Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.
Ta có: d = 6 - 1 = 5
Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng
=> x = 6 + 5 = 11
Vậy x = 11
Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.
Ta có: d = 6 - 1 = 5
Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng
=> x = 6 + 5 = 11
Vậy x = 11
Giá trị của
bằng:
Với mọi M > 0 lớn tùy ý, ta chọn
Ta có:
với mọi
Suy ra
Tính giới hạn ![]()
Ta có:
Cho cấp số cộng
thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
Khi đó:
Giá trị của
là:
Ta có:
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Ba số hạng đầu của một cấp số nhân là x - 6; x và y. Tìm y, biết rằng công bội của cấp số nhân là 6
Ta có x = 6(x – 6) => x = 36/5
Từ đó suy ra y = 6x = 216/5
Số vị trí biểu diễn các nghiệm của phương trình
trên đường tròn lượng giác là?
ĐK:
Ta có .
Kết hợp điều kiện (*) suy ra nghĩa là có 2 điểm biểu diễn trên đường tròn lượng giác.
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Trong các phát biểu sau, phát biểu nào là sai?
Ta lấy một phản ví dụ:
Dãy số (un) với là cấp số cộng có công sai d = 1 > 0
Nhưng dạng khai triển của nó là -1; 0; 1; … không phải một dãy số dương.
Cho hình chóp
có đáy là hình bình hành. Gọi
lần lượt là trung điểm của
. Mệnh đề nào dưới đây là mệnh đề sai?

Hình vẽ minh họa:
Ta có:
Ta có: là đường trung bình trong tam giác SAC
Ta có: là đường trung bình trong tam giác
=>
=>
Dễ thấy cắt
tại trung điểm
của
.
Do đó mệnh đề là mệnh đề sai.
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Kiểm tra được ;
;
là các hàm số chẵn.
là hàm số lẻ.
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số:
. Tính
và cho biết ý nghĩa của kết quả.
Đáp án: 105
Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: . Tính
và cho biết ý nghĩa của kết quả.
Đáp án: 105
Ta có:
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Trong các mệnh đề sau đây, mệnh đề nào sai?
Khẳng định sai: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất”.
Sửa lại: “Hai mặt phẳng trùng nhau thì có vô số đường thẳng chung.”
Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Cho tứ diện
,
là trọng tâm tam giác
. Trên đoạn
lấy điểm
sao cho
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì nên
.
Cho tứ diện
. Các điểm
lần lượt là trung điểm của
và
; điểm
nằm trên cạnh
sao cho
. Gọi
là giao điểm của
và cạnh
. Tính tỉ số
.
Đáp án: 2
Cho tứ diện . Các điểm
lần lượt là trung điểm của
và
; điểm
nằm trên cạnh
sao cho
. Gọi
là giao điểm của
và cạnh
. Tính tỉ số
.
Đáp án: 2
Hình vẽ minh họa
Trong mặt phẳng , gọi
.
Trong , gọi
.
Trong mặt phẳng , dựng
là đường trung bình của tam giác
.
là trung điểm của
.
Trong , dựng
.
Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?
Xét đồ thị hàm số
Vì nên hàm số không liên tục tại
Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác
là:
Góc lượng giác chiếm
đường tròn
=> Số đo là: .
Cho hàm số
. Tìm giá trị k để hàm số
liên tục tại ![]()
Ta có:
Với giá trị nào của x và y thì các số -7; x; 11; y theo thứ tự đó lập thành một cấp số cộng?
Ta có:
Các số -7; x; 11 theo thứ tự đó lập thành một cấp số cộng
=>
Tương tự các số 2; 11; y theo thứ tự đó lập thành một cấp số cộng
=>
Vậy x = 2; y = 20
Phương trình lượng giác
có nghiệm là:
Ta có
Cho cấp số cộng
. Hãy chọn hệ thức đúng trong các hệ thức sau:
Xét đáp án
Xét đáp án
Vậy hệ thức đúng là
Cho hình lăng trụ
có đáy
và
là hình bình hành. Lấy trung điểm của các cạnh
lần lượt là các điểm
. Xét các khẳng định sau:
a)
cắt
.
b)
cắt
tại trung điểm của
.
c)
.
Số khẳng định đúng là:
Hình vẽ minh họa
Mặt phẳng cắt
tại trung điểm của
.
Từ đó thấy rằng ba khẳng định trong đề bài đều đúng.
Cho hình chóp
, có đáy
là hình bình hành. Lấy
là trung điểm của
. Tìm hình chiếu của điểm
qua phép chiếu song song phương
lên mặt phẳng chiếu
.
Giả sử là ảnh của
theo phép chiếu song song phương
lên mặt phẳng
.
Suy ra
Do là trung điểm của
=>
là trung điểm của
.
Cho hàm số
. Tính
.
Ta có:
Cho hàm số
. Mệnh đề nào sau đây là đúng?
Ta có:
=> Hàm số gián đoạn tại
Ta lại có:
=> Hàm số liên tục tại
Vậy hàm số liên tục trên các khoảng và
.
Cho dãy số
với mọi
. Khi đó số hạng thứ 5 của dãy là:
Ta có:
Khi đó số hạng thứ 5 của dãy là 48
Tính
được kết quả là:
Ta có
.
Tìm tất cả các giá trị của tham số
để phương trình
vô nghiệm?
Ta có:
Phương trình vô nghiệm
Tính
biết
và
.
Ta có
.
Mà nên
.
Vậy .
Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.
Ta sẽ chứng minh bằng quy nạp − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Với n = 1 ta có − 2 ≤ u1 ≤ 1 (đúng).
Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là − 2 ≤ uk ≤ 1
Theo nguyên lí quy nạp ta đã chứng minh được − 2 ≤ un ≤ 1, ∀n ∈ ℕ*
Vậy (un) là dãy số bị chặn.
Tìm nghiệm dương nhỏ nhất của phương trình ![]()
Ta có
TH1. Với
TH2. Với
So sánh hai nghiệm ta được là nghiệm dương nhỏ nhất.
Cho hình chóp
có
không song song với
Gọi
lần lượt là trung điểm
Các mệnh đề sau đúng hay sai?
a)
không song song
Đúng||Sai
b)
song song
Đúng||Sai
c)
song song
Sai||Đúng
d)
song song
Sai||Đúng
Cho hình chóp có
không song song với
Gọi
lần lượt là trung điểm
Các mệnh đề sau đúng hay sai?
a) không song song
Đúng||Sai
b) song song
Đúng||Sai
c) song song
Sai||Đúng
d) song song
Sai||Đúng
Hình vẽ minh họa
Ta có: lần lượt là trung điểm của
là đường trung bình của tam giác
Ta có: lần lượt là trung điểm của
là đường trung bình của tam giác
Từ suy ra:
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Tính giới hạn ![]()
Ta có:
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy C=1.
Cho hàm số
và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số
là hàm số chẵn. Sai||Đúng
b) Trong khoảng
đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số
bằng
. Sai||Đúng
d) Hàm số
đạt giá trị nhỏ nhất khi
. Đúng||Sai
Cho hàm số và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số là hàm số chẵn. Sai||Đúng
b) Trong khoảng đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số bằng
. Sai||Đúng
d) Hàm số đạt giá trị nhỏ nhất khi
. Đúng||Sai
a) Sai
TXĐ: . Do đó
Ta có là hàm số lẻ.
b) Đúng
Phương trình trong khoảng
có hai nghiệm
và
c) Sai
Ta có: , mà
.
Vậy giá trị lớn nhất của hàm số bằng
, khi
.
d) Đúng
Giá trị nhỏ nhất của hàm số bằng
, khi
Cho hình chóp tứ giác
,
. Giả sử mặt phẳng
bất kì cắt các cạnh
lần lượt tại
. Chọn khẳng định đúng trong các khẳng định sau.
Hình vẽ minh hoạ
Ta thấy:
=> Các đường thẳng đồng quy.
Xác định chu kì T của hàm số lượng giác
?
Hàm số y = cos(ax + b) tuần hoàn với chu kì
=> tuần hoàn với chu kì
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
“Ba điểm phân biệt” sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.
“Một điểm và một đường thẳng” sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ra chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.
“Bốn điểm phân biệt” sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì sẽ không tạo được mặt phẳng nào đi qua cả 4 điểm.
Cho cấp số nhân có các số hạng lần lượt là
. Tính tổng
của tất cả các số hạng của cấp số nhân đã cho.
Cấp số nhân đã cho có
=>
Cho hình chóp
có đáy
tâm
. Gọi
lần lượt là trung điểm của
. Xác định các giao tuyến của
với các mặt của
. Hình tạo bởi các giao tuyến đó là hình gì?
Hình vẽ minh hoạ
Ta dựng thiết diến của mặt phẳng (OMN) và hình chóp SABCD như sau
Qua M kẻ PQ // NO với Q ∈ SC.
Kéo dài NO cắt CD tại P.
=> Hình tạo bởi các giao tuyến đó là tứ giác MNPQ.
Tứ giác MNPQ có MN // NP
=> Tứ giác MNPQ là hình thang.
Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản
. Tính tổng
.
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là