Đề thi học kì 1 Toán 11 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi HK1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 5 chuyên đề với 4 mức độ giúp học sinh củng cố, nắm vững kiến thức và khả năng giải toán lớp 11 sách Chân trời sáng tạo
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = 3u_{2} = 12. Công bội của cấp số nhân đã cho bằng

    Ta có u_{2} = u_{1}.q \Rightarrow q =
\frac{u_{2}}{u_{1}} = \frac{12}{3} = 4.

  • Câu 2: Thông hiểu

    Tìm b > 0 để các số \frac{1}{\sqrt{2} };\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    Ta có:

    Các số \frac{1}{\sqrt{2} };\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    \Rightarrow {\left( {\sqrt b } ight)^2} = \left( {\frac{1}{{\sqrt 2 }}} ight).\left( {\sqrt 2 } ight)

    \Rightarrow b = 1 (Vì b > 0)

  • Câu 3: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trong các cặp đường thẳng sau, cặp đường thẳng nào cắt nhau?

    Hình vẽ minh họa

    Quan sát hình vẽ ta thấy kết quả cần tìm là: AC và BD.

  • Câu 4: Nhận biết

    Giá trị của \lim\frac{\cos n + \sin n}{n^{2} + 1} bằng:

    Ta có \frac{|\cos n + \sin n|}{n^{2}}
< \frac{2}{n^{2}}\lim\frac{1}{n^{2}} = 0

    Suy ra \lim\frac{\cos n + \sin n}{n^{2} +
1} = 0.

  • Câu 5: Vận dụng

    Tìm tích các tần số còn thiếu trong bảng dữ liệu dưới đây biết số trung bình là 56.

    Khoảng dữ liệu

    Tần số

    [0; 20)

    16

    [20; 40)

    x

    [40; 60)

    25

    [60; 80)

    y

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Ta có:

    Dữ liệu đại diện

    Tần số

    Tích các số liệu

    10

    16

    160

    30

    x

    30x

    50

    25

    1250

    70

    y

    70y

    90

    12

    1080

    110

    10

    1100

    Tổng

    63 + x + y

    3590 + 30x + 70y

    Theo bài ra ta có số trung bình bằng 56 nghĩa là:

    \overline{x} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56(*)

    Mặt khác 63 + x + y = 90 \Rightarrow x +y = 27(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}x + y = 27 \\3x + 7y = 145 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 11 \\y = 16 \\\end{matrix} ight.\  \Rightarrow x.y = 176

  • Câu 6: Thông hiểu

    Đổi số đo của góc - \frac{3\pi}{16}rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \dfrac{\dfrac{-3\pi}{16}.180}{\pi} ight)^{0} = \left( - \dfrac{135}{4} ight)^{0} = -33^{0}45'

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm (shift -3π ÷16) shift DRG 2 =

  • Câu 7: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = 2n + 5. Số 19 là số hạng thứ bao nhiêu của dãy số đó?

    Ta có

    u_{n} = 19 \Leftrightarrow 2n + 5 =
19

    \Leftrightarrow 2n = 14 \Leftrightarrow n
= 7.

    Vậy 19 là số hạng thứ 7 của dãy số đã cho.

  • Câu 8: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Lấy M \in AD,N \in CC' sao cho 2AM = AD2CN = CC'. Mặt phẳng (\alpha) chứa đường thẳng MN và song song với (ACB'). Xác định các giao tuyến của (\alpha) với các mặt của hình hộp. Cho biết hình tạo bởi các giao tuyến đó là hình gì?

    Hình vẽ minh họa

    Giao tuyến của (\alpha) với mặt phẳng (ABCD) là đường thẳng qua M và song song với AC, đường thẳng này cắt CD tại P là trung điểm CD.

    Giao tuyến của (\alpha) với mặt phẳng (BCC’B’) là đường thẳng qua N và song song với B’C, đường thẳng này cắt B’C’ tại E là trung điểm B’C’.

    Giao tuyến của (α) với mặt phẳng (A’B’C’D’) là đường thẳng qua E và song song với A’C’, đường thẳng này cắt A’B’ tại F là trung điểm A’B’.

    Giao tuyến của (α) với mặt phẳng (ABB’A’) là đường thẳng qua F và song song với AB’, đường thẳng này cắt AA’ tại G là trung điểm AA’.

    => Hình lục giác MPNEFG là hình tạo bởi các giao tuyến của (\alpha) với các mặt của hình hộp.

  • Câu 9: Vận dụng cao

    Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.

    Khẳng định nào sau đây đúng với mọi n nguyên dương?

    Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n

    Từ đó 2Sn =  − 1 − 3 − 32 − … − 3n − 1 + n.3n

    \Leftrightarrow 2S_{n} = - \frac{3^{n} -
1}{2} + n{.3}^{n}

    \Leftrightarrow S_{n} = - \frac{3^{n} -
1}{4} + \frac{n}{2} \cdot 3^{n}

  • Câu 10: Vận dụng cao

    Nếu \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)\cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 thì tích P = r.s bằng:

    Ta có: \tan\alpha\tan\beta là hai nghiệm của phương trình x^{2} - px + q = 0;(p.q eq 0)nên theo định lí Vi – ét ta có:\left\{\begin{matrix}\tan\alpha + \tan\beta = p \\\tan\alpha.\tan\beta = q \\\end{matrix} ight.

    \cot\alpha\cot\beta là hai nghiệm của phương trình x^{2} - rx + s = 0 nên theo định lí Vi – ét ta có: \left\{ \begin{matrix}\cot\alpha + \cot\beta = r \\\cot\alpha\cot\beta = s \\\end{matrix} ight.

    Khi đó:

    P = r.s

    P = \left( \cot\alpha + \cot\betaight).\cot\alpha.\cot\beta

    P = \left( \frac{1}{\tan\alpha} +
\frac{1}{\tan\beta}
ight).\frac{1}{\tan\alpha}.\frac{1}{\tan\beta}

    P = \frac{\tan\alpha +\tan\beta}{\tan\alpha.\tan\beta} = \frac{p}{q^{2}}

  • Câu 11: Thông hiểu

    Trong các dãy số dưới đây, dãy số nào là dãy số giảm?

    Xét phương án u_{n} = n^{2}, ta có:

    u_{n + 1} - u_{n} = (n + 1)^{2} - n^{2} =
2n + 1 > 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số tăng.

    Xét phương án u_{n} =
\frac{1}{n^{2}}, ta có:

    u_{n + 1} -
u_{n} = \frac{1}{(n + 1)^{2}} - \frac{1}{n^{2}} = \frac{- 2n -
1}{n^{2}(n + 1)^{2}} < 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số giảm.

    Xét phương án u_{n} = 2n - 1, ta có:

    u_{n + 1} - u_{n} = 2n + 1 - (2n - 1) = 2
> 0,\forall n \in \mathbb{N}^{*} nên dãy này là dãy số tăng.

    Xét phương án u_{n} = n^{3} - 3, ta có:

    u_{n + 1} - u_{n} = (n + 1)^{3} - 3 -\left( n^{3} - 3 ight)

    = 3n^{2} + 3n + 1 > 0,\forall n \in\mathbb{N}^{*} nên dãy này là dãy số tăng.

    Vậy dãy số u_{n} =
\frac{1}{n^{2}} là dãy số giảm.

  • Câu 12: Nhận biết

    Nghiệm của phương trình \sin x. \cos x = \frac{1}{2} là?

     Ta có: \sin x.cosx = \frac{1}{2} \Leftrightarrow \sin 2x = 1

    \Leftrightarrow 2x = \frac{\pi }{2} + k2\pi  \Leftrightarrow x = \frac{\pi }{4} + k\pi.

  • Câu 13: Vận dụng

    Với x thuộc \left ( 0;1  ight ) hỏi phương trình cos^{2}\left ( 6\pi x ight )=\frac{3}{4} có bao nhiêu nghiệm:

     Giải phương trình:

    \begin{matrix}  {\cos ^2}\left( {6\pi x} ight) = \dfrac{3}{4} \hfill \\   \Leftrightarrow \dfrac{{\cos \left( {12\pi x} ight) + 1}}{2} = \dfrac{3}{4} \hfill \\   \Leftrightarrow 2\cos \left( {12\pi x} ight) + 2 = 3 \hfill \\   \Leftrightarrow \cos \left( {12\pi x} ight) = \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {12\pi x = \dfrac{\pi }{3} + k2\pi } \\   {12\pi x =  - \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{1}{{36}} + \dfrac{k}{6}} \\   {x =  - \dfrac{1}{{36}} + \dfrac{k}{6}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Xét nghiệm {x = \frac{1}{{36}} + \frac{k}{6}}

    Do x \in \left( {0;1} ight) => 0 < \frac{1}{{36}} + \frac{k}{6} < 1 \Rightarrow k \in \left\{ {0;1;2;3;4;5} ight\}

    Xét nghiệm {x = -\frac{1}{{36}} + \frac{k}{6}}

    Do x \in \left( {0;1} ight) =>0 < -\frac{1}{{36}} + \frac{k}{6} < 1 \Rightarrow k \in \left\{ {1;2;3;4;5;6} ight\}

    Vậy có tất cả 12 giá trị x thỏa mãn

  • Câu 14: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Hình vẽ minh họa

    Ta kẻ MN\ //\ AB\ \ (M \in SA), NP\ //BC\ \ (P \in SC), MQ\ //\ BC\ //\ AD\ \ (Q \in SD).

    Vì mặt phẳng (\alpha) đi qua N, song song với ABAD nên M,\ \
P,\ \ Q đều thuộc (\alpha) và thiết diện của hình chóp cắt bởi mặt phẳng (\alpha) là tứ giác MNPQ.

    Khi đó MN//AB \Rightarrow \frac{SM}{SA} = \frac{MN}{AB} =\frac{2}{3}.

    Tương tự, ta có được \frac{NP}{BC} =
\frac{PQ}{CD} = \frac{QM}{DA} = \frac{2}{3}.

    Suy ra MN = NP = PQ = QM = \frac{2}{3}AB
= \frac{20}{3}MNPQ là hình vuông.

    Suy ra S_{MNPQ} = \left( \frac{20}{3}
ight)^{2} = \frac{400}{9}.

    Khi đó a = 100,b = 9

    Vậy P = a + b + 1 = 110.

  • Câu 15: Nhận biết

    Cho \alpha \in
\left( 0;\frac{\pi}{2} ight). Khẳng định nào sau đây đúng?

    Ta có:

    \alpha \in \left( 0;\frac{\pi}{2}
ight) \Rightarrow \alpha - \pi \in \left( - \pi; - \frac{\pi}{2}
ight)

    \Rightarrow \sin(\alpha - \pi) <
0

  • Câu 16: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đường thẳng nào dưới đây song song với giao tuyến của hai mặt phẳng (SAD)(SBC)?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD//BC \\
AD \subset (SAD);BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d, d đi qua Sd//AD//BC.

    Vậy giao tuyến của hai mặt phẳng (SAD)(SBC) song song với đường thẳng AD.

  • Câu 17: Vận dụng cao

    Gọi T là tập giá trị của hàm số y =\frac{1}{2}sin^{2}x - \frac{3}{4}cos2x + 3. Tìm tổng các giá trị nguyên của T.

    Ta có:

    y = \frac{1 - cos2x}{2} -\frac{3}{4}cos2x + 3 = \frac{7}{2} - \frac{5}{4}cos2x = \frac{14 -5cos2x}{4}

    - 1 \leq cos2x \leq 1

    \begin{matrix}\Rightarrow \dfrac{9}{4} \leq \dfrac{14 - 5cos2x}{4} \leq\dfrac{19}{4};y\mathbb{\in Z} \hfill\\\Rightarrow y = \left\{ 3;4 ight\} \hfill\\\end{matrix}

    Do đó tổng các giá trị nguyên của T là 7.

  • Câu 18: Nhận biết

    Mệnh đề nào sau đây đúng?

    Đáp án đúng là: \sin(a + b) = \sin a\cos b + \sin b\cos a

  • Câu 19: Nhận biết

    Hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) có tập xác định là gì?

    Hàm số y = \tan\left( 2x - \frac{\pi}{4}
ight) xác định khi

    2x - \frac{\pi}{4} eq \frac{\pi}{2} +
k\pi

    \Rightarrow x eq \frac{3\pi}{8} +
\frac{k\pi}{2};\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số y =
\tan\left( 2x - \frac{\pi}{4} ight) là: D\mathbb{= R}\backslash\left\{ \frac{3\pi}{8} +
\frac{k\pi}{2},k\mathbb{\in Z} ight\}.

  • Câu 20: Thông hiểu

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{6} = 17 \\
u_{2} + u_{4} = 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 5d = 17 \\
2u_{1} + 6d = 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 16 \\
d = - 3 \\
\end{matrix} ight.

  • Câu 21: Thông hiểu

    Tìm khoảng biến thiên của dãy dữ liệu sau: 25; 8; 16; 12; 10; 9; 4; 13?

    Ta có:

    Giá trị lớn nhất: 25

    Giá trị nhỏ nhất: 4

    Khoảng biến thiên là: 25 – 4 = 21

  • Câu 22: Thông hiểu

    Có bao nhiêu mặt phẳng đi qua 3 điểm không thẳng hàng?

    Có duy nhất 1 mặt phẳng đi qua ba điểm không thẳng hàng.

  • Câu 23: Nhận biết

    Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?

    Xét dãy số u_{n}=7-3n

    Ta có:

    \begin{matrix}  {u_{n + 1}} = 7 - 3\left( {n + 1} ight) \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} = 7 - 3\left( {n + 1} ight) - \left( {7 - 3n} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy dãy số u_{n}=7-3n là một cấp số cộng với u_1=4;d=-3

  • Câu 24: Vận dụng

    Xác định giới hạn của dãy số \lim\left\lbrack \frac{1}{1.2} + \frac{1}{2.3} +
... + \frac{1}{n(n + 1)} ightbrack là:

    Ta có:

    \lim\left\lbrack \frac{1}{1.2} +
\frac{1}{2.3} + ... + \frac{1}{n(n + 1)} ightbrack

    = \lim\left\lbrack 1 - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{n} - \frac{1}{n + 1}
ightbrack

    = \lim\left( 1 - \frac{1}{n + 1} ight)
= 1

  • Câu 25: Vận dụng cao

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để bất phương trình

    \frac{\left( 2m^{2} - 7m + 3
ight)x^{3} + x^{2} - (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq
0

    Đúng với mọi x thuộc tập xác định của bất phương trình đó. Số phần tử S bằng:

    Giả sử m là số thực thỏa mãn yêu cầu bài toán:

    Với m = 2 bất phương trình trở thành \frac{- 3x^{3} + x^{2} - x + 2}{2x -
3} \leq 0, bất phương trình không đúng với \frac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2}
- (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq 0

    => Không thỏa mãn yêu cầu bài toán.

    Với m = 3 bất phương trình trở thành \frac{x^{2} - 2x + 2}{- x^{2} + 2x -
3} \leq 0, tập nghiệm của bất phương trình là \mathbb{R}

    => Thỏa mãn yêu cầu bài toán.

    Với m = \frac{1}{2} bất phương trình trở thành \dfrac{x^{2} + \dfrac{1}{2}x +2}{\dfrac{3}{2}x^{2} + 2x - 3} \leq 0, bất phương trình không đúng với x = 1

    => Không thỏa mãn yêu cầu bài toán.

    Với m eq 2;m eq 3;m eq
\frac{1}{2} đặt \left\{\begin{matrix}f(x) = \dfrac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2} - (m - 1)x +2}{(2 - m)x^{2} + 2x - 3} \\A = 2m^{2} - 7m + 3 \\\end{matrix} ight. thì A eq
0

    Theo giả thiết ta có:

    f(x) \leq 0 với mọi giá trị x thuộc tập xác định (*)

    Nếu A < 0 thì \lim_{x ightarrow - \infty}f(x) = +
\infty mâu thuẫn với (*)

    Nếu A > 0 thì \lim_{x ightarrow + \infty}f(x) = +
\infty mâu thuẫn với (*)

    Vậy S = \left\{ 3 ight\} nên số phần tử của S là 1.

  • Câu 26: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Giả sử (\alpha) song song với (\beta). Một đường thẳng a song song với (\beta) có thể nằm trên (\alpha).

  • Câu 27: Thông hiểu

    Cho hình chóp tam giác S.ABC. Gọi điểm I là trung điểm của AB, lấy điểm M di động trên đoạn AI. Mặt phẳng (\alpha) qua M song song với (SIC). Xác định hình tạo bởi các giao tuyến của mặt phẳng (\alpha) với các mặt của tứ diện.

    Hình vẽ minh họa

    Trong mặt phẳng (SAB), qua M kẻ đường thẳng song song với SI cắt SA tại P.

    Trong mặt phẳng (ABC), qua M kẻ đường thẳng song song với IC cắt AC tại N.

    Thiết diện là tam giác MNP.

    Ta có: \frac{MP}{SI} = \frac{MN}{CI}
\Rightarrow MP = MN

    Vậy hình tạo bởi các giao tuyến của mặt phẳng (\alpha) với tứ diện là tam giác MNP cân tại M.

  • Câu 28: Vận dụng

    Một chiếc đồng hồ đánh chuông, kể từ thời điểm 0 (giờ) thì sau mỗi giờ thì số tiếng chuông được đánh đúng bằng số giờ mà đồng hồ chỉ tại thời điểm đánh chuông. Hỏi một ngày đồng hồ đó đánh bao nhiêu tiếng chuông?

    Kể từ lúc 1 (giờ) đến 24 (giời) số tiếng chuông được đánh lập thành cấp số cộng có 24 số hạng với u_{1} =
1, công sai d = 1.

    => Số tiếng chuông được đánh trong 1 ngày là:

    \Rightarrow S = S_{24} =
\frac{24}{2}.\left( u_{1} + u_{24} ight)

    \Rightarrow S_{24} = 12.(1 + 24) =
300

  • Câu 29: Vận dụng

    Biết \lim_{x
ightarrow 1}\frac{f(x) - 10}{x - 1} = 5. Hỏi giá trị giới hạn \lim_{x ightarrow 1}\frac{f(x) -
10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack} bằng bao nhiêu?

    Ta có:

    \lim_{x ightarrow 1}\frac{f(x) - 10}{x
- 1} = 5

    \Rightarrow f(1) = 10

    Khi đó: \lim_{x ightarrow 1}\frac{f(x)
- 10}{\left( \sqrt{x} - 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{\left( \sqrt{x} - 1
ight)\left( \sqrt{x} + 1 ight)\left\lbrack \sqrt{4f(x) + 9} + 3
ightbrack}

    = \lim_{x ightarrow 1}\frac{\left(
f(x) - 10 ight)\left( \sqrt{x} + 1 ight)}{(x - 1)\left\lbrack
\sqrt{4f(x) + 9} + 3 ightbrack}

    = \frac{5.\left( \sqrt{1} + 1
ight)}{\left\lbrack \sqrt{4f(1) + 9} + 3 ightbrack} =
1

  • Câu 30: Vận dụng

    Một cấp số nhân có 5 số hạng, công bội q bằng \frac{1}{4} số hạng thứ nhất, tổng hai số hạng đầu bằng 24. Xác định cấp số nhân?

    Theo bài ra ta có:

    u_{1} + u_{2} = u_{1} + u_{1}.q =
24

    \Rightarrow u_{1} +
\frac{1}{4}{u_{1}}^{2} = 24

    \Rightarrow \left\lbrack \begin{matrix}
u_{1} = - 12;q = - 3 \\
u_{1} = 8;q = 2 \\
\end{matrix} ight.

  • Câu 31: Thông hiểu

    Xen vào giữa hai số 4 và 40 bốn số để được một cấp số cộng có công sai lớn hơn 3. Tìm tổng 4 số đó.

    Sau khi chèn 4 số vào giữa hai số 4 và 40 thì cấp số cộng đó có 6 số hạng

    Nghĩa là coi 4 là số hạng đầu tiên thì 40 là số hạng thứ 6

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 4} \\   {{u_6} = 40} \end{array}} ight.

    {u_1} + 5.d = 40

    \begin{matrix}   \Rightarrow 4 + 5.d = 40 \hfill \\   \Rightarrow 5.d = 36 \hfill \\   \Rightarrow d = \dfrac{{36}}{5} \hfill \\ \end{matrix}

    Vậy công sai của cấp số cộng là d = \frac{{36}}{5}

    Khi đó 4 số hạng được thêm lần lượt là: \frac{{56}}{5};\frac{{92}}{5};\frac{{128}}{5};\frac{{164}}{5}

    Tổng bốn số hạng ở trên là: \frac{{56}}{5} + \frac{{92}}{5} + \frac{{128}}{5} + \frac{{164}}{5} = 88

  • Câu 32: Thông hiểu

    Tìm tập xác định D của hàm số y = \frac{1}{{\sqrt {1 - \sin \,x} }}.

    Hàm số xác định khi và chỉ khi 

    1 - \sin x > 0 \Leftrightarrow \sin x < 1 \,\,(*)

    - 1 \leqslant \sin x \leqslant 1 nên \left( * ight) \Leftrightarrow \sin x e 1 \Leftrightarrow x e \frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{2} + k2\pi ,k \in \mathbb{Z}} ight\}

  • Câu 33: Vận dụng cao

    Cho các số thực a,b,c thỏa mãn \left\{ \begin{matrix}
- 8 + 4a - 2b + c > 0 \\
8 + 4a + 2b + c < 0 \\
\end{matrix} ight.. Khi đó số giao điểm của hàm số y = x^{3} + ax^{2} + bx + c với trục Ox là:

    Hàm số y = x^{3} + ax^{2} + bx +
c xác định và liên tục trên \mathbb{R}.

    Hàm số y = x^{3} + ax^{2} + bx +
c bậc ba nên đồ thị hàm số cắt Ox tối đa tại 3 điểm (1)

    Ta có:

    \lim_{x ightarrow - \infty}y = -
\infty suy ra \exists\alpha < -
2 sao cho f(\alpha) <
0

    Lại có: \lim_{x ightarrow + \infty}y =
+ \infty suy ra \exists\beta >
2 sao cho f(\beta) >
0

    Mặt khác \left\{ \begin{matrix}
y( - 2) = - 8 + 4a - 2b + c > 0 \\
y(2) = 8 + 4a + 2b + c < 0 \\
\end{matrix} ight.

    Từ đó suy ra \left\{ \begin{matrix}
y(\alpha).y( - 2) < 0 \\
y( - 2).y(2) < 0 \\
y(2).y(\beta) < 0 \\
\end{matrix} ight.

    Do đó đồ thị hàm số cắt Ox tại ít nhất ba điểm (2)

    Từ (1) và (2) suy ra đồ thị hàm số đã cho cắt trục Ox tại đúng ba điểm.

  • Câu 34: Vận dụng

    Cho tứ diện ABCD. Lấy các điểm M \in AD,N \in BC sao cho \frac{MA}{AD} = \frac{CN}{BC} =
\frac{1}{3} . Mặt phẳng (\alpha) là mặt phẳng chứa đường thẳng MN và song song với CD. Hình tạo bởi các giao tuyến của (\alpha) và các mặt của tứ diện là:

    Hình vẽ minh họa

    Theo bài ra ta có:

    (\alpha)//CD nên giao tuyến của (\alpha) với (ACD);(BCD) cũng song song với CD.

    Xét mặt phẳng (ACD) kẻ MK//CD;(K \in AC)

    Xét mặt phẳng (BCD) kẻ NE//CD;(E \in BD)

    Hình tạo bởi các giao tuyến của (\alpha) và các mặt của tứ diện là hình thang EMKN.

    Ta có:

    \frac{BN}{BC} = \frac{NE}{CD} =
\frac{2}{3} \Rightarrow NE = \frac{2}{3}CD

    \frac{MA}{AD} = \frac{MK}{CD} =
\frac{1}{3} \Rightarrow MK = \frac{1}{3}CD

    \Rightarrow NE = 2MK

    Vậy hình thang EMKN có đáy lớn gấp 2 lần đáy nhỏ.

  • Câu 35: Nhận biết

    Hàm số nào sau đây không liên tục tại x = 2?

    Hàm số y = \frac{x^{2}}{x - 2} có tập xác định D\mathbb{=
R}\backslash\left\{ 2 ight\} nên không liên tục tại x = 2.

  • Câu 36: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình thang; AB = 2CD,\ \ AB \parallel CD. M là trung điểm của cạnh AD; mặt phẳng (\alpha) qua Mvà song song với mp(SAB) cắt hình chóp S.ABCD theo một thiết diện là hình (H). Biết S_{(H)} = xS_{\Delta SAB}. Giá trị của x là:

    Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang; AB = 2CD,\ \ AB \parallel CD. M là trung điểm của cạnh AD; mặt phẳng (\alpha) qua Mvà song song với mp(SAB) cắt hình chóp S.ABCD theo một thiết diện là hình (H). Biết S_{(H)} = xS_{\Delta SAB}. Giá trị của x là:

    Đáp án: 0,5 (Kết quả ghi dưới dạng số thập phân)

    Hình vẽ minh họa

    Gọi N,P,Q lần lượt là trung điểm các cạnh SD,SC,BC.

    Gọi E = AD \cap BC,I = MN \cap
PQ ta có S,I,E thẳng hàng vì cùng thuộc giao tuyến của (SAD)(SBC).

    Thiết diện là hình thang MNPQ (vì NP \parallel AB \parallel
MQ).

    Ta có S_{MNPQ} = S_{\Delta IMQ} -
S_{\Delta INP}, mà \frac{NP}{DC} =
\frac{1}{2},\frac{DC}{MQ} = \frac{2}{3} \Rightarrow \frac{NP}{MQ} =
\frac{1}{3}

    \Rightarrow S_{\Delta INP} =
\frac{1}{9}S_{\Delta IMQ}

    \Rightarrow S_{MNPQ} = S_{\Delta IMQ} -
\frac{1}{9}S_{\Delta IMQ} = \frac{8}{9}S_{\Delta IMQ}.

    Ta có M là trung điểm AD, D là trung điểm của AE nên \frac{MI}{SA} = \frac{3}{4}

    \Rightarrow S_{\Delta IMQ} =
\frac{9}{16}S_{\Delta SAB}

    \Rightarrow S_{MNPQ} =
\frac{8}{9}.\frac{9}{16}S_{\Delta SAB} = \frac{1}{2}S_{\Delta
SAB}.

  • Câu 37: Vận dụng

    Giá trị lớn nhất, giá trị nhỏ nhất của hàm số: y=\sqrt{4\sin x+5} lần lượt là:

     Ta có: 

    \begin{matrix}   - 1 \leqslant \sin x \leqslant 1 \hfill \\   \Rightarrow  - 4 \leqslant 4\sin x \leqslant 4 \hfill \\   \Rightarrow  - 4 + 5 \leqslant 4\sin x + 5 \leqslant 4 + 5 \hfill \\   \Rightarrow 1 \leqslant 4\sin x + 5 \leqslant 9 \hfill \\   \Rightarrow 1 \leqslant \sqrt {4\sin x + 5}  \leqslant 3 \hfill \\ \end{matrix}

  • Câu 38: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm sau đây:

    Nhóm

    Tần số

    (0;10]

    8

    (10;20]

    14

    (20;30]

    x

    (30;40]

    9

    (40;50]

    7

    Biết \overline{x} = 23,6. Tìm cỡ mẫu?

    Ta có:

    Đại diện

    Tần số

    Tích các giá trị

    5

    8

    40

    15

    14

    210

    25

    x

    25x

    35

    9

    315

    45

    7

    315

    Tổng

    N = 38 + x

    880 + 25x

    Theo bài ra ta có giá trị trung bình là:

    \overline{x} = 23,6

    \Leftrightarrow \frac{880 + 25x}{38 + x}= 23,6

    \Leftrightarrow x = 12

    Vậy số phần tử của mẫu dữ liệu là N = 38 + 12 = 50

  • Câu 39: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ {\begin{array}{*{20}{l}}  {{x^2}\sin \dfrac{1}{x}}&{{\text{ }}khi{\text{ }}x e 0} \\   m&{{\text{ }}khi{\text{ }}x = 0} \end{array}} ight. liên tục tại x = 0

    Với mọi x e 0 ta có:

    0 \leqslant \left| {f(x)} ight| \leqslant \left| {{x^2}\sin \frac{1}{x}} ight| \leqslant {x^2} \to 0 khi x \to 0

    => \mathop {\lim }\limits_{x \to 0} f\left( x ight) = 0

    Theo giả thiết ta phải có: \mathop {m = f\left( 0 ight) = \lim }\limits_{x \to 0} f\left( x ight) = 0

  • Câu 40: Thông hiểu

    Mệnh đề nào dưới đây đúng?

    Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + x} - x ight) = + \infty

    \lim_{x ightarrow + \infty}\left(
\sqrt{x^{2} + x} - 2x ight) = - \infty

    \lim_{x ightarrow + \infty}\left(
\sqrt{x^{2} + x} - x ight) = \frac{1}{2}

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + x} - 2x ight) = + \infty

  • Câu 41: Nhận biết

    Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 15]

    4

    (15; 30]

    12

    (30; 45]

    17

    (45; 60]

    7

    Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.

  • Câu 42: Thông hiểu

    Phương trình \sqrt{3} \sin 3x+\cos3x=-1

     \begin{matrix}  \sqrt 3 \sin 3x + \cos 3x =  - 1 \hfill \\   \Leftrightarrow \dfrac{{\sqrt 3 }}{2}\sin 3x + \dfrac{1}{2}\cos 3x =  - \dfrac{1}{2} \hfill \\   \Leftrightarrow \cos \dfrac{\pi }{6}.\sin 3x + \sin \dfrac{\pi }{6}.\cos 3x =  - \dfrac{1}{2} \hfill \\   \Leftrightarrow \sin \left( {3x + \dfrac{\pi }{6}} ight) =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 43: Thông hiểu

    Tính khoảng biến thiên của mẫu dữ liệu cho dưới đây:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Khoảng biến thiên mẫu dữ liệu ghép nhóm được đưa ra bởi công thức:

    Khoảng biến thiên = Giới hạn trên của khoảng cao nhất – Giới hạn dưới của khoảng thấp nhất

    Giới hạn trên của khoảng cao nhất là: 80

    Giới hạn dưới của khoảng thấp nhất là: 10

    => Khoảng biến thiên là: 80 – 10 = 70

  • Câu 44: Thông hiểu

    Cho hình lăng trụ ABC.A'B'C'. Trọng tâm các tam giác ABC,ACC',A'B'C' lần lượt là I,J,K. Tìm mặt phẳng song song với mặt phẳng (IJK).

    Theo bài ra ta có:

    Các điểm I,J,K lần lượt là trọng tâm các tam giác ABC,ACC',A'B'C' .

    \Rightarrow \frac{AI}{AM} = \frac{AJ}{AN}
= \frac{2}{3} \Rightarrow IJ//MN.

    \Rightarrow
IJ//(BCC'B')

    Chứng minh tương tự IK//(BCC'B')
\Rightarrow (IJK)//(BCC'B')

    \Rightarrow
(IJK)//(BC'B')

  • Câu 45: Thông hiểu

    Cho hình chóp tứ giác S.ABCD đáy ABCD là hình thang đáy nhỏ BC, MC =
MD;(M \in CD), I = AC \cap
BM. Xác định giao tuyến của hai mặt phẳng (MSB);(SAC).

    Hình vẽ minh họa

    Ta có:

    S là điểm chung thứ nhất của hai mặt phẳng (MSB);(SAC) (1)

    Xét mặt phẳng (ABCD) có:

    I = AC \cap BM

    = > I \in (MSB) \cap
(SAC)

    => I là điểm chung thứ hai của hai mặt phẳng (MSB);(SAC) (2)

    Từ (1) và (2) \Rightarrow SI = (MSB) \cap
(SAC)

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo