Tính giới hạn
.
Ta có: .
Tính giới hạn
.
Ta có: .
Số thập phân vô hạn tuần hoàn
được biểu diễn bởi phân số tối giản
. Khẳng định nào dưới đây đúng?
Ta có:
Trong các dãy số sau dãy số nào bị chặn?
Xét dãy (an) có nên dãy số (an) bị chặn dưới.
Xét dãy (bn) có nên dãy số (bn) bị chặn dưới.
Xét dãy (cn) có cn = (−2)n + 3, ∀n ∈ ℕ* nên dãy số (cn) không bị chặn.
Xét dãy (dn) có .
Ta có
bị chặn.
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Trong không gian, cho ba đường thẳng phân biệt
trong đó
. Khẳng định nào sau đây sai?
Nếu c cắt a thì c cắt b hoặc c chéo b.
Vậy khẳng định sai là: "Nếu c cắt a thì c cắt b."
Cho hình lăng trụ
. Gọi
lần lượt là trọng tâm của các tam giác
. Mặt phẳng nào sau đây song song với
?
Hình vẽ minh họa

Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.
=> (tính chất trọng tâm tam giác)
=>
Xét mặt phẳng ta có:
=>
Mà
=>
Từ (1) và (2) => và
là hai mặt phẳng phân biệt. Khi đó ta có:
Xác định tham số m > 0 để 2m – 3; m; 2m + 3 lập thành một cấp số nhân.
Để 2m – 3; m; 2m + 3 lập thành một cấp số nhân thì
Do m > 0 =>
Trong các hàm số sau, hàm số nào có đồ thị tương ứng với hình vẽ?

Ta có:
=> Loại đáp án và
Tại x = 0 => y = 1 ta thấy thỏa mãn
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
là trọng tâm của tam giác
. Giao điểm của đường thẳng
và mặt phẳng
là:
Hình vẽ minh họa
Ta có:
=> Giao điểm của đường thẳng và mặt phẳng
là giao điểm của đường thẳng
và
.
Cho cấp số nhân (un) có u1 = -1; u6 = -0,00001. Khi đó công bội q và số hạng tổng quát là:
Ta có:
Tìm chu kì của hàm số
?
Hàm số tuần hoàn với chu kì
Áp dụng công thức trên ta suy ra hàm số tuần hoàn với chu kì
.
Cho
là nghiệm của phương trình nào sau đây?
Giải PT, ta có:
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Cho hình chóp
có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm
là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có
. Sai||Đúng
c) Cho
thì
. Sai||Đúng
d) Trong mặt phẳng
, gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
Cho hình chóp có đáy là hình bình hành,
và
cắt nhau tại
. Gọi
là trung điểm
. Mặt phẳng
cắt
lần lượt tại
. Khi đó:
a) Điểm là giao điểm của đường thẳng
với mặt phẳng
. Đúng||Sai
b) Ta có . Sai||Đúng
c) Cho thì
. Sai||Đúng
d) Trong mặt phẳng , gọi
là giao điểm của
và
. Khi đó
và
chéo nhau. Sai||Đúng
- Xác định :
Trong mặt phẳng , kẻ
cắt
tại
;
Trong mặt phẳng , kẻ
cắt
tại
.
Vì .
Tương tự: .
-Tính theo
:
Gọi là trung điểm
là đường trung bình của tam giác
.
Trong tam giác , ta có
qua trung điểm
của
và
là trung điểm của
.
Hình vẽ minh họa
-Vậy hay
.
Hoàn toàn tương tự, ta chứng minh được .
Khi đó hai tam giác đồng dạng vì có góc
chung và
.
Xét tam giác , theo định lí Thalès, ta có:
- Chứng minh :
Dễ thấy là điểm chung của hai mặt phẳng
và
.
Ta có: .
Vì vậy .
Khi đó:
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Sai |
Khi ký hợp đồng dài hạn 10 năm với các công nhân tuyển dụng, công ty X, đề xuất phương án trả lương như sau: Người lao động sẽ nhận 7 triệu ở quý đầu tiên (một quý là ba tháng), và kể từ quí làm việc thứ hai mức lương sẽ tăng 500.000 đồng mỗi quý. Như vậy sau 10 năm làm việc, hết hạn hợp đồng, tổng số tiền lương người lao động đã nhận được là bao nhiêu?
Ta có:
Số tiền nhận được hàng quý là một cấp số cộng hữu hạn với số hạng đầu tiên là: (triệu), công sai là 0,5 (triệu).
Trong 10 năm sẽ có 40 quý nên cấp số cộng trên có 40 phần tử.
Từ đó ta có
(triệu đồng)
Cho hình chóp tam giác
. Gọi điểm
là trung điểm của
, lấy điểm
di động trên đoạn
. Mặt phẳng
qua
song song với
. Xác định hình tạo bởi các giao tuyến của mặt phẳng
với các mặt của tứ diện.
Hình vẽ minh họa
Trong mặt phẳng (SAB), qua M kẻ đường thẳng song song với SI cắt SA tại P.
Trong mặt phẳng (ABC), qua M kẻ đường thẳng song song với IC cắt AC tại N.
Thiết diện là tam giác MNP.
Ta có:
Vậy hình tạo bởi các giao tuyến của mặt phẳng với tứ diện là tam giác MNP cân tại M.
Phương trình
có hai họ nghiệm có dạng
và
,
. Khi đó, tính
?
Ta có .
.
Hàm số nào dưới đây gián đoạn tại
?
Ta có: nên hàm số
gián đoạn tại điểm
Cho dãy số
với
. Dãy số
là dãy số
Ta có:
Vậy dãy số là dãy số tăng.
Trong các khẳng định sau, khẳng định nào sai?
Ta có .
Cho một cấp số cộng
có
. Tìm
?
Theo bài ra ta có:
Cho dãy số (un) được xác định như sau
. Số hạng u11 là?
Ta có:
Tính giới hạn
.
Ta có:
Giá trị của
bằng:
Ta có:
Cho
. Biết
(với
tối giản). Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c) Bộ ba số
tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số
tạo thành một cấp số nhân có công bội
Đúng||Sai
Cho . Biết
(với
tối giản). Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Bộ ba số tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số tạo thành một cấp số nhân có công bội
Đúng||Sai
Ta có
.
Do đó suy ra .
Kết luận:
|
a) Đúng |
b) Sai |
c) Đ |
d) Đúng |
Cho dãy số (un) xác định bởi
. Tính tổng của 10 số hạng đầu tiên của dãy số?
Ta có:
Chọn đẳng thức đúng.
Ta có:
Cho các số thực
thỏa mãn
và
. Tính giá trị biểu thức
.
Ta có:
Khi và chỉ khi: .
Kết hợp với
Khi đó và
(vì
Vậy nên
.
Biết
. Giá trị
bằng
Đáp án: -13||- 13
Biết . Giá trị
bằng
Đáp án: -13||- 13
Vì là hữu hạn nên phương trình
có nghiệm
Khi đó
Vậy .
Có duy nhất một mặt phẳng đi qua
Phương án "Hai đường thẳng " sai vì nếu 2 đường thẳng đó trùng nhau thì có vô số mặt phẳng đi qua 2 đường thẳng đó.
Phương án "Một điểm và một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì có vô số mặt phẳng đi qua điểm và đường thẳng đã cho.
Phương án "Ba điểm" sai vì nếu có 2 trong ba điểm đó trùng nhau hoặc cả 3 điểm đó trùng nhau thì có vô số mặt phẳng thỏa mãn.
Vậy hoàn thành mệnh đề như sau: "Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau."
Cho tứ diện
có độ dài tất cả các cạnh bằng
. Gọi
là trọng tâm tam giác
. Tính diện tích thiết diện tạo bởi mặt phẳng
và tứ diện
?
Hình vẽ minh họa:
Gọi lần lượt là trung điểm các cạnh
Ta có:
Suy ra tam giác MCD là thiết diện của mặt phẳng và tứ diện
Tam giác ABD đều cạnh bằng có
là trung điểm của
Tam giác ABC đều cạnh bằng có
là trung điểm của
Gọi H là trung điểm của CD
Ta có:
Gọi
là nghiệm trong khoảng
của phương trình
, nếu biểu diễn
với a, b là hai số nguyên và
là phân số tối giản thì a.b bằng bao nhiêu?
Phương trình .
Với .
Suy ra a =11 và b = 6 .
Vậy a.b=66.
Khẳng định nào sau đây đúng?
Ta có:
Trong các dãy số
cho bởi số hạng tổng quát
sau, dãy số nào là một cấp số nhân?
Xét dãy số ta có:
=> Dãy số là một cấp số nhân
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
bằng
Ta có:
Cho phương trình
. Tìm số nguyên dương n bé nhất để phương trình có nghiệm.
Điều kiện xác định
Nếu n là số lẻ thì
Nếu n là số chẵn và x là nghiệm thì -x cũng là nghiệm của phương trình
Vì không là nghiệm nên ta xét phương trình với
(do
nên dấu bằng không xảy ra)
Hơn nữa
Do đó phương trình không có nghiệm với
Khi ta có phương trình
Giả sử khi đó
liên tục trên
.
Ta có:
=> có nghiệm
Vậy .
Trong các hàm số sau, hàm số nào là hàm số lẻ?
Ta kiểm tra được và
là hàm số chẵn
Hàm số không chẵn không lẻ
=> Hàm số là hàm số lẻ.
Giả sử tứ giác ABCD là hình biểu diễn của một hình vuông. Nếu ABCD là một hình bình hành, thì đường tròn ngoại tiếp hình vuông cho trước được biểu diễn là hình gì, có tính chất như thế nào với hình bình hành ABCD:
Hình biểu diễn của hình vuông thành hình bình hành nên sẽ hình biểu diễn của đường tròn ngoại tiếp hình vuông đó là đường elip đồng thời giữ nguyên mối quan hệ liên thuộc của đỉnh hình vuông với đường tròn ngoại tiếp nên hình biểu diễn của đường tròn ngoại tiếp hình vuông là đường elip đi qua các đỉnh của hình bình hành ABCD.
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b)
. Đúng||Sai
c) Cấp số cộng
thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số giảm. Sai||Đúng
b) . Đúng||Sai
c) Cấp số cộng thỏa mãn
có số hạng tổng quát là
. Sai||Đúng
d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng
a) Xét dãy số đã cho ta có:
nên dãy số
không tăng không giảm.
b) đúng bằng chứng minh quy nạp.
c) Công sai d = 5 và số hạng đầu tiên bằng
Khi đó số hạng tổng quát của cấp số cộng là
d) Từ giả thiết ta có:
Suy ra tổng các số hạng của cấp số nhân đó là: .
Nghiệm của phương trình
là
Biết
. Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Có bao nhiêu vị trí tương đối của hai mặt phẳng tùy ý?
Có 3 vị trí tương đối của hai mặt phẳng trong không gian, đó là “cắt nhau”, “trùng nhau ”và “song song nhau”.
Cho tứ diện ABCD, M, N lần lượt là trọng tâm của tam giác ABC, ABD. Những khẳng định nào sau đây là đúng? (Có thể chọn nhiều đáp án)

Gọi E là trung điểm của AB
Vì M và N lần lượt là trọng tâm của tam giác ABC, ABD nên:
Theo định lí Ta - lét ta có: (1)
Mà (2)
Từ (1) và (2) =>
Chọn khẳng định đúng?
Xét đáp án “Hai đường thẳng phân biệt lần lượt chứa trong hai mặt phẳng khác nhau thì chéo nhau” hai đường thẳng đó có thể song song với nhau do đó đáp án sai.
Xét đáp án “Hai đường thẳng phân biệt cùng nằm trong cùng một mặt phẳng thì không chéo nhau” hai đường thẳng phân biệt cùng nằm trong một mặt phẳng thì không thể chéo nhau do đó đáp án đúng.
Xét đáp án “Hai đường thẳng phân biệt không song song thì chéo nhau” hai đường thẳng đó có thể cắt nhau do đó đáp án sai.
Xét đáp án “Hai đường thẳng phân biệt không cắt nhau thì chéo nhau” hai đường thẳng đó có thể song song với nhau do đó đáp án sai.