Mệnh đề nào sau đây sai?
Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.
Mệnh đề nào sau đây sai?
Mệnh đề: “Hình biểu diễn của ba điểm thẳng hàng là một tam giác” sai vì hình biểu diễn phải giữ nguyên tính chất thẳng hàng của 3 điểm.
Khẳng định nào sau đây là đúng khi nói về
đường tròn lượng giác
?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Cho cấp số cộng
có các số hạng đầu lần lượt là 5; 9; 13; 17;... Tìm số hạng tổng quát
của cấp số cộng.
Theo bài ra ta có:
Dãy số đã cho là cấp số cộng
=>
=>
Vậy số hạng tổng quát của dãy số là:
Cho hình chóp
có đáy
là hình bình hành tâm
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm. Xác định giao tuyến hai mặt phẳng
và
?
Hình vẽ minh họa:
Ta có: suy ra tứ giác AMCN là hình bình hành.
Do đó AC và MN cắt nhau tại trung điểm của mỗi đường.
Mà O là trung điểm của AC nên O cũng là trung điểm của MN, hay ba điểm M, O, N thẳng hàng.
Ta có:
Mặt khác
Từ và
Tính ![]()
Ta có:
Ta có:
Ta cũng có:
Vậy
Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Cho cấp số nhân
có số hạng đầu
và công bội
. Số hạng thứ sáu của
là:
Ta có:
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
bằng
Ta có:
Nghiệm của phương trình 2cos (2x) =-2
Ta có:
.
Trong các giới hạn dưới đây, giới hạn nào không tồn tại?
Ta có:
không xác định.
Tính tổng ![]()
Ta có:
Ta thấy các số hạng của tổng T tạo thành một cấp số cộng với số hạng đầu và công sai d = −4. Giả sử tổng trên có n số hạng thì
Xác định công thức tổng quát của dãy số
.
Ta có:
Nhận thấy
Dự đoán
Ta chứng minh bằng quy nạp
Trước hết đúng với
Giả sử đúng khi
. Khi đó
Ta có:
Mặt khác ta có . Do đó
Vậy
Vậy (*) đúng với . Theo nguyên lí quy nạp, ta có điều phải chứng minh.
Tổng giá trị lớn nhất và nhỏ nhất của hàm số
là
Do nên
.
Nên đạt được khi
.
đạt được khi
.
Suy ra .
Hàm số
liên tục trên:
Điều kiện
Tập xác định
=> Hàm số liên tục trên
Tính
.
Ta chứng minh bằng phương pháp quy nạp, với thì
Với thì
nên (*) đúng với
Giả sử (*) đúng với nghĩa là:
Xét ta có:
Vậy (*) đúng với
Bây giờ ta áp dụng với thì
Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?
Mệnh đề A(n) đúng với n = k với k ≥ p.
Cho
là cấp số cộng biết
. Tổng 15 số hạng đầu của cấp số cộng đó bằng
Ta có:
Vậy
Cho hai số −3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số đó tạo thành cấp số cộng có công sai d = 2. Tìm n.
Ta có:
Cấp số cộng có k số hạng gồm có và số hạng cuối
.
Khi đó:
Do đó
Giá trị lớn nhất của hàm số
tại điểm là nghiệm của phương trình nào dưới đây?
Theo bài ra ta có:
Phương trình (*) có nghiệm
Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó
Trong không gian, cho 3 đường thẳng
, biết
, a và c chéo nhau. Khi đó hai đường thẳng b và c:
Giả sử
(mâu thuẫn với giả thiết).
Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.
Cho dãy số
có số hạng tổng quát
. Khẳng định nào sau đây sai?
Ta có:
Vậy dãy số đã cho không tăng không giảm.
Khẳng định sai là: “Dãy số là dãy giảm”
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính
.
Điều kiện xác định
Ta có:
=> Phương trình tương đương
=>
Cho
. Giá trị
bằng:
Ta có:
Nghiệm của phương trình
là?
Ta có:
.
Cho cấp số cộng
có số hạng đầu là
. Hỏi số hạng thứ tư là số nào dưới đây?
Ta có:
Vậy
Hình lăng trụ tam giác có bao nhiêu mặt?
Hình lăng trụ tam giác có 5 mặt.
Khẳng định nào sau đây là đúng khi nói về ?
Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.
Xác định giới hạn ![]()
Ta có:
Hình biểu diễn của một hình thoi là hình nào sau đây?
Hình biểu diễn của một hình thoi là hình bình hành.
Giá trị của
bằng:
Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?

Đáp án "Giao điểm của (SMC) với BD là giao điểm của CN với BD, trong đó N là giao điểm của SM và AD." đúng.
Đáp án "Giao điểm của (SAC) với BD là giao điểm của SA và BD." sai vì giao điểm của BD và (SAC) là giao điểm của BD và AC.
Đáp án "Giao điểm của (SAB) với CM là giao điểm của SA và CM." sai vì CM không cắt SA.
Đáp án "Đường thẳng DM không cắt mặt phẳng (SBC)." sai vì DM cắt mặt phẳng (SBC) tại giao điểm của DM và giao tuyến của hai mặt phẳng (SAD) và (SBC).
Hàm số
tuần hoàn có chu kì
khi
Hàm số có nghĩa
.
Chu kì của hàm số .
Tính tổng
?
Xét dãy số là cấp số nhân với
Cho các số thực
thỏa mãn
. Số giao điểm của đồ thị hàm số
và trục
là
Đáp án: 3
Cho các số thực thỏa mãn
. Số giao điểm của đồ thị hàm số
và trục
là
Đáp án: 3
Ta có sao cho
(1).
Ta có sao cho
(2).
Ta có sao cho
(3).
Từ (1), (2) và (3) ta suy ra số giao điểm của đồ thị hàm số và trục bằng 3.
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
là điểm thuộc đoạn
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính tỉ số
.
Hình vẽ minh họa
Giả sử . Nối
với
cắt
tại
Suy ra
Ta có: . Suy ra
.
Cho tứ diện
. Trên các cạnh
lần lượt lấy các điểm
là trung điểm, trên cạnh
lấy điểm
sao cho
. Gọi
, khi đó tỉ số độ dài giữa
và
là:
Hình vẽ minh họa
Từ giả thiết bài ra suy ra LK // AC mà (KLN) ∩ (DAC) = d
=> d // AC
Xét mặt phẳng (DAB) qua N dựng d song song AC
=> {P} = AD ∩ d
Xét tam giác DAC vì PN // AC theo định lý Ta-lét ta có:
Ta lại có:
Cho hình chóp
. Gọi
và
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
là đường trung bình của tam giác
nên
mà
.
Tìm số nghiệm của phương trình
trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Tính giới hạn ![]()
Ta có:
Nếu các dãy số
thỏa mãn
và
thì
bằng:
Ta có .
Tổng các nghiệm của phương trình
trong khoảng
là:
Giải phương trình:
Xét nghiệm
Do =>
=>
Xét nghiệm
Do
vậy tổng tất cả các nghiệm của phương trình là:
Khẳng định nào sau đây là sai.
Khẳng định sai: "Nếu 3 đường thẳng chắn trên hai cát tuyến những đoạn thẳng tương ứng tỉ lệ thì ba đường thẳng đó song song với nhau."
Cho hàm số
hàm số f(x) liên tục tại:
Tập xác định:
Vậy hàm số liên tục tại
Hàm số liên tục khi
hàm số liên tục khi
Tại x = 1 ta có:
Vậy hàm số liên tục tại
Hàm số liên tục trên
Cho tứ diện
như hình vẽ.

Khẳng định nào sau đây đúng?
Khẳng định đúng là