Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.

     Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 3} \\   {q = \dfrac{9}{3} = 3} \end{array}} ight. \Rightarrow {u_n} = {u_1}.{q^{n - 1}} = {3.3^{n - 1}} = {3^n}

  • Câu 2: Nhận biết

    Góc \frac{2\pi}{5} đổi sang độ bằng bao nhiêu?

    Ta có: \frac{2\pi}{5} =
\frac{2\pi}{5}\left( \frac{180}{\pi} ight)^{0} = 72^{0}.

  • Câu 3: Nhận biết

    Với giá trị x nào dưới đây thì các số - 4;x; - 9 theo thứ tự đó lập thành một cấp số nhân?

    Ta có: - 4;x; - 9 lập thành một cấp số nhân

    \Rightarrow x^{2} = ( - 4).( - 9) =
36

    \Rightarrow x = \pm 6

  • Câu 4: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N lần lượt là trung điểm ADAC, G là trọng tâm tam giác BCD. Tìm giao tuyến d của hai mặt phẳng (GMN)(BCD).

    Hình vẽ minh họa

    Hai mặt phẳng phân biệt (GMN) và (BCD) chứa hai đường thẳng song song MN và CD, đồng thời có điểm chung là G

    => Giao tuyến của chúng là đường thẳng d qua G và song song với CD (cắt BC, BD lần lượt tại P và Q).

  • Câu 5: Vận dụng

    Biết rằng \lim\frac{n + \sqrt{n^{2} +
1}}{\sqrt{n^{2} - n - 2}} = a\sin\frac{\pi}{4} + b. Tính S = a^{3} + b^{3}?

    Ta có:

    \lim\frac{n + \sqrt{n^{2} +
1}}{\sqrt{n^{2} - n - 2}}

    = \lim\dfrac{1 + \sqrt{1 +\dfrac{1}{n^{2}}}}{\sqrt{1 - \dfrac{1}{n} - \dfrac{2}{n}}}

    = \frac{1 + \sqrt{1}}{1} =
2\sqrt{2}\sin\frac{\pi}{4}

    Khi đó \left\{ \begin{matrix}
a = 2\sqrt{2} \\
b = 0 \\
\end{matrix} ight.\  \Rightarrow S = 8

  • Câu 6: Nhận biết

    Cho hai đường thẳng mn chéo nhau. Có bao nhiêu mặt phẳng chứa m và song song với n?

    Ta có định lí: “Cho hai đường thẳng chéo nhau. Có duy nhất một mặt phẳng chứa đường thẳng này và song song với đường thẳng kia”.

  • Câu 7: Nhận biết

    Tính giới hạn \lim_{x ightarrow
1}\frac{2x^{3} + 3x - 1}{x^{2} + 1}ta được kết quả bằng

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{3} + 3x
- 1}{x^{2} + 1}

    = \frac{2.1^{3} + 3.1 - 1}{1^{2} + 1} =
\frac{4}{2} = 2.

  • Câu 8: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề: “Hai đường thẳng không song song thì chéo nhau” sai vì có thể cắt nhau.

    Mệnh đề: “Hai đường thẳng chéo nhau thì không có điểm chung” đúng.

    Mệnh đề: “Hai đường thẳng không cắt nhau và không song song thì chéo nhau” sai vì có thể trùng nhau.

    Mệnh đề: “Hai đường thẳng không có điểm chung thì chéo nhau” sai vì có thể song song.

  • Câu 9: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 10: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành, P,Q lần lượt là trung điểm của SA,SC. Tìm đặc điểm của giao tuyến d của hai mặt phẳng (BPQ)(ABCD).

    Hình vẽ minh họa

    Ta thấy B là một điểm chung của hai mặt phẳng (BMN)(ABCD).

    Do đó d đi qua B.

    Xét ba mặt phẳng (BMN),(ABCD),(SAC).

    Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là d,AC,MN.

    Theo định lí về giao tuyến của ba mặt phẳng thì d,AC,MN đồng quy hoặc đôi một song song.

    MN//AC (do MN là đường trung bình của tam giác SAC) nên d//AC.

    Vậy giao tuyến của hai mặt phẳng (BPQ)(ABCD) là đường thẳng d đi qua B và song song với CD.

  • Câu 11: Nhận biết

    Tập xác định của hàm số f(x) = \tan x là:

    Ta có: f(x) = \tan x xác định khi và chỉ khi

    \cos x eq 0

    \Leftrightarrow x eq \frac{\pi}{2} +k\pi;\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số là: \mathbb{R}\backslash\left\{ (2k +1).\frac{\pi}{2}|k\mathbb{\in Z} ight\}

  • Câu 12: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 13: Nhận biết

    Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:

    Điểm

    Số học sinh

    [20; 30)

    4

    [30; 40)

    6

    [40; 50)

    15

    [50; 60)

    12

    [60; 70)

    10

    [70; 80)

    6

    [80; 90)

    4

    [90; 100]

    3

    Số học sinh lớp 11A là:

    Số học sinh lớp 11A là:

    4 + 6 + 15 + 12 + 10 + 6 + 4 + 3 = 60 (học sinh)

  • Câu 14: Vận dụng

    Giả sử \sin \frac{a}{6};\cos a;\tan a theo thứ tự lập thành một cấp số nhân. Khi đó \cos 2a bằng:

    Điều kiện \cos a e 0 \Leftrightarrow a e \frac{\pi }{2} + k\pi ;\left( {k \in \mathbb{Z}} ight)

    Theo tính chất của cấp số nhân ta có:

    \begin{matrix}  {\cos ^2}a = \dfrac{{\sin a}}{6}.\tan a \hfill \\   \Leftrightarrow 6{\cos ^2}a = \dfrac{{{{\sin }^2}a}}{{\cos a}} \hfill \\   \Leftrightarrow 6{\cos ^3}a - {\sin ^2}a = 0 \hfill \\   \Leftrightarrow 6{\cos ^3}a + {\cos ^2}a - 1 = 0 \hfill \\   \Leftrightarrow {\cos ^2}a = \dfrac{1}{2} \hfill \\   \Rightarrow \cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\dfrac{1}{2}} ight)^2} - 1 =  - \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Gọi S là tập nghiệm của phương trình \cos 2x - \sin 2x = 1. Khẳng định nào sau đây là đúng?

     Phương trình \Leftrightarrow \sqrt 2 \cos \left( {2x + \frac{\pi }{4}} ight) = 1 \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} ight) = \frac{1}{{\sqrt 2 }}

    \Leftrightarrow \cos \left( {2x + \frac{\pi }{4}} ight) = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  2x + \frac{\pi }{4} = \frac{\pi }{4} + k2\pi  \hfill \\  2x + \frac{\pi }{4} =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x =  - \frac{\pi }{4} + k\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}.

    Xét nghiệm x =  - \frac{\pi }{4} + k\pi, với k = 1 ta được x = \frac{{3\pi }}{4}.

  • Câu 16: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề sai: "Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì cắt mặt phẳng còn lại." vì hai mặt phẳng cùng vuông góc với một mặt phẳng có thể cắt nhau.

  • Câu 17: Vận dụng

    Cho tứ diện ABCD có độ dài tất cả các cạnh bằng x. Gọi G là trọng tâm tam giác ABC. Tính diện tích thiết diện tạo bởi mặt phẳng (CDG) và tứ diện ABCD?

    Hình vẽ minh họa:

    Gọi M,N lần lượt là trung điểm các cạnh AB,BC

    \Rightarrow AN \cap MC = G

    Ta có: (CDG) \cap AB = M

    Suy ra tam giác MCD là thiết diện của mặt phẳng (CDG) và tứ diện ABCD

    Tam giác ABD đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MD =
\frac{x\sqrt{3}}{2}

    Tam giác ABC đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MC =
\frac{x\sqrt{3}}{2}

    Gọi H là trung điểm của CD \Rightarrow
MH\bot CD

    \Rightarrow S_{MCD} =
\frac{1}{2}MH.CD

    Ta có: MH = \sqrt{MC^{2} -
HC^{2}}

    \Leftrightarrow MH = \sqrt{MC^{2} -
\frac{CD^{2}}{2}}

    \Leftrightarrow MH =
\frac{x\sqrt{2}}{2}

    \Rightarrow S_{MCD} =
\frac{1}{2}.\frac{x\sqrt{2}}{2}.x = \frac{x^{2}\sqrt{2}}{4}

  • Câu 18: Vận dụng

    Số nghiệm của phương trình \sin 5x + \sqrt 3 \cos 5x = 2\sin 7x trên khoảng \left( {0;\frac{\pi }{2}} ight) là? 

     Phương trình \Leftrightarrow \frac{1}{2}\sin 5x + \frac{{\sqrt 3 }}{2}\cos 5x = \sin 7x

    \Leftrightarrow \sin \left( {5x + \frac{\pi }{3}} ight) = \sin 7x

    \Leftrightarrow \sin 7x = \sin \left( {5x + \frac{\pi }{3}} ight)

    \Leftrightarrow \left[ \begin{gathered}  7x = 5x + \frac{\pi }{3} + k2\pi  \hfill \\  7x = \pi  - \left( {5x + \frac{\pi }{3}} ight) + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k\pi  \hfill \\  x = \frac{\pi }{{18}} + \frac{{k\pi }}{6} \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight).

    Với  0 < \frac{\pi }{6} + k\pi  < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{6} < k < \frac{1}{3}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6}

    Với 0 < \frac{\pi }{{18}} + k\frac{\pi }{6} < \frac{\pi }{2}

    \Leftrightarrow  - \frac{1}{3} < k < \frac{8}{3}\xrightarrow{{k \in \mathbb{Z}}}\left[ \begin{gathered}  k = 0 \to x = \frac{\pi }{{18}} \hfill \\  k = 1 \to x = \frac{{2\pi }}{9} \hfill \\  k = 2 \to x = \frac{{7\pi }}{{18}} \hfill \\ \end{gathered}  ight.

    Vậy có 4 nghiệm thỏa mãn.

  • Câu 19: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\left( \frac{5\pi}{2} - \alpha ight) =
2. Tính giá trị biểu thưc P =
\tan\left( \alpha + \frac{\pi}{4} ight).

    Theo bài ra ta có:

    \cot\left( \frac{5\pi}{2} - \alpha
ight) = 2

    \Leftrightarrow \cot\left( \pi +
\frac{\pi}{2} - \alpha ight) = 2

    \Leftrightarrow \cot\left( \frac{\pi}{2}
- \alpha ight) = 2

    \Leftrightarrow \tan\alpha =
2

    P = \tan\left( \alpha + \dfrac{\pi}{4}ight) = \dfrac{\tan\alpha + \tan\dfrac{\pi}{4}}{1 -\tan\alpha.\tan\dfrac{\pi}{4}} = \dfrac{2 + 1}{1 - 2} = - 3

  • Câu 20: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 21: Thông hiểu

    Tính độ cao trung bình của một số cây trong bảng số liệu dưới đây:

    Chiều cao h (cm)

    Số cây

    130 < h ≤ 140

    3

    140 < h ≤ 150

    7

    150 < h ≤ 160

    5

    Tính trung vị của mẫu số liệu ghép nhóm.

    Ta có:

    Chiều cao h (cm)

    Số cây

    Tần số tích lũy

    130 < h ≤ 140

    3

    3

    140 < h ≤ 150

    7

    10

    150 < h ≤ 160

    5

    15

    Tổng

    15

     

    Ta có: \frac{N}{2} = \frac{15}{2} =7,5

    => Nhóm chứa trung vị là: 140 < h ≤ 150

    Khi đó: \left\{ \begin{matrix}l = 140;\dfrac{N}{2} = 7,5 \\m = 3,f = 7,d = 10 \\\end{matrix} ight.

    Trung vị là: M_{e} = 140 + \frac{7,5 -3}{7}.10 \approx 146,4

  • Câu 22: Vận dụng cao

    Giá trị của giới hạn \lim\frac{1 + a +
a^{2} + ... + a^{n}}{1 + b + b^{2} + ... + b^{n}};\left( |a| < 1,|b|
< 1 ight) bằng:

    Ta có:

    1 + a + a^{2} + ... + a^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a

    => 1 + a + a^{2} + ... + a^{n} =
\frac{1.\left( 1 - a^{n + 1} ight)}{1 - a} = \frac{1 - a^{n + 1}}{1 -
a}

    Tương tự:

    1 + b + b^{2} + ... + b^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b

    => 1 + b + b^{2} + ... + b^{n} =
\frac{1.\left( 1 - b^{n + 1} ight)}{1 - b} = \frac{1 - b^{n + 1}}{1 -
b}

    \Rightarrow \lim\frac{1 + a + a^{2} +
... + a^{n}}{1 + b + b^{2} + ... + b^{n}}

    \begin{matrix}
   = \lim \dfrac{{\dfrac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\dfrac{{1 - {b^{n + 1}}}}{{1 - b}}}} \hfill \\
   = \lim \dfrac{{1 - b}}{{1 - a}}.\dfrac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}} = \dfrac{{1 - b}}{{1 - a}} \hfill \\ 
\end{matrix}

  • Câu 23: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 24: Thông hiểu

    Dãy số nào dưới đây có giới hạn bằng 0?

    Ta có: \lim {(0,999)^n} = 0

    Do (0,999)^{n} là dãy cấp số nhân có \left| q ight| < 1

  • Câu 25: Vận dụng cao

    Tổng S ={4.5}^{100} \cdot \left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}+ \ldots + \frac{1}{5^{100}} ight) + 1 có kết quả bằng?

    Đặt M = \frac{1}{5} + \frac{1}{5^{2}} +\frac{1}{5^{3}} + \ldots + \frac{1}{5^{100}}

    \Rightarrow 5M - M = \left( 1 +\frac{1}{5} + \frac{1}{5^{2}} + \ldots + \frac{1}{5^{99}} ight) -\left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}\ldots +\frac{1}{5^{100}} ight)

    = 1 - \frac{1}{5^{100}}

    \Rightarrow 4M = 1 - \frac{1}{5^{100}}\Rightarrow M = \frac{5^{100} - 1}{{4.5}^{100}}

    \Rightarrow S = {4.5}^{100} \cdot\frac{5^{100} - 1}{{4.5}^{100}} + 1 = 5^{100}

  • Câu 26: Thông hiểu

    Số hạng âm trong dãy số x1; x2; x3; …; xn với x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}} là?

    Ta có c_{n + 5}^{4} = \frac{(n + 5)(n +4)(n + 3)(n + 2)}{24},

    \frac{143P_{n + 5}}{96P_{n + 3}} = \frac{143(n +5)(n + 4)}{96}

    x_{n} = C_{n + 5}^{4} - \frac{143P_{n +
5}}{96P_{n + 3}}

    = \frac{(n + 5)(n + 4)(2n + 17)(2n -
7)}{96} > 0,\forall n \geq 4,n \in \mathbb{N}^{*}

    Vậy các số hạng âm là x1; x2; x3.

  • Câu 27: Thông hiểu

    Giá trị của giới hạn \lim_{x ightarrow 0}\frac{2\sqrt{1 + x} -
\sqrt[3]{8 - x}}{x} là:

    Ta có:

    \lim_{x ightarrow 0}\frac{2\sqrt{1 +
x} - \sqrt[3]{8 - x}}{x}

    = \lim_{x ightarrow 0}\left(
\frac{2\sqrt{1 + x} - 2}{x} + \frac{2 - \sqrt[3]{8 - x}}{x}
ight)

    = \lim_{x ightarrow 0}\left(
\frac{2}{\sqrt{x + 1} + 1} + \frac{1}{4 + 2\sqrt[3]{8 - x + \sqrt[3]{(8
- x)^{2}}}} ight)

    = 1 + \frac{1}{12} =
\frac{13}{12}

  • Câu 28: Thông hiểu

    Một cấp số cộng có 8 số hạng. Số hạng đầu là 5, số hạng thứ tám là 40. Khi đó công sai d của cấp số cộng đó là bao nhiêu?

    Theo bài ra ta có: \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{8} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
40 = u_{1} + 7d \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 5 \\
d = 5 \\
\end{matrix} ight.

  • Câu 29: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}
x - 2 & \ khi\ x < - 1 \\
\sqrt{x^{2} + 1} & \ khi\ x \geq - 1 \\
\end{matrix} ight.. Khi đó:

    a) Giới hạn\lim_{x ightarrow - 2}f(x) =
\sqrt{5}. Sai||Đúng

    b) Giới hạn\lim_{x ightarrow -
1^{-}}f(x) = - 3. Đúng||Sai

    c) Giới hạn\lim_{x ightarrow -
1^{+}}f(x) = \sqrt{2}. Đúng||Sai

    d) Hàm số tồn tại giới hạn khi x
ightarrow - 1 . Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}
x - 2 & \ khi\ x < - 1 \\
\sqrt{x^{2} + 1} & \ khi\ x \geq - 1 \\
\end{matrix} ight.. Khi đó:

    a) Giới hạn\lim_{x ightarrow - 2}f(x) =
\sqrt{5}. Sai||Đúng

    b) Giới hạn\lim_{x ightarrow -
1^{-}}f(x) = - 3. Đúng||Sai

    c) Giới hạn\lim_{x ightarrow -
1^{+}}f(x) = \sqrt{2}. Đúng||Sai

    d) Hàm số tồn tại giới hạn khi x
ightarrow - 1 . Sai||Đúng

    a) Ta có: Giới hạn\lim_{x ightarrow -
2}f(x) = - 4

    b) Xét dãy số \left( x_{n}
ight) bất kì sao cho x_{n} < -
1x_{n} ightarrow -
1, ta có: f\left( x_{n} ight) =
x_{n} - 2.

    Khi đó: \lim_{x ightarrow - 1^{-}}f(x)
= \lim f\left( x_{n} ight) = - 1 - 2 = - 3.

    c) Xét dãy số \left( x_{n}
ight) bất kì sao cho x_{n} > -
1x_{n} ightarrow -
1, ta có: f\left( x_{n} ight) =
\sqrt{x_{n}^{2} + 1}.

    Khi đó: \lim_{x ightarrow - 1^{+}}f(x)
= \lim f\left( x_{n} ight) = \sqrt{( - 1)^{2} + 1} =
\sqrt{2}.

    d) Vì \lim_{x ightarrow - 1^{-}}f(x)
eq \lim_{x ightarrow - 1^{+}}f(x) (hay - 3 eq \sqrt{2} ) nên không tồn tại \lim_{x ightarrow - 1}f(x).

    Kết luận:

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 30: Vận dụng

    Bảng dưới đây cho biết số điểm trong kì kiểm tra của học sinh lớp 11.

    Điểm

    Số học sinh

    [0; 10)

    2

    [10; 20)

    6

    [20; 30)

    8

    [30; 40)

    x

    [40; 50)

    30

    [50; 60)

    22

    [60; 70)

    18

    [70; 80)

    8

    [80; 90)

    4

    [90; 100)

    2

    Biết trung vị bằng 47. Tìm tổng số học sinh.

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    [0; 10)

    2

    2

    [10; 20)

    6

    8

    [20; 30)

    8

    16

    [30; 40)

    x

    16 + x

    [40; 50)

    30

    46 + x

    [50; 60)

    22

    68 + x

    [60; 70)

    18

    86 + x

    [70; 80)

    8

    94 + x

    [80; 90)

    4

    98 + x

    [90; 100)

    2

    100 + x

     

    N = 100 + x

     

    Trung vị là 47 => Nhóm chứa trung vị là [40; 50)

    \Rightarrow \left\{ \begin{matrix}l = 40;\dfrac{N}{2} = \dfrac{100 + x}{2} \\m = 16 + x;f = 30,c = 50 - 40 = 10 \\\end{matrix} ight.

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    \Leftrightarrow 47 = 40 + \dfrac{\left(\dfrac{100 + x}{2} - 16 - x ight)}{30}.10

    \Leftrightarrow 21 = \frac{100 + x - 32- 2x}{2}

    \Leftrightarrow x = 26

    Vậy số học sinh là 126 học sinh.

  • Câu 31: Vận dụng

    Xét tính tăng, giảm và bị chặn của dãy số (un), biết u_{n} = \frac{1}{\sqrt{1 + n +n^{2}}}, ta thu được kết quả?

    Ta có un > 0, ∀n ≥ 1

    \frac{u_{n + 1}}{u_{n}} =\frac{\sqrt{n^{2} + n + 1}}{\sqrt{(n + 1)^{2} + (n + 1) +1}}

    = \sqrt{\frac{n^{2} + n + 1}{n^{2} + 3n+ 3}} < 1,\forall n \in \mathbb{N}^{*} \Rightarrow u_{n + 1} <u_{n},\forall n \geq 1

    dãy (un) là dãy số giảm.

    Mặt khác 0 < un < 1⇒ dãy (un) là dãy bị chặn.

  • Câu 32: Vận dụng cao

    Hàm số y = \sin\left( x + \frac{\pi}{3}ight) - \sin x có tất cả bao nhiêu giá trị nguyên?

    Áp dụng công thức \sin a - \sin b =2cos\frac{a + b}{2}\sin\frac{a - b}{2}

    Ta có

    \sin\left( x + \frac{\pi}{3} ight) -\sin x = 2cos\left( x + \frac{\pi}{6} ight)\sin\frac{\pi}{6} =\cos\left( x + \frac{\pi}{6} ight).

    Ta có - 1 \leq \cos\left( x +\frac{\pi}{6} ight) \leq 1 ightarrow - 1 \leq y \leq1\overset{y\mathbb{\in Z}}{ightarrow}y \in \left\{ - 1;0;1ight\}.

  • Câu 33: Nhận biết

    Dãy số nào dưới đây là dãy số nguyên tố nhỏ hơn 10 theo thứ tự tăng dần?

    Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có hai ước số là 1 và chính nó.

    Vậy dãy số nguyên tố nhỏ hơn 102, 3, 5, 7.

  • Câu 34: Nhận biết

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tổng

    N = 100

    Mốt của mẫu số liệu thuộc nhóm số liệu nào?

    Mốt của mẫu số liệu thuộc nhóm [160; 165).

  • Câu 35: Thông hiểu

    Tính giới hạn của hàm số \lim_{x ightarrow - 2}\frac{2x^{4} + 9x^{3} +
11x^{2} - 4}{(x + 2)^{2}}.

    Ta có:

    \lim_{x ightarrow - 2}\frac{2x^{4} +
9x^{3} + 11x^{2} - 4}{(x + 2)^{2}}

    = \lim_{x ightarrow - 2}\frac{(x +
2)^{2}\left( 2x^{2} + x - 1 ight)}{(x + 2)^{2}}

    = \lim_{x ightarrow - 2}\left\lbrack
2x^{2} + x - 1 ightbrack = 5

  • Câu 36: Thông hiểu

    Thời gian lái xe của 25 nhân viên trong công ty được ghi lại trong bảng sau:

    Thời gian (phút)

    Số nhân viên

    (0; 10]

    3

    (10; 20]

    10

    (20; 30]

    6

    (30; 40]

    4

    (40; 50]

    2

    Tính thời gian lái xe trung bình của các nhân viên đó.

    Ta có:

    Thời gian đại diện (phút)

    Số nhân viên

    Tích các giá trị

    5

    3

    15

    15

    10

    150

    25

    6

    150

    35

    4

    140

    45

    2

    90

    Tổng

    N = 25

    545

    Thời gian lái xe trung bình là:

    \overline{x} = \frac{545}{25} =21,8(phút)

  • Câu 37: Vận dụng

    Cho hình hộp ABCD.A'B'C'D' và điểm M nằm giữa AB. Giả sử (P) là mặt phẳng đi qua M và song song với mặt phẳng (AB'D'). Xác định các giao tuyến của mặt phẳng (P) tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?

    Hình vẽ minh họa

    Tìm hình xác định bởi các giao tuyến

    Nhận thấy (BC’D) // (AB’D’)

    => (BC’D) // (AB’D’) // (P). (1)

    Do (1), ta giả sử (P) cắt BB’ tại N, suy ra (P) ∩ (ABB’A’) ≡ MN, kết hợp với (AB’D’) ∩ (ABB’A’) ≡ AB’ suy ra MN // AB’, suy ra N thuộc cạnh BB’.

    Tương tự, giả sử (P) ∩ (B’C’) ≡ P suy ra (P) ∩ (BCC’B’) ≡ NP.

    Kết hợp với (1) suy ra NP // BC’

    Tương tự, (P) ∩ (C’D’) ≡ Q sao cho PQ // B’D’; (P) ∩ DD’≡ G sao cho QG // C’D; (P) ∩ AD ≡ H sao cho GH // AD’.

    Từ đó suy ra thiết diện là lục giác MNPQGH.

  • Câu 38: Nhận biết

    Tập nghiệm của phương trình \cos x = \frac{{\sqrt 2 }}{2} là?

    \cos x = \frac{{\sqrt 2 }}{2} \Leftrightarrow \cos x = \cos \frac{\pi }{4} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k2\pi  \hfill \\  x =  - \frac{\pi }{4} + k2\pi  \hfill \\ \end{gathered}  ight.,k \in \mathbb{Z}

  • Câu 39: Nhận biết

    Số cạnh của một hình chóp có đáy là một bát giác là:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 40: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'M là trung điểm của AB, BC \cap
(MA'C') = \left\{ N ight\}. Tính tỉ số độ dài hai cạnh MNA'C'.

    Hình vẽ minh họa

    Ba mặt phẳng phân biệt (ABCD), (ACC’A’), (MA’C’) đôi một cắt nhau theo ba giao tuyến AC, A’C’MN.

    Theo tính chất hình hộp ta có AC // A’C’ nên MN // AC // A’C’

    Lại có M là trung điểm của AB nên MN là đường trung bình trong tam giác ABC.

    Vậy MN = \frac{1}{2}AC =
\frac{1}{2}A'C' hay \frac{MN}{A'C'} =
\frac{1}{2}.

  • Câu 41: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x^2} - 3x + 2}}{{\left| {x - 1} ight|}}{\text{   khi }}x e 1} \\   {{\text{m                  khi }}x = 1} \end{array}} ight. liên tục trên \mathbb{R}?

    Ta có:

    Hàm số f(x) liên tục trên các khoảng ( - \infty;1),(1; + \infty). Khi đó hàm số đã cho liên tục trên \mathbb{R} khi và chỉ khi nó liên tục tại x = 1, tức là ta cần có:

    \lim_{x ightarrow 1}f(x) =f(1)

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{-}}f(x) = f(1)\ \ (*)

    Ta lại có:

    f(x) = \left\{ \begin{matrix}x - 2\ \ \ khi\ x > 1 \\m\ \ \ \ \ \ \ \ khi\ x < 1 \\2 - x\ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{+}}(x - 2) = - 1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{xightarrow 1^{-}}(2 - x) = 1

    Khi đó (*) không thỏa mãn với mọi m\mathbb{\in R}

    Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.

  • Câu 42: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 3x + \cos 5x.

    Hàm số y = \cos 3x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{3}

    Hàm số y = \cos 5x tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{5}

    Suy ra hàm số y = \cos 3x + \cos 5x tuần hoàn với chu kì T = 2\pi

  • Câu 43: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight) có số hạng đầu u_{1} = -
\frac{1}{2}, công sai d =
\frac{1}{2}. Năm số hạng liên tiếp đầu tiên của cấp số cộng là:

    Ta dùng công thức tổng quát u_{n} = u_{1}
+ (n - 1)d = - \frac{1}{2} + (n - 1)\frac{1}{2} = - 1 +
\frac{n}{2}, hoặc u_{n + 1} = u_{n}
+ d = u_{n} + \frac{1}{2} để tính các số hạng của một cấp số cộng.

    Ta có u_{1} = - \dfrac{1}{2};\ \ d =\dfrac{1}{2}\overset{ightarrow}{}\left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} \\u_{2} = u_{1} + d = 0 \\u_{3} - u_{2} + d = \dfrac{1}{2} \\u_{4} = u_{3} + d = 1 \\u_{5} = u_{4} + d = \dfrac{3}{2} \\\end{matrix} ight.

  • Câu 44: Thông hiểu

    Cho mặt phẳng (P)và hai đường thẳng a,\ \ b. Khẳng định nào sau đây đúng?

    Xét phương án “Nếu a\ //\ (P)b \subset (P) thì a\ //\ b” ta có:

    Nếu \left. \ \begin{matrix}
a//(P) \\
b \subset (P) \\
\end{matrix} ight\} thì a//b hoặc a chéo b, vậy phương án sai.

    Xét phương án “Nếu a\ //\ bb \subset (P) thì a\ //\ (P).” ta có:

    Nếu \left. \ \begin{matrix}
\ \ \ \ a//b \\
b \subset (P) \\
\end{matrix} ight\} thì a//(P) hoặc a
\subset (P), vậy phương án sai.

    Xét phương án “Nếu a\ //\ b\left\{ \begin{matrix}
b \subset (P) \\
a ⊄ (P) \\
\end{matrix} ight. thì a\ //\
(P).” ta có:

    Nếu \left. \ \begin{matrix}
\ \ \ \ a//b \\
b \subset (P) \\
a ⊄ (P) \\
\end{matrix} ight\} \Rightarrow a//(P), vậy phương án đúng.

    Xét phương án “Nếu a\ //\ (P)b // (P) thì a\ //\ b” ta có:

    Nếu \left. \ \begin{matrix}
a//(P) \\
b//(P) \\
\end{matrix} ight\} thì a//b hoặc a chéo b hoặc a cắt b, vậy phương án sai.

  • Câu 45: Thông hiểu

    Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?

    Số học sinh tham gia khảo sát là: 40 học sinh.

    Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm \frac{19.100\%}{40} = 47,5\%

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 13 lượt xem
Sắp xếp theo