Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Một mặt phẳng hoàn toàn được xác định nếu biết điều nào sau đây?

    Phương án "Ba điểm mà nó đi qua" sai vì nếu ba điểm đó thẳng hàng thì chưa thể xác định được mặt phẳng.

    Phương án "Một điểm và một đường thẳng thuộc nó" sai vì nếu điểm đó nằm trên đường thẳng thì ta chưa thể xác định được.

    Phương án "Ba điểm không thẳng hàng" đúng (theo tính chất thừa nhận 2)

    Phương án "Hai đường thẳng thuộc mặt phẳng" sai vì hai đường thẳng có thể trùng nhau.

  • Câu 2: Vận dụng

    Cho tứ diện ABCD cạnh bằng 1. Gọi M là trung điểm của AB, E đối xứng với B qua C, F đối xứng với B qua D. Xác định các giao điểm của mặt phẳng (MEF) với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh họa

    Gọi I = MF \cap AD,H = ME \cap
AC

    Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.

    Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.

    Suy ra \frac{HA}{HC} =
\frac{1}{2}. Chứng minh tương tự ta có: \frac{IA}{ID} = \frac{1}{2}. Do đó ta có:

    \frac{HI}{CD} = \frac{2}{3} \Rightarrow
HI = \frac{2}{3}

    Tứ diện đều ABCD có cạnh bằng 1 nên \left\{ \begin{matrix}
\widehat{MAI} = 60^{0} \\
AM = \frac{1}{2};AI = \frac{2}{3} \\
\end{matrix} ight.

    Áp dụng định lí cosin cho tam giác ta có:

    MI^{2} = MA^{2} + IA^{2} -
2MA.IA.cos60^{0}

    \Rightarrow MI^{2} =
\frac{13}{36}

    \Rightarrow MI = \sqrt{\frac{13}{36}} =
\frac{\sqrt{13}}{6} = MH

    Áp dụng công thức Hê- rông tính diện tích tam giác ta được: S_{MHI} = \frac{1}{6}

  • Câu 3: Nhận biết

    Giá trị của \lim(2n + 1) bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} > \frac{M - 1}{2}

    Ta có:

    2n + 1 > 2n_{M} + 1 > M\ ,\
\ \ \forall n > n_{M}.

    = > \lim(2n + 1) = +
\infty

  • Câu 4: Vận dụng

    Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi t dần về dương vô cùng?

    Đáp án: 30

    Đáp án là:

    Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi t dần về dương vô cùng?

    Đáp án: 30

    Sau t phút bơm nước vào hồ thì lượng nước là 600 + 15t (lít) và lượng muối có được là 30.15t (gam).

    Nồng độ muối của nước là

    C(t) = \frac{30.15t}{600 + 15t} =
\frac{30t}{40 + t} (gam/lít).

    Khi t dần về dương vô cùng, ta có

    \lim_{t ightarrow + \infty}C(t) =
\lim_{t ightarrow + \infty}\frac{30t}{40 + t} = \lim_{t ightarrow +
\infty}\frac{30t}{t\left( \frac{40}{t} + 1 ight)}

    = \lim_{t ightarrow +
\infty}\frac{30}{\frac{40}{t} + 1} = 30\ (gam/lít).

  • Câu 5: Vận dụng

    Cho các hàm số sau, hàm số nào là hàm số lẻ?

    Ta có: y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x

    Ta kiểm tra được y = x^{4} + \cos\left( x
- \frac{\pi}{3} ight)y =
tan^{2017}x + sin^{2018}x là hàm số không chẵn không lẻ

    y = 2015 + \cos x + sin^{2018}x là hàm số chẵn

    y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

    Vậy y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

  • Câu 6: Thông hiểu

    Với n \in \mathbb{N}^{*}, cho dãy số \left( u_{n} ight) xác định bởi hệ thức truy hồi u_{1} =
2, u_{n + 1} = 2u_{n} + 3. Giá trị của số hạng thứ 4 bằng

    Ta có:

    u_{2} = 2u_{1} + 3 = 2.2 + 3 =
7,

    u_{3} = 2u_{2} + 3 = 2.7 + 3 =
17,

    u_{4} = 2u_{3} + 3 = 2.17 + 3 =
37.

  • Câu 7: Nhận biết

    Trong các dãy số sau, dãy số nào là một cấp số nhân?

    Ta có:

    Dãy số \left( u_{n} ight) là cấp số nhân

    \Leftrightarrow u_{n} = q.u_{n -
1};\left( n \in \mathbb{N}^{*} ight)

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}} = ... = q;\left( u_{n} eq 0
ight)

    Gọi q là công bội.

    Xét đáp án 128; - 64;32; -
16;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} = -
\frac{1}{2} = \frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}}

    Xét đáp án \sqrt{2};2;4;4\sqrt{2};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\sqrt{2}} eq 2 = \frac{u_{3}}{u_{2}}

    Xét đáp án 5;6;7;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{6}{5} eq \frac{7}{6} = \frac{u_{3}}{u_{2}}

    Xét đáp án 15;5;1;\frac{1}{5};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{3} eq \frac{1}{5} = \frac{u_{3}}{u_{2}}

  • Câu 8: Nhận biết

    Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?

    Hình vẽ minh họa

    Với 4 điểm không đồng phẳng A,B,C,D có thể xác định được 4 mặt phẳng phân biệt từ các điểm đó là (ABC),(BCD),(ACD),(ABD).

  • Câu 9: Vận dụng

    Số đo ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân. Biết thể tích của khối hộp là 125cm^{3} và diện tích toàn phần là 175cm^{2}. Tính tổng số đo ba kích thước của hình hộp chữ nhật đó.

    Ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân nên ta có thể gọi ba kích thước đó là \frac{a}{q};q;aq.

    Thể tích khối hộp chữ nhật: V =
\frac{a}{q}.a.a.q = a^{3} = 125 \Rightarrow a = 5

    Diện tích toàn phần của hình hộp chữ nhật là

    S_{tp} = 2.\left( \frac{a}{q}.a + a.a.q
+ a.q + \frac{a}{q} ight)

    = 2a^{2}\left( 1 + q + \frac{1}{q}
ight) = 50.\left( 1 + q + \frac{1}{q} ight)

    Theo giả thiết ta có:

    50.\left( 1 + q + \frac{1}{q} ight) =175 \Rightarrow \left\lbrack \begin{matrix}q = 2 \\q = \dfrac{1}{2} \\\end{matrix} ight.

    Với q = 2 hoặc q = \frac{1}{2} thì kích thước của hình hộp chữ nhật là 2,5cm;5cm;10cm

    => Tổng các kích thước là 17,5cm.

  • Câu 10: Nhận biết

    Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.

    Ta có: d = 6 - 1 = 5

    Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng

    => x = 6 + 5 = 11

    Vậy x = 11

  • Câu 11: Thông hiểu

    Giới hạn cần tìm của E =
\lim\frac{\sqrt{n^{3} + 2n} + 1}{n + 2} bằng:

    E = \lim\frac{\sqrt{n^{3} + 2n} + 1}{n +
2} = + \infty

  • Câu 12: Nhận biết

    Chọn khẳng định đúng trong các khẳng định sau:

    Theo công thức cộng

    \cos(a + b) = \cos a.cosb - \sin
a.sinb.

  • Câu 13: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Trên các cạnh AB,CD lần lượt lấy các điểm M,N làm trung điểm. Xác định giao tuyến hai mặt phẳng (SAC)(SMN)?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}AM//NC;(AB//CD) \\AM = NC = \dfrac{AB}{2} = \dfrac{DC}{2} \\\end{matrix} ight. suy ra tứ giác AMCN là hình bình hành.

    Do đó AC và MN cắt nhau tại trung điểm của mỗi đường.

    Mà O là trung điểm của AC nên O cũng là trung điểm của MN, hay ba điểm M, O, N thẳng hàng.

    Ta có: S \in (SAC) \cap
(SMN)(*)

    Mặt khác \left\{ \begin{matrix}
O \in (SAC);AC \subset (SAC) \\
O \in (SMN);MN \subset (SMN) \\
\end{matrix} ight.

    \Leftrightarrow O \in (SAC) \cap
(SMN)(**)

    Từ (*)(**) \Rightarrow (SAC) \cap (SMN) =
SO

  • Câu 14: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên khoảng ( -
2; + \infty). Đúng||Sai

    b) Biết rằng \lim\frac{an + 4}{4n + 3} =
- 2 khi đó 2a + 1 = - 15 Đúng||Sai

    c) \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = - 1 Sai||Đúng

    d) Phương trình x^{2} - 1000x^{2} + 0,01
= 0 có nghiệm thuộc khoảng ( -
1;0)(0;1) Sai||Đúng

    a) Hàm số f(x) = \frac{x^{2} + 1}{x^{2} +
5x + 6} có nghĩa khi x^{2} + 5x + 6
eq 0 \Leftrightarrow \left\{ \begin{matrix}
x eq - 3 \\
x eq 2 \\
\end{matrix} ight.

    Vậy theo định lí ta có hàm số f(x) =
\frac{x^{2} + 1}{x^{2} + 5x + 6} liên tục trên khoảng ( - \infty; - 3),( - 3; - 2),( - 2; +
\infty).

    b) Ta có: \lim\frac{an + 4}{4n + 3} =
\lim\frac{a + \frac{4}{n}}{4 + \frac{3}{n}} = \frac{a}{4}

    Khi đó: 2a + 1 = - 15.

    Theo bài ra ta có:

    \lim\frac{an + 4}{4n + 3} = - 2
\Leftrightarrow \frac{a}{4} = - 2 \Leftrightarrow a = - 8

    c) Ta có: x ightarrow 1^{+} \Rightarrow
x > 1 \Rightarrow x - 1 > 0

    \lim_{x ightarrow
1^{+}}\frac{\sqrt{x^{3} - x^{2}}}{\sqrt{x - 1} + 1 - x} = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x^{2}(x - 1)}}{\sqrt{x - 1} - (x -
1)}

    = \lim_{x ightarrow
1^{+}}\frac{x\sqrt{x - 1}}{\sqrt{x - 1}\left( 1 - \sqrt{x - 1} ight)}
= \lim_{x ightarrow 1^{+}}\frac{x}{1 - \sqrt{x - 1}} = 1s

    d) Xét hàm số x^{2} - 1000x^{2} + 0,01 =
f(x) có tập xác định D\mathbb{=
R}

    Suy ra hàm số f(x) cũng liên tục trên các khoảng ( - 1;0)(0;1).

    Ta có:

    \left\{ \begin{matrix}
f( - 1) = - 1000,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng ( - 1;0).

    Lại có: \left\{ \begin{matrix}
f(1) = - 999,99 \\
f(0) = 0,01 \\
\end{matrix} ight.\  \Rightarrow f(1).f(0) < 0

    Vậy phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 15: Nhận biết

    Cho lăng trụ tam giác ABC.A'B'C'G,G' lần lượt là trọng tâm tam giác ABCA'B'C', M \in AC sao cho \frac{AM}{MC} = 2. Mệnh đề nào sai?

    Hình vẽ minh họa

    GA//(BCC'B') sai vì \left\{ \begin{matrix}
GA \cap BC = N \\
BC \subset (BCC'B') \\
\end{matrix} ight.

  • Câu 16: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 17: Nhận biết

    Giải phương trình: \sqrt 3 \tan 2x - 3 = 0

     Giải phương trình:

    \begin{matrix}  \sqrt 3 \tan 2x - 3 = 0 \hfill \\   \Leftrightarrow \tan 2x = \sqrt 3  \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{3} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)có số hạng đầu u_{1} = -
5và công sai d = 3. Số 100 là số hạng thứ mấy của cấp số cộng?

    Ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 100 = - 5 + (n - 1)3
\Leftrightarrow n = 36

  • Câu 19: Thông hiểu

    Tìm x để ba số 1
+ x;9 + x;33 + x theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Ba số 1 + x;9 + x;33 + x theo thứ tự đó lập thành một cấp số nhân

    \Rightarrow (9 + x)^{2} = (1 + x).(33 +
x)

    \Rightarrow 81 + 18x + x^{2} = x^{2} +
34x + 33

    \Rightarrow 16x = 48

    \Rightarrow x = 3

  • Câu 20: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{x + 1}{x^{2} + 7x
+ 12} liên tục trên khoảng ( - 4; +
\infty) Sai||Đúng

    b) Phương trình 3x^{4} + 5x^{3} + 10 =
0 có nghiệm thuộc khoảng ( - 2; -
1). Đúng||Sai

    c) Giới hạn của hàm số f(x) = \left\{
\begin{matrix}
x^{2} - 3x\ \ \ \ \ \ ;\ x \geq 2 \\
x - 1\ \ \ \ \ \ \ \ \ \ ;\ x < 2 \\
\end{matrix} ight. khi x
ightarrow 2 bằng -1. Sai||Đúng

    d) Dãy số \left( u_{n} ight) với u_{n} = ( - 1)^{n}\sqrt{n} là dãy số không bị chặn. Đúng||Sai

    a) Ta có:

    f(x) = \frac{x + 1}{x^{2} + 7x +
12} có điều kiện xác định

    ( - \infty; - 4) \cup ( - 4; - 3) \cup (
- 3; + \infty)

    Do f(x) là hàm phân thức nên f(x) liên tục trên từng khoảng xác định.

    b) Đặt 3x^{4} + 5x^{3} + 10 =
f(x)

    f(x) liên tục trên tập số thực nên f(x) liên tục trên \lbrack - 2; - 1brack\ \ (*)

    Ta có: f( - 2) = - 126;f( - 1) =
2

    \Rightarrow f( - 2).f( - 1) <
0(**)

    Từ (*) và (**) suy ra phương trình f(x) =
0 có nghiệm thuộc ( - 2; -
1).

    c) Ta có:

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left( x^{2} - 3x ight) = - 2

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}(x - 1) = 1

    Vậy không tồn tại giới hạn của hàm số khi x ightarrow 2

    d) Ta có: với n chẵn

    \lim u_{n} = \lim\left\lbrack ( -
1)^{n}\sqrt{n} ightbrack = + \infty

    Với n lẻ \lim u_{n} = \lim\left\lbrack (
- 1)^{n}\sqrt{n} ightbrack = - \infty

    Suy ra dãy số không bị chặn.

  • Câu 21: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N là hai điểm phân biệt cùng thuộc đường thẳng AB, hai điểm P,Q phân biệt thuộc đường thẳng CD. Khi đó vị trí tương đối của hai đoạn thẳng MPNQ là:

    Giả sử đường thẳng MPNQ không chéo nhau, tức là cùng thuộc một mặt phẳng.

    Khi đó ABCD cùng thuộc một mặt phẳng hay ABCD là một tứ giác (trái giả thiết).

    Vậy đường thẳng MPNQ chéo nhau.

  • Câu 22: Nhận biết

    Chu kì của hàm số y = 3\sin2x là số nào sau đây?

    Chu kì của hàm số là T = \frac{2\pi}{2} =\pi

  • Câu 23: Vận dụng

    Cho cấp số cộng (un) biết u1 = -5 và công sai d = 2. Số 81 là số hạng thứ bao nhiêu?

     Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d \hfill \\   \Leftrightarrow 8 =  - 5 + \left( {n - 1} ight).2 \hfill \\   \Leftrightarrow n = 44 \hfill \\ \end{matrix}

    Vậy 81 là số hạng thứ 44

  • Câu 24: Nhận biết

    Khẳng định nào dưới đây đúng?

    Ta có: \pi rad tương ứng với 180^{0}

    => 1rad ightarrow x^{0}

    \Rightarrow x^{0} = \frac{180.1}{\pi} =\frac{180}{\pi}

  • Câu 25: Nhận biết

    Chọn khẳng định đúng?

    \lim_{x ightarrow - \infty}x^{4} = +
\infty

    \lim_{x ightarrow - \infty}x^{3} = -
\infty

    \lim_{x ightarrow x_{0}}x =
x_{0}

    \lim_{x ightarrow + \infty}q^{x} =
0;\left( |q| < 1 ight)

  • Câu 26: Nhận biết

    Trong không gian, đường thẳng a song song với mặt phẳng (P) nếu

    Đường thẳng  a  song song với mặt phẳng  (P)  khi và chỉ khi  a  không nằm trong (P), đồng thời  a  song song với một đường thẳng b nằm trong  (P) .

  • Câu 27: Nhận biết

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Do dãy số là cấp số nhân

    => q = \frac{{36}}{{16}} = \frac{9}{4}

    => Số hạng tiếp theo là: 36.\frac{9}{4} = 81

  • Câu 28: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản \frac{a}{b}. Tính tổng Q = a - b.

    Ta có:

    \begin{matrix}
  5,231231... = 5 + 0,231 + 0,000231 + ... \hfill \\
   = 5 + \dfrac{{231}}{{{{10}^3}}} + \dfrac{{231}}{{{{10}^6}}} + ... \hfill \\ 
\end{matrix}

    Dãy số \frac{231}{10^{3}};\frac{231}{10^{6}};... là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = \frac{231}{10^{3}}, công sai là q = 10^{- 3}

    \begin{matrix}
   \Rightarrow Q = 5 + \dfrac{{\dfrac{{231}}{{{{10}^3}}}}}{{1 - \dfrac{1}{{{{10}^{ - 3}}}}}} = 5 + \dfrac{{231}}{{999}} = \dfrac{{1742}}{{333}} \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {a = 1742} \\ 
  {b = 333} 
\end{array}} ight. \Rightarrow Q = 1409 \hfill \\ 
\end{matrix}

  • Câu 29: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} = 2001;u_{5} = 1995. Khi đó u_{1001} bằng:

    Ta có:

    \left\{ \begin{matrix}
u_{2} = 2001 \\
u_{5} = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + d = 2001 \\
u_{1} + 4d = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2003 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{1001} = u_{1} + 1000d =
3

  • Câu 30: Thông hiểu

    Cho tứ diện ABCD. M là trọng tâm của tam giác ABC. Hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là điểm nào sau đây?

    Gọi H là trung điểm của tam giác AB.

    M, Q lần lượt là trọng tâm của tam giác ABC và tam giác ABD.

    Khi đó ta có: \frac{{HM}}{{HC}} = \frac{{HQ}}{{HD}} = \frac{1}{3}

    Theo định lí Ta - lét ta có: MQ//CD

    Vậy hình chiếu song song của điểm M theo phương CD lên mặt phẳng (ABD) là trọng tâm của tam giác ABD.

  • Câu 31: Nhận biết

    Cho dãy xác định bởi công thức \left\{ \begin{matrix}
u_{1} = 3 \\
u_{n + 1} = \frac{1}{2}u_{n},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Số hạng tổng quát của dãy un là?

    Ta có u_{1} = 3;u_{2} = \frac{1}{2}u_{1} =
\frac{3}{2};u_{3} = \frac{1}{2}u_{2} =
\frac{3}{2^{2}};\ldots

    Ta đi chứng minh cho dãy số có số hạng tổng quát là u_{n} = \frac{3}{2^{n - 1}}

    Thật vậy, n = 1 thì u1 = 3 (đúng).

    Giả sử với n = k(k≥1) thì u_{k} = \frac{3}{2^{k - 1}}. Ta đi chứng minh u_{k + 1} =
\frac{3}{2^{k}}

    Ta có u_{k + 1} = \frac{1}{2}u_{k} =
\frac{1}{2} \cdot \frac{3}{2^{k - 1}} = \frac{3}{2^{k}} (điều phải chứng minh).

    Vậy số hạng tổng quát của dãy số là u_{n}
= \frac{3}{2^{n - 1}}

  • Câu 32: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I,K lần lượt là trung điểm các cạnh BC,CDM là điểm trên cạnh SB sao cho\
\frac{SM}{SB} = \frac{1}{3}. Gọi N là gia điểm của MD và mặt phẳng (SIK). Tính tỉ số \frac{ND}{NM}.

    Đáp án: 3

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành. Gọi I,K lần lượt là trung điểm các cạnh BC,CDM là điểm trên cạnh SB sao cho\
\frac{SM}{SB} = \frac{1}{3}. Gọi N là gia điểm của MD và mặt phẳng (SIK). Tính tỉ số \frac{ND}{NM}.

    Đáp án: 3

    Hình vẽ minh họa

    Ta có M là điểm trên cạnh SB, \frac{SM}{SB} = \frac{1}{3} nên \frac{MB}{MS} = 2.

    IK//BD nên IK//(SBD) suy ra (SBD) \cap (SIK) = Sx,\ \ Sx//IK//BD.

    Trong (SBD),\ \ DM \cap Sx =
N.

    N chính là giao điểm của DM(SIK).

    Trong (SBD), có Sx//BD nên hai tam giác \Delta SMN \Delta BMD đồng dạng.

    Do đó \frac{MD}{MN} = 2 \Rightarrow
\frac{ND}{NM} = 3.

  • Câu 33: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 34: Thông hiểu

    Cho tứ diện ABCD. Trung điểm của các cạnh AB,BC,CD lần lượt là các điểm P,Q,R. Giả sử (ACD) \cap (PQR) = d. Hỏi đường thẳng d đi qua trung điểm của đoạn thẳng nào?

    Hình vẽ minh họa

    Ta có: PQ//AC nên giao tuyến của hai mặt phẳng (ACD);(PQR) sẽ đi qua điểm R và song song với AC.

    Do đó giao tuyến d sẽ đi qua trung điểm của AD.

  • Câu 35: Thông hiểu

    Cho tam giác ABC. Khẳng định nào sau đây sai?

    Ta có:

    \widehat{A} + \widehat{B} + \widehat{C}
= \pi \Rightarrow \widehat{A} + \widehat{B} = \pi -
\widehat{C}

    Do đó \cos\left( \widehat{A} +
\widehat{B} ight) = \cos\left( \pi - \widehat{C} ight) = -
\cos\widehat{C}

    Vậy khẳng định sai là: \cos\left(
\widehat{A} + \widehat{B} ight) = \cos\widehat{C}

  • Câu 36: Vận dụng

    Tìm giá trị thực của m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x^2} - x - 2}}{{x - 2}}{\text{ khi }}x e 2} \\   {{\text{m               khi }}x = 2} \end{array}} ight. liên tục tại x=2.

    Tập xác định của hàm số: D = \mathbb{R} chứa x=2

    Theo giả thiết thì ta phải có:

    \begin{matrix}  f\left( 2 ight) = \mathop {\lim }\limits_{x \to 2} f\left( x ight) \hfill \\   = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - x - 2}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} ight) = 3 \hfill \\ \end{matrix}

    Vậy m=3

  • Câu 37: Nhận biết

    \lim(5n-4n^{3}) bằng

    Ta có: 

    \begin{matrix}  \lim \left( {5n - 4{n^3}} ight) \hfill \\   = \lim \left[ {{n^3}\left( {\dfrac{5}{{{n^2}}} - 4} ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

  • Câu 38: Vận dụng cao

    Cho dãy số \left(
u_{n} ight) biết \left\{
\begin{matrix}
u_{1} = 2 \\
u_{n + 1} = 2u_{n - 1} + 3;(n \geq 2) \\
\end{matrix} ight.. Số hạng có ba chữ số lớn nhất của dãy là:

    Tìm số hạng tổng quát của dãy số

    Dự đoán u_{n} = 5.2^{n - 1} - 3;(n \geq
2)

    Ta chứng minh theo phương pháp quy nạp

    Với n = 1 ta có: u_{2} = 5.2 - 3 = 7(tm)

    Giả sử u_{k} = 5.2^{k - 1} - 3, khi đó ta có:

    u_{k + 1} = 2u_{k} + 3

    = 2\left( 5.2^{k - 1} - 3 ight) +
3

    = 5.2^{k} - 3

    Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.

    Ta có: u_{n} < 1000 \Rightarrow 2^{n -
1} < \frac{1003}{5} = 200,6

    2^{7} = 128;2^{8} = 256

    Nên ta chọn 2^{n - 1} = 2^{7} \Rightarrow
n = 8

    Vậy u_{8} là số hạng cần tìm.

  • Câu 39: Nhận biết

    Cho hàm số f(x) xác định trên tập số thực và có đồ thị như hình vẽ:

    Hỏi hàm số f(x) không liên tục tại điểm nào sau đây?

    Quan sát đồ thị hàm số ta thấy: \left\{
\begin{matrix}
\lim_{x ightarrow 1^{-}}f(x) = 3 \\
\lim_{x ightarrow 1^{+}}f(x) = 0 \\
\end{matrix} ight.

    Vậy \lim_{x ightarrow 1^{-}}f(x) eq
\lim_{x ightarrow 1^{+}}f(x) nên không tồn tại \lim_{x ightarrow 1}f(x). Do đó hàm số gián đoạn tại x_{0} = 1.

  • Câu 40: Thông hiểu

    Hàm số nào dưới đây đồng biến trên khoảng \left( 0;\frac{5\pi}{6}
ight)?

    Ta có:

    x \in \left( 0;\frac{5\pi}{6} ight)
\Rightarrow x - \frac{\pi}{3} \in \left( \frac{\pi}{3};\frac{\pi}{2}
ight) \subset \left( - \frac{\pi}{2};\frac{\pi}{2}
ight)

    Nên hàm số y = \sin\left( x -
\frac{\pi}{3} ight) đồng biến trên khoảng \left( 0;\frac{5\pi}{6}
ight) .

  • Câu 41: Thông hiểu

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Đáp án là:

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Ta có:

    \tan\left( 2x + \frac{\pi}{3} ight) =
- 1

    \Leftrightarrow \tan\left( 2x +\frac{\pi}{3} ight) = \tan\left( - \frac{\pi}{4} ight)

    \Leftrightarrow 2x + \frac{\pi}{3} = -
\frac{\pi}{4} + k\pi

    \Leftrightarrow 2x = - \frac{7\pi}{12} +
k\pi

    \Leftrightarrow x = - \frac{7\pi}{24} +
\frac{k\pi}{2}\ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có họ nghiệm là:x = -
\frac{7\pi}{24} + \frac{k\pi}{2}\ \left( k\mathbb{\in Z}
ight).

    Do đó a = 7,b = 24

    \Rightarrow T = a^{2} - b = 7^{2} - 24 =
25.

  • Câu 42: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'M là trung điểm của AB, BC \cap
(MA'C') = \left\{ N ight\}. Tính tỉ số độ dài hai cạnh MNA'C'.

    Hình vẽ minh họa

    Ba mặt phẳng phân biệt (ABCD), (ACC’A’), (MA’C’) đôi một cắt nhau theo ba giao tuyến AC, A’C’MN.

    Theo tính chất hình hộp ta có AC // A’C’ nên MN // AC // A’C’

    Lại có M là trung điểm của AB nên MN là đường trung bình trong tam giác ABC.

    Vậy MN = \frac{1}{2}AC =
\frac{1}{2}A'C' hay \frac{MN}{A'C'} =
\frac{1}{2}.

  • Câu 43: Vận dụng

    Phương trình \frac{{\sin x - \cos x}}{{1 + \sin x.\cos x}} = 0 có nghiệm là:

     Điều kiện xác định: 1 + \sin x.\cos x e 0

    \begin{matrix}  \dfrac{{\sin x - \cos x}}{{1 + \sin x.\cos x}} = 0 \hfill \\   \Leftrightarrow \sin x - \cos x = 0 \hfill \\   \Leftrightarrow \sqrt 2 \sin \left( {x - \dfrac{\pi }{4}} ight) = 0 \hfill \\   \Leftrightarrow \sin \left( {x - \dfrac{\pi }{4}} ight) = 0 \hfill \\   \Leftrightarrow x - \dfrac{\pi }{4} = \dfrac{\pi }{2} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{{3\pi }}{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Kiểm tra điều kiện ta thấy x = \frac{3\pi }{4} + k\pi thỏa mãn

    Vậy nghiệm của phương trình là: x = \frac{3\pi }{4} + k\pi

  • Câu 44: Thông hiểu

    Phương trình \sin x =  - \frac{1}{2} có nghiệm thỏa mãn x nằm trong khoảng \left( {\pi ;\frac{{3\pi }}{2}} ight) là:

     Giải phương trình:

    \begin{matrix}  \sin x =  - \dfrac{1}{2} \Leftrightarrow \sin x = \sin \left( {\dfrac{{ - \pi }}{6}} ight) \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \pi  + \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{{ - \pi }}{6} + k2\pi } \\   {x = \dfrac{{7\pi }}{6} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Do x \in \left( {\pi ;\frac{{3\pi }}{2}} ight) => {x = \frac{{7\pi }}{6} + k2\pi } thỏa mãn

  • Câu 45: Vận dụng cao

    Cho hàm số y =
2x^{3} + ax^{2} + bx + c;(a,b,c \in R) thỏa mãn 9a + 3b + c < −54a − b + c > 2. Gọi S là số giao điểm của đồ thị hàm số đã cho với trục Ox. Mệnh đề nào dưới đây đúng?

    Hàm số đã cho xác định trên \mathbb{R}.

    Ta có: a − b + c > 2 ⇔ a − b + c − 2 > 0f(−1) = −2 + a − b + c nên f(−1) > 0.

    Mặt khác 9a + 3b + c < −54 ⇔ 9a + 3b + c + 54 < 0f(3) = 54 + 9a + 3b + c nên f(3) < 0.

    Ta lại có \lim_{x ightarrow - \infty}y
= - \infty nên tồn tại số m < −1 sao cho f(m) < 0 và \lim_{x ightarrow + \infty}y = +
\infty nên tồn tại số k > 0 sao cho f(3) > 0.

    Vậy f(m) . f(−1) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm thuộc (m; −1).

    f(−1) . f(3) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm thuộc (−1; 3).

    f(3) . f(k) < 0 nên phương trình f(x) = 0 có ít nhất một nghiệm thuộc (3; k).

    Từ đó suy ra đồ thị hàm số có 3 điểm chung với trục hoành.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo