Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Giá tiền công khoan giếng ở cơ sở A được tính như sau: Giá của mét khoan đầu tiên là 8000 đồng và kể từ mét khoan thứ hai, giá của mỗi mét sau tăng thêm 500 đồng so với giá của mét khoan ngay trước nó. Vậy muốn khoan 20 mét thì mất bao nhiêu đồng?

     Theo bài ra ta có:

    Giá các mét khoan lập thành một cấp số cộng với công sai d = 500, số hạng đầu là 8000.

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 8000} \\   {d = 500} \end{array}} ight.

    => Số tiền phải trả khi khoan giếng sâu 20m là:

    \begin{matrix}  {S_{20}} = \dfrac{{20.\left( {2{u_1} + 19.d} ight)}}{2} \hfill \\   \Rightarrow {S_{20}} = 10.\left( {2.8000 + 19.500} ight) = 255000 \hfill \\ \end{matrix}

    Vậy muốn khoan 20 mét thì mất 255000 đồng.

  • Câu 2: Nhận biết

    Trong không gian, cho tam giác ABC, lấy điểm I trên cạnh AC kéo dài (trong hình vẽ). Mệnh đề nào sau đây sai?

    Ta có: I \in (ABC);B \in
(ABC)

    => BI \subset (ABC)

    Do đó mệnh đề sai là: “BI không nằm trên mặt phẳng (ABC)”.

  • Câu 3: Thông hiểu

    Cho tứ diện ABCDG;G' lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Gọi M là trung điểm của CD

    Khi đó \frac{MG}{MB} = \frac{1}{3} =
\frac{MG'}{MA} (vì G;G' lần lượt là trọng tâm của hai tam giác BCDACD)

    Suy ra \left\{ \begin{matrix}\dfrac{GG'}{AB} = \dfrac{1}{3} \\GG'//AB \\\end{matrix} ight.\  \Rightarrow GG' = \frac{1}{3}AB

    Vậy khẳng định sai là GG' =
\frac{2}{3}AB.

    Mặt phẳng (ABG) và tứ diện theo một diện diện là tam giác

    Dễ thấy BG;AG';CD đồng quy tại điểm M.

  • Câu 4: Thông hiểu

    \mathop {\lim }\limits_{x \to  - \infty } \frac{{\sqrt {{x^2} + 2x}  + 3x}}{{\sqrt {4{x^2} + 1}  - x + 2}} bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {{x^2} + 2x}  + 3x}}{{\sqrt {4{x^2} + 1}  - x + 2}} \hfill \\   = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\left| x ight|\sqrt {1 + \dfrac{2}{x}}  + 3x}}{{\left| x ight|\sqrt {1 + \dfrac{1}{x}}  - x + 2}} \hfill \\ \end{matrix}

    = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\sqrt {1 + \dfrac{2}{x}}  + 3}}{{\sqrt {1 + \dfrac{1}{x}}  - 1 + \dfrac{2}{x}}} = \frac{{ - 2}}{3}

  • Câu 5: Nhận biết

    Dãy số u_{n} =
2^{2n} là cấp số nhân với

    Cấp số nhân 4;16;64;....

    \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = \dfrac{u_{2}}{u_{1}} = 4 \\\end{matrix} ight.

  • Câu 6: Nhận biết

    Trong các khẳng định sau, khẳng định nào là đúng?

    Khẳng định đúng là “Nếu đường thẳng d song song với mặt phẳng (P) thì trong (P) tồn tại đường thẳng a song song với d”.

  • Câu 7: Nhận biết

    Số cạnh của một hình chóp có đáy là một bát giác là:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 8: Thông hiểu

    Cho hình chóp S.MNPQ có đáy MNPQ là hình bình hành. Xác định giao tuyến của hai mặt phẳng (SMQ)(SNP):

    Hình vẽ minh họa

    Gọi (SMQ) \cap (SNP) = d

    Khi đó d đi qua S.

    Xét ba mặt phẳng (SMQ),(SNP);(MNPQ).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d;MQ;NP.

    Theo định lí về giao tuyến của ba mặt phẳng thì d;MQ;NP đồng quy hoặc đôi một song song.

    MQ//NP \Rightarrow d//MQ

  • Câu 9: Vận dụng

    Biết f(x) =
\left\{ \begin{matrix}
\sqrt{x}\ \ \ \ \ \ \ \ khi\ x \in \lbrack 0;4brack \\
1 + m\ \ \ khi\ x \in (4;6brack \\
\end{matrix} ight. liên tục trên \lbrack 0;6brack. Khẳng định nào sau đây đúng?

    Dễ thấy f(x) liên tục trên mỗi khoảng (0;4)(4;6). Khi đó hàm số liên tục trên đoạn \lbrack 0;6brack khi và chỉ khi hàm số liên tục tại x = 4;x = 0;x =
6

    Tức là ta cần có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = f\left( 0 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = f\left( 6 ight) \hfill \\
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = f\left( 4 ight) \hfill \\ 
\end{gathered}  ight.\left( * ight)

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {0^ + }} \sqrt x  = 0 \hfill \\
  f\left( 0 ight) = \sqrt 0  = 0 \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {6^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {6^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 6 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {4^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ + }} \sqrt x  = 2 \hfill \\
  \mathop {\lim }\limits_{x \to {4^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {4^ - }} \left( {1 + m} ight) = 1 + m \hfill \\
  f\left( 4 ight) = 1 + m \hfill \\ 
\end{gathered}  ight.

    Khi đó (*) trở thành 1 + m = 2
\Leftrightarrow m = 1 < 2

  • Câu 10: Nhận biết

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Do dãy số là cấp số nhân

    => q = \frac{{36}}{{16}} = \frac{9}{4}

    => Số hạng tiếp theo là: 36.\frac{9}{4} = 81

  • Câu 11: Nhận biết

    Tính \cos\alpha biết 0 < \alpha < \frac{\pi}{2}\sin\alpha = \frac{1}{4}.

    Ta có sin^{2}\alpha + cos^{2}\alpha =
1

    \Rightarrow cos^{2}\alpha = 1 -
sin^{2}\alpha = 1 - \left( \frac{1}{4} ight)^{2} =
\frac{15}{16}.

    0 < \alpha <
\frac{\pi}{2} nên \cos\alpha >
0.

    Vậy \cos\alpha =
\frac{\sqrt{15}}{4}.

  • Câu 12: Nhận biết

    Cung tròn bán kính bằng 8,43cm có số đo 3,85 rad có độ dài là?

    Độ dài cung tròn là l = R.\alpha =8,43.3,85 = 32,4555(cm)

  • Câu 13: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N lần lượt là trọng tâm tam giác ABDACD. Xét các mệnh đề sau:

    \ (i):MN//(ABC)

    (ii):MN//(BCD)

    (iii):MN//(ACD)

    Các mệnh đề đúng là:

    Gọi E,F lần lượt là trung điểm CD,BD.

    Ta có \frac{AN}{AE} = \frac{AM}{AF} =
\frac{2}{3} \Rightarrow MN//EF

    \Rightarrow MN//(BCD)nên mệnh đề (ii):MN//(BCD) đúng.

    Ta lại có:

    EF//BC \Rightarrow MN//BC

    \Rightarrow MN//(ABC)

    => Mệnh đề\
(i):MN//(ABC) đúng

    Mặt khác MN \cap (ACD) = \left\{ N
ight\} nên mệnh đề (iii):MN//(ACD) sai.

  • Câu 14: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{( - 1)^{n}}{1 + n}. Khẳng định nào sau đây sai?

    Ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4}

    \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight.

    Vậy dãy số đã cho không tăng không giảm.

    Khẳng định sai là: “Dãy số \left( u_{n}
ight) là dãy giảm”

  • Câu 15: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên khoảng \left( - \frac{\pi}{3};\frac{\pi}{6}
ight)?

    Với x \in \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

    \begin{matrix}ightarrow 2x \in \left( - \dfrac{2\pi}{3};\dfrac{\pi}{3} ight) \hfill\\ightarrow 2x + \dfrac{\pi}{6} \in \left( - \dfrac{\pi}{2};\dfrac{\pi}{2}ight) \hfill\\\end{matrix}

    Thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin\left( 2x + \frac{\pi}{6} ight) đồng biến trên khoảng \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

  • Câu 16: Vận dụng cao

    Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

    \begin{matrix}
  P = 1 + a + {a^2} + {a^3} + ... \hfill \\
  Q = 1 + b + {b^2} + {b^3} + ... \hfill \\
  H = 1 + ab + {a^2}{b^2} + {a^3}{b^3} + ... \hfill \\ 
\end{matrix}

    Chọn khẳng định đúng.

    Ta có: \left\{ \begin{matrix}P = \dfrac{1}{1 - a} \\Q = \dfrac{1}{1 - b} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = 1 - \dfrac{1}{P} \\b = 1 - \dfrac{1}{Q} \\\end{matrix} ight. khi đó:

    \begin{matrix}
  H = \dfrac{1}{{1 - ab}} \hfill \\
   = \dfrac{1}{{1 - \left( {1 - \dfrac{1}{P}} ight).\left( {1 - \dfrac{1}{Q}} ight)}} \hfill \\
   = \dfrac{{PQ}}{{P + Q - 1}} \hfill \\ 
\end{matrix}

  • Câu 17: Vận dụng

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17. Tổng của số hạng thứ hai và số hạng thứ tư là 14. Tính công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_6} = 17} \\   {{u_2} + {u_4} = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {2{u_1} + 5d = 17} \\   {2{u_1} + 6d = 14} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 16} \\   {d =  - 3} \end{array}} ight.

  • Câu 18: Thông hiểu

    Trong các dãy số sau, dãy số nào là cấp số nhân?

    Xét dãy số \left\{\begin{matrix}u_0=1 \\ u_n=2u_{n-1}\end{matrix}ight.\forall n\geq1

     Ta có: \frac{{{u_n}}}{{{u_{n - 1}}}} = 2 => Dãy số là cấp số nhân

  • Câu 19: Nhận biết

    Chu kì của hàm số y = \tan x

    Hàm số y = \tan x tuần hoàn với chu kỳ T = \pi.

  • Câu 20: Nhận biết

    Tìm tất cả các nghiệm của phương trình \sin\left( x + \frac{\pi}{6} ight) =
1.

    Ta có \sin\left( x + \frac{\pi}{6}
ight) = 1

    \Leftrightarrow x + \frac{\pi}{6} =
\frac{\pi}{2} + k2\pi

    \Leftrightarrow x = \frac{\pi}{3} +
k2\pi\left( k\mathbb{\in Z} ight).

  • Câu 21: Nhận biết

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = u_{n} + 5,n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Giá trị u10 là?

    Từ \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = u_{n} + 5,n \in \mathbb{N}^{*} \\
\end{matrix} ight. ta có un + 1 − un = 5

    dãy (un) là một cấp số cộng với công sai d = 5 nên

    u10 = u1 + 9d = 2 + 45 = 47

  • Câu 22: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in SC, mặt phẳng (\beta) đi qua M và song song với mặt phẳng (SAB). Khi đó các giao tuyến của mặt phẳng (\beta) với các mặt của S.ABCD là hình gì?

    Hình vẽ minh họa

    Giao tuyến của (\beta) với (SCD)MQ//CD.

    Giao tuyến của (\beta) với (ABCD)PN//CD.

    Từ đó suy ra các giao tuyến của mặt phẳng (\beta) với các mặt của S.ABCD là hình thang MNPQ.

  • Câu 23: Vận dụng

    Gọi x_0 là nghiệm âm lớn nhất của  \sin 9x + \sqrt 3 \cos 7x = \sin 7x + \sqrt 3 \cos 9x. Mệnh đề nào sau đây là đúng?

     Phương trình \Leftrightarrow \sin 9x - \sqrt 3 \cos 9x = \sin 7x - \sqrt 3 \cos 7x

    \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} ight) = \sin \left( {7x - \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  9x - \frac{\pi }{3} = 7x - \frac{\pi }{3} + k2\pi  \hfill \\  9x - \frac{\pi }{3} = \pi  - \left( {7x - \frac{\pi }{3}} ight) + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{{\text{Cho}} < 0}}\left[ \begin{gathered}  k\pi  < 0 \Leftrightarrow k < 0\xrightarrow{{k \in \mathbb{Z}}}{k_{\max }} =  - 1 \to x =  - \pi  \hfill \\  \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8} < 0 \Leftrightarrow k <  - \frac{5}{6}\xrightarrow{{k \in \mathbb{Z}}}{k_{\max }} =  - 1 \to x =  - \frac{\pi }{{48}} \hfill \\ \end{gathered}  ight.

    So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là x =  - \frac{\pi }{{48}} \in \left( { - \frac{\pi }{{12}};0} ight)

  • Câu 24: Thông hiểu

    Phương trình \sin \left( {\frac{\pi }{6} + x} ight) = \cos 2x có nghiệm là

     Giải phương trình:

    \begin{matrix}  \sin \left( {\dfrac{\pi }{6} + x} ight) = \cos 2x \hfill \\   \Leftrightarrow \sin \left( {\dfrac{\pi }{6} + x} ight) = \sin \left( {\dfrac{\pi }{2} - 2x} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{\pi }{6} + x = \dfrac{\pi }{2} - 2x + k2\pi } \\   {\dfrac{\pi }{6} + x = \pi  - \left( {\dfrac{\pi }{2} - 2x} ight) + k2\pi } \end{array}} ight. \hfill  \\ \end{matrix}

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = \dfrac{\pi }{3} + k2\pi } \\   { - x = \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{9} + \dfrac{{k2\pi }}{3}} \\   {x =  - \dfrac{\pi }{3} + k'2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight)

  • Câu 25: Nhận biết

    Giá trị của \lim\frac{{(\sin n)}^{2}}{n + 2}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a}
> \frac{1}{a} - 2

    Suy ra

    \frac{\left( \sin n ight)^{2}}{n
+ 2} < \frac{1}{n + 2} < \frac{1}{n_{a} + 2} < a\ \forall n
> n_{a}

    Vậy:  \lim\frac{{{(sin}n)}^{2}}{n + 2} = 0 .

  • Câu 26: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.

    b) Xét phương trình f(x) = 7 \Rightarrow
f(x) - 7 = 0

    Đặt g(x) = f(x) - 7 ta có:

    \left\{ \begin{matrix}
g(1) = f(1) - 7 = - 5 \\
g(5) = f(5) - 7 = 3 \\
\end{matrix} ight.\  \Rightarrow g(1).g(5) < 0

    Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng (1;5).

    c) Ta có:

    I = \lim_{x ightarrow 1}\frac{xf(x) +
1}{x - 1} = \lim_{x ightarrow 1}\frac{xf(x) + x - x + 1}{x -
1}

    = \lim_{x ightarrow
1}\frac{x\left\lbrack f(x) + 1 ightbrack - (x - 1)}{x - 1} = \lim_{x
ightarrow 1}\left\{ \frac{x\left\lbrack f(x) + 1 ightbrack}{x - 1}
ight\} - 1

    = 1.( - 1) - 1 = - 2

    d) Các hàm số liên tục trên tập số thực là y = x^{2};y = \sin x;y = \frac{x^{2} - 1}{x^{2} +
x + 1}.

  • Câu 27: Vận dụng

    Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng 75\% so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?

    Đáp án: 666

    Đáp án là:

    Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng 75\% so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?

    Đáp án: 666

    Gọi u_{n} là quãng dường người đó dược kéo lên ở lần thứ n (đơn vị tính: mét).

    Ta có u_{1} = 0,75 \cdot 100 = 100 \cdot
1,5 = 75\ mu_{n} = 0,75 \cdot
u_{n - 1}.

    Vậy \left( u_{n} ight) là cấp số nhân với số hạng đầu u_{1} = 75 và công bội q = 0,75.

    Tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống là

    S = 100 + 2u_{1} + 2u_{2} + \cdots +
2u_{10}

    = 100 + 2S_{10} = 100 + 2 \cdot
\frac{75\left( 1 - 0,75^{10} ight)}{1 - 0,75} \approx 666\ \
(m)

  • Câu 28: Vận dụng

    Giá trị lớn nhất của hàm số y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2} tại điểm là nghiệm của phương trình nào dưới đây?

    Theo bài ra ta có:

    y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2}

    \Leftrightarrow y.\left( \sin x + \cos x+ 2 ight) = \sin x + 2\cos x + 1

    \Leftrightarrow (y - 1).\sin x + (y -2)\cos x = 1 - 2y(*)

    Phương trình (*) có nghiệm

    \Leftrightarrow (y - 1)^{2} + (y -
2)^{2} \geq 1 - 2y

    \Leftrightarrow y^{2} + y - 2 \leq
0

    \Leftrightarrow - 2 \leq y \leq
1

    Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó - \cos x = - 1

  • Câu 29: Vận dụng

    Cho tứ diện ABCD có độ dài tất cả các cạnh bằng x. Gọi G là trọng tâm tam giác ABC. Tính diện tích thiết diện tạo bởi mặt phẳng (CDG) và tứ diện ABCD?

    Hình vẽ minh họa:

    Gọi M,N lần lượt là trung điểm các cạnh AB,BC

    \Rightarrow AN \cap MC = G

    Ta có: (CDG) \cap AB = M

    Suy ra tam giác MCD là thiết diện của mặt phẳng (CDG) và tứ diện ABCD

    Tam giác ABD đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MD =
\frac{x\sqrt{3}}{2}

    Tam giác ABC đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MC =
\frac{x\sqrt{3}}{2}

    Gọi H là trung điểm của CD \Rightarrow
MH\bot CD

    \Rightarrow S_{MCD} =
\frac{1}{2}MH.CD

    Ta có: MH = \sqrt{MC^{2} -
HC^{2}}

    \Leftrightarrow MH = \sqrt{MC^{2} -
\frac{CD^{2}}{2}}

    \Leftrightarrow MH =
\frac{x\sqrt{2}}{2}

    \Rightarrow S_{MCD} =
\frac{1}{2}.\frac{x\sqrt{2}}{2}.x = \frac{x^{2}\sqrt{2}}{4}

  • Câu 30: Thông hiểu

    Số vị trí biểu diễn các nghiệm của phương trình \tan3x = \tan x trên đường tròn lượng giác là?

    ĐK: \left\{ \begin{matrix}cos3x eq 0 \\cosx eq 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{6} + \dfrac{k\pi}{3} \\x eq \dfrac{\pi}{2} + k\pi \\\end{matrix}(*) ight.\  ight.

    Ta có tan3x = tanx \Leftrightarrow 3x = x
+ k\pi \Leftrightarrow x = \frac{k\pi}{2},k \in \mathbb{Z}.

    Kết hợp điều kiện (*) suy ra x = k\pi,k
\in \mathbb{Z} nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.

  • Câu 31: Vận dụng

    Tính  \lim_{x
ightarrow 0}\frac{\sqrt{1 + 2x} - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{\sqrt{1 + 2x} - (x + 1) + (x + 1) - \sqrt[3]{1 +
3x}}{x^{2}}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - (x + 1)}{x^{2}}

    = \lim_{x ightarrow 0}\frac{-
x^{2}}{x^{2}\left( \sqrt{1 + 2x} + x + 1 ight)} = -
\frac{1}{2}

    Ta cũng có:

    \lim_{x ightarrow 0}\frac{(x + 1) -
\sqrt[3]{1 + 3x}}{x^{2}}

    \underset{x ightarrow 0}{=
\lim}\frac{x^{3} + 3x^{2}}{x^{2}\left\lbrack (x + 1)^{2} + (x +
1)\sqrt[3]{1 + 3x} + \left( \sqrt[3]{1 + 3x} ight)^{2} ightbrack}
= 1

    Vậy  \lim_{x ightarrow 0}\frac{\sqrt{1 +
2x} - \sqrt[3]{1 + 3x}}{x^{2}} = \frac{1}{2}

  • Câu 32: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 33: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 34: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 35: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào là cấp số cộng?

    Dãy (un) là một cấp số cộng

    => {u_n} = an + b với a, b là hằng số

    => {u_n} = 6 - 3n

  • Câu 36: Nhận biết

    Tính giới hạn \lim_{x ightarrow -
\infty}\frac{2x + 1}{x + 1}.

    Ta có: \lim_{x ightarrow -\infty}\dfrac{2x + 1}{x + 1} = \lim_{x ightarrow - \infty}\dfrac{2 +\dfrac{1}{x}}{1 + \dfrac{1}{x}} = 2.

  • Câu 37: Thông hiểu

    Biết \sin\alpha +
\cos\alpha = \frac{5}{4}. Khi đó \sin\alpha.\cos\alpha có giá trị bằng:

    Ta có:

    \sin\alpha.cos\alpha

    = \frac{1}{2}\left\lbrack \left(\sin\alpha + \cos\alpha ight)^{2} - \left( \sin^{2}\alpha +\cos^{2}\alpha ight) ightbrack

    = \frac{1}{2}\left\lbrack \left(
\frac{5}{4} ight)^{2} - 1 ightbrack = \frac{9}{32}

  • Câu 38: Vận dụng cao

    Tổng S =\frac{2}{1.3} + \frac{2}{3.5} + \frac{2}{5.7} + \ldots +\frac{2}{97.99} có kết quả bằng?

    Ta có \frac{2}{1.3} = \frac{1}{1} -\frac{1}{3};\frac{2}{3.5} = \frac{1}{3} - \frac{1}{5};\ldots

    Do đó S = \frac{1}{1} - \frac{1}{3} +\frac{1}{3} - \frac{1}{5} + \ldots + \frac{1}{97} - \frac{1}{99} = 1 -\frac{1}{99} = \frac{98}{99}

  • Câu 39: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành. Mặt phẳng (\alpha) song song với ACSB đồng thời cắt các đoạn SA,AB,BC,SC,SD,BD lần lượt tại M,N,E,F,I,J. Ta có các khẳng định sau:

    (i):IJ//AB

    (ii):MF//AC

    (iii): Tứ giác MNEF là hình bình hành.

    Có bao nhiêu khẳng định đúng?

    Hình vẽ minh họa

    Xét (\alpha) \equiv (MNEFI)

    (\alpha)//AC \Rightarrow
MF//AC

    (\alpha)//SB \Rightarrow
IJ//SB

    (\alpha)//SB nên MN,EF đều song song với SB điều này suy ra MNEF là hình bình hành.

    Vậy tất cả các khẳng định đều đúng.

  • Câu 40: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{1} = 2;u_{8} = 16. Tìm d;S_{10}?

    Theo bài ra ta có:

    \left\{ \begin{matrix}
u_{1} = 2 \\
u_{8} = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
u_{1} + 7d = 16 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2 \\
d = 2 \\
\end{matrix} ight.

    \Rightarrow S_{10} = \frac{\left\lbrack
2u_{1} + 9d ightbrack.n}{2} = 110

  • Câu 41: Vận dụng cao

    Cho các số thực a,\ b,\ cthỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Số giao điểm của đồ thị hàm số y = x^{3} + ax^{2} + bx + c và trục Ox

    Đáp án: 3

    Đáp án là:

    Cho các số thực a,\ b,\ cthỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Số giao điểm của đồ thị hàm số y = x^{3} + ax^{2} + bx + c và trục Ox

    Đáp án: 3

    Ta có \left\{ \begin{matrix}
y(2) = 8 + 4a + 2b + c < 0 \\
\lim_{x ightarrow + \infty}y = + \infty \\
\end{matrix} ight.\  \Rightarrow \exists x_{1} \in (2; +
\infty)sao cho y\left( x_{1}
ight) = 0(1).

    Ta có \left\{ \begin{matrix}
y(2) = 8 + 4a + 2b + c < 0 \\
y( - 2) = - 2 + 4a - 2b + c > 0 \\
\end{matrix} ight.\  \Rightarrow \exists x_{2} \in ( -
2;2)sao cho y\left( x_{2} ight) =
0(2).

    Ta có \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
\lim_{x ightarrow - \infty}y = - \infty \\
\end{matrix} ight.\  \Rightarrow \exists x_{3} \in ( - \infty; -
2)sao cho y\left( x_{3} ight) =
0(3).

    Từ (1), (2) và (3) ta suy ra số giao điểm của đồ thị hàm số và trục Ox bằng 3.

  • Câu 42: Thông hiểu

    Giá trị của F = \lim\frac{(n - 2)^{7}(2n + 1)^{3}}{\left(
n^{2} + 2 ight)^{5}}bằng:

    Ta có:

     F = \lim\frac{(n - 2)^{7}(2n + 1)^{3}}{\left(
n^{2} + 2 ight)^{5}} 

    = \lim\frac{\left( 1 - \frac{2}{n}ight)^{7}\left( 2 + \frac{1}{n} ight)^{3}}{\left( 1 +\frac{5}{n^{2}} ight)^{5}\ } = 8

  • Câu 43: Nhận biết

    Tính tất cả số cạnh của hình lăng trụ biết hình lăng trụ có đúng 11 cạnh bên?

    Hình lăng trụ có đúng 11 cạnh bên suy ra đáy là đa giác có 11 đỉnh và đa giác đáy có 11 cạnh.

    Vậy hình lăng trụ có đúng 11 cạnh bên thì có:

    11 + 11.2 = 33 (cạnh)

  • Câu 44: Vận dụng

    Cho tứ diện ABCD. Gọi M
\in AD,N \in BC sao cho AD = 3MA;CB
= 3NC. Mặt phẳng (\beta) chứa đường thẳng MNđồng thời song song với đường thẳng CD. Khi đó hình tạo bởi các giao tuyến của mặt phẳng (\beta) và các mặt của tứ diện ABCD là:

    Hình vẽ minh họa:

    Xét (\beta) và (BCD), ta có điểm N chung, CD // (\beta)

    => (\beta) ∩ (BCD) = NF // CD, với F ∈ BD.

    Xét (\beta) và (ACD), ta có điểm M chung, CD // (\beta)

    => (\beta) ∩ (ACD) = ME // CD, với E ∈ AC.

    Từ đó ta được MF = (\beta) ∩ (ABD) và EN = (\beta) ∩ (ABC)

    => Hình tạo bởi các giao tuyến của mặt phẳng (\beta) và các mặt của tứ diện ABCD là tứ giác ENFM

    Ta lại có ME // CD // NF nên ENFM là hình thang.

    Từ giả thiết ta có: \frac{{EM}}{{CD}} = \frac{{AM}}{{AD}} = \frac{1}{3}

    \frac{{FN}}{{CD}} = \frac{{BN}}{{BC}} = \frac{{BC - NC}}{{BC}} = \frac{2}{3}

    \Rightarrow \frac{{EM}}{{FN}} = \frac{1}{2}

    Vậy hình thang có đáy lớn gấp đôi đáy nhỏ.

  • Câu 45: Nhận biết

    Cho hàm số y =
f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là:

    Ta có:

    Hàm số y = f(x) liên tục trên (a;b)

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {a^ + }} f\left( x ight) = f\left( a ight) \hfill \\
  \mathop {\lim }\limits_{x \to {b^ - }} f\left( x ight) = f\left( b ight) \hfill \\ 
\end{gathered}  ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 18 lượt xem
Sắp xếp theo