Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Đáp án là:

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Để hàm số P(x) liên tục trên (0; + \infty) thì hàm số phải liên tục tại x_{0} = 400 hay \lim_{xightarrow 400} P(x)=P( 400 )

    Ta có:

    \lim_{x ightarrow 400^{-}}P(x) =
\lim_{x ightarrow 400^{-}}4,5x = 4,5.400 = 1800

    \lim_{x ightarrow 400^{+}}P(x) =
\lim_{x ightarrow 400^{-}}(4x + k) = 4.400 + k = 1600 + k

    Để tồn tại \lim_{xightarrow 400} P( x ) thì 1800 = 1600 +
k.

    Suy ra k = 200

  • Câu 2: Nhận biết

    Giá trị của \sin\left( - \frac{25\pi}{4} ight) là:

    Ta có:

    \sin\left( - \frac{25\pi}{4} ight) =
\sin\left( - \frac{\pi}{4} - 6\pi ight) = \sin\left( - \frac{\pi}{4}
ight) = - \frac{\sqrt{2}}{2}

  • Câu 3: Thông hiểu

    Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABDM là điểm trên cạnh BC sao cho BM
= 2MC. Đường thẳng MG song song với

    Hình vẽ minh họa

    Gọi E là trung điểm của AD. Do G là trọng tâm của tam giác ABD và M là điểm trên cạnh BC sao cho BM =
2MC nên trong mặt phẳng (BCE) ta có:

    \frac{BG}{BE} = \frac{BM}{BC} =
\frac{2}{3}

    \Rightarrow MG//CE \subset
(ACD)

    \Rightarrow MG//(ACD)

  • Câu 4: Thông hiểu

    Giải phương trình 4{\sin ^2}x = 3.

    Ta có 4{\sin ^2}x = 3 \Leftrightarrow {\sin ^2}x = \frac{3}{4} \Leftrightarrow \sin x =  \pm \frac{{\sqrt 3 }}{2}.

    Với \sin x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x = \frac{{2\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Với \sin x =  - \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin x = \sin \left( { - \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  x =  - \frac{\pi }{3} + k2\pi  \hfill \\  x = \frac{{4\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Nhận thấy chưa có đáp án nào phù hợp. Ta biểu diễn các nghiệm trên đường tròn lượng giác (hình vẽ).

    Nếu tính luôn hai điểm A, B thì có tất cả 6 điểm cách đều nhau nên ta gộp được 6 điểm này thành một họ nghiệm, đó là x = k\frac{\pi }{3}.

    Suy ra nghiệm của phương trình \left\{ \begin{gathered}  x = k\frac{\pi }{3} \hfill \\  k\frac{\pi }{3} e l\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x = \frac{{k\pi }}{3} \hfill \\  k e 3\ell  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k,\ell  \in \mathbb{Z}} ight)

  • Câu 5: Thông hiểu

    Biết rằng \lim_{x ightarrow
3}\frac{x^{2} - 5x + 6}{x^{2} - 9} = \frac{a}{b}, với \frac{a}{b} là phân số tối giản và a,b\mathbb{\in N}. Tính a + b.

    Ta có:

    \lim_{x ightarrow 3}\frac{x^{2} - 5x +
6}{x^{2} - 9} = \lim_{x ightarrow 3}\frac{(x - 2)(x - 3)}{(x - 3)(x +
3)}

    = \lim_{x ightarrow 3}\frac{x - 2}{x +3} = \frac{1}{6} = \frac{a}{b} \Rightarrow a = 1,b = 6.

    Vậy: a + b = 7.

  • Câu 6: Thông hiểu

    Tính giá trị của biểu thức C = \dfrac{\sin\dfrac{5\pi}{18}.\cos\dfrac{\pi}{9} -\sin\dfrac{\pi}{9}.\cos\dfrac{5\pi}{18}}{\cos\dfrac{\pi}{4}.\cos\dfrac{\pi}{12}- \sin\dfrac{\pi}{4}.\sin\dfrac{\pi}{12}} là:

    Ta có:

    \sin\dfrac{5\pi}{18}.\cos\dfrac{\pi}{9} -\sin\dfrac{\pi}{9}.\cos\dfrac{5\pi}{18}

    = \sin\left( \frac{5\pi}{18} -\frac{\pi}{9} ight)

    = \sin\frac{\pi}{6} =\frac{1}{2}

    \cos\dfrac{\pi}{4}.\cos\dfrac{\pi}{12} -\sin\dfrac{\pi}{4}.\sin\frac{\pi}{12}

    = \cos\left( \frac{\pi}{4} +\frac{\pi}{12} ight)

    = \cos\frac{\pi}{3} =\frac{1}{2}

    Vậy C=1

  • Câu 7: Nhận biết

    Tính A = \lim_{x
ightarrow - 1}\left( x^{2} - x + 7 ight).

    Ta có: A = \lim_{x ightarrow - 1}\left(
x^{2} - x + 7 ight) = 1 + 1 + 7 = 9

  • Câu 8: Nhận biết

    Cho điểm A thuộc mặt phẳng (P), mệnh đề nào sau đây đúng:

    Mệnh đề đúng A \in (P).

  • Câu 9: Nhận biết

    Giới hạn \lim\frac{2}{n - 3} bằng

    Ta có:

    \lim\frac{2}{n - 3} =\lim\dfrac{\dfrac{2}{n}}{1 - \dfrac{3}{n}} = \dfrac{0}{0 - 0} =0

  • Câu 10: Vận dụng

    Cho cấp số nhân (un) có {S_2} = 4;{S_3} = 13. Biết {u_2} < 0. Tính {S_5}?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{S_2} = 4} \\   {{S_3} = 13} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{u_1}\left( {1 - {q^2}} ight)}}{{1 - q}} = 4} \\   {\dfrac{{{u_1}\left( {1 - {q^3}} ight)}}{{1 - q}} = 13} \end{array}} ight. \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}\left( {1 + q} ight) = 4} \\   {{u_1}\left( {1 + q + {q^2}} ight) = 13} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{1 + q}}{{1 + q + {q^2}}} = \dfrac{4}{{13}}\left( * ight)} \\   {{u_1} = \dfrac{4}{{1 + q}}\left( {**} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Xét (*)

    \begin{matrix}  \dfrac{{1 + q}}{{1 + q + {q^2}}} = \dfrac{4}{{13}}a \hfill \\   \Leftrightarrow 4{q^2} - 9q - 9 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {q = 3 \Rightarrow {u_1} = 1 \Rightarrow {u_2} = {u_1}.q = 3 > 0\left( L ight)} \\   {q =  - \dfrac{3}{4} \Rightarrow {u_1} = 16 \Rightarrow {u_2} = {u_1}.q =  - 12 < 0\left( {tm} ight)} \end{array}} ight. \hfill \\   \Rightarrow {S_5} = \dfrac{{{u_1}\left( {1 - {q^5}} ight)}}{{1 - q}} = \dfrac{{16.\left[ {1 - {{\left( {\dfrac{{ - 3}}{4}} ight)}^5}} ight]}}{{1 + \dfrac{3}{4}}} = \dfrac{{181}}{{16}} \hfill \\ \end{matrix}

  • Câu 11: Vận dụng

    Kết quả giới hạn K = \lim_{x ightarrow
+ \infty}x\left( \sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight) =
\frac{a}{b}, với \frac{a}{b} là phân số tối giản (a;b > 0). Tổng a + b bằng bao nhiêu?

    Đáp án: 3

    Đáp án là:

    Kết quả giới hạn K = \lim_{x ightarrow
+ \infty}x\left( \sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight) =
\frac{a}{b}, với \frac{a}{b} là phân số tối giản (a;b > 0). Tổng a + b bằng bao nhiêu?

    Đáp án: 3

    Ta có

    K = \lim_{x ightarrow + \infty}x\left(
\sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight)

    = \lim_{x ightarrow +
\infty}x\left\lbrack \left( \sqrt{x^{2} + 2x} - x - 1 ight) + \left( x
+ 1 - \sqrt[3]{x^{3} + 3x^{2}} ight) ightbrack

    = \lim_{x ightarrow +
\infty}\lbrack\frac{- x}{\sqrt{x^{2} + 2x} + (x + 1)} + \frac{3x^{2} + x}{(x + 1)^{2} + (x +
1)\sqrt[3]{x^{3} + 3x} + \sqrt[3]{\left( x^{3} + 3x
ight)^{2}}}brack

    = \lim_{x ightarrow +
\infty}\lbrack\frac{- 1}{\sqrt{1 + \frac{2}{x}} + \left( 1 + \frac{1}{x}
ight)} + \frac{3 +
\frac{1}{x}}{\left( 1 + \frac{1}{x} ight)^{2} + \left( 1 + \frac{1}{x}
ight)\sqrt[3]{1 + \frac{3}{x^{2}}} + \sqrt[3]{\left( 1 +
\frac{3}{x^{2}} ight)^{2}}}brack

    = - \frac{1}{2} + 1 =
\frac{1}{2}.

    Suy ra a + b = 3.

  • Câu 12: Thông hiểu

    Biết giới hạn \lim\frac{2n + 1}{- 3n + 2}
= a. Khi đó:

    a) Giá trị a lớn hơn 0. Sai||Đúng

    b) Ba số -
\frac{5}{3};a;\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 2. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 3 nghiệm. Sai||Đúng

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6. Đúng||Sai

    Đáp án là:

    Biết giới hạn \lim\frac{2n + 1}{- 3n + 2}
= a. Khi đó:

    a) Giá trị a lớn hơn 0. Sai||Đúng

    b) Ba số -
\frac{5}{3};a;\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 2. Sai||Đúng

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 3 nghiệm. Sai||Đúng

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6. Đúng||Sai

    a) Ta có: \lim\frac{2n + 1}{- 3n + 2} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( - 3 + \frac{2}{n}
ight)} = \lim\frac{2 + \frac{1}{n}}{- 3 + \frac{2}{n}} = \frac{-
2}{3}

    b) Ba số - \frac{5}{3}; -
\frac{2}{3};\frac{1}{3} tạo thành một cấp số cộng với công sai bằng 1

    c) Trên khoảng ( - \pi;\pi) phương trình lượng giác \sin x = a có 2 nghiệm

    d) Cho cấp số nhân \left( u_{n}
ight) với công bội q = 3u_{1} = a, thì u_{3} = - 6

    Kết luận:

    a) Sai

    b) Sai

    c) Sai

    d) Đúng

  • Câu 13: Nhận biết

    Giải phương trình: \sqrt 3 \tan 2x - 3 = 0

     Giải phương trình:

    \begin{matrix}  \sqrt 3 \tan 2x - 3 = 0 \hfill \\   \Leftrightarrow \tan 2x = \sqrt 3  \hfill \\   \Leftrightarrow 2x = \dfrac{\pi }{3} + k\pi  \hfill \\   \Leftrightarrow x = \dfrac{\pi }{6} + \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, có đáy là hình thang với AD là đáy lớn. Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là

    Hình vẽ minh họa

    Ta có S là điểm chung thứ nhất.

    Gọi I là giao điểm của AB và CD suy ra I là điểm chung thứ hai.

    Vậy (SAB) ∩ (SCD) = SI

    Khi đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là đường thẳng SI với I là giao điểm của AB và CD.

  • Câu 15: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành, ACBD cắt nhau tại O. Gọi I là trung điểm SO. Mặt phẳng (ICD) cắt SA,SB lần lượt tại M,N. Khi đó:

    a) Điểm M là giao điểm của đường thẳng SA với mặt phẳng (ICD). Đúng||Sai

    b) Ta có SN = \frac{2}{3}SB. Sai||Đúng

    c) Cho AB = a thì MN = \frac{a}{2}. Sai||Đúng

    d) Trong mặt phẳng (CDMN), gọi K là giao điểm của CNDM. Khi đó SKBC chéo nhau. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành, ACBD cắt nhau tại O. Gọi I là trung điểm SO. Mặt phẳng (ICD) cắt SA,SB lần lượt tại M,N. Khi đó:

    a) Điểm M là giao điểm của đường thẳng SA với mặt phẳng (ICD). Đúng||Sai

    b) Ta có SN = \frac{2}{3}SB. Sai||Đúng

    c) Cho AB = a thì MN = \frac{a}{2}. Sai||Đúng

    d) Trong mặt phẳng (CDMN), gọi K là giao điểm của CNDM. Khi đó SKBC chéo nhau. Sai||Đúng

    - Xác định M,N :

    Trong mặt phẳng (SAC), kẻ CI cắt SA tại M;

    Trong mặt phẳng (SBD), kẻ DI cắt SB tại N.

    \left\{ \begin{matrix}
M \in CI,CI \subset (ICD) \\
M \in SA \\
\end{matrix} \Rightarrow M = SA \cap (ICD) ight..

    Tương tự: \left\{ \begin{matrix}
N \in DI,DI \subset (ICD) \\
N \in SB \\
\end{matrix} \Rightarrow N = SB \cap (ICD) ight..

    -Tính MN theo a :

    Gọi E là trung điểm BN,OE là đường trung bình của tam giác BDN \Rightarrow OE//DN.

    Trong tam giác SOE, ta có NI qua trung điểm I của SONI//OE,N là trung điểm của SE.

    Hình vẽ minh họa

    -Vậy SN = NE = EB hay SN = \frac{1}{3}SB.

    Hoàn toàn tương tự, ta chứng minh được SM
= \frac{1}{3}SA.

    Khi đó hai tam giác SMN,SAB đồng dạng vì có góc S chung và \frac{SM}{SA} = \frac{SN}{SB} =
\frac{1}{3}.

    Xét tam giác SAB, theo định lí Thalès, ta có:

    \frac{MN}{AB} = \frac{SM}{SA} =
\frac{1}{3} \Rightarrow MN = \frac{AB}{3} = \frac{a}{3}.

    - Chứng minh SK//BC//AD :

    Dễ thấy S là điểm chung của hai mặt phẳng (SBC)(SAD).

    Ta có: \left\{ \begin{matrix}
K \in CN,CN \subset (SBC) \\
K \in DM,DM \subset (SAD) \\
\end{matrix} \Rightarrow K \in (SBC) \cap (SAD) ight..

    Vì vậy SK = (SBC) \cap
(SAD).

    Khi đó: \left\{ \begin{matrix}
SK = (SBC) \cap (SAD) \\
BC \subset (SBC),AD \subset (SAD) \Rightarrow SK//BC//AD. \\
BC//AD \\
\end{matrix} ight.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

  • Câu 16: Nhận biết

    Dãy số u_{n} = 2^{n} là cấp số nhân với

    Cấp số nhân 1;2;4;8;16;32;...

    \Rightarrow \left\{ \begin{matrix}u_{1} = 1 \\q = \dfrac{u_{2}}{u_{1}} = 2 \\\end{matrix} ight.

  • Câu 17: Nhận biết

    Tập xác định của hàm số f(x) = \tan x là:

    Ta có: f(x) = \tan x xác định khi và chỉ khi

    \cos x eq 0

    \Leftrightarrow x eq \frac{\pi}{2} +k\pi;\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số là: \mathbb{R}\backslash\left\{ (2k +1).\frac{\pi}{2}|k\mathbb{\in Z} ight\}

  • Câu 18: Thông hiểu

    Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?

    Thực hiện kiểm tra đáp án ta thấy:

    Hàm số y = \cot x là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ

    Hàm số y = \frac{\sin x + 1}{\cosx} không chẵn không lẻ

    Hàm số y = tan^{2}x và hàm số y = \left| \cot x ight| là hàm số chẵn.

  • Câu 19: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{2} \\
\end{matrix} ight.. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có \left\{ \begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{2} \\
u_{3} = u_{2} + 2^{2} \\
\cdots \\
u_{n} = u_{n - 1} + (n - 1)^{2} \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên, ta được

    u_{n} = 1 + 1^{2} + 2^{2} + \ldots + (n
- 1)^{2} = 1 + \frac{n(n - 1)(n - 2)}{6}

  • Câu 20: Nhận biết

    Tìm mệnh đề sai trong các mệnh đề sau?

    Phép chiếu song song không thể biến một tam giác thành một điểm vì khi đó các đoạn thẳng đó phải thẳng hàng và song song với phương chiếu.

  • Câu 21: Vận dụng

    Cho cấp số cộng (un) có u1 = 1 và công sai d = 2. Tổng {S_{10}} = {u_1} + {u_2} + {u_3} + ... + {u_{10}} bằng:

    Ta có: 

    \begin{matrix}  {S_n} = \dfrac{{n\left( {{u_n} + {u_1}} ight)}}{2} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} ight)d} ight]}}{2} \hfill \\   \Rightarrow {S_{10}} = \dfrac{{10\left[ {2 + \left( {10 - 1} ight).2} ight]}}{2} = 100 \hfill \\ \end{matrix}

  • Câu 22: Vận dụng

    Nghiệm dương bé nhất của phương trình 2\sin^{2}x-5\sin x+3=0 là

     Giải phương trình 

    \begin{matrix}  2{\sin ^2}x - 5\sin x + 3 = 0 \hfill \\   \Leftrightarrow \left( {\sin x - 1} ight).\left( {2\sin x - 3} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x - 1 = 0} \\   {2\sin x - 3 = 0} \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\sin x = 1} \\   {\sin x = \dfrac{3}{2}\left( L ight)} \end{array}} ight. \hfill \\   \Rightarrow \sin x = 1 \hfill \\   \Rightarrow x = \dfrac{\pi }{2} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Với k = 0 => x =  \frac{\pi }{2} (Thỏa mãn)

    Vậy nghiệm nguyên dương nhỏ nhất của phương trình là x =  \frac{\pi }{2}

  • Câu 23: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi trung điểm của AB,A'B' lần lượt là I,I'. Qua phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành điểm nào?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
AI//B'I' \\
AI = B'I' \\
\end{matrix} ight. suy ra AIB'I' là hình bình hành.

    Suy ra phép chiếu song song phương AI', mặt phẳng chiếu (A'B'C') biến điểm I thành B'.

  • Câu 24: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 25: Nhận biết

    Cho dãy số (u_n) xác định bởi u_{n}=\frac{n^{2}}{3^{n}} với \forall  n\geq 1. Khi đó số hạng u_{2n} của dãy (u_{n}) là 

     Ta có:

    \begin{matrix}  {u_n} = \dfrac{{{n^2}}}{{{3^n}}} \hfill \\   \Rightarrow {u_{2n}} = \dfrac{{{{\left( {2n} ight)}^2}}}{{{3^{2n}}}} = \dfrac{{4{n^2}}}{{{9^n}}} \hfill \\ \end{matrix}

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in SC, mặt phẳng (\beta) đi qua M và song song với mặt phẳng (SAB). Khi đó các giao tuyến của mặt phẳng (\beta) với các mặt của S.ABCD là hình gì?

    Hình vẽ minh họa

    Giao tuyến của (\beta) với (SCD)MQ//CD.

    Giao tuyến của (\beta) với (ABCD)PN//CD.

    Từ đó suy ra các giao tuyến của mặt phẳng (\beta) với các mặt của S.ABCD là hình thang MNPQ.

  • Câu 27: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight) biết u_{5} = 5, u_{10} = 15 Khi đó u_{7} bằng

    Ta có

    \left\{ \begin{matrix}
u_{5} = 5 \\
u_{10} = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 4d = 5 \\
u_{1} + 9d = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 3 \\
d = 2 \\
\end{matrix} ight.

    Vậy u_{7} = u_{1} + 6d = - 3 + 6.2 =
9

  • Câu 28: Vận dụng cao

    Cho phương trình x^{12} + 1 = 4x^{4}.\sqrt{x^{n} + 1}. Tìm số nguyên dương n bé nhất để phương trình có nghiệm.

    Điều kiện xác định x^{n} \geq1

    Nếu n là số lẻ thì x^{n} \geq 1\Rightarrow x \geq 1

    Nếu n là số chẵn và x là nghiệm thì -x cũng là nghiệm của phương trình

    x = 1 không là nghiệm nên ta xét phương trình với x > 1

    \left\{ \begin{matrix}x^{12} + 1 \geq 2x^{2} \\x^{4}\left( x^{4} - 1 ight) + 1 \geq 2\sqrt{x^{4}\left( x^{4} - 1ight)} = 2x^{2}\sqrt{x^{4} - 1} \\\end{matrix} ight.

    \Rightarrow x^{12} + 1 \geq2x^{2}.2x^{2}\sqrt{x^{4} - 1} = 4x^{4}\sqrt{x^{4} - 1} (do x^{12} + 1 \geq 2x^{2} nên dấu bằng không xảy ra)

    Hơn nữa 4x^{4}\sqrt{x^{4} - 1} >4x^{4}\sqrt{x^{3} - 1} > 4x^{4}\sqrt{x^{2} - 1};(\forall x >1)

    Do đó phương trình không có nghiệm x >1 với n = 1,2,3,4

    Khi n = 5 ta có phương trình x^{12} + 1 = 4x^{4}.\sqrt{x^{5} +1}

    Giả sử f(x) = x^{12} + 1 -4x^{4}.\sqrt{x^{5} + 1} khi đó f(x) liên tục trên \lbrack 1; + \infty).

    Ta có: \left\{ \begin{matrix}f(1) = 2 \\f\left( \frac{6}{5} ight) < 0 \\\end{matrix} ight.\  \Rightarrow f(1).f\left( \frac{6}{5} ight) <0

    => f(x) = 0 có nghiệm

    Vậy n = 5.

  • Câu 29: Nhận biết

    Cho tam giác ABC. Có thể xác định được bao nhiêu mặt phẳng chứa tất cả các đỉnh của tam giác ABC?

    Có duy nhất một mặt phẳng chứa tất cả các đỉnh của tam giác ABC.

  • Câu 30: Nhận biết

    Cho hai đường thẳng mn chéo nhau. Có bao nhiêu mặt phẳng chứa m và song song với n?

    Ta có định lí: “Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia”.

  • Câu 31: Thông hiểu

    Tìm tập nghiệm của phương trình \left( \sin x + 1 ight).\left( \sin x - \sqrt{2}
ight) = 0?

    Ta có:

    \left( \sin x + 1 ight).\left( \sin x
- \sqrt{2} ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\sin x + 1 = 0 \\
\sin x - \sqrt{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\sin x = - 1 \\
\sin x = \sqrt{2}(L) \\
\end{matrix} ight.

    \Leftrightarrow \sin x = - 1
\Leftrightarrow x = - \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Vậy phương trình có tập nghiệm là: S =
\left\{ - \frac{\pi}{2} + k2\pi|k\mathbb{\in Z} ight\}

  • Câu 32: Nhận biết

    Trong các dãy số sau, dãy số nào không phải cấp số nhân?

    Xét đáp án 1^{2};2^{2};3^{2};4^{2};...\Leftrightarrow \frac{u_{2}}{u_{1}} = 4 eq
\frac{9}{4} = \frac{u_{3}}{u_{2}}

    => Dãy số 1^{2};2^{2};3^{2};4^{2};... không phải là cấp số nhân.

  • Câu 33: Nhận biết

    Biết bốn số 5;x;15;y theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức 3x + 2y bằng

    Ta có:

    x = \frac{5 + 15}{2} = 10 \Rightarrow y= 20

    \Rightarrow 3x + 2y = 70

  • Câu 34: Vận dụng

    Cho tứ diện ABCD có độ dài tất cả các cạnh bằng x. Gọi G là trọng tâm tam giác ABC. Tính diện tích thiết diện tạo bởi mặt phẳng (CDG) và tứ diện ABCD?

    Hình vẽ minh họa:

    Gọi M,N lần lượt là trung điểm các cạnh AB,BC

    \Rightarrow AN \cap MC = G

    Ta có: (CDG) \cap AB = M

    Suy ra tam giác MCD là thiết diện của mặt phẳng (CDG) và tứ diện ABCD

    Tam giác ABD đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MD =
\frac{x\sqrt{3}}{2}

    Tam giác ABC đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MC =
\frac{x\sqrt{3}}{2}

    Gọi H là trung điểm của CD \Rightarrow
MH\bot CD

    \Rightarrow S_{MCD} =
\frac{1}{2}MH.CD

    Ta có: MH = \sqrt{MC^{2} -
HC^{2}}

    \Leftrightarrow MH = \sqrt{MC^{2} -
\frac{CD^{2}}{2}}

    \Leftrightarrow MH =
\frac{x\sqrt{2}}{2}

    \Rightarrow S_{MCD} =
\frac{1}{2}.\frac{x\sqrt{2}}{2}.x = \frac{x^{2}\sqrt{2}}{4}

  • Câu 35: Vận dụng cao

    Tính \lim_{xightarrow 0}\dfrac{(1 + x)(1 + 2x)(1 + 3x)...(1 + 2018x) -1}{x}.

    Ta chứng minh bằng phương pháp quy nạp, với \forall n \geq 1;n\mathbb{\in N} thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + nx) - 1}{x} = \frac{n(n + 1)}{2}(*)

    Với n = 1 thì \left\{ \begin{gathered}
  VT = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 + x - 1}}{x} = \mathop {\lim }\limits_{x \to 0} 1 = 1 \hfill \\
  VP = \dfrac{{1\left( {1 + 1} ight)}}{2} = 1 \hfill \\ 
\end{gathered}  ight. \Rightarrow VT = VP nên (*) đúng với n = 1

    Giả sử (*) đúng với n = k,k \geq
1;k\mathbb{\in N} nghĩa là:

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + kx) - 1}{x} = \frac{k(k + 1)}{2}

    Xét n = k + 1 ta có:

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx + x) - 1}{x}

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx) - 1}{x}

    + \lim_{x ightarrow 0}\frac{(1 + x)(1
+ 2x)(1 + 3x)...(x + kx) - 1}{x}

    VT = \frac{k(k + 1)}{2} + \lim_{x
ightarrow 0}\left\lbrack (1 + x)(1 + 2x)(1 + 3x)...(1 + k)
ightbrack

    VT = \frac{k(k + 1)}{2} + k + 1 =
\frac{(k + 1)(k + 2)}{2} = VP

    Vậy (*) đúng với n = k + 1;k \geq
1;k\mathbb{\in N}

    Bây giờ ta áp dụng với n = 2018 thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + 2018x) - 1}{x}

    = \frac{2018.(2018 + 1)}{2} =
1009.2019

  • Câu 36: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với u_{1} = 2;d = 9. Khi đó số 2018 là số hạng thứ mấy trong dãy?

    Theo bài ra ta có:

    u_{n} = u_{1} + (n - 1)d

    \Leftrightarrow 2018 = 2 + (n -
1)d

    \Leftrightarrow n = 225

  • Câu 37: Thông hiểu

    Cho hình chóp S. ABCD có đáy ABCD là hình bình hành. Gọi d là giao tuyến của hai mặt phẳng (SAD) và (SBC). Khẳng định nào sau đây là đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD \subset (SAD) \\
BC \subset (SBC) \\
AD//BC \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d//AD//BC và d đi qua S

  • Câu 38: Vận dụng cao

    Cho dãy số (un) biết u_{n} = \frac{1}{2} + \frac{1}{2^{2}} +
\frac{1}{3^{2}} + \ldots + \frac{1}{n^{2}}. Mệnh đề nào sau đây đúng?

    Xét \frac{1}{k^{2}} < \frac{1}{(k -
1)k} = \frac{1}{k - 1} - \frac{1}{k},\forall \geq 2

    Suy ra 

    u_n<\frac{1}{2}+(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})+(\frac{1}{3}-\frac{1}{4})+(\frac{1}{5}-\frac{1}{6})+⋯+(\frac{1}{n-1}-\frac{1}{n})

    =\frac{3}{2}-\frac{1}{n} < \frac{3}{2}

    \Rightarrow 0 < u_n <\frac{3}{2}, \, \, \forall n \in \mathbb{N} ^*

    Vậy dãy số (un) bị chặn.

  • Câu 39: Thông hiểu

    Tính giới hạn E =
\lim_{x ightarrow 3^{+}}\frac{x - 3}{\sqrt{x^{2} - 9}}

    Ta có:

    E = \lim_{x ightarrow 3^{+}}\frac{x -
3}{\sqrt{x^{2} - 9}} = \lim_{x ightarrow 3^{+}}\frac{\sqrt{(x -
3)^{2}}}{\sqrt{(x - 3)(x + 3)}} = \lim_{x ightarrow
3^{+}}\frac{\sqrt{x - 3}}{\sqrt{x + 3}} = 0

  • Câu 40: Nhận biết

    Giá trị của C =
lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} bằng:

    Ta có theo tính chất giới hạn, ta có:

    lim\ \frac{1}{n^{2} + 2\sqrt{n} + 7} =
0

  • Câu 41: Nhận biết

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{1 - {x^3}}}{{1 - x}}{\text{        khi }}x < 1} \\ 
  {{\text{1            khi }}x \geqslant 1} 
\end{array}} ight. . Hãy chọn kết luận đúng.

    Ta có: f(x) = \left\{ \begin{matrix}
1 + x + x^{2}\ \ \ \ \ \ \ \ khi\ x < 1 \\
1\ \ \ \ \ \ \ \ \ \ \ \ khi\ x \geq 1 \\
\end{matrix} ight.

    Lại có:

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( 1 + x + x^{2} ight) = 3

    \lim_{x ightarrow 1^{+}}f(x) = 1 eq
3

    => Hàm số liên tục phải tại x = 1

  • Câu 42: Nhận biết

    Công thức nào sau đây sai?

    Ta có:

    \sin a\cos b - \cos a\sin b = \sin(a -
b)

    \cos a\cos b + \sin a\sin b = \cos(a -
b)

    \sin(a + b) = \sin a\cos b + \cos a\sin
b

    \cos(a + b) = \cos a\cos b - \sin a\sin
b

  • Câu 43: Vận dụng

    Xác định chu kì T của hàm số y = \tan3x +\cot x

    Hàm số y = \tan3x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = \cot x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \tan3x + \cot x tuần hoàn với chu kì T = \pi

  • Câu 44: Thông hiểu

    Cho cấp số nhân (un) biết u1 = 12; \frac{{{u_3}}}{{{u_8}}} = 243. Tính {u_9}

    Gọi q là công bội của cấp số nhân (un)

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_3} = {u_1}.{q^2}} \\   {{u_8} = {u_1}.{q^7}} \end{array}} ight. \Rightarrow \dfrac{{{u_3}}}{{{u_8}}} = \dfrac{{{u_1}.{q^2}}}{{{u_1}.{q^7}}} = \dfrac{1}{{{q^5}}} \hfill \\   \Rightarrow q = d\frac{1}{3} \hfill \\   \Rightarrow {u_9} = {u_1}.{q^8} = 12.{\left( {\dfrac{1}{3}} ight)^8} = \dfrac{4}{{2187}} \hfill \\ \end{matrix}

  • Câu 45: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo