Đề thi học kì 1 Toán 11 Cánh Diều Đề 3

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm Toán 11 sách Cánh Diều giúp bạn tổng hợp kiến thức và rèn luyện kĩ năng làm bài kiểm tra học kì sắp tới.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số nhân?

     Dãy số 1, 2, 4, 8, 16 tuân theo quy luật \frac{{{u_{n + 1}}}}{{{u_n}}} = 2

    => Dãy số đó là cấp số nhân

  • Câu 2: Vận dụng

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD. Các khẳng định dưới đây đúng hay sai?

    a) Giao tuyến của hai mặt phẳng (SAB)(ABCD)là đường thẳng AB. Đúng||Sai

    b) Đường thẳng GKAC có một điểm chung. Sai||Đúng

    c) Đường thẳng GK song song với mặt phẳng (ABCD). Đúng||Sai

    d) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA,SB, SC, SD lần lượt tại M, N, E, F. Khi đó, tứ giác MNEFlà hình bình hành. Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Gọi G, K lần lượt là trọng tâm của các tam giác SAD, SCD. Các khẳng định dưới đây đúng hay sai?

    a) Giao tuyến của hai mặt phẳng (SAB)(ABCD)là đường thẳng AB. Đúng||Sai

    b) Đường thẳng GKAC có một điểm chung. Sai||Đúng

    c) Đường thẳng GK song song với mặt phẳng (ABCD). Đúng||Sai

    d) Mặt phẳng chứa đường thẳng GK và song song với mặt phẳng (ABCD) cắt các cạnh SA,SB, SC, SD lần lượt tại M, N, E, F. Khi đó, tứ giác MNEFlà hình bình hành. Đúng||Sai

    Hình vẽ minh họa

    a) Đúng.

    Hai mặt phẳng (SAB)(ABCD) có hai điểm chung là AB nên giao tuyến của hai mặt phẳng (SAB)(ABCD)là đường thẳng AB.

    b) Sai.

    Gọi H là trung điểm của SD. Ta có:

    Trong tam giác SAD, có AH là đường trung tuyến và G là trọng tâm, nên \frac{HG}{HA} = \frac{1}{3}\ \ (1).

    Trong tam giác SCD, có CH là đường trung tuyến và K là trọng tâm, nên \frac{HK}{HC} = \frac{1}{3}\ \ (2).

    Trong tam giác HAC và từ (1), (2) ta có \frac{HG}{HA} = \frac{HK}{HC} =
\frac{1}{3}, suy ra GK//AC.

    c) Đúng.

    Mặt phẳng (ABCD) không chứa đường thẳng GK và theo kết quả câu b) ta có GK//AC.

    AC nằm trong mặt phẳng (ABCD).

    Nên đường thẳng GK song song với mặt phẳng (ABCD).

    d) Đúng.

    Gọi mặt phẳng (P) chứa đường thẳng GK và song song với mặt phẳng (ABCD).

    Nên mặt phẳng (P) cắt mặt phẳng (SAD) theo một giao tuyến d_{1} song song với AD.

    Mà mặt phẳng (P) và mặt phẳng (SAD) có một điểm chung là G, nên đường thẳng d_{1} đi qua G và song song với AD.

    Theo giả thiết, mặt phẳng (P) cắt SA,SD lần lượt tại M,F nên đường thẳng d_{1} cắt SA,SD lần lượt tại M , F. Hay MF//AD.

    Tương tự, ta có FE//CD, EN//BC, NM//AB.

    Do đó, tứ giác MNEF FE//MN (vì cùng song song với AB,CD) và EN//MF (vì cùng song song với AD,BC).

    Vậy tứ giác MNEFlà hình bình hành.

  • Câu 3: Nhận biết

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD' mặt phẳng chiếu (ABB'A') lần lượt là:

    Hình vẽ minh họa

    Do CD'//\ BA' = >CD'//(ABB'A')

    Nên phương chiếu CD' không cắt mặt phẳng chiếu (ABB'A').

    Vì vậy ta không xác định được ảnh của A, B’ qua phép chiếu song song phương CD' mặt phẳng chiếu (ABB'A').

  • Câu 4: Nhận biết

    Trong không gian cho các đường thẳng a, b và các mặt phẳng (α), (β). Trong các khẳng định sau đây, đâu là khẳng định đúng?

    Mệnh đề “a // (β) và (β) // b thì a // b” là sai vì a và b có thể cắt nhau.

    Mệnh đề “a // b và b ⊂ (α) thì a // (α)” là sai vì có thể a ⊂ (α).

    Mệnh đề “a // b và b // (α) thì a // (α)” là sai vì có thể a ⊂ (α).

  • Câu 5: Thông hiểu

    Cho x = \frac{\pi }{3} + k2\pi \left( {k \in \mathbb{Z}} ight) là nghiệm của phương trình nào sau đây?

     Giải PT, ta có: 2 \sin x - \sqrt 3  = 0 \Leftrightarrow \sin x = \frac{{\sqrt 3 }}{2} = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x = \pi  - \frac{\pi }{3} + k2\pi  = \frac{{2\pi }}{3} + k2\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight)

  • Câu 6: Nhận biết

    Kết quả của giới hạn \lim\left(
\frac{1}{2} ight)^{n} bằng

    \lim q^{n} = 0 nếu |q| < 1.

    \left| \frac{1}{2} ight| <
1 nên \lim\left( \frac{1}{2}
ight)^{n} = 0.

  • Câu 7: Thông hiểu

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}\frac{x}{x +1} = \frac{2}{2 + 1} = \frac{2}{3}.

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (2x - 1) \cdot
\frac{1}{x - 1} ightbrack = + \infty (do \lim_{x ightarrow 1^{+}}(2x - 1) = 1\lim_{x ightarrow 1^{+}}\frac{1}{x - 1} =
+ \infty).

    c) Ta có:

    \lim_{x ightarrow 3^{-}}\frac{x^{2}- 3x}{x^{2} - 6x + 9} = \lim_{x ightarrow 3^{-}}\frac{x(x - 3)}{(x -3)^{2}}

    = \lim_{x ightarrow 3^{-}}\frac{x}{x -
3} = \lim_{x ightarrow 3^{-}}\left( x\frac{1}{x - 3} ight) = -
\infty

    Do \lim_{x ightarrow 3^{-}}x =
3\lim_{x ightarrow
3^{-}}\frac{1}{x - 3} = - \infty.

    d) Ta có:

    \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(x - 1)\left( x^{2} + x + 1 ight)\sqrt{\frac{x}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)^{2}}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)}{x + 1}} ightbrack
= 3 \cdot \sqrt{\frac{0}{2}} = 0

  • Câu 8: Thông hiểu

    Cho dãy số \left(
u_{n} ight):u_{n} = sin\frac{\pi}{n}. Chọn khẳng định sai trong các khẳng định sau đây.

    Ta có: u_{n + 1} = sin\frac{\pi}{n +
1} nên u_{n + 1} = sin\frac{\pi}{n +
1} đúng.

    Do - 1 \leq sin\frac{\pi}{n} \leq
1 nên dãy số bị chặn, do đó “Dãy số (un) bị chặn” đúng.

    u_{1} = sin\pi = 0,u_{2} =
sin\frac{\pi}{2} = 1,u_{3} = sin\frac{\pi}{3} =
\frac{\sqrt{3}}{2}.

    Do \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số không tăng, không giảm.

    Vậy “Dãy số (un) không tăng, không giảm” đúng.

    Do đó “Dãy số (un) tăng” sai.

  • Câu 9: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    TXĐ: D\mathbb{= R}

    Ta có:

    f( - 1) = 2a + 4

    \lim_{x ightarrow - 1}f(x) = \lim_{x
ightarrow - 1}\frac{x^{2} - 2x - 3}{x + 1}

    = \lim_{x ightarrow - 1}\frac{(x +
1)(x - 3)}{x + 1} = \lim_{x ightarrow - 1}(x - 3) = - 4

    Để hàm số gián đoạn tại x = - 1 thì \lim_{x ightarrow - 1}f(x) eq
f(1)

    \Leftrightarrow 2a - 4 eq - 4
\Leftrightarrow a eq - 4

    Vậy có 2024 giá trị nguyên của a \in (0;2025) để hàm số gián đoạn tại x = 1

  • Câu 10: Nhận biết

    Cho dãy số\left( {{u_n}} ight):\left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_{n + 1}} = n{u_n}} \end{array}} ight. với mọi n\geq 1. Khi đó số hạng thứ 5 của dãy là:

    Ta có:

    \begin{matrix}  {u_1} = 2 \hfill \\  {u_2} = 1{u_1} = 2 \hfill \\  {u_3} = 2.{u_2} = 2.2 = 4 \hfill \\  {u_4} = 3.{u_3} = 3.4 = 12 \hfill \\  {u_5} = 4.{u_4} = 4.12 = 48 \hfill \\ \end{matrix}

    Khi đó số hạng thứ 5 của dãy là 48

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trung điểm của các cạnh SA,SB,SC,SD lần lượt là A',B',C',D'. Chọn đáp án đúng.

    Ta có: A'C'//AC \Rightarrow
(A'C'D')//(ABC)

  • Câu 12: Thông hiểu

    Giới hạn \lim_{}\left( n^{3} - 2023n +
2024 ight) bằng

    Ta có:

    \lim\left\lbrack n^{3} - 2023n + 2024
ightbrack

    = \lim\left\{ n^{3}\left( 1 -
\frac{2023}{n^{2}} + \frac{2024}{n^{3}} ight) ight\} = +
\infty.

    \left\{ \begin{matrix}
\underset{}{\lim\left( n^{3} ight) = + \infty} \\
\lim\left( 1 - \frac{2023}{n^{2}} + \frac{2024}{n^{3}} ight) = 1 >
0 \\
\end{matrix} ight..

  • Câu 13: Nhận biết

    Trong các hàm sau hàm nào là hàm số chẵn?

    Xét hàm số y = -cosx

    Lấy x \in D \Rightarrow  - x \in D ta có:

    - \cos \left( { - x} ight) =  - \cos x \Rightarrow f\left( { - x} ight) = f\left( x ight)

    => Hàm số y = -cosx là hàm số chẵn.

  • Câu 14: Vận dụng

    Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình \sin \left( {3x - \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} bằng?

    Ta có \sin \left( {3x - \frac{\pi }{4}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {3x - \frac{\pi }{4}} ight) = \sin \frac{\pi }{3}

    \Leftrightarrow \left[ \begin{gathered}  3x - \frac{\pi }{4} = \frac{\pi }{3} + k2\pi  \hfill \\  3x - \frac{\pi }{4} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight. 

    \Leftrightarrow \left[ \begin{gathered}  3x = \frac{{7\pi }}{{12}} + k2\pi  \hfill \\  3x = \frac{{11\pi }}{{12}} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3} \hfill \\  x = \frac{{11\pi }}{{36}} + \frac{{k2\pi }}{3} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    TH1. Với

    x = \frac{{7\pi }}{{36}} + \frac{{k2\pi }}{3}\xrightarrow{{{\text{Cho}}}}\left[ \begin{gathered}  x > 0 \Leftrightarrow k >  - \frac{7}{{24}} \Rightarrow {k_{\min }} = 0 \to x = \frac{{7\pi }}{{36}} \hfill \\  x < 0 \Leftrightarrow k <  - \frac{7}{{24}} \Rightarrow {k_{\max }} =  - \,1 \to x =  - \frac{{17\pi }}{{36}} \hfill \\ \end{gathered}  ight.

    TH2. Với

    x = \frac{{11\pi }}{{36}} + \frac{{k2\pi }}{3}\xrightarrow{{{\text{Cho}}}}\left[ \begin{gathered}  x > 0 \Leftrightarrow k >  - \frac{{11}}{{24}} \Rightarrow {k_{\min }} = 0 \to x = \frac{{11\pi }}{{36}} \hfill \\  x < 0 \Leftrightarrow k <  - \frac{{11}}{{24}} \Rightarrow {k_{\max }} =  - \,1 \to x =  - \frac{{13\pi }}{{36}} \hfill \\ \end{gathered}  ight.

    So sánh bốn nghiệm ta được nghiệm âm lớn nhất là x =  - \frac{{13\pi }}{{36}} và nghiệm dương nhỏ nhất là x = \frac{{7\pi }}{{36}}.

    Khi đó tổng hai nghiệm này bằng - \frac{{13\pi }}{{36}} + \frac{{7\pi }}{{36}} =  - \frac{\pi }{6}.

     

  • Câu 15: Thông hiểu

    Chọn mệnh đề sai?

    Xét n = 2k

    \Rightarrow \lim( - 2)^{n} = \lim( -
2)^{2k}

    = \lim\left\lbrack ( - 2)^{2}
ightbrack^{k} = \lim 4^{k} = + \infty

    Xét n = 2k + 1

    \Rightarrow \lim( - 2)^{n} = \lim( -
2)^{2k + 1}

    = \lim\left\lbrack ( - 2)^{2k}.( - 2)
ightbrack = \lim\left\lbrack 4^{k}.( - 2) ightbrack = -
\infty

  • Câu 16: Thông hiểu

    Cho tứ diện ABCDI,J lần lượt là trọng tâm tam giác ABCABD. Chọn kết luận đúng?

    Hình vẽ minh họa

    Gọi M, N lần lượt là trung điểm của BD và BC

    Suy ra MN là đường trung bình tam giác BCD => MN // CD (*)

    Do I, J là trọng tâm tam giác ABC và ABD suy ra \frac{AI}{AM} = \frac{AJ}{AN} = \frac{2}{3}
\Rightarrow JI//MN(**)

    Từ (*) và (**) suy ra TH

     

    1

  • Câu 17: Nhận biết

    Tính A = \lim_{x
ightarrow - 1}\left( x^{2} - x + 7 ight).

    Ta có: A = \lim_{x ightarrow - 1}\left(
x^{2} - x + 7 ight) = 1 + 1 + 7 = 9

  • Câu 18: Nhận biết

    Khẳng định nào sau đây sai?

    Đáp án: “Hai mặt phẳng có một điểm chung thì chúng còn có vô số điểm chung khác nữa.” đúng vì:

    TH1: Hai mặt phẳng phân biệt nếu có một điểm chung thì hai mặt phẳng đó có một đường thẳng chung (giao tuyến của hai mặt phẳng) do đó có hai mặt phẳng có vô số điểm chung.

    TH2: Hai mặt phẳng không phân biệt thì chúng có vô số điểm chung (vì hai mặt phẳng trùng nhau)”

    Đáp án: “Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất” đúng vì tập hợp các điểm chung của hai mặt phẳng phân biệt là một đường thẳng.

    Đáp án: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất.” sai vì chưa xét đến trường hợp hai mặt phẳng không phân biệt.

    Đáp án: “Nếu ba điểm A, B, C phân biệt cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng.” đúng vì khi đó ba điểm A, B, C cùng nằm trên giao tuyến của hai mặt phẳng do đó ba điểm A, B, C thẳng hàng.

  • Câu 19: Vận dụng

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Đáp án là:

    Cho tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều các cạnh tương ứng thành các phần bằng nhau. Hỏi có bao nhiêu tam giác được tạo thành mà có 3 đỉnh lấy từ 18 điểm đã đánh dấu sao cho mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho?

    Đáp án: 216

    Hình vẽ minh họa

    Không mất tính tổng quát, xét mặt bên \Delta ABC.

    Giả sử MN song song với BC. Khi đó, số tam giác có cạnh MN nằm trong mặt phẳng song song với đúng một cạnh của tứ diện là 6 tam giác, gồm \Delta PMN, \Delta QMN, \Delta IMN,\Delta JMN, \Delta KMN, \Delta LMN.

    Trong mặt bên \Delta ABC, nối các điểm chia đều các cạnh AB,BC,CA ta thấy có 3 đoạn thẳng song song với AB, 3 đoạn thẳng song song với BC và 3 đoạn thẳng song song với CA.

    Mặt khác, vai trò 4 mặt của tứ diện là như nhau.

    Vậy, số tam giác thỏa mãn yêu cầu đề bài là 6.(3 + 3 + 3).4 = 216.

  • Câu 20: Thông hiểu

    Biết số đo một góc (Ox;Oy) = \frac{3\pi}{2} + 2001\pi. Giá trị tổng quát của góc (Ox;Oy)

    Ta có:

    (Ox;Oy) = \frac{3\pi}{2} + 2001\pi =\frac{\pi}{2} + 2002\pi

    \Rightarrow (Ox;Oy) = \frac{\pi}{2} +k\pi;\left( k\mathbb{\in Z} ight)

  • Câu 21: Nhận biết

    Giá trị của \lim\frac{1 - n^{2}}{n} bằng:

    Với mọi số dương M lớn tùy ý ta chọn n_{M} thỏa mãn \frac{n_{M}^{2} - 1}{n_{M}} > M

    \Rightarrow n_{M} > \frac{M +
\sqrt{M^{2} + 4}}{2}.

    Ta có:

    \frac{n^{2} - 1}{n} > M\ ,\ \
\forall n > n_{M} = > \lim\frac{n^{2} - 1}{n} = +
\infty

    Vậy \lim\frac{1 - n^{2}}{n} = -
\infty.

  • Câu 22: Nhận biết

    Điểm cuối của góc lượng giác a ở góc phần tư thứ mấy nếu \sin\alpha;cos\alpha cùng dấu?

    Điểm cuối của góc lượng giác a ở góc phần tư thứ I hoặc thứ III thì \sin\alpha;cos\alpha cùng dấu

  • Câu 23: Nhận biết

    Tìm tất cả các nghiệm của phương trình \sin\left( x + \frac{\pi}{6} ight) =
1.

    Ta có \sin\left( x + \frac{\pi}{6}
ight) = 1

    \Leftrightarrow x + \frac{\pi}{6} =
\frac{\pi}{2} + k2\pi

    \Leftrightarrow x = \frac{\pi}{3} +
k2\pi\left( k\mathbb{\in Z} ight).

  • Câu 24: Thông hiểu

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Đáp án là:

    Viết được các số thập phân vô hạn tuần hoàn dưới dạng phân số tối giản, ta được:0,212121\ldots =
\frac{a}{b}; 4,333\ldots =
\frac{c}{d}. Khi đó:

    a) a + b = 40. Đúng||Sai

    b) Ba số a;b;58 tạo thành một cấp số cộng. Sai||Đúng

    c) c + d = 15. Sai||Đúng

    d) \lim c = 13. Đúng||Sai

    Ta có: 0,212121\ldots = 0,21 + 0,0021 +
0,000021 + \ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu 0,21 và công bội \frac{1}{100}.

    Vì vậy

    0,212121\ldots = 0,21 + 0,0021 +0,000021 + \ldots= \frac{0,21}{1 - \frac{1}{100}} =\frac{7}{33}.

    Ta có: 0,333\ldots = 0,3 + 0,03 + 0,003 +
\ldots

    Đây là tổng của cấp số nhân lùi vô hạn với số hạng đầu là 0,3 và công bội là \frac{1}{10}

    Vì vậy

    4,333\ldots = 4 + 0,3 + 0,03 +0,003 + \ldots= 4 + \frac{0,3}{1 - \frac{1}{10}} =\frac{13}{3}.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 25: Nhận biết

    Khẳng định nào sai trong các khẳng định sau?

    Ta có:

    \cos3x = 4\cos^{3}x - 3\cos x

  • Câu 26: Vận dụng

    Cho hàm số y =f(x) = \cos2x - 4\cos x + 4. Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)?

    Ta có:

    y =f(x) = \cos2x - 4\cos x + 4

    = 2\cos^{2}x - 4\cos x + 3

    Đặt \cos x = t,t \in \lbrack -
1;1brack. Xét hàm số f(t) =
2t^{2} - 4t + 3 trên đoạn \lbrack -
1;1brack

    Ta có bảng biến thiên

    Từ bảng biến thiên ta có: \left\{
\begin{matrix}
\max y = \max\underset{t \in \lbrack - 1;1brack}{f(t)} = 9 \\
\min y = \min\underset{t \in \lbrack - 1;1brack}{f(t)} = 1 \\
\end{matrix} ight.

    Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.

  • Câu 27: Thông hiểu

    Tìm số nghiệm của phương trình \sin(\cos x) = 0 trên đoạn x \in \lbrack 0;2\pibrack.

    Ta có: sin(cosx) = 0 \Leftrightarrow cosx
= k\pi\ (k \in \mathbb{Z})

    |cosx| \leq 1 nên k = 0. Do đó phương trình \Leftrightarrow cosx = 0 \Leftrightarrow x =
\frac{\pi}{2} + m\pi(m \in \mathbb{Z})

    x \in \lbrack 0;2\pibrack nên x = \frac{\pi}{2},x =
\frac{3\pi}{2}.

  • Câu 28: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 4. Giá trị nhỏ nhất của u_{1}u_{2} + u_{2}u_{3} +
u_{3}u_{1} bằng:

    Ta gọi d là công sai của cấp số cộng.

    Khi đó:

    u_{1}u_{2} + u_{2}u_{3} +
u_{3}u_{1}

    = 4(4 + d) + (4 + d)(4 + 2d) + 4(4 +
2d)

    = 2d^{2} + 24d + 48 = 2(d + 6)^{2} - 24\geq - 24

    Vậy giá trị nhỏ nhất của u_{1}u_{2} +
u_{2}u_{3} + u_{3}u_{1} là -24 đạt được khi khi d = - 6.

  • Câu 29: Nhận biết

    Có bao nhiêu hình chóp tứ giác trong các hình sau?

    Có 2 hình chóp tứ giác

  • Câu 30: Vận dụng

    Tính tổng S = 1 + 11 + 111 + ... + \underbrace {1111...11}_n?

    Xét dãy số \left( U_{n} ight) là cấp số nhân với u_{1} = 1;q =
10

    \Rightarrow S_{n} = \frac{1}{9}.\left(
10^{n} - 1 ight)

    \Rightarrow S = S_{1} + S_{2} + ... +
S_{n}

    = \sum_{k = 1}^{n}{\frac{1}{9}\left(
10^{n} - 1 ight)} = \frac{1}{9}\left( \sum_{k = 1}^{n}{10^{n} - n}
ight)

    = \frac{1}{9}\left( 10.\frac{10^{n} -
1}{9} - n ight) = \frac{1}{9}\left( \frac{10^{n + 1} - 1}{9} - n
ight)

  • Câu 31: Thông hiểu

    Chọn khẳng định sai trong các khẳng định sau.

    Khẳng định sai là: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm.”

    Sửa lại: “Một mặt phẳng hoàn toàn xác định khi biết nó đi qua ba điểm không thẳng hàng.”

  • Câu 32: Vận dụng

    Cho cấp số cộng (un) biết u1 = -5 và công sai d = 2. Số 81 là số hạng thứ bao nhiêu?

     Ta có:

    \begin{matrix}  {u_n} = {u_1} + \left( {n - 1} ight)d \hfill \\   \Leftrightarrow 8 =  - 5 + \left( {n - 1} ight).2 \hfill \\   \Leftrightarrow n = 44 \hfill \\ \end{matrix}

    Vậy 81 là số hạng thứ 44

  • Câu 33: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là hình bình hành tâm O, M \in
SC,SM = MC. Mệnh đề nào sau đây là mệnh đề sai?

    Hình vẽ minh họa

    Ta có:

    OM//SA \Rightarrow
OM//(SAB)

    OM//SA \Rightarrow
OM//(SAD)

    (BDM) \cap (SAC) = OM

    OM//(SBD) là đáp án sai.

  • Câu 34: Nhận biết

    Dãy số nào là cấp số nhân?

    Theo bài ra ta có:

    \frac{u_{n + 1}}{u_{n}} = \frac{7 - 3^{n
+ 1}}{7 - 3^{n}} = \frac{3\left( 7 - 3^{n} ight) - 14}{7 - 3^{n}} = 3
- \frac{14}{7 - 3^{n}} (loại)

    \frac{u_{n + 1}}{u_{n}} =\dfrac{\dfrac{7}{3n + 3}}{\dfrac{7}{3n}} = 1 - \frac{1}{n +1}(loại)

    \dfrac{u_{n + 1}}{u_{n}} = \dfrac{7.2^{n +2}}{7.2^{n + 1}} = 2(thỏa mãn)

    \dfrac{u_{n + 1}}{u_{n}} = \dfrac{7 - 3(n +1)}{7 - 3n} = 1 - \frac{3}{7 - 3n} (loại)

  • Câu 35: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

    Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Ta có BDB'D' là hình bình hành nên BD//B'D'

    Tương tự ta có AD'//BC'. Từ đó suy ra BD//\left( {AB'D'} ight)BC'//\left( {AB'D'} ight).

    Vậy \left( {C'BD} ight)//\left( {AB'D'} ight)

  • Câu 36: Vận dụng cao

    Cho xeq 0 và x+\frac{1}{x} là một số nguyên. Khi đó với mọi số nguyên dương n, có kết luận gì về T(n,x)=x^{n}+\frac{1}{x^{n}}?

    Ta có:

    T\left( {1;x} ight) = x + \frac{1}{x} là một số nguyên

    T\left( {2;x} ight) = {x^2} + \frac{1}{{{x^2}}} = {\left( {x + \frac{1}{x}} ight)^2} - 2 cũng là một số nguyên

    Ta sẽ chứng minh T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

    Ta có: 

    T\left( {1;x} ight) là một số nguyên 

    Giả sử T(n,x) là số nguyên với n \ge1. Ta sẽ chứng minh T\left( {n + 1;x} ight) cũng là số nguyên.

    Ta có: 

    \begin{matrix}  T\left( {n + 1;x} ight) = {x^{n + 1}} + \dfrac{1}{{{x^{n + 1}}}} \hfill \\   = \left( {x + \dfrac{1}{x}} ight).\left( {{x^n} + \dfrac{1}{{{x^n}}}} ight) - \left( {{x^{n - 1}} + \dfrac{1}{{{x^{n - 1}}}}} ight) \hfill \\   = T\left( {1;x} ight).T\left( {n;x} ight) - T\left( {n - 1;x} ight) \hfill \\ \end{matrix}

    Theo giả thiết quy nạp ta có: 

    \left\{ \begin{gathered}  T\left( {1;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n - 1;x} ight) \in \mathbb{Z} \hfill \\ \end{gathered}  ight. \Rightarrow T\left( {n + 1;x} ight) \in \mathbb{Z}

    Vậy T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

  • Câu 37: Thông hiểu

    Dãy số nào sau đây là một cấp số cộng?

    Dãy số ở đáp án A thỏa mãn điều kiện {u_{n + 1}} - {u_1} = 2 với n \geqslant 1 là cấp số cộng.

  • Câu 38: Nhận biết

    Khẳng định nào sau đây là khẳng định sai?

    Khẳng định sai là: “Số hạng tổng quát của cấp số cộng \left( u_{n} ight)u_{n} = u_{1} + nd với công sai d và số hạng đầu u_{1}.”

  • Câu 39: Nhận biết

    Hình nào trong các hình dưới đây là đồ thị của hàm số không liên tục tại x = 1?

    Xét đồ thị hàm số

    \lim_{x ightarrow 1^{+}}y eq
\lim_{x ightarrow 1^{-}}y nên hàm số không liên tục tại x = 1

  • Câu 40: Thông hiểu

    Tập giá trị của hàm số y = {\sin ^2}x - \sin x - 1 là:

     Ta có: y = {\sin ^2}x + \sin x + 1 = {\left( {\sin x - \frac{1}{2}} ight)^2} - \frac{5}{4}

    \sin x \in \left[ { - 1;1} ight]

    => - \frac{5}{4} \leqslant {\left( {\sin x - \frac{1}{2}} ight)^2} - \frac{5}{4} \leqslant 1

  • Câu 41: Vận dụng

    Kết quả giới hạn K = \lim_{x ightarrow
+ \infty}x\left( \sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight) =
\frac{a}{b}, với \frac{a}{b} là phân số tối giản (a;b > 0). Tổng a + b bằng bao nhiêu?

    Đáp án: 3

    Đáp án là:

    Kết quả giới hạn K = \lim_{x ightarrow
+ \infty}x\left( \sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight) =
\frac{a}{b}, với \frac{a}{b} là phân số tối giản (a;b > 0). Tổng a + b bằng bao nhiêu?

    Đáp án: 3

    Ta có

    K = \lim_{x ightarrow + \infty}x\left(
\sqrt{x^{2} + 2x} - \sqrt[3]{x^{3} + 3x^{2}} ight)

    = \lim_{x ightarrow +
\infty}x\left\lbrack \left( \sqrt{x^{2} + 2x} - x - 1 ight) + \left( x
+ 1 - \sqrt[3]{x^{3} + 3x^{2}} ight) ightbrack

    = \lim_{x ightarrow +
\infty}\lbrack\frac{- x}{\sqrt{x^{2} + 2x} + (x + 1)} + \frac{3x^{2} + x}{(x + 1)^{2} + (x +
1)\sqrt[3]{x^{3} + 3x} + \sqrt[3]{\left( x^{3} + 3x
ight)^{2}}}brack

    = \lim_{x ightarrow +
\infty}\lbrack\frac{- 1}{\sqrt{1 + \frac{2}{x}} + \left( 1 + \frac{1}{x}
ight)} + \frac{3 +
\frac{1}{x}}{\left( 1 + \frac{1}{x} ight)^{2} + \left( 1 + \frac{1}{x}
ight)\sqrt[3]{1 + \frac{3}{x^{2}}} + \sqrt[3]{\left( 1 +
\frac{3}{x^{2}} ight)^{2}}}brack

    = - \frac{1}{2} + 1 =
\frac{1}{2}.

    Suy ra a + b = 3.

  • Câu 42: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 43: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc khoảng (−10; 10) để phương trình x^{3} - 3x^{2} + (2m - 2)x + m - 3 = 0 có ba nghiệm phân biệt x_{1},x_{2},x_{3} thỏa mãn x_{1} < - 1 < x_{2} < x_{3}?

    Xét hàm số f(x) = x^{3} - 3x^{2} + (2m -
2)x + m - 3 liên tục trên \mathbb{R}

    Giả sử phương trình có ba nghiệm x_{1},x_{2},x_{3} thỏa mãn x_{1} < - 1 < x_{2} < x_{3}. Khi đó f(x) = \left( x - x_{1} ight)\left( x -
x_{2} ight)\left( x - x_{3} ight)

    Ta có:

    f( - 1) = \left( - 1 - x_{1}
ight)\left( - 1 - x_{2} ight)\left( - 1 - x_{3} ight) >
0 (do x_{1} < - 1 < x_{2}
< x_{3})

    f( - 1) = - m - 5 nên suy ra - m - 5 > 0 \Rightarrow m < -
5

    Với m < - 5 ta có:

    \lim_{x ightarrow - \infty}f(x) = -
\infty nên tồn tại a < -
1 sao cho f(x) < 0\ \
(1)

    Do m < - 5 nên f( - 1) = - m - 5 > 0\ \ \ (2)

    f(0) = m - 3 < 0;\ \ \ \
(3)

    \lim_{x ightarrow + \infty}f(x) = +
\infty nên tồn tại b >
0 sao cho f(b) > 0\ \
(4)

    Từ (1) và (2) suy ra phương tình có nghiệm thuộc khoảng ( - \infty; - 1)

    Từ (2) và (3) suy ra phương tình có nghiệm thuộc khoảng ( - 1;0)

    Từ (3) và (4) suy ra phương tình có nghiệm thuộc khoảng (0; + \infty)

    Vậy m < - 5 thỏa mãn m \in ( - 10;10);m\mathbb{\in Z}

    \Rightarrow m \in \left\{ - 9; - 8; - 7;
- 6 ight\}

  • Câu 44: Vận dụng cao

    Tính tổng S = \left( \frac{1}{2} -
\frac{1}{3} ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... +
\left( \frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...:

    Ta có:

    S = \left( \frac{1}{2} - \frac{1}{3}
ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... + \left(
\frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...

    = \left( {\underbrace {\dfrac{1}{2} + \dfrac{1}{4} + ... + \dfrac{1}{{{2^n}}} + ...}_{CSN:{u_1} = q = \dfrac{1}{2}}} ight) - \left( {\underbrace {\dfrac{1}{3} + \dfrac{1}{5} + .... + \dfrac{1}{{{3^n}}}}_{CSN:{u_1} = q = \dfrac{1}{3}}} ight)

    = \dfrac{\dfrac{1}{2}}{1 - \dfrac{1}{2}} -\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = 1 - \dfrac{1}{2} =\dfrac{1}{2}

  • Câu 45: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Cánh Diều Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo