Khẳng định nào sau đây là đúng khi nói về đường tròn lượng giác
?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Khẳng định nào sau đây là đúng khi nói về đường tròn lượng giác
?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Cho hai đường thẳng phân biệt và
trong không gian. Có bao nhiêu vị trí tương đối giữa
và
?
Hai đường thẳng trong không gian có 4 VTTĐ: trùng nhau, cắt nhau, song song, chéo nhau.
Vì hai đường thẳng phân biệt nên hai đường thẳng có 3 vị trí tương đối: cắt nhau, song song, chéo nhau.
Cho tứ diện . Trên
,
lần lượt lấy các điểm
và
sao cho
cắt
tại
. Điểm
không thuộc mặt phẳng nào trong các mặt phẳng sau?
Hình vẽ minh họa
Do và
.
Do .
Cho hai mặt phẳng và
song song với nhau. Mệnh đề nào sau đây sai?
Đáp án “Đường thẳng và đường thẳng
thì
” sai vì nếu
và đường thẳng
thì
và
có thể chéo nhau.
Giải phương trình được nghiệm là:
Ta có
Vậy phương trình đã cho có nghiệm là
Trong các dãy số sau đây, dãy số nào là cấp số cộng?
Ta có dãy số là một cấp số cộng có công sai
.
Cho dãy số với
. Số
là số hạng thứ bao nhiêu của dãy số đó?
Ta có
.
Vậy 19 là số hạng thứ 7 của dãy số đã cho.
Cho hai dãy số với
và
. Khi đó
bằng:
Ta có:
Khảo sát thời gian tập thể dục trong ngày của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm như sau:
Thời gian (phút) |
[0; 10) |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
Số học sinh |
7 |
13 |
9 |
18 |
22 |
6 |
Nhóm chứa trung vị là:
Cỡ mẫu của bảng số liệu này là , nên nhóm chứa trung vị là nhóm chứa giá trị thứ
, suy ra đó là nhóm
Lượng nước tiêu thụ trong một tháng của các hộ gia đình trong một khu chung cư được ghi lại như sau:
Lượng nước (m3) |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
[100; 120) |
Số hộ gia đỉnh |
6 |
12 |
10 |
7 |
4 |
2 |
Giá trị đại diện của nhóm chứa mốt của mẫu số liệu trên là.
Vì nhóm chứa mốt của mẫu số liệu là nhóm nên giá trị đại diện của nhóm này là
.
Cho hình chóp , đáy là hình bình hành. Gọi
là giao điểm của
và
,
là trung điểm
. Khằng định nào sau đây là đúng?
Hình vẽ minh họa
Ta có là đường trung bình tam giác
nên
, mà
và
suy ra
.
Tìm giới hạn .
Ta có ,
và
nên
.
Cho cấp số cộng có ,
. Khi đó:
a) . Đúng||Sai
b) Số hạng tổng quát thứ của cấp số cộng là
. Đúng||Sai
c) Tổng số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng . Sai||Đúng
Cho cấp số cộng có ,
. Khi đó:
a) . Đúng||Sai
b) Số hạng tổng quát thứ của cấp số cộng là
. Đúng||Sai
c) Tổng số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng . Sai||Đúng
a) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
b) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
c) Áp dụng công thức tính tổng số hạng đầu tiên của cấp số cộng ta có:
.
d) Ta viết lại
.
Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:
Điểm |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
[60; 70) |
Số trường |
4 |
19 |
6 |
2 |
3 |
1 |
Các mệnh đề sau đúng hay sai
a) Số liệu đã cho cho có mẫu số liệu. Đúng||Sai
b) Số trung vị của mẫu số liệu là Sai||Đúng
c) Số trung bình của mẫu số liệu đã cho là . Sai||Đúng
d) Ngưỡng điểm đề đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai
Một bảng xếp hạng đã tính điềm chuần hoá cho chỉ số nghiên cứu của một số trường đại học ở Việt Nam và thu được kết quả sau:
Điểm |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
[60; 70) |
Số trường |
4 |
19 |
6 |
2 |
3 |
1 |
Các mệnh đề sau đúng hay sai
a) Số liệu đã cho cho có mẫu số liệu. Đúng||Sai
b) Số trung vị của mẫu số liệu là Sai||Đúng
c) Số trung bình của mẫu số liệu đã cho là . Sai||Đúng
d) Ngưỡng điểm đề đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là trên 35,42. Đúng||Sai
a) Ta có cỡ mẫu . Vậy đáp án a) đúng.
b) Gọi được sắp xếp theo thứ tự không giảm.
Khi đó, trung vị là . Do
thuộc nhóm
nên nhóm này chứa trung vị.
Suy ra ,
,
,
,
,
.
.
Vậy đáp án b) sai.
c) Số trung bình của mẫu số liệu là
.
Vậy đáp án c) sai.
d) Điểm ngưỡng để đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam là tứ phân vị thứ ba.
Cỡ mẫu
Tứ phân vị thứ ba là
mà
thuộc nhóm [30;40) nên nhóm này chứa
.
Do đó, và ta có:
.
Vậy để đưa ra danh sách trường đại học có chỉ số nghiên cứu tốt nhất Việt Nam ta lấy các trường có điểm chuẩn hóa trên 35.42.
Vậy đáp án d) đúng.
Cho hình chóp có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a) . Đúng||Sai
b) Đường và
cắt nhau. Sai||Đúng
c) . Đúng||Sai
d) Tỉ số . Sai||Đúng
Cho hình chóp có đáy là hình bình hành tâm O. Gọi
là trung điểm của cạnh
. Lấy điểm
đối xứng với
qua
,
cắt
tại
. Gọi giao điểm
của đường thẳng
với mặt phẳng
. Xét tính đúng sai các khẳng định sau:
a) . Đúng||Sai
b) Đường và
cắt nhau. Sai||Đúng
c) . Đúng||Sai
d) Tỉ số . Sai||Đúng
Hình vẽ minh họa
a) Xét tứ giác có
.
Suy ra tứ giác là hình bình hành
Nên . Vậy khẳng định a đúng
b) Vì là trung điểm
,
là trung điểm
nên
(tính chất đường trung bình).
Vậy khẳng định b sai.
c)
Vậy khẳng định c đúng.
d) Áp dụng định lí Talet cho, ta có:
(1)
Gọi là trung điểm của
, vì
là trung điểm của
nên theo tính chất đường trung
bình, , vậy theo định lí Talet:
. (2)
Từ (1) và (2), ta có .
Vậy khẳng định d sai.
Xét tính đúng sai của các khẳng định sau:
a) . Đúng||Sai
b) Biết rằng ,
. Khi đó
. Sai||Đúng
c) . Sai||Đúng
d) Biết (với
). Khi đó
. Đúng||Sai
Xét tính đúng sai của các khẳng định sau:
a) . Đúng||Sai
b) Biết rằng ,
. Khi đó
. Sai||Đúng
c) . Sai||Đúng
d) Biết (với
). Khi đó
. Đúng||Sai
a) Đúng.
Vì
b) Sai.
Vì
c) Sai.
Vì
d) Đúng.
Xét thấy là nghiệm của phương trình
(mẫu số) nên
cũng là một nghiệm của phương trình
(tử số)
.
Khi đó:
.
Vậy .
Một bánh xe của người đi xe ô tô quay được vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Một bánh xe của người đi xe ô tô quay được vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Số đo góc quay của vòng là
.
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Một người xếp chồng những khúc gỗ có kích thước như nhau thành hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới
khúc gỗ và hàng trên cùng có
khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?
Đáp án: 55
Mỗi hàng liền phía trên ít hơn hàng dưới khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có:
.
Khi đó, tổng số khúc gỗ là:
(khúc gỗ).
Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:
Số tiền (nghìn đồng) |
[350; 400) |
[400; 450) |
[450; 500) |
[500; 550) |
[550; 600) |
Số hộ gia đình |
6 |
14 |
21 |
17 |
2 |
Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)
Đáp án: 471 nghìn đồng.
Thống kê tiền điện tháng 12/2024 của các hộ gia đình xóm A cho bởi bảng số liệu sau:
Số tiền (nghìn đồng) |
[350; 400) |
[400; 450) |
[450; 500) |
[500; 550) |
[550; 600) |
Số hộ gia đình |
6 |
14 |
21 |
17 |
2 |
Tính tiền điện trung bình của các hộ gia đình trong xóm A (kết quả làm tròn đến nghìn đồng)
Đáp án: 471 nghìn đồng.
Ta có giá trị đại diện của các nhóm lần lượt là:
Trung bình cộng của bảng số liệu trên là:
(nghìn đồng).
Cho hình chóp có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Cho hình chóp có đáy là hình bình hành. Gọi
lần lượt là trung điểm các cạnh
và
là điểm trên cạnh
sao cho
. Gọi
là gia điểm của
và mặt phẳng
. Tính tỉ số
.
Đáp án: 3
Hình vẽ minh họa
Ta có là điểm trên cạnh
,
nên
.
nên
suy ra
.
Trong
chính là giao điểm của
và
.
Trong , có
nên hai tam giác
và
đồng dạng.
Do đó .
Tìm giá trị của tham số để hàm số
liên tục trên
.
Đáp án: 3
Tìm giá trị của tham số để hàm số
liên tục trên
.
Đáp án: 3
Phần giải chi tiết
Tập xác định .
Hàm số liên tục trên các khoảng
.
Ta có
Hàm số liên tục trên
khi và chỉ khi
.
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Một cái hồ chứa 600 lít nước ngọt. Người ta bơm nước biển có nồng độ muối 30 gam/lít vào hồ với tốc độ 15 lít/phút. Nồng độ muối trong hồ dần về bao nhiêu gam/lít khi dần về dương vô cùng?
Đáp án: 30
Sau phút bơm nước vào hồ thì lượng nước là
(lít) và lượng muối có được là
(gam).
Nồng độ muối của nước là
(gam/lít).
Khi dần về dương vô cùng, ta có