Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Với
Thuộc góc phần tư thứ IV và thứ nhất nên hàm số đồng biến trên khoảng
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Với
Thuộc góc phần tư thứ IV và thứ nhất nên hàm số đồng biến trên khoảng
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho dãy số
với
. Tính
.
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề sai: "Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì cắt mặt phẳng còn lại." vì hai mặt phẳng cùng vuông góc với một mặt phẳng có thể cắt nhau.
Cho hai mặt phẳng (P), (Q) cắt nhau theo giao tuyến là đường thẳng d. Đường thẳng a song song với cả hai mặt phẳng (P), (Q). Khẳng định nào sau đây đúng?
Sử dụng hệ quả: Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.
Vậy a song song d
Xét đường tròn bán kính
. Cung tròn có số đo
có độ dài tương ứng là:
Độ dài cung tròn góc (với
có đơn vị là độ):
Cho ba số x, y, z theo thứ tự đó vừa lập thành cấp số cộng, vừa lập thành cấp số nhân khi và chỉ khi:
Gọi m và n lần lượt là công sai và công bội của cấp số cộng và cấp số nhân.
Ta có:
Nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m bằng bao nhiêu?
Để các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì:
Vậy nếu các số 5 + m; 7 + 2m; 17 + m theo thứ tự lập thành cấp số cộng thì m = 4
Cho tứ diện
. Lấy
lần lượt là trung điểm của
và
và
là trọng tâm của tam giác
. Khi đó giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng đi qua điểm
Hình vẽ minh họa
Nhận lấy IJ là đường trung bình tam giác ACD suy ra IJ//CD.
Gọi
Ta có:
Suy ra d đi qua G và song song với CD,.
Người ta trồng 3003 cây theo hình tam giác như sau: Hàng thứ nhất có 1 cây. hàng thứ hai có hai cây, hàng thứ ba có ba cây,.... Vậy có tất cả bao nhiêu hàng?
Gọi số hàng cây được trồng là x (hàng)
Số cây các hàng là: 1; 2; 3; 4; ...; x - 1; x
Số cây của mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng
=>
Khi đó ta có:
Vậy có tất cả 77 hàng cây được trồng.
Với
, mệnh đề nào sau đây là đúng?
Ta có thuộc góc phần tư thứ I và II.
Phương trình
có nghiệm thỏa mãn x nằm trong khoảng
là:
Giải phương trình:
Do =>
thỏa mãn
Cho
với
. Phải bổ sung thêm giá trị
bằng bao nhiêu thì hàm số
liên tục trên
?
Ta có:
Với hàm số xác định => Hàm số liên tục khi x > 0 và x < 0
Với x = 0 ta có:
Để hàm số liên tục tại x = 0 thì
Với
là góc bất kì và các biểu thức có nghĩa. Đẳng thức nào dưới đây đúng?
Đẳng thức đúng: .
Cho
và
là một số nguyên. Khi đó với mọi số nguyên dương
, có kết luận gì về
?
Ta có:
là một số nguyên
cũng là một số nguyên
Ta sẽ chứng minh là một số nguyên.
Ta có:
là một số nguyên
Giả sử là số nguyên với
. Ta sẽ chứng minh
cũng là số nguyên.
Ta có:
Theo giả thiết quy nạp ta có:
Vậy là một số nguyên.
Biết
với
. Tập nghiệm của phương trình
trên
có số phần tử là:
Ta có:
Theo đề I tồn tại hữu hạn nên phương trình phải có nghiệm kép
. Tức là:
Khi thì
Do đó nên phương trình
vô nghiệm.
Cho hình chóp S.ABC có diện tích đáy bằng 9. Mặt phẳng
song song với
cắt đoạn SA tại
sao cho
. Diện tích thiết diện của hình chóp S.ABC tạo bởi
bằng
Hình vẽ minh họa:
Gọi N, P lần lượt là giao điểm của mặt phẳng và các cạnh SB, SC.
Vì nên theo định lí Talet, ta có
.
Khi đó cắt hình chóp S.ABC theo thiết diện là tam giác MNP ðồng dạng với tam giác ABC theo tỉ số
.
Vậy .
Chọn công thức đúng trong các công thức cho sau đây? (Biết các biểu thức đều xác định).
Công thức đúng là:
Cho các giới hạn
. Tính giá trị biểu thức ![]()
Ta có:
Khẳng định nào sau đây đúng khi nói về mặt phẳng?
Theo cách xác định mặt phẳng thì “Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau”.
Xác định
.
Ta có: .
Với những giá trị nào của x thì giá trị của các hàm số
và
bằng nhau?
Xét phương trình hoành độ giao điểm: sin 3x = sin x
Số hạng đầu tiên của cấp số nhân
thỏa mãn hệ
là:
Ta có:
Trong không gian, cho ba đường thẳng
. Trong các mệnh đề sau mệnh đề nào đúng?
Nếu và
chéo nhau thì
và
không cùng thuộc một mặt phẳng.
Biết ba số
lập thành một cấp số nhân. Tính tổng các giá trị của m thỏa mãn?
Để ba số lập thành một cấp số nhân thì
Vậy tổng các giá trị của m là
Tìm số nghiệm của phương trình
trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Cho hình hộp
có
là trung điểm của
. Gọi mặt phẳng
đi qua
và song song với
. Giả sử
. Tỉ lệ độ dài của
và
là:
Hình vẽ minh họa:
Gọi trung điểm của lần lượt là
.
Dễ thấy
Xét mặt phẳng , gọi
Xét tam giác và tam giác
ta có:
(đối đỉnh)
(so le trong)
Vậy hay
Trong các dãy số
cho bởi số hạng tổng quát
sau, dã số nào là dãy số tăng?
Xét đáp án ta có:
=> Dãy số là dãy tăng.
Cho tứ diện
. Gọi
lần lượt là trung điểm của các cạnh
và
. Mặt phẳng qua
cắt
lần lượt tại
. Biết
cắt
tại
. Ba điểm nào sau đây thẳng hàng?
Hình vẽ minh họa
Ta có:
Mà
Vậy ba điểm thẳng hàng.
Tính giới hạn ![]()
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Hai đường thẳng không có điểm chung thì chúng có thể song song với nhau (khi chúng đồng phẳng) hoặc chéo nhau (khi chúng không đồng phẳng).
Vậy mệnh đề sai: "Hai đường thẳng không có điểm chung thì chéo nhau."
Cho hàm số
. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Giá trị của
bằng:
Ta có:
Cho dãy số
là cấp số cộng với:
Ta có: là một cấp số cộng
=>
Cho cấp số cộng
biết
,
Khi đó
bằng
Ta có
Vậy
Cho hình chóp
có đáy
là hình bình hành. Xác định giao tuyến của hai mặt phẳng
và
:
Hình vẽ minh họa
Gọi
Khi đó đi qua
.
Xét ba mặt phẳng .
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Cho dãy số
với mọi
. Khi đó số hạng thứ 5 của dãy là:
Ta có:
Khi đó số hạng thứ 5 của dãy là 48
Xét đường tròn lượng giác như hình vẽ. Biết
, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?


Ta có:
Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.
Tính giới hạn ![]()
Ta có:
Ta có:
=>
Cho hình chóp
có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Cho hình chóp có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Hình vẽ minh họa
Ta có là điểm trên cạnh
,
nên
.
nên
suy ra
.
Trong
chính là giao điểm của
và
.
Trong , có
nên hai tam giác
và
đồng dạng.
Do đó .
Khẳng định nào dưới đây sai?
Số hạng tổng quát của cấp số cộng (un) là với công sai d và số hạng đầu u1
Cho công thức
biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với
là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.
Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số đạt giá trị lớn nhất.
Khi đó .
Vì nên ta có
.
Do đó (tháng đầu tiên của năm)
bằng
Ta có:
Cho các số thực
thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Cho các số thực thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Xét hàm số
Theo giả thiết
Ta có là hàm đa thức nên liên tục trên
suy ra phương trình
có ít nhất một nghiệm trên
nên phương trình
có ít nhất một nghiệm trên khoảng
suy ra phương trình
có ít nhất một nghiệm trên khoảng
Từ ;
và
ta có phương trình
có ít nhất 3 nghiệm.
Mặt khác là phương trình bậc ba nên có tối đa 3 nghiệm.
Vậy phương trình có đúng 3 nghiệm.
Cho hàm số 
Có bao nhiêu giá trị nguyên của
để hàm số gián đoạn tại ![]()
Đáp án: 2024
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
TXĐ:
Ta có:
Để hàm số gián đoạn tại thì
Vậy có giá trị nguyên của
để hàm số gián đoạn tại