Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 2: Vận dụng cao

    Rút gọn biểu thức B = 1 - {\sin ^2}x + {\sin ^4}x - {\sin ^6}x + ... + {\left( { - 1} ight)^n}.{\sin ^{2n}}x + ... với \sin x eq \pm 1?

    Ta có:

    \begin{matrix}
  B = \underbrace {1 - {{\sin }^2}x + {{\sin }^4}x - {{\sin }^6}x + ... + {{\left( { - 1} ight)}^n}.{{\sin }^{2n}}x + ...}_{CSN:{u_1};q =  - {{\sin }^2}x} \hfill \\
   = \dfrac{1}{{1 + {{\sin }^2}x}} \hfill \\ 
\end{matrix}

  • Câu 3: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } x(\sqrt {{x^2} + 5}  - x) bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 5}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {{x^2} + 5}  - x} ight)\left( {\sqrt {{x^2} + 5}  + x} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {{x^2} + 5 - {x^2}} ight)}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{5x}}{{\sqrt {{x^2} + 5}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{5}{{\sqrt {1 + \dfrac{5}{{{x^2}}}}  + 1}} = \dfrac{5}{2} \hfill \\ \end{matrix}

  • Câu 4: Vận dụng

    Số nghiệm thuộc đoạn \left[ {0;15\pi } ight] của phương trình: \tan x - 1 = 0

    Điều kiện xác định x e \dfrac{\pi}{2}+k\pi,(k \in \mathbb{Z})

    \begin{matrix}  \tan x - 1 = 0 \Rightarrow \tan x = 1 \hfill \\   \Rightarrow x = \dfrac{\pi }{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\  x \in \left[ {0;15\pi } ight];k \in \mathbb{Z} \Rightarrow 0 \leqslant \dfrac{\pi }{4} + k\pi  \leqslant 15\pi  \hfill \\   \Rightarrow k \in \left\{ {0;1;...;14} ight\} \hfill \\ \end{matrix}

    Vậy có tất cả 15 nghiệm.

  • Câu 5: Nhận biết

    Chọn khẳng định đúng.

    Ta có: \pi rad tương ứng với 180^{0}.

  • Câu 6: Nhận biết

    Dãy số nào sau đây là cấp số nhân?

    Ta có: \left( u_{n} ight) là cấp số nhân \Leftrightarrow u_{n + 1} =
q.u_{n}

    Dãy số lập thành cấp số nhân là \left\{
\begin{matrix}
u_{1} = - 1 \\
u_{n + 1} = - 3u_{n};n \geq 1 \\
\end{matrix} ight.

  • Câu 7: Nhận biết

    Dãy số có các số hạng cho bởi - 1;1; - 1;1;... có số hạng tổng quát là công thức nào dưới đây?

    Vì dãy số đã cho không phải là dãy hằng nên loại các đáp án u_{n} = 1u_{n} = - 1

    Ta có: u_{1} = - 1 ở các đáp án u_{n} = ( - 1)^{n}u_{n} = ( - 1)^{n + 1}

    Xét đáp án u_{n} = ( - 1)^{n} \Rightarrowu_{1} = - 1

    Xét đáp án u_{n} = ( - 1)^{n + 1}\Rightarrow u_{1} = ( - 1)^{2} = 1 eq - 1

    Vậy công thức tổng quát của dãy số đã cho là u_{n} = ( - 1)^{n}

  • Câu 8: Nhận biết

    Giá trị của  \lim\frac{1}{n^{k}} với k \in \mathbb{N^*}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\sqrt[k]{\frac{1}{a}}

    Suy ra:

    \frac{1}{n^{k}} < \frac{1}{n_{a}^{k}} < a\
\forall n > n_{a}

    Vậy \lim\frac{1}{n^{k}} = 0.

  • Câu 9: Nhận biết

    Có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?

    Có ba vị trí tương đối giữa đường thẳng và mặt phẳng là:

    + Đường thẳng song song với mặt phẳng.

    + Đường thẳng cắt mặt phẳng.

    + Đường thẳng nầm trên mặt phẳng.

  • Câu 10: Nhận biết

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành ABCD tâm O. Giao tuyến của hai mặt phẳng (SAC)(SAD)

    Ta có (SAC) \cap (SAD) = SA.

  • Câu 11: Thông hiểu

    Trong các dãy số sau, dãy số nào bị chặn trên?

    Ta có:

    \left( v_{n} ight):v_{n} = - n^{2} + 2
\leq 2.

    Vậy đây là dãy số bị chặn trên.

  • Câu 12: Nhận biết

    Nghiệm của phương trình \cos x = -
\frac{1}{2}

    Ta có:

    \cos x = - \frac{1}{2} \Leftrightarrow
\cos x = \cos\left( \frac{2\pi}{3} ight)

    \Leftrightarrow x = \pm \frac{2\pi}{3} +
k2\pi\ \ \ \ (k \in Ζ)

  • Câu 13: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = - 2;u_{2} = 2. Khi đó số hạng 2018 là số nào?

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 2 - ( - 2) =
4

    u_{n} = u_{1} + (n - 1)d

    \Rightarrow u_{2018} = u_{1} + 2017d = -
2 + 2017.4 = 8066.

  • Câu 14: Vận dụng

    Cho hàm số f(x) liên tục trên đoạn [-1;4] sao cho f(-1) = 2, f(4) = 7. Có thể nói gì về số nghiệm của phương trình f(x) = 5 trên đoạn [-1;4] :

    Ta có: f(x)=5 =>f(x)−5=0

    Đặt g(x)=f(x)−5

    Khi đó:

    \begin{matrix}\left\{ \begin{gathered}g( - 1) = f( - 1) - 5 = 2 - 5 = - 3 \hfill \\g(4) = f(4) - 5 = 7 - 5 = 2 \hfill \\\end{gathered} ight. \hfill \\\Rightarrow g( - 1).g(4) < 0 \hfill \\\end{matrix}

    Vậy phương trình g(x)=0 có ít nhất một nghiệm thuộc khoảng (1;4) hay phương trình f(x)=5 có ít nhất một nghiệm thuộc khoảng (1;4).

  • Câu 15: Thông hiểu

    Biết \lim_{x ightarrow 3}\dfrac{x^{2} +bx + c}{x - 3} = 8\ (b,c\mathbb{\in R}). Giá trị P = b + c bằng

    Đáp án: -13||- 13

    Đáp án là:

    Biết \lim_{x ightarrow 3}\dfrac{x^{2} +bx + c}{x - 3} = 8\ (b,c\mathbb{\in R}). Giá trị P = b + c bằng

    Đáp án: -13||- 13

    \lim_{x ightarrow 3}\frac{x^{2} + bx
+ c}{x - 3} = 8 là hữu hạn nên phương trình x^{2} + bx + c = 0 có nghiệm x = 3

    \Leftrightarrow 3b + c + 9 = 0
\Leftrightarrow c = - 9 - 3b

    Khi đó

    \lim_{x ightarrow 3}\frac{x^{2} + bx +
c}{x - 3} = \lim_{x ightarrow 3}\frac{x^{2} + bx - 9 - 3b}{x - 3} =
\lim_{x ightarrow 3}\frac{(x - 3)(x + 3 + b)}{x - 3}

    = \lim_{x ightarrow 3}(x + 3 + b) = 8
\Leftrightarrow 6 + b = 8 \Leftrightarrow b = 2 \Rightarrow c = -
15

    Vậy P = b + c = - 13.

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang (AB // CD). Gọi G là trọng tâm tam giác SAB, các điểm I;Jlần lượt là trung điểm của AD,BC. Biết các giao tuyến của hình chóp và mặt phẳng (IGJ)tạo thành một hình bình hành. Khi đó tìm mối liên hệ độ dài của ABCD.

    Hình vẽ minh họa

    Theo giả thiết bài toán ta suy ra được: \left\{ \begin{matrix}IJ//AB//CD \\JI = \dfrac{AB + CD}{2} \\\end{matrix} ight.

    Xét hai mặt phẳng (IGJ), (SAB) có G là điểm chung nên giao tuyến của chúng là đường thẳng EF qua G, EF//AB//CD//IJ\ ;(E \in SA,\ F \in
SB)

    Nối các đoạn thẳng EI, FJ ta được hình tạo bởi giao tuyến của mặt phẳng (IGJ) và các mặt hình chóp là tứ giác EFJI, tứ giác này là hình thang vì EF // IJ.

    Vì G là trọng tâm của tam giác SAB và EF // AB nên theo định lý Tha-lét ta có: EF =
\frac{2}{3}AB

    Nên để EFJI là hình bình hành ta cần

    EF = IJ \Rightarrow \frac{AB + CD}{2} =
\frac{2AB}{3}

    \Leftrightarrow AB = 3CD

  • Câu 17: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}\ \ \ khi\ \ x eq
1 \\
2024m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ x = 1 \\
\end{matrix} ight. liên tục tại x = 1 khi đó giá trị của tham số m bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án: -1/1012

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}\ \ \ khi\ \ x eq
1 \\
2024m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ x = 1 \\
\end{matrix} ight. liên tục tại x = 1 khi đó giá trị của tham số m bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án: -1/1012

    Hàm số xác định tại x = 1.

    Ta có f(1) = 2024m. Tính \lim_{x ightarrow 1}\frac{\sqrt[3]{6x - 5} -
\sqrt{4x - 3}}{(x - 1)^{2}}.

    Đặt t = x - 1 thì x = t + 1, x
ightarrow 1 thì t ightarrow
0

    \frac{\sqrt[3]{6x - 5} - \sqrt{4x -
3}}{(x - 1)^{2}} = \frac{\sqrt[3]{6t + 1} - \sqrt{4t +
1}}{t^{2}}

    = \frac{\sqrt[3]{6t + 1} - (2t +
1)}{t^{2}} + \frac{(2t + 1) - \sqrt{4t + 1}}{t^{2}}.

    = \frac{6t + 1 - (8t^{3} + 12t^{2} + 6t +
1)}{t^{2}\left\lbrack \sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1}
+ (2t + 1)^{2} ightbrack} +
\frac{(4t^{2} + 4t + 1) - (4t + 1)}{t^{2}(2t + 1 + \sqrt{4t +
1})}.

    = \frac{- 8t - 12}{\left\lbrack
\sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1} + (2t + 1)^{2}
ightbrack} + \frac{4}{(2t + 1 +
\sqrt{4t + 1})}.

    Vậy \lim_{x ightarrow
1}\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}

    = \lim_{t ightarrow 0}\{\frac{- 8t -
12}{\left\lbrack \sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1} + (2t
+ 1)^{2} ightbrack} +
\frac{4}{(2t + 1 + \sqrt{4t + 1})}\} = - 2.

    Để hàm số liên tục tại x = 1 khi f(1) = \lim_{x ightarrow
1}\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}

    \Leftrightarrow 2024m = - 2
\Leftrightarrow m = \frac{- 1}{1012}.

  • Câu 18: Vận dụng

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua trục tung?

    Ta dễ dàng kiểm tra được các hàm số

    y = \sin x.\cos2x

    y = \frac{\tan x}{\tan^{2}x +1}

    y = \cos x.\sin^{3}x

    là các hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ O

    Xét hàm số y = \sin^{3}x.\cos\left( x -\frac{\pi}{2} ight) ta có:

    f(x) = y = \sin^{3}x.\cos\left( x -\frac{\pi}{2} ight) = \sin^{3}x.\sin{x} = \sin^{4}x

    Kiểm tra được đây là hàm số chẵn nên có đồ thị đối xứng qua trục tung.

  • Câu 19: Thông hiểu

    Kết luận nào đúng về tập nghiệm của phương trình \cos\left( \frac{\pi}{3} + \pi x
ight) = \sin(\pi x)?

    Ta có:

    \cos\left( \frac{\pi}{3} + \pi x ight)
= \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{2}
- \frac{\pi}{3} - \pi x ight) = \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{6}
- \pi x ight) = \sin(\pi x)

    \Leftrightarrow \left\lbrack\begin{matrix}\pi x = \dfrac{\pi}{6} - \pi x + k2\pi \\\pi x = \pi - \dfrac{\pi}{6} + \pi x + k2\pi(L) \\\end{matrix} ight.

    \Leftrightarrow x = \frac{1}{12} +
k;\left( k\mathbb{\in Z} ight)

    Vậy tập nghiệm của phương trình đã cho là \pi x = \frac{\pi}{6} - \pi x +
k2\pi.

  • Câu 20: Thông hiểu

    Cho hình chóp O.ABC, A’ là trung điểm của OA, B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này. Phát biểu nào sau đây là đúng?

    Chọn phát biểu đúng

    Trong mặt phẳng (OAC) ta có: Điểm C’ không là trung điểm của OC nên A’C’ không song song với AC.

    => AC và A’C’ cắt nhau.

    Phương án "Hai đường thẳng CB và C’B’ cắt nhau tại một điểm thuộc (OAB)." sai vì CB, C’B’ cắt nhau tại 1 điểm thuộc mặt phẳng (OBC).

  • Câu 21: Thông hiểu

    Cho tứ diện ABCD. Gọi K,L lần lượt là trung điểm của ABBC,N là điểm thuộc đoạn CD sao cho CN
= 2ND. Gọi P là giao điểm của AD với mặt phẳng (KLN). Tính tỉ số \frac{PA}{PD}.

    Hình vẽ minh họa

    Giả sử LN \cap BD = I. Nối K với I cắt AD tại P Suy ra (KLN) \cap AD = P
    Ta có: KL//AC \Rightarrow PN//AC. Suy ra \frac{PA}{PD} = \frac{NC}{ND} =
2.

  • Câu 22: Thông hiểu

    Chọn câu đúng:

    "Hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba thì chúng song song với nhau" đúng.

    Hai đường thẳng cùng song song với một mặt phẳng thì có thể cắt nhau, song song, trùng nhau hoặc chéo nhau => "Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau." sai.

    Hai mặt phẳng không cắt nhau thì song song hoặc trùng nhau => "Hai mặt phẳng không cắt nhau thì song song" sai.

    Hai mặt phẳng không song song thì trùng nhau hoặc cắt nhau => "Hai mặt phẳng không song song thì trùng nhau" sai.

  • Câu 23: Thông hiểu

    Xác định nghiệm của phương trình - \cos2x = \cos\left( x - 30^{0}ight)?

    Ta có:

    - \cos2x = \cos\left( x - 30^{0}ight)

    \Leftrightarrow \cos\left( 180^{0} - 2x
ight) = \cos\left( x - 30^{0} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 30^{0} = 180^{0} - 2x + k360^{0} \\
x - 30^{0} = - 180^{0} + 2x + k360^{0} \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} - k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Vậy phương trình đã cho có nghiệm \left\lbrack \begin{matrix}
x = 70^{0} + k120^{0} \\
x = 150^{0} + k360^{0} \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight).

  • Câu 24: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \sin x. \cos x - \sin x - \cos x + m = 0 có nghiệm:

     Đặt t = \sin x + \cos x;\left( {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]} ight)

    => \sin x.\cos x = \frac{{{t^2} - 1}}{2}

    Phương trình trở thành:

    \begin{matrix}  \dfrac{{{t^2} - 1}}{2} - t + m = 0 \hfill \\   \Rightarrow  - 2m = {t^2} - 2t - 1 \hfill \\   \Rightarrow {\left( {t - 1} ight)^2} =  - 2m + 2 \hfill \\ \end{matrix}

    Do  {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]}

    \begin{matrix}   \Leftrightarrow  - \sqrt 2  - 1 \leqslant t - 1 \leqslant \sqrt 2  - 1 \hfill \\   \Leftrightarrow 0 \leqslant {\left( {t - 1} ight)^2} \leqslant 3 + 2\sqrt 2  \hfill \\ \end{matrix}

    Vậy để phương trình có nghiệm

    \begin{matrix}   \Leftrightarrow 0 \leqslant  - 2m + 2 \leqslant 3 + 2\sqrt 2  \hfill \\   \Leftrightarrow  - \dfrac{{1 + 2\sqrt 2 }}{2} \leqslant m \leqslant 1 \hfill \\  m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} ight\} \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Hình chóp lục giác có bao nhiêu mặt?

    Hình chóp có 7 mặt trong đó có 6 mặt bên và 1 mặt đáy.

  • Câu 26: Vận dụng

    Dân số của thành phố A hiện nay là 4 triệu người. Biết rằng tỉ lệ tăng dân số hằng năm của thành phố A là 1%. Hỏi dân số của thành phố A sau 5 năm nữa sẽ là bao nhiêu?

    Với mỗi số nguyên dương n, ký hiệu u_{n} là số dân của thành phố A sau n năm.

    Khi đó, theo giả thiết của bài toán ta có:

    u_{n} = u_{n - 1} + u_{n - 1}.0,01 =
u_{n - 1}.1,01;(n \geq 2)

    Ta có: \left( u_{n} ight) là một cấp số nhân với số hạng đầu là u_{1} = 4
+ 4.0,01 = 4.1,01 và công bội q =
1,01

    \Rightarrow u_{n} = 4.1,01.(1,01)^{n -
1} = 4.(1,01)^{n};(n \geq 1)

    => Số dân của thành phố A sau 5 năm là: \Rightarrow u_{5} = 4.(1,01)^{5} = 4,2 (triệu người).

  • Câu 27: Nhận biết

    Có một và chỉ một mặt phẳng đi qua

    Hoàn thiện mệnh đề: "Có một và chỉ một mặt phẳng đi qua một điểm và một đường thẳng không chứa điểm đó."

  • Câu 28: Vận dụng

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.. Tính u_{2}.

    Ta có:

    \left\{ \begin{matrix}u_{1} + u_{2} + u_{3} = 27 \\{u_{1}}^{2} + {u_{2}}^{2} + {u_{3}}^{2} = 275 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} + \left( u_{1} + d ight) + \left( u_{1} + 2d ight) = 27 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} + d = 9 \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}d = 9 - u_{1} \\{u_{1}}^{2} + \left( u_{1} + d ight)^{2} + \left( u_{1} + 2dight)^{2} = 275 \\\end{matrix} ight.

    Khi đó:

    \Rightarrow {u_{1}}^{2} + \left( u_{1} +9 - u_{1} ight)^{2} + \left\lbrack u_{1} + 2\left( 9 - u_{1} ight)ightbrack^{2} = 275

    \Leftrightarrow {u_{1}}^{2} - 18u_{1} +65 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}u_{1} = 13 \Rightarrow d = - 4 \\u_{1} = 5 \Rightarrow d = 4 \\\end{matrix} ight.=> u_{2} = 9

  • Câu 29: Nhận biết

    Giá trị của \lim\frac{\cos n + \sin n}{n^{2} + 1} bằng:

    Ta có \frac{|\cos n + \sin n|}{n^{2}}
< \frac{2}{n^{2}}\lim\frac{1}{n^{2}} = 0

    Suy ra \lim\frac{\cos n + \sin n}{n^{2} +
1} = 0.

  • Câu 30: Thông hiểu

    Xét các số nguyên dương chia hết cho 3. Tổng 50 số nguyên dương đầu tiên đó bằng:

    Ta có:

    Số nguyên dương chia hết cho 3 có dạng 3n;\left( n \in \mathbb{N}^{*} ight) nên chúng lập thành cấp số cộng u_{n} =
n

    ightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
u_{50} = 150 \\
\end{matrix} ight.

    S_{n} = \frac{n}{2}.\left( u_{1} + u_{n}
ight) = n.u_{1} + \frac{n(n - 1)d}{2}

    \Rightarrow S_{50} = \frac{50}{2}.\left(
u_{1} + u_{50} ight) = 3825

  • Câu 31: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q. Đẳng thức nào sau đây đúng?

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q.

    Theo công thức số hạng tổng quát ta có u_{n} = u_{1}q^{n - 1}, (n \geq 2).

  • Câu 32: Thông hiểu

    Xét đường tròn bán kính 20cm. Cung tròn có số đo 37^{0} có độ dài tương ứng là:

    Độ dài cung tròn góc \alpha (với \alpha có đơn vị là độ):

    l = \frac{R\pi\alpha}{180^{0}} =
\frac{20.\pi.37^{0}}{180^{0}} = \frac{37\pi}{9}(cm)

  • Câu 33: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 1;5;16;64. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?

    Cấp số nhân đã cho có: \left\{
\begin{matrix}
u_{1} = 1 \\
q = 4 \\
\end{matrix} ight.

    \Rightarrow S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q} = 1.\frac{1 - 4^{n}}{1 - 4} = \frac{4^{n} -
1}{3}

  • Câu 34: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm AD và BC (xem hình vẽ bên). Giao tuyến của hai mặt phẳng (SMN) và (SAC) là

    Giao tuyến của hai mặt phẳng (SMN) và (SAC)

    Ta có: S là điểm chung thứ nhất giữa hai mặt phẳng (SMN) và (SAC).

    Ta có O = AC ∩ BD là tâm của hình hình hành

    => O = AC ∩ MN (do M, N lần lượt là trung điểm của AD và BC).

    Trong mặt phẳng (ABCD), ta có:

    \left\{ {\begin{array}{*{20}{l}}{O \in AC \subset \left( {SAC} ight) \Rightarrow O \in \left( {SAC} ight)} \\{O \in MN \subset \left( {SMN} ight) \Rightarrow O \in \left( {SMN} ight)}\end{array}} ight.

    => O là điểm chung thứ hai giữa hai mặt phẳng (SMN) và (SAC).

    Vậy (SMN) ∩ (SAC) = SO

  • Câu 35: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

  • Câu 36: Nhận biết

    Cho hàm số y =
f(x) liên tục trên đoạn \lbrack -
1;2brack và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;2brack. Giá trị của M.n là:

    Hàm số y = f(x) liên tục trên \lbrack - 1;2brack.

    Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1

    Vậy M.n = -3

  • Câu 37: Nhận biết

    Đồ thị hàm số y=\cos x+1 đi qua điểm nào sau đây?

     Xét điểm (0; 2) => x = 0; y = 2

    Thay vào hàm số ta có:

    cos0 + 1 = 1 + 1 = 2 (thỏa mãn)

    Vậy đồ thị hàm số y = cosx + 1 đi qua điểm (0; 2)

  • Câu 38: Nhận biết

    Tính \lim_{x
ightarrow 1}\frac{x^{2} + x - 2}{x - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{x^{2} + x -
2}{x - 1} = \lim_{x ightarrow 1}\frac{(x - 1)(x + 2)}{x -
1}

    = \lim_{x ightarrow 1}(x + 2) =
3

  • Câu 39: Vận dụng

    Kết quả giới hạn K = \lim_{x ightarrow
+ \infty}x\left( \sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight) =
\frac{a}{b}, với \frac{a}{b} là phân số tối giản (a;b > 0). Tổng a + b bằng bao nhiêu?

    Đáp án: 3

    Đáp án là:

    Kết quả giới hạn K = \lim_{x ightarrow
+ \infty}x\left( \sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight) =
\frac{a}{b}, với \frac{a}{b} là phân số tối giản (a;b > 0). Tổng a + b bằng bao nhiêu?

    Đáp án: 3

    Ta có

    K = \lim_{x ightarrow + \infty}x\left(
\sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight)

    = \lim_{x ightarrow +
\infty}x\left\lbrack \left( \sqrt{x^{2} + 2x} - x - 1 ight) + \left( x
+ 1 - \sqrt[3]{x^{3} + 3x^{2}} ight) ightbrack

    = \lim_{x ightarrow +
\infty}\lbrack\frac{- x}{\sqrt{x^{2} + 2x} + (x + 1)} + \frac{3x^{2} + x}{(x + 1)^{2} + (x +
1)\sqrt[3]{x^{3} + 3x} + \sqrt[3]{\left( x^{3} + 3x
ight)^{2}}}brack

    = \lim_{x ightarrow +
\infty}\lbrack\frac{- 1}{\sqrt{1 + \frac{2}{x}} + \left( 1 + \frac{1}{x}
ight)} + \frac{3 +
\frac{1}{x}}{\left( 1 + \frac{1}{x} ight)^{2} + \left( 1 + \frac{1}{x}
ight)\sqrt[3]{1 + \frac{3}{x^{2}}} + \sqrt[3]{\left( 1 +
\frac{3}{x^{2}} ight)^{2}}}brack

    = - \frac{1}{2} + 1 =
\frac{1}{2}.

    Suy ra a + b = 3.

  • Câu 40: Thông hiểu

    Hình biểu diễn của một hình thoi là hình nào sau đây?

    Hình biểu diễn của một hình thoi là hình bình hành.

  • Câu 41: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow 1}\frac{3x + 2}{2
- x} = 5 . Đúng||Sai

    b) Phương trình x^{3} - 3x^{2} + 3 =
0 có đúng 3 nghiệm phân biệt. Đúng||Sai

    c) Nếu \lim_{x ightarrow 0}f(x) =
5 thì \lim_{x ightarrow
0}\left\lbrack 3x - 4f(x) ightbrack bằng - 15. Sai||Đúng

    d) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\sqrt{1 + 2x} - 1}{x}\ \ \ khi\ x\  > \ 0 \\1 + 3x\ \ \ \ \ \ \ \ \ khi\ x \leq 0 \\\end{matrix} ight. gián đoạn tại x = 0. Sai||Đúng

    Ta có: \lim_{x ightarrow 1}\frac{3x +
2}{2 - x} = \frac{3.1 + 2}{3 - 1} = 5

    Xét phương trình x^{2} - 3x^{2} + 3 =
0. Đặt x^{2} - 3x^{2} + 3 =
f(x) là hàm số liên tục trên \mathbb{R} suy ra hàm số cũng liên tục trên \lbrack - 1;3brack.

    Ta có: f( - 1) = - 1;f(1) = 1;f(2) = -
1;f(3) = 3

    Khi đó: \left\{ \begin{matrix}
f( - 1).f(1) < 0 \\
f(1).f(2) < 0 \\
f(2).f(3) < 0 \\
\end{matrix} ight. nên phương trình f(x) = 0 có ít nhất 3 nghiệm

    f(x) = 0 là phương trình bậc 3 có tối đa 3 nghiệm

    Vậy phương trình đã cho có đúng 3 nghiệm.

    Ta có:

    Nếu \lim_{x ightarrow 0}f(x) =
5 suy ra

    \lim_{x ightarrow 0}\left\lbrack 3x -
4f(x) ightbrack

    = \lim_{x ightarrow 0}(3x) - 4\lim_{x
ightarrow 0}f(x) = 3.0 - 4.5 = - 20

    Ta có:

    \lim_{x ightarrow 0^{+}}\frac{\sqrt{1
+ 2x} - 1}{x} = \lim_{x ightarrow 0^{+}}\frac{\left( \sqrt{1 + 2x} - 1
ight)\left( \sqrt{1 + 2x} + 1 ight)}{x\left( \sqrt{1 + 2x} + 1
ight)}

    = \lim_{x ightarrow
0^{+}}\frac{2}{\sqrt{1 + 2x} + 1} = 1

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}(1 + 3x) = 1

    Vậy hàm số đã cho liên tục tại x = 0.

  • Câu 42: Vận dụng cao

    Cho tổng S_{n} =
\frac{3}{(1.2)^{2}} + \frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots
+ \frac{2n + 1}{\lbrack n(n + 1)brack^{2}}. Giá trị S10

    Cách 1:

    Ta có \frac{3}{(1.2)^{2}} = \frac{1}{1} -
\frac{1}{4};\frac{5}{(2.3)^{2}} = \frac{1}{4} -
\frac{1}{9};\ldots

    Suy ra S_{n} = \frac{1}{1} - \frac{1}{4} +
\frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{n^{2}} - \frac{1}{(n +
1)^{2}} = \frac{n(n + 2)}{(n + 1)^{2}}

    Vậy S_{10} = \frac{10(10 + 2)}{(10 +
1)^{2}} = \frac{120}{121}.

    Cách 2:

    Ta có S_{10} = \frac{3}{(1.2)^{2}} +
\frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots +
\frac{21}{(10.11)^{2}}

    Suy ra S_{10} = \frac{1}{1} - \frac{1}{4}
+ \frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{10^{2}} -
\frac{1}{11^{2}} = \frac{1}{1} - \frac{1}{11^{2}} =
\frac{120}{121}.

  • Câu 43: Thông hiểu

    Phương trình nào sau đây vô nghiệm?

     + Phương trình \sin x +3=0 \Leftrightarrow \sin x = -3

    Vậy phương trình \sin x +3=0 vô nghiệm.

    + Phương trình 2{\cos ^2}x - \cos x - 1 = 0 \Leftrightarrow \left[ \begin{gathered}  \cos x = 1 \hfill \\  \cos x =  - \frac{1}{2} \hfill \\ \end{gathered}  ight.

    Vậy phương trình 2{\cos ^2}x - \cos x - 1 = 0 có nghiệm.

    + Phương trình \tan x +3=0 \Leftrightarrow \tan x =-3

    \Leftrightarrow x = \arctan \left( { - 3} ight) + k\pi

    Vậy phương trình \tan x +3=0 có nghiệm.

    + Phương trình 3 \sin x -2=0 \Leftrightarrow \sin x = \frac {2}{3}-1 < \frac 2 3 < 1 nên phương trình 3 \sin x -2=0 có nghiệm.

  • Câu 44: Nhận biết

    Tính giá trị biểu thức A = \cos^{6}15^{0} - \sin^{6}15^{0}

    Ta có:

    \cos^{6}\alpha -\sin^{6}\alpha

    = \left( \cos^{2}\alpha ight)^{3} -\left( \sin^{2}\alpha ight)^{3}

    = \left( \cos^{2}\alpha - \sin^{2}\alphaight)\left( \cos^{4}\alpha + \cos^{2}\alpha.\sin^{2}\alpha +\sin^{4}\alpha ight)

    = \cos2\alpha.\left\lbrack \left(\cos^{2}\alpha + \sin^{2}\alpha ight)^{2} - \cos^{2}\alpha.\sin^{2}\alphaightbrack

    = \cos2\alpha.\left( 1^{2} -\dfrac{1}{4}\sin^{2}2\alpha ight)

    Khi đó:

    A = \cos^{6}15^{0} -\sin^{6}15^{0}

    A = \cos30^{0}.\left( 1 -\dfrac{1}{4}\sin^{2}30^{0} ight)

    A = \frac{\sqrt{3}}{2}.\left( 1 -
\frac{1}{4}.\frac{1}{4} ight) = \frac{15\sqrt{3}}{32}

  • Câu 45: Vận dụng

    Cho tứ diện ABCD. Trên AB, AC lần lượt lấy hai điểm M,N sao cho MN cắt BC tại I. Tìm giao tuyến của hai mặt phẳng (MND)(BCD).

    Hình vẽ minh họa:

    Ta có: D là điểm chung của hai mặt phẳng (MND)(BCD)

    Ta lại có: \left\{ \begin{matrix}
I \in MN \subset (MND) \\
I \in BC \subset (BCD) \\
\end{matrix} ight. nên I là điểm chung thứ hai.

    Vậy giao tuyến của hai mặt phẳng (MND)(BCD) DI

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo