Cho mẫu số liệu ghép nhóm như sau:
Nhóm |
[0; 10) |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
Tần số |
7 |
13 |
9 |
18 |
22 |
6 |
Mẫu số liệu có bao nhiêu nhóm?
Mẫu số liệu đã cho có 6 nhóm.
Cho mẫu số liệu ghép nhóm như sau:
Nhóm |
[0; 10) |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
Tần số |
7 |
13 |
9 |
18 |
22 |
6 |
Mẫu số liệu có bao nhiêu nhóm?
Mẫu số liệu đã cho có 6 nhóm.
Giải phương trình thu được kết quả là:
Điều kiện
.
Cho dãy số xác định bởi
. Giá trị
là
Ta có: .
Giá trị đại diện của nhóm là
Ta có giá trị đại diện là .
Dãy số nào sau đây không phải là cấp số cộng?
Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: thì kết luận ngay dãy số đó không phải là cấp số cộng.
Xét đáp án: loại
Xét đáp án: Chọn
Xét đáp án: Loại
Xét đáp án: loại
Trong các dãy số cho dưới đây, dãy số nào là cấp số nhân?
Ta thấy ở dãy số có
nên đây là cấp số nhân với công bội
.
Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?
“Ba điểm phân biệt” sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.
“Một điểm và một đường thẳng” sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ra chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.
“Bốn điểm phân biệt” sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì sẽ không tạo được mặt phẳng nào đi qua cả 4 điểm.
Trong các mệnh đề sau, mệnh đề nào đúng?
Vị trí tương đối giữa hai đường thẳng chéo nhau thì không có điểm chung.
Cho đường thẳng song song với mặt phẳng
. Nếu mặt phẳng
chứa
và cắt
theo giao tuyến
thì
và
là hai đường thẳng:
Cho đường thẳng song song với mặt phẳng
. Nếu mặt phẳng
chứa
và cắt
theo giao tuyến
thì
song song với
.
Trong không gian cho hai mặt phẳng và
song song. Số giao điểm chung của hai mặt phẳng
và
là
Theo định nghĩa hai mặt phẳng song song.
Đáp án cần tìm là: 0
Giới hạn bằng
Ta có:
.
Vì .
Tính giới hạn ?
Ta có:
Cho phương trình (*), vậy:
a) Phương trình có nghiệm Đúng||Sai
b) Trong khoảng phương trình có 2 nghiệm. Đúng||Sai
c) Tổng các nghiệm của phương trình trong khoảng bằng
. Sai||Đúng
d) Trong khoảng phương trình có nghiệm lớn nhất bằng
. Đúng||Sai
Cho phương trình (*), vậy:
a) Phương trình có nghiệm Đúng||Sai
b) Trong khoảng phương trình có 2 nghiệm. Đúng||Sai
c) Tổng các nghiệm của phương trình trong khoảng bằng
. Sai||Đúng
d) Trong khoảng phương trình có nghiệm lớn nhất bằng
. Đúng||Sai
Ta có:
Vì
Vậy phương trình có hai nghiệm thuộc khoảng là
.
Kết luận:
a) Đúng |
b) Đúng |
c) Sai |
d) Đúng |
Cho hình chóp có
không song song với
Gọi
lần lượt là trung điểm
Các mệnh đề sau đúng hay sai?
a) không song song
Đúng||Sai
b) song song
Đúng||Sai
c) song song
Sai||Đúng
d) song song
Sai||Đúng
Cho hình chóp có
không song song với
Gọi
lần lượt là trung điểm
Các mệnh đề sau đúng hay sai?
a) không song song
Đúng||Sai
b) song song
Đúng||Sai
c) song song
Sai||Đúng
d) song song
Sai||Đúng
Hình vẽ minh họa
Ta có: lần lượt là trung điểm của
là đường trung bình của tam giác
Ta có: lần lượt là trung điểm của
là đường trung bình của tam giác
Từ suy ra:
Kết luận:
a) Đúng |
b) Đúng |
c) Sai |
d) Sai |
Tính được các giới hạn sau, khi đó:
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
Tính được các giới hạn sau, khi đó:
a) Sai||Đúng
b) Sai||Đúng
c) Đúng||Sai
d) Đúng||Sai
a) (do
b) do
c) .
Vì
d) .
Vì
Kết luận:
a) Sai |
b) Sai |
c) Đúng |
d) Đúng |
Cho hàm số . Khi đó:
a) Giới hạn. Sai||Đúng
b) Giới hạn. Đúng||Sai
c) Giới hạn. Đúng||Sai
d) Hàm số tồn tại giới hạn khi . Sai||Đúng
Cho hàm số . Khi đó:
a) Giới hạn. Sai||Đúng
b) Giới hạn. Đúng||Sai
c) Giới hạn. Đúng||Sai
d) Hàm số tồn tại giới hạn khi . Sai||Đúng
a) Ta có: Giới hạn
b) Xét dãy số bất kì sao cho
và
, ta có:
.
Khi đó: .
c) Xét dãy số bất kì sao cho
và
, ta có:
.
Khi đó: .
d) Vì (hay
) nên không tồn tại
.
Kết luận:
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Cho hình chóp có đáy
là hình bình hành. Gọi
là trung điểm của
Gọi
là giao điểm của
với mặt phẳng
Khi đó
. Tìm giá trị của
.
Đáp án: -8||- 8
Cho hình chóp có đáy
là hình bình hành. Gọi
là trung điểm của
Gọi
là giao điểm của
với mặt phẳng
Khi đó
. Tìm giá trị của
.
Đáp án: -8||- 8
Hình vẽ minh họa
Gọi là tâm hình bình hành
suy ra
là trung điểm của
Nối cắt
tại
mà
suy ra
Tam giác có
lần lượt là trung điểm của
Mà suy ra
là trọng tâm tam giác
Điểm nằm giữa
và
suy ra
.
Do đó .
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
Cho hàm số
Có bao nhiêu giá trị nguyên của để hàm số gián đoạn tại
Đáp án: 2024
TXĐ:
Ta có:
Để hàm số gián đoạn tại thì
Vậy có giá trị nguyên của
để hàm số gián đoạn tại
Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).
Kí hiệu là chu vi của hình vuông thứ
và
là tổng chu vi của
hình vuông đầu tiên. Viết công thức tính
và
và tìm lim
(giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).
Đáp án: 13,66
Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).
Kí hiệu là chu vi của hình vuông thứ
và
là tổng chu vi của
hình vuông đầu tiên. Viết công thức tính
và
và tìm lim
(giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).
Đáp án: 13,66
Ta có:
Khi xây tường gạch, người thợ thường bắt đầu với việc xây các viên gạch dẫn, sau đó căng dây nhợ dọc theo cạnh của các viên gạch dẫn đó đề làm chuẩn rồi mới xây các Viên gạch tiếp theo (xem hình vẽ tham khảo). Nếu người thợ xây viên gạch dẫn ở một đầu tường có chiều cao cách mặt đất và căng một đầu dây nhợ vào cạnh của viên gạch thì cần điều chỉnh dây nhợ ở đầu còn lại với chiều cao
. Tính giá trị
để sợi dây nhợ luôn song song với mặt đất.
Đáp án: 2025
Khi xây tường gạch, người thợ thường bắt đầu với việc xây các viên gạch dẫn, sau đó căng dây nhợ dọc theo cạnh của các viên gạch dẫn đó đề làm chuẩn rồi mới xây các Viên gạch tiếp theo (xem hình vẽ tham khảo). Nếu người thợ xây viên gạch dẫn ở một đầu tường có chiều cao cách mặt đất và căng một đầu dây nhợ vào cạnh của viên gạch thì cần điều chỉnh dây nhợ ở đầu còn lại với chiều cao
. Tính giá trị
để sợi dây nhợ luôn song song với mặt đất.
Đáp án: 2025
Để sợi dây nhợ luôn song song với mặt đất thì ta có .
Khi đó
Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí và
. Biết
và
cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn
.
Đáp án: 105
Hình ảnh dưới đây là kệ sách gỗ có 4 mặt kệ với thanh gỗ đứng và thanh gỗ xiên. Giá đỡ các mặt kệ xuất hiện ở các vị trí và
. Biết
và
cách đều nhau và các mặt kệ song song với mặt đất. Tính độ dài đoạn
.
Đáp án: 105
Áp dụng định lý Thales trong không gian, do cách đều nhau nên
cũng cách đều nhau.
Ta có nên
.
Một hãng taxi đưa ra giá cước (đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Một hãng taxi đưa ra giá cước (đồng) khi đi quãng đường
(km) cho loại xe 4 chỗ như sau:
. Tìm
để hàm số
liên tục tại
.
Đáp án: 1000
Tại ta có:
.
.
Hàm số liên tục tại thì
.