Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M,N,K lần lượt là trung điểm của CD,CB,SA. Gọi H là giao điểm của ACMN. Giao điểm của SO với (MNK) là điểm E. Hãy chọn cách xác định điểm E đúng nhất trong bốn phương án sau.

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi E = KH \cap SO.

    HK \subset (MNK) nên E = SO \cap (MNK)

  • Câu 2: Vận dụng

    Cho công thức y
= 3sin\left( \frac{\pi}{180}(x + 60) ight) + 13 biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với 1 \leq x \leq 365 là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.

    Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số y = 3sin\left( \frac{\pi}{180}(x + 60) ight) +
13 đạt giá trị lớn nhất.

    Khi đó sin\left( \frac{\pi}{180}(x + 60)
ight) = 1 \Leftrightarrow x = 30 + k360,k \in Z.

    1 \leq x \leq 365 nên ta có 1 \leq 30 + k360 \leq 365 \Leftrightarrow -
0,08 \leq k \leq 0,93 \Rightarrow k = 0.

    Do đó x = 30 (tháng đầu tiên của năm)

  • Câu 3: Nhận biết

    Cho các mệnh đề:

    1) Nếu hàm số y = f(x) liên tục trên (a;b)f(a).f(b) < 0 thì tồn tại x_{0} \in (a;b) sao cho f\left( x_{0} ight) = 0.

    2) Nếu hàm số y = f(x) liên tục trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm.

    3) Nếu hàm số y = f(x) đơn điệu trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm duy nhất trên (a;b).

    Trong các mệnh đề trên:

    Theo tính chất hàm số liên tục thì

    1) Nếu hàm số y = f(x) liên tục trên (a;b)f(a).f(b) < 0 thì tồn tại x_{0} \in (a;b) sao cho f\left( x_{0} ight) = 0. Mệnh đề sai.

    2) Nếu hàm số y = f(x) liên tục trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm. Mệnh đề đúng.

    3) Nếu hàm số y = f(x) đơn điệu trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm duy nhất trên (a;b). Mệnh đề đúng.

  • Câu 4: Vận dụng

    Người ta trồng 3003 cây theo hình tam giác như sau: Hàng thứ nhất có 1 cây. hàng thứ hai có hai cây, hàng thứ ba có ba cây,.... Vậy có tất cả bao nhiêu hàng?

    Gọi số hàng cây được trồng là x (hàng)

    Số cây các hàng là: 1; 2; 3; 4; ...; x - 1; x

    Số cây của mỗi hàng (bắt đầu từ hàng thứ nhất) lập thành một cấp số cộng 

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 1} \\   {d = 1} \end{array}} ight.

    Khi đó ta có:

    \begin{matrix}  {S_x} = \dfrac{{x\left[ {2.{u_1} + \left( {x - 1} ight).d} ight]}}{2} \hfill \\   \Leftrightarrow 3003 = \dfrac{{x\left[ {2.{u_1} + \left( {x - 1} ight).d} ight]}}{2} \hfill \\   \Leftrightarrow 6006 = 2x + {x^2} - x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 77\left( {tm} ight)} \\   {x =  - 78\left( {ktm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Vậy có tất cả 77 hàng cây được trồng.

  • Câu 5: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi trung điểm của AB,A'B' lần lượt là I,I'. Qua phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành điểm nào?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AI//B'I' \\
AI = B'I' \\
\end{matrix} ight. suy ra AIB'I' là hình bình hành.

    Suy ra phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành B'.

  • Câu 6: Nhận biết

    Cho dãy số (u_{n}), với {u_n} = {( - 1)^n}. Mệnh đề nào sau đây đúng?

    Ta có: {u_n} = {( - 1)^n} là dãy thay dấu nên không tăng, không giảm.

    Tập giá trị của dãy số {u_n} = {( - 1)^n} là {-1; 1}

    \Rightarrow  - 1 \leqslant {u_n} \leqslant 1

    Vậy dãy số u_{n} là dãy số bị chặn.

  • Câu 7: Nhận biết

    Đồ thị hàm số y = \cos x - \frac{\pi }{4} đi qua điểm nào sau đây?

     Thay giá trị x =  - \frac{\pi }{2};y = \frac{\pi }{4} vào hàm số ta có:

    \cos \left( { - \frac{\pi }{2}} ight) - \frac{\pi }{4} =- \frac{\pi }{4}

    Vậy điểm thuộc đồ thị hàm số là: y = \cos x - \frac{\pi }{4}

  • Câu 8: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 9: Vận dụng

    Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?

    Phát biểu nào sau đây là đúng

    Đáp án "Giao điểm của (SMC) với BD là giao điểm của CN với BD, trong đó N là giao điểm của SM và AD." đúng.

    Đáp án "Giao điểm của (SAC) với BD là giao điểm của SA và BD." sai vì giao điểm của BD và (SAC) là giao điểm của BD và AC.

    Đáp án "Giao điểm của (SAB) với CM là giao điểm của SA và CM." sai vì CM không cắt SA.

    Đáp án "Đường thẳng DM không cắt mặt phẳng (SBC)." sai vì DM cắt mặt phẳng (SBC) tại giao điểm của DM và giao tuyến của hai mặt phẳng (SAD) và (SBC).

  • Câu 10: Thông hiểu

    Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x không tuần hoàn. Thật vậy:

    Tập xác định {\text{D}} = \mathbb{R}.

    Giả sử f\left( {x + T} ight) = f\left( x ight),{\text{ }}\forall x \in {\text{D}}

    \Leftrightarrow \left( {x + T} ight) + \sin \left( {x + T} ight) = x + \sin x,{\text{ }}\forall x \in {\text{D}}

    .\Leftrightarrow T + \sin \left( {x + T} ight) = \sin x,{\text{ }}\forall x \in {\text{D}} (*)

    Cho x = 0 và x = π, ta được

    \left\{ \begin{gathered}  T + \sin x = \sin 0 = 0 \hfill \\  T + \sin \left( {\pi  + T} ight) = \sin \pi  = 0 \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}2T + \sin T + \sin \left( {\pi  + T} ight) = 0 \Leftrightarrow T = 0

    Điều này trái với định nghĩa là T > 0

    Vậy hàm số y = x + \sin x không phải là hàm số tuần hoàn.

    Tương tự chứng minh cho các hàm số y = x\cos xy = \frac{{\sin x}}{x} không tuần hoàn.

  • Câu 11: Nhận biết

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành tâm O, gọi M là trung điểm của CD. Giao điểm của BM với mặt phẳng (SAD) là điểm:

    Hình vẽ minh họa

    Trong mặt phẳng (ABCD), gọi K = BMAD

    Ta có: \left\{ \begin{gathered}
  K \in AD \hfill \\
  AD \in \left( {SAD} ight) \hfill \\ 
\end{gathered}  ight. \Rightarrow K \in \left( {SAD} ight)K \in BM nên K là giao điểm của BM với mặt phẳng (SAD).

  • Câu 12: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q . Gọi I là giao điểm của MQNP. Các mệnh đề sau đúng hay sai?

    a) SI//AB. Sai||Đúng

    b) SI//AC. Sai||Đúng

    c) SI//AD. Đúng||Sai

    d) SI//BD. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình chữ nhật. Mặt phẳng (P) cắt các cạnh SA, SB, SC, SD lần lượt tại M, N, P, Q . Gọi I là giao điểm của MQNP. Các mệnh đề sau đúng hay sai?

    a) SI//AB. Sai||Đúng

    b) SI//AC. Sai||Đúng

    c) SI//AD. Đúng||Sai

    d) SI//BD. Sai||Đúng

    Hình vẽ minh họa

    Ta có:SI = (SBC) \cap (SAD)

    Do \left\{ \begin{matrix}
SI = (SAD) \cap (SBC)\ \ \ \ \ \ \ \ \ \ \ \ \ \  \\
\begin{matrix}
AD \subset (SAD)\ ;\ \ BC \subset (SBC) \\
AD \parallel BC \\
\end{matrix} \\
\end{matrix} ight. \Rightarrow
SI \parallel BC \parallel AD .

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Sai

  • Câu 13: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

    Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Ta có BDB'D' là hình bình hành nên BD//B'D'

    Tương tự ta có AD'//BC'. Từ đó suy ra BD//\left( {AB'D'} ight)BC'//\left( {AB'D'} ight).

    Vậy \left( {C'BD} ight)//\left( {AB'D'} ight)

  • Câu 14: Thông hiểu

    Điều kiện để phương trình 3.sinx + m.cosx = 5 có nghiệm là:

     Điều kiện để phương trình 3.sinx + m.cosx = 5 có nghiệm là

    \begin{matrix}  {3^2} + {m^2} < {5^2} \hfill \\   \Leftrightarrow {m^2} < 16 \Leftrightarrow  - 4 < m < 4 \hfill \\ \end{matrix}

    Vậy −4 < m < 4 thì phương trình đã cho có nghiệm.

  • Câu 15: Nhận biết

    Cho đường thẳng a nằm trong mặt phẳng (\alpha) và đường thẳng b nằm trong mặt phẳng (\beta). Mệnh đề nào sau đây sai?

    Nếu (\alpha)//(\beta) thì ngoài trường hợp a//b thì a,b có thể chéo nhau.

  • Câu 16: Nhận biết

    Số vị trí biểu diễn các nghiệm của phương trình \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 trên đường tròn lượng giác là?

     Ta có \tan \left( {2x - \frac{\pi }{3}} ight) + \sqrt 3  = 0 \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) =  - \sqrt 3

    \Leftrightarrow \tan \left( {2x - \frac{\pi }{3}} ight) = \tan \left( { - \frac{\pi }{3}} ight)

    \Leftrightarrow 2x - \frac{\pi }{3} =  - \,\frac{\pi }{3} + k\pi

    \Leftrightarrow 2x = k\pi  \Leftrightarrow x = \frac{{k\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Ta xét có 4 vị trí biểu diễn các nghiệm của phương trình đã cho trên đường tròn lượng giác là A, B, C, D.

  • Câu 17: Nhận biết

    Công thức nào sau đây đúng?

    Ta có:

    \cos3a = 4\cos^{3}a - 3\cos a

  • Câu 18: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Các điểm I;J lần lượt là trọng tâm các tam giác SAB, SAD, MC =
MD,(M \in CD). Mặt phẳng nào dưới đây song song với đường thẳng IJ?

    Hình vẽ minh họa

    Ta có:

    IJ//EF//BD \Rightarrow
IJ//(SBD)

  • Câu 19: Thông hiểu

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{3},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số nguyên dương n nhỏ nhất sao cho \sqrt{u_{n} - 1} \geq 2039190 là?

    Ta có: \left\{ \begin{matrix}
\begin{matrix}
\begin{matrix}
\begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{3} \\
\end{matrix} \\
u_{3} = u_{2} + 2^{3} \\
\end{matrix} \\
\ldots \\
\end{matrix} \\
u_{n + 1} = u_{n} + n^{3} \\
\end{matrix} ight.

     =  > un = 1 + 13 + 23 + … + (n−1)3

    Ta lại có 13 + 23 + … + (n−1)3

    = (1 + 2 + 3 + \ldots + n - 1)^{2} =
\left( \frac{n(n - 1)}{2} ight)^{2}

    Suy ra u_{n} = 1 + \left( \frac{n(n -
1)}{2} ight)^{2}

    Theo giả thiết ta có \sqrt{u_{n} - 1} \geq2039190 \Leftrightarrow \frac{n(n - 1)}{2} \geq 2039190

    \Leftrightarrow n(n - 1) \geq 4078380 \Leftrightarrow \left\lbrack \begin{matrix}n \geq 2020 \ \leq - 2019 \\\end{matrix} ight.

    n là số nguyên dương nhỏ nhất nên n = 2020.

  • Câu 20: Nhận biết

    Tìm giới hạn C =
\lim_{x ightarrow + \infty}\left( \frac{3 - x}{2x + 3}
ight)

    Ta có: C = \lim_{x ightarrow +\infty}\left( \dfrac{3 - x}{2x + 3} ight) = \lim_{x ightarrow +\infty}\dfrac{\dfrac{3}{x} - 1}{2 + \dfrac{3}{x}} = -\dfrac{1}{2}

  • Câu 21: Nhận biết

    Giá trị của \lim\frac{{(\sin n)}^{2}}{n + 2}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a}
> \frac{1}{a} - 2

    Suy ra

    \frac{\left( \sin n ight)^{2}}{n
+ 2} < \frac{1}{n + 2} < \frac{1}{n_{a} + 2} < a\ \forall n
> n_{a}

    Vậy:  \lim\frac{{{(sin}n)}^{2}}{n + 2} = 0 .

  • Câu 22: Vận dụng cao

    Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?

    Ta có 2sin\frac{x}{2} \cdot S = 2sinx\cdot sin\frac{x}{2} + 2sin2x \cdot sin\frac{x}{2} + .. + 2sinnx \cdotsin\frac{x}{2}

    = \cos\frac{x}{2} - \cos\frac{3x}{2} +\cos\frac{3x}{2} - \cos{x\frac{5x}{2}} + \ldots + \cos{x\frac{2n -1}{2}x} - \cos{\frac{2n + 1}{2}x}

    = cos\frac{x}{2} - cos\frac{2n +1}{2}x

    Vậy S = \frac{cos\frac{x}{2} - cos\frac{2n+ 1}{2}x}{2sin\frac{x}{2}}

  • Câu 23: Vận dụng

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    Đáp án là:

    Biết giới hạn \lim_{x ightarrow
2}\frac{\sqrt{3x + 3} + a}{x - 2} = \frac{b}{c}, a là số thực, b, c là các số nguyên dương và \frac{b}{c} tối giản.

    Tính tổng: a + b + c.

    Đáp án: 0

    \lim_{x ightarrow 2}(x - 2) =
0 nên \lim_{x ightarrow 2}\left(
\sqrt{3x + 3} + a ight) = 0.

    Suy ra a = - 3.

    Với a = - 3 ta được

    \lim_{x ightarrow 2}\frac{\sqrt{3x +
3} - 3}{x - 2} = \lim_{x ightarrow 2}\frac{\left( \sqrt{3x + 3} - 3
ight)\left( \sqrt{3x + 3} + 3 ight)}{(x - 2)\left( \sqrt{3x + 3} + 3
ight)}

    = \lim_{x ightarrow 2}\frac{3x - 6}{(x
- 2)\left( \sqrt{3x + 3} + 3 ight)} = \lim_{x ightarrow
2}\frac{3}{\sqrt{3x + 3} + 3} = \frac{1}{2}.

    Vậy b = 1;c = 2.

    Suy ra a + b + c = 0.

  • Câu 24: Thông hiểu

    Cho cấp số nhân \left( u_{n} ight)u_{1} = - 3;q = - 2. Tính tổng 10 số hạng đầu tiên của cấp số nhân đã cho.

    Ta có: \left\{ \begin{matrix}u_{1} = - 3 \\q = - 2 \\\end{matrix} ight.

    \Rightarrow S_{10} = u_{1}.\frac{1 -q^{10}}{1 - q} = ( - 3).\frac{1 - ( - 2)^{10}}{1 + 2} =1023

  • Câu 25: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Kiểm tra được y = \cot4x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    y = \frac{\sin x + 1}{\cos x} là hàm số không chẵn không lẻ

    y = \tan^{2}x,y = \left| \cot xight| là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.

  • Câu 26: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight)u_{1} = 3 và công bội q = 3. Số hạng tổng quát của cấp số nhân \left( u_{n}
ight)

    Số hạng tổng quát của cấp số nhân \left(
u_{n} ight)

    u_{n} = u_{1}.q^{n - 1} = 3.3^{n - 1} =
3^{n}.

  • Câu 27: Thông hiểu

    Tìm tập nghiệm của phương trình \frac{2cosx + \sqrt{2}}{\sqrt{2}\sin x + 1} =
0?

    Điều kiện: \sqrt{2}\sin x + 1 eq 0
\Leftrightarrow \sin x eq - \frac{1}{\sqrt{2}}

    \Leftrightarrow \left\{ \begin{matrix}x eq - \dfrac{\pi}{4} + k2\pi \\x eq \dfrac{5\pi}{4} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \frac{2\cos x + \sqrt{2}}{\sqrt{2}\sin x +1} = 0

    \Leftrightarrow 2cosx + \sqrt{2} = 0
\Leftrightarrow \cos x = - \frac{\sqrt{2}}{2}

    \Leftrightarrow \cos x = -
\frac{\sqrt{2}}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{3\pi}{4} + k2\pi \\x = - \dfrac{3\pi}{4} + k2\pi \\\end{matrix} ight.\ \left( k\mathbb{\in Z} ight)

    Kết hợp với điều kiện suy ra phương trình có nghiệm x = \frac{3\pi}{4} + k2\pi;k\mathbb{\in
Z}

    Vậy phương trình có tập nghiệm là: S =
\left\{ \frac{3\pi}{4} + k2\pi|k\mathbb{\in Z} ight\}

  • Câu 28: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.

    b) Xét phương trình f(x) = 7 \Rightarrow
f(x) - 7 = 0

    Đặt g(x) = f(x) - 7 ta có:

    \left\{ \begin{matrix}
g(1) = f(1) - 7 = - 5 \\
g(5) = f(5) - 7 = 3 \\
\end{matrix} ight.\  \Rightarrow g(1).g(5) < 0

    Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng (1;5).

    c) Ta có:

    I = \lim_{x ightarrow 1}\frac{xf(x) +
1}{x - 1} = \lim_{x ightarrow 1}\frac{xf(x) + x - x + 1}{x -
1}

    = \lim_{x ightarrow
1}\frac{x\left\lbrack f(x) + 1 ightbrack - (x - 1)}{x - 1} = \lim_{x
ightarrow 1}\left\{ \frac{x\left\lbrack f(x) + 1 ightbrack}{x - 1}
ight\} - 1

    = 1.( - 1) - 1 = - 2

    d) Các hàm số liên tục trên tập số thực là y = x^{2};y = \sin x;y = \frac{x^{2} - 1}{x^{2} +
x + 1}.

  • Câu 29: Thông hiểu

    Xác định \lim_{x
ightarrow 0}\frac{|x|}{x^{2}}.

    Ta có: \lim_{x ightarrow 0}\frac{|x|}{x^{2}}
= \lim_{x ightarrow 0}\frac{1}{|x|} = + \infty.

  • Câu 30: Vận dụng

    Cho khai triển {\left( {x - 2y + m} ight)^4}. Tìm m để tổng các hệ số của khai triển bằng 0.

    Tổng các hệ số của khai triển là giá trị của biểu thức tại x=y=1

    Vậy tổng các hệ số của khai triển là: {\left( {1 - 2.1 + m} ight)^4} = {\left( {m - 1} ight)^4}

    Để tổng các hệ số khai triển bằng 0 thì {\left( {m - 1} ight)^4} = 0 \Leftrightarrow m = 1

  • Câu 31: Thông hiểu

    Biết giới hạn \lim\frac{2n^{2} +
1}{3n^{3} - 3n + 3} = a\lim\frac{n\sqrt{n^{2} + 1}}{\sqrt{4n^{4} - n^{2}
+ 3}} = b. Khi đó:

    a) Giá trị a nhỏ hơn 0. Sai||Đúng

    b) Giá trị b lớn hơn 0. Đúng||Sai

    c) Phương trình lượng giác \cos x =
a có một nghiệm là x =
\frac{\pi}{2}. Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d = bu_{1} = a, thì u_{3} = \frac{3}{2}. Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\frac{2n^{2} +
1}{3n^{3} - 3n + 3} = a\lim\frac{n\sqrt{n^{2} + 1}}{\sqrt{4n^{4} - n^{2}
+ 3}} = b. Khi đó:

    a) Giá trị a nhỏ hơn 0. Sai||Đúng

    b) Giá trị b lớn hơn 0. Đúng||Sai

    c) Phương trình lượng giác \cos x =
a có một nghiệm là x =
\frac{\pi}{2}. Đúng||Sai

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d = bu_{1} = a, thì u_{3} = \frac{3}{2}. Sai||Đúng

    a) Ta có:

    \lim\dfrac{2n^{2} + 1}{3n^{3} - 3n + 3} =\lim\dfrac{n^{3}\left( \dfrac{2}{n} + \dfrac{1}{n^{3}} ight)}{n^{3}\left(3 - \dfrac{3}{n^{2}} + \dfrac{3}{n^{3}} ight)}

    = \lim\dfrac{\dfrac{2}{n} +\dfrac{1}{n^{3}}}{3 - \dfrac{3}{n^{2}} + \dfrac{3}{n^{3}}} = \dfrac{0}{3} =0

    b) Ta có:

    \lim\dfrac{n\sqrt{n^{2} +1}}{\sqrt{4n^{4} - n^{2} + 3}} = \lim\dfrac{n^{2}\sqrt{1 +\dfrac{1}{n^{2}}}}{n^{2}\sqrt{4 - \dfrac{1}{n^{2}} +\dfrac{3}{n^{4}}}}

    = \lim\dfrac{\sqrt{1 +\dfrac{1}{n^{2}}}}{\sqrt{4 - \dfrac{1}{n^{2}} + \dfrac{3}{n^{4}}}} =\dfrac{1}{2}.

    c) Phương trình lượng giác \cos x =
0 có một nghiệm là x =
\frac{\pi}{2}

    d) Cho cấp số cộng \left( u_{n}
ight) với công sai d =
\frac{1}{2}u_{1} = 0, thì u_{3} = 0 + 2.\frac{1}{2} =
1

    Kết luận:

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 32: Vận dụng

    Có bao nhiêu giá trị thực của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {{m^2}{x^2}{\text{        khi }}x \leqslant 2} \\ 
  {\left( {1 - m} ight)x{\text{   khi }}x > 2} 
\end{array}} ight. liên tục trên \mathbb{R}?

    Tập xác định D\mathbb{= R}

    Hàm số liên tục trên mỗi khoảng ( -
\infty;2);(2; + \infty)

    Khi đó hàm số f(x) liên tục trên \mathbb{R} khi và chỉ khi f(x) liên tục tại x = 2

    Hay \lim_{x ightarrow 2}f(x) =
f(2)

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = f(2)\ \ (*)

    Ta lại có:

    f(2) = 4m^{2}

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left\lbrack (1 - m)x ightbrack = 2(1 -
m)

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}\left( m^{2}x^{2} ight) = 4m^{2}

    Khi đó (*) \Leftrightarrow 4m^{2} = 2(1 -
m)

    \Leftrightarrow \left\lbrack\begin{matrix}m = 1 \\m = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 33: Thông hiểu

    Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10

    Ta có: {u_{10}} = {u_1} + \left( {10 - 1} ight)d = {u_{10}} =  - 2 + 9.3 = 25

  • Câu 34: Thông hiểu

    Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?

    \cos x - \sin x = \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left( x -
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left(
\frac{\pi}{4} - x ight)

    Ta có:

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    = \sqrt{2}\cos\left\lbrack \frac{\pi}{2}
- \left( \frac{\pi}{4} - x ight) ightbrack

    = \sqrt{2}\sin\left( \frac{\pi}{4} - x
ight)

    Vậy có hai đồng nhất thức.

  • Câu 35: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = \frac{1}{4};d = - \frac{1}{4}. Gọi S_{5} là tổng 5 số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}u_{1} = \dfrac{1}{4} \\d = - \dfrac{1}{4} \\\end{matrix} ight.

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{5} = 5u_{1} +
\frac{5.4.d}{2}

    \Leftrightarrow S_{5} = 5.\frac{1}{4} +
10.\left( - \frac{1}{4} ight) = - \frac{5}{4}

  • Câu 36: Thông hiểu

    Cho tứ diện ABCD, điểm M thuộc AC. Mặt phẳng (\alpha) đi qua M, song song với AB và AD. Thiết diện (\alpha) với tứ diện ABCD là hình gì?

    Hình vẽ minh họa

    Xác định thiết diện

    (\alpha) // (AB) => Giao tuyến của (\alpha) với (ABC) là đường thẳng qua M, song song với AB, cắt BC tại P.

    (\alpha) // AD => Giao tuyến của (\alpha) với (ADC) là đường thẳng qua M, song song với AD, cắt DC tại N.

    Vậy thiết diện là tam giác MNP.

  • Câu 37: Nhận biết

    Khẳng định nào dưới đây đúng?

    Ta có: \pi rad tương ứng với 180^{0}

    => 1rad ightarrow x^{0}

    \Rightarrow x^{0} = \frac{180.1}{\pi} =\frac{180}{\pi}

  • Câu 38: Vận dụng

    Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ các nửa đường thẳng Ax, By, Cz, Dt ở cùng phía so với mặt phẳng (ABCD), song song với nhau và không nằm trong (ABCD). Một mặt phẳng (P) cắt Ax, By, Cz, Dt tương ứng tại A', B', C', D' sao cho AA' = 3, BB' = 5, CC' = 4. Tính DD'.

    Đáp án: 2

    Đáp án là:

    Cho hình bình hành ABCD. Qua A, B, C, D lần lượt vẽ các nửa đường thẳng Ax, By, Cz, Dt ở cùng phía so với mặt phẳng (ABCD), song song với nhau và không nằm trong (ABCD). Một mặt phẳng (P) cắt Ax, By, Cz, Dt tương ứng tại A', B', C', D' sao cho AA' = 3, BB' = 5, CC' = 4. Tính DD'.

    Đáp án: 2

    Hình vẽ minh họa

    Do (P) cắt mặt phẳng (Ax,By) theo giao tuyến A'B'; cắt mặt phẳng (Cz,Dt) theo giao tuyến C'D', mà hai mặt phẳng (Ax,By)(Cz,Dt) song song nên A'B'//C'D'.

    Tương tự có A'D'//B'C' nên A'B'C'D' là hình bình hành.

    Gọi O, O' lần lượt là tâm ABCDA'B'C'D'.

    Dễ dàng có OO' là đường trung bình của hai hình thang AA'C'CBB'D'D nên OO' = \frac{AA' + CC'}{2} =
\frac{BB' + DD'}{2}.

    Từ đó ta có DD' = 2.

  • Câu 39: Vận dụng cao

    Tính tổng các nghiệm trong đoạn [0;30] của phương trình: \tan x = \tan 3x

    Điều kiện để phương trình có nghĩa:

    \left\{ {\begin{array}{*{20}{c}}  {\cos {\text{x}} e 0} \\   {\cos 3{\text{x}} e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x e \dfrac{\pi }{2} + k\pi } \\   {x e \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}} \end{array}} ight.\left( * ight)

    Khi đó, phương trình 3{\text{x}} = x + k\pi  \Leftrightarrow x = \frac{{k\pi }}{2} so sánh với đk

    \left[ \begin{gathered}  x = k2\pi  \hfill \\  x = \pi  + k2\pi  \hfill \\ \end{gathered}  ight.\,,\,x =  \in \left[ {0;30} ight]

    \Rightarrow k = \left\{ {0;...;4} ight\} \Rightarrow x \in \left\{ {0;\pi ;2\pi ;....;9\pi } ight\}

    Vậy, tổng các nghiệm trong đoạn  [0;30]  của phương trình là: 45\pi.

  • Câu 40: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 41: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy một điểm M trên cạnh SB;(M eq S;M eq B). Thiết diện tạo bởi mặt phẳng (ADM) với hình chóp là:

    Hình vẽ minh họa

    Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.

    Ta có: MN // BC // AD nên thiết diện AMND là hình thang.

  • Câu 42: Nhận biết

    Cho cấp số cộng (un) có u_1 = -4; d = \frac{1}{2}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 4} \\   {d = \dfrac{1}{2}} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\ \end{matrix}

  • Câu 43: Vận dụng cao

    Cho hàm số y = f(x) = ax^{3} +
bx^{2} + cx + 2020. Với a eq
0,a,b,c\mathbb{\in R}a + 2b +
4c - 8 > 0. Biết \lim_{x
ightarrow - \infty}f(x) = + \infty. Hỏi đồ thị hàm số y = g(x) = a(x - 2021)^{3} + b(x - 2021)^{2} + c(x
- 2021) - 1 cắt trục hoành tại bao nhiêu điểm?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = ax^{3} +
bx^{2} + cx + 2020. Với a eq
0,a,b,c\mathbb{\in R}a + 2b +
4c - 8 > 0. Biết \lim_{x
ightarrow - \infty}f(x) = + \infty. Hỏi đồ thị hàm số y = g(x) = a(x - 2021)^{3} + b(x - 2021)^{2} + c(x
- 2021) - 1 cắt trục hoành tại bao nhiêu điểm?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 44: Vận dụng cao

    Tính tổng S = \left( \frac{1}{2} -
\frac{1}{3} ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... +
\left( \frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...:

    Ta có:

    S = \left( \frac{1}{2} - \frac{1}{3}
ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... + \left(
\frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...

    = \left( {\underbrace {\dfrac{1}{2} + \dfrac{1}{4} + ... + \dfrac{1}{{{2^n}}} + ...}_{CSN:{u_1} = q = \dfrac{1}{2}}} ight) - \left( {\underbrace {\dfrac{1}{3} + \dfrac{1}{5} + .... + \dfrac{1}{{{3^n}}}}_{CSN:{u_1} = q = \dfrac{1}{3}}} ight)

    = \dfrac{\dfrac{1}{2}}{1 - \dfrac{1}{2}} -\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = 1 - \dfrac{1}{2} =\dfrac{1}{2}

  • Câu 45: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo