Với điều kiện xác định của các giá trị lượng giác, cho
. Đơn giản biểu thức P ta được:
Ta có:
Với điều kiện xác định của các giá trị lượng giác, cho
. Đơn giản biểu thức P ta được:
Ta có:
Nghiệm của phương trình
là
Ta có:
Biết giới hạn
và
. Khi đó:
a) Tích
. Sai||Đúng
b) Hàm số
có tập xác định là
. Đúng||Sai
c) Giá trị
là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác
vô nghiệm. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Tích . Sai||Đúng
b) Hàm số có tập xác định là
. Đúng||Sai
c) Giá trị là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác vô nghiệm. Sai||Đúng
Ta có: ,
Do
a) Tích
b) Hàm số có tập xác định là
c) Giá trị là số lớn hơn
d) Phương trình lượng giác có nghiệm
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Chọn khẳng định đúng trong các khẳng định sau đây.
Hình lăng trụ đứng có đáy là một đa giác đều là hình lăng trụ đều.
Xét tính liên tục của hàm số
. Khẳng định nào dưới đây đúng?
Hàm số liên tục trên các khoảng
Ta có:
=> Hàm số liên tục tại
Vậy hàm số liên tục trên tập số thực.
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Kiểm tra được là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
là hàm số không chẵn không lẻ
là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …
Dễ dàng dự đoán được un = n.
Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:
Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.
Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k
Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1
Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1
Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.
Cho hình hộp
. Lấy
sao cho
và
. Mặt phẳng
chứa đường thẳng
và song song với
. Xác định các giao tuyến của
với các mặt của hình hộp. Cho biết hình tạo bởi các giao tuyến đó là hình gì?
Hình vẽ minh họa
Giao tuyến của với mặt phẳng (ABCD) là đường thẳng qua M và song song với AC, đường thẳng này cắt CD tại P là trung điểm CD.
Giao tuyến của với mặt phẳng (BCC’B’) là đường thẳng qua N và song song với B’C, đường thẳng này cắt B’C’ tại E là trung điểm B’C’.
Giao tuyến của (α) với mặt phẳng (A’B’C’D’) là đường thẳng qua E và song song với A’C’, đường thẳng này cắt A’B’ tại F là trung điểm A’B’.
Giao tuyến của (α) với mặt phẳng (ABB’A’) là đường thẳng qua F và song song với AB’, đường thẳng này cắt AA’ tại G là trung điểm AA’.
=> Hình lục giác MPNEFG là hình tạo bởi các giao tuyến của với các mặt của hình hộp.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là
Hình vẽ minh họa

Ta có thiết diện của S.ABCD cắt bởi
mặt phẳng (IJK) là ngũ giác
Cho các giới hạn
. Tính giá trị biểu thức ![]()
Ta có:
Cho lăng trụ
có đáy
là hình vuông,
. Gọi
là trung điểm
, mặt phẳng
qua
và song song
lần lượt cắt
tại
.

Đặt
. Khi
thì
bằng (Làm tròn đến hàng phần trăm).
Đáp án: 2,01
Cho lăng trụ có đáy
là hình vuông,
. Gọi
là trung điểm
, mặt phẳng
qua
và song song
lần lượt cắt
tại
.
Đặt . Khi
thì
bằng (Làm tròn đến hàng phần trăm).
Đáp án: 2,01
Hình vẽ minh họa
Trong mặt phẳng ,
.
Trong mặt phẳng ,
.
là đường trung bình của tam giác
nên
.
là đường trung bình của tam giác
nên
.
Từ ,
suy ra tứ giác
là hình bình hành nên
là trung điểm
.
Ta có nên để
thì
.
Từ ,
suy ra
.
Vậy .
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Hình vẽ minh họa
-Ta có .
Trong mặt phẳng , gọi
Suy ra .
Ta có:
-Trong mp , gọi
.
Ta có .
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6
Cho hình lăng trụ
, gọi
,
lần lượt là trung điểm của
,
. Qua phép chiếu song song theo phương
, mặt phẳng chiếu
biến
thành điểm nào?
Hình vẽ minh họa
Ta có là hình bình hành.
Suy ra qua phép chiếu song song theo phương, mặt phẳng chiếu
biến điểm
thành điểm
.
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Bảng số liệu dưới đây cho biết lương của 113 nhân viên trong một nhà máy trong một tháng (đơn vị: triệu đồng):
Lương | [0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) |
Số nhân viên | 18 | 23 | 30 | 20 | 12 | 10 |
Tính mức lương trung bình của các nhân viên trên đây. (Làm tròn đến chữ số thập phân thứ hai)
Ta có:
Lương | |||
[0; 10) | 18 | 5 | 90 |
[10; 20) | 23 | 15 | 345 |
[20; 30) | 30 | 25 | 750 |
[30; 40) | 20 | 35 | 700 |
[40; 50) | 12 | 45 | 540 |
[50; 60) | 10 | 55 | 550 |
| N = 113 |
| T = 2975 |
Mức lương trung bình của nhân viên là:
(triệu đồng)
Tính giới hạn
.
Ta có:
Vì nên
Do đó
Cho dãy số
thỏa mãn
. Biết dãy số
là dãy tăng và không bị chặn trên. Đặt
. Tính ![]()
Ta có:
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị
của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ ba là [9; 11)
(Vì 15 nằm giữa hai tần số tích lũy 9 và 16)
Do đó:
Khi đó tứ phân vị thứ ba là:
Hoàn thành bảng số liệu sau:
Cân nặng | Giá trị đại diện | Số học sinh |
[40,5; 45,5) | 43 | 7 |
[45,5; 50,5) | 48 | 16 |
[50,5; 55,5) | 53 | 10 |
[55,5; 60,5) | 58 | 5 |
[60,5; 65,5) | 63 | 4 |
[65,5; 70,5) | 68 | 2 |
Hoàn thành bảng số liệu sau:
Cân nặng | Giá trị đại diện | Số học sinh |
[40,5; 45,5) | 43 | 7 |
[45,5; 50,5) | 48 | 16 |
[50,5; 55,5) | 53 | 10 |
[55,5; 60,5) | 58 | 5 |
[60,5; 65,5) | 63 | 4 |
[65,5; 70,5) | 68 | 2 |
Trong mỗi khoảng cân nặng, giá trị đại diện là giá trị trung bình của giá trị hai đầu mút nên ta hoàn thành bảng số liệu như sau:
Cân nặng | Giá trị đại diện | Số học sinh |
[40,5; 45,5) | 7 | |
[45,5; 50,5) | 16 | |
[50,5; 55,5) | 10 | |
[55,5; 60,5) | 5 | |
[60,5; 65,5) | 4 | |
[65,5; 70,5) | 2 |
Cho
và
là một số nguyên. Khi đó với mọi số nguyên dương
, có kết luận gì về
?
Ta có:
là một số nguyên
cũng là một số nguyên
Ta sẽ chứng minh là một số nguyên.
Ta có:
là một số nguyên
Giả sử là số nguyên với
. Ta sẽ chứng minh
cũng là số nguyên.
Ta có:
Theo giả thiết quy nạp ta có:
Vậy là một số nguyên.
Nghiệm của phương trình
là
Ta có
.
Cho cấp số nhân có các số hạng lần lượt là
. Tính tổng
của tất cả các số hạng của cấp số nhân đã cho.
Cấp số nhân đã cho có
=>
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Hàm số
liên tục trên:
Ta có:
=> Tập xác định
Vậy hàm số liên tục trên
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Ghi các kết quả vào ô trống:
+ Số nhóm của mẫu dữ liệu: 8
+ Độ dài nhóm số liệu: 10
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Ghi các kết quả vào ô trống:
+ Số nhóm của mẫu dữ liệu: 8
+ Độ dài nhóm số liệu: 10
+ Mẫu số liệu trên được chia thành 8 nhóm.
+ Độ dài nhóm số liệu là 10
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình
bằng?
Ta có
TH1. Với
TH2. Với
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là và nghiệm dương nhỏ nhất là
.
Khi đó tổng hai nghiệm này bằng .
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (h) được cho bởi công thức
. Khi nào mực nước của kênh là cao nhất với thời gian ngắn nhất?
Ta có:
Do đó mực nước của kênh cao nhất khi
Vì
Vậy mực nước của kênh là cao nhất khi t = 14 (h)
Biết
. Hỏi giá trị a thuộc tập hợp nào dưới đây?
Ta có:
Cho
là hai đường thẳng phân biệt và mặt phẳng
. Chọn mệnh đề đúng?
Ta có:
sai vì đường vuông góc với mặt điều kiện cần và đủ là vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng đó.
sai trong trường hợp
đúng vì là hai đường thẳng phân biệt.
sai vì đường thẳng hoặc
Cho cấp số nhân
có công bội âm. Biết
. Khi đó ![]()
Ta có:
Cho cấp số cộng (Un) có số hạng tổng quát là
. Xác định công sai của cấp số cộng.
Ta có:
Cho tam giác
nằm trong mặt phẳng
và phương
. Biết hình chiếu (theo phương
) của tam giác
lên mặt phẳng
là một đoạn thẳng. Chọn khẳng định đúng?
Hình vẽ minh họa

Phương án : Hình chiếu của tam giác
vẫn là một tam giác trên mặt phẳng .
Phương án : Hình chiếu của tam giác
vẫn là tam giác
.
Phương án : Khi phương chiếu
song song với
hoặc chứa trong mặt phẳng
. Thì hình chiếu của tam giác
là một đoạn thẳng trên mặt phẳng
.
Cho
. Tính giá trị
bằng
Ta có:
Giải phương trình ![]()
Ta có:
Tìm được các giới hạn sau:
a)
. Đúng||Sai
b)
. Đúng||Sai
c)
. Đúng||Sai
d)
. Sai||Đúng
Tìm được các giới hạn sau:
a) . Đúng||Sai
b) . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
a) Ta có:
.
b) Ta có:
vì
.
c) Ta có:
, do
d) Ta có:
.
Điểm kiểm tra của một nhóm học sinh được ghi trong bảng sau:
Điểm | Số học sinh |
(20; 30] | 1 |
(30; 40] | 1 |
(40; 50] | 10 |
(50; 60] | 11 |
(60; 70] | 5 |
(70; 80] | 2 |
Số phần tử của mẫu dữ liệu ghép nhóm là:
Ta có:
Điểm | Số học sinh | Tần số tích lũy |
(20; 30] | 1 | 1 |
(30; 40] | 1 | 2 |
(40; 50] | 10 | 12 |
(50; 60] | 11 | 23 |
(60; 70] | 5 | 28 |
(70; 80] | 2 | 30 |
Tổng | N = 30 |
|
Vậy số phần tử mẫu là N = 30
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d)
Đúng||Sai
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d) Đúng||Sai
Ta có:
|
Đối tượng |
Tần số |
Tần số tích lũy |
|
[150; 155) |
15 |
15 |
|
[155; 160) |
11 |
26 |
|
[160; 165) |
39 |
65 |
|
[165; 170) |
27 |
92 |
|
[170; 175) |
5 |
97 |
|
[175; 180) |
3 |
100 |
Cỡ mẫu là:
=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)
=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)
Do đó:
Khi đó tứ phân vị thứ ba là:
Cho dãy số
là cấp số cộng với:
Ta có: là một cấp số cộng
=>
Nếu các dãy số
thỏa mãn
và
thì
bằng:
Ta có .
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác'' ?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.