Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tứ diện ABCD có M, N là hai điểm phân biệt trên cạnh AB. Mệnh đề nào sau đây đúng?

    Hình vẽ minh họa

    Giả sử CM và DN đồng phẳng.

    Khi đó, ta có A, B cùng thuộc mặt phẳng (MNDC)

    => A, B, C, D đồng phẳng, trái giả thiết ABCD là tứ diện.

    Vậy CM và DN chéo nhau.

  • Câu 2: Nhận biết

    Phương trình nào dưới đây có tập nghiệm trùng với tập nghiệm của phương trình {\tan ^2}x = 3?

     Ta có {\tan ^2}x = 3 \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} = 3 \Leftrightarrow {\sin ^2}x = 3{\cos ^2}x

    \Leftrightarrow 1 - {\cos ^2}x = 3{\cos ^2}x \Leftrightarrow 4{\cos ^2}x = 1

    Vậy {\tan ^2}x = 3 \Leftrightarrow 4{\cos ^2}x = 1.

  • Câu 3: Thông hiểu

    Giá trị của B =
\frac{\sqrt{n^{2} + 2n}}{n - \sqrt{3n^{2} + 1}}bằng:

    Ta có:

    B = \lim\dfrac{\dfrac{\sqrt{n^{2} +n}}{n}}{\dfrac{n - \sqrt{3n^{2} + 1}}{n}}

    = \lim\frac{\sqrt{1 +\frac{1}{n}}}{1 - \sqrt{3 + \frac{1}{n^{2}}}} = \frac{1}{1 -\sqrt{3}}

  • Câu 4: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 5: Nhận biết

    Hình chóp lục giác có bao nhiêu mặt?

    Hình chóp có 7 mặt trong đó có 6 mặt bên và 1 mặt đáy.

  • Câu 6: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    TXĐ: D\mathbb{= R}

    Ta có:

    f( - 1) = 2a + 4

    \lim_{x ightarrow - 1}f(x) = \lim_{x
ightarrow - 1}\frac{x^{2} - 2x - 3}{x + 1}

    = \lim_{x ightarrow - 1}\frac{(x +
1)(x - 3)}{x + 1} = \lim_{x ightarrow - 1}(x - 3) = - 4

    Để hàm số gián đoạn tại x = - 1 thì \lim_{x ightarrow - 1}f(x) eq
f(1)

    \Leftrightarrow 2a - 4 eq - 4
\Leftrightarrow a eq - 4

    Vậy có 2024 giá trị nguyên của a \in (0;2025) để hàm số gián đoạn tại x = 1

  • Câu 7: Vận dụng

    Cho cấp số cộng (un) có u1 = 1 và công sai d = 2. Tổng {S_{10}} = {u_1} + {u_2} + {u_3} + ... + {u_{10}} bằng:

    Ta có: 

    \begin{matrix}  {S_n} = \dfrac{{n\left( {{u_n} + {u_1}} ight)}}{2} = \dfrac{{n\left[ {2{u_1} + \left( {n - 1} ight)d} ight]}}{2} \hfill \\   \Rightarrow {S_{10}} = \dfrac{{10\left[ {2 + \left( {10 - 1} ight).2} ight]}}{2} = 100 \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Cho hàm số.f(x) = \left\{ \begin{matrix}
1 - x^{2} & \ \text{khi~}x < 2 \\
\sqrt{x + 2} & \ \text{khi~}x \geq 2 \\
\end{matrix} ight.

    a) Giới hạn: \lim_{x ightarrow 3}f(x) =
- 8 Sai||Đúng

    b) Giới hạn: \lim_{x ightarrow
2^{-}}f(x) = - 3 Đúng||Sai

    c) Giới hạn: \lim_{x ightarrow
2^{+}}f(x) = 2 Đúng||Sai

    d) Giới hạn: \lim_{x ightarrow 2}f(x) =
4 Sai||Đúng

    Đáp án là:

    Cho hàm số.f(x) = \left\{ \begin{matrix}
1 - x^{2} & \ \text{khi~}x < 2 \\
\sqrt{x + 2} & \ \text{khi~}x \geq 2 \\
\end{matrix} ight.

    a) Giới hạn: \lim_{x ightarrow 3}f(x) =
- 8 Sai||Đúng

    b) Giới hạn: \lim_{x ightarrow
2^{-}}f(x) = - 3 Đúng||Sai

    c) Giới hạn: \lim_{x ightarrow
2^{+}}f(x) = 2 Đúng||Sai

    d) Giới hạn: \lim_{x ightarrow 2}f(x) =
4 Sai||Đúng

    a) Ta có \lim_{x ightarrow 3}f(x) =
\sqrt{5}

    b) Xét dãy số \left( x_{n}
ight) bất kì sao cho x_{n} <
2x_{n} ightarrow 2, ta có: f\left( x_{n} ight) = 1 -
x_{n}^{2}.

    Khi đó: \lim_{x ightarrow 2^{-}}f(x) =
\lim f\left( x_{n} ight) = 1 - 2^{2} = - 3.

    c) Xét dãy số \left( x_{n}
ight) bất kì sao cho x_{n} >
2x_{n} ightarrow 2, ta có f\left( x_{n} ight) = \sqrt{x_{n} +
2}.

    Khi đó: \lim_{x ightarrow 2^{+}}f(x) =
\lim f\left( x_{n} ight) = \sqrt{2 + 2} = 2.

    d) Vì \lim_{x ightarrow 2^{-}}f(x) eq
\lim_{x ightarrow 2^{+}}f(x) (hay - 3 eq 2) nên không tồn tại \lim_{x ightarrow 2}f(x).

  • Câu 9: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ?

    Mỗi đường tròn trên đó ta đã chọn một chiều chuyển động gọi là chiều dương và chiều ngược lại được gọi là chiều âm là một đường tròn định hướng.

  • Câu 10: Nhận biết

    Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa

    Vậy \left\{ \begin{matrix}
d//(\alpha) \\
d \subset (\beta) \\
(\alpha) \cap (\beta) = a \\
\end{matrix} ight.\  \Rightarrow d//a

  • Câu 11: Nhận biết

    Tìm tập xác định của hàm số y =
\cot\left( 2x - \frac{\pi}{4} ight) + sin2x

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( 2x - \dfrac{\pi}{4} ight) eq 0 \hfill \\\Leftrightarrow 2x - \dfrac{\pi}{4} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{8} + k\dfrac{\pi}{2};\left( k\mathbb{\in Z}ight) \hfill \\\end{matrix}

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ \frac{\pi}{8} + k\frac{\pi}{2},k\mathbb{\in Z}
ight\}

  • Câu 12: Nhận biết

    Xác định giới hạn D = \lim_{x ightarrow 0}\frac{(1 + 2x)^{2} -
1}{x}

    Ta có:

    D = \lim_{x ightarrow 0}\frac{(1 +
2x)^{2} - 1}{x}

    = \lim_{x ightarrow 0}\frac{4x^{2} +
4x}{x} = \lim_{x ightarrow 0}(4 + 4x) = 4

  • Câu 13: Nhận biết

    Giá trị của C =
\lim\frac{\sqrt{n^{2} + 1}}{n + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn n_{a} > \frac{1}{a} - 1

    Ta có:

    \left| \frac{\sqrt{n^{2} + 1}}{n +
1} - 1 ight| < \left| \frac{n + 2}{n - 1} - 1 ight| <
\frac{1}{n_{a} + 1} < a\ với\ mọi\ n > n_{a}

    Vậy C=1.

  • Câu 14: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 15: Nhận biết

    Cho điểm A, đường thẳng d và mặt phẳng (P). Kí hiệu nào sau đây đúng?

    Kí hiệu đúng là: d \subset
(P)

  • Câu 16: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Gọi M là trung điểm của BC. Điểm M' là ảnh của điểm M qua phép chiếu song song phương CC', mặt phẳng chiếu (A'B'C'). Chọn khẳng định đúng?

    Hình vẽ minh họa

    Ta có phép chiếu song song phương CC', biến C thành C', biến B thành B'.

    Do M là trung điểm của BC suy ra M' là trung điểm của B'C' vì phép chiếu song song bảo toàn thứ tự của ba điểm thẳng hàng và bảo toàn tỉ số của hai đoạn thẳng nằm trên cùng một đường thẳng hoặc trên hai đường thẳng song song.

    Vậy khẳng định đúng là: M'C' =
M'B'

  • Câu 17: Nhận biết

    Tính giới hạn \lim\frac{n^{2} - 4n^{3}}{2n^{3} + 5n -
2}

    Ta có:

    \lim\dfrac{n^{2} - 4n^{3}}{2n^{3} + 5n -2} = \lim\dfrac{\dfrac{1}{n} - 4}{2 + \dfrac{5}{n^{2}} - \dfrac{2}{n^{3}}} =\dfrac{0 - 4}{2 + 0 - 0} = - 2

  • Câu 18: Thông hiểu

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Đáp án là:

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Ta có:

    \tan\left( 2x + \frac{\pi}{3} ight) =
- 1

    \Leftrightarrow \tan\left( 2x +\frac{\pi}{3} ight) = \tan\left( - \frac{\pi}{4} ight)

    \Leftrightarrow 2x + \frac{\pi}{3} = -
\frac{\pi}{4} + k\pi

    \Leftrightarrow 2x = - \frac{7\pi}{12} +
k\pi

    \Leftrightarrow x = - \frac{7\pi}{24} +
\frac{k\pi}{2}\ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có họ nghiệm là:x = -
\frac{7\pi}{24} + \frac{k\pi}{2}\ \left( k\mathbb{\in Z}
ight).

    Do đó a = 7,b = 24

    \Rightarrow T = a^{2} - b = 7^{2} - 24 =
25.

  • Câu 19: Thông hiểu

    Cho hàm số f(x) = x - 1g(x) = x^{3}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Giới hạn \lim_{x ightarrow 1}f(x) =
3. Sai||Đúng

    b) Giới hạn \lim_{x ightarrow 1}g(x) =
1. Đúng||Sai

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = - 1. Đúng||Sai

    d) \lim_{x ightarrow
1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = 1. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = x - 1g(x) = x^{3}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Giới hạn \lim_{x ightarrow 1}f(x) =
3. Sai||Đúng

    b) Giới hạn \lim_{x ightarrow 1}g(x) =
1. Đúng||Sai

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = - 1. Đúng||Sai

    d) \lim_{x ightarrow
1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = 1. Sai||Đúng

    a) \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}(x - 1) = 1 - 1 = 0.

    b) \lim_{x ightarrow 1}g(x) = \lim_{x
ightarrow 1}x^{3} = 1^{3} = 1.

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = 3.0 - 1 = - 1.

    d) \lim_{x ightarrow1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = \frac{0}{1} =0.

  • Câu 20: Thông hiểu

    Nghiệm của phương trình: \sin \left( {x + \frac{\pi }{8}} ight) =  - \frac{1}{2}

     Ta có:

    \begin{matrix}  \sin \left( {x + \dfrac{\pi }{8}} ight) =  - \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x + \dfrac{\pi }{8} =  - \dfrac{\pi }{6} + k2\pi } \\   {x + \dfrac{\pi }{8} = \pi  + \dfrac{\pi }{6} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - \dfrac{{7\pi }}{{24}} + k2\pi } \\   {x = \dfrac{{25\pi }}{{24}} + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Biết hai đường thẳng a,b là hai đường thẳng chéo nhau. Hỏi có bao nhiêu mặt phẳng chứa a và song song với b.

    Dựa vào lý thuyết đường thẳng song song với mặt phẳng.

    => Có duy nhất 1 mặt phẳng chứa a và song song với b.

  • Câu 22: Vận dụng

    Cho hình chóp S.ABCG,K lần lượt là trọng tâm các tam giác ABCSBC. Gọi E là trung điểm cạnh AC. Mặt phẳng (GEK) cắt SC tại M. Tỉ số \frac{MS}{MC} bằng:

    Hình vẽ minh họa

    Ta có: G là trọng tâm tam giác ABC E là trung điểm của AC.

    => B,G,E thẳng hàng hay (GKE) \equiv (EBK)

    Ta lại có K là trọng tâm tam giác SBC nên BK kéo dài cắt SC tại trung điểm của SC.

    Vậy M là trung điểm của SC suy ra \frac{MS}{MC} = 1

  • Câu 23: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?

    Mỗi đường tròn định hướng có bán kính R =1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.

  • Câu 24: Thông hiểu

    Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.

    Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng

    Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_6} = 40} \end{array}} ight.

    {u_1} + 5.d = 40

    \begin{matrix}   \Rightarrow 4 + 5.d = 40 \hfill \\   \Rightarrow 5.d = 36 \hfill \\   \Rightarrow d = \dfrac{{36}}{5} \hfill \\ \end{matrix}

    Vậy công sai của cấp số cộng là d = \frac{{36}}{5}

    Khi đó 4 số hạng được thêm lần lượt là: \frac{{56}}{5};\frac{{92}}{5};\frac{{128}}{5};\frac{{164}}{5}

    Tổng bốn số hạng ở trên là: \frac{{56}}{5} + \frac{{92}}{5} + \frac{{128}}{5} + \frac{{164}}{5} = 88

  • Câu 25: Vận dụng cao

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}\ \ \ khi\ \ x eq
1 \\
2024m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ x = 1 \\
\end{matrix} ight. liên tục tại x = 1 khi đó giá trị của tham số m bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án: -1/1012

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}\ \ \ khi\ \ x eq
1 \\
2024m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ \ x = 1 \\
\end{matrix} ight. liên tục tại x = 1 khi đó giá trị của tham số m bằng bao nhiêu? (Kết quả ghi dưới dạng phân số tối giản a/b).

    Đáp án: -1/1012

    Hàm số xác định tại x = 1.

    Ta có f(1) = 2024m. Tính \lim_{x ightarrow 1}\frac{\sqrt[3]{6x - 5} -
\sqrt{4x - 3}}{(x - 1)^{2}}.

    Đặt t = x - 1 thì x = t + 1, x
ightarrow 1 thì t ightarrow
0

    \frac{\sqrt[3]{6x - 5} - \sqrt{4x -
3}}{(x - 1)^{2}} = \frac{\sqrt[3]{6t + 1} - \sqrt{4t +
1}}{t^{2}}

    = \frac{\sqrt[3]{6t + 1} - (2t +
1)}{t^{2}} + \frac{(2t + 1) - \sqrt{4t + 1}}{t^{2}}.

    = \frac{6t + 1 - (8t^{3} + 12t^{2} + 6t +
1)}{t^{2}\left\lbrack \sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1}
+ (2t + 1)^{2} ightbrack} +
\frac{(4t^{2} + 4t + 1) - (4t + 1)}{t^{2}(2t + 1 + \sqrt{4t +
1})}.

    = \frac{- 8t - 12}{\left\lbrack
\sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1} + (2t + 1)^{2}
ightbrack} + \frac{4}{(2t + 1 +
\sqrt{4t + 1})}.

    Vậy \lim_{x ightarrow
1}\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}

    = \lim_{t ightarrow 0}\{\frac{- 8t -
12}{\left\lbrack \sqrt[3]{(6t + 1)^{2}} + (2t + 1)\sqrt[3]{6t + 1} + (2t
+ 1)^{2} ightbrack} +
\frac{4}{(2t + 1 + \sqrt{4t + 1})}\} = - 2.

    Để hàm số liên tục tại x = 1 khi f(1) = \lim_{x ightarrow
1}\frac{\sqrt[3]{6x - 5} - \sqrt{4x - 3}}{(x - 1)^{2}}

    \Leftrightarrow 2024m = - 2
\Leftrightarrow m = \frac{- 1}{1012}.

  • Câu 26: Vận dụng

    Cho số thực m thỏa mãn \lim_{x ightarrow + \infty}\frac{m\sqrt{2x^{2} +
3} + 2017}{2x + 2018} = \frac{1}{2}. Khi đó giá trị của m là bao nhiêu?

    Ta có:

    \lim_{x ightarrow +
\infty}\frac{m\sqrt{2x^{2} + 3} + 2017}{2x + 2018} =
\frac{1}{2}

    \Leftrightarrow \lim_{x ightarrow +\infty}\dfrac{mx\sqrt{2 + \dfrac{3}{x^{2}}} + 2017}{x\left( 2 +\dfrac{2018}{x} ight)} = \dfrac{1}{2}

    \Leftrightarrow \lim_{x ightarrow +\infty}\dfrac{m\sqrt{2 + \dfrac{3}{x^{2}}} + \dfrac{2017}{x}}{\left( 2 +\dfrac{2018}{x} ight)} = \dfrac{1}{2}

    \Leftrightarrow \frac{m\sqrt{2}}{2} =
\frac{1}{2} \Leftrightarrow m = \frac{\sqrt{2}}{2}

  • Câu 27: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = - 2;\ \ u_{4} =
- 54. Tính u_{8}.

    Ta có:

    \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{4} = - 54 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{1}.q^{3} = - 54 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 2 \\q^{3} = 27 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = - 2 \\q = 3 \\\end{matrix} ight.

    Vậy u_{8} = u_{1}.q^{7} = - 2.3^{7} = -
4374.

  • Câu 28: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 29: Vận dụng

    Giá trị lớn nhất của hàm số y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2} tại điểm là nghiệm của phương trình nào dưới đây?

    Theo bài ra ta có:

    y = \frac{\sin x + 2\cos x + 1}{\sin x + \cos x +2}

    \Leftrightarrow y.\left( \sin x + \cos x+ 2 ight) = \sin x + 2\cos x + 1

    \Leftrightarrow (y - 1).\sin x + (y -2)\cos x = 1 - 2y(*)

    Phương trình (*) có nghiệm

    \Leftrightarrow (y - 1)^{2} + (y -
2)^{2} \geq 1 - 2y

    \Leftrightarrow y^{2} + y - 2 \leq
0

    \Leftrightarrow - 2 \leq y \leq
1

    Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó - \cos x = - 1

  • Câu 30: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trung điểm của các cạnh SA,SB,SC,SD lần lượt là A',B',C',D'. Chọn đáp án đúng.

    Ta có: A'C'//AC \Rightarrow
(A'C'D')//(ABC)

  • Câu 31: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=\frac{1}{3^{n-2}} ta có:

    \dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{1}{{{3^{n + 1 - 2}}}}}}{{\dfrac{1}{{{3^{n - 2}}}}}} = \dfrac{{{3^{n - 2}}}}{{{3^{n - 1}}}} = {3^{ - 1}} = \frac{1}{3}

    Vậy dãy số u_n=\frac{1}{3^{n-2}} là cấp số nhân với q = 1/3

  • Câu 32: Thông hiểu

    Cho góc \alpha thỏa mãn \sin2\alpha = \frac{2}{3}. Tính giá trị của biểu thức P = \sin^{4}\alpha +\cos^{4}a.

    Ta có:

    P = \sin^{4}\alpha +\cos^{4}a

    = \left( \sin^{2}\alpha + \cos^{2}\alphaight)^{2} - 2\sin^{2}\alpha \cos^{2}\alpha

    = 1 - \dfrac{1}{2}\left(2\sin\alpha\cos\alpha ight)^{2}

    = 1 -\dfrac{1}{2}\sin^{2}(2\alpha)

    = 1 - \frac{1}{2}.\left( \frac{2}{3}ight)^{2} = \frac{7}{9}

  • Câu 33: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình bình hành, ACBD cắt nhau tại O. Gọi I là trung điểm SO. Mặt phẳng (ICD) cắt SA,SB lần lượt tại M,N. Khi đó:

    a) Điểm M là giao điểm của đường thẳng SA với mặt phẳng (ICD). Đúng||Sai

    b) Ta có SN = \frac{2}{3}SB. Sai||Đúng

    c) Cho AB = a thì MN = \frac{a}{2}. Sai||Đúng

    d) Trong mặt phẳng (CDMN), gọi K là giao điểm của CNDM. Khi đó SKBC chéo nhau. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình bình hành, ACBD cắt nhau tại O. Gọi I là trung điểm SO. Mặt phẳng (ICD) cắt SA,SB lần lượt tại M,N. Khi đó:

    a) Điểm M là giao điểm của đường thẳng SA với mặt phẳng (ICD). Đúng||Sai

    b) Ta có SN = \frac{2}{3}SB. Sai||Đúng

    c) Cho AB = a thì MN = \frac{a}{2}. Sai||Đúng

    d) Trong mặt phẳng (CDMN), gọi K là giao điểm của CNDM. Khi đó SKBC chéo nhau. Sai||Đúng

    - Xác định M,N :

    Trong mặt phẳng (SAC), kẻ CI cắt SA tại M;

    Trong mặt phẳng (SBD), kẻ DI cắt SB tại N.

    \left\{ \begin{matrix}
M \in CI,CI \subset (ICD) \\
M \in SA \\
\end{matrix} \Rightarrow M = SA \cap (ICD) ight..

    Tương tự: \left\{ \begin{matrix}
N \in DI,DI \subset (ICD) \\
N \in SB \\
\end{matrix} \Rightarrow N = SB \cap (ICD) ight..

    -Tính MN theo a :

    Gọi E là trung điểm BN,OE là đường trung bình của tam giác BDN \Rightarrow OE//DN.

    Trong tam giác SOE, ta có NI qua trung điểm I của SONI//OE,N là trung điểm của SE.

    Hình vẽ minh họa

    -Vậy SN = NE = EB hay SN = \frac{1}{3}SB.

    Hoàn toàn tương tự, ta chứng minh được SM
= \frac{1}{3}SA.

    Khi đó hai tam giác SMN,SAB đồng dạng vì có góc S chung và \frac{SM}{SA} = \frac{SN}{SB} =
\frac{1}{3}.

    Xét tam giác SAB, theo định lí Thalès, ta có:

    \frac{MN}{AB} = \frac{SM}{SA} =
\frac{1}{3} \Rightarrow MN = \frac{AB}{3} = \frac{a}{3}.

    - Chứng minh SK//BC//AD :

    Dễ thấy S là điểm chung của hai mặt phẳng (SBC)(SAD).

    Ta có: \left\{ \begin{matrix}
K \in CN,CN \subset (SBC) \\
K \in DM,DM \subset (SAD) \\
\end{matrix} \Rightarrow K \in (SBC) \cap (SAD) ight..

    Vì vậy SK = (SBC) \cap
(SAD).

    Khi đó: \left\{ \begin{matrix}
SK = (SBC) \cap (SAD) \\
BC \subset (SBC),AD \subset (SAD) \Rightarrow SK//BC//AD. \\
BC//AD \\
\end{matrix} ight.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Sai

  • Câu 34: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 35: Nhận biết

    Cho cấp số cộng (un) có các số hạng đầu lần lượt là 5; 9; 13; 17; …. Tìm số hạng tổng quát un của cấp số cộng.

    Các số 5; 9; 13; 17; …. theo thứ tự lập thành một cấp số cộng (un) nên:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 3} \\   {d = {u_2} - {u_1} = 4} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d = 5 + 4\left( {n - 1} ight) = 4n + 1 \hfill \\   \Rightarrow {u_n} = 4n + 1 \hfill \\ \end{matrix}

  • Câu 36: Vận dụng

    Gọi x_0 là nghiệm âm lớn nhất của  \sin 9x + \sqrt 3 \cos 7x = \sin 7x + \sqrt 3 \cos 9x. Mệnh đề nào sau đây là đúng?

     Phương trình \Leftrightarrow \sin 9x - \sqrt 3 \cos 9x = \sin 7x - \sqrt 3 \cos 7x

    \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} ight) = \sin \left( {7x - \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  9x - \frac{\pi }{3} = 7x - \frac{\pi }{3} + k2\pi  \hfill \\  9x - \frac{\pi }{3} = \pi  - \left( {7x - \frac{\pi }{3}} ight) + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{{\text{Cho}} < 0}}\left[ \begin{gathered}  k\pi  < 0 \Leftrightarrow k < 0\xrightarrow{{k \in \mathbb{Z}}}{k_{\max }} =  - 1 \to x =  - \pi  \hfill \\  \frac{{5\pi }}{{48}} + \frac{{k\pi }}{8} < 0 \Leftrightarrow k <  - \frac{5}{6}\xrightarrow{{k \in \mathbb{Z}}}{k_{\max }} =  - 1 \to x =  - \frac{\pi }{{48}} \hfill \\ \end{gathered}  ight.

    So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là x =  - \frac{\pi }{{48}} \in \left( { - \frac{\pi }{{12}};0} ight)

  • Câu 37: Thông hiểu

    Cho hình chóp A.BCDH,K lần lượt là trọng tâm của tam giác ABCABD tam giác. Chọn mệnh đề đúng.

    Gọi I là trung điểm AB.

    Xét tam giác MCD có:

    \frac{IH}{IC} = \frac{IK}{ID} =
\frac{1}{3} (do H,K lần lượt là trọng tâm của tam giác ABD và tam giác ABC)

    \  = > HK//CD

  • Câu 38: Vận dụng

    Cho dãy số (un) xác định bởi {u_1} = 2;{u_{n + 1}} =  - 2{u_n};\left( {n \geqslant 1,n \in \mathbb{N}} ight). Tính tổng của 10 số hạng đầu tiên của dãy số?

     Ta có:

    \begin{matrix}  \dfrac{{{u_{n + 1}}}}{{{u_n}}} =  - 2 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 2} \end{array}} ight. \hfill \\   \Rightarrow {S_{10}} = \dfrac{{{u_1}.\left( {1 - {q^{10}}} ight)}}{{1 - q}} =  - 682 \hfill \\ \end{matrix}

  • Câu 39: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 40: Nhận biết

    Hình chiếu của hình lập phương ABCD.A'B'C'D' qua phép chiếu song song phương AA' lên mặt phẳng chiếu (ABCD) là:

    Phép chiếu song song phương AA' lên mặt phẳng (ABCD) sẽ biến A' thành A, biến B' thành B, biến C' thành C, biến D' thành D.

    Nên hình chiếu song song của hình lập phương ABCD.A'B'C'D'là hình vuông.

  • Câu 41: Vận dụng cao

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = \frac{1}{2}u_{n} - 1 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.

    Ta sẽ chứng minh bằng quy nạp  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Với n = 1 ta có  − 2 ≤ u1 ≤ 1 (đúng).

    Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là  − 2 ≤ uk ≤ 1

    \Rightarrow - 1 \leq \frac{1}{2}u_{k}
\leq \frac{1}{2} \Rightarrow - 2 \leq \frac{1}{2}u_{k} - 1 \leq -
\frac{1}{2} \Rightarrow - 2 \leq u_{k + 1} \leq 1

    Theo nguyên lí quy nạp ta đã chứng minh được  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Vậy (un) là dãy số bị chặn.

  • Câu 42: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.\frac{{{2^n}}}{n}. Tìm số hạng u_{3}

    Ta có:

    {u_3} = {( - 1)^3}.\frac{{{2^3}}}{3} =  - \frac{8}{3}

  • Câu 43: Vận dụng cao

    Biết \lim\left( \frac{\left( \sqrt{5}
ight)^{n} - 2^{n + 1} + 1}{5.2^{n} + \left( \sqrt{5} ight)^{n + 1} -
3} + \frac{2n^{2} + 3}{n^{2} - 1} ight) = \frac{a\sqrt{5}}{b} +
cvới a,b,c \mathbb{\in Z}. Tính giá trị của biểu thức S = a^{2} + b^{2}
+ c^{2}.

    Ta có:

    \lim\left( \dfrac{\left( \sqrt{5}ight)^{n} - 2^{n + 1} + 1}{5.2^{n} + \left( \sqrt{5} ight)^{n + 1} -3} + \dfrac{2n^{2} + 3}{n^{2} - 1} ight)

    = \lim\left( \dfrac{1 - 2.\left(\dfrac{2}{\sqrt{5}} ight)^{n} + \left( \dfrac{1}{\sqrt{5}}ight)^{n}}{5.\left( d\frac{2}{\sqrt{5}} ight)^{2} + \sqrt{5} -3.\left( \dfrac{1}{\sqrt{5}} ight)^{n}} + \dfrac{2 + \dfrac{3}{n^{2}}}{1- \dfrac{1}{n^{2}}} ight)

    = \frac{1}{\sqrt{5} + 2} =
\frac{\sqrt{5}}{5} + 2

    Vậy S = a^{2} + b^{2} + c^{2} = 1^{2} +
5^{2} + 2^{2} = 30

  • Câu 44: Nhận biết

    Cho cấp số nhân (un) có số hạng đầu u1 = 5; công bội q = -2. Số hạng thứ sáu của (un) là:

    Ta có: {u_6} = {u_1}.{q^{6 - 1}} = 5.{\left( { - 2} ight)^5} =  - 160

  • Câu 45: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \frac{{n + 1}}{{2n + 1}}. Số \frac{8}{15} là số hạng thứ mấy của dãy số?

    Ta có: 

    \begin{matrix}  {u_k} = \dfrac{8}{{15}} \hfill \\   \Leftrightarrow \dfrac{{k + 1}}{{2k + 1}} = \dfrac{8}{{15}};\left( {k \in {\mathbb{N}^*}} ight) \hfill \\   \Leftrightarrow 15\left( {k + 1} ight) = 8\left( {2k + 1} ight) \hfill \\   \Leftrightarrow 15k + 15 = 16k + 8 \hfill \\   \Leftrightarrow k = 7 \hfill \\ \end{matrix}

    Vậy số \frac{8}{15} là số hạng thứ 7 của dãy số.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 11 lượt xem
Sắp xếp theo