Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SCI là giao điểm của AM và mặt phẳng (SBD). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi SO \cap AM \equiv ISO \subset (SBD)

    \Rightarrow AM \cap (SBD) \equiv \left\{
I ight\} I là trọng tâm tam giác SAC

    \Rightarrow IS = 2IO \Rightarrow IS >
IO

  • Câu 2: Vận dụng cao

    Số thập phân vô hạn tuần hoàn 5,231231… được biểu diễn bởi phân số tối giản \frac{a}{b}. Tính tổng Q = a - b.

    Ta có:

    \begin{matrix}
  5,231231... = 5 + 0,231 + 0,000231 + ... \hfill \\
   = 5 + \dfrac{{231}}{{{{10}^3}}} + \dfrac{{231}}{{{{10}^6}}} + ... \hfill \\ 
\end{matrix}

    Dãy số \frac{231}{10^{3}};\frac{231}{10^{6}};... là một cấp số nhân lùi vô hạn có số hạng đầu là u_{1} = \frac{231}{10^{3}}, công sai là q = 10^{- 3}

    \begin{matrix}
   \Rightarrow Q = 5 + \dfrac{{\dfrac{{231}}{{{{10}^3}}}}}{{1 - \dfrac{1}{{{{10}^{ - 3}}}}}} = 5 + \dfrac{{231}}{{999}} = \dfrac{{1742}}{{333}} \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {a = 1742} \\ 
  {b = 333} 
\end{array}} ight. \Rightarrow Q = 1409 \hfill \\ 
\end{matrix}

  • Câu 3: Nhận biết

    Hàm số y =  1-2\sin x+\tan x + \cot x không xác định trong khoảng nào trong các khoảng sau đây?

    Hàm số xác định khi 

    \begin{matrix}   \Leftrightarrow \left\{ \begin{gathered}  \sin x e 0 \hfill \\  \cos x e 0 \hfill \\ \end{gathered}  ight. \hfill \\   \Leftrightarrow \sin 2x e 0 \hfill \\   \Leftrightarrow 2x e k\pi  \hfill \\   \Leftrightarrow x e \dfrac{{k\pi }}{2},k \in \mathbb{Z}. \hfill \\ \end{matrix}

    Ta chọn k = 3 \to x e \frac{{3\pi }}{2} nhưng điểm \frac{{3\pi }}{2} thuộc khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

    Vậy hàm số không xác định trong khoảng \left( {\pi  + k2\pi ;2\pi  + k2\pi } ight)

  • Câu 4: Thông hiểu

    \mathop {\lim }\limits_{x \to  + \infty } (x + 50)\sqrt {\frac{x}{{{x^3} - 6}}} bằng:

    Ta có: 

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } (x + 50)\sqrt {\dfrac{x}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{x{{\left( {x + 50} ight)}^2}}}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{{x^3} + 100{x^2} + 50x}}{{{x^3} - 6}}}  \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \sqrt {\dfrac{{1 + \dfrac{{100}}{{{x^2}}} + \dfrac{{50}}{{{x^3}}}}}{{1 - \dfrac{6}{{{x^3}}}}}}  = 1 \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Tính giới hạn B =
\lim_{x ightarrow ( - 2)^{-}}\left( \frac{3 + 2x}{x + 2}
ight).

    Ta có:

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {3 + 2x} ight) =  - 1 < 0

    \left\{ {\begin{array}{*{20}{c}}
  {\mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {x + 2} ight) = 0} \\ 
  {x \mapsto {{\left( { - 2} ight)}^ - } \Rightarrow x + 2 < 0} 
\end{array}} ight.

    \Rightarrow B = \lim_{x ightarrow ( -
2)^{-}}\left( \frac{3 + 2x}{x + 2} ight) = + \infty

  • Câu 6: Thông hiểu

    Tính giới hạn E =
\lim_{x ightarrow 3^{+}}\frac{x - 3}{\sqrt{x^{2} - 9}}

    Ta có:

    E = \lim_{x ightarrow 3^{+}}\frac{x -
3}{\sqrt{x^{2} - 9}} = \lim_{x ightarrow 3^{+}}\frac{\sqrt{(x -
3)^{2}}}{\sqrt{(x - 3)(x + 3)}} = \lim_{x ightarrow
3^{+}}\frac{\sqrt{x - 3}}{\sqrt{x + 3}} = 0

  • Câu 7: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Phương trình \cos^{2}x - \sqrt{x} =0 vô nghiệm. Sai||Đúng

    b) Hàm số y = \frac{1}{x^{4} - 3x^{2} +
2} có 4 điểm gián đoạn. Đúng||Sai

    c) \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = 0 Đúng||Sai

    d) Để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị bằng 2. Đúng||Sai

     

    a) Xét hàm số \cos^{2}x - \sqrt{x} =f(x) có tập xác định D = \lbrack 0;
+ \infty)

     

    Hàm số liên tục trên \left\lbrack
0;\frac{\pi}{2} ightbrack ta có: f(0) = 1;f\left( \frac{\pi}{2} ight) = -
\sqrt{\frac{\pi}{2}}

    f(0).f\left( \frac{\pi}{2} ight)
< 0 nên phương trình f(x) =
0 có ít nhất một nghiệm trên \left(
0;\frac{\pi}{2} ight).

    b) Ta có:

    x^{4} - 3x^{2} + 2 = 0 \Leftrightarrow
\left( x^{2} - 1 ight)\left( x^{2} - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x^{2} = 1 \\
x^{2} = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Vậy hàm số đã cho có 4 điểm gián đoạn.

    c) Ta có:

    \lim_{x ightarrow 0}\dfrac{1 -\cos2x}{2\sin\dfrac{3x}{2}} = \lim_{x ightarrow 0}\left\lbrack x.\left(\dfrac{\sin x}{x} ight)^{2}.\dfrac{3}{2}.\left(\dfrac{\sin\dfrac{3x}{2}}{\dfrac{3x}{2}} ight) ightbrack =0

    d) Ta có: D = \mathbb{R}

    với x eq 0 thì f(x) = \frac{x^{2} + 4x}{2x} là hàm phân thức hữu tỉ xác định với mọi x eq
0. Do đó hàm số liên tục trên các khoảng ( - \infty;0),(0; + \infty)

    Tại x = 0 ta có: \lim_{x ightarrow 0}f(x) = \lim_{x ightarrow
0}\left( \frac{x^{2} + 4x}{2x} ight) = \lim_{x ightarrow 0}\left(
\frac{x + 4}{2} ight) = 2

    Để hàm số liên tục trên khoảng ( -
\infty; + \infty) thì hàm số phải liên tục tại x = 0 khi đó:

    \lim_{x ightarrow 0}f(x) = f(0) =
2.

    Vậy để hàm số f(x) = \left\{\begin{matrix}\dfrac{x^{2} + 4x}{2x}\ \ \ khi\ x eq 0 \\f(0)\ \ \ \ \ \ \ khi\ x = \ 0 \\\end{matrix} ight. liên tục trên khoảng ( - \infty; + \infty) thì f(0) nhận giá trị là 2.

  • Câu 8: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?

    Xét dãy số  u_{n}=-2^{n}+15 ta có:

     \begin{matrix}  {u_{n + 1}} =  - {2^{n + 1}} + 15 \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} =  - {2^{n + 1}} + 15 + {2^n} - 15 \hfill \\   =  - {2^{n + 1}} + {2^n}=d \hfill \\ \end{matrix}

    d không cố định => Dãy số u_{n}=-2^{n}+15 không phải là một cấp số cộng.

  • Câu 9: Nhận biết

    Khi điểm M thuộc đường thẳng d, mệnh đề nào sau đây đúng:

    Mệnh đề đúng M \in d.

  • Câu 10: Nhận biết

    Để kết luận đường thẳng a song song với đường thẳng b ta cần giả thiết nào dưới đây?

    Ta có tính chất:

    Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

    Vậy \left\{ \begin{matrix}
a//(\alpha);a//(\beta) \\
(\alpha) \cap (\beta) = b \\
\end{matrix} ight.\  \Rightarrow a//b

  • Câu 11: Vận dụng cao

    Cho tổng S(n) =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)}.

    Khi đó công thức tính tổng S(n) là?

    S(n) = \frac{1}{1.2} + \frac{1}{2.3} +
\frac{1}{3.4} + \ldots + \frac{1}{n(n + 1)}

    = \frac{1}{1} - \frac{1}{2} +
\frac{1}{3} - \frac{1}{4} + \ldots + \frac{1}{n - 1} - \frac{1}{n} +
\frac{1}{n} - \frac{1}{n + 1}

    = 1 - \frac{1}{n + 1} = \frac{n}{n +
1}

  • Câu 12: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
\frac{\sqrt{x + 7} - 3}{x - 3}\ khi\ \ x > 1 \\
\frac{ax + 15}{4}\ \ \ \ \ \ \ \ \ khi\ \ x \leq 1 \\
\end{matrix} ight.. Để hàm số liên tục tại x = 1 thì a nhận giá trị là bao nhiêu?

    Đáp án: -14||- 14

    Tập xác định của hàm số f(x)\mathbb{R}.

    Ta có f(1) = \frac{a +
15}{4}

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\frac{\sqrt{x + 3} - 2}{x - 1} = \lim_{x ightarrow
1^{+}}\frac{1}{\left( \sqrt{x + 3} + 2 ight)} =
\frac{1}{4}

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( \frac{ax + 15}{4} ight) = \frac{a +
15}{4}

    Hàm số đã cho liên tục tại x =
1

    \Leftrightarrow \lim_{x ightarrow
1^{+}}f(x) = \lim_{x ightarrow 1^{-}}f(x) = f(1)

    \Leftrightarrow \frac{1}{4} = \frac{a +
15}{4} \Leftrightarrow a = - 14.

  • Câu 13: Thông hiểu

    Cho một cấp số nhân có các số hạng đều không âm thỏa mãn {u_2} = 6;{u_4} = 24. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.

    Giả sử công bội của cấp số nhân là q

    Ta có:

    => {u_4} = {u_2}.{q^2} \Rightarrow q =  \pm 2

    Do cấp số nhân có các số hạng không âm nên q = 2

    Ta có: {S_{12}} = {u_1}.\frac{{1 - {2^{12}}}}{{1 - 2}} = 3\left( {{2^{12}} - 1} ight)

  • Câu 14: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

  • Câu 15: Vận dụng

    Biết rằng \lim\frac{n + \sqrt{n^{2} +
1}}{\sqrt{n^{2} - n - 2}} = a\sin\frac{\pi}{4} + b. Tính S = a^{3} + b^{3}?

    Ta có:

    \lim\frac{n + \sqrt{n^{2} +
1}}{\sqrt{n^{2} - n - 2}}

    = \lim\dfrac{1 + \sqrt{1 +\dfrac{1}{n^{2}}}}{\sqrt{1 - \dfrac{1}{n} - \dfrac{2}{n}}}

    = \frac{1 + \sqrt{1}}{1} =
2\sqrt{2}\sin\frac{\pi}{4}

    Khi đó \left\{ \begin{matrix}
a = 2\sqrt{2} \\
b = 0 \\
\end{matrix} ight.\  \Rightarrow S = 8

  • Câu 16: Thông hiểu

    Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 11

    Đáp án là:

    Doanh thu bán hàng trong 20 ngày được lựa chọn ngẫu nhiên của một của hàng được ghi lại ở bảng sau (đơn vị: triệu đồng):

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Tìm tứ phân vị thứ ba của mẫu số liệu? (Kết quả làm tròn đến hàng đơn vị).

    Đáp án: 11

    Goi x_{ 1 }, x_{2}, ... ,x_{ 20 } là doanh thu bán hàng trong 20 ngày xếp theo thứ tự không giảm.

    Khi đó: x_{1},x_{2} \in \lbrack 5; 7), x_{3},...,x_{9} \in \lbrack7;\ 9), x_{9},...,x_{16} \in\lbrack 9;\ 11), x_{17},...,x_{19}\in \lbrack 11;\ 13), x_{20} \in\lbrack 13;\ 15)

    Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \lbrack 9;11)

    n = \ 20,n_{m} = \ 7,C = \ 9,u_{m} = \9,u_{m + 1} = 11

    Q_{3} = 9 + \frac{\frac{3.20}{4} -9}{7}(11 - 9) \approx 10,71 \approx 11

  • Câu 17: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 18: Vận dụng

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm của các cạnh ABCD. Mặt phẳng qua MN cắt AD,BC lần lượt tại P,Q. Biết MP cắt NQ tại I. Ba điểm nào sau đây thẳng hàng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
I \in MP \subset (ABD) \\
I \in NQ \subset (BCD) \\
\end{matrix} ight.

    \Rightarrow I \in (BCD) \cap
(ABD)

    BD = (BCD) \cap (ABD)

    Vậy ba điểm I,B,D thẳng hàng.

  • Câu 19: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

    Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Ta có BDB'D' là hình bình hành nên BD//B'D'

    Tương tự ta có AD'//BC'. Từ đó suy ra BD//\left( {AB'D'} ight)BC'//\left( {AB'D'} ight).

    Vậy \left( {C'BD} ight)//\left( {AB'D'} ight)

  • Câu 20: Nhận biết

    Phương trình lượng giác \cot\ x =
\frac{\sqrt{3}}{3} có nghiệm là:

    Ta có

    \cot x = \frac{\sqrt{3}}{3}

    \Leftrightarrow \cot x = \cot\left(
\frac{\pi}{3} ight)

    \Leftrightarrow x = \frac{\pi}{3} +
k\pi,\left( k\mathbb{\in Z} ight)

  • Câu 21: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 22: Nhận biết

    Số 7922 là số hạng thứ bao nhiêu của dãy số un = n2 + 1?

    Ta có 7922 = 7921 + 1 = 892 + 1 ⇒ n = 89

  • Câu 23: Nhận biết

    Cho hàm số y =
f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là:

    Ta có:

    Hàm số y = f(x) liên tục trên (a;b)

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack là: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {a^ + }} f\left( x ight) = f\left( a ight) \hfill \\
  \mathop {\lim }\limits_{x \to {b^ - }} f\left( x ight) = f\left( b ight) \hfill \\ 
\end{gathered}  ight.

  • Câu 24: Nhận biết

    Thời gian chạy trung bình cự li 1000m (giây) của các bạn học sinh là

    Thời gian chạy trung bình cự li 1000m (giây) của các bạn học sinh là:

    \overline{x} = \frac{126.3 + 128.7 +
130.15 + 132.10 + 134.5}{40} = 130,35(giây)

  • Câu 25: Thông hiểu

    Tính giá trị biểu thức B = \lim\left\lbrack \sqrt{n}\left( \sqrt{n + 1} -
\sqrt{n - 1} ight) ightbrack

    B = \lim\left\lbrack \sqrt{n}\left(
\sqrt{n + 1} - \sqrt{n - 1} ight) ightbrack

    B = \lim\frac{\sqrt{n}\left( \sqrt{n +
1} - \sqrt{n - 1} ight)\left( \sqrt{n + 1} + \sqrt{n - 1}
ight)}{\sqrt{n + 1} + \sqrt{n - 1}}

    B = \lim\frac{2\sqrt{n}}{\sqrt{n + 1} +
\sqrt{n - 1}}

    B =\lim\dfrac{\dfrac{2\sqrt{n}}{\sqrt{n}}}{\dfrac{\sqrt{n + 1} + \sqrt{n -1}}{\sqrt{n}}}

    B = \lim\dfrac{2}{\sqrt{1 + \dfrac{1}{n}}+ \sqrt{1 - \dfrac{1}{n}}}

    B = \frac{2}{1 + 1} = 1

  • Câu 26: Vận dụng cao

    Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (h) được cho bởi công thức h = 3cos\left( \frac{\pi t}{8} +\frac{\pi}{4} ight) + 12. Khi nào mực nước của kênh là cao nhất với thời gian ngắn nhất?

    Ta có:

    \begin{matrix}  h = 3\cos \left( {\dfrac{{\pi t}}{8} + \dfrac{\pi }{4}} ight) + 12 \leqslant 3 + 12 = 15 \hfill \\   \Rightarrow \cos \left( {\dfrac{{\pi t}}{8} + \dfrac{\pi }{4}} ight) = 1 \hfill \\ \end{matrix}

    Do đó mực nước của kênh cao nhất khi \cos\left( \frac{\pi t}{8} + \frac{\pi}{4} ight)= 1 \Leftrightarrow \frac{\pi t}{8} + \frac{\pi}{4} = k2\pi \Rightarrowt = 16k - 2

    0 \leq t \leq 24 \Rightarrow k = 1\Rightarrow t = 14

    Vậy mực nước của kênh là cao nhất khi t = 14 (h)

  • Câu 27: Vận dụng

    Tìm số trung bình của mẫu dữ liệu cho trong bảng sau:

    Khoảng

    Tần số

    Nhỏ hơn 20

    6

    Nhỏ hơn 40

    28

    Nhỏ hơn 60

    65

    Nhỏ hơn 80

    90

    Nhỏ hơn 100

    111

    Ta có:

    Khoảng

    Đại diện khoảng

    Tần số

    Tích

    [0; 20)

    10

    6

    60

    [20; 40)

    30

    28

    840

    [40; 60)

    50

    65

    3250

    [60; 80)

    70

    90

    6300

    [80; 100)

    90

    111

    9990

    Tổng

     

    N = 300

    20440

    Số trung bình là:

    \overline{x} = \frac{20440}{300} \approx68,13

  • Câu 28: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 29: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Trung điểm của các cạnh SA,SD,AB lần lượt là M,N,P. Chọn khẳng định đúng.

    Hình vẽ minh họa:

    Xét hai mặt phẳng (MON)(SBC).

    Ta có: OM//SCON//SB.

    BS ∩ SC = COM ∩ ON = O.

    Do đó (MON)//(SBC)

  • Câu 30: Thông hiểu

    Cho mặt phẳng (\alpha) và hai đường thẳng m,n. Khẳng định nào sau đây đúng?

    “Nếu m//(\alpha)n//(\alpha) thì m,n đồng phẳng.” sai vì có thể chéo nhau.

    “Nếu m \subset (\alpha)m cắt n thì n cắt (\alpha).” sai vì có thể nằm trên (\alpha) 

    “Nếu m//nn//(\alpha) thì m//(\alpha).” sai vì có thể nằm trên (\alpha) .

  • Câu 31: Vận dụng

    Cho phương trình lượng giác \sin\left\lbrack \frac{\pi}{4}\left( 3x -
\sqrt{9x^{2} - 16x - 80} ight) ightbrack = 0, vậy:

    a) Phương trình đã cho tương đương với phương trình \frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80}
ight) = k\pi,\ k\mathbb{\in Z}. Đúng||Sai

    b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng

    c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai

    d) Tổng các nghiệm nguyên dương của phương trình bằng 14. Sai||Đúng

    Đáp án là:

    Cho phương trình lượng giác \sin\left\lbrack \frac{\pi}{4}\left( 3x -
\sqrt{9x^{2} - 16x - 80} ight) ightbrack = 0, vậy:

    a) Phương trình đã cho tương đương với phương trình \frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80}
ight) = k\pi,\ k\mathbb{\in Z}. Đúng||Sai

    b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng

    c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai

    d) Tổng các nghiệm nguyên dương của phương trình bằng 14. Sai||Đúng

    Điều kiện: 9x^{2} - 16x - 80 \geq 0
\Leftrightarrow x \geq 4.

    Phương trình \Leftrightarrow
\frac{\pi}{4}\left( 3x - \sqrt{9x^{2} - 16x - 80} ight) = k\pi,\
k\mathbb{\in Z}

    \Leftrightarrow 3x - \sqrt{9x^{2} - 16x
- 80} = 4k

    \Leftrightarrow \sqrt{9x^{2} - 16x - 80}
= 3x - 4k

    \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{4k}{3} \\9x^{2} - 16x - 80 = (3x - 4k)^{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x \geq \dfrac{4k}{3} \\x = \dfrac{2k^{2} + 10}{3k - 2} \\\end{matrix} ight..

    Yêu cầu bài toán \Leftrightarrow \left\{\begin{matrix}\dfrac{2k^{2} + 10}{3k - 2} \geq \dfrac{4k}{3} \\x = \dfrac{2k^{2} + 10}{3k - 2} \geq 4 \\\dfrac{2k^{2} + 10}{3k - 2}\mathbb{\in Z} \\\end{matrix} ight..

    Ta có: \left\{ \begin{gathered}
  \frac{{2{k^2} + 10}}{{3k - 2}} \geqslant \frac{{4k}}{3} \hfill \\
  x = \frac{{2{k^2} + 10}}{{3k - 2}} \geqslant 4 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  \frac{{ - 6{k^2} + 8k + 30}}{{3k - 2}} \geqslant 0 \hfill \\
  \frac{{2{k^2} - 12k + 18}}{{3k - 2}} \geqslant 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{2}{3} < k \leqslant 3

    k\mathbb{\in Z \Rightarrow}k =
1,2,3.

    k = 1 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = 12\mathbb{\in Z}

    k = 2 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = \frac{9}{2}\mathbb{otin Z}

    k = 3 \Rightarrow \frac{2k^{2} + 10}{3k
- 2} = 4\mathbb{\in Z}

    Kết hợp điều kiện, ta có x=4, x= 12 là những giá trị cần tìm.

    Kết luận:

    a) Đúng

    b) Sai

    c) Đúng

    d) Sai

  • Câu 32: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tổng

    N = 100

    Tính trung vị của mẫu số liệu ghép nhóm?

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{2} = 50=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)

    Do đó: \left\{ \begin{matrix}l = 160;\dfrac{N}{2} = 50;m = 26;f = 39 \\c = 165 - 160 = 5 \\\end{matrix} ight.

    Khi đó trung vị là:

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c = 160 + \frac{50 - 26}{39}.5 \approx 163,08

  • Câu 33: Nhận biết

    Giá trị của  \lim\frac{1}{n^{k}} với k \in \mathbb{N^*}bằng:

    Với a>0 nhỏ tùy ý, ta chọn n_{a} >
\sqrt[k]{\frac{1}{a}}

    Suy ra:

    \frac{1}{n^{k}} < \frac{1}{n_{a}^{k}} < a\
\forall n > n_{a}

    Vậy \lim\frac{1}{n^{k}} = 0.

  • Câu 34: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\left( \frac{5\pi}{2} - \alpha ight) =
2. Tính giá trị biểu thưc P =
\tan\left( \alpha + \frac{\pi}{4} ight).

    Theo bài ra ta có:

    \cot\left( \frac{5\pi}{2} - \alpha
ight) = 2

    \Leftrightarrow \cot\left( \pi +
\frac{\pi}{2} - \alpha ight) = 2

    \Leftrightarrow \cot\left( \frac{\pi}{2}
- \alpha ight) = 2

    \Leftrightarrow \tan\alpha =
2

    P = \tan\left( \alpha + \dfrac{\pi}{4}ight) = \dfrac{\tan\alpha + \tan\dfrac{\pi}{4}}{1 -\tan\alpha.\tan\dfrac{\pi}{4}} = \dfrac{2 + 1}{1 - 2} = - 3

  • Câu 35: Vận dụng

    Cho hình chóp S. ABCD. Gọi M, N, P, R, Q, L lần lượt là trung điểm SD, SB, DC, BC, AD, AB. Khi đó khẳng định nào sai?

    Hình vẽ minh họa

    Qua phép chiếu song song theo phương SC lên mặt phẳng (ABCD) biến: M thành P, N thành R.

    Do đó MP// NR

    => MP // (NLR)

    Qua phép chiếu song song theo phương SA lên mặt phẳng (ABCD) biến: N thành L, R thành R, M thành Q, P thành P, L thành L, Q thành Q.

    Vậy (NLR)//(MQP)

    Vậy khẳng định sai là: AD//(NLR)

  • Câu 36: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)u_{1} = - 1;d = 3. Tính tổng 100 số hạng đầu tiên của cấp số cộng.

    Ta có:

    S_{n} = n.u_{1} + \frac{n(n -
1)d}{2}

    \Leftrightarrow S_{100} = 100.u_{1} +
\frac{100.99d}{2} = - 24350

  • Câu 37: Vận dụng

    Tính tổng 10 số hạng đầu tiên của cấp số nhân(un) có {u_1} =  - 3;q =  - 2

     Ta có: \left\{ {\begin{array}{*{20}{c}}  {{u_1} =  - 3} \\   {q =  - 2} \end{array}} ight. \Rightarrow {S_{10}} = {u_1}.\frac{{1 - {q^{10}}}}{{1 - q}} =  - 3.\frac{{1 - {{\left( { - 2} ight)}^{10}}}}{{1 + 2}} = 1023

  • Câu 38: Nhận biết

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q. Đẳng thức nào sau đây đúng?

    Cho dãy số \left( u_{n} ight) là một cấp số nhân có số hạng đầu u_{1} và công bội q.

    Theo công thức số hạng tổng quát ta có u_{n} = u_{1}q^{n - 1}, (n \geq 2).

  • Câu 39: Thông hiểu

    Cho phương trình \sin x.\cos x = 1 có nghiệm là:

     Giải phương trình như sau:

    \begin{matrix}  \sin x.\cos x = 1 \hfill \\   \Leftrightarrow 2\sin x.\cos x = 2 \hfill \\   \Leftrightarrow \sin 2x = 2\left( L ight) \hfill \\ \end{matrix}

    \sin 2x \in \left[ { - 1;1} ight]

    vậy phương trình lượng giác đã cho vô nghiệm.

  • Câu 40: Nhận biết

    Giá trị của \sin\left( - \frac{25\pi}{4} ight) là:

    Ta có:

    \sin\left( - \frac{25\pi}{4} ight) =
\sin\left( - \frac{\pi}{4} - 6\pi ight) = \sin\left( - \frac{\pi}{4}
ight) = - \frac{\sqrt{2}}{2}

  • Câu 41: Thông hiểu

    Hàm số đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)là:

    Với x \in \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)  \to 2x \in \left( { - \frac{{2\pi }}{3};\frac{\pi }{3}} ight) \to 2x + \frac{\pi }{6} \in \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) thuộc góc phần tư thứ IV và thứ nhất nên hàm số y = \sin \left( {2x + \frac{\pi }{6}} ight) đồng biến trên khoảng \left( { - \frac{\pi }{3};\frac{\pi }{6}} ight)

  • Câu 42: Vận dụng

    Trong các dãy số sau, dãy nào là dãy số tăng?

    Đáp án u_n = \sin (n)  và In = (−1)n ⋅ n là các dãy không tăng, không giảm.

    Xét đáp án v_{n} = \frac{n - 1}{n +
1}, ta có:

    v_{n} = 1 - \frac{2}{n + 1} \Rightarrow
v_{n + 1} - v_{n} = \frac{2}{n + 1} - \frac{2}{n + 2} > 0,\forall n
\in \mathbb{N}^{*}

    Suy ra (vn) là dãy số tăng.

  • Câu 43: Nhận biết

    Tìm mệnh đề đúng trong các mệnh đề sau.

    Mệnh đề đúng: "Nếu hai mặt phẳng (α) và (β) song song với nhau thì mọi đường thẳng nằm trong (α) đều song song với (β). "

  • Câu 44: Thông hiểu

    Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?

    Số học sinh tham gia khảo sát là: 40 học sinh.

    Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm \frac{19.100\%}{40} = 47,5\%

  • Câu 45: Thông hiểu

    Cho tứ diện ABCD. Trung điểm của các đường thẳng AD,AB,CD lần lượt là H,K,T. Tìm giao điểm của đường thẳng BC với mặt phẳng T.

    Hình vẽ minh họa

    Gọi O là trung điểm của BC.

    Ta có: HT//AC (do HT là đường trung bình của tam giác ACD)

    HT \subset (HKT)

    AC \subset (ABC)

    K \in (HKT) \cap (ABC)

    Vậy (HKT) \cap (ABC) =
KO//HT//AC

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo