Đề thi học kì 1 Toán 11 Chân trời sáng tạo Đề 3

Mô tả thêm: Đề thi HK1 Toán 11 được biên soạn gồm các câu hỏi trắc nghiệm thuộc 5 chuyên đề với 4 mức độ giúp học sinh củng cố, nắm vững kiến thức và khả năng giải toán lớp 11 sách Chân trời sáng tạo
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho cấp số cộng (un) có u_1 = -4; d = \frac{1}{2}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 4} \\   {d = \dfrac{1}{2}} \end{array}\mathop  \to \limits^{CTTQ} } ight.{u_n} = {u_1} + \left( {n - 1} ight)d =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\   \Rightarrow {u_n} =  - 4 + \dfrac{1}{2}\left( {n - 1} ight) \hfill \\ \end{matrix}

  • Câu 2: Nhận biết

    Cho dãy số có các số hạng đầu là - 2;0;2;4;6;.... Số hạng tổng quát của dãu số này là đẳng thức nào dưới đây?

    Ta có: u_{1} = - 2 loại các đáp án u_{n} = n - 2u_{n} = - 2(n + 1). Ta kiểm tra u_{2} = 0

    Xét đáp án u_{n} = - 2nu_{2} = - 4 eq 0

    Xét đáp án u_{n} = 2n - 4u_{2} = 2.2 - 4 = 0 là đáp án đúng.

  • Câu 3: Thông hiểu

    Cho \sin a =
\frac{3}{5};cosa < 0;cosb = \frac{3}{5};sinb > 0. Giá trị sin(a - b) bằng:

    Ta có:

    \left\{ \begin{matrix}
\sin a = \frac{3}{5} \\
\cos a < 0 \\
\end{matrix} \Rightarrow cosa = - \sqrt{1 - \sin^{2}a} = - \frac{4}{5}
ight.

    \left\{ \begin{matrix}
\cos b = \frac{3}{5} \\
\sin b > 0 \\
\end{matrix} \Rightarrow sinb = \sqrt{1 - \cos^{2}b} = \frac{4}{5}
ight.

    sin(a - b) = sina\cos b - cosa\sin b =
\frac{3}{5} \cdot \frac{3}{5} - \left( - \frac{4}{5} ight) \cdot
\frac{4}{5} = 1

  • Câu 4: Nhận biết

    Với x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight), mệnh đề nào sau đây đúng?

    Ta có: x \in \left(
\frac{31\pi}{4};\frac{33\pi}{4} ight) = \left( - \frac{\pi}{4} +
8\pi;\frac{\pi}{4} + 8\pi ight) thuộc góc phần tư thứ I và thứ II.

  • Câu 5: Nhận biết

    Cho hình chóp S.ABC. Tìm giao tuyến của hai mặt phẳng (SBC)(SAC).

    Hình vẽ minh họa

    Ta có: (SBC) \cap (SAC) = SC

  • Câu 6: Vận dụng cao

    Biết \lim_{xightarrow \frac{1}{2}}\dfrac{\sqrt{1 + ax^{2}} - bx - 2}{4x^{3} - 3x +1} = c với a,b,c\in\mathbb{R}. Tập nghiệm của phương trình ax^{4} + bx^{2} + c = 0 trên \mathbb{R} có số phần tử là:

    Ta có:

    \lim_{x ightarrow
\frac{1}{2}}\frac{\sqrt{1 + ax^{2}} - bx - 2}{4x^{3} - 3x +
1}

    = \lim_{x ightarrow
\frac{1}{2}}\frac{1 + ax^{2} - (bx + 2)^{2}}{\left( 4x^{3} - 3x + 1
ight)\left( \sqrt{1 + ax^{2}} + bx + 2 ight)}

    = \lim_{x ightarrow
\frac{1}{2}}\frac{\left( a - b^{2} ight)x^{2} - 4bx - 3}{(2x -
1)^{2}(x + 1)\left( \sqrt{1 + ax^{2}} + bx + 2 ight)}

    Theo đề I tồn tại hữu hạn nên phương trình \left( a - b^{2} ight)x^{2} - 4bx - 3 =
0phải có nghiệm kép x =
\frac{1}{2}. Tức là:

    \left\{ \begin{matrix}\Delta' = 0 \\\dfrac{2b}{a - b^{2}} = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4b^{2} + 3\left( a - b^{2} ight) = 0 \\4b = a - b^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b^{2} + 3b = 0 \\
a = b^{2} + 4b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 3 \\
\end{matrix} ight.\ ;(a,b eq 0)

    Khi a = - 3;b = - 3 thì

    I = \lim_{x ightarrow
\frac{1}{2}}\frac{- 12x^{2} + 12x - 3}{(2x - 1)^{2}(x + 1)\left( \sqrt{1
+ ax^{2}} + bx + 2 ight)}

    I = \lim_{x ightarrow
\frac{1}{2}}\frac{- 3}{(x + 1)\left( \sqrt{1 - 3x^{2}} - 3x + 2
ight)}

    I = \dfrac{- 3}{\dfrac{3}{2}.\left(\sqrt{1 - \dfrac{3}{4}} - \dfrac{3}{2} + 2 ight)} = - 2

    Do đó a = - 3;b = - 3;c = - 2 nên phương trình - 3x^{4} - 3x^{2} - 2 =
0 vô nghiệm.

  • Câu 7: Vận dụng cao

    Có bao nhiêu giá trị nguyên của m để phương trình 3sinx + m - 1 = 0 có nghiệm?

    Ta có:

    \begin{matrix}  \sin x = \dfrac{{1 - m}}{3} \in \left[ { - 1;1} ight] \hfill \\   \Rightarrow  - 3 \leqslant  - m \leqslant  \Leftrightarrow  - 2 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với m thuộc tập số nguyên

    Suy ra 4 – (-2) + 1 = 7 giá trị nguyên của m

  • Câu 8: Vận dụng

    Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng 19,92?

    Đối tượng

    Tần số

    [4; 8)

    11

    [8; 12)

    13

    [12; 16)

    16

    [16; 20)

    14

    [20; 24)

    a

    [24; 28)

    9

    [28; 32)

    17

    [32; 36)

    6

    [36; 40)

    4

    Ta có:

    Giá trị đại diện

    Tần số

    Tích các giá trị

    6

    11

    66

    10

    13

    130

    14

    16

    224

    18

    14

    252

    22

    a

    22a

    26

    9

    234

    30

    17

    510

    34

    6

    204

    38

    4

    152

    Tổng

    90 + a

    1772 + 22a

    Biết số trung bình bằng  19,92  nên ta có:

    \overline{x} = 19,92

    \Leftrightarrow \frac{1772 + 22a}{90 +a} = 19,92

    \Leftrightarrow a = 10

  • Câu 9: Vận dụng

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Đáp án là:

    Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên biến đổi theo một hàm số thời gian (tính theo ngày) là g(t) = 45t^{2} - t^{3} (người). Tốc độ trung bình gia tăng người bệnh giữa hai thời điểm t_{1}, t_{2}V_{tb} = \frac{g\left( t_{2} ight) - g\left(
t_{1} ight)}{t_{2} - t_{1}}. Tính \lim_{t ightarrow 10}\frac{g(t) - g(10)}{t -
10} và cho biết ý nghĩa của kết quả tìm được.

    Đáp án: 600

    Ta có: \lim_{t ightarrow 10}\frac{g(t)
- g(10)}{t - 10} = \lim_{t ightarrow 10}\frac{45t^{2} - t^{3} - 45
\cdot 10^{2} + 10^{3}}{t - 10}

    \begin{matrix}= \lim_{t ightarrow 10}\dfrac{45(t - 10)(t + 10) - (t - 10)\left( t^{2}+ 10t + 100 ight)}{t - 10}  \\\end{matrix}

    = \lim_{t ightarrow 10}\left( - t^{2} + 35t + 350 ight) = 600

    Từ kết quả trên, ta thấy tốc độ gia tăng người bệnh ngay tại thời điểm t = 10 (ngày) là 600 người/ngày.

  • Câu 10: Nhận biết

    Trong các đẳng thức sau, đẳng thức nào đúng?

    Công thức đúng là: sin(\alpha + \pi) = -
sin\alpha

  • Câu 11: Thông hiểu

    Cho tứ diện ABCD. Trung điểm của các đường thẳng AD,AB,CD lần lượt là H,K,T. Tìm giao điểm của đường thẳng BC với mặt phẳng T.

    Hình vẽ minh họa

    Gọi O là trung điểm của BC.

    Ta có: HT//AC (do HT là đường trung bình của tam giác ACD)

    HT \subset (HKT)

    AC \subset (ABC)

    K \in (HKT) \cap (ABC)

    Vậy (HKT) \cap (ABC) =
KO//HT//AC

  • Câu 12: Vận dụng

    Cho tứ diện ABCD. Các cạnh AC,BD,AB,CD,AD,BC có trung điểm lần lượt là M,N,P,Q,R,S. Bốn điểm nào sau đây không cùng thuộc một mặt phẳng?

    Hình vẽ minh họa

    Ta có:

    MP // BC // NQ, MP = \frac{1}{2}BC =
NQ

    => MPNQ là hình bình hành

    => M, N, P, Q thuộc một mặt phẳng.

    MR // CD // SN, MR = \frac{1}{2}CD =
SN

    => MRNS là hình bình hành

    => M, R, S, N thuộc một mặt phẳng.

    PS // AC // RQ, PS = \frac{1}{2}AC =
RQ

    => PSQR là hình bình hành nên P, Q, R, S thuộc một mặt phẳng.

    Vậy M,P,R,S không thuộc cùng một mặt phẳng.

  • Câu 13: Thông hiểu

    Chọn mệnh đề sai?

    Xét n = 2k

    \Rightarrow \lim( - 2)^{n} = \lim( -
2)^{2k}

    = \lim\left\lbrack ( - 2)^{2}
ightbrack^{k} = \lim 4^{k} = + \infty

    Xét n = 2k + 1

    \Rightarrow \lim( - 2)^{n} = \lim( -
2)^{2k + 1}

    = \lim\left\lbrack ( - 2)^{2k}.( - 2)
ightbrack = \lim\left\lbrack 4^{k}.( - 2) ightbrack = -
\infty

  • Câu 14: Nhận biết

    Khảo sát thời gian sử dụng điện thoại di động trong 1 ngày của một số học sinh khối 10 thu được mẫu số liệu ghép nhóm sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    3

    5

    14

    15

    5

    Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là:

    Mẫu số liệu trên có 3 + 5 + 14 + 15 + 5 =
42 (học sinh).

    Tứ phân vị thứ nhất là x_{11} \in \lbrack
40;\ 60).

    Vậy nhóm chứa tứ phân vị thứ nhất của mẫu số liệu trên là: \lbrack 40;\ 60).

  • Câu 15: Thông hiểu

    Phương trình 2\sin x - 1 = 0 có bao nhiêu nghiệm thuộc khoảng ( - \pi;\pi)?

    Ta có:

    \sin x = \frac{1}{2} \Leftrightarrow\left\lbrack \begin{matrix}x = \dfrac{\pi}{6} + k2\pi \\x = \dfrac{5\pi}{6} + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x \in ( - \pi;\pi) \Rightarrow x =
\frac{\pi}{6};x = \frac{5\pi}{6}

    Vậy phương trình có hai nghiệm thuộc khoảng ( - \pi;\pi).

  • Câu 16: Vận dụng cao

    Cho tứ diện ABCD có tất cả các cạnh bằng a. Lấy I là trung điểm của AC, J \in
AD sao cho \frac{AJ}{AD} =
2. Giả sử mặt phẳng (\alpha) chứa IJ và song song với AB. Xác định các giao tuyến của mặt phẳng (\alpha) với tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh hoạ

    Trong mp(ABD) kẻ JN // AB, (N ∈ BD).

    Trong mp(ABC) kẻ IM // AB, (M ∈ BC).

    Gọi P là điểm đối xứng của C qua D.

    Khi đó AD = \frac{1}{2}CD =
BD

    => Tam giác ACP và tam giác BCP lần lượt vuông tại A, B, và có J là trọng tâm tam giác ACP, N là trọng tâm tam giác BCP.

    \Rightarrow \frac{PJ}{PI} =
\frac{PN}{PM} = \frac{2}{3}

    Ta lại có: \frac{S_{PJN}}{S_{PIM}} =
\frac{PJ}{PI}.\frac{PN}{PM} = \frac{2}{3}.\frac{2}{3} =
\frac{4}{9}

    \Rightarrow \frac{S_{JNMI}}{S_{PIM}} =
\frac{5}{9}

    Mặt khác

    JN//AB \Rightarrow \frac{JN}{AB} =
\frac{DJ}{DA} = \frac{1}{3} \Rightarrow JN = \frac{1}{3}AB =
\frac{a}{3}

    IM//AB \Rightarrow \frac{IM}{AB} =
\frac{CI}{CA} = \frac{1}{2} \Rightarrow IM = \frac{1}{2}AB =
\frac{a}{2}

    Trong tam giác PAC vuông tại A ta có:

    AP = \sqrt{CP^{2} - AC^{2}} =
\sqrt{(2a)^{2} - a^{2}} = a\sqrt{3}

    PI = \sqrt{AI^{2} + AP^{2}} =
\sqrt{\left( \frac{a}{2} ight)^{2} + \left( a\sqrt{3} ight)^{2}} =
\frac{a\sqrt{13}}{2} = PM

    Diện tích tam giác PIM

    S_{PIM} = \sqrt{p(p - PI)(p - PM)(p -
IM)}

    Với p = \frac{PI + PM + IM}{2} = \frac{1
+ 2\sqrt{13}}{4}.a

    \Rightarrow S_{PIM} =
\frac{a^{2}\sqrt{51}}{16}

    \Rightarrow S_{JNMI} =
\frac{5}{9}S_{PIM} = \frac{5a^{2}\sqrt{51}}{144}

  • Câu 17: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là x;12;y;192. Mệnh đề nào sau đây đúng?

    Cấp số nhân x;12;y;192

    \Rightarrow \left\{ \begin{matrix}\dfrac{12}{x} = \dfrac{y}{12} \\\dfrac{y}{12} = \dfrac{192}{y} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{144}{y} \\y^{2} = 2304 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \pm 3 \\y = \pm 48 \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}
(x;y) = (3;48) \\
(x;y) = ( - 3; - 48) \\
\end{matrix} ight.

  • Câu 18: Vận dụng cao

    Cho bất đẳng thức \cos2A + \frac{1}{64\cos^{4}A} - (2\cos2B + 4\sin B) +\frac{13}{4} \leq 0, với A;B;C là ba góc của tam giác ABC. Khẳng định đúng là

    Ta có:

    \begin{matrix}  \cos 2A + \dfrac{1}{{64{{\cos }^4}A}} - (2\cos 2B + 4\sin B) + \dfrac{{13}}{4} \leqslant 0 \hfill \\   \Leftrightarrow {\cos ^2}A + {\cos ^2}A + \dfrac{1}{{64{{\cos }^4}A}} + 4{\sin ^2}B - 4\sin B + 1 \leqslant \dfrac{3}{4}\left( * ight) \hfill \\ \end{matrix}

    Áp dụng bất đẳng thức Cauchy ta có:

    {\cos ^2}A + {\cos ^2}A + \frac{1}{{64{{\cos }^4}A}} \geqslant \frac{3}{4}\left( 1 ight)

    4{\sin ^2}B - 4\sin B + 1 \geqslant 0 \text{    }(2)

    Từ (*), (1) và (2) suy ra bất đẳng thức thỏa mãn khi và chỉ khi (1) và (2) xảy ra:

    \left\{ \begin{gathered}  {\cos ^2}A = \frac{1}{{64{{\cos }^4}A}} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \cos A = \frac{1}{2} \hfill \\  \sin B = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  A = {60^0} \hfill \\  B = {30^0} \hfill \\  C = {90^0} \hfill \\ \end{gathered}  ight.

    Vậy \widehat{B} + \widehat{C} =120^{0}

  • Câu 19: Thông hiểu

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    Đáp án là:

    Cho cấp số cộng có u_{1} = 5, d = 2. Khi đó:

    a) u_{6} = 15. Đúng||Sai

    b) Số hạng tổng quát thứ n của cấp số cộng là u_{n} = 2n + 3. Đúng||Sai

    c) Tổng nsố hạng đầu tiên của cấp số cộng là S_{n} = n^{2} + 4n. Đúng||Sai

    d) Tổng S = u_{10} + u_{11} + .. + u_{20}
= 310. Sai||Đúng

    a) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{6} = u_{1} + 5d = 5 + 5.2 =
15.

    b) Áp dụng công thức tính số hạng tổng quát thứ n của cấp số cộng ta có:

    u_{n} = u_{1} + (n - 1)d = 5 + (n - 1).2
= 2n + 3.

    c) Áp dụng công thức tính tổng nsố hạng đầu tiên của cấp số cộng ta có:

    S_{n} = nu_{1} + \frac{(n - 1)n}{2}d = 5n
+ \frac{(n - 1)n}{2}.2 = n^{2} + 4n.

    d) Ta viết lại

    S = u_{10} + u_{11} + .. +
u_{20}

    = \left( u_{1} + u_{2} + .. + u_{20}
ight) - \left( u_{1} + u_{2} + .. + u_{9} ight)

    = S_{20} - S_{9} = 480 - 117 =
363.

  • Câu 20: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD//BC \\
AD \subset (SAD) \\
BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d, d đi qua S và d // AD // BC.

  • Câu 21: Thông hiểu

    Cho tứ diện ABCDE,F lần lượt là trọng tâm hai tam giác BCDACD. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Ta có: E,F lần lượt là trọng tâm hai tam giác BCDACD

    Suy ra BE, AF cắt nhau tại điểm Q.

    Vậy BE,AF,CD đồng quy.

    Lại có: \frac{QF}{QA} = \frac{1}{3} =\dfrac{QE}{QB} \Rightarrow \left\{ \begin{matrix}EF//AB \\\dfrac{EF}{AB} = \dfrac{1}{3} \\\end{matrix} ight.

    Từ đó suy ra EF//(ABD)EF//(ABC).

  • Câu 22: Vận dụng

    Biết các số C_{n}^{1};C_{n}^{2};C_{n}^{3} theo thứ tự lập thành một cấp số cộng với n > 3. Tìm n

    Ta có: 

    Các số C_{n}^{1};C_{n}^{2};C_{n}^{3} theo thứ tự lập thành một cấp số cộng với n > 3

    \begin{matrix}  C_n^1 + C_n^3 = 2C_n^2 \hfill \\   \Leftrightarrow \dfrac{{n!}}{{1!\left( {n - 1} ight)!}} + \dfrac{{n!}}{{3!\left( {n - 3} ight)!}} = 2.\dfrac{{n!}}{{2!\left( {n - 2} ight)!}} \hfill \\   \Leftrightarrow n + \dfrac{{n\left( {n - 1} ight)\left( {n - 2} ight)}}{6} = n\left( {n - 1} ight) \hfill \\   \Leftrightarrow 6n + \left( {{n^2} - n} ight)\left( {n - 2} ight) = 6n\left( {n - 1} ight) \hfill \\   \Leftrightarrow 6n + {n^3} - 3{n^2} + 2n = 6{n^2} - 6n \hfill \\   \Leftrightarrow {n^3} - 9{n^2} + 14n = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {n = 0\left( {ktm} ight)} \\   {n = 2\left( {ktm} ight)} \\   {n = 7\left( {tm} ight)} \end{array}} ight. \hfill \\ \end{matrix}

  • Câu 23: Vận dụng

    Tính tổng S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ... .

    Ta có:

    S = 9 + 3 + 1 + \frac{1}{3} +
\frac{1}{9} + ... + \frac{1}{3^{n - 3}} + ...

    = 9\left( {\underbrace {1 + \frac{1}{3} + \frac{1}{{{3^2}}} + ... + \frac{1}{{{3^{n - 1}}}} + ...}_{CSN:{u_1} = 1;q = \frac{1}{3}}} ight)

    = 9.\left( \dfrac{1}{1 - \dfrac{1}{3}}ight) = \dfrac{27}{2}

  • Câu 24: Nhận biết

    Kết quả của giới hạn \lim\left(
\frac{1}{2} ight)^{n} bằng

    \lim q^{n} = 0 nếu |q| < 1.

    \left| \frac{1}{2} ight| <
1 nên \lim\left( \frac{1}{2}
ight)^{n} = 0.

  • Câu 25: Vận dụng

    Cho tứ diện đều S.ABC. Gọi I là trung điểm của AB, M là một điểm lưu động trên đoạn AI. Qua M vẽ mặt phẳng (∝) // (SIC). Khi đó thiết diện của mặt phẳng (∝) và tứ diện S.ABC là:

    Qua M kẻ đường thẳng song song với IC cắt AC tại E và kẻ đường thẳng song song với SI cắt SA tại D.

    Khi đó thiết diện của mặt phẳng (α)) với tứ diện S.ABC là tam giác MED

    Lại có: MD // SI => \frac{{AM}}{{AI}} = \frac{{MD}}{{SI}} (1)

    ME // IC => \frac{{AM}}{{AI}} = \frac{{ME}}{{IC}} (2)

    Từ (1) và (2) suy ra: \frac{{ME}}{{IC}} = \frac{{MD}}{{SI}}

    Vì S.ABC là tứ diện đều nên SI = CI (vì hai tam giác SAB và CAB là hai tam giác bằng nhau nên hai đường trung tuyến tương ứng bằng nhau)

    Suy ra MD = ME

    Vậy tam giác MED cân tại M.

  • Câu 26: Nhận biết

    Với điều kiện xác định của các giá trị lượng giác, mệnh đề nào sau đây sai?

    Ta có:

    \sin( - a) = - \sin a

    \cos(a - \pi) = - \cos a

    \cot(a - \pi) = - \cot a

    \tan(\pi + a) = \tan a

  • Câu 27: Nhận biết

    Có bao nhiêu vị trí tương đối giữa đường thẳng và mặt phẳng?

    Có ba vị trí tương đối giữa đường thẳng và mặt phẳng là:

    + Đường thẳng song song với mặt phẳng.

    + Đường thẳng cắt mặt phẳng.

    + Đường thẳng nầm trên mặt phẳng.

  • Câu 28: Vận dụng cao

    Cho xeq 0 và x+\frac{1}{x} là một số nguyên. Khi đó với mọi số nguyên dương n, có kết luận gì về T(n,x)=x^{n}+\frac{1}{x^{n}}?

    Ta có:

    T\left( {1;x} ight) = x + \frac{1}{x} là một số nguyên

    T\left( {2;x} ight) = {x^2} + \frac{1}{{{x^2}}} = {\left( {x + \frac{1}{x}} ight)^2} - 2 cũng là một số nguyên

    Ta sẽ chứng minh T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

    Ta có: 

    T\left( {1;x} ight) là một số nguyên 

    Giả sử T(n,x) là số nguyên với n \ge1. Ta sẽ chứng minh T\left( {n + 1;x} ight) cũng là số nguyên.

    Ta có: 

    \begin{matrix}  T\left( {n + 1;x} ight) = {x^{n + 1}} + \dfrac{1}{{{x^{n + 1}}}} \hfill \\   = \left( {x + \dfrac{1}{x}} ight).\left( {{x^n} + \dfrac{1}{{{x^n}}}} ight) - \left( {{x^{n - 1}} + \dfrac{1}{{{x^{n - 1}}}}} ight) \hfill \\   = T\left( {1;x} ight).T\left( {n;x} ight) - T\left( {n - 1;x} ight) \hfill \\ \end{matrix}

    Theo giả thiết quy nạp ta có: 

    \left\{ \begin{gathered}  T\left( {1;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n - 1;x} ight) \in \mathbb{Z} \hfill \\ \end{gathered}  ight. \Rightarrow T\left( {n + 1;x} ight) \in \mathbb{Z}

    Vậy T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

  • Câu 29: Thông hiểu

    Kết quả đo chiều cao một nhóm các học sinh nam (đơn vị: cm) lớp 11 được thống kê như sau:

    160

    161

    161

    162

    162

    162

    163

    163

    163

    164

    164

    164

    164

    165

    165

    165

    165

    165

    166

    166

    166

    166

    167

    167

    168

    168

    168

    168

    169

    169

    170

    171

    171

    172

    172

    174

    Bảng số liệu ghép nhóm nào sau đây đúng?

    Ta có:

    Khoảng biến thiên là 174 - 160 =14

    Để chia số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia các nhóm có độ dài bằng 4

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 176.

    Khi đó ta có các nhóm là: \lbrack160;164),\lbrack 164;168),\lbrack 168;172),\lbrack 172;176)

    Vậy bảng dữ liệu ghép nhóm đúng là:

  • Câu 30: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm được ghi trong bảng dưới đây:

    Khoảng

    Tần số

    Nhỏ hơn 10

    10

    Nhỏ hơn 20

    20

    Nhỏ hơn 30

    30

    Nhỏ hơn 40

    40

    Nhỏ hơn 50

    50

    Nhỏ hơn 60

    30

    Tính giá trị tứ phân vị thứ ba.

    Ta có:

    Nhóm dữ liệu

    Tần số

    Tần số tích lũy

    (0; 10]

    10

    10

    (10; 20]

    20

    30

    (20; 30]

    30

    60

    (30; 40]

    50

    110

    (40; 50]

    40

    150

    (50; 60]

    30

    180

    Tổng

    N = 180

     

    Ta có: \frac{3N}{4} = \frac{3.180}{4} =135

    => Nhóm chứa tứ phân vị thứ ba là: (40; 50]

    Khi đó: \left\{ \begin{matrix}l = 40;\dfrac{3N}{4} = 135 \\m = 110,f = 40,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ ba là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 40 + \frac{135 -110}{40}.10 = 46,25

  • Câu 31: Thông hiểu

    Cho hàm số f(x)=-4x^{3}+4x-1. Mệnh đề nào sau đây là sai?

    Hàm số f(x)=-4x^{3}+4x-1 là hàm đa thức 

    => Hàm số liên tục trên \mathbb{R}

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) =  - 1 < 0} \\   {f\left( { - 2} ight) = 23 > 0} \end{array}} ight.

    => f\left( { - 1} ight).f\left( { - 2} ight) < 0

    => f\left( x ight) = 0 có nghiệm trên \left( { - 2;1} ight)

    Vậy khẳng định sai là khẳng định: "Phương trình f(x) = 0 không có nghiệm trên khoảng (-\infty;1)"

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) =  - 1 < 0} \\   {f\left( {\dfrac{1}{2}} ight) = \dfrac{1}{2} > 0} \end{array}} ight. 

    => f\left( 0 ight).f\left( {\frac{1}{2}} ight) < 0

    => f\left( x ight) = 0 có nghiệm trên \left( {0;\frac{1}{2}} ight)

  • Câu 32: Vận dụng

    Cho tứ diện ABCD có cạnh AB = 6;CD = 8. Mặt phẳng (\alpha) song song với AB,CD cắt tứ diện tạo thành một hình thoi. Tính độ dài cạnh hình thoi.

    Hình vẽ minh họa

    Tính độ dài cạnh hình thoi

    Gọi M, N, P, Q lần lượt là giao điểm của mặt phẳng chứa thiết diện với các cạnh AC, BC, BD, AD, khi đó theo giả thiết tứ giác MNPQ là hình thoi.

    Cũng từ giả thiết ta suy ra PQ // MN // AB, MQ // NP // CD nên ta có

    \frac{CM}{AC} =
\frac{MN}{AB};\frac{AM}{AC} = \frac{MQ}{CD} \Rightarrow \frac{AC -
CM}{AC} = \frac{MQ}{CD}

    \Rightarrow 1 - \frac{CM}{AC} = 1 -
\frac{MN}{AB} = \frac{MQ}{CD} = \frac{MN}{CD}

    \Rightarrow MN = \dfrac{1}{\dfrac{1}{AB} +\dfrac{1}{CD}} = \dfrac{1}{\dfrac{1}{6} + \dfrac{1}{8}} =\dfrac{24}{7}

    Vậy cạnh của hình thoi là \frac{24}{7}

  • Câu 33: Thông hiểu

    Khẳng định nào sau đây là đúng?

    Khẳng định đúng: "Hình biểu diễn của một đường tròn là một đường elip."

  • Câu 34: Thông hiểu

    Khảo sát thời gian đến trường của 40 học sinh (đơn vị: phút) ta được kết quả như sau:

    5

    3

    10

    20

    25

    11

    13

    7

    12

    31

    19

    10

    12

    17

    18

    11

    32

    17

    16

    2

    7

    9

    7

    8

    3

    5

    12

    15

    18

    3

    12

    14

    2

    9

    6

    15

    15

    7

    6

    12

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm bao nhiêu phần trăm?

    Chuyển mẫu dữ liệu sang dạng ghép nhóm:

    Ta chia thành các nhóm có độ dài là 5

    Ta sẽ chọn đầu mút phải của nhóm cuối cùng là 35.

    Ta có bảng ghép nhóm như sau:

    Thời gian

    Số học sinh

    [0; 5)

    6

    [5; 10)

    10

    [10; 15)

    11

    [15; 20)

    9

    [20; 25)

    1

    [25; 30)

    1

    [3; 35)

    2

    Số học sinh đến trường ít nhất 10 phút và không quá 25 phút chiếm số phần trăm là: \frac{11 + 9 + 1}{40}.100\% =52,5\%

  • Câu 35: Vận dụng

    Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:

    Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.

    Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.

    Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.

    Tính số dưa mà bác T thu hoạch được.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:

    Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.

    Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.

    Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.

    Tính số dưa mà bác T thu hoạch được.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau.

    Mệnh đề đúng: "Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong (α) đều song song với (β). "

  • Câu 37: Vận dụng

    Tại thủ đô A số giờ có ánh sáng mặt trời trong ngày thứ x (ở đây x là số ngày tính từ ngày 1 tháng giêng) của một năm không nhận được cho bởi công thức:

    T(x) = 12 + 2,83sin\left( \frac{2\pi x}{365} -
\frac{32}{73} ight) với x\mathbb{\in Z};0 < x < 365.

    Hỏi vào ngày nào trong năm thì thủ đô A có khoảng 10 giờ ánh sáng mặt trời?

    Thủ đô A có khoảng 10 giờ ánh sáng mặt trời trong ngày nếu

    12 + 2,83sin\left( \frac{2\pi x}{365} -
\frac{32}{73} ight) = 10

    \Leftrightarrow \sin\left( \frac{2\pi
x}{365} - \frac{32}{73} ight) = \frac{- 200}{283}

    \Leftrightarrow \left\lbrack\begin{matrix}\dfrac{2\pi x}{365} - \dfrac{32}{73} \approx - 0,78 + k2\pi \\\dfrac{2\pi x}{365} - \dfrac{32}{73} \approx 3,93 + k2\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    \Leftrightarrow \left\lbrack
\begin{matrix}
x \approx 34,49 + 365\pi \\
x \approx 308,30 + 365\pi \\
\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    x\mathbb{\in Z};0 < x <
365 nên k = 0 suy ra \left\lbrack \begin{matrix}
x \approx 34,69 \\
x \approx 308,30 \\
\end{matrix} ight..

    Như vậy vào khoảng ngày thứ 34 của năm tức là ngày 3 tháng 2 và ngày thứ 308 của năm, tức là ngày 4 tháng 11 thành phố A sẽ có 10 giờ ánh sáng mặt trời.

  • Câu 38: Thông hiểu

    Cho cấp số cộng {u_1} =  - 3;d = 4. Chọn khẳng định đúng trong các khẳng định sau?

     Ta có: {u_3} = {u_1} + 2d =  - 3 + 2.4 = 5

  • Câu 39: Vận dụng cao

    Cho các số thực a,\ b,\ c thỏa mãn 4a + b > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Đáp án là:

    Cho các số thực a,\ b,\ c thỏa mãn 4a + b > 8 + 2ba + b + c < - 1. Khi đó số nghiệm thực phân biệt của phương trình x^{3} + ax^{2} +
bx + c = 0 bằng

    Đáp án: 3

    Xét hàm số f(x) = x^{3} + ax^{2} + bx +
c

    Theo giả thiết 4a + c > 2b + 8
\Leftrightarrow - 8 + 4a - 2b + c > 0 \Rightarrow f( - 2) >
0;

    a + b + c < - 1 \Leftrightarrow 1 + a
+ b + c < 0 \Rightarrow f(1) < 0

    Ta có f(x) là hàm đa thức nên liên tục trên \mathbb{R}

    \left\{ \begin{matrix}\lim_{x ightarrow - \infty}f(x) = \lim_{x ightarrow - \infty}\left(x^{3} + ax^{2} + bx + c ight) = - \infty \\f( - 2) > 0 \\\end{matrix} ight.

    Suy ra phương trình f(x) = 0 có ít nhất một nghiệm trên ( - \infty; -
2) (1)

    f( - 2)f(1) < 0 nên phương trình có ít nhất một nghiệm trên khoảng ( -
2;1) (2)

    \left\{ \begin{gathered}
 \mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) = \mathop {\lim }\limits_{x \to  + \infty } \left( {{x^3} + a{x^2} + bx + c} ight) =  + \infty  \hfill \\
  f\left( 1 ight) < 0 \hfill \\ 
\end{gathered}  ight.

    Suy ra phương trình có ít nhất một nghiệm trên khoảng (1; + \infty) (3)

    Từ (1); (2)(3) ta có phương trình f(x) = 0có ít nhất 3 nghiệm.

    Mặt khác f(x) = 0 là phương trình bậc ba nên có tối đa 3 nghiệm

    Vậy phương trình f(x) = 0 có đúng 3 nghiệm.

  • Câu 40: Vận dụng

    Nhiệt độ ngoài trời ở một thành phố vào các thời điểm khác nhau trong ngày có thể được mô phỏng bởi công thức h(t)= 29 + 3.\sin\frac{\pi}{12}(t - 9) với h tính bằng \
^{0}Ct là thời gian trong ngày tính bằng giờ. Thời gian nhiệt độ thấp nhất trong ngày là:

    Do - 1 \leq \sin\frac{\pi}{12}(t - 9)
\leq 1,\forall t nên

    \begin{matrix}
   - 3 \leqslant 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 3 \hfill \\
   \Leftrightarrow 26 \leqslant 29 + 3\sin \dfrac{\pi }{{12}}(t - 9) \leqslant 32 \hfill \\
   \Leftrightarrow 26 \leqslant h(t) \leqslant 32 \hfill \\ 
\end{matrix}

    Do đó nhiệt độ thấp nhất trong ngày là 26^{0}C.

    Dấu bằng xảy ra\Leftrightarrow \sin\frac{\pi}{12}(t -9) = - 1

    \Leftrightarrow \frac{\pi}{12}(t - 9) = - \frac{\pi}{2} + k2\pi

    \Leftrightarrow t = 3 + 24k(k\mathbb{\in Z})

    Do 0 \leq t \leq 24 \Leftrightarrow 0
\leq 3 + 24k \leq 24 \Leftrightarrow \frac{- 3}{24} \leq k \leq
\frac{21}{24}.

    k\mathbb{\in Z} nên k = 0.

    Khi đó t = 3.

    Vậy lúc 3h là thời gian nhiệt độ thấp nhất trong ngày.

  • Câu 41: Nhận biết

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Chọn khẳng định đúng trong các khẳng định sau.

    Ta có: \left\{ \begin{matrix}
f(0) = 1 \\
f(1) = - 1 \\
f(2) = 15 \\
\end{matrix} ight.

    => Phương trình có ít nhất hai nghiệm trên khoảng (0;2).

  • Câu 42: Thông hiểu

    Cho tam giác ABC có các góc \widehat{A};\widehat{B};\widehat{C} bất kì. Biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị nào sau đây?

    Ta có:

    T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A}

    = 2\left( \sin\widehat{A}.\frac{1}{2} +
\cos\widehat{A}.\frac{\sqrt{3}}{2} ight)

    = 2\left(
\sin\widehat{A}\cos\frac{\pi}{3} + \cos\widehat{A}.sin\frac{\pi}{3}
ight)

    = 2sin\left( \widehat{A} + \frac{\pi}{3}
ight)

    Với tam giác ABC bất kì ta luôn có:

    0 < \widehat{A} < \pi \Rightarrow
\frac{\pi}{3} < \widehat{A} + \frac{\pi}{3} <
\frac{4\pi}{3}

    \Rightarrow - \sqrt{3} < T \leq
2

    Vậy biểu thức T = \sin\widehat{A} +
\sqrt{3}\cos\widehat{A} không thể nhận giá trị 2\sqrt{3}.

  • Câu 43: Nhận biết

    Gọi S là tập nghiệm của phương trình 2\cos x - \sqrt 3  = 0. Khẳng định nào sau đây là đúng?

    Ta có 2\cos x - \sqrt 3  = 0 \Leftrightarrow \cos x = \cos \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x =  - \,\frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Nhận thấy với nghiệm x =  - \,\frac{\pi }{6} + k2\pi \xrightarrow{{k = 1}}x = \frac{{11\pi }}{6} \in S.

  • Câu 44: Thông hiểu

    Cho dãy số (un) xác định bởi \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + n^{3},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Số nguyên dương n nhỏ nhất sao cho \sqrt{u_{n} - 1} \geq 2039190 là?

    Ta có: \left\{ \begin{matrix}
\begin{matrix}
\begin{matrix}
\begin{matrix}
u_{1} = 1 \\
u_{2} = u_{1} + 1^{3} \\
\end{matrix} \\
u_{3} = u_{2} + 2^{3} \\
\end{matrix} \\
\ldots \\
\end{matrix} \\
u_{n + 1} = u_{n} + n^{3} \\
\end{matrix} ight.

     =  > un = 1 + 13 + 23 + … + (n−1)3

    Ta lại có 13 + 23 + … + (n−1)3

    = (1 + 2 + 3 + \ldots + n - 1)^{2} =
\left( \frac{n(n - 1)}{2} ight)^{2}

    Suy ra u_{n} = 1 + \left( \frac{n(n -
1)}{2} ight)^{2}

    Theo giả thiết ta có \sqrt{u_{n} - 1} \geq2039190 \Leftrightarrow \frac{n(n - 1)}{2} \geq 2039190

    \Leftrightarrow n(n - 1) \geq 4078380 \Leftrightarrow \left\lbrack \begin{matrix}n \geq 2020 \ \leq - 2019 \\\end{matrix} ight.

    n là số nguyên dương nhỏ nhất nên n = 2020.

  • Câu 45: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với số hạng đầu u_{1} và công bội q. Với n \geq
1, khẳng định nào sau đây đúng?

    Do \left( u_{n} ight) là cấp số nhân nên u_{n + 1} = u_{n}.q\ \ ,\ \ (n
\geq 1).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Chân trời sáng tạo Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 15 lượt xem
Sắp xếp theo