Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Hàm số
liên tục trên:
Ta có:
=> Tập xác định
Vậy hàm số liên tục trên
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Biết
. Hỏi giá trị a thuộc tập hợp nào dưới đây?
Ta có:
bằng
Ta có:
Cho tứ diện đều
. Trên mỗi cạnh của tứ diện, ta đánh dấu
điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có
đỉnh lấy từ
điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?
Đáp án: 216
Cho tứ diện đều . Trên mỗi cạnh của tứ diện, ta đánh dấu
điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có
đỉnh lấy từ
điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?
Đáp án: 216
Hình vẽ minh họa
Không mất tính tổng quát, xét mặt bên .
Giả sử song song với
. Khi đó, số tam giác có cạnh
nằm trong mặt phẳng song song với đúng một cạnh của tứ diện là 6 tam giác, gồm
,
,
,
,
.
Trong mặt bên , nối các điểm chia đều các cạnh
ta thấy có 3 đoạn thẳng song song với
, 3 đoạn thẳng song song với
và 3 đoạn thẳng song song với
.
Mặt khác, vai trò 4 mặt của tứ diện là như nhau.
Vậy, số tam giác thỏa mãn yêu cầu đề bài là .
Giải phương trình
ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:
Ta có:
Suy ra:
Nghiệm âm lớn nhất của phương trình là: ứng với
Nghiệm dương nhỏ nhất của phương trình là: ứng với
Một cấp số nhân có
số hạng, công bội q bằng
số hạng thứ nhất, tổng hai số hạng đầu bằng
. Xác định cấp số nhân?
Theo bài ra ta có:
Cho hai hàm số
. Mệnh đề nào sau đây đúng?
Xét hàm số có tập xác định
Với mọi x thuộc D => -x thuộc D ta có:
Vậy f(x) là hàm số chẵn
Tương tự xét hàm số
Với mọi x thuộc D => -x thuộc D ta có:
Vậy g(x) là hàm số chẵn.
Cho cấp số nhân
có
. Tính
.
Ta có
Vậy .
Một hãng taxi đưa ra giá cước
(đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Một hãng taxi đưa ra giá cước (đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Tại ta có:
.
.
Hàm số liên tục tại thì
.
Cho tổng
.
Khi đó công thức tính tổng S(n) là?
Viết ba số hạng xen giữa các số 2 và 22 để được một cấp số cộng có năm số hạng.
Khi viết xen giữa 2 và 22 ba số hạng ta được một cấp số cộng có 5 số hạng có:
u1 = 2; u5 = 22. Ta cần tìm u2; u3; u4
Ta có:
Cho dãy số
, biết
. Mệnh đề nào sau đây sai?
Ta có:
Vậy mệnh đề sai là:
Cho các số thực
thỏa mãn
. Khi đó số giao điểm của hàm số
với trục
là:
Hàm số xác định và liên tục trên
.
Hàm số bậc ba nên đồ thị hàm số cắt Ox tối đa tại 3 điểm (1)
Ta có:
suy ra
sao cho
Lại có: suy ra
sao cho
Mặt khác
Từ đó suy ra
Do đó đồ thị hàm số cắt Ox tại ít nhất ba điểm (2)
Từ (1) và (2) suy ra đồ thị hàm số đã cho cắt trục Ox tại đúng ba điểm.
Chọn mệnh đề đúng trong các mệnh đề sau:
Hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong một mặt phẳng.
Do đó mệnh đề "Trong không gian hai đường thẳng chéo nhau thì không có điểm chung" đúng.
Tìm mệnh đề sai trong các mệnh đề sau?
Phép chiếu song song chỉ có thể biến đường thẳng thành đường thẳng hoặc thành một điểm.
Tính giới hạn ![]()
Khi ta có:
Cho hình chóp
có đáy
là hình bình hành. Gọi là giao điểm của hai đường chéo hình bình hành. Một mặt phẳng
qua
, song song với
. Thiết diện tạo bởi
và hình chóp là hình gì?
Hình vẽ minh họa
Do (a) // CD nên giao tuyến d = (a) ∩ (ABCD) là đường thẳng qua O và song song với CD. Gọi G, H lần lượt là giao điểm của d với BC,AD.
Do (a) // SA nên giao tuyến a = (a) ∩ (SAB) là đường thẳng qua H và song song với SA.
Gọi I là giao điểm của a với SD.
Do (a) // CD nên giao tuyến b = (a) ∩ (SCD) là đường thẳng qua I và song song với CD.
Gọi J lần lượt là giao điểm của b với SC.
Vậy thiết diện tạo bởi (a) và hình chóp là hình thang GHIJ vì GH // IJ //CD.
Tìm số nghiệm của phương trình
trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Cho cấp số cộng
. Tính ![]()
Ta có:
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính
.
Điều kiện xác định
Ta có:
=> Phương trình tương đương
=>
Cho cấp số cộng
thỏa mãn
. Khi đó
bằng:
Ta có:
Khi điểm M thuộc đường thẳng d, mệnh đề nào sau đây đúng:
Mệnh đề đúng .
Cho hình bình hành
tâm
. Gọi
lần lượt là các đường thẳng đi qua
và song song với nhau. Mặt phẳng
đi qua điểm
cắt các đường
lần lượt tại
sao cho
. Độ dài cạnh
là: 2
Cho hình bình hành tâm
. Gọi
lần lượt là các đường thẳng đi qua
và song song với nhau. Mặt phẳng
đi qua điểm
cắt các đường
lần lượt tại
sao cho
. Độ dài cạnh
là: 2
Hình vẽ minh họa
Gọi là trung điểm của
.
. Mà
nên
Hình thang có
là đường trung bình nên
Cho
. Tính giá trị
bằng
Ta có:
Cho tứ diện
. Gọi
sao cho
. Mặt phẳng
chứa đường thẳng
đồng thời song song với đường thẳng
. Khi đó hình tạo bởi các giao tuyến của mặt phẳng
và các mặt của tứ diện
là:
Hình vẽ minh họa:
Xét và (BCD), ta có điểm N chung, CD //
=> ∩ (BCD) = NF // CD, với F ∈ BD.
Xét và (ACD), ta có điểm M chung, CD //
=> ∩ (ACD) = ME // CD, với E ∈ AC.
Từ đó ta được MF = ∩ (ABD) và EN =
∩ (ABC)
=> Hình tạo bởi các giao tuyến của mặt phẳng và các mặt của tứ diện
là tứ giác ENFM
Ta lại có ME // CD // NF nên ENFM là hình thang.
Từ giả thiết ta có:
Mà
Vậy hình thang có đáy lớn gấp đôi đáy nhỏ.
Trong các dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là một cấp số nhân?
Xét dãy số ta có:
Vậy dãy số là cấp số nhân với q = 1/3
Giá trị của
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra
Vậy: .
Tính
.
Ta có:
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Mệnh đề nào trong các mệnh đề sau đây là sai?
Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy.
Đồ thị hàm số
được suy từ đồ thị (C) của hàm số bằng cách:
Nhắc lại lý thuyết:
Cho (C) là đồ thị của hàm số và
, ta có:
+ Tịnh tiến (C) lên p trên đơn vị thì được đồ thị của hàm số .
+ Tịnh tiến (C) xuống dưới p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang trái p đơn vị thì được đồ thị của hàm số
+ Tịnh tiến (C) sang phải p đơn vị thì được đồ thị của hàm số
Vậy đồ thị hàm số được suy từ đồ thị hàm số
bằng cách tịnh tiến sang phải
đơn vị.
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của các cạnh AD và BC; G là trọng tâm của tam giác BCD. Tìm giao điểm của đường thẳng MG và mặt phẳng (ABC).
Hình vẽ minh họa
Giao điểm của đường thẳng MG và đường thẳng AN là giao điểm của đường thẳng MG và đường thẳng AN.
Cho cấp số nhân
với
. Viết bốn số hạng đầu tiên của cấp số nhân.
Ta có:
Trong các đẳng thức sau, đẳng thức nào đúng?
Công thức đúng là:
Cho hình lăng trụ
. Gọi trung điểm của
lần lượt là
. Qua phép chiếu song song phương
, mặt phẳng chiếu
biến điểm
thành điểm nào?
Hình vẽ minh họa
Ta có: suy ra
là hình bình hành.
Suy ra phép chiếu song song phương , mặt phẳng chiếu
biến điểm
thành
.
Tổng n số hạng đầu tiên của một cấp số cộng là
. Tìm số hạng đầu tiên
và công sai d của cấp số cộng đã cho.
Ta có:
Mặt khác
Khẳng định nào sau đây đúng?
Trong khoảng thì hàm số
đồng biến.
Cho hình lập phương
. Khẳng định nào sau đây sai?
Ta có: luôn đúng
=> Hai mặt phẳng không song song với nhau.
Phương trình
có bao nhiêu nghiệm thuộc khoảng
?
Điều kiện xác định:
Do
Vậy có tất cả 38 nghiệm
Khẳng định nào sai trong các khẳng định sau?
Ta có:
Tính giới hạn của hàm số
.
Ta có: