Đề thi học kì 1 Toán 11 Chân trời sáng tạo Đề 1

Mô tả thêm: Đề thi HK1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 5 chuyên đề với 4 mức độ giúp học sinh củng cố, nắm vững kiến thức và khả năng giải toán lớp 11 sách Chân trời sáng tạo
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Gọi T là tập giá trị của hàm số y =\frac{1}{2}sin^{2}x - \frac{3}{4}cos2x + 3. Tìm tổng các giá trị nguyên của T.

    Ta có:

    y = \frac{1 - cos2x}{2} -\frac{3}{4}cos2x + 3 = \frac{7}{2} - \frac{5}{4}cos2x = \frac{14 -5cos2x}{4}

    - 1 \leq cos2x \leq 1

    \begin{matrix}\Rightarrow \dfrac{9}{4} \leq \dfrac{14 - 5cos2x}{4} \leq\dfrac{19}{4};y\mathbb{\in Z} \hfill\\\Rightarrow y = \left\{ 3;4 ight\} \hfill\\\end{matrix}

    Do đó tổng các giá trị nguyên của T là 7.

  • Câu 2: Vận dụng cao

    Tính tổng S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}}. Biết dãy số (un) xác định bởi: {u_1} = \frac{1}{3};{u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n}

     Ta có:

    {u_{n + 1}} = \frac{{n + 1}}{{3n}}.{u_n} \Leftrightarrow \frac{{{u_{n + 1}}}}{{n + 1}} = \frac{{{u_n}}}{{3n}}

    Do {u_1} = \frac{1}{3} \Rightarrow \frac{{{u_1}}}{1} = \frac{1}{3}

    Từ đó suy ra:

    \begin{matrix}  \dfrac{{{u_2}}}{2} = \dfrac{1}{3}.\dfrac{1}{3} = {\left( {\dfrac{1}{3}} ight)^2} \hfill \\  \dfrac{{{u_3}}}{3} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^2} = {\left( {\dfrac{1}{3}} ight)^3} \hfill \\  ... \hfill \\  \dfrac{{{u_{10}}}}{{10}} = \dfrac{1}{3}.{\left( {\dfrac{1}{3}} ight)^9} = {\left( {\dfrac{1}{3}} ight)^{10}} \hfill \\ \end{matrix}

    Hay dãy \left( {\frac{{{u_n}}}{n}} ight) là một cấp số nhân có số hạng đầu {u_1} = \frac{1}{3},q = \frac{1}{3}

    Khi đó S = {u_1} + \frac{{{u_2}}}{2} + \frac{{{u_3}}}{3} + ... + \frac{{{u_{10}}}}{{10}} = \frac{{{3^{10}} - 1}}{{{{2.3}^{10}}}} = \frac{{29524}}{{59049}}

  • Câu 3: Vận dụng

    \lim \frac{{{{( - 1)}^n}}}{{n + 5}} bằng:

    Ta có:

    0 \leqslant \left| {\frac{{{{( - 1)}^n}}}{{n + 5}}} ight| \leqslant \frac{1}{{n + 5}} < \frac{1}{n}

    Do \lim \frac{1}{n} = 0 => \lim \frac{{{{\left( { - 1} ight)}^n}}}{{n + 5}} = 0

  • Câu 4: Nhận biết

    Cho dãy xác định bởi công thức \left\{ \begin{matrix}
u_{1} = 3 \\
u_{n + 1} = \frac{1}{2}u_{n},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Số hạng tổng quát của dãy un là?

    Ta có u_{1} = 3;u_{2} = \frac{1}{2}u_{1} =
\frac{3}{2};u_{3} = \frac{1}{2}u_{2} =
\frac{3}{2^{2}};\ldots

    Ta đi chứng minh cho dãy số có số hạng tổng quát là u_{n} = \frac{3}{2^{n - 1}}

    Thật vậy, n = 1 thì u1 = 3 (đúng).

    Giả sử với n = k(k≥1) thì u_{k} = \frac{3}{2^{k - 1}}. Ta đi chứng minh u_{k + 1} =
\frac{3}{2^{k}}

    Ta có u_{k + 1} = \frac{1}{2}u_{k} =
\frac{1}{2} \cdot \frac{3}{2^{k - 1}} = \frac{3}{2^{k}} (điều phải chứng minh).

    Vậy số hạng tổng quát của dãy số là u_{n}
= \frac{3}{2^{n - 1}}

  • Câu 5: Thông hiểu

    Số nghiệm của phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} với - {180^0} \leqslant x \leqslant {180^0} là?

    4 || Bốn || bốn || 4 nghiệm

    Đáp án là:

    Số nghiệm của phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} với - {180^0} \leqslant x \leqslant {180^0} là?

    4 || Bốn || bốn || 4 nghiệm

     Phương trình \sin \left( {2x - {{40}^0}} ight) = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {2x - {{40}^0}} ight) = \sin {60^0}

    \Leftrightarrow \left[ \begin{gathered}  2x - {40^0} = {60^0} + k{360^0} \hfill \\  2x - {40^0} = {180^0} - {60^0} + k{360^0} \hfill \\ \end{gathered}  ight.\,

    \Leftrightarrow \left[ \begin{gathered}  2x = {100^0} + k{360^0} \hfill \\  2x = {160^0} + k{360^0} \hfill \\ \end{gathered}  ight.\,

    \Leftrightarrow \left[ \begin{gathered}  x = {50^0} + k{180^0} \hfill \\  x = {80^0} + k{180^0} \hfill \\ \end{gathered}  ight.

    • TH1: Xét nghiệm x = {50^0} + k{180^0}:

    - {180^0} \leqslant x \leqslant {180^0}\xrightarrow{{}} - {180^0} \leqslant {50^0} + k{180^0} \leqslant {180^0}

    \Leftrightarrow  - \frac{{23}}{{18}} \leqslant k \leqslant \frac{{13}}{{18}}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k =  - 1 \to x =  - {130^0} \hfill \\  k = 0 \to x = {50^0} \hfill \\ \end{gathered}  ight..

    • TH2: Xét nghiệm x = {80^0} + k{180^0}:

    - {180^0} \leqslant x \leqslant {180^0}\xrightarrow{{}} - {180^0} \leqslant {80^0} + k{180^0} \leqslant {180^0}

    \Leftrightarrow  - \frac{{13}}{9} \leqslant k \leqslant \frac{5}{9}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k =  - 1 \to x =  - {100^0} \hfill \\  k = 0 \to x = {80^0} \hfill \\ \end{gathered}  ight..

    Vậy có tất cả 4 nghiệm thỏa mãn bài toán.

     

  • Câu 6: Nhận biết

    Giá trị của \lim\frac{{(\sin n)}^{2}}{n + 2}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a}
> \frac{1}{a} - 2

    Suy ra

    \frac{\left( \sin n ight)^{2}}{n
+ 2} < \frac{1}{n + 2} < \frac{1}{n_{a} + 2} < a\ \forall n
> n_{a}

    Vậy:  \lim\frac{{{(sin}n)}^{2}}{n + 2} = 0 .

  • Câu 7: Nhận biết

    Cho hàm số f(x)
= \frac{x^{2} + 1}{x^{2} + 5x + 6}. Khi đó hàm số đã cho liên tục trên khoảng nào?

    Hàm số có nghĩa khi x^{2} + 5x + 6 eq 0
\Rightarrow x eq - 3;x eq - 2

    Vậy hàm số f(x) = \frac{x^{2} + 1}{x^{2}
+ 5x + 6} liên tục trên các khoảng ( - \infty; - 3),( - 3; - 2);( - 2; +
\infty)

  • Câu 8: Vận dụng

    Cho hai hình bình hành ABCD và ABEF có tâm lần lượt là O, O’ và không cùng nằm trong một mặt phẳng. Gọi M là trung điểm của AB.

    (I) (ADF) // (BCE)

    (II) (MOO’) // (ADF)

    (III) (MOO’) // (BCE)

    (IV) (AEC) // (BDF)

    Khẳng định nào sau đây là đúng

    Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)

    => BC // (ADF); BE // (ADF)

    Mà BC ∩∩ BE = B

    =. (ADF) // (BEC).

    O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD

    Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF

    MO’ // (ADF) (1)

    Tương tự MO là đường trung bình của tam giác ABD nên MO // AD

    MO // (ADF) (2)

    Từ (1) và (2) suy ra (MOO’) // (ADF)

    Chứng minh tương tự ta cũng có (MOO’) // (BCE).

    Hai mặt phẳng (AEC) và (BDF) có:

    AC ∩ DB = O ; AE ∩ BF = O’

    Suy ra (AEC) ∩ (BDF) = OO’.

    Vậy khẳng định (I); (II); (III) đúng.

  • Câu 9: Vận dụng

    Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:

    Chiều cao (cm)

    Số học sinh

    [150; 154]

    5

    [155; 159]

    2

    [160; 164]

    6

    [165; 169]

    8

    [170; 174]

    9

    [175; 179]

    11

    [180; 184]

    6

    [185; 189]

    3

    Tìm trung vị của mẫu số liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    (149,5; 154,5]

    5

    5

    (154,5; 159,5]

    2

    7

    (159,5; 164,5]

    6

    13

    (164,5; 169,5]

    8

    21

    (169,5; 174,5]

    9

    30

    (174,5; 179,5]

    11

    41

    (179,5; 184,5]

    6

    47

    (184,5; 189,5]

    3

    50

    Tổng

    N = 50

     

    Ta có: \frac{N}{2} = \frac{50}{2} =25

    => Nhóm chứa trung vị là (169,5; 174,5]

    Khi đó: \left\{ \begin{matrix}l = 169,5,\dfrac{N}{2} = 25 \\m = 21,f = 9,d = 174,5 - 169,5 = 5 \\\end{matrix} ight.

    Trung vị của mẫu số liệu là:

    M_{e} = L + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Rightarrow M_{e} = 169,5 + \frac{25 -21}{9}.5 \approx 171,7

  • Câu 10: Vận dụng

    Cho hình chóp O.ABC, A’ là trung điểm của OA; các điểm B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này. Phát biểu nào sau đây là đúng.

    Phát biểu nào sau đây là đúng

    Phương án "Giao tuyến của (OBC) và (A’B’C’) là A’B’." sai vì A’ không phải là điểm chung của (OBC) và (A’B’C’).

    Phương án "Giao tuyến của (ABC) và (OC’A’) là CK, với K là giao điểm của C’B’ với CB." sai vì

    Xét giao tuyến của 2 mp (ABC ) và (OC'A') có:

    A chung

    C chung

    => Giao tuyến của mp(ABC) và mp (OC'A') là AC

    Phương án "(ABC) và (A’B’C’) không cắt nhau." sai vì:

    Trong (OAB), A’B’ không song song với AB nên sẽ cắt AB, do vậy (ABC) và (A’B’C’) có điểm chung

    Phương án "Giao tuyến của (ABC) và (A’B’C’) là MN, với M là giao điểm của AC và A’C’, N là giao điểm của BC và B’C’" đúng vì M là giao điểm của AC và A’C’ nên M là điểm chung của (ABC) và (A’B’C’).

    Tương tự N là điểm chung của (ABC) và (A’B’C’).

    Vì vậy MN là giao tuyến của (ABC) và (A’B’C’).

  • Câu 11: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy 1;\ \ 2;\ \ 4;\ \ 8;\ \ 16 là cấp số nhân với công bội q =
2.

    Dãy 1;  - 1; 1;  - 1;1 là cấp số nhân với công bội q = -
1.

    Dãy 1;\ \  - 2;\ \ 4;\ \  - 8;\ \
16 là cấp số nhân với công bội q =
- 2.

    Dãy 1;2;3; 4;5 là cấp số cộng với công sai d = 1.

  • Câu 12: Vận dụng

    Một bệnh nhân hàng ngày phải uống 150mg thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 2 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 4 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57mg. Đúng||Sai

    Đáp án là:

    Một bệnh nhân hàng ngày phải uống 150mg thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn 6\% lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?

    a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là 9(mg). Đúng||Sai

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 2 159(mg). Đúng||Sai

    c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ 4 170(mg). Sai||Đúng

    d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là 159,57mg. Đúng||Sai

    a) Ta có hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau ngày đầu còn 150 \times 6\%= 9(mg), suy ra mệnh đề đúng.

    b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 2 là: 150 \times 6\% + 150 = 159(mg) suy ra mệnh đề đúng.

    c) Gọi u_{n} là lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể bệnh nhân sau khi uống ở ngày thứ n

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 1 là: u_{1} = 150(mg)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 2 là:

    u_{2} = u_{1} \times 6\% + 150= 150 \times 6\% + 150 = 150 \times (0,06 + 1)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 3 là:

    u_{3} = u_{2}.6\% + 150 = 150\times (0,06 + 1) \times 0,06 + 150

    = 150 \times (0,06^{2} + 0,06 +
1)

    Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ 4 là:

    u_{4} = u_{3} \times 6\% + 150= 150 \times (0,06^{2} + 0,06 + 1) \times 0,06 + 150

    = 150 \times (0,06^{3} + 0,06^{2} + 0,06
+ 1) = 159,5724(mg)

    Suy ra mệnh đề sai.

    d) Nếu bệnh nhân sử dụng thuốc trong thời gian 30 ngày. Khi đó lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng là:

    S = 150 \times \left( 1 + 0,06 +
0,06^{2} + \ldots + 0,06^{29} ight)

    = 150 \times u_{1}\frac{1 - q^{30}}{1 -
q} = 150 \times 1 \times \frac{1 - 0,06^{30}}{1 - 0,06}

    = \frac{7500}{47} \approx
159,57mg

    Vậy lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng trong 30 ngày là 159,57mg, suy ra mệnh đề đúng.

  • Câu 13: Vận dụng

    Cho hình chóp S.ABCD, các điểm A’, B’, C’ lần lượt thuộc các cạnh SA, SB, SC. Phát biểu nào sau đây là đúng?

    Hình vẽ minh họa

    Xác định phát biểu đúng

    Ta có: (SAB) ∩ (A’B’C’) = A’B’

    (SBC) ∩ (A’B’C’) = B’C’

    Gọi O là giao điểm của AC và BD

    Trong mặt phẳng (SAC) gọi I là giao điểm của A’C’ và SO

    Trong mặt phẳng (SBD) gọi D’ là giao điểm của B’I và SD

    Khi đó ta có: (SCD) ∩ (A’B’C’) = C’D’

    (SAD) ∩ (A’B’C’) = A’D’

    => Thiết diện của mặt phẳng (A’B’C’) với hình chóp S.ABCD là tứ giác A’B’C’D’.

  • Câu 14: Thông hiểu

    Điểm kiểm tra của 30 học sinh được ghi trong bảng sau:

    Điểm

    Số học sinh

    (20; 30]

    1

    (30; 40]

    1

    (40; 50]

    10

    (50; 60]

    11

    (60; 70]

    5

    (70; 80]

    2

    Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên.

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    (20; 30]

    1

    1

    (30; 40]

    1

    2

    (40; 50]

    10

    12

    (50; 60]

    11

    23

    (60; 70]

    5

    28

    (70; 80]

    2

    30

    Ta có: \frac{N}{4} = \frac{30}{4} =7,5

    => Nhóm chứa tứ phân vị thứ nhất là (40; 50]

    Khi đó: \left\{ \begin{matrix}l = 40,\dfrac{N}{4} = 7,5 \\m = 2,f = 10,d = 50 - 40 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất của mẫu số liệu là:

    Q_{1} = L + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 40 + \frac{7,5 -2}{10}.10 = 45,5

  • Câu 15: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SCI là giao điểm của AM và mặt phẳng (SBD). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi SO \cap AM \equiv ISO \subset (SBD)

    \Rightarrow AM \cap (SBD) \equiv \left\{
I ight\} I là trọng tâm tam giác SAC

    \Rightarrow IS = 2IO \Rightarrow IS >
IO

  • Câu 16: Nhận biết

    Cho tứ diện S.\  ABC. Trên SA,SC lần lượt lấy các điểm MN sao cho MN cắt AC tại E. Điểm E không thuộc mặt phẳng nào trong các mặt phẳng sau?

    Hình vẽ minh họa

    Do E \in AC \Rightarrow E \in
(SAC)E \in (ABC).

    Do E \in MN \Rightarrow E \in
(BMN).

  • Câu 17: Vận dụng

    Phương trình \cot x=\sqrt 3 có bao nhiêu nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight]?

     Ta có: \cot x=\sqrt 3

    \Leftrightarrow x = \frac{\pi }{6} + k\pi \,,\,k \in \mathbb{Z}, mà - 2022\pi  \leqslant x \leqslant 2022\pi.

    \Rightarrow  - 2022\pi  \leqslant \frac{\pi }{6} + k\pi  \leqslant 2022\pi

    \Leftrightarrow  - 2022 \leqslant \frac{1}{6} + k \leqslant 2022

    \Leftrightarrow  - 2022 - \frac{1}{6} \leqslant k \leqslant 2022 - \frac{1}{6}.

    Suy ra - 2022\pi  \leqslant x \leqslant 2022\pi, k \in Z.

    Vậy \cot x=\sqrt 3 có 4044 nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight].

  • Câu 18: Vận dụng cao

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'M,\ \ N,\ \ P lần lượt là các điểm nằm trên ba cạnh AA',\ \ BB',\ \
CC' sao cho AM =
\frac{1}{2}AA',\ \ BN = \frac{1}{3}BB',\ \ CP =
\frac{1}{4}CC'. Gọi Q là giao điểm của mặt phẳng (MNP) với đường thẳng DD'. Khi đó tỉ số \frac{D'Q}{DD'} bằng bao nhiêu?

    Đáp án: 5/12 (Kết quả ghi dưới dạng phân số tối giản).

    Hình vẽ minh họa

    Lấy M', N' lần lượt là các cạnh trên DD'CC'sao cho MA = M'DNB = N'C.

    (ABB'A')\ //\
(CDD'C') nên 2 giao tuyến giữa mặt phẳng (MNP) lần lượt với các mặt phẳng (ABB'A')(CDD'C') sẽ song song với nhau.

    Do đó, ta sẽ lấy Q nằm trên cạnh DD'sao cho MN\ //\ PQ.

    Ta có:

    D'Q = D'M' - QM' =
\frac{DD'}{2} - (N'C - PC)

    = \frac{DD'}{2} - \left(
\frac{DD'}{3} - \frac{DD'}{4} ight) =
\frac{5DD'}{12}.

    Khi đó, \frac{D'Q}{DD'} =
\frac{5}{12}.

  • Câu 19: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác''?

    Mỗi đường tròn định hướng có bán kính R =
1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.

  • Câu 20: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = \frac{1}{4};d = - \frac{1}{4}. Gọi S_{5} là tổng 5 số hạng đầu tiên của cấp số cộng đã cho. Mệnh đề nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}u_{1} = \dfrac{1}{4} \\d = - \dfrac{1}{4} \\\end{matrix} ight.

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{5} = 5u_{1} +
\frac{5.4.d}{2}

    \Leftrightarrow S_{5} = 5.\frac{1}{4} +
10.\left( - \frac{1}{4} ight) = - \frac{5}{4}

  • Câu 21: Nhận biết

    Cho các bảng số liệu sau:

    Bảng A

    Số khách hàng

    [35; 40)

    [40; 45)

    [45; 50)

    [50; 55)

    Số ngày

    5

    3

    2

    4

    Bảng B

    Điểm

    [0; 2,5)

    [2,5; 5)

    [5; 7,5)

    [7,5; 10)

    Số học sinh

    4

    6

    10

    12

    Bảng C

    Chiều cao

    [120; 150)

    [150; 180)

    [180; 210)

    [210; 240)

    Số cây

    15

    20

    31

    18

    Bảng D

    Số sách

    [0; 10)

    [10; 20)

    [20; 30)

    [30; 40)

    Số khách hàng

    12

    5

    7

    10

    Chọn bảng số liệu có độ dài nhóm số liệu bằng 10?

    Bảng A có độ dài nhóm số liệu là: 5

    Bảng B có độ dài nhóm số liệu là: 2,5

    Bảng C có độ dài nhóm số liệu là: 30

    Bảng D có độ dài nhóm số liệu là: 10

  • Câu 22: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 23: Nhận biết

    "Cho hình hộp ABCD.EFHG, khẳng định nào sau đây là sai?

    Hình vẽ minh họa

    Tìm khẳng định sai

    Khẳng định sai là "CE song song với FH"

  • Câu 24: Vận dụng

    Tìm giá trị thực của m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x^2} - x - 2}}{{x - 2}}{\text{ khi }}x e 2} \\   {{\text{m               khi }}x = 2} \end{array}} ight. liên tục tại x=2.

    Tập xác định của hàm số: D = \mathbb{R} chứa x=2

    Theo giả thiết thì ta phải có:

    \begin{matrix}  f\left( 2 ight) = \mathop {\lim }\limits_{x \to 2} f\left( x ight) \hfill \\   = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - x - 2}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} ight) = 3 \hfill \\ \end{matrix}

    Vậy m=3

  • Câu 25: Nhận biết

    Cho \lim_{x ightarrow x_{0}} =
L\lim_{x ightarrow x_{0}}g(x)
= M. Công thức nào sau đây sai?

    Ta có: \lim_{x ightarrow
x_{0}}\frac{f(x)}{g(x)} = \frac{L}{M} chỉ đúng nếu M eq 0.

  • Câu 26: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Ta có:

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau hoặc đồng quy tại một điểm.

    => Phương án “Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau” là khẳng định sai.

  • Câu 27: Vận dụng

    Cho các hàm số sau, hàm số nào là hàm số lẻ?

    Ta có: y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x

    Ta kiểm tra được y = x^{4} + \cos\left( x
- \frac{\pi}{3} ight)y =
tan^{2017}x + sin^{2018}x là hàm số không chẵn không lẻ

    y = 2015 + \cos x + sin^{2018}x là hàm số chẵn

    y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

    Vậy y = x^{2017} + \cos\left( x -
\frac{\pi}{2} ight) = x^{2017} + \sin x là hàm số lẻ

  • Câu 28: Thông hiểu

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành. Gọi là giao điểm của hai đường chéo hình bình hành. Một mặt phẳng (\alpha) qua O, song song với SA,CD. Thiết diện tạo bởi (\alpha) và hình chóp là hình gì?

    Hình vẽ minh họa

    Do (a) // CD nên giao tuyến d = (a) ∩ (ABCD) là đường thẳng qua O và song song với CD. Gọi G, H lần lượt là giao điểm của d với BC,AD.

    Do (a) // SA nên giao tuyến a = (a) ∩ (SAB) là đường thẳng qua H và song song với SA.

    Gọi I là giao điểm của a với SD.

    Do (a) // CD nên giao tuyến b = (a) ∩ (SCD) là đường thẳng qua I và song song với CD.

    Gọi J lần lượt là giao điểm của b với SC.

    Vậy thiết diện tạo bởi (a) và hình chóp là hình thang GHIJGH // IJ //CD.

  • Câu 29: Vận dụng cao

    Cho dãy số \left(
u_{n} ight) biết \left\{
\begin{matrix}
u_{1} = 2 \\
u_{n + 1} = 2u_{n - 1} + 3;(n \geq 2) \\
\end{matrix} ight.. Số hạng có ba chữ số lớn nhất của dãy là:

    Tìm số hạng tổng quát của dãy số

    Dự đoán u_{n} = 5.2^{n - 1} - 3;(n \geq
2)

    Ta chứng minh theo phương pháp quy nạp

    Với n = 1 ta có: u_{2} = 5.2 - 3 = 7(tm)

    Giả sử u_{k} = 5.2^{k - 1} - 3, khi đó ta có:

    u_{k + 1} = 2u_{k} + 3

    = 2\left( 5.2^{k - 1} - 3 ight) +
3

    = 5.2^{k} - 3

    Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.

    Ta có: u_{n} < 1000 \Rightarrow 2^{n -
1} < \frac{1003}{5} = 200,6

    2^{7} = 128;2^{8} = 256

    Nên ta chọn 2^{n - 1} = 2^{7} \Rightarrow
n = 8

    Vậy u_{8} là số hạng cần tìm.

  • Câu 30: Thông hiểu

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Đáp án là:

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Ta có

    \sqrt{n^{2} + an + 5} - \sqrt{n^{2} + 1}ightarrow 0\overset{ightarrow}{}Nhận lượng liên hợp :

    \lim u_{n} = \lim\left( \sqrt{n^{2} + an+ 5} - \sqrt{n^{2} + 1} ight)

    = \lim\frac{an + 4}{\sqrt{n^{2} + an +5} + \sqrt{n^{2} + 1}}

    = \lim\frac{a + \dfrac{4}{n}}{\sqrt{1 +\dfrac{a}{n} + \dfrac{5}{n^{2}}} + \sqrt{1 + \dfrac{1}{n^{2}}}} =\dfrac{a}{2}

  • Câu 31: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Ảnh của A,B' qua phép chiếu song song với phương CD mặt phẳng chiếu (BCC'B') lần lượt là:

    Hình vẽ minh họa

    Ta có: AB//CD nên ảnh của điểm A qua phép chiếu song song phương CD lên mặt phẳng (BCC'B') là điểm B.

    Mặt khác điểm B' \in
(BCC'B') nên ảnh của B' qua qua phép chiếu song song phương CD lên mặt phẳng (BCC'B') là điểm B'.

  • Câu 32: Thông hiểu

    Cho phương trình \sin x =\frac {1}{2}, nghiệm của phương trình là:

     Ta có: \sin x = \frac{1}{2} \Leftrightarrow \sin x = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in Z

  • Câu 33: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là x;12;y;192. Mệnh đề nào sau đây đúng?

    Cấp số nhân x;12;y;192

    \Rightarrow \left\{ \begin{matrix}\dfrac{12}{x} = \dfrac{y}{12} \\\dfrac{y}{12} = \dfrac{192}{y} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{144}{y} \\y^{2} = 2304 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 3 \\y = \pm 48 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (3;48) \\
(x;y) = ( - 3; - 48) \\
\end{matrix} ight.

  • Câu 34: Thông hiểu

    Trong các hàm số sau, hàm số nào đồng biến trên khoảng \left( - \frac{\pi}{3};\frac{\pi}{6}
ight)?

    Với x \in \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

    \begin{matrix}ightarrow 2x \in \left( - \dfrac{2\pi}{3};\dfrac{\pi}{3} ight) \hfill\\ightarrow 2x + \dfrac{\pi}{6} \in \left( - \dfrac{\pi}{2};\dfrac{\pi}{2}ight) \hfill\\\end{matrix}

    Thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin\left( 2x + \frac{\pi}{6} ight) đồng biến trên khoảng \left( -
\frac{\pi}{3};\frac{\pi}{6} ight)

  • Câu 35: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.\frac{{{2^n}}}{n}. Tìm số hạng u_{3}

    Ta có:

    {u_3} = {( - 1)^3}.\frac{{{2^3}}}{3} =  - \frac{8}{3}

  • Câu 36: Thông hiểu

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Biết rằng nếu học sinh có ít nhất 60 điểm và không vượt quá 80 điểm sẽ đạt điểm B. Hỏi phần trăm số học sinh đạt điểm B trong lớp 11A chiếm bao nhiêu phần trăm?

    Quan sát bảng số liệu ghép nhóm ta thấy:

    Số học sinh lớp 11A là 60 học sinh

    Nhóm [60; 70) có 10 học sinh

    Nhóm [70; 80) có 6 học sinh

    => Số học sinh đạt điểm B là 10 + 6 = 16 (học sinh)

    Vậy số học sinh đạt điểm B chiếm \frac{16}{60}.100\% \approx 26,7\%

  • Câu 37: Vận dụng

    Tổng n số hạng đầu tiên của một cấp số cộng là S_{n} = n^{2} + 4n^{2};\left( n \in
\mathbb{N}^{*} ight). Tìm số hạng tổng quát u_{n} của cấp số cộng đã cho.

    Ta có:

    S_{n} = n^{2} + 4n^{2}

    Mặt khác

    S_{n} = n.u_{1} + \frac{n(n - 1)d}{2} =
\frac{d}{2}.n^{2} + \left( u_{1} - \frac{d}{2} ight).n

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{d}{2} = 1 \\u_{1} - \dfrac{d}{2} = 4 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}u_{1} = 5 \\d = 2 \\\end{matrix} ight.

    \Rightarrow u_{n} = 2n + 3

  • Câu 38: Thông hiểu

    Tính giới hạn của hàm số f(x) = \frac{\sqrt{4x^{2} + 1}}{x + 1} khi x \mapsto - \infty.

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
\lim_{x ightarrow - \infty}\frac{\sqrt{4x^{2} + 1}}{x +
1}

    = \lim_{x ightarrow -\infty}\dfrac{|x|\sqrt{4 + \dfrac{1}{x^{2}}}}{x + 1} = \lim_{x ightarrow- \infty}\dfrac{- x\sqrt{4 + \dfrac{1}{x^{2}}}}{x + 1}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{4 + \dfrac{1}{x^{2}}}}{1 + \dfrac{1}{x}} = \dfrac{- \sqrt{4}}{1} = -2

  • Câu 39: Nhận biết

    Tính tổng 100 số hạng đầu của cấp số cộng xác định bởi u_{1} = - 5;d = 3.

    Theo bài ra ta có:

    S_{100} = \frac{\left( 2u_{1} + 99d
ight).100}{2} = 14350

  • Câu 40: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 60;80). Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40). Đúng||Sai

    d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là 52;71. Sai||Đúng

    Đáp án là:

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 60;80). Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40). Đúng||Sai

    d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là 52;71. Sai||Đúng

    a) Điểm trung bình của lớp 11A là:

    \overline{x} = \frac{5.10 + 9.30 + 12.50
+ 10.70 + 6.90}{42} \approx 51,43

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 40;60)

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =
31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 26,f = 10;c = 80
- 60 = 20

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{31,5 - 26}{10}.20 =71

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

     

    f_{0} f_{1} f_{2}

     

    \Rightarrow l = 40;f_{0} = 9;f_{1} =
12;f_{2} = 10;c = 60 - 40 = 20

    Khi đó mốt của dữ liệu được tính như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{\left(
f_{1} - f_{0} ight) + \left( f_{1} - f_{2} ight)}.c

    \Rightarrow M_{0} = 40 + \frac{12 -
9}{12 - 9 + 12 - 10}.20 = 52

  • Câu 41: Thông hiểu

    Điều kiện xác định của hàm số: y=\frac{{{\sin}^{2}}x+3\cos x+1}{\sin\frac{x}{2}}

     Điều kiện xác định của hàm số:

    \sin \frac{x}{2} e 0

    \Rightarrow \frac{x}{2} e k\pi

    \Rightarrow x e k2\pi

  • Câu 42: Nhận biết

    Nhóm chứa tứ phân vị thứ ba của mẫu số liệu đã cho là:

    Ta có: x_{1},x_{2} \in \lbrack
5;7), x_{3},...,x_{9} \in \lbrack
7;\ 9), x_{9},...,x_{16} \in
\lbrack 9;\ 11), x_{17},...,x_{19}
\in \lbrack 11;\ 13), x_{20} \in
\lbrack 13;\ 15)

    Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \lbrack 9;11)

  • Câu 43: Nhận biết

    Khẳng định nào dưới đây đúng?

    Ta có: \pi rad tương ứng với 180^{0}

    => 1rad ightarrow x^{0}

    \Rightarrow x^{0} = \frac{180.1}{\pi} =\frac{180}{\pi}

  • Câu 44: Nhận biết

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

  • Câu 45: Thông hiểu

    Giá trị nào sau đây của x thỏa mãn \sin2x.\sin3x = \cos2x.\cos3x?

    Ta có:

    \begin{matrix}\sin2x.\sin3x = \cos2x.\cos3x \hfill \\\Leftrightarrow \cos2x.\cos3x - \sin2x.\sin3x = 0 \hfill\\\Leftrightarrow \cos5x = 0 \hfill\\\Leftrightarrow 5x = 45 + k.180^{0}\hfill \\\Leftrightarrow x = 18^{0} + 36^{.}.k;\left( k\mathbb{\in Z} ight)\hfill \\\end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Chân trời sáng tạo Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 16 lượt xem
Sắp xếp theo