Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 2: Thông hiểu

    Cho hình chóp tam giác S.ABC. Trên các cạnh SBAB lần lượt lấy các điểm M,N sao cho 4SM = SB\frac{NA}{NB} = \frac{1}{3}. Khi đó mặt phẳng nào song song với đường thẳng MN?

    Hình vẽ minh họa

    Theo giả thiết ta có: \left\{\begin{matrix}N \in AB \\\dfrac{NA}{NB} = \dfrac{1}{3} \\\end{matrix} ight.\  \Rightarrow \frac{NA}{AB} =\frac{1}{4}

    Xét tam giác SAB ta có: \frac{SM}{AB} = \frac{AN}{AB} =
\frac{1}{4}

    \Rightarrow MN//SA\left\{ \begin{matrix}
SA \subset (SAC) \\
MN ⊄ (SAC) \\
\end{matrix} ight.\  \Rightarrow MN//(SAC)

  • Câu 3: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 4: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = 3u_{2} = 12. Công bội của cấp số nhân đã cho bằng

    Ta có u_{2} = u_{1}.q \Rightarrow q =
\frac{u_{2}}{u_{1}} = \frac{12}{3} = 4.

  • Câu 5: Vận dụng

    Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:

    Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {y = x + m = xn} \\   {z = x + 2m = x{n^2}} \end{array}} ight. \hfill \\   \Rightarrow m = x{n^2} - xn \hfill \\   \Rightarrow x + x{n^2} - xn = xn \hfill \\   \Rightarrow {n^2} - 2n + 1 = 0 \hfill \\   \Leftrightarrow n = 1 \Rightarrow m = 0 \Rightarrow x = y = z \hfill \\ \end{matrix}

  • Câu 6: Thông hiểu

    Cho dãy số (un) được xác định như sau \left\{ \begin{matrix}
u_{1} = 0 \\
u_{n + 1} = \frac{n}{n + 1}\left( u_{n} + 1 ight) \\
\end{matrix} ight.. Số hạng u11 là?

    Ta có:

    \begin{matrix}
u_{2} & = \frac{1}{2}\left( u_{1} + 1 ight) = \frac{1}{2}; &
u_{3} = \frac{2}{3}\left( u_{2} + 1 ight) = 1; & u_{4} =
\frac{3}{4}\left( u_{3} + 1 ight) = \frac{3}{2}; \\
u_{5} & = \frac{4}{5}\left( u_{4} + 1 ight) = 2; & u_{6} =
\frac{5}{6}\left( u_{5} + 1 ight) = \frac{5}{2}; & u_{7} =
\frac{6}{7}\left( u_{6} + 1 ight) = 3 \\
u_{8} & = \frac{7}{8}\left( u_{7} + 1 ight) = \frac{7}{2}; &
u_{9} = \frac{8}{9}\left( u_{8} + 1 ight) = 4; & u_{10} =
\frac{1}{2}\left( u_{9} + 1 ight) = \frac{9}{2}; \\
u_{11} & = \frac{10}{11}\left( u_{10} + 1 ight) = 5 & & \\
\end{matrix}

  • Câu 7: Thông hiểu

    Cho {u_{n} = \dfrac{7^{n} + 2^{2n - 1}+ 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}}. Biết \lim u_{n} = \frac{a}{b} (với a, b\in \mathbb{ Z };\frac{ a}{ b } tối giản). Khi đó:

    a) a + b = 8 Đúng||Sai

    b) a - b = - 7 Sai||Đúng

    c) Bộ ba số a;b;13 tạo thành một cấp số cộng có công sai d = 7 Đúng||Sai

    d) Bộ ba số a;b;49 tạo thành một cấp số nhân có công bội q = 7 Đúng||Sai

    Đáp án là:

    Cho {u_{n} = \dfrac{7^{n} + 2^{2n - 1}+ 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}}. Biết \lim u_{n} = \frac{a}{b} (với a, b\in \mathbb{ Z };\frac{ a}{ b } tối giản). Khi đó:

    a) a + b = 8 Đúng||Sai

    b) a - b = - 7 Sai||Đúng

    c) Bộ ba số a;b;13 tạo thành một cấp số cộng có công sai d = 7 Đúng||Sai

    d) Bộ ba số a;b;49 tạo thành một cấp số nhân có công bội q = 7 Đúng||Sai

    Ta có

    \lim u_{n} = \lim\dfrac{7^{n} + 2^{2n -1} + 3^{n + 1}}{7^{n + 1} + 5^{n - 1}}

    = \lim\dfrac{1 + \dfrac{1}{2}\left(\dfrac{4}{7} ight)^{n} + 3\left( \dfrac{3}{7} ight)^{n}}{7 +\dfrac{1}{5}\left( \dfrac{5}{7} ight)^{n}} = \dfrac{1}{7}.

    Do đó suy ra a = 1,b = 7 \Rightarrow a +
b = 8.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đ

    d) Đúng

  • Câu 8: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = \frac{4^{n - 1}}{5^{n -
2}}. Tính \lim_{n ightarrow +
\infty}u_{n}.

    Ta có:

    \lim_{n ightarrow + \infty}u_{n} =
\lim_{n ightarrow + \infty}\frac{4^{n - 1}}{5^{n - 2}} = \lim_{n
ightarrow + \infty}\left( \left( \frac{4}{5} ight)^{n}.\frac{4^{-
1}}{5^{- 2}} ight) = 0

  • Câu 9: Vận dụng

    Gọi x_0 là nghiệm âm lớn nhất của phương trình \cos \left( {5x - {{45}^0}} ight) = \frac{{\sqrt 3 }}{2}. Mệnh đề nào sau đây là đúng?

     Ta có:

    \Leftrightarrow \left[ \begin{gathered}  5x = {75^0} + k{360^0} \hfill \\  5x = {15^0} + k{360^0} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = {15^0} + k{72^0} \hfill \\  x = {3^0} + k{72^0} \hfill \\ \end{gathered}  ight.{\text{ }}\,\left( {k \in \mathbb{Z}} ight)

    TH1. Với x = {15^0} + k{72^0} < 0 \Leftrightarrow k <  - \frac{5}{{24}}

    \Rightarrow {k_{\max }} =  - \,1 \to x =  - \,{57^0}

    TH2. Với x = {3^0} + k{72^0} < 0 \Leftrightarrow k <  - \,\frac{1}{{24}}

    \Rightarrow {k_{\max }} =  - \,1 \Rightarrow x =  - \,{69^0}

    So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là x=-57^0

  • Câu 10: Vận dụng

    Biết \lim_{x
ightarrow 1}\frac{f(x) - 10}{x - 1} = 5. Hỏi giá trị giới hạn \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack} bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5

    \Rightarrow f(1) = 10

    Khi đó: \lim_{x ightarrow 1}\frac{f(x)
- 10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{\left( \sqrt{x} - 1
ight)\left( \sqrt{x} + 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{(x - 1)\left\lbrack
\sqrt{4f(x) + 9} + 3 ightbrack}

    = \frac{5.\left( \sqrt{1} + 1
ight)}{\left\lbrack \sqrt{4f(1) + 9} + 3 ightbrack} =
1

  • Câu 11: Vận dụng

    Tính tổng S = 1
- 2 + 3 - 4 + 5 + ... + (2n - 1) - 2n với n \geq 1;n\mathbb{\in N}.

    Với \forall n \in \mathbb{N}^{*} thì (2n - 1) - 2n = - 1

    Ta có:

    S = 1 - 2 + 3 - 4 + 5 + ... + (2n - 1) -
2n

    S = (1 - 2) + (3 - 4) + (5 - 6) + ... +
\left\lbrack (2n - 1) - 2n ightbrack

    Do đó ta xem S là tổng của n số hạng, mà mỗi số hạng đều bằng -1..

    => S = - 1

    Ta có: 1;3;5;...;2n - 12;4;6;...;2n là cấp số cộng có n số hạng nên.

    S = (1 + 3 + 5 + ... + 2n - 1) - (2 + 4
+ 6 + ... + 2n)

    S = \frac{n}{2}.(1 + 2n - 1) -
\frac{n}{2}.(2 + 2n)

    S = n^{2} - \left( n^{2} + n ight) = -
n

  • Câu 12: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản \frac{m}{n}. Tính P = mn

    Ta có:

    \begin{matrix}
  0,353535 = 0,35 + 0,0035 + ... \hfill \\
   = \dfrac{{35}}{{{{10}^2}}} + \dfrac{{35}}{{{{10}^4}}} + ... + \dfrac{{35}}{{{{10}^n}}} + ... \hfill \\ 
\end{matrix}

    Dãy số \frac{35}{10^{2}};\frac{35}{10^{4}};...;\frac{35}{10^{n}};... là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = \frac{35}{10^{2}}, công sai là q = 10^{- 2}

    => S = \dfrac{u_{1}}{1 - q} =\dfrac{\dfrac{35}{10^{2}}}{1 - 10^{- 2}} = \dfrac{35}{99}

    Vậy 0,353535 = \frac{35}{99}

    \Rightarrow \left\{ \begin{matrix}
m = 35 \\
n = 99 \\
\end{matrix} ight.\  \Rightarrow P = 3465

  • Câu 13: Vận dụng

    Cho tứ diện ABCD. Lấy các điểm M \in AD,N \in BC sao cho \frac{MA}{AD} = \frac{CN}{BC} =
\frac{1}{3} . Mặt phẳng (\alpha) là mặt phẳng chứa đường thẳng MN và song song với CD. Hình tạo bởi các giao tuyến của (\alpha) và các mặt của tứ diện là:

    Hình vẽ minh họa

    Theo bài ra ta có:

    (\alpha)//CD nên giao tuyến của (\alpha) với (ACD);(BCD) cũng song song với CD.

    Xét mặt phẳng (ACD) kẻ MK//CD;(K \in AC)

    Xét mặt phẳng (BCD) kẻ NE//CD;(E \in BD)

    Hình tạo bởi các giao tuyến của (\alpha) và các mặt của tứ diện là hình thang EMKN.

    Ta có:

    \frac{BN}{BC} = \frac{NE}{CD} =
\frac{2}{3} \Rightarrow NE = \frac{2}{3}CD

    \frac{MA}{AD} = \frac{MK}{CD} =
\frac{1}{3} \Rightarrow MK = \frac{1}{3}CD

    \Rightarrow NE = 2MK

    Vậy hình thang EMKN có đáy lớn gấp 2 lần đáy nhỏ.

  • Câu 14: Thông hiểu

    Trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack, đồ thị hai hàm số y
= \tan xy = 1 cắt nhau tại bao nhiêu điểm?

    Phương trình hoành độ giao điểm của hai đồ thị hàm số là

    \tan x = 1 \Rightarrow x = \frac{\pi}{4}
+ k\pi;\left( k\mathbb{\in Z} ight)

    Theo bài ra ta có: x \in \left\lbrack -
2\pi;\frac{5\pi}{2} ightbrack

    \Rightarrow - 2\pi \leq \frac{\pi}{4} +
k\pi \leq \frac{5\pi}{2}

    \Rightarrow - \frac{9}{4} \leq k \leq
\frac{9}{4}

    \Rightarrow k \in \left\{ - 2; - 1;0;1;2
ight\}

    Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn \left\lbrack - 2\pi;\frac{5\pi}{2}
ightbrack.

  • Câu 15: Nhận biết

    \lim_{x
ightarrow - \infty}\left( \frac{2x + 1}{x - 1} ight) bằng

    Ta có:

    \lim_{x ightarrow - \infty}\left(\dfrac{2x + 1}{x - 1} ight) = \lim_{x ightarrow - \infty}\left(\dfrac{2 + \dfrac{1}{x}}{1 - \dfrac{1}{x}} ight) = 2

  • Câu 16: Nhận biết

    Cho đường tròn đường kính 12cm. Tìm số đo (rad) của cung có độ dài 3cm ?

    d = 12 \Rightarrow R = 6\alpha = \frac{l}{R} vậy số đo (rad) cần tìm là \frac{1}{2}.

  • Câu 17: Vận dụng

    Giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y=\sqrt{4\sin x+5} lần lượt là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \sin x \leqslant 1 \hfill \\   \Rightarrow  - 4 \leqslant 4\sin x \leqslant 4 \hfill \\   \Rightarrow  - 4 + 5 \leqslant 4\sin x + 5 \leqslant 4 + 5 \hfill \\   \Rightarrow 1 \leqslant 4\sin x + 5 \leqslant 9 \hfill \\   \Rightarrow 1 \leqslant \sqrt {4\sin x + 5}  \leqslant 3 \hfill \\ \end{matrix}

  • Câu 18: Nhận biết

    Trong các hàm số sau, hàm số nào là hàm số chẵn?

    Tất các các hàm số đều có TXĐ: {\text{D}} = \mathbb{R}.

    Do đó \forall x \in {\text{D}} \Rightarrow  - x \in {\text{D}}{\text{.}}

    Bây giờ ta kiểm tra f\left( { - x} ight) = f\left( x ight) hoặc f\left( { - x} ight) =  - f\left( x ight).

     Với y = f\left( x ight) =  - \,\,\sin x. Ta có

    f\left( { - x} ight) =  - \,\,\sin \left( { - x} ight) = \sin x =  - \left( { - \sin x} ight)

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

    Suy ra hàm số là hàm số lẻ.

    Với y = f\left( x ight) = \cos x - \sin x. . Ta có

    f\left( { - x} ight) = \cos \left( { - x} ight) - \sin \left( { - x} ight) = \cos x + \sin x

    \Rightarrow f\left( { - x} ight) e \left\{ { - f\left( x ight),f\left( x ight)} ight\}

    Suy ra hàm số không chẵn không lẻ.

    Với y = f\left( x ight) = \cos x + {\sin ^2}x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight) + {\sin ^2}\left( { - \,x} ight)

    = \cos \left( { - \,x} ight) + {\left[ {\sin \left( { - \,x} ight)} ight]^2}

    = \cos x + {\left[ { - \sin x} ight]^2} = \cos x + {\sin ^2}x

    \Rightarrow f\left( { - x} ight) = f\left( x ight)

    Suy ra hàm số là hàm số chẵn.

    Với y = f\left( x ight) = \cos x\sin x. Ta có

    f\left( { - \,x} ight) = \cos \left( { - \,x} ight).\sin \left( { - \,x} ight) =  - \cos x\sin x

    \Rightarrow f\left( { - x} ight) =  - f\left( x ight)

     Suy ra hàm số là hàm số lẻ.

  • Câu 19: Thông hiểu

    Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:

    Ta có:

    Số nguyên dương chia hết cho 3 có dạng 3n;\left( n \in \mathbb{N}^{*} ight) nên chúng lập thành cấp số cộng u_{n} =
n

    ightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
u_{50} = 150 \\
\end{matrix} ight.

    S_{n} = \frac{n}{2}.\left( u_{1} + u_{n}
ight) = n.u_{1} + \frac{n(n - 1)d}{2}

    \Rightarrow S_{50} = \frac{50}{2}.\left(
u_{1} + u_{50} ight) = 3825

  • Câu 20: Vận dụng

    Cho hàm số f(x) liên tục trên đoạn [-1;4] sao cho f(-1) = 2, f(4) = 7. Có thể nói gì về số nghiệm của phương trình f(x) = 5 trên đoạn [-1;4] :

    Ta có: f(x)=5 =>f(x)−5=0

    Đặt g(x)=f(x)−5

    Khi đó:

    \begin{matrix}\left\{ \begin{gathered}g( - 1) = f( - 1) - 5 = 2 - 5 = - 3 \hfill \\g(4) = f(4) - 5 = 7 - 5 = 2 \hfill \\\end{gathered} ight. \hfill \\\Rightarrow g( - 1).g(4) < 0 \hfill \\\end{matrix}

    Vậy phương trình g(x)=0 có ít nhất một nghiệm thuộc khoảng (1;4) hay phương trình f(x)=5 có ít nhất một nghiệm thuộc khoảng (1;4).

  • Câu 21: Thông hiểu

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    Đáp án là:

    Xét tính đúng, sai của các phát biểu sau?

    Tập D\mathbb{= R}\backslash\left\{
\frac{k\pi}{2};k\mathbb{\in Z} ight\} là tập xác định của hàm số y = \cot2x. Đúng||Sai

    Số nghiệm của phương trình \sin x +
\cos x = 0 trên khoảng (0;\pi) là 3 nghiệm.Sai||Đúng

    Có 5 giá trị nguyên của tham số m để phương trình \sqrt{3}\cos x + m = 1 có nghiệm. Đúng||Sai

    Số vị trí biểu diễn của phương trình \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} trên đường tròn lượng giác là 3.Sai||Đúng

    a) Điều kiện xác định của hàm số y =
cot2xlà:

    2x eq k\pi \Rightarrow x eq
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    b) Ta có:

    \sin x + \cos x = 0 \Leftrightarrow
\sqrt{2}\sin\left( x + \frac{\pi}{4} ight) = 0

    \Leftrightarrow \sin\left( x +
\frac{\pi}{4} ight) = 0 \Leftrightarrow x = - \frac{\pi}{4} +
k\pi;\left( k\mathbb{\in Z} ight)

    x \in (0;\pi) \Rightarrow 0 < -
\frac{\pi}{4} + k\pi < \pi

    \Rightarrow \frac{1}{4} < k <
\frac{5}{4}k\mathbb{\in
Z} suy ra k = 1

    Vậy phương trình đã cho chỉ có 1 nghiệm thuộc khoảng (0;\pi).

    c) Ta có: \sqrt{3}\cos x + m = 1 \Leftrightarrow
\cos x = \frac{1 - m}{\sqrt{3}}

    Phương trình đã cho có nghiệm khi và chỉ khi

    - 1 \leq \frac{1 - m}{\sqrt{3}} \leq 1
\Leftrightarrow - \sqrt{3} \leq 1 - m \leq \sqrt{3}

    \Leftrightarrow 1 - \sqrt{3} \leq m \leq
1 + \sqrt{3}

    m\mathbb{\in Z \Rightarrow}m = \left\{
- 2; - 1;0;1;2 ight\}

    Vậy có 5 giá trị nguyên của tham số m thỏa mãn điều kiện bài toán.

    d) Ta có:

    \sin\left( x - \frac{2\pi}{3} ight) =
\frac{1}{2} \Leftrightarrow \sin\left( x - \frac{2\pi}{3} ight) =
\sin\left( \frac{\pi}{6} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x - \dfrac{2\pi}{3} = \dfrac{\pi}{6} + k2\pi \\x - \dfrac{2\pi}{3} = \pi - \dfrac{\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{5\pi}{6} + k2\pi \\x = \dfrac{3\pi}{2} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Số điểm biểu diễn mỗi họ nghiệm là số vị trí biểu diễn nghiệm của phương trình \sin\left( x - \frac{2\pi}{3}
ight) = \frac{1}{2} trên đường tròn lượng giác là 2.

  • Câu 22: Nhận biết

    Điều kiện để đường thẳng m song song với mặt phẳng (\beta):

    Đường thẳng m song song với mặt phẳng (\beta) khi và chỉ khi m không nằm trong (\beta), đồng thời m song song với một đường thẳng n nằm trong (\beta).

  • Câu 23: Vận dụng cao

    Biết rằng phương trình \frac{1}{\sin x} + \frac{1}{sin2x} + ... +
\frac{1}{\sin 2^{2018}x} = 0 có nghiệm dạng x = \frac{k2\pi}{2^{a} - b} với k\mathbb{\in Z}a,b \in \mathbb{Z}^{+};b < 2018. Tính S = a - b.

    Điều kiện xác định \sin 2^{2018}x eq
0

    Ta có:

    \cot a - \cot2a = \frac{\cos a}{\sin a} -\frac{\cos2a}{\sin2a}

    = \frac{2\cos^{2}a - \cos2a}{\sin2a} =\frac{1}{\sin2a}

    => Phương trình tương đương

    \Leftrightarrow \left( \cot\frac{x}{2} -\cot x ight) + \left( \cot x - \cot2x ight) + ... + \left( \cot2^{2017}x - \cot 2^{2018}x ight) = 0

    \Leftrightarrow \cot\frac{x}{2} - \cot
2^{2018}x = 0

    \Leftrightarrow \cot\frac{x}{2} = \cot
2^{2018}x

    \Leftrightarrow 2^{2018}x = \frac{x}{2}
+ k\pi

    \Leftrightarrow x =
\frac{k2\pi}{2^{2019} - 1};\left( k\mathbb{\in Z} ight)

    => \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 1 \\
\end{matrix} ight.\  \Rightarrow S = a - b = 2018

  • Câu 24: Thông hiểu

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Đáp án là:

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Xét từng mệnh đề ta có

    a) “Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau” là mệnh đề sai, vì hai đường thẳng có thể chéo nhau.

    b) “Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó” là mệnh đề sai, vì hai mặt phẳng đó có thể song song nhau.

    c) “Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P)” là mệnh đề sai, vì đường thẳng a vẫn có thể nằm trong mặt phẳng (P).

    d) “Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α)” là mệnh đề sai, vì có vô số đường thẳng đi qua điểm A và song song với (α).

    Vậy không có mệnh đề nào đúng trong các mệnh đề nêu trên

  • Câu 25: Thông hiểu

    Cho hình chóp S.MNPQ có đáy MNPQ là hình bình hành. Xác định giao tuyến của hai mặt phẳng (SMQ)(SNP):

    Hình vẽ minh họa

    Gọi (SMQ) \cap (SNP) = d

    Khi đó d đi qua S.

    Xét ba mặt phẳng (SMQ),(SNP);(MNPQ).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d;MQ;NP.

    Theo định lí về giao tuyến của ba mặt phẳng thì d;MQ;NP đồng quy hoặc đôi một song song.

    MQ//NP \Rightarrow d//MQ

  • Câu 26: Thông hiểu

    Cho dãy số \left( u_{n} ight) xác định bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} + 5 = 2\left( u_{n} + 5 ight) \\
\end{matrix} ight.. Tính số hạng thứ 2024 của dãy số đó?

    Ta có v_{n} = u_{n} + 5, \forall n \in Ν^{*} \Rightarrow v_{n + 1} =
2v_{n}, \forall n \in
Ν^{*}

    Do đó \left( v_{n} ight) là cấp số nhân với v_{1} = 6, q = 2, v_{n}
= 6.q^{n - 1};

    v_{2024} =
6.2^{2023} \Rightarrow u_{2024} = 6.2^{2023} - 5.

  • Câu 27: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 28: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 29: Nhận biết

    Khẳng định nào sau đây là đúng.

    Khẳng định đúng là: " Hình biểu diễn của một hình bình hành là một hình bình hành."

  • Câu 30: Thông hiểu

    Khẳng định nào sau đây là sai?

    Khẳng định sai là: "Phép chiếu song song có thể biến đường trung tuyến tam giác thành đường thẳng không phải là trung tuyến tam giác ảnh."

  • Câu 31: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 1}\frac{2x^{2} - 3x + 1}{1 -
x^{2}}

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{2} - 3x
+ 1}{1 - x^{2}} = \lim_{x ightarrow 1}\frac{1 - 2x}{x - 1} = -
\frac{1}{2}

  • Câu 32: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

  • Câu 33: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } \frac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 5}}=?

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4{x^2} + 1}  - \sqrt {x + 5} }}{{2x - 5}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\sqrt {4 + \dfrac{1}{{{x^2}}}}  - x\sqrt {\dfrac{1}{x} + \dfrac{5}{{{x^2}}}} }}{{x\left( {2 - \dfrac{5}{x}} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\sqrt {4 + \dfrac{1}{{{x^2}}}}  - \sqrt {1 + \dfrac{5}{x}} }}{{2 - \dfrac{5}{x}}} = \dfrac{2}{2} = 1 \hfill \\ \end{matrix}

  • Câu 34: Nhận biết

    Trong không gian, các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    Trong không gian, yếu tố xác định một mặt phẳng duy nhất là hai đường thẳng cắt nhau.

  • Câu 35: Nhận biết

    Trong không gian, cho ba đường thẳng a,\
\ b,\ \ c. Trong các mệnh đề sau mệnh đề nào đúng?

    Nếu bc chéo nhau thì bc không cùng thuộc một mặt phẳng.

  • Câu 36: Vận dụng cao

    Xác định công thức tổng quát của dãy số \left\{ \begin{matrix}u_{1} = \dfrac{- 1}{2} \\u_{n + 1} = \sqrt{\dfrac{u_{n} + 1}{2}};n \geq 1 \\\end{matrix} ight..

    Ta có: \left\{ \begin{matrix}u_{2} = \sqrt{\dfrac{u_{1} + 1}{2} = \dfrac{1}{2}} \\u_{3} = \sqrt{\dfrac{u_{2} + 1}{2}} = \dfrac{\sqrt{3}}{2} \\\end{matrix} ight.

    Nhận thấy \left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} = \cos\left( \dfrac{2\pi}{3} ight) \\u_{2} = \dfrac{1}{2} = \cos\left( \dfrac{\pi}{3} ight) \\u_{3} = \dfrac{1}{2} = \dfrac{\sqrt{3}}{2} = \cos\left( \frac{\pi}{6}ight) \\\end{matrix} ight.

    Dự đoán u_{n} = \cos\left(
\frac{4\pi}{3.2^{n}} ight)(*)

    Ta chứng minh bằng quy nạp

    Trước hết u_{1} = \cos\left(
\frac{2\pi}{3} ight) = \cos\left( \frac{4\pi}{3.2^{1}}
ight) đúng với n = 1

    Giả sử (*) đúng khi n = k;k \in \mathbb{N}^{*}. Khi đó u_{k} = \cos\left( \frac{4\pi}{3.2^{k}}
ight)

    Ta có:

    u_{k + 1} = \sqrt{\dfrac{u_{k} + 1}{2}} =\sqrt{\dfrac{\cos\left( \dfrac{4\pi}{3.2^{k}} ight) +1}{2}}

    = \sqrt{\dfrac{\cos\left(2.\dfrac{4\pi}{3.2^{k + 1}} ight) + 1}{2}}

    = \sqrt{\dfrac{2.\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2} - 1 +1}{2}}

    = \sqrt{\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2}}

    = \left| \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight) ight|

    Mặt khác ta có k \geq 1. Do đó 0 \leq \frac{4\pi}{3.2^{k + 1}} \leq
\frac{4\pi}{3.2^{1 + 1}} = \frac{\pi}{3} < \frac{\pi}{2}

    Vậy \cos\left( \dfrac{4\pi}{3.2^{k + 1}}ight) \geq 0 \Rightarrow u_{k + 1} = \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight)

    Vậy (*) đúng với n = k + 1. Theo nguyên lí quy nạp, ta có điều phải chứng minh.

  • Câu 37: Thông hiểu

    Tìm giá trị thực của tham số m để phương trình (m-2).\sin{2x} = m + 1 nhận x= \frac{\pi }{12} làm nghiệm

     Phương trình nhận x= \frac{\pi }{12} làm nghiệm

    \begin{matrix}  \Rightarrow(m - 2).\sin \left( {2.\dfrac{\pi }{{12}}} ight) = m + 1 \hfill \\   \Leftrightarrow (m - 2).\sin \dfrac{\pi }{6} = m + 1 \hfill \\   \Leftrightarrow (m - 2).\dfrac{1}{2} = m + 1 \hfill \\   \Leftrightarrow m - 2 = 2m + 2 \hfill \\   \Leftrightarrow m =  - 4 \hfill \\ \end{matrix}

    vậy m = -4

  • Câu 38: Nhận biết

    Dãy số nào sau đây có giới hạn bằng 0?

    \left| q ight| < 1 nên \lim {q^n} = 0.

  • Câu 39: Nhận biết

    Cho cấp số cộng có số hạng đầu {u_1} =  - \frac{1}{2} công sai d = \frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số này là:

    Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d,\left( {{u_1} =  - \dfrac{1}{2};d = \dfrac{1}{2}} ight) \hfill \\   \Rightarrow {u_n} =  - \dfrac{1}{2} + \left( {n - 1} ight).\dfrac{1}{2} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_2} = {u_1} + d = 0} \\   {{u_3} = {u_2} + d = \dfrac{1}{2}} \\   {{u_4} = {u_3} + d = 1} \\   {{u_5} = {u_4} + d = \dfrac{3}{2}} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 40: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc khoảng (−10; 10) để phương trình x^{3} - 3x^{2} + (2m - 2)x + m - 3 = 0 có ba nghiệm phân biệt x_{1},x_{2},x_{3} thỏa mãn x_{1} < - 1 < x_{2} < x_{3}?

    Xét hàm số f(x) = x^{3} - 3x^{2} + (2m -
2)x + m - 3 liên tục trên \mathbb{R}

    Giả sử phương trình có ba nghiệm x_{1},x_{2},x_{3} thỏa mãn x_{1} < - 1 < x_{2} < x_{3}. Khi đó f(x) = \left( x - x_{1} ight)\left( x -
x_{2} ight)\left( x - x_{3} ight)

    Ta có:

    f( - 1) = \left( - 1 - x_{1}
ight)\left( - 1 - x_{2} ight)\left( - 1 - x_{3} ight) >
0 (do x_{1} < - 1 < x_{2}
< x_{3})

    f( - 1) = - m - 5 nên suy ra - m - 5 > 0 \Rightarrow m < -
5

    Với m < - 5 ta có:

    \lim_{x ightarrow - \infty}f(x) = -
\infty nên tồn tại a < -
1 sao cho f(x) < 0\ \
(1)

    Do m < - 5 nên f( - 1) = - m - 5 > 0\ \ \ (2)

    f(0) = m - 3 < 0;\ \ \ \
(3)

    \lim_{x ightarrow + \infty}f(x) = +
\infty nên tồn tại b >
0 sao cho f(b) > 0\ \
(4)

    Từ (1) và (2) suy ra phương tình có nghiệm thuộc khoảng ( - \infty; - 1)

    Từ (2) và (3) suy ra phương tình có nghiệm thuộc khoảng ( - 1;0)

    Từ (3) và (4) suy ra phương tình có nghiệm thuộc khoảng (0; + \infty)

    Vậy m < - 5 thỏa mãn m \in ( - 10;10);m\mathbb{\in Z}

    \Rightarrow m \in \left\{ - 9; - 8; - 7;
- 6 ight\}

  • Câu 41: Thông hiểu

    Cho \sin x +
\cos x = \sqrt{2}. Tính giá trị \sin2x bằng

    Ta có:

    \sin x + \cos x = \sqrt{2}

    \Rightarrow \left( \sin x + \cos x
ight)^{2} = 2

    \Rightarrow 1 + 2\sin x.\cos x =2

    \Rightarrow \sin2x = 1

  • Câu 42: Nhận biết

    Công thức nào sau đây đúng?

    Công thức đúng là: \cos3a = 4\cos^{3}a -3\cos a

  • Câu 43: Vận dụng

    Cho hình chóp S.ABCD, các điểm A’, B’, C’ lần lượt thuộc các cạnh SA, SB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Xác định phát biểu đúng

    Ta có: (SAB) ∩ (A’B’C’) = A’B’

    (SBC) ∩ (A’B’C’) = B’C’

    Gọi O là giao điểm của AC và BD

    Trong mặt phẳng (SAC) gọi I là giao điểm của A’C’ và SO

    Trong mặt phẳng (SBD) gọi D’ là giao điểm của B’I và SD

    Khi đó ta có: (SCD) ∩ (A’B’C’) = C’D’

    (SAD) ∩ (A’B’C’) = A’D’

    => Thiết diện của mặt phẳng (A’B’C’) với hình chóp S.ABCD là tứ giác A’B’C’D’.

  • Câu 44: Thông hiểu

    Cho tứ diện ABCD. Gọi M là trung điểm cạnh AB, lấy điểm N trên cạnh AC sao cho AN
= 2NC. Giao tuyến của hai mặt phẳng (DMN)(BCD) đi qua giao điểm của hai đường nào trong các cặp đường thẳng sau?

    Hình vẽ minh họa

    luyện tập điểm đường thẳng mặt phẳng trong không gian

    Gọi I là giao điểm của MN và BC.

    Giao tuyến cần tìm là DI.

    Do đó giao tuyến ấy đi qua giao điểm của MN và BC.

  • Câu 45: Nhận biết

    Giá trị của \lim\frac{1}{n + 1} bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\frac{1}{a} - 1

    Suy ra:

    \frac{1}{n +
1} < \frac{1}{n_{a} + 1} < a\ \forall n > n_{0}

    Vậy \lim\frac{1}{n + 1} = 0.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo