Cho dãy số (un) với ![]()
Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n + 1 = un − 1
u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1
Cộng vế với vế của các đẳng thức trên, ta được:
un = 1 − (n−1) = 2 − n.
Cho dãy số (un) với ![]()
Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n + 1 = un − 1
u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1
Cộng vế với vế của các đẳng thức trên, ta được:
un = 1 − (n−1) = 2 − n.
Trong không gian, cho ba đường thẳng phân biệt
trong đó
. Khẳng định nào sau đây sai?
Nếu c cắt a thì c cắt b hoặc c chéo b.
Vậy khẳng định sai là: "Nếu c cắt a thì c cắt b."
Chọn đáp án có độ dài nhóm khác với các đáp án còn lại.
Ta có độ dài nhóm bằng giới hạn trên - giới hạn dưới khi đó:
Các đáp án có độ dài bằng 5 ngoại trừ nhóm có độ dài nhóm là 6.
Cho hàm số
. Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Cho hàm số . Để hàm số liên tục tại
thì
nhận giá trị là bao nhiêu?
Đáp án: -14||- 14
Tập xác định của hàm số là
.
Ta có
Hàm số đã cho liên tục tại
.
Tính giới hạn ![]()
Ta có:
Có bao nhiêu giá trị nguyên của m thuộc
sao cho
là:
Ta có:
Ta có:
Xét tính bị chặn của dãy số
, ta thu được kết quả?
Ta có
Dãy (un) bị chặn.
Cho hình lập phương
cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông
. Xác định các giao tuyến của hình lập phương
tạo với mặt phẳng
. Tính diện tích hình tạo bởi các giao tuyến.
Hình vẽ minh họa

Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.
Tứ giác là hình thang có
Ta có:
với
Thay giá trị các cạnh ta có
Cho một cấp số cộng có
. Hỏi
bằng bao nhiêu?
Ta có:
Cho
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó điểm cuối của cung có số đo thuộc góc phần tư thứ
Vậy
Cho
. Biết
(với
tối giản). Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c) Bộ ba số
tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số
tạo thành một cấp số nhân có công bội
Đúng||Sai
Cho . Biết
(với
tối giản). Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Bộ ba số tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số tạo thành một cấp số nhân có công bội
Đúng||Sai
Ta có
.
Do đó suy ra .
Kết luận:
|
a) Đúng |
b) Sai |
c) Đ |
d) Đúng |
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Cho cấp số nhân
có số hạng đầu là
, công bội là
. Tính
?
Theo công thức cấp số nhân ta có:
Phương trình
có bao nhiêu nghiệm thuộc khoảng
?
Ta có:
Mà
Vậy phương trình có hai nghiệm thuộc khoảng .
Tính tổng 10 số hạng đầu của cấp số cộng
.
Theo bài ra ta có:
Cho mẫu dữ liệu ghép nhóm như sau:
Nhóm | Tần số |
(0; 10] | x |
(10; 20] | 8 |
(20; 30] | 20 |
(30; 40] | 15 |
(40; 50] | 7 |
(50; 60] | y |
Tổng | N = 60 |
Nếu trung vị của mẫu dữ liệu ghép nhóm dưới đây có giá trị là 28,5 thì các tần số cần tìm có giá trị là bao nhiêu?
Bảng số liệu được ghi như sau:
Nhóm | Tần số | Tần số tích lũy |
(0; 10] | x | |
(10; 20] | 8 | x + 8 |
(20; 30] | 20 | x + 28 |
(30; 40] | 15 | x + 43 |
(40; 50] | 7 | x + 50 |
(50; 60] | x + y + 50 | |
Tổng | N = 60 |
|
Ta có:
Theo bài ra ta có:
=> Nhóm chứa trung vị là
Suy ra:
Khi đó ta có:
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Chọn đáp án đúng?
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 va 17)
Khi đó
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Tìm tất cả các giá trị của x để ba số
theo thứ tự lập thành một cấp số nhân.
Ta có:
Ba số theo thứ tự lập thành một cấp số nhân
Cho đường thẳng
song song với mặt phẳng
. Nếu mặt phẳng
chứa
và cắt
theo giao tuyến
thì
và
là hai đường thẳng:
Cho đường thẳng song song với mặt phẳng
. Nếu mặt phẳng
chứa
và cắt
theo giao tuyến
thì
song song với
.
Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:
Nhóm dữ liệu | Tần số |
(0; 15] | 4 |
(15; 30] | 12 |
(30; 45] | 17 |
(45; 60] | 7 |
Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.
Cho hàm số
. Hãy chọn kết luận đúng.
Ta có:
Lại có:
=> Hàm số liên tục phải tại x = 1
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N lần lượt là trung điểm AD và BC (xem hình vẽ bên). Giao tuyến của hai mặt phẳng (SMN) và (SAC) là

Ta có: S là điểm chung thứ nhất giữa hai mặt phẳng (SMN) và (SAC).
Ta có là tâm của hình hình hành
=> (do M, N lần lượt là trung điểm của AD và BC).
Trong mặt phẳng (ABCD), ta có:
=> O là điểm chung thứ hai giữa hai mặt phẳng (SMN) và (SAC).
Vậy
Gọi S là tập nghiệm của phương trình
. Khẳng định nào sau đây là đúng?
Ta có
Nhận thấy với nghiệm .
bằng:
Ta có:
bằng
Đặt .
Ta có khi
Vậy .
Dưới đây là sự phân bố một nhóm người theo mức thu nhập khác nhau:
Thu nhập (triệu đồng) | [0; 8) | [8; 16) | [16; 24) | [24; 32) | [32; 40) | [40; 48) |
Số người | 8 | 7 | 16 | 24 | 15 | 7 |
Tính mức thu nhập trung bình của nhóm người.
Mức thu nhập | |||
[0; 8) | 8 | 4 | 32 |
[8; 16) | 7 | 12 | 84 |
[16; 24) | 16 | 20 | 320 |
[24; 32) | 24 | 28 | 672 |
[32; 40) | 15 | 36 | 540 |
[40; 48) | 7 | 44 | 308 |
| N = 77 | 1956 | |
Mức thu nhập trung bình của nhóm người là:
Cho khai triển
. Tìm m để tổng các hệ số của khai triển bằng 0.
Tổng các hệ số của khai triển là giá trị của biểu thức tại
Vậy tổng các hệ số của khai triển là:
Để tổng các hệ số khai triển bằng 0 thì
Trong các mệnh đề sau, những mệnh đề nào đúng? (Có thể chọn nhiều đáp án)
"Hai mặt phẳng phân biệt cùng song song với một đường thẳng thì song song với nhau." sai vì hai mặt phẳng đó có thể cắt nhau.
"Hai mặt phẳng cùng song song với một mặt phảng thứ ba thì song song với nhau." sai vì hai mặt phẳng có thể trùng nhau.
Cho tứ diện
. Lấy
sao cho
,
là trọng tâm tam giác
. Xác định mặt phẳng song song với đường thẳng
?
Hình vẽ minh họa
Gọi là trung điểm của
.
Xét tam giác ta có:
Cho mặt phẳng
có các điểm
. Đường thẳng
đi qua hai điểm
. Khi đó giữa mặt phẳng
và đường thẳng
có:
Giữa mặt phẳng và đường thẳng
có đúng một điểm chung.
Hàm số
đạt giá trị nhỏ nhất tại
. Mệnh đề nào sau đây là đúng?
Ta có:
Mà
.
Suy ra giá trị nhỏ nhất của hàm số bằng .
Dấu xảy ra
Tìm tập xác định
của hàm số
?
Ta có:
Hàm số được xác định khi
Vậy tập xác định của hàm số là
Cho
với
. Phải bổ sung thêm giá trị
bằng bao nhiêu thì hàm số
liên tục trên
?
Ta có:
Để hàm số liên tục trên thì
Cho hình chóp tứ giác
có đáy là hình bình hành. Gọi
lần lượt là trung điểm của
và
(như hình vẽ). Chọn mệnh đề đúng trong các mệnh đề dưới đây.

Ta có:
Cho đường tròn đường kính
. Tìm số đo
của cung có độ dài
?
mà
vậy số đo
cần tìm là
.
Cho tứ diện
. Trên
,
lần lượt lấy hai điểm
sao cho
cắt
tại
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa:
Ta có: là điểm chung của hai mặt phẳng
và
Ta lại có: nên
là điểm chung thứ hai.
Vậy giao tuyến của hai mặt phẳng và
là
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai
b) Nhóm chứa trung vị của mẫu số liệu là
. Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là:
. Đúng||Sai
d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là
. Sai||Đúng
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai
b) Nhóm chứa trung vị của mẫu số liệu là . Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: . Đúng||Sai
d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là . Sai||Đúng
a) Điểm trung bình của lớp 11A là:
b) Nhóm chứa trung vị của mẫu số liệu là
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là:
Ta có:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
N = 42 |
|
Tần số tích lũy |
5 |
14 |
26 |
36 |
42 |
|
Cỡ mẫu
=> Nhóm chứa là [60; 80)
(Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)
Khi đó ta tìm được các giá trị:
Mốt thuộc nhóm
Ta có:
|
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
|
|
|
|
Khi đó mốt của dữ liệu được tính như sau:
Dãy số nào sau đây có giới hạn bằng
?
Vì nên
.
Khẳng định nào sau đây đúng?
Trong khoảng thì hàm số
đồng biến.
bằng
Ta có:
Phương trình
có nghiệm khi:
Xét phương trình:
Trường hợp 1:
Phương trình (*) trở thành:
3 + 3.m - 4.0 = 0 (Vô lí)
Trường hợp 2:
Chia cả hai vế của phương trình (*) cho cos2x
Phương trình (*) trờ thành: (**)
Đặt tanx = t, phương trình trở thành:
Phương trình đã cho có nghiệm => (***) có nghiệm
=> (luôn đúng với mọi m)
=> Phương trình đã cho có nghiệm với mọi
Cho dãy số
thỏa mãn điều kiện
;
với
số hạng
bằng:
Ta có:
Vậy
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho ba mặt phẳng
đôi một song song. Hai đường thẳng
lần lượt cắt ba mặt phẳng tại
và
, (
nằm giữa
và
,
nằm giữa
và
). Biết rằng
. Tính
.
Ta có: