Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Nhóm

    Tần số

    (0; 10]

    x

    (10; 20]

    8

    (20; 30]

    20

    (30; 40]

    15

    (40; 50]

    7

    (50; 60]

    y

    Tổng

    N = 60

    Nếu trung vị của mẫu dữ liệu ghép nhóm dưới đây có giá trị là 28,5 thì các tần số cần tìm có giá trị là bao nhiêu?

    Bảng số liệu được ghi như sau:

    Nhóm

    Tần số

    Tần số tích lũy

    (0; 10]

    x

    x

    (10; 20]

    8

    x + 8

    (20; 30]

    20

    x + 28

    (30; 40]

    15

    x + 43

    (40; 50]

    7

    x + 50

    (50; 60]

    y

    x + y + 50

    Tổng

    N = 60

     

    Ta có: N = 60

    \Rightarrow x + y = 10

    Theo bài ra ta có: M_{e} =28,5

    => Nhóm chứa trung vị là (20; 30]

    Suy ra: \left\{ \begin{matrix}l = 20,\dfrac{N}{2} = 30 \\m = x + 8,f = 20,d = 10 \\\end{matrix} ight.

    Khi đó ta có:

    M_{e} = l + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Leftrightarrow 28,5 = 20 +\dfrac{\dfrac{60}{2} - (x + 8)}{20}.10

    \Leftrightarrow x = 5

    \Rightarrow y = 10 - 5 = 5

  • Câu 2: Thông hiểu

    Tính tứ phân vị thứ nhất cho dữ liệu dưới đây:

    Cân nặng (kg)

    [32; 35)

    [35; 38)

    [38; 41)

    [41; 44)

    [44; 47)

    Số người

    14

    60

    95

    24

    7

    Ta có:

    Cân nặng (kg)

    [32; 35)

    [35; 38)

    [38; 41)

    [41; 44)

    [44; 47)

    Số người

    14

    60

    95

    24

    7

    Tần số tích lũy

    14

    74

    169

    193

    200

    Ta có: \frac{N}{4} = \frac{200}{4} =50

    => Nhóm chứa Q_{1} là [35; 38)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 35;m = 14,f = 60;c =3

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 35 + \dfrac{50 - 14}{60}.3 =36,8

  • Câu 3: Vận dụng cao

    Tính giới hạn \lim\left\lbrack
\frac{1}{1.4} + \frac{1}{2.5} + ... + \frac{1}{n(n + 3)}
ightbrack

    Ta có:

    \begin{matrix}
  \dfrac{1}{{1.4}} + \dfrac{1}{{2.5}} + ... + \dfrac{1}{{n\left( {n + 3} ight)}} \hfill \\
   = \dfrac{1}{3}\left( {\dfrac{1}{1} - \dfrac{1}{4} + \dfrac{1}{2} - \dfrac{1}{5} + ... + \dfrac{1}{n} - \dfrac{1}{{n + 3}}} ight) \hfill \\ 
\end{matrix}

    = \frac{1}{3}\left\lbrack \left(
\frac{1}{1} + \frac{1}{2} + ... + \frac{1}{n} ight) - \left(
\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + ... + \frac{1}{n + 3} ight)
ightbrack

    = \frac{1}{3}\left( 1 + \frac{1}{2} +
\frac{1}{3} - \frac{1}{n + 1} - \frac{1}{n + 2} - \frac{1}{n + 3}
ight)

    = \frac{1}{3}\left( \frac{11}{6} -
\frac{1}{n + 1} - \frac{1}{n + 2} - \frac{1}{n + 3} ight)

    Do đó \lim\left\lbrack \frac{1}{1.4} +
\frac{1}{2.5} + ... + \frac{1}{n(n + 3)} ightbrack =
\frac{11}{8}

  • Câu 4: Thông hiểu

    Tính giới hạn A =
\lim_{x ightarrow + \infty}\left( \frac{3x^{4} - 2x + 3}{5x^{4} + 3x +
1} ight).

    Ta có:

    A = \lim_{x ightarrow + \infty}\left(\dfrac{3x^{4} - 2x + 3}{5x^{4} + 3x + 1} ight)

    A = \lim_{x ightarrow +\infty}\dfrac{x^{4}\left( 3 - \dfrac{2}{x^{3}} + \dfrac{3}{x^{4}}ight)}{x^{4}\left( 5 + \dfrac{3}{x^{3}} + \dfrac{1}{x^{4}}ight)}

    A = \lim_{x ightarrow + \infty}\dfrac{3- \dfrac{2}{x^{3}} + \dfrac{3}{x^{4}}}{5 + \dfrac{3}{x^{3}} +\dfrac{1}{x^{4}}} = \dfrac{3}{5}

  • Câu 5: Vận dụng

    Xét tính tăng, giảm của dãy số u_{n} = \frac{3^{n} - 1}{2^{n},} ta được kết quả?

    Ta có u_{n + 1} - u_{n} = \frac{3^{n + 1}- 1}{2^{n + 1}} - \frac{3^{n} - 1}{2^{n}}

    = \frac{3^{n + 1} - 1 -{2.3}^{n} + 2}{2^{n + 1}} = \frac{3^{n} + 1}{2^{n + 1}} >0

    dãy (un) là dãy số tăng.

  • Câu 6: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \sin n - \cos n. Dãy số (u_{n}) bị chặn dưới bởi số nào dưới đây?

    Ta có:

    \begin{matrix}  {u_n} = \sin n - \cos n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n - \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin n - \sin \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow 1 \geqslant \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - 1 \hfill \\   \Rightarrow \sqrt 2  \geqslant \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - \sqrt 2  \hfill \\ \end{matrix}

  • Câu 7: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 8: Nhận biết

    Trong các dãy được cho dưới đây, dãy số nào là cấp số cộng?

    Xét dãy số u_{n}=7-3n

    Ta có:

    \begin{matrix}  {u_{n + 1}} = 7 - 3\left( {n + 1} ight) \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} = 7 - 3\left( {n + 1} ight) - \left( {7 - 3n} ight) =  - 3 \hfill \\ \end{matrix}

    Vậy dãy số u_{n}=7-3n là một cấp số cộng với u_1=4;d=-3

  • Câu 9: Thông hiểu

    Trong các dãy số sau, dãy số nào là cấp số nhân?

    Xét dãy số \left\{\begin{matrix}u_0=1 \\ u_n=2u_{n-1}\end{matrix}ight.\forall n\geq1

     Ta có: \frac{{{u_n}}}{{{u_{n - 1}}}} = 2 => Dãy số là cấp số nhân

  • Câu 10: Vận dụng

    Cho hộp chữ nhật ABCD.A'B'C'D'. Các điểm M,N tương ứng trên AC',B'D' sao cho MN song song với BA'. Tính tỉ số \frac{MA}{MC'}?

    Xét phép chiếu song song lên mặt phẳng (A'B'C'D') theo phương chiếu BA'.

    Ta có: N là ảnh của M hay M chính là giao điểm của B'D' và ảnh AC' qua phép chiếu này.

    Do đó ta xác định M,N như sau:

    Trên A'B' kéo dài lấy điểm K sao cho A'K = B'A' suy ra K là ảnh của A trên AC' qua phép chiếu song song.

    Gọi N = B'D' \cap
KC'. Đường thẳng qua N và song song với AK cắt AC' tại M. Ta có: M,N là các điểm cần xác định.

    Theo định lí Thales ta có:

    \frac{MA}{MC'} = \frac{NK}{NC'}
= \frac{KB'}{C'D'} = 2

  • Câu 11: Thông hiểu

    Trong các mệnh đề sau mệnh đề nào sai?

    Hai đường thẳng cắt nhau thì cùng nằm trong một mặt phẳng.

    Khi mặt phẳng đó song song với phương chiếu thì hình chiếu của chúng trùng nhau hoặc là một điểm nằm trên một đường thẳng.

    Khi mặt phẳng đó không song song với phương chiếu thì hình chiếu của chúng là hai đường thẳng cắt nhau.

  • Câu 12: Vận dụng

    Biết rằng \lim\frac{\sqrt[3]{an^{3} +
5n^{2} - 7}}{\sqrt{3n^{2} - n + 2}} = b\sqrt{3} + c với a,b,c là các tham số. Tính giá trị của biểu thức P = \frac{a + c}{b^{3}} .

    Ta có:

    \lim\frac{\sqrt[3]{an^{3} + 5n^{2} -
7}}{\sqrt{3n^{2} - n + 2}}

    = \lim\dfrac{\sqrt[3]{a + \dfrac{5}{n} -\dfrac{7}{n^{3}}}}{\sqrt{3 - \dfrac{1}{n} + \dfrac{2}{n^{2}}}} =\dfrac{\sqrt[3]{a}}{\sqrt{3}} =\dfrac{\sqrt{3}.\sqrt[3]{a}}{3}

    \begin{matrix}
   \Rightarrow \dfrac{{\sqrt 3 .\sqrt[3]{a}}}{3} = b\sqrt 3  + c \hfill \\
   \Rightarrow \left\{ {\begin{array}{*{20}{c}}
  {\sqrt[3]{a} = \dfrac{b}{3}} \\ 
  {c = 0} 
\end{array}} ight. \Rightarrow P = \dfrac{1}{3} \hfill \\ 
\end{matrix}

  • Câu 13: Thông hiểu

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

    Đáp án là:

    Cho hình bình hành ABCD tâm O . Gọi Bx;Cy,Dz lần lượt là các đường thẳng đi qua B,C,D và song song với nhau. Mặt phẳng (P) đi qua điểm A cắt các đường Bx;Cy,Dz lần lượt tại B_{1};C_{1},D_{1} sao cho BB_{1} = 4;CC_{1} = 6 . Độ dài cạnh DD_{1} là: 2

     Hình vẽ minh họa

    Gọi I là trung điểm của AC_{1} .

    \Rightarrow \left\{ \begin{matrix}OI//CC_{1}//BB_{1}//DD_{1} \\OI = \dfrac{1}{2}CC_{1} = 3 \\\end{matrix} ight.

    \Rightarrow I \in \left( BB_{1}D_{1}D
ight) . Mà I \in AC_{1} \subset
(P) nên I \in
B_{1}D_{1}

    Hình thang BB_{1}D_{1}DOI là đường trung bình nên OI = \frac{1}{2}\left( BB_{1} + DD_{1} ight)
\Rightarrow DD_{1} = 2

  • Câu 14: Vận dụng

    Bác Hoa mua nhà trị giá 900 triệu đồng theo phương thức trả góp. Nếu bác Hoa muốn trả hết nợ trong 3 năm và phải trả lãi mức 6% trên năm thì mỗi tháng bác phải trả bao nhiêu tiền?

    Gọi x (đồng) là số tiền bác Hoa phải trả mỗi năm. (Điều kiện x > 0)

    Ta có:

    x =
\frac{900.10^{6}.0,06.1,06^{3}}{1,06^{3} - 1}

    x = 336698831,5 (đồng)

    Vậy số tiền bác Hoa phải trả mỗi tháng là T = \frac{336698831,5}{12} \approx
28058236(đồng).

  • Câu 15: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình bình hành tâm O. Lấy hai điểm I;J lần lượt thuộc SA;SC sao cho SI = IA;JS = JC. Đường thẳng IJ song song với:

    Hình vẽ minh họa

    Xét tam giác SAC có:

    SI = IA

    JS = JC

    => IJ là đường trung bình => IJ//AC.

  • Câu 16: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{4} = - 12;u_{14} = 18. Giá trị S_{16} bằng bao nhiêu?

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

    Tổng của 16 số hạng đầu tiên của cấp số cộng là:

    S_{16} = \frac{\left( 2u_{1} + 15d
ight).16}{2} = 24

  • Câu 17: Nhận biết

    Cho góc \alpha được biểu diễn trên đường tròn lượng giác như hình vẽ. Mệnh đề nào dưới đây đúng?

    Góc \alpha được biểu diễn như hình vẽ, khi đó \sin\alpha > 0,cos\alpha
< 0,tan\alpha < 0,cot\alpha < 0.

    Tung độ của điểm M\sin\alpha suy ra \sin\alpha > \frac{1}{2}

    Mệnh đề đúng là \sin\alpha - \frac{1}{2}
> 0.

  • Câu 18: Nhận biết

    Khảo sát thời gian tập thể dục của một nhóm học sinh lớp 11 thu được kết quả ghi trong bảng thống kê sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Giá trị đại diện của nhóm \lbrack
40;60) là:

    Giá trị đại diện của nhóm \lbrack
40;60) là: c = \frac{40 + 60}{2} =
50

  • Câu 19: Thông hiểu

    Tìm khẳng định đúng trong các khẳng định sau

    (I) f(x) liên tục trên [a; b]f(a). f(b) > 0 thì tồn tại ít nhất một số c ∈ (a;b) sao cho f(c) = 0.

    (II) f(x) liên tục trên [a; b] và trên [b;c] nhưng không liên tục trên (a;c).

    Khẳng định (I) sai vì f(a).f(b) >0 vẫn có thể xảy ra trường hợp f(x) = 0 vô nghiệm trên khoảng (a; b).
    Khẳng định (II) sai vì nếu f(x) liên tục trên đoạn (a; b] và trên [b; c) thì liên tục (a; c).

    Vậy cả hai khẳng định đều sai.

  • Câu 20: Nhận biết

    Tìm tập các định D của hàm số y =\frac{1}{\sin\left( x - \dfrac{\pi}{2} ight)}

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( x - \dfrac{\pi}{2} ight) eq 0 \hfill \\\Rightarrow x - \dfrac{\pi}{2} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{2} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ (1 + 2k)\frac{\pi}{2},k\mathbb{\in Z}ight\}

  • Câu 21: Thông hiểu

    Cho cung lượng giác \mathop {AM}^{\displaystyle\frown} trên đường tròn lượng giác như hình vẽ. Số đo của cung \mathop {AM}^{\displaystyle\frown} bằng bao nhiêu?

    Ta có: \widehat{MOB} = \frac{\pi}{4}\Rightarrow \widehat{AOM} = \frac{3\pi}{2} - \frac{\pi}{4} =\frac{5\pi}{4}

    Cung lượng giác \mathop {AM}^{\displaystyle\frown} có điểm đầu là A, điểm cuối là M và có hướng theo chiều dương.

    Vậy số đo cung AM là \frac{5\pi}{4} +k2\pi,\left( k\mathbb{\in Z} ight)

  • Câu 22: Thông hiểu

    \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {x^3}}}{{3{x^2} + x}}} bằng:

    Ta có: \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {x^3}}}{{3{x^2} + x}}}  = \mathop {\lim }\limits_{x \to {1^ - }} \sqrt {\frac{{1 - {1^3}}}{{{{3.1}^2} + 1}}}  = 0

  • Câu 23: Nhận biết

    Trong các phương trình sau, phương trình nào tương đương với phương trình 3{\sin ^2}x = {\cos ^2}x ?

     Ta có 3{\sin ^2}x = {\cos ^2}x. Chi hai vế phương trình cho {\sin ^2}x, ta được {\cot ^2}x = 3.

  • Câu 24: Thông hiểu

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa mốt và tính giá trị mốt?

    Có hai nhóm chứa mốt của mẫu số liệu trên đó là [7; 9) và [9; 11) do đó:

    Xét nhóm [7; 9) ta có:

    M_{0} = 7 + \frac{7 - 2}{(7 - 2) + (7 -7)}.(9 - 7) = 9

    Xét nhóm [9; 11) ta có:

    M'_{0} = 9 + \frac{7 - 7}{(7 - 7) +(7 - 3)}.(11 - 9) = 9

    Vậy mốt của mẫu số liệu ghép nhóm đã cho là 9.

  • Câu 25: Nhận biết

    Cho dãy xác định bởi công thức \left\{ \begin{matrix}
u_{1} = 3 \\
u_{n + 1} = \frac{1}{2}u_{n},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Số hạng tổng quát của dãy un là?

    Ta có u_{1} = 3;u_{2} = \frac{1}{2}u_{1} =
\frac{3}{2};u_{3} = \frac{1}{2}u_{2} =
\frac{3}{2^{2}};\ldots

    Ta đi chứng minh cho dãy số có số hạng tổng quát là u_{n} = \frac{3}{2^{n - 1}}

    Thật vậy, n = 1 thì u1 = 3 (đúng).

    Giả sử với n = k(k≥1) thì u_{k} = \frac{3}{2^{k - 1}}. Ta đi chứng minh u_{k + 1} =
\frac{3}{2^{k}}

    Ta có u_{k + 1} = \frac{1}{2}u_{k} =
\frac{1}{2} \cdot \frac{3}{2^{k - 1}} = \frac{3}{2^{k}} (điều phải chứng minh).

    Vậy số hạng tổng quát của dãy số là u_{n}
= \frac{3}{2^{n - 1}}

  • Câu 26: Vận dụng

    Cho phương trình lượng giác \left(\sqrt{3} - 1 ight)\sin x + \left( \sqrt{3} + 1 ight)\cos x =2\sqrt{2}\sin2x, vậy:

    a) Phương trình đã cho tương đương với \sin(x + \dfrac{7\pi}{12}) = \sin 2x. Đúng||Sai

    b) Trên khoảng (0;2\pi) phương trình có 4 nghiệm. Đúng||Sai

    c) Trên khoảng (0;2\pi) thì x = \frac{5\pi}{36} là nghiệm nhỏ nhất. Sai||Đúng

    d) Tổng các nghiệm nằm trong khoảng (0;2\pi) của phương trình bằng 3\pi. Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác \left(\sqrt{3} - 1 ight)\sin x + \left( \sqrt{3} + 1 ight)\cos x =2\sqrt{2}\sin2x, vậy:

    a) Phương trình đã cho tương đương với \sin(x + \dfrac{7\pi}{12}) = \sin 2x. Đúng||Sai

    b) Trên khoảng (0;2\pi) phương trình có 4 nghiệm. Đúng||Sai

    c) Trên khoảng (0;2\pi) thì x = \frac{5\pi}{36} là nghiệm nhỏ nhất. Sai||Đúng

    d) Tổng các nghiệm nằm trong khoảng (0;2\pi) của phương trình bằng 3\pi. Đúng||Sai

    Phương trình \Leftrightarrow \sqrt{3}\sin x + \cos x + \sqrt{3}\cos x - \sin x = 2\sqrt{2}\sin2x

    \Leftrightarrow sin(x + \frac{\pi}{6}) +
cos(x + \frac{\pi}{6}) = \sqrt{2}sin2x

    \Leftrightarrow \sin\left( x +
\frac{7\pi}{12} ight) = sin2x

    \Leftrightarrow \left\lbrack\begin{matrix}2x = x + \dfrac{7\pi}{12} + k2\pi \\2x = \pi - x - \dfrac{7\pi}{12} + k2\pi \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{7\pi}{12} + k2\pi \\x = \dfrac{5\pi}{36} + k\dfrac{2\pi}{3} \\\end{matrix} ight..

    Do x \in (0;2\pi) nên phương trình có các nghiệm là: \frac{7\pi}{12};\
\frac{5\pi}{36};\ \frac{29\pi}{36};\ \frac{53\pi}{36}.

    Vậy tổng các nghiệm cần tính là: 3\pi.

    Kết luận:

    a) Đúng

    b) Đúng

    c) Sai

    d) Đúng

  • Câu 27: Thông hiểu

    Bảng số liệu sau đây thể hiện tuổi thọ của các bóng đèn (đơn vị: giờ):

    1144

    1134

    1162

    1130

    1120

    1160

    1116

    1179

    1165

    1150

    1155

    1177

    1109

    1142

    1121

    1103

    1145

    1131

    1133

    1170

    1127

    1164

    1147

    1157

    1136

    1166

    1111

    1168

    1115

    1150

    1101

    1125

    1152

    1132

    1140

    Từ mẫu số liệu trên, nếu ghép các số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau thì độ dài của mỗi nhóm số liệu bằng bao nhiêu?

    Khoảng biến thiên là 1179 – 1101 = 78

    Để số liệu thành 4 nhóm theo các nửa khoảng có độ dài bằng nhau, ta chia thành các nhóm có độ dài là 20.

    Ta chia thành các nhóm sau: [1100; 1120), [1120; 1140), [1140; 1160), [1160; 1180).

  • Câu 28: Nhận biết

    Tính giới hạn \lim\frac{n^{2} - 4n^{3}}{2n^{3} + 5n -
2}

    Ta có:

    \lim\dfrac{n^{2} - 4n^{3}}{2n^{3} + 5n -2} = \lim\dfrac{\dfrac{1}{n} - 4}{2 + \dfrac{5}{n^{2}} - \dfrac{2}{n^{3}}} =\dfrac{0 - 4}{2 + 0 - 0} = - 2

  • Câu 29: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy 1;\ \ 2;\ \ 4;\ \ 8;\ \ 16 là cấp số nhân với công bội q =
2.

    Dãy 1;  - 1; 1;  - 1;1 là cấp số nhân với công bội q = -
1.

    Dãy 1;\ \  - 2;\ \ 4;\ \  - 8;\ \
16 là cấp số nhân với công bội q =
- 2.

    Dãy 1;2;3; 4;5 là cấp số cộng với công sai d = 1.

  • Câu 30: Thông hiểu

    Cho tứ diện ABCD. Trung điểm của các cạnh AB,BC,CD lần lượt là các điểm P,Q,R. Giả sử (ACD) \cap (PQR) = d. Hỏi đường thẳng d đi qua trung điểm của đoạn thẳng nào?

    Hình vẽ minh họa

    Ta có: PQ//AC nên giao tuyến của hai mặt phẳng (ACD);(PQR) sẽ đi qua điểm R và song song với AC.

    Do đó giao tuyến d sẽ đi qua trung điểm của AD.

  • Câu 31: Vận dụng cao

    Tổng S ={4.5}^{100} \cdot \left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}+ \ldots + \frac{1}{5^{100}} ight) + 1 có kết quả bằng?

    Đặt M = \frac{1}{5} + \frac{1}{5^{2}} +\frac{1}{5^{3}} + \ldots + \frac{1}{5^{100}}

    \Rightarrow 5M - M = \left( 1 +\frac{1}{5} + \frac{1}{5^{2}} + \ldots + \frac{1}{5^{99}} ight) -\left( \frac{1}{5} + \frac{1}{5^{2}} + \frac{1}{5^{3}}\ldots +\frac{1}{5^{100}} ight)

    = 1 - \frac{1}{5^{100}}

    \Rightarrow 4M = 1 - \frac{1}{5^{100}}\Rightarrow M = \frac{5^{100} - 1}{{4.5}^{100}}

    \Rightarrow S = {4.5}^{100} \cdot\frac{5^{100} - 1}{{4.5}^{100}} + 1 = 5^{100}

  • Câu 32: Nhận biết

    Hàm số f(x) =
\frac{x + 1}{x^{2} - 5x + 4} liên tục trên khoảng nào sau đây?

    Ta có:

    Hàm số f(x) = \frac{x + 1}{x^{2} - 5x +
4} là hàm phân thứ hữu tỉ có tập xác định D\mathbb{= R}\backslash\left\{ 1;4
ight\} nên hàm số f(x) liên tục trên các khoảng ( -
\infty;1),(1;4),(4; + \infty).

    Do đó f(x) liên tục trên (2;3).

  • Câu 33: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Hình vẽ minh họa

    Ta kẻ MN\ //\ AB\ \ (M \in SA), NP\ //BC\ \ (P \in SC), MQ\ //\ BC\ //\ AD\ \ (Q \in SD).

    Vì mặt phẳng (\alpha) đi qua N, song song với ABAD nên M,\ \
P,\ \ Q đều thuộc (\alpha) và thiết diện của hình chóp cắt bởi mặt phẳng (\alpha) là tứ giác MNPQ.

    Khi đó MN//AB \Rightarrow \frac{SM}{SA} = \frac{MN}{AB} =\frac{2}{3}.

    Tương tự, ta có được \frac{NP}{BC} =
\frac{PQ}{CD} = \frac{QM}{DA} = \frac{2}{3}.

    Suy ra MN = NP = PQ = QM = \frac{2}{3}AB
= \frac{20}{3}MNPQ là hình vuông.

    Suy ra S_{MNPQ} = \left( \frac{20}{3}
ight)^{2} = \frac{400}{9}.

    Khi đó a = 100,b = 9

    Vậy P = a + b + 1 = 110.

  • Câu 34: Vận dụng

    Có bao nhiêu giá trị thực của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {{m^2}{x^2}{\text{        khi }}x \leqslant 2} \\ 
  {\left( {1 - m} ight)x{\text{   khi }}x > 2} 
\end{array}} ight. liên tục trên \mathbb{R}?

    Tập xác định D\mathbb{= R}

    Hàm số liên tục trên mỗi khoảng ( -
\infty;2);(2; + \infty)

    Khi đó hàm số f(x) liên tục trên \mathbb{R} khi và chỉ khi f(x) liên tục tại x = 2

    Hay \lim_{x ightarrow 2}f(x) =
f(2)

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{-}}f(x) = f(2)\ \ (*)

    Ta lại có:

    f(2) = 4m^{2}

    \lim_{x ightarrow 2^{+}}f(x) = \lim_{x
ightarrow 2^{+}}\left\lbrack (1 - m)x ightbrack = 2(1 -
m)

    \lim_{x ightarrow 2^{-}}f(x) = \lim_{x
ightarrow 2^{-}}\left( m^{2}x^{2} ight) = 4m^{2}

    Khi đó (*) \Leftrightarrow 4m^{2} = 2(1 -
m)

    \Leftrightarrow \left\lbrack\begin{matrix}m = 1 \\m = \dfrac{1}{2} \\\end{matrix} ight.

    Vậy có hai giá trị thực của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 35: Nhận biết

    Cho tứ diện S.\  ABC. Trên SA,SC lần lượt lấy các điểm MN sao cho MN cắt AC tại E. Điểm E không thuộc mặt phẳng nào trong các mặt phẳng sau?

    Hình vẽ minh họa

    Do E \in AC \Rightarrow E \in
(SAC)E \in (ABC).

    Do E \in MN \Rightarrow E \in
(BMN).

  • Câu 36: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Có bao nhiêu cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng?

    Đáp án: 52 cư dân

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Có bao nhiêu cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng?

    Đáp án: 52 cư dân

    Số cư dân phải thanh toán cước phí từ 50 đến 200 nghìn đồng trong tháng là:

    12 + 23 + 17 = 52 (cư dân)

  • Câu 37: Vận dụng cao

    Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Ta có y = 1 + \left| \cos x ight| \geq1y = 1 + \left| \sin x ight|\geq 1 nên loại C và D.

    Ta thấy tại x = \pi thì y = 0. Thay vào hai đáp án A và B thì chỉ có B thỏa mãn.

  • Câu 38: Thông hiểu

    Giá trị của B =
\lim\frac{4n^{2} + 3n + 1}{(3n - 1)^{2}\ } bằng:

    B = \lim\frac{4n^{2} + 3n + 1}{(3n -
1)^{2}\ }

    = \lim\frac{4n^{2} + 3n + 1}{{9n}^{2} -6n + 1 }

    = \lim\frac{4 + \frac{3}{n} + \frac{1}{n^{2}}}{9 -\frac{6}{n} + \frac{1}{n^{2}}} = - \frac{4}{9}

  • Câu 39: Nhận biết

    \mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + 1}}{{{x^2} + x}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^3} + 1}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} ight)\left( {{x^2} - x + 1} ight)}}{{x\left( {x + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} - x + 1}}{x} =  - 3 \hfill \\ \end{matrix}

  • Câu 40: Nhận biết

    Khẳng định nào sau đây là sai?

    Khẳng định sai là: "Phép chiếu song song có thể biến trọng tâm tam giác thành một điểm không phải là trọng tâm tam giác hình chiếu." vì phép chiếu song song bảo toàn tỉ lệ các đoạn thẳng cùng nằm trên một đoạn thẳng.

  • Câu 41: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N tương ứng là hai điểm bất kì trên các đoạn thẳng ACBD. Tìm giao tuyến của hai mặt phẳng (MBD)(NAC).

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
M \in (MBD) \cap (NAC) \\
N \in (MBD) \cap (NAC) \\
\end{matrix} ight.

    \Rightarrow (MBD) \cap (NAC) =
MN

  • Câu 42: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 43: Thông hiểu

    Xác định hàm số chẵn trong các hàm số dưới đây?

    Ta có:

    Hàm số y = \sin x.cos3x có tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow -}x\mathbb{\in
R}

    y( - x) = \sin( - x).\cos( -3x) = - \sin x.\cos3x = - y(x)

    Suy ra hàm số y = \sin x.\cos3x là hàm số lẻ.

    Hàm số y = \cos2x là hàm số chẵn vì tập xác định D\mathbb{= R} nên \forall x\mathbb{\in R \Rightarrow
-}x\mathbb{\in R}

    y( - x) = \cos( - 2x) = cos2x =
y(x)

    Tương tự ta có hàm số y = \sin x là hàm số lẻ, hàm số y = \sin x + \cos
x không chẵn cũng không lẻ.

  • Câu 44: Nhận biết

    Trong không gian cho các đường thẳng a, b và các mặt phẳng (α), (β). Trong các khẳng định sau đây, đâu là khẳng định đúng?

    Mệnh đề “a // (β) và (β) // b thì a // b” là sai vì a và b có thể cắt nhau.

    Mệnh đề “a // b và b ⊂ (α) thì a // (α)” là sai vì có thể a ⊂ (α).

    Mệnh đề “a // b và b // (α) thì a // (α)” là sai vì có thể a ⊂ (α).

  • Câu 45: Thông hiểu

    Cho phương trình lượng giác \sin\left( 3x
+ \frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}

    a) Phương trình có nghiệm \left\lbrack\begin{matrix}x = - \dfrac{\pi}{9} + k\dfrac{2\pi}{3} \\x = \dfrac{\pi}{3} + k\dfrac{2\pi}{3} \\\end{matrix}(k\mathbb{\in Z}) ight. Sai||Đúng

    b) Phương trình có nghiệm âm lớn nhất bằng - \frac{2\pi}{9} Đúng||Sai

    c) Trên khoảng \left( 0;\frac{\pi}{2}
ight) phương trình đã cho có 3 nghiệm Sai||Đúng

    d) Tổng các nghiệm của phương trình trong khoảng \left( 0;\frac{\pi}{2} ight) bằng \frac{7\pi}{9} Đúng||Sai

    Đáp án là:

    Cho phương trình lượng giác \sin\left( 3x
+ \frac{\pi}{3} ight) = - \frac{\sqrt{3}}{2}

    a) Phương trình có nghiệm \left\lbrack\begin{matrix}x = - \dfrac{\pi}{9} + k\dfrac{2\pi}{3} \\x = \dfrac{\pi}{3} + k\dfrac{2\pi}{3} \\\end{matrix}(k\mathbb{\in Z}) ight. Sai||Đúng

    b) Phương trình có nghiệm âm lớn nhất bằng - \frac{2\pi}{9} Đúng||Sai

    c) Trên khoảng \left( 0;\frac{\pi}{2}
ight) phương trình đã cho có 3 nghiệm Sai||Đúng

    d) Tổng các nghiệm của phương trình trong khoảng \left( 0;\frac{\pi}{2} ight) bằng \frac{7\pi}{9} Đúng||Sai

    Ta có:

    \sin\left( 3x + \frac{\pi}{3} ight) = -\frac{\sqrt{3}}{2}

    \Leftrightarrow \left\lbrack\begin{matrix}3x + \dfrac{\pi}{3} = - \dfrac{\pi}{3} + k2\pi \\3x + \dfrac{\pi}{3} = \dfrac{4\pi}{3} + k2\pi \\\end{matrix}(k\mathbb{\in Z}) ight. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
  {3x =  - \dfrac{{2\pi }}{3} + k2\pi } \\ 
  {3x = \pi  + k2\pi } 
\end{array}(k \in \mathbb{Z}) } ight.

    \Leftrightarrow \left[ {\begin{array}{*{20}{l}}
  {x =  - \dfrac{{2\pi }}{9} + k\dfrac{{2\pi }}{3}} \\ 
  {x = \dfrac{\pi }{3} + k\dfrac{{2\pi }}{3}} 
\end{array}(k \in \mathbb{Z})} ight.

     

    x \in \left( 0;\frac{\pi}{2}
ight) nên x = \frac{\pi}{3},x =
\frac{4\pi}{9}.

    Kết luận:

    a) Sai

    b) Đúng

    c) Sai

    d) Đúng

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo