừa nhận 2)
Phương án "Hai đường thẳng thuộc mặt phẳng" sai vì hai đường thẳng có thể trùng nhau.
Cho hình chóp
. Trung điểm của các cạnh
lần lượt là
. Chọn khẳng định đúng.
Hình vẽ minh họa
Ta có:
mà
cắt
nên khẳng định
sai.
cắt
tại
nên khẳng định
sai.
cắt
tại trung điểm của
nên khẳng định
sai.
Trong các dãy số sau, dãy số nào là cấp số nhân?
=> Loại đáp án A
=> Loại đáp án B
=> Dãy số là cấp số nhân có công bội q = 2
Chọn đáp án C
=> Loại đáp án B
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình
bằng?
Ta có
TH1. Với
TH2. Với
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là và nghiệm dương nhỏ nhất là
.
Khi đó tổng hai nghiệm này bằng .
Thêm hai số thực dương x và y vào giữa hai số 5 và 320 để được bốn số
theo thứ tự đó lập thành cấp số nhận. Khẳng định nào sau đây là đúng?
Ta có:
Các số hạng lập thành cấp số nhân
Tìm tập xác định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Để kết luận đường thẳng
song song với đường thẳng
ta cần giả thiết nào dưới đây?
Ta có tính chất:
Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Vậy
Khẳng định nào sau đây sai?
Trên khoảng thì hàm số
đồng biến.
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Số thập phân vô hạn tuần hoàn
được biểu diễn bởi phân số tối giản
. Khẳng định nào dưới đây đúng?
Ta có: