Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho \left( u_{n} ight) là cấp số cộng biết u_{3} + u_{13} = 80. Tổng 15 số hạng đầu của cấp số cộng đó bằng

    Ta có:

    u_{3} + u_{13} = 80

    \Leftrightarrow (u_{1} + 2d) + (u_{1} +
12d) = 80

    \Leftrightarrow 2u_{1} + 14d =
80

    Vậy S_{15} = \frac{15}{2}\left( 2u_{1} +
14d ight) = \frac{15}{2}.80 = 600

  • Câu 2: Nhận biết

    Hình chiếu của hình lập phương ABCD.A'B'C'D' qua phép chiếu song song phương AA' lên mặt phẳng chiếu (ABCD) là:

    Phép chiếu song song phương AA' lên mặt phẳng (ABCD) sẽ biến A' thành A, biến B' thành B, biến C' thành C, biến D' thành D.

    Nên hình chiếu song song của hình lập phương ABCD.A'B'C'D'là hình vuông.

  • Câu 3: Vận dụng cao

    Trong các dãy số sau dãy số nào bị chặn?

    Xét dãy (an)a_{n} = \sqrt{n^{3} + n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (an) bị chặn dưới.

    Xét dãy (bn)b_{n} = n^{2} + \frac{1}{2n} > 0,\forall n \in
\mathbb{N}^{*} nên dãy số (bn) bị chặn dưới.

    Xét dãy (cn)cn = (−2)n + 3, ∀n ∈ ℕ* nên dãy số (cn) không bị chặn.

    Xét dãy (dn)d_{n} = \frac{3n}{n^{2} + 2},\forall n \in
\mathbb{N}^{*}.

    Ta có

    n^3-3n+2=(n-1)^2 (n+2)≥0,∀n∈N^*

    ⇒n^3+2≥3n⇒0<3n/(n^2+2)≤1

    ⇒(d_n ) bị chặn.

  • Câu 4: Nhận biết

    Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

    Xét đồ thị hàm số

    \lim_{x ightarrow 1^{+}}y eq
\lim_{x ightarrow 1^{-}}y nên hàm số không liên tục tại x = 1

  • Câu 5: Nhận biết

    Tính giá trị biểu thức A =\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}

    \sin10^{0} eq 0 nên ta có:

    A =\frac{16\sin10^{0}.\cos10^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{8\sin20^{0}.\cos20^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{4\sin40^{0}.\cos40^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{2\sin80^{0}.\cos80^{0}}{16\sin10^{0}}

    A =\frac{\sin160^{0}}{16\sin10^{0}}

    A = \frac{\sin20^{0}}{16\sin10^{0}} =\frac{2.\sin10^{0}.\cos10^{0}}{16\sin10^{0}} =\frac{1}{8}.\cos10^{0}

  • Câu 6: Nhận biết

    Với những giá trị nào của x thì giá trị của các hàm số y = \sin 3xy = \sin x bằng nhau?

     Xét phương trình hoành độ giao điểm: sin 3x = sin x

    \Leftrightarrow \left[ \begin{gathered}  3x = x + k2\pi  \hfill \\  3x = \pi  - x + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{\pi }{4} + k\frac{\pi }{2} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

  • Câu 7: Nhận biết

    Chu kì của hàm số y = 3\sin2x là số nào sau đây?

    Chu kì của hàm số là T = \frac{2\pi}{2} =\pi

  • Câu 8: Thông hiểu

    Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.

    Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \\   {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{8}{2} = \dfrac{z}{8}} \\   {\dfrac{{128}}{z} = \dfrac{z}{8}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {z = 32} \\   {{z^2} = 1024} \end{array}} ight. \Rightarrow z = 32

  • Câu 9: Thông hiểu

    Cho \sin x +cosx = \frac{1}{2}. Tính giá trị biểu thức A = \frac{1 + sin2x}{1 - sin2x}

    Do \sin x + cosx = \frac{1}{2} nên bình phương hai vế ta được:

    1 + 2sinx\cos x = \frac{1}{4} \Rightarrowsin2x = - \frac{3}{4}

    Vậy A = \frac{1 + sin2x}{1 - sin2x} =\frac{1 - 3/4}{1 + 3/4} = \frac{1}{7}

  • Câu 10: Nhận biết

    Chọn khẳng định đúng?

    \lim_{x ightarrow - \infty}x^{4} = +
\infty

    \lim_{x ightarrow - \infty}x^{3} = -
\infty

    \lim_{x ightarrow x_{0}}x =
x_{0}

    \lim_{x ightarrow + \infty}q^{x} =
0;\left( |q| < 1 ight)

  • Câu 11: Thông hiểu

    Trong các dãy số sau, dãy số nào bị chặn trên?

    Ta có:

    \left( v_{n} ight):v_{n} = - n^{2} + 2
\leq 2.

    Vậy đây là dãy số bị chặn trên.

  • Câu 12: Vận dụng

    Cho hình chóp S.ABCDcó đáy ABCD là hình bình hành tâm O, M là trung điểm của BC. Các giao tuyến của hình chóp S.ABCD với mặt phẳng đi qua điểm M và song song với ACSB là hình gì?

    Hình vẽ minh họa:

    Gọi mặt phẳng đi qua điểm M và song song với ACSB là mặt phẳng (\alpha).

    \Rightarrow (\alpha) \cap (ABCD) =
MN với MN//AC hay MN//AC là trung điểm của AC.

    (\alpha)//SB,N \in (\alpha)

    Suy ra (\alpha) \cap (SAB) = NP với NP//SB hay P là trung điểm của SA.

    (\alpha)//AC,P \in (\alpha)

    Suy ra (\alpha) \cap (SAC) = PQ với PQ//AC hay Q là trung điểm của SC.

    Xét mặt phẳng (ABCD) gọi I = MN \cap
CD, trong (SCD) gọi H = QI \cap
SD suy ra (\alpha) \cap (SCD) =
QH

    Vậy các giao tuyến tạo bởi hình chóp và mặt phẳng (\alpha) là ngũ giác MNPHQ.

  • Câu 13: Nhận biết

    Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?

    Ta có:

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Leftrightarrow {1.2^{n - 1}} = 1024 \hfill \\   \Leftrightarrow {2^{n - 1}} = {2^{10}} \hfill \\   \Rightarrow n - 1 = 10 \hfill \\   \Rightarrow n = 11 \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } x(\sqrt {{x^2} + 5}  - x) bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 5}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {{x^2} + 5}  - x} ight)\left( {\sqrt {{x^2} + 5}  + x} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {{x^2} + 5 - {x^2}} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5x}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{5}{{\sqrt {1 + \dfrac{5}{{{x^2}}}}  + 1}} = \dfrac{5}{2} \hfill \\ \end{matrix}

  • Câu 15: Vận dụng

    Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức h(t)= 29 + 3.\sin\frac{\pi}{12}(t - 9) với h tính bằng \
^{0}Ct là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:

    Do - 1 \leq \sin\frac{\pi}{12}(t - 9)
\leq 1,\forall t nên

    \begin{matrix}
   - 3 \leqslant 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 3 \hfill \\
   \Leftrightarrow 26 \leqslant 29 + 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 32 \hfill \\
   \Leftrightarrow 26 \leqslant h(t) \leqslant 32 \hfill \\ 
\end{matrix}

    Do đó nhiệt độ thấp nhất trong ngày là 26^{0}C.

    Dấu bằng xảy ra\Leftrightarrow \sin\frac{\pi}{12}(t -9) = - 1

    \Leftrightarrow \frac{\pi}{12}(t - 9) = - \frac{\pi}{2} + k2\pi

    \Leftrightarrow t = 3 + 24k(k\mathbb{\in Z})

    Do 0 \leq t \leq 24 \Leftrightarrow 0
\leq 3 + 24k \leq 24 \Leftrightarrow \frac{- 3}{24} \leq k \leq
\frac{21}{24}.

    k\mathbb{\in Z} nên k = 0.

    Khi đó t = 3.

    Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.

  • Câu 16: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số a thuộc khoảng (0; 2019) để\lim\sqrt{\frac{9^{n} + 3^{n +
1}}{5^{n} + 9^{n + a}}} \leq \frac{1}{2187}.

    Ta có: \dfrac{9^{n} + 3^{n + 1}}{5^{n} +9^{n + a}} > 0;\forall n \in \mathbb{N}^{*}nên

    \lim\sqrt{\dfrac{9^{n} + 3^{n + 1}}{5^{n}+ 9^{n + a}}} = \sqrt{\lim\dfrac{9^{n} + 3^{n + 1}}{5^{n} + 9^{n +a}}}

    = \sqrt{\lim\dfrac{1 + 3.\left(\dfrac{1}{3} ight)^{n}}{\left( \dfrac{5}{9} ight)^{n} + 9^{a}}} =\sqrt{\dfrac{1}{9^{a}}} = \dfrac{1}{3^{a}}

    Theo đề bài ta có

    \lim\sqrt{\dfrac{9^{n} + 3^{n + 1}}{5^{n}+ 9^{n + a}}} \leq \dfrac{1}{2187}

    \begin{matrix}
   \Leftrightarrow \dfrac{1}{{{3^a}}} \leqslant \dfrac{1}{{2187}} \Leftrightarrow {3^a} \geqslant 2187 \hfill \\
   \Leftrightarrow a \geqslant 7 \hfill \\ 
\end{matrix}

    Mặt khác \left\{ \begin{matrix}
a\mathbb{\in Z} \\
a \in (0;2019) \\
\end{matrix} \Rightarrow a \in \left\{ 7;8;9;...;2018 ight\} ight.

    Vậy có tất cả 2012 giá trị nguyên thỏa mãn.

  • Câu 17: Nhận biết

    \lim \frac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} \hfill \\   = \lim \dfrac{{3 - \dfrac{2}{{{n^3}}} + \dfrac{3}{{{n^4}}}}}{{4 + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}}} = \dfrac{3}{4} \hfill \\ \end{matrix}

  • Câu 18: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = \frac{3n^{2} - 19n}{4};\left( n
\in \mathbb{N}^{*} ight). Tìm số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    S_{n} = \frac{3n^{2} - 19n}{4} =
\frac{3}{4}n^{2} - \frac{19}{4}n

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = \dfrac{3}{4} \\u_{1} - \dfrac{d}{2} = - \dfrac{19}{4} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 4 \\d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 19: Thông hiểu

    Cho tứ diện ABCD, lấy M,N lần lượt là trung điểm của BCCD. Giả sử d
= (MNA) \cap (ABD). Khẳng định nào đúng về đặc điểm của đường thẳng d?

    Hình vẽ minh họa

    Xét ba mặt phẳng (AMN),(ABD),(BCD)

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,BD,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,BD,MN đồng quy hoặc đôi một song song.

    BD//MN nên d//BD.

    Vậy đường thẳng d đi qua A và song song với BD.

  • Câu 20: Thông hiểu

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Đáp án là:

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Xét từng mệnh đề ta có

    a) “Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau” là mệnh đề sai, vì hai đường thẳng có thể chéo nhau.

    b) “Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó” là mệnh đề sai, vì hai mặt phẳng đó có thể song song nhau.

    c) “Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P)” là mệnh đề sai, vì đường thẳng a vẫn có thể nằm trong mặt phẳng (P).

    d) “Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α)” là mệnh đề sai, vì có vô số đường thẳng đi qua điểm A và song song với (α).

    Vậy không có mệnh đề nào đúng trong các mệnh đề nêu trên

  • Câu 21: Vận dụng

    Số nghiệm của phương trình 2 \sin^{2}x-5 \sin x+3=0 thuộc \left [ 0;2\pi  ight ] là:

     Giải phương trình:

    \begin{matrix}  2{\sin ^2}x - 5\sin x + 3 = 0 \hfill \\   \Leftrightarrow \left( {\sin x - 1} ight)\left( {2\sin x - 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x - 1 = 0} \\   {2\sin x - 3 = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x = 1} \\   {\sin x = \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\  \sin x = 1 \Rightarrow x = \dfrac{\pi }{2} + k2\pi ,\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Ta có: x \in \left[ {0;2\pi } ight]

    \begin{matrix}   \Rightarrow 0 \leqslant \dfrac{\pi }{2} + k2\pi  \leqslant 2\pi  \hfill \\   \Rightarrow  - \dfrac{1}{4} \leqslant k \leqslant \dfrac{3}{4} \Rightarrow k = 0 \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Tìm tập giá trị của hàm số y = 3\cos2x + 5

    Ta có:

    - 1 \leq \cos2x \leq 1

    \Rightarrow - 3 \leq 3\cos2x \leq3

    \Rightarrow 2 \leq 3\cos2x + 5 \leq8

    \Rightarrow 2 \leq y \leq 8

    \Rightarrow T = \lbrack
2;8brack

  • Câu 23: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{4} = - 12;u_{14} = 18. Tính số hạng đầu tiên u_{1} và công sai d của cấp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

  • Câu 24: Nhận biết

    Cho hình vẽ:

    Trên đường tròn lượng giác, số đo của góc lượng giác (OA;OB') là:

    Từ hình vẽ ta có: (OA;OB') = -
\frac{\pi}{2}

  • Câu 25: Thông hiểu

    Tính giới hạn N =
\lim_{x ightarrow 0}\frac{\sqrt{4x + 1} - 1}{x^{2} - 3x}.

    Ta có:

    N = \lim_{x ightarrow 0}\frac{\sqrt{4x
+ 1} - 1}{x^{2} - 3x}

    N = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x + 1} - 1 ight)\left( \sqrt{4x + 1} + 1 ight)}{\left( x^{2}
- 3x ight)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4x}{x(x
- 3)\left( \sqrt{4x + 1} + 1 ight)}

    N = \lim_{x ightarrow 0}\frac{4}{(x -
3)\left( \sqrt{4x + 1} + 1 ight)}

    N = - \frac{2}{3}

  • Câu 26: Thông hiểu

    Cho hai đồ thị hàm số y = \sin\left( x +
\frac{\pi}{4} ight)y = \sin
x, khi đó:

    a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:\sin \left( {x + \frac{\pi }{4}} ight) = \sin x Đúng||Sai

    b) Hoành độ giao điểm của hai đồ thị là x
= \frac{3\pi}{8} + k\pi(k\mathbb{\in Z}) Đúng||Sai

    c) Khi x \in \lbrack
0;2\pibrack thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng

    d) Khi x \in \lbrack
0;2\pibrack thì toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{5\pi}{8};sin\frac{5\pi}{8}
ight),\left( \frac{7\pi}{8};sin\frac{7\pi}{8} ight). Sai||Đúng

    Đáp án là:

    Cho hai đồ thị hàm số y = \sin\left( x +
\frac{\pi}{4} ight)y = \sin
x, khi đó:

    a) Phương trình hoành độ giao điểm của hai đồ thị hàm số:\sin \left( {x + \frac{\pi }{4}} ight) = \sin x Đúng||Sai

    b) Hoành độ giao điểm của hai đồ thị là x
= \frac{3\pi}{8} + k\pi(k\mathbb{\in Z}) Đúng||Sai

    c) Khi x \in \lbrack
0;2\pibrack thì hai đồ thị hàm số cắt nhau tại ba điểm Sai||Đúng

    d) Khi x \in \lbrack
0;2\pibrack thì toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{5\pi}{8};sin\frac{5\pi}{8}
ight),\left( \frac{7\pi}{8};sin\frac{7\pi}{8} ight). Sai||Đúng

    Phương trình hoành độ giao điểm của hai đồ thị hàm số:

    \sin\left( x + \frac{\pi}{4} ight) =\sin x

    \Leftrightarrow \left\lbrack\begin{matrix}x + \dfrac{\pi}{4} = x + k2\pi \\x + \dfrac{\pi}{4} = \pi - x + k2\pi \\\end{matrix}(k\mathbb{\in Z}) ight.

    \Leftrightarrow x = \frac{3\pi}{8} +
k\pi(k\mathbb{\in Z})

    x \in \lbrack 0;2\pibrack
\Rightarrow x \in \left\{ \frac{3\pi}{8};\frac{11\pi}{8}
ight\}.

    Với x = \frac{3\pi}{8} \Rightarrow y =
\sin\frac{3\pi}{8} \approx 0,92 với x = \frac{11\pi}{8} \Rightarrow y =
\sin\frac{11\pi}{8} \approx - 0,92.

    Vậy toạ độ giao điểm của hai đồ thị hàm số là: \left( \frac{3\pi}{8};sin\frac{3\pi}{8}
ight),\left( \frac{11\pi}{8};sin\frac{11\pi}{8} ight).

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Sai

  • Câu 27: Nhận biết

    Dùng quy nạp chứng minh mệnh đề chứa biến A(n) đúng với mọi số tự nhiên n ≥ p ( p là một số tự nhiên). Ở bước 2 ta giả thiết mệnh đề A(n) đúng với n = k. Khẳng định nào sau đây là đúng?

    Mệnh đề A(n) đúng với n = k với k ≥ p.

  • Câu 28: Vận dụng cao

    Cho các số thực a,\ b,\ c thỏa mãn 4a + c > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Đáp án là:

    Cho các số thực a,\ b,\ c thỏa mãn 4a + c > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Xét hàm số f(x) = x^{3} + ax^{2} + bx +
c

    Theo giả thiết 4a + c > 2b + 8
\Leftrightarrow - 8 + 4a - 2b + c > 0 \Rightarrow f( - 2) >
0

    a + b + c < - 1 \Leftrightarrow 1 + a
+ b + c < 0 \Rightarrow f(1) < 0

    Ta có f(x) là hàm đa thức nên liên tục trên \mathbb{R}

    \left\{ \begin{matrix}
\lim_{x ightarrow - \infty}f(x) = - \infty \\
f( - 2) > 0 \\
\end{matrix} ight. suy ra phương trình f(x) = 0 có ít nhất một nghiệm trên ( - \infty; - 2)(1)

    f( - 2)f(1) < 0nên phương trình f(x) = 0 có ít nhất một nghiệm trên khoảng ( - 2;1)(2)

    \left\{ \begin{matrix}
\lim_{x ightarrow + \infty}f(x) = + \infty \\
f(1) < 0 \\
\end{matrix} ight.suy ra phương trình f(x) = 0 có ít nhất một nghiệm trên khoảng (1; + \infty)(3)

    Từ (1); (2)(3) ta có phương trình f(x) = 0 có ít nhất 3 nghiệm.

    Mặt khác f(x) = 0 là phương trình bậc ba nên có tối đa 3 nghiệm.

    Vậy phương trình f(x) = 0 có đúng 3 nghiệm.

  • Câu 29: Thông hiểu

    Cho tứ diện ABCDG;G' lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Gọi M là trung điểm của CD

    Khi đó \frac{MG}{MB} = \frac{1}{3} =
\frac{MG'}{MA} (vì G;G' lần lượt là trọng tâm của hai tam giác BCDACD)

    Suy ra \left\{ \begin{matrix}\dfrac{GG'}{AB} = \dfrac{1}{3} \\GG'//AB \\\end{matrix} ight.\  \Rightarrow GG' = \frac{1}{3}AB

    Vậy khẳng định sai là GG' =
\frac{2}{3}AB.

    Mặt phẳng (ABG) và tứ diện theo một diện diện là tam giác

    Dễ thấy BG;AG';CD đồng quy tại điểm M.

  • Câu 30: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x + 6}}{1 - x}\ ,x > 1 \\ax + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ,x \leq 1 \\\end{matrix} ight.. Tìm a để hàm số liên tục tại x = 1

    Đáp án: -3||- 3

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x + 6}}{1 - x}\ ,x > 1 \\ax + 2\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ,x \leq 1 \\\end{matrix} ight.. Tìm a để hàm số liên tục tại x = 1

    Đáp án: -3||- 3

    Xét \lim_{x ightarrow 1^{+}}f(x) =
\lim_{x ightarrow 1^{+}}\frac{\sqrt{5x - 1} - \sqrt[3]{x^{2} + x +
6}}{1 - x}

    = \lim_{x ightarrow1^{+}}\frac{\sqrt{5x - 1} - 2 + 2 - \sqrt[3]{x^{2} + x + 6}}{1 -x}

    = \lim_{x ightarrow 1^{+}}\left(\frac{\sqrt{5x - 1} - 2}{1 - x} + \frac{2 - \sqrt[3]{x^{2} + x + 6}}{1 -x} ight)

    = \lim_{x ightarrow 1^{+}}\left( \frac{5x - 5}{(1 -x)\left( \sqrt{5x - 1} + 2 ight)} + \frac{8 - \left( x^{2} + x + 6ight)}{(1 - x)\left( 4 + 2\sqrt[3]{x^{2} + x + 6} + \left(\sqrt[3]{x^{2} + x + 6} ight)^{2} ight)} ight)

    = \lim_{xightarrow 1^{+}}\left( \frac{- 5}{\left( \sqrt{5x - 1} + 2 ight)} +\frac{x + 2}{4 + 2\sqrt[3]{x^{2} + x + 6} + \left( \sqrt[3]{x^{2} + x +6} ight)^{2}} ight)

    = - \frac{5}{4} + \frac{1}{4} = -
1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}(ax + 2) = a + 2

    f(1) = a + 2

    Hàm số liên tục tại x = 1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow a + 2 = - 1
\Leftrightarrow a = - 3.

  • Câu 31: Thông hiểu

    Cho tứ diện ABCD. Gọi K,L lần lượt là trung điểm của ABBC,N là điểm thuộc đoạn CD sao cho CN
= 2ND. Gọi P là giao điểm của AD với mặt phẳng (KLN). Tính tỉ số \frac{PA}{PD}.

    Hình vẽ minh họa

    Giả sử LN \cap BD = I. Nối K với I cắt AD tại P Suy ra (KLN) \cap AD = P
    Ta có: KL//AC \Rightarrow PN//AC. Suy ra \frac{PA}{PD} = \frac{NC}{ND} =
2.

  • Câu 32: Vận dụng cao

    Tìm tất các các giá trị thực của tham số m để phương trình \cos x -m =0 vô nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình cos x = a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Phương trình \cos x - m = 0 \Leftrightarrow \cos x = m

    Do đó, phương trình \cos x -m =0 vô nghiệm \Leftrightarrow \left| m ight| > 1 \Leftrightarrow \left[ \begin{gathered}  m <  - 1 \hfill \\  m > 1 \hfill \\ \end{gathered}  ight..

  • Câu 33: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?

    Xét dãy số  u_{n}=-2^{n}+15 ta có:

     \begin{matrix}  {u_{n + 1}} =  - {2^{n + 1}} + 15 \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} =  - {2^{n + 1}} + 15 + {2^n} - 15 \hfill \\   =  - {2^{n + 1}} + {2^n}=d \hfill \\ \end{matrix}

    d không cố định => Dãy số u_{n}=-2^{n}+15 không phải là một cấp số cộng.

  • Câu 34: Nhận biết

    Dãy số u_{n} = 2^{n} là cấp số nhân với

    Cấp số nhân 1;2;4;8;16;32;...

    \Rightarrow \left\{ \begin{matrix}u_{1} = 1 \\q = \dfrac{u_{2}}{u_{1}} = 2 \\\end{matrix} ight.

  • Câu 35: Nhận biết

    \lim\left( - n^{4} - 50n + 11
ight) bằng

    Ta có:

    \lim\left( - n^{4} - 50n + 11
ight)

    = \lim\left\lbrack n^{4}\left( - 1 -
\frac{50}{n^{3}} + \frac{11}{n^{4}} ight) ightbrack = -
\infty

  • Câu 36: Nhận biết

    Cho điểm A, đường thẳng d và mặt phẳng (P). Kí hiệu nào sau đây đúng?

    Kí hiệu đúng là: d \subset
(P)

  • Câu 37: Vận dụng

    Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50000 +
105x. Tính \lim_{x ightarrow +
\infty}\mspace{2mu}\bar{C}(x) và cho biết ý nghĩa của kết quả.

    Đáp án: 105

    Đáp án là:

    Chi phí (đơn vị: nghìn đồng) để sản xuất x sản phẩm của một công ty được xác định bởi hàm số: C(x) = 50000 +
105x. Tính \lim_{x ightarrow +
\infty}\mspace{2mu}\bar{C}(x) và cho biết ý nghĩa của kết quả.

    Đáp án: 105

    Ta có:

    {\lim}_{x ightarrow +\infty}\mspace{2mu}\bar{C}(x) = \lim_{x ightarrow +\infty}\mspace{2mu}\frac{50000 + 105x}{x}

    = \lim_{x ightarrow +\infty}\mspace{2mu}\dfrac{x\left( \dfrac{50000}{x} + 105ight)}{x}

    = \lim_{x ightarrow +
\infty}\mspace{2mu}\left( \frac{50000}{x} + 105 ight) =
105

  • Câu 38: Thông hiểu

    Cho ba mặt phẳng (\alpha);(\beta);(\gamma) đôi một song song. Hai đường thẳng m,n lần lượt cắt ba mặt phẳng tại  A,B,C A',B',C', (B nằm giữa A C, B' nằm giữa A'C'). Biết rằng AB = 5;BC = 4;A'C' = 8. Tính A'B'.B'C'.

    Ta có: \frac{AB}{A'B'} =
\frac{BC}{B'C'} = \frac{AB + BC}{A'B' + B'C'} =
\frac{AC}{A'C}

    \Rightarrow A'B' =
10;B'C' = 8

    \Rightarrow A'B'.B'C' =
80

  • Câu 39: Thông hiểu

    Tính giới hạn \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}}.

    Ta có:

    \lim\dfrac{4^{n + 1} + 6^{n + 2}}{5^{n} +8^{n}} = \lim\dfrac{\dfrac{4^{n + 1} + 6^{n + 2}}{8^{n}}}{\dfrac{5^{n} +8^{n}}{8^{n}}}

    = \lim\dfrac{4.\left( \dfrac{1}{2}ight)^{n} + 36.\left( \dfrac{3}{4} ight)^{n}}{\left( \dfrac{5}{8}ight)^{n} + 1} = 0

  • Câu 40: Vận dụng

    Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

     Phát biểu nào sau đây là đúng

    Trong mặt phẳng (ABCD) gọi I là giao điểm của MC và BD.

    Trong mặt phẳng (SMC) gọi H là giao điểm của SI và MN.

    Khi đó H ∈ SI ⊂ (SBD); H ∈ MN.

    => H là giao điểm của MN và mặt phẳng (SBD).

  • Câu 41: Nhận biết

    Để kết luận đường thẳng a song song với đường thẳng b ta cần giả thiết nào dưới đây?

    Ta có tính chất:

    Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

    Vậy \left\{ \begin{matrix}
a//(\alpha);a//(\beta) \\
(\alpha) \cap (\beta) = b \\
\end{matrix} ight.\  \Rightarrow a//b

  • Câu 42: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\left( \frac{5\pi}{2} - \alpha ight) =
2. Tính giá trị biểu thức T =
\tan\left( \alpha + \frac{\pi}{4} ight)

    Ta có:

    T = \tan\left( \alpha + \frac{\pi}{4}
ight)

    \Rightarrow T = \dfrac{\tan\alpha +\tan\dfrac{\pi}{4}}{1 - \tan\alpha.\tan\dfrac{\pi}{4}}

    \Rightarrow T = \frac{\tan\alpha + 1}{1- \tan\alpha}

    Theo bài ra ta có:

    \cot\left( \frac{5\pi}{2} - \alpha
ight) = 2

    \Leftrightarrow \cot\left( 2\pi +
\frac{\pi}{2} - \alpha ight) = 2

    \Leftrightarrow \cot\left( \frac{\pi}{2}
- \alpha ight) = 2

    \Leftrightarrow \tan\alpha =
2

    Khi đó giá trị biểu thức T là: T = \frac{2 + 1}{1 - 2} = -
3

  • Câu 43: Nhận biết

    Cho biết mệnh đề nào sau đây sai?

    Trường hợp hai đường thẳng chéo nhau thì không xác định được mặt phẳng chứa cả hai đường thẳng đó. Hoặc 2 đường thẳng trùng nhau thì xác định được vô số mặt phẳng.

  • Câu 44: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 45: Vận dụng

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho dãy số \left( u_{n}
ight) thỏa mãn log_{3}\left(
2u_{5} - 63 ight) = 2log_{4}\left( u_{n} - 8n + 8 ight);\left(
\forall n \in \mathbb{N}^{*} ight). Đặt S_{n} = u_{1} + u_{2} + ... + u_{n}. Tìm số nguyên dương lớn nhất của n thỏa mãn \frac{u_{n}.S_{2n}}{u_{2n}.S_{n}} <
\frac{148}{75}?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo