Cho
. Tính giá trị
bằng
Ta có:
Cho
. Tính giá trị
bằng
Ta có:
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Có bao nhiêu đẳng thức luôn đúng trong các đẳng thức sau đây (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa)?
i)
.
iii) ![]()
ii)
.
iv)
.
i) Ta có:
Vậy i) đúng.
ii) .
Vậy ii) đúng.
iii) .
Vậy iii) sai.
iv) Ta lấy . Ta có
.
Ta có VP VT.
Do đó iv) sai.
Vậy có 2 đẳng thức đúng.
Cho dãy số
thỏa mãn
. Biết dãy số
là dãy tăng và không bị chặn trên. Đặt
. Tính ![]()
Ta có:
Cho cấp số nhân
có công bội âm. Biết
. Khi đó ![]()
Ta có:
Cho hình chóp
có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Cho hình chóp có đáy
là hình bình hành. Gọi
lần lượt là trung điểm của
và
. Gọi
là trung điểm của
. Gọi
là giao điểm của
và
. Tính tỉ số
.
Đáp án: 1
Hình vẽ minh họa
-Ta có .
Trong mặt phẳng , gọi
Suy ra .
Ta có:
-Trong mp , gọi
.
Ta có .
Cho hình chóp
có đáy là hình thang với
. Gọi
là trọng tâm của tam giác
;
là điểm thuộc đoạn
sao cho
. Tìm
để
.
Đáp án: 2
Cho hình chóp có đáy là hình thang với
. Gọi
là trọng tâm của tam giác
;
là điểm thuộc đoạn
sao cho
. Tìm
để
.
Đáp án: 2
Hình vẽ minh họa
Gọi I là trung điểm cạnh AD
Trong mặt phẳng (ABCD) giả sử IE và BC cắt nhau tại điểm Q.
Dễ thấy .
Do đó:
.
Mặt khác, tam giác đồng dạng với tam giác
nên
Suy ra .
.
Từ và
.
Vậy
.
Cho cấp số cộng
có số hạng đầu
và tổng
số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức:
?
Cho cấp số cộng có số hạng đầu
và tổng
số hạng đầu tiên của dãy bằng . Tính giá trị của biểu thức:
?
Gọi d là công sai của cấp số cộng. ta có:
mà
Ta có:
Với
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d)
Đúng||Sai
Cho mẫu dữ liệu ghép nhóm như sau:
|
Đối tượng |
Tần số |
|
[150; 155) |
15 |
|
[155; 160) |
10 |
|
[160; 165) |
40 |
|
[165; 170) |
27 |
|
[170; 175) |
5 |
|
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d) Đúng||Sai
Ta có:
|
Đối tượng |
Tần số |
Tần số tích lũy |
|
[150; 155) |
15 |
15 |
|
[155; 160) |
11 |
26 |
|
[160; 165) |
39 |
65 |
|
[165; 170) |
27 |
92 |
|
[170; 175) |
5 |
97 |
|
[175; 180) |
3 |
100 |
Cỡ mẫu là:
=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)
=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)
Do đó:
Khi đó tứ phân vị thứ ba là:
Cho
là hai đường thẳng phân biệt và mặt phẳng
. Chọn mệnh đề đúng?
Ta có:
sai vì đường vuông góc với mặt điều kiện cần và đủ là vuông góc với hai đường thẳng cắt nhau nằm trong mặt phẳng đó.
sai trong trường hợp
đúng vì là hai đường thẳng phân biệt.
sai vì đường thẳng hoặc
Xét tính liên tục của hàm số
. Khẳng định nào dưới đây đúng?
Hàm số liên tục trên các khoảng
Ta có:
=> Hàm số liên tục tại
Vậy hàm số liên tục trên tập số thực.
Nếu các dãy số
thỏa mãn
và
thì
bằng:
Ta có .
Cho hình hộp
. Lấy
sao cho
và
. Mặt phẳng
chứa đường thẳng
và song song với
. Xác định các giao tuyến của
với các mặt của hình hộp. Cho biết hình tạo bởi các giao tuyến đó là hình gì?
Hình vẽ minh họa
Giao tuyến của với mặt phẳng (ABCD) là đường thẳng qua M và song song với AC, đường thẳng này cắt CD tại P là trung điểm CD.
Giao tuyến của với mặt phẳng (BCC’B’) là đường thẳng qua N và song song với B’C, đường thẳng này cắt B’C’ tại E là trung điểm B’C’.
Giao tuyến của (α) với mặt phẳng (A’B’C’D’) là đường thẳng qua E và song song với A’C’, đường thẳng này cắt A’B’ tại F là trung điểm A’B’.
Giao tuyến của (α) với mặt phẳng (ABB’A’) là đường thẳng qua F và song song với AB’, đường thẳng này cắt AA’ tại G là trung điểm AA’.
=> Hình lục giác MPNEFG là hình tạo bởi các giao tuyến của với các mặt của hình hộp.
Cho hình lăng trụ
, gọi
,
lần lượt là trung điểm của
,
. Qua phép chiếu song song theo phương
, mặt phẳng chiếu
biến
thành điểm nào?
Hình vẽ minh họa
Ta có là hình bình hành.
Suy ra qua phép chiếu song song theo phương, mặt phẳng chiếu
biến điểm
thành điểm
.
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n = un + 1 ⇒ u2 = 2; u3 = 3; u4 = 4; …
Dễ dàng dự đoán được un = n.
Thật vậy, ta chứng minh được un = n (*) bằng phương pháp quy nạp như sau:
Với n = 1 ⇒ u1 = 1. Vậy (*) đúng với n = 1.
Giả sử (*) đúng với n = k (k∈ℕ*), ta có uk = k
Ta đi chứng minh (*) cũng đúng với n = k + 1, tức là uk + 1 = k + 1
Thật vậy, từ hệ thức xác định dãy số (un) ta có uk + 1 = uk + (−1)2k = k + 1
Vậy (*) đúng với mọi n ∈ ℕ*. Số hạng tổng quát của dãy số là un = n.
Cho cấp số nhân có các số hạng lần lượt là
. Tính tổng
của tất cả các số hạng của cấp số nhân đã cho.
Cấp số nhân đã cho có
=>
Một người xếp chồng những khúc gỗ có kích thước như nhau thành
hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Mỗi hàng liền phía trên ít hơn hàng dưới khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có:
.
Khi đó, tổng số khúc gỗ là:
(khúc gỗ).
Tìm được các giới hạn sau:
a)
. Đúng||Sai
b)
. Đúng||Sai
c)
. Đúng||Sai
d)
. Sai||Đúng
Tìm được các giới hạn sau:
a) . Đúng||Sai
b) . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
a) Ta có:
.
b) Ta có:
vì
.
c) Ta có:
, do
d) Ta có:
.
Biết
. Hỏi giá trị a thuộc tập hợp nào dưới đây?
Ta có:
Cho cấp số cộng
với
. Khi đó số
là số hạng thứ mấy trong dãy?
Theo bài ra ta có:
Cho các số thực
thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Cho các số thực thỏa mãn
và
. Khi đó số nghiệm thực phân biệt của phương trình
bằng
Đáp án: 3
Xét hàm số
Theo giả thiết ;
Ta có là hàm đa thức nên liên tục trên
Suy ra phương trình có ít nhất một nghiệm trên
nên phương trình có ít nhất một nghiệm trên khoảng
Suy ra phương trình có ít nhất một nghiệm trên khoảng
Từ ;
và
ta có phương trình
có ít nhất 3 nghiệm.
Mặt khác là phương trình bậc ba nên có tối đa 3 nghiệm
Vậy phương trình có đúng 3 nghiệm.
Nếu
và
là hai nghiệm của phương trình
thì
bằng:
Ta có: và
là hai nghiệm của phương trình
nên theo định lí Vi – ét ta có:
Khi đó:
Tổng nghiệm âm lớn nhất và nghiệm dương nhỏ nhất của phương trình
bằng?
Ta có
TH1. Với
TH2. Với
So sánh bốn nghiệm ta được nghiệm âm lớn nhất là và nghiệm dương nhỏ nhất là
.
Khi đó tổng hai nghiệm này bằng .
Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (h) được cho bởi công thức
. Khi nào mực nước của kênh là cao nhất với thời gian ngắn nhất?
Ta có:
Do đó mực nước của kênh cao nhất khi
Vì
Vậy mực nước của kênh là cao nhất khi t = 14 (h)
Cho dãy số
là cấp số cộng với:
Ta có: là một cấp số cộng
=>
Cho bảng số liệu thống kê sau:
Số khách hàng đến mua cà phê mỗi buổi sáng tại quầy trong 2 tuần
69 | 37 | 39 | 65 | 31 | 33 | 63 |
51 | 44 | 62 | 33 | 47 | 55 | 42 |
Bảng số liệu ghép nhóm nào sau đây đúng?
Bảng M | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 2 | 4 | |
Bảng N | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 4 | 2 | |
Bảng P | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 2 | 3 | 4 | |
Bảng Q | Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 3 | 5 | 2 | 4 |
Khoảng biến thiên là 69 – 31 = 38
Ta chia thành các nhóm sau: [30; 40), [40; 50), [50; 60), [60; 70)
Đếm số giá trị mỗi nhóm ta có bảng ghép nhóm
Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 2 | 4 |
Tính độ cao trung bình của một số cây trong bảng số liệu dưới đây:
Chiều cao h (cm) | Số cây |
130 < h ≤ 140 | 3 |
140 < h ≤ 150 | 7 |
150 < h ≤ 160 | 5 |
Ta có:
Chiều cao h đại diện (cm) | Số cây | Tích các giá trị |
135 | 3 | 405 |
145 | 7 | 1015 |
155 | 5 | 775 |
Tổng | 15 | 2195 |
Độ cao trung bình là:
Cho hình chóp
có đáy
là hình bình hành. Đường thẳng nào dưới đây song song với giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa:
Ta có:
,
đi qua
và
.
Vậy giao tuyến của hai mặt phẳng và
song song với đường thẳng
.
Với
, cho dãy số
gồm tất cả các số nguyên dương chia
dư
theo thứ tự tăng dần. Số hạng tổng quát của dãy số này là
Các số nguyên dương chia dư
theo thứ tự tăng dần là
,
,
,
,…
Ta có ,
,
,
, …
Vậy
Trong các hàm số sau, hàm số nào có đồ thị đối xứng qua gốc tọa độ?
Kiểm tra được là hàm số lẻ nên có đồ thị đối xứng qua gốc tọa độ
là hàm số không chẵn không lẻ
là các hàm số chẵn nên đồ thị hàm số đối xứng nhau qua trục tung.
Tính giới hạn
.
Ta có:
Vì nên
Do đó
Điểm kiểm tra của một nhóm học sinh được ghi trong bảng sau:
Điểm | Số học sinh |
(20; 30] | 1 |
(30; 40] | 1 |
(40; 50] | 10 |
(50; 60] | 11 |
(60; 70] | 5 |
(70; 80] | 2 |
Số phần tử của mẫu dữ liệu ghép nhóm là:
Ta có:
Điểm | Số học sinh | Tần số tích lũy |
(20; 30] | 1 | 1 |
(30; 40] | 1 | 2 |
(40; 50] | 10 | 12 |
(50; 60] | 11 | 23 |
(60; 70] | 5 | 28 |
(70; 80] | 2 | 30 |
Tổng | N = 30 |
|
Vậy số phần tử mẫu là N = 30
Trên đoạn
, đồ thị hai hàm số
và
cắt nhau tại bao nhiêu điểm?
Phương trình hoành độ giao điểm của hai đồ thị hàm số là
Theo bài ra ta có:
Vậy đồ thị hai hàm số đã cho cắt nhau tại 5 điểm trên đoạn .
Hàm số
liên tục trên:
Ta có:
=> Tập xác định
Vậy hàm số liên tục trên
Cho hình chóp tứ giác
, đáy
là tứ giác (
không song song với
),
. Lấy
là trung điểm của
, lấy
sao cho
. Khi đó các cặp cạnh nào dưới đây cắt nhau?
Hình vẽ minh hoạ
Các cặp đường thẳng SO và AD, MN và SC, SA và BC là các cặp đường thẳng chéo nhau.
Hai đường thẳng MN và SO nằm trên cùng mặt phẳng và là hai đường thẳng cắt nhau.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Nghiệm của phương trình
là
Ta có:
Cho
và
là một số nguyên. Khi đó với mọi số nguyên dương
, có kết luận gì về
?
Ta có:
là một số nguyên
cũng là một số nguyên
Ta sẽ chứng minh là một số nguyên.
Ta có:
là một số nguyên
Giả sử là số nguyên với
. Ta sẽ chứng minh
cũng là số nguyên.
Ta có:
Theo giả thiết quy nạp ta có:
Vậy là một số nguyên.
Tìm tập xác định
của hàm số
:
Hàm số xác định khi .
Tập xác định của hàm số là: .
Cho tứ diện
. Gọi
lần lượt là trung điểm các cạnh
và
;
là trọng tâm tam giác
. Khi đó giao điểm của đường thẳng
và
là
Hình vẽ minh họa
Trong gọi
, mà
Cho tam giác
nằm trong mặt phẳng
và phương
. Biết hình chiếu (theo phương
) của tam giác
lên mặt phẳng
là một đoạn thẳng. Chọn khẳng định đúng?
Hình vẽ minh họa

Phương án : Hình chiếu của tam giác
vẫn là một tam giác trên mặt phẳng .
Phương án : Hình chiếu của tam giác
vẫn là tam giác
.
Phương án : Khi phương chiếu
song song với
hoặc chứa trong mặt phẳng
. Thì hình chiếu của tam giác
là một đoạn thẳng trên mặt phẳng
.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là
Hình vẽ minh họa

Ta có thiết diện của S.ABCD cắt bởi
mặt phẳng (IJK) là ngũ giác
Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:
Chiều cao (cm) | Số học sinh |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | x |
[165; 170) | 26 |
[170; 175) | y |
[175; 180) | 3 |
Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?
Đáp án:
40
5
Thực hiện đo chiều cao của 100 học sinh lớp 11 thu được kết quả ghi trong bảng sau:
Chiều cao (cm) | Số học sinh |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | x |
[165; 170) | 26 |
[170; 175) | y |
[175; 180) | 3 |
Biết rằng số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm. Xác định giá trị x và y còn thiếu trong bảng?
Đáp án:
40
5
Ta có 100 học sinh tham gia đo chiều cao khi đó:
5 + 18 + x + 26 + y + 3 = 100
=> x + y = 48 (*)
Mặt khác số học sinh của nhóm số liệu thứ ba gập 5 lần số học sinh của nhóm số liệu thứ năm suy ra x = 5y (**)
Từ (*) và (**) ta có hệ phương trình:
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6
Cho
. Khẳng định nào sau đây đúng?
Ta có:
=>
=>
Điểm cuối cung thuộc góc phần tư thứ ba
=>