Cho hình chóp tứ giác gọi
và
lần lượt là trung điểm các cạnh
và
Khi đó
song song với đường thẳng
Do là đường trung bình của tam giác
nên
Cho hình chóp tứ giác gọi
và
lần lượt là trung điểm các cạnh
và
Khi đó
song song với đường thẳng
Do là đường trung bình của tam giác
nên
Cho hình chóp tứ giác . Gọi
là trung điểm của
,
. Xác định các giao tuyến của mặt phẳng
với các mặt của hình chóp. Khi đó hình tạo bởi các giao tuyến trên là:
Trường hợp 1:
Hình vẽ minh hoạ
Nếu . Gọi
Nếu
=> Hình tạo bởi các giao tuyến của mặt phẳng với hình chóp là tứ giác
Nếu . Gọi
Hình tạo bởi các giao tuyến của mặt phẳng với hình chóp là tứ giác
Trường hợp 2:
Hình vẽ minh hoạ
Nếu . Hình tạo bởi các giao tuyến của mặt phẳng
với hình chóp là tam giác
.
Vậy hình tạo bởi các giao tuyến trên có thể là tứ giác hoặc tam giác.
Cho hàm số liên tục trên đoạn
và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Giá trị của M.n là:
Hàm số liên tục trên
.
Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1
Vậy M.n = -3
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tính tứ phân vị thứ nhất của mẫu số liệu ghép nhóm?
Ta có:
Đối tượng | Tần số | Tần số tích lũy |
[150; 155) | 15 | 15 |
[155; 160) | 11 | 26 |
[160; 165) | 39 | 65 |
[165; 170) | 27 | 92 |
[170; 175) | 5 | 97 |
[175; 180) | 3 | 100 |
Cỡ mẫu là:
=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)
Do đó:
Khi đó tứ phân vị thứ nhất là:
Với những giá trị nào của x thì giá trị của các hàm số và
bằng nhau?
Xét phương trình hoành độ giao điểm: sin 3x = sin x
Khẳng định nào sau đây đúng?
Trong khoảng thì hàm số
đồng biến.
Cho cấp số cộng thỏa mãn
. Tính công sai
của cấp số cộng đó:
Ta có:
Bạn An thả quả bóng cao su từ độ cao so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng
độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?
Đáp án: 45
Bạn An thả quả bóng cao su từ độ cao so với mặt đất theo phương thẳng đứng. Mỗi lần chạm đất quả bóng lại nảy lên theo phương thẳng đứng có độ cao bằng
độ cao lần rơi trước đó. Tổng quãng đường quả bóng đi được gần bằng bao nhiêu?
Đáp án: 45
Quãng đường bóng đi được từ khi thả đến chạm đất lần 1 là .
Quãng đường bóng đi được từ khi chạm đất lần 1đến chạm đất lần 2 là .
Quãng đường bóng đi được từ khi chạm đất lần 2 đến chạm đất lần 3 là ……
Quãng đường bóng đi được từ khi chạm đất lần n đến chạm đất lần là
Tổng quãng đường bóng đi được từ lúc thả đến không nảy lên nữa là:
.
Khẳng định nào dưới đây đúng?
Hình vẽ minh họa
Vậy
Cho hàm số . Tính tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số
?
Ta có:
Đặt . Xét hàm số
trên đoạn
Ta có bảng biến thiên
Từ bảng biến thiên ta có:
Vậy tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho là 10.
Giải phương trình .
Phương trình
Vậy đáp án cần tìm là:
Cho tứ diện . Gọi
lần lượt là trung điểm
và
, G là trọng tâm tam giác BCD. Tìm giao tuyến d của hai mặt phẳng
và
.
Hình vẽ minh họa
Hai mặt phẳng phân biệt (GMN) và (BCD) chứa hai đường thẳng song song MN và CD, đồng thời có điểm chung là G
=> Giao tuyến của chúng là đường thẳng d qua G và song song với CD (cắt BC, BD lần lượt tại P và Q).
Cho cấp số nhân (un) có tổng n số hạng đầu tiên là . Tìm số hạng đầu và công bội của cấp số nhân đó?
Ta có:
Dãy số nào sau đây có giới hạn bằng ?
Vì nên
.
Cho hình chóp có đáy
là hình thang cân đáy nhỏ
. Lấy
lần lượt là trung điểm của
. Giao tuyến của mặt phẳng
với các mặt của hình chóp
là hình:
Hình vẽ minh họa
Xét mặt phẳng (MNP) và (SBC) có
(1)
(2)
Từ (1) và (2) .
Xét tứ giác có
=> là hình thang.
Vậy giao điểm của mặt phẳng với các mặt của hình chóp
là hình thang.
Trong các dãy số sau, dãy số nào là cấp số nhân?
Ta có:
=> là cấp số nhân
Tổng có kết quả bằng?
Ta có
Do đó
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tổng | N = 100 |
Mốt của mẫu số liệu gần với giá trị nào nhất trong các giá trị dưới đây?
Mốt của mẫu số liệu thuộc nhóm [160; 165).
Đối tượng | Tần số |
|
[150; 155) | 15 |
|
[155; 160) | 10 | |
[160; 165) | 40 | |
[165; 170) | 27 | |
[170; 175) | 5 |
|
[175; 180) | 3 |
|
Tổng | N = 100 |
|
Ta có:
Khi đó ta tính mốt như sau:
Vậy mốt của mẫu số liệu gần với giá trị 164 nhất.
Tính giới hạn của hàm số .
Ta có:
Số nghiệm thuộc đoạn của phương trình:
Điều kiện xác định
Vậy có tất cả 15 nghiệm.
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) |
Số học sinh |
[45; 50) |
5 |
[50; 55) |
12 |
[55; 60) |
10 |
[60; 65) |
6 |
[65; 70) |
5 |
[70; 75) |
8 |
a) Cân nặng trung bình của học sinh lớp 11H bằng . Đúng||Sai
b) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: Đúng||Sai
d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) |
Số học sinh |
[45; 50) |
5 |
[50; 55) |
12 |
[55; 60) |
10 |
[60; 65) |
6 |
[65; 70) |
5 |
[70; 75) |
8 |
a) Cân nặng trung bình của học sinh lớp 11H bằng . Đúng||Sai
b) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: Đúng||Sai
d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai
Ta có:
Cân nặng (kg) |
Giá trị đại diện |
Số học sinh |
[45; 50) |
47,5 |
5 |
[50; 55) |
52,5 |
12 |
[55; 60) |
57,5 |
10 |
[60; 65) |
62,5 |
6 |
[65; 70) |
67,5 |
5 |
[70; 75) |
72,5 |
8 |
Cân nặng trung bình của học sinh lớp 11H là:
Nhóm chứa mốt là: [50; 55) suy ra .
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
=> Nhóm chứa tứ phân vị thứ ba là: [65; 70)
Cân nặng (kg) |
Số học sinh |
Tần số tích lũy |
[45; 50) |
5 |
5 |
[50; 55) |
12 |
17 |
[55; 60) |
10 |
27 |
[60; 65) |
6 |
33 |
[65; 70) |
5 |
38 |
[70; 75) |
8 |
46 |
=> Nhóm chứa tứ phân vị thứ nhất là: [50; 55)
Ba góc của một tam giác vuông tạo thành cấp số cộng. Hai góc nhọn của tam giác có số đo (độ) là:
Ba góc A, B, C của một tam giác vuông theo thứ tự đó lập thành một cấp số cộng nên
Trên đường tròn lượng giác, cung có số đo được biểu diễn bởi bao nhiêu điểm?
Xét theo chiều dương với ta thấy cung có số đo
được biểu diễn bởi ba điểm trên đường tròn lượng giác như sau:
Trong không gian có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?
Trong không gian có 3 vị trí tương đối giữa đường thẳng và mặt phẳng
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tổng | N = 100 |
Mốt của mẫu số liệu thuộc nhóm số liệu nào?
Mốt của mẫu số liệu thuộc nhóm [160; 165).
Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:
160 | 161 | 161 | 162 | 162 | 162 |
163 | 163 | 163 | 164 | 164 | 164 |
164 | 165 | 165 | 165 | 165 | 165 |
166 | 166 | 166 | 166 | 167 | 167 |
168 | 168 | 168 | 168 | 169 | 169 |
170 | 171 | 171 | 172 | 172 | 174 |
Bảng số liệu ghép nhóm nào sau đây đúng?
Ta có:
Khoảng biến thiên là
Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4
Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.
Khi đó ta có các nhóm là:
Vậy bảng dữ liệu ghép nhóm đúng là:
Tính giới hạn .
Ta có:
Cho dãy số , biết
. Tìm số hạng
Ta có:
Cho tứ diện . Lấy
sao cho
. Giả sử
là mặt phẳng qua
song song với
. Xác định các giao tuyến của tứ diện
và mặt phẳng
. Hình tạo bởi các giao tuyến đó là hình gì?
Giả sử cắt các mặt của tứ diện
và
theo hai giao tuyến
và
.
Ta có:
Theo định lí Ta – lét ta có:
=> là hình bình hành
Do đó hình tạo bởi các giao tuyến của tứ diện và mặt phẳng
là hình bình hành
.
Tính giới hạn ?
Ta có:
Giá trị nào sau đây của x thỏa mãn ?
Ta có:
Tập giá trị của hàm số là:
Ta có:
Mà
=>
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Cho hình hộp chữ nhật có
lần lượt là các điểm nằm trên ba cạnh
sao cho
. Gọi
là giao điểm của mặt phẳng
với đường thẳng
. Khi đó tỉ số
bằng bao nhiêu?
Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).
Hình vẽ minh họa
Lấy ,
lần lượt là các cạnh trên
và
sao cho
và
.
Vì nên 2 giao tuyến giữa mặt phẳng
lần lượt với các mặt phẳng
và
sẽ song song với nhau.
Do đó, ta sẽ lấy nằm trên cạnh
sao cho
.
Ta có:
.
Khi đó, .
Gọi T là tập giá trị của hàm số . Tìm tổng các giá trị nguyên của T.
Ta có:
Vì
Do đó tổng các giá trị nguyên của T là 7.
Cho hình chóp có đáy
là hình bình hành tâm
. Lấy điểm
sao cho
. Hình chiếu của điểm
qua phép chiếu song song phương
mặt phẳng chiếu
là điểm
. Khi đó tỉ số độ dài
bằng bao nhiêu?
Hình vẽ minh họa:
Phép chiếu song song phương phương mặt phẳng chiếu
biến điểm
thành điểm
.
Do đó:
Xét tam giác ta có:
=> là trung điểm của
Từ đó suy ra
Số điểm gián đoạn của hàm số là:
Đáp án: 1
Số điểm gián đoạn của hàm số là:
Đáp án: 1
Hàm số có TXĐ
.
Hàm số liên tục trên mỗi khoảng
,
và
.
(i) Xét tại , ta có
Hàm số liên tục tại
.
(ii) Xét tại , ta có
Hàm số
gián đoạn tại
.
Vậy số điểm gián đoạn cần tìm là 1.
Tính giới hạn
Khi ta có:
Hàm số nào tương ứng với đồ thị trong hình vẽ sau:
Ta thấy hàm số có giá trị lớn nhất bằng và giá trị nhỏ nhất bằng
nên loại các đáp án
và
.
Tại chỉ có hàm số
thỏa mãn.
Tất cả các nghiệm của phương trình tan (x) = cot (x) là?
Điều kiện
thỏa mãn điều kiện.
Với giá trị nào của thì các số hạng
theo thứ tự đó lập thành cấp số nhân?
Ta có: các số hạng lập thành cấp số nhân
Vậy
Cho cấp số cộng . Xác định
biết rằng
?
Ta có:
Khi đó:
Suy ra
Tính giới hạn
Ta có:
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của các nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | 21 |
[15; 20) | 13 |
[20; 25) | 8 |
[25; 30) | 6 |
Mẫu số liệu được chia thành bao nhiêu nhóm?
Mẫu số liệu được chia thành 7 nhóm.
Với mệnh đề nào sau đây sai?
Ta có:
=>