Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Cho dãy số
, biết
. Tìm số hạng ![]()
Ta có:
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Tìm chu kì T của hàm số ![]()
Ta có:
Hàm số tuần hoàn với chu kì
Hàm số tuần hoàn với chu kì
T là chu kì của hàm số là bội chung nhỏ nhất của T1 và T2
Suy ra hàm số tuần hoàn với chu kì
Tính tổng 10 số hạng đầu tiên của cấp số nhân(un) có ![]()
Ta có:
Cho hình chóp
có đáy
là hình vuông cạnh bằng
là điểm trên cạnh
sao cho
Một mặt phẳng
đi qua
, song song với
và
cắt hình chóp theo một tứ giác. Gọi
là diện tích tứ giác thiết diện và
, với
là phân số tối giản,
. Tính giá trị của biểu thức
?
Đáp án: 110
Cho hình chóp có đáy
là hình vuông cạnh bằng
là điểm trên cạnh
sao cho
Một mặt phẳng
đi qua
, song song với
và
cắt hình chóp theo một tứ giác. Gọi
là diện tích tứ giác thiết diện và
, với
là phân số tối giản,
. Tính giá trị của biểu thức
?
Đáp án: 110
Hình vẽ minh họa
Ta kẻ ,
,
.
Vì mặt phẳng đi qua
, song song với
và
nên
đều thuộc
và thiết diện của hình chóp cắt bởi mặt phẳng
là tứ giác
.
Khi đó //
Tương tự, ta có được .
Suy ra và
là hình vuông.
Suy ra
Khi đó
Vậy
Một chiếc đồng hồ, có kim chỉ giờ OG chỉ số 9 và kim phút OP chỉ số 12. Số đo của góc lượng giác
là:
Góc lượng giác chiếm
đường tròn
=> Số đo là: .
Phương trình lượng giác
có nghiệm là:
Ta có
bằng:
Ta có:
Cho hàm số
có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Cho tứ diện
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm, lấy
sao cho
và
sao cho bốn điểm
đồng phẳng. Chọn khẳng định đúng trong các khẳng định dưới đây?
Hình vẽ minh họa
Xét mặt phẳng ta có:
=>
Vì lần lượt là trung điểm của
do đó
Mà hay
.
Cho dãy số (un) là một cấp số nhân có số hạng đầu u1 và công bội q. Đẳng thức nào sau đây sai?
Từ định nghĩa cấp số nhân ta có các kết quả sau:
Đáp án C sai
Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:

Chọn khẳng định đúng.
Ta có: khi đó:
Với x thuộc
hỏi phương trình
có bao nhiêu nghiệm:
Giải phương trình:
Xét nghiệm
Do =>
Xét nghiệm
Do =>
Vậy có tất cả 12 giá trị x thỏa mãn
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Chọn câu đúng:
"Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song với nhau" đúng.
Hai đường thẳng cùng song song với một mặt phẳng thì có thể cắt nhau, song song, trùng nhau hoặc chéo nhau => "Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau." sai.
Hai mặt phẳng không cắt nhau thì song song hoặc trùng nhau => "Hai mặt phẳng không cắt nhau thì song song" sai.
Hai mặt phẳng không song song thì trùng nhau hoặc cắt nhau => "Hai mặt phẳng không song song thì trùng nhau" sai.
Cho hình chóp S.ABCD có đáy là hình thang ABCD AD ∈ BC. Gọi I là giao điểm của AB và DC, M là trung điểm SC. DM cắt mặt phẳng SAB) tại J. Khẳng định nào sau đây sai?
Hình vẽ minh họa

Ta có:
Vậy ba điểm S, I, J thẳng hàng.
Khẳng định sai là: ""
Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?
Ta có
Vậy
Cho hình bình hành ABCD và ABEF không cùng nằm trong một mặt phẳng, có tâm lần lượt là O và O’. Chọn khẳng định đúng trong các khẳng định sau:
Hình vẽ minh họa

Xét ΔBFD có OO’ là đường trung bình => OO’ // DF
Mà DF ⊂ (ADF)
=> OO' // (ADF)
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
bằng:
Ta có:
Tính giới hạn ![]()
Ta có:
Trong các mệnh đề sau, mệnh đề nào là mệnh đề đúng?
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
.
Đáp án sai: Trường hợp
chéo nhau.
Tính tổng các nghiệm trong đoạn [0;30] của phương trình: ![]()
Điều kiện để phương trình có nghĩa:
Khi đó, phương trình so sánh với đk
Vậy, tổng các nghiệm trong đoạn [0;30] của phương trình là: .
Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.
Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:
u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4
Ta có:
Cho dãy số (un) biết
. Mệnh đề nào sau đây đúng?
Ta có
Xét tỉ số:
Vậy (un) là dãy số tăng.
Cho hình chóp
có đáy
là hình thang (AB // CD). Gọi G là trọng tâm tam giác SAB, các điểm
lần lượt là trung điểm của
. Biết các giao tuyến của hình chóp và mặt phẳng
tạo thành một hình bình hành. Khi đó tìm mối liên hệ độ dài của
và
.
Hình vẽ minh họa
Theo giả thiết bài toán ta suy ra được:
Xét hai mặt phẳng (IGJ), (SAB) có G là điểm chung nên giao tuyến của chúng là đường thẳng EF qua G,
Nối các đoạn thẳng EI, FJ ta được hình tạo bởi giao tuyến của mặt phẳng (IGJ) và các mặt hình chóp là tứ giác EFJI, tứ giác này là hình thang vì EF // IJ.
Vì G là trọng tâm của tam giác SAB và EF // AB nên theo định lý Tha-lét ta có:
Nên để EFJI là hình bình hành ta cần
Rút gọn biểu thức ![]()
Ta có:
Dãy số nào dưới đây có giới hạn bằng 0?
Ta có:
Do là dãy cấp số nhân có
Có duy nhất một mặt phẳng đi qua
Phương án "Hai đường thẳng " sai vì nếu 2 đường thẳng đó trùng nhau thì có vô số mặt phẳng đi qua 2 đường thẳng đó.
Phương án "Một điểm và một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì có vô số mặt phẳng đi qua điểm và đường thẳng đã cho.
Phương án "Ba điểm" sai vì nếu có 2 trong ba điểm đó trùng nhau hoặc cả 3 điểm đó trùng nhau thì có vô số mặt phẳng thỏa mãn.
Vậy hoàn thành mệnh đề như sau: "Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau."
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là
. Diện tích bề mặt của tầng trên cùng là:
Đáp án: 6 m2
Người ta thiết kế một cái tháp gồm 11 tầng. Diện tích bề mặt của mỗi tầng bằng nửa diện tích của bề mặt của tầng ngay bên dưới và diện tích bề mặt của tầng một bằng nửa diện tích đế tháp. Biết diện tích bề mặt đế tháp là . Diện tích bề mặt của tầng trên cùng là:
Đáp án: 6 m2
Diện tích bề mặt của tầng trên cùng là .
Nếu
theo thứ tự lập thành cấp số cộng thì dãy số nào sau đây lập thành một cấp số cộng.
Theo giả thiết ta có:
Cho hàm số
. Tìm giá trị k để hàm số
liên tục tại ![]()
Ta có:
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của
(kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của (kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Để hàm số liên tục trên
thì hàm số phải liên tục tại
hay
Ta có:
Để tồn tại thì
.
Suy ra
Tìm giá trị thực của tham số m để phương trình
nhận
làm nghiệm.
Vì là một nghiệm của phương trình
nên ta có:
.
Vậy m = - 4 là giá trị cần tìm.
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho hàm số
liên tục trên
. Điều kiện cần và đủ để hàm số liên tục trên
là:
Ta có:
Hàm số liên tục trên
Điều kiện cần và đủ để hàm số liên tục trên là:
Tính
.
Ta có:
Cho cấp số cộng
. Xác định
biết rằng
?
Ta có:
Khi đó:
Suy ra
Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10
Ta có:
Tính ![]()
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Giả sử
. Đường thẳng nào song song với
trong các đường thẳng dưới đây?
Hình vẽ minh họa
Ta có:
=> hay
Vậy giao tuyến của hai mặt phẳng và
là đường thẳng
song song với đường thẳng
.
Nghiệm của phương trình sinx + cosx = 1 là:
Trong không gian cho hai mặt phẳng phân biệt
và
, điều kiện nào sau đây không đủ để kết luận rằng mặt phẳng
song song với mặt phẳng
?
Mệnh đề: " chứa vô số đường thẳng song song với
." không đủ để chỉ ra hai mặt phẳng song song (khi các đường thẳng đó song song với nhau).
Tính giá trị ![]()
Ta có:
Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?
i)
.
iii) ![]()
ii)
.
iv)
.
i) Ta có:
Vậy i) đúng.
ii) .
Vậy ii) đúng.
iii) .
Vậy iii) sai.
iv) Ta lấy . Ta có
.
Ta có VP VT.
Do đó iv) sai.
Vậy có 2 đẳng thức đúng.