Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?
Hình vẽ minh họa:
Ta có:
(đường trung bình 4SAD)
(đường trung bình 4BAD)
=> O, N, M, P cùng nằm trong một mặt phẳng.
Cho hàm số
. Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Cho hàm số . Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Tập xác định của hàm số là
.
Ta có
Hàm số đã cho liên tục tại
.
Công bội nguyên dương của cấp số nhân
thỏa mãn
là:
Ta có:
Chọn đáp án sai
Trong khoảng
, hàm số
là hàm số:
Ta thấy:
Trên khoảng hàm
đồng biến và hàm
đồng biến
=> Trên hàm số
đồng biến.
Tính giá trị đúng của biểu thức ![]()
Ta có:
Cho hàm số
. Với
và
. Biết
. Hỏi đồ thị hàm số
cắt trục hoành tại bao nhiêu điểm?
Cho hàm số . Với
và
. Biết
. Hỏi đồ thị hàm số
cắt trục hoành tại bao nhiêu điểm?
Giá trị của
bằng:
Với mọi M > 0 lớn tùy ý, ta chọn
Ta có:
với mọi
Suy ra
Cho hàm số
. Khi đó
bằng:
Ta có:
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho hàm số
và
. Xét tính đúng sai của các khẳng định dưới đây?
a) Giới hạn
. Sai||Đúng
b) Giới hạn
. Đúng||Sai
c)
. Đúng||Sai
d)
. Sai||Đúng
Cho hàm số và
. Xét tính đúng sai của các khẳng định dưới đây?
a) Giới hạn . Sai||Đúng
b) Giới hạn . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
a) .
b) .
c) .
d) .
Tính
.
Ta chứng minh bằng phương pháp quy nạp, với thì
Với thì
nên (*) đúng với
Giả sử (*) đúng với nghĩa là:
Xét ta có:
Vậy (*) đúng với
Bây giờ ta áp dụng với thì
Cho hai số -3 và 23. Xen kẽ giữa hai số đã cho n số hạng để tất cả các số tạo thành cấp số cộng có công sai d = 2. Tìm n
Xen kẽ giữa hai số -3 và 23 n số hạng để tạo thành một cấp số cộng thì:
Cho dãy số (un) với
. Công thức số hạng tổng quát của dãy số là?
Ta có
Nhân vế với vế của các đẳng thức trên, ta được: .
Giá trị lớn nhất, giá trị nhỏ nhất của hàm số:
lần lượt là:
Ta có:
Tính tất cả số cạnh của hình lăng trụ biết hình lăng trụ có đúng 11 cạnh bên?
Hình lăng trụ có đúng 11 cạnh bên suy ra đáy là đa giác có 11 đỉnh và đa giác đáy có 11 cạnh.
Vậy hình lăng trụ có đúng 11 cạnh bên thì có:
(cạnh)
Cho hình chóp
, có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của các tam giác
. Các khẳng định dưới đây đúng hay sai?
a) Giao tuyến của hai mặt phẳng
và
là đường thẳng
. Đúng||Sai
b) Đường thẳng
và
có một điểm chung. Sai||Đúng
c) Đường thẳng
song song với mặt phẳng
. Đúng||Sai
d) Mặt phẳng chứa đường thẳng
và song song với mặt phẳng
cắt các cạnh
lần lượt tại
. Khi đó, tứ giác
là hình bình hành. Đúng||Sai
Cho hình chóp , có đáy
là hình bình hành. Gọi
lần lượt là trọng tâm của các tam giác
. Các khẳng định dưới đây đúng hay sai?
a) Giao tuyến của hai mặt phẳng và
là đường thẳng
. Đúng||Sai
b) Đường thẳng và
có một điểm chung. Sai||Đúng
c) Đường thẳng song song với mặt phẳng
. Đúng||Sai
d) Mặt phẳng chứa đường thẳng và song song với mặt phẳng
cắt các cạnh
lần lượt tại
. Khi đó, tứ giác
là hình bình hành. Đúng||Sai
Hình vẽ minh họa
a) Đúng.
Hai mặt phẳng và
có hai điểm chung là
và
nên giao tuyến của hai mặt phẳng
và
là đường thẳng
.
b) Sai.
Gọi là trung điểm của
. Ta có:
Trong tam giác , có
là đường trung tuyến và
là trọng tâm, nên
.
Trong tam giác , có
là đường trung tuyến và
là trọng tâm, nên
.
Trong tam giác và từ
,
ta có
, suy ra
.
c) Đúng.
Mặt phẳng không chứa đường thẳng
và theo kết quả câu b) ta có
.
Mà nằm trong mặt phẳng
.
Nên đường thẳng song song với mặt phẳng
d) Đúng.
Gọi mặt phẳng chứa đường thẳng
và song song với mặt phẳng
.
Nên mặt phẳng cắt mặt phẳng
theo một giao tuyến
song song với
.
Mà mặt phẳng và mặt phẳng
có một điểm chung là
, nên đường thẳng
đi qua
và song song với
.
Theo giả thiết, mặt phẳng cắt
lần lượt tại
nên đường thẳng
cắt
lần lượt tại
. Hay
.
Tương tự, ta có ,
,
.
Do đó, tứ giác có
(vì cùng song song với
) và
(vì cùng song song với
).
Vậy tứ giác là hình bình hành.
Nghiệm của phương trình
là:
Giải phương trình ta có:
Vậy phương trình có nghiệm
Cho hình chóp
có đáy là hình thang
,
. Gọi
là trung điểm của
. Giao tuyến của mặt phẳng
và
là:
Hình vẽ minh họa
Gọi là giao điểm của
và
. Khi đó:
.
Xét đường tròn lượng giác như hình vẽ. Biết
, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình
được biểu diễn trên đường tròn lượng giác là những điểm nào?


Ta có:
Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.
Một người xếp chồng những khúc gỗ có kích thước như nhau thành
hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Mỗi hàng liền phía trên ít hơn hàng dưới khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có:
.
Khi đó, tổng số khúc gỗ là:
(khúc gỗ).
Cho phương trình lượng giác
, vậy:
a) Phương trình đã cho tương đương với
. Đúng||Sai
b) Trên khoảng
phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng
thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng
của phương trình bằng
. Đúng||Sai
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với . Đúng||Sai
b) Trên khoảng phương trình có 4 nghiệm. Đúng||Sai
c) Trên khoảng thì
là nghiệm nhỏ nhất. Sai||Đúng
d) Tổng các nghiệm nằm trong khoảng của phương trình bằng
. Đúng||Sai
Phương trình
.
Do nên phương trình có các nghiệm là:
.
Vậy tổng các nghiệm cần tính là: .
Kết luận:
|
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
bằng
Ta có:
Tứ diện
có thể xem là hình chóp tam giác bằng bao nhiêu cách?
Có 4 cách là: .
Cho dãy số
, biết
. Ba số hạng đầu tiên của dãy số đó lần lượt là:
Ta có:
Ba số hạng đầu tiên của dãy số đó lần lượt là:
Cho hình lăng trụ
. Gọi
lần lượt là trọng tâm của các tam giác
. Mặt phẳng nào sau đây song song với
?
Hình vẽ minh họa

Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.
=> (tính chất trọng tâm tam giác)
=>
Xét mặt phẳng ta có:
=>
Mà
=>
Từ (1) và (2) => và
là hai mặt phẳng phân biệt. Khi đó ta có:
Cho dãy số
biết
. Số hạng có ba chữ số lớn nhất của dãy là:
Tìm số hạng tổng quát của dãy số
Dự đoán
Ta chứng minh theo phương pháp quy nạp
Với ta có:
Giả sử , khi đó ta có:
Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.
Ta có:
Mà
Nên ta chọn
Vậy là số hạng cần tìm.
Cho tứ diện
có độ dài tất cả các cạnh bằng
. Gọi
là trọng tâm tam giác
. Tính diện tích thiết diện tạo bởi mặt phẳng
và tứ diện
?
Hình vẽ minh họa:
Gọi lần lượt là trung điểm các cạnh
Ta có:
Suy ra tam giác MCD là thiết diện của mặt phẳng và tứ diện
Tam giác ABD đều cạnh bằng có
là trung điểm của
Tam giác ABC đều cạnh bằng có
là trung điểm của
Gọi H là trung điểm của CD
Ta có:
Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
Vì điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có
mặt.
Cho số thực m thỏa mãn
. Khi đó giá trị của m là bao nhiêu?
Ta có:
Cho hình chóp
có đáy
là hình bình hành tâm
. Giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng
Hình vẽ minh họa:
Ta có: suy ra giao tuyến của mặt phẳng
và mặt phẳng
là đường thẳng đi qua điểm S và song song với AB và DC.
Tập nghiệm của phương trình
là?
Ta có: .
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O, gọi M,N,P,Q lần lượt là trung điểm của SA,SB,SC và SD. Khi đó
là đường thẳng nào?
Hình vẽ minh họa:
M ∈ (MNPQ); M ∈ SA; M ∈ (SAC)
Vậy M là điểm chung thứ nhất. P ∈ (MNPQ); P ∈ SC; P ∈ (SAC).
Vậy P là điểm chung thứ hai.
Vậy giao tuyến của (MNPQ) và (SAC) là: MP
Cho tứ diện ABCD, M, N, P, Q, R, S lần lượt là trung điểm của AB, CD, BC, AD, BD, AC. Phát biểu nào sau đây là sai?
Trong tam giác CAD có S và N lần lượt là trung điểm của AC và CD
Suy ra SN là đường trung bình của tam giác CAD
=> SN // AD (1)
Tương tự MR cũng là đường trung bình của tam giác ABD
=> MR // AD (2)
Từ (1) và (2) suy ra: SN // MR nên đáp án "MN, SN song song với nhau"
Chứng minh tương tự ta cũng có: SM // NR //BC
Do đó tứ giác MRNS là hình bình hành nên đáp án "MRNS là hình bình hành"
Hai đường chéo SR và MN cắt nhau tại G với G là trung điểm của mỗi đường chéo.
Lại có: NQ // MP (//AC) và MQ // NP //BD
=> Tứ giác MQNP là hình bình hành
=> Hai đường chéo QP và MN cắt nhau tại trung điểm của mỗi đường
Mà G là trung điểm của MN
Do đó G cũng là trung điểm của QP
Vậy ba đường thẳng MN, PQ, SR đồng quy tại G.
Đáp án "MN, PQ, RS đồng quy'
Đáp án "6 điểm M, N, P, Q, R, S đồng phẳng" sai vì P và Q cùng thuộc một mặt phẳng với M và N nhưng không cùng thuộc một mặt phẳng với hai điểm S và R.
Giá trị của
bằng:
Cung tròn có số đo là
. Hãy chọn số đo độ của cung tròn đó trong các cung tròn sau đây:
Ta có:
Công thức nào sau đây đúng?
Công thức đúng là:
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính
.
Ta có: xác định và liên tục trên
nên suy ra
Vậy
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Trong các dãy số sau, dãy số nào là một cấp số nhân?
Ta có:
Dãy số là cấp số nhân
Gọi là công bội.
Xét đáp án
Xét đáp án
Xét đáp án
Xét đáp án
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Ta kiểm tra được và
là hàm số chẵn
Hàm số không chẵn không lẻ
=> Hàm số là hàm số lẻ.
Cho cấp số nhân với các số hạng lần lượt là a; 12; b; 192. Mệnh đề nào dưới đây đúng?
Ta có: Cấp số nhân với các số hạng lần lượt là a; 12; b; 192
bằng:
Ta có:
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Do dãy số là cấp số nhân
=>
=> Số hạng tiếp theo là:
Phương trình
có nghiệm là:
Giải phương trình: