Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 0}\frac{\sqrt{4x^{2} - 2x + 1}
- \sqrt{1 - 2x}}{x}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{4x^{2}
- 2x + 1} - \sqrt{1 - 2x}}{x}

    = \lim_{x ightarrow 0}\frac{\left(
\sqrt{4x^{2} - 2x + 1} - \sqrt{1 - 2x} ight)\left( \sqrt{4x^{2} - 2x +
1} + \sqrt{1 - 2x} ight)}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 -
2x} ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x^{2}}{x\left( \sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}
ight)}

    = \lim_{x ightarrow
0}\frac{4x}{\sqrt{4x^{2} - 2x + 1} + \sqrt{1 - 2x}} = \frac{0}{1 + 1} =
0

  • Câu 2: Nhận biết

    Cho hai đường thẳng ab lần lượt nằm trên hai mặt phẳng song song (P)(Q).

    Mệnh đề đúng là: "Nếu ab không song song với nhau, điểm M không nằm trên (P)(Q) thì luôn có duy nhất một đường thẳng đi qua M cắt cả ab ."

  • Câu 3: Thông hiểu

    Trong giới hạn sau đây, giới hạn nào bằng -1?

    Ta có:

    \lim \frac{{2{n^2} - 3}}{{ - 2{n^3} - 4}} = \lim \frac{{\frac{2}{n} - \frac{3}{{{n^3}}}}}{{ - 2 - \frac{4}{{{n^3}}}}} = 0

    \lim \frac{{2{n^2} - 3}}{{ - 2{n^2} - 1}} = \lim \frac{{2 - \frac{3}{{{n^2}}}}}{{ - 2 - \frac{1}{{{n^2}}}}} =  - 1

    \lim \frac{{2{n^2} - 3}}{{ - 2{n^3} + 2{n^2}}} = \lim \frac{{\frac{2}{n} - \frac{3}{{{n^3}}}}}{{ - 2 - \frac{2}{n}}} = 0

    \lim \frac{{2{n^3} - 3}}{{ - 2{n^2} - 1}} = \lim \frac{{{n^3}\left( {2 - \frac{3}{{{n^3}}}} ight)}}{{ - {n^2}\left( {2 + \frac{1}{{{n^2}}}} ight)}} =  - \infty

  • Câu 4: Nhận biết

    Trong các dãy số sau, dãy số nào là một cấp số nhân?

    Ta có:

    Dãy số \left( u_{n} ight) là cấp số nhân

    \Leftrightarrow u_{n} = q.u_{n -
1};\left( n \in \mathbb{N}^{*} ight)

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}} = ... = q;\left( u_{n} eq 0
ight)

    Gọi q là công bội.

    Xét đáp án 128; - 64;32; -
16;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} = -
\frac{1}{2} = \frac{u_{3}}{u_{2}} = \frac{u_{4}}{u_{3}}

    Xét đáp án \sqrt{2};2;4;4\sqrt{2};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{\sqrt{2}} eq 2 = \frac{u_{3}}{u_{2}}

    Xét đáp án 5;6;7;8;...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{6}{5} eq \frac{7}{6} = \frac{u_{3}}{u_{2}}

    Xét đáp án 15;5;1;\frac{1}{5};...

    \Leftrightarrow \frac{u_{2}}{u_{1}} =
\frac{1}{3} eq \frac{1}{5} = \frac{u_{3}}{u_{2}}

  • Câu 5: Thông hiểu

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}\frac{x}{x +1} = \frac{2}{2 + 1} = \frac{2}{3}.

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (2x - 1) \cdot
\frac{1}{x - 1} ightbrack = + \infty (do \lim_{x ightarrow 1^{+}}(2x - 1) = 1\lim_{x ightarrow 1^{+}}\frac{1}{x - 1} =
+ \infty).

    c) Ta có:

    \lim_{x ightarrow 3^{-}}\frac{x^{2}- 3x}{x^{2} - 6x + 9} = \lim_{x ightarrow 3^{-}}\frac{x(x - 3)}{(x -3)^{2}}

    = \lim_{x ightarrow 3^{-}}\frac{x}{x -
3} = \lim_{x ightarrow 3^{-}}\left( x\frac{1}{x - 3} ight) = -
\infty

    Do \lim_{x ightarrow 3^{-}}x =
3\lim_{x ightarrow
3^{-}}\frac{1}{x - 3} = - \infty.

    d) Ta có:

    \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(x - 1)\left( x^{2} + x + 1 ight)\sqrt{\frac{x}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)^{2}}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)}{x + 1}} ightbrack
= 3 \cdot \sqrt{\frac{0}{2}} = 0

  • Câu 6: Nhận biết

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) tuần hoàn có chu kì T =
3\pi khi

    Hàm số y = 3\cos\left( \dfrac{\pi}{4} - mxight) có nghĩa \forall
x\mathbb{\in R \Leftrightarrow}D\mathbb{= R}.

    Chu kì của hàm số T = \frac{2\pi}{| - m|}
= 3\pi \Leftrightarrow m = \pm \frac{2}{3}.

  • Câu 7: Thông hiểu

    Cho dãy số (un) với \ \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = u_{n} + ( - 1)^{2n + 1}\text{.~} \\
\end{matrix} ight.

    Số hạng tổng quát un của dãy số là số hạng nào dưới đây?

    Ta có un + 1 = un + (−1)2n + 1 = un − 1

    u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1

    Cộng vế với vế của các đẳng thức trên, ta được:

    un = 1 − (n−1) = 2 − n.

  • Câu 8: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 9: Nhận biết

    Cho hình chóp S.MNP Q có đáy MNP Q là hình chữ nhật. Giao tuyến của hai mặt phẳng
    (SMN) và (SPQ) song song với đường thẳng nào sau đây?

    Hình vẽ minh họa

    Hai đường thẳng chéo nhau và hai đường thẳng song song

    Xét (SMN) và (SPQ) có:

    S là điểm chung

    MN // P Q

    MN ⊂ (SMN), PQ ⊂ (SPQ)

    => (SMN) ∩ (SPQ) = d với d là đường thẳng đi qua S và song song với MN, PQ

  • Câu 10: Thông hiểu

    Một tổ học sinh gồm 4 nam và 3 nữ. Điểm kiểm tra trung bình của nam và nữ lần lượt là 7 và 8. Tính điểm kiểm tra trung bình của cả tổ.

    Ta có:\left\{ \begin{gathered}  {n_1} = 4;\overline {{x_1}}  = 7 \hfill \\  {n_2} = 3;\overline {{x_2}}  = 8 \hfill \\ \end{gathered}  ight.

    Khi đó điểm số trung bình của cả tổ là:

    \overline{x_{12}} =\frac{n_{1}\overline{x_{1}} + n_{2}\overline{x_{2}}}{n_{1} + n_{2}} =\frac{4.7 + 3.8}{4 + 3} \approx 7,4

  • Câu 11: Nhận biết

    Hỏi x = \frac{{7\pi }}{3} là một nghiệm của phương trình nào sau đây?

     Với x = \frac{{7\pi }}{3}, suy ra \left\{ \begin{gathered}  \sin x = \sin \frac{{7\pi }}{3} = \frac{{\sqrt 3 }}{2} \hfill \\  \cos x = \cos \frac{{7\pi }}{3} = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  2\sin x - \sqrt 3  = 0 \hfill \\  2\cos x - 1 = 0 \hfill \\ \end{gathered}  ight.

  • Câu 12: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) với \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.. Công thức số hạng tổng quát của cấp số cộng này là:

    Ta có:

    \left\{ \begin{matrix}
u_{2} + u_{3} - u_{6} = 7 \\
u_{4} + u_{8} = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left( u_{1} + d ight) + \left( u_{1} + 2d ight) - \left( u_{1} + 5d
ight) = 7 \\
\left( u_{1} + 3d ight) + \left( u_{1} + 7d ight) = - 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} - 2d = 7 \\
2u_{1} + 10d = - 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 3 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{n} = 3 + (n - 1)( - 2) =
5 - 2n

  • Câu 13: Nhận biết

    Kết quả kiểm tra học kì 1 môn Toán của học sinh lớp 11A được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

    Số học sinh có điểm dưới 7 điểm là:

    Quan sát biểu đồ ta thấy số học sinh có điểm dưới 7 điểm là: 6 + 7 + 17 = 30 học sinh.

  • Câu 14: Vận dụng

    Có bao nhiêu số tự nhiên chẵn k để \lim \frac{{n - 2\sqrt {{n^k}} \cos \frac{1}{n}}}{{2n}} = \frac{1}{2}

    Ta có:

    \frac{{n - 2\sqrt {{n^k}} \cos \frac{1}{n}}}{{2n}} = \frac{1}{2} - \frac{{\sqrt n \sin 2n}}{{2n}}

    Bài toán trở thành \lim \frac{{\sqrt n \sin 2n}}{{2n}} = 0

    Ta có: \lim \cos \frac{1}{n} = \cos 0 = 1 nên bài toán trở thành tìm k sao cho

    \begin{matrix}  \lim \dfrac{{\sqrt {{n^k}} }}{n} = \lim \left( {{n^{\dfrac{k}{2} - 1}}} ight) = 0 \hfill \\   \Leftrightarrow \dfrac{k}{2} - 1 < 0 \Leftrightarrow k < 2 \hfill \\ \end{matrix}

    k \in {\mathbb{N}^*};k = 3l

    => Không tồn tại giá trị của k (do k nguyên dương và k chẵn).

  • Câu 15: Vận dụng

    Biết \lim_{x
ightarrow 0}\frac{\sin x}{x} = 1. Hàm số f(x) = \left\{ \begin{matrix}\dfrac{\tan x}{x}\ khi\ x eq 0 \\0\ \ \ \ \ \ khi\ x = 0 \\\end{matrix} ight. liên tục trên khoảng nào sau đây?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{2} + k\pi|k\mathbb{\in Z}
ight\}có nghĩa là

    D = \underset{k\mathbb{\in
Z}}{\cup}\left( \frac{\pi}{2} + k\pi;\frac{3\pi}{2} + k\pi ight) = ...
\cup \left( - \frac{\pi}{2};\frac{\pi}{2} ight) \cup \left(
\frac{\pi}{2};\frac{3\pi}{2} ight) \cup ...

    Khi đó

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\frac{\tan x}{x}

    = \lim_{x ightarrow 0}\frac{\sin
x}{x}.\frac{1}{\cos x} = 1.\frac{1}{cos0} = 1 eq 0 = f(0)

  • Câu 16: Thông hiểu

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x)=\frac{x^{3}-3x+2}{x-1} với mọi xeq 1. Tính f(1)

     Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 1} f\left( x ight) = \mathop {\lim }\limits_{x \to 1} \dfrac{{{x^3} - 3x + 2}}{{x - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {x + 2} ight){{\left( {x - 1} ight)}^2}}}{{x - 1}} \hfill \\   = \mathop {\lim }\limits_{x \to 1} \left( {x + 2} ight)\left( {x - 1} ight) = 0 \hfill \\ \end{matrix}

    Do hàm số đã cho xác định và liên tục trên \mathbb{R}

    => Hàm số liên tục tại x = 1

    => \mathop {\lim }\limits_{x \to 1} f\left( x ight) = f\left( 1 ight) = 0

  • Câu 17: Nhận biết

    Tính tổng 10 số hạng đầu của cấp số cộng u_{1} = 5;u_{2} = 9.

    Theo bài ra ta có:

    d = u_{2} - u_{1} = 4

    \Rightarrow S_{10} = \frac{10}{2}.\left(
u_{1} + u_{10} ight) = 5\left( 2u_{1} + 9d ight) = 230

  • Câu 18: Vận dụng

    Tính tổng T tất cả các nghiệm của phương trình 2\cos 2x + 2\cos x - \sqrt 2  = 0 trên đoạn \left[ {0;3\pi } ight].

    Phương trình 2\cos 2x + 2\cos x - \sqrt 2  = 0

    \Leftrightarrow 2\left( {2{{\cos }^2}x - 1} ight) + 2\cos x - \sqrt 2  = 0

    \Leftrightarrow 4{\cos ^2}x + 2\cos x - 2 - \sqrt 2  = 0

    \Leftrightarrow \left[ \begin{gathered}  \cos x = \frac{{\sqrt 2 }}{2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,(TM) \hfill \\  \cos x =  - \frac{{\sqrt 2  + 1}}{2}\,\,\,\,\,\,(L) \hfill \\ \end{gathered}  ight.\,\, \Leftrightarrow \cos x = \frac{{\sqrt 2 }}{2}

     \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi \xrightarrow{{x \in \left[ {0;3\pi } ight]}}x = \frac{\pi }{4};x = \frac{{9\pi }}{4} \hfill \\  x =  - \,\frac{\pi }{4} + k2\pi \xrightarrow{{x \in \left[ {0;3\pi } ight]}}x = \frac{{7\pi }}{4} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{}}T = \frac{\pi }{4} + \frac{{9\pi }}{4} + \frac{{7\pi }}{4} = \frac{{17\pi }}{4}.

  • Câu 19: Nhận biết

    Với k là số nguyên dương, c là hằng số, giới hạn \lim_{x ightarrow +
\infty}\frac{c}{x^{k}} bằng

    Ta có \lim_{x ightarrow + \infty}c =
c\lim_{x ightarrow +
\infty}x^{k} = + \infty nên \lim_{x
ightarrow + \infty}\frac{c}{x^{k}} = 0

  • Câu 20: Nhận biết

    Trong các mệnh đề sau đây, mệnh đề nào sai?

    Hai đường thẳng phân biệt m,n cùng song song với (\alpha) thì m,n có thể cắt nhau cùng nằm trong (\alpha).

  • Câu 21: Nhận biết

    \tan x có nghĩa khi nào?

    Để \tan x có nghĩa thì \cos x e 0

    => x eq \frac{\pi}{2} +k\pi

  • Câu 22: Vận dụng

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Đáp án là:

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Hình vẽ minh họa

    Xét (ABA')(SCD) ta có:

    \left\{ \begin{matrix}
A' \in SC,SC \subset (SCD) \\
A' \in (ABA') \\
\end{matrix} ight.\  \Rightarrow A' là điểm chung thứ nhất.

    Gọi I = AB \cap CD

    \left\{ \begin{matrix}
I \in AB,AB \subset (ABA') \\
I \in CD,CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I là điểm chung thứ hai.

    \Rightarrow (ABA') \cap (SCD) =
IA'

    Gọi M = IA' \cap SD. Ta có:

    (ABA') \cap (SCD) = A'M

    (ABA')\cap (SAD)=AM

    (ABA') \cap (ABCD) = AB

    (ABA') \cap (SBC) =
BA'

    Thiết diện là tứ giác ABA'M.

    Vậy thiết diện là đa giác có 4 cạnh.

  • Câu 23: Thông hiểu

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Đáp án là:

    Phương trình lượng giác \tan\left( 2x +
\frac{\pi}{3} ight) = - 1 có nghiệm là x = - \frac{a\pi}{b} + \frac{k\pi}{2}\ \left(
k\mathbb{\in Z} ight) với a,b \in
\mathbb{N}^{*}; (a,b) = 1. Giá trị của biểu thức T = a^{2} - b là bao nhiêu?

    Đáp án: 25

    Ta có:

    \tan\left( 2x + \frac{\pi}{3} ight) =
- 1

    \Leftrightarrow \tan\left( 2x +\frac{\pi}{3} ight) = \tan\left( - \frac{\pi}{4} ight)

    \Leftrightarrow 2x + \frac{\pi}{3} = -
\frac{\pi}{4} + k\pi

    \Leftrightarrow 2x = - \frac{7\pi}{12} +
k\pi

    \Leftrightarrow x = - \frac{7\pi}{24} +
\frac{k\pi}{2}\ \left( k\mathbb{\in Z} ight)

    Vậy phương trình có họ nghiệm là:x = -
\frac{7\pi}{24} + \frac{k\pi}{2}\ \left( k\mathbb{\in Z}
ight).

    Do đó a = 7,b = 24

    \Rightarrow T = a^{2} - b = 7^{2} - 24 =
25.

  • Câu 24: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh bên SA, SB, SC, SD. Tứ giác MNPQ là hình gì?

    Hình vẽ minh họa

    Tứ giác MNPQ là hình bình hành.

  • Câu 25: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang có cạnh đáy là AB,CD. Gọi M,N lần lượt là trung điểm của AD;BC, điểm P
\in SA;(P eq S;P eq A). Xác định giao tuyến của hai mặt phẳng (SAB);(MNP).

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
P = (SAB) \cap (MNP) \\
MN \subset (MNP) \\
AB \subset (SAB) \\
MN//AB \\
\end{matrix} ight.

    \Rightarrow (SAB) \cap (MNP) =
PQ với Px//AB//MN,Q \in
SB.

    Vậy giao tuyến của hai mặt phẳng (SAB);(MNP) là đường thẳng qua P và song song với AB.

  • Câu 27: Nhận biết

    Quan sát bảng sau và tìm khoảng chứa tứ phân vị thứ ba:

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tần số

    8

    12

    22

    17

    Ta có:

    Khoảng dữ liệu

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    Tổng

    Tần số

    8

    12

    22

    17

    N = 59

    Tần số tích lũy

    8

    20

    42

    59

     

    Ta có: N = 59

    \Rightarrow \frac{3N}{4} =\frac{3.59}{4} = 44,25

    Vậy nhóm chứa tứ phân vị thứ ba là: [40; 50)

  • Câu 28: Vận dụng

    Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:

    Thời gian (phút)

    Số nhân viên

    [0; 5)

    25

    [5; 10)

    14

    [10; 15)

    x

    [15; 20)

    13

    [20; 25)

    12

    [25; 30)

    y

    Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?

    Ta có: N = 100 \Rightarrow x + y =36

    Lại có:

    Thời gian (phút)

    Số nhân viên

    Tần số tích lũy

    [0; 5)

    25

    25

    [5; 10)

    14

    39

    [10; 15)

    x

    39 + x

    [15; 20)

    13

    52 + x

    [20; 25)

    12

    64 + x

    [25; 30)

    y

    64 + x + y

    Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)

    Khi đó:

    \Rightarrow \left\{ \begin{matrix}l = 10;\dfrac{N}{2} = 50,m = 39,f = x \\c = 15 - 10 = 5 \\\end{matrix} ight.

    \Rightarrow M_{e} = l +\frac{\frac{N}{2} - m}{f}.c

    \Leftrightarrow 12,5 = 10 + \frac{50 -39}{x}.5 \Leftrightarrow x = 22

    \Rightarrow y = 36 - 22 =14

  • Câu 29: Vận dụng

    Cho hai hình bình hành ABCD và ABEF có tâm lần lượt là O, O’ và không cùng nằm trong một mặt phẳng. Gọi M là trung điểm của AB.

    (I) (ADF) // (BCE)

    (II) (MOO’) // (ADF)

    (III) (MOO’) // (BCE)

    (IV) (AEC) // (BDF)

    Khẳng định nào sau đây là đúng

    Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)

    => BC // (ADF); BE // (ADF)

    Mà BC ∩∩ BE = B

    =. (ADF) // (BEC).

    O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD

    Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF

    MO’ // (ADF) (1)

    Tương tự MO là đường trung bình của tam giác ABD nên MO // AD

    MO // (ADF) (2)

    Từ (1) và (2) suy ra (MOO’) // (ADF)

    Chứng minh tương tự ta cũng có (MOO’) // (BCE).

    Hai mặt phẳng (AEC) và (BDF) có:

    AC ∩ DB = O ; AE ∩ BF = O’

    Suy ra (AEC) ∩ (BDF) = OO’.

    Vậy khẳng định (I); (II); (III) đúng.

  • Câu 30: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 31: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.

    a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai

    b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai

    c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai

    d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng

    Hình vẽ minh họa

    a) Ta có: S \in (SEF) \cap (SCD)\ \
(1)

    Trong (ABCD)I = EF \cap CD

    \Rightarrow \left\{ \begin{matrix}
I \in EF \subset (EFS) \\
I \in CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I \in (EFS) \cap (SCD)\ \ \
(2)

    Từ (1) và (2) suy ra SI = (SEF) \cap
(SCD)

    b) Ta có: \left\{ \begin{matrix}
K \in (EFK) \\
K \in SC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow K \in (EFK) \cap (SAC)

    EF//AC do EF là đường trung bình trong tam giác ABC

    \left\{ \begin{matrix}
EF \subset (EFK) \\
AC \subset (SAC) \\
\end{matrix} ight.\  \Rightarrow (EFK)\bigcap(SAC) =
Kx//EF//AC

    c) Chọn (SBC) chứa FK

    Ta có: \left\{ \begin{matrix}
S \in (SBC) \cap (SAD) \\
BC//AD \\
BC \subset (SBC);AD \subset (SAD) \\
\end{matrix} ight.

    (SBC) \cap (SAD) =
Sy//AD//BC

    d) Đường thẳng AB song song với măt phẳng (SFD) sai.

  • Câu 32: Thông hiểu

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Ta có cấp số nhân (un) nên khi đó:

    \begin{matrix}\left\{ {\begin{array}{*{20}{c}}  {{u_m} = 16} \\   {{u_{m + 1}} = 36} \end{array}} ight. \Leftrightarrow \dfrac{{{u_{m + 1}}}}{{{u_m}}} = \dfrac{{36}}{{16}} = \dfrac{9}{4} \Rightarrow q = \dfrac{9}{4} \hfill \\   \Rightarrow {u_{m + 2}} = {u_{m + 1}}.q = 36.\dfrac{9}{4} = 81 \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Đáp án là:

    Cho hình chóp S\ ABCDEFcó đáy ABCDEF là lục giác đều tâm O. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là SO

    Đáp án: 3

    Hình vẽ minh họa

    (SAD),(SCF),(SBE)có chung giao tuyến SO.

  • Câu 34: Vận dụng

    Cho dãy số \left( u_{n} ight) xác định bởi công thức \left\{ \begin{matrix}
u_{1} = 2020 \\
u_{n + 1} = u_{n} + n \\
\end{matrix} ight.\ ;\left( \forall n \in \mathbb{N}^{*}
ight). Tìm số hạng tổng quát của dãy số?

    Ta có:

    u_{n + 1} - u_{n} = n,\forall n \in
\mathbb{N}^{*} suy ra

    u_{2} - u_{1} = 1

    u_{3} - u_{2} = 2

    u_{4} - u_{3} = 3

    u_{n + 1} - u_{n} = n

    Cộng các vễ theo đẳng thức trên ta được

    u_{n + 1} - u_{n} = 1 + 2 + 3 + ... + n
= \frac{n(n + 1)}{2}

    \Leftrightarrow u_{n + 1} = 2020 +
\frac{n(n + 1)}{2};\left( \forall n \in \mathbb{N}^{*}
ight)

  • Câu 35: Vận dụng cao

    Tính tổng S = \left( \frac{1}{2} -
\frac{1}{3} ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... +
\left( \frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...:

    Ta có:

    S = \left( \frac{1}{2} - \frac{1}{3}
ight) + \left( \frac{1}{4} - \frac{1}{9} ight) + ... + \left(
\frac{1}{2^{n}} - \frac{1}{3^{n}} ight) + ...

    = \left( {\underbrace {\dfrac{1}{2} + \dfrac{1}{4} + ... + \dfrac{1}{{{2^n}}} + ...}_{CSN:{u_1} = q = \dfrac{1}{2}}} ight) - \left( {\underbrace {\dfrac{1}{3} + \dfrac{1}{5} + .... + \dfrac{1}{{{3^n}}}}_{CSN:{u_1} = q = \dfrac{1}{3}}} ight)

    = \dfrac{\dfrac{1}{2}}{1 - \dfrac{1}{2}} -\dfrac{\dfrac{1}{3}}{1 - \dfrac{1}{3}} = 1 - \dfrac{1}{2} =\dfrac{1}{2}

  • Câu 36: Vận dụng cao

    Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?

    Ta có 2sin\frac{x}{2} \cdot S = 2sinx\cdot sin\frac{x}{2} + 2sin2x \cdot sin\frac{x}{2} + .. + 2sinnx \cdotsin\frac{x}{2}

    = \cos\frac{x}{2} - \cos\frac{3x}{2} +\cos\frac{3x}{2} - \cos{x\frac{5x}{2}} + \ldots + \cos{x\frac{2n -1}{2}x} - \cos{\frac{2n + 1}{2}x}

    = cos\frac{x}{2} - cos\frac{2n +1}{2}x

    Vậy S = \frac{cos\frac{x}{2} - cos\frac{2n+ 1}{2}x}{2sin\frac{x}{2}}

  • Câu 37: Thông hiểu

    Cho cung lượng giác \mathop {AM}^{\displaystyle\frown} trên đường tròn lượng giác như hình vẽ. Số đo của cung \mathop {AM}^{\displaystyle\frown} bằng bao nhiêu?

    Ta có: \widehat{MOB} = \frac{\pi}{4}\Rightarrow \widehat{AOM} = \frac{3\pi}{2} - \frac{\pi}{4} =\frac{5\pi}{4}

    Cung lượng giác \mathop {AM}^{\displaystyle\frown} có điểm đầu là A, điểm cuối là M và có hướng theo chiều dương.

    Vậy số đo cung AM là \frac{5\pi}{4} +k2\pi,\left( k\mathbb{\in Z} ight)

  • Câu 38: Nhận biết

    Cho c là hằng số, k là một số nguyên dương. Quy tắc nào sau đây sai?

    Ta có \lim_{x ightarrow +
\infty}\frac{1}{x^{k}} = 0 với k là một số nguyên dương.

  • Câu 39: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm kết quả đo chiều cao (đơn vị: cm) của một nhóm học sinh lớp 11 như sau:

    Số học sinh có chiều cao không vượt quá 168 cm so với tất cả các học sinh chiếm bao nhiêu phần trăm?

    Số học sinh tham gia đo chiều cao là 36 học sinh

    Số học sinh cao không quá 168cm là: 9 + 15 = 24 học sinh chiếm \frac{24.100\%}{36} \approx 66,7\%

  • Câu 40: Vận dụng

    Công bội nguyên dương của cấp số nhân (u_{n}) thỏa mãn \left\{\begin{matrix}u_{1}+u_{2}+u_{3}=14\\ u_{1}u_{2}u_{3}=64\end{matrix}ight. là:

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_2} + {u_3} = 14} \\   {{u_1}{u_2}{u_3} = 64} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.q + {u_1}.{q^2} = 14} \\   {{u_2}.{{\left( {{u_2}} ight)}^2} = 64} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.q + {u_1}.{q^2} = 14} \\   {{{\left( {{u_2}} ight)}^3} = 64} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.q + {u_1}.{q^2} = 14} \\   {{u_2} = 4} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.{q^2} = 10} \\   {{u_1}.q = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.{q^2} = 10} \\   {{u_1}.q = 4} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\left[ {\begin{array}{*{20}{c}}  {q = 2} \\   {q = \dfrac{1}{2}} \end{array}} ight.} \\   {{u_1}.q = 4} \end{array}} ight.

  • Câu 41: Thông hiểu

    Cho tứ diện ABCD. Lấy I;J lần lượt là trung điểm của BCBD, lấy điểm E \in AD;E eq A;E eq D. Thiết diện cắt bởi mặt phẳng (IJE) với tứ diện ABCD là:

    Hình vẽ minh họa

    Vì I và J là trung điểm của BC và BD nên IJ//CD (1)

    \left\{ \begin{matrix}
IJ \subset (IJE) \\
CD \subset (ACD) \\
E \in (IJE) \cap (ACD) \\
\end{matrix} ight. nên giao tuyến của hai mặt phẳng (ACD)(IJE) là đường thẳng d qua E và song song với CD.

    Gọi F = d \cap AC ta có tứ giác IJEF là thiết diện của tứ diện với mặt phẳng (IJE).

    Vì EF//IJ nên IJEF là hình thang.

  • Câu 42: Nhận biết

    Dãy số nào sau đây có giới hạn bằng 0?

    \left| q ight| < 1 nên \lim {q^n} = 0.

  • Câu 43: Nhận biết

    Cho hàm số f(x) xác định trên tập số thực và có đồ thị như hình vẽ:

    Hỏi hàm số f(x) không liên tục tại điểm nào sau đây?

    Quan sát đồ thị hàm số ta thấy: \left\{
\begin{matrix}
\lim_{x ightarrow 1^{-}}f(x) = 3 \\
\lim_{x ightarrow 1^{+}}f(x) = 0 \\
\end{matrix} ight.

    Vậy \lim_{x ightarrow 1^{-}}f(x) eq
\lim_{x ightarrow 1^{+}}f(x) nên không tồn tại \lim_{x ightarrow 1}f(x). Do đó hàm số gián đoạn tại x_{0} = 1.

  • Câu 44: Vận dụng cao

    Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Ta có y = 1 + \left| \cos x ight| \geq1y = 1 + \left| \sin x ight|\geq 1 nên loại C và D.

    Ta thấy tại x = \pi thì y = 0. Thay vào hai đáp án A và B thì chỉ có B thỏa mãn.

  • Câu 45: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính mức doanh thu trung bình của cửa hàng?

    Đáp án: 9,4 (triệu đồng)

    (Kết quả ghi dưới dạng số thập phân)

    Đáp án là:

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tính mức doanh thu trung bình của cửa hàng?

    Đáp án: 9,4 (triệu đồng)

    (Kết quả ghi dưới dạng số thập phân)

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Giá trị đại diện

    6

    8

    10

    12

    14

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Do đó doanh thu trung bình của cửa hàng là:

    \overline{x} = \frac{6.2 + 8.7 + 10.7 +12.3 + 14.1}{20} = 9,4 (triệu đồng)

    Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo