Cho
là hằng số,
là số nguyên dương khác không. Tìm khẳng định sai.
Mệnh đề sai khi
là số chẵn.
Cho
là hằng số,
là số nguyên dương khác không. Tìm khẳng định sai.
Mệnh đề sai khi
là số chẵn.
Số điểm gián đoạn của hàm số
là:
Đáp án: 1
Số điểm gián đoạn của hàm số là:
Đáp án: 1
Hàm số có TXĐ
.
Hàm số liên tục trên mỗi khoảng
,
và
.
(i) Xét tại , ta có
Hàm số liên tục tại
.
(ii) Xét tại , ta có
Hàm số
gián đoạn tại
.
Vậy số điểm gián đoạn cần tìm là 1.
Cho các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng. Tìm a?
Đặt u1 = -4; u2 = 1; u3 = 6; u4 = a
Theo bài ra ta có:
Các số -4; 1; 6; a theo thứ tự lập thành một cấp số cộng
=> u3 – u2 = u4 – u3
=> 6 – 1 = a – 6
=> a = 11
Cho hàm số
. Có bao nhiêu giá trị của tham số m thuộc đoạn [0; 10] để giá trị nhỏ nhất của hàm số nhỏ hơn -2?
Ta có:
y.(cosx + 2) = 1 – m.sinx
=> m.sinx + y.cosx = 1 – 2y
Phương trình có nghiệm khi
Nghiệm của phương trình là
=>
=>
Theo yêu cầu bài toán ta có:
Mặt khác m thuộc đoạn [0; 10] nên m = {5; 6; 7; 8; 9; 10}
Dãy số (un) xác định bởi
và dãy số (vn) xác định bởi
. Tính
.
Ta có:
nên dãy
là cấp số nhân với công bội
Lại có: , khi đó ta có:
Cộng vế theo vế ta được
Do đó:
=>
Cho mặt phẳng
và hai đường thẳng
. Khẳng định nào sau đây đúng?
“Nếu và
thì
đồng phẳng.” sai vì có thể chéo nhau.
“Nếu và
cắt
thì
cắt
.” sai vì có thể nằm trên
“Nếu và
thì
.” sai vì có thể nằm trên
.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho bảng số liệu thống kê sau: Số khách hàng đến mua cà phê mỗi buổi sáng tại quầy trong 2 tuần
Số khách hàng | [30; 40) | [40; 50) | [50; 60) | [60; 70) |
Số ngày | 5 | 3 | 2 | 4 |
Những ngày có không dưới 40 khách hàng đến mua cà phê chiếm bao nhiêu phần trăm?
Những ngày có không dưới 40 khách hàng đến mua cà phê là: 3 + 2 + 4 = 9 (khách hàng) chiếm
Tính giới hạn ![]()
Ta có:
Tính giới hạn ![]()
Ta có:
Khẳng định nào sau đây là đúng?
Khẳng định đúng: "Hình biểu diễn của một đường tròn là một đường elip."
Tìm nghiệm dương nhỏ nhất của phương trình ![]()
Ta có
TH1. Với
TH2. Với
So sánh hai nghiệm ta được là nghiệm dương nhỏ nhất.
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính
.
Ta có: xác định và liên tục trên
nên suy ra
Vậy
Trong không gian cho hai mặt phẳng
và
song song. Số giao điểm chung của hai mặt phẳng
và
là
Theo định nghĩa hai mặt phẳng song song.
Đáp án cần tìm là: 0
Một hình chóp có tổng số đỉnh và số cạnh bằng
. Tìm số cạnh của đa giác đáy?
Một hình chóp có đáy là đa giác cạnh thì có
đỉnh và
cạnh
Tổng số đỉnh và số cạnh bằng 14
=> Số cạnh đáy của hình chóp là: 4.
Chọn khẳng định đúng.
Khẳng định đúng là: “Nếu hai đường thẳng không có điểm chung thì hai đường thẳng đó song song hoặc chéo nhau.”
Cho hình chóp
. Gọi
và
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
là đường trung bình của tam giác
nên
mà
.
Cho các bảng số liệu sau:
Bảng A | Số khách hàng | [35; 40) | [40; 45) | [45; 50) | [50; 55) |
Số ngày | 5 | 3 | 2 | 4 | |
Bảng B | Điểm | [0; 2,5) | [2,5; 5) | [5; 7,5) | [7,5; 10) |
Số học sinh | 4 | 6 | 10 | 12 | |
Bảng C | Chiều cao | [120; 150) | [150; 180) | [180; 210) | [210; 240) |
Số cây | 15 | 20 | 31 | 18 | |
Bảng D | Số sách | [0; 10) | [10; 20) | [20; 30) | [30; 40) |
Số khách hàng | 12 | 5 | 7 | 10 |
Chọn bảng số liệu có độ dài nhóm số liệu bằng 10?
Bảng A có độ dài nhóm số liệu là: 5
Bảng B có độ dài nhóm số liệu là: 2,5
Bảng C có độ dài nhóm số liệu là: 30
Bảng D có độ dài nhóm số liệu là: 10
Tuổi thọ (tính bằng giờ) của 100 bóng đèn được quan sát trong thử nghiệm kiểm tra chất lượng được đưa ra hiển thị trong bảng dưới đây:
Tuổi thọ (giờ) | [600; 650) | [650; 700) | [700; 750) | [750; 800) | [800; 850) |
Số bóng đèn | 6 | 14 | 40 | 34 | 6 |
Tính trung vị của mẫu số liệu ghép nhóm trên.
Ta có:
Tuổi thọ (giờ) | [600; 650) | [650; 700) | [700; 750) | [750; 800) | [800; 850) |
Số bóng đèn | 6 | 14 | 40 | 34 | 6 |
Tần số tích lũy | 6 | 20 | 60 | 94 | 100 |
Ta có:
=> Trung vị nằm trong nhóm (vì 50 nằm giữa hai tần số tích lũy là 20 và 60)
(giờ)
Cho hình chóp S.ABCD có đáy là hình thang ABCD AD ∈ BC. Gọi I là giao điểm của AB và DC, M là trung điểm SC. DM cắt mặt phẳng SAB) tại J. Khẳng định nào sau đây sai?
Hình vẽ minh họa

Ta có:
Vậy ba điểm S, I, J thẳng hàng.
Khẳng định sai là: ""
Cho dãy số (un) có
và
.
Tất cả các giá trị n để
là?
Ta có
Đặt . Suy ra (vn) là cấp số nhận có công bội
và
.
Ta có
Do vn > 0, ∀n ≥ 1 nên (Tn) là dãy tăng.
Suy ra
Cho cấp số nhân (un) có
. Biết
. Tính
?
Ta có:
Xét (*)
Chọn đẳng thức đúng.
Ta có:
Ta lại có:
Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:
Cân nặng (kg) | Số học sinh |
[45; 50) | 5 |
[50; 55) | 12 |
[55; 60) | 10 |
[60; 65) | 6 |
[65; 70) | 5 |
[70; 75) | 8 |
Cỡ mẫu của mẫu số liệu là:
Cỡ mẫu của mẫu số liệu là:
Cho cấp số cộng
biết
,
Khi đó
bằng
Ta có
Vậy
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị
của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ ba là [9; 11)
(Vì 15 nằm giữa hai tần số tích lũy 9 và 16)
Do đó:
Khi đó tứ phân vị thứ ba là:
Có duy nhất một mặt phẳng đi qua
Phương án "Hai đường thẳng " sai vì nếu 2 đường thẳng đó trùng nhau thì có vô số mặt phẳng đi qua 2 đường thẳng đó.
Phương án "Một điểm và một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì có vô số mặt phẳng đi qua điểm và đường thẳng đã cho.
Phương án "Ba điểm" sai vì nếu có 2 trong ba điểm đó trùng nhau hoặc cả 3 điểm đó trùng nhau thì có vô số mặt phẳng thỏa mãn.
Vậy hoàn thành mệnh đề như sau: "Có duy nhất một mặt phẳng đi qua hai đường thẳng cắt nhau."
Khẳng định nào sau đây sai?
Trên khoảng thì hàm số
đồng biến.
Tập nghiệm của phương trình
là?
Ta có:
Giới hạn
bằng
Ta có:
.
Cho hàm số
xác định và liên tục tại
với
. Xác định giá trị tham số m thỏa mãn điều kiện đề bài.
Với mọi ta có:
Theo giả thiết ta phải có
Với giá trị nào của
thì các số hạng
theo thứ tự đó lập thành cấp số nhân?
Ta có: các số hạng lập thành cấp số nhân
Vậy
Giá trị của
bằng:
Ta có:
Hỏi trên đoạn [-2023; 2023], phương trình
có tất cả bao nhiêu nghiệm?
Ta xét phương trình
Theo giả thiết
Vậy có tất cả 644 giá trị nguyên của k tương úng có 644 nghiệm thỏa mãn yêu cầu bài toán.
Cho hình chóp
có đáy là hình bình hành
. Gọi
. Giả sử mặt phẳng
đi qua
và song song với
. Xác định các giao tuyến của mặt phẳng
với hình chóp. Hình tạo bởi các giao tuyến trên là hình gì?
Hình vẽ minh họa
Ta có:
và
Tương tự ta cũng có
Khi đó
=> Hình tạo bởi các giao tuyến của (α) với hình chóp là tam giác MNP.
Dữ liệu sau đây liên quan đến các điểm đạt được của học sinh trong một trường:
| Điểm | >10 | >20 | >30 | >40 | >50 | >60 | >70 | >80 | >90 |
| Số học sinh | 70 | 62 | 50 | 38 | 30 | 24 | 17 | 9 | 4 |
Tìm trung vị của mẫu dữ liệu.
Ta có:
| Điểm | (10; 20] | (20; 30] | (30; 40] | (40; 50] | (50; 60] | (60; 70] | (70; 80] | (80; 90] | (90; 100] |
| Số học sinh | 70 | 62 | 50 | 38 | 30 | 24 | 17 | 9 | 4 |
| Tần số tích lũy | 70 | 132 | 182 | 220 | 250 | 274 | 291 | 300 | 304 |
Ta có:
Nên khoảng chứa trung vị là: (30; 40]
Cho dãy số
với
với mọi
. Khi đó số hạng
của dãy
là:
Ta có:
Cho hình hộp
và điểm
nằm giữa
và
. Giả sử
là mặt phẳng đi qua
và song song với mặt phẳng
. Xác định các giao tuyến của mặt phẳng
tạo với các mặt của hình hộp. Hình xác định bởi các giao tuyến đó là hình gì?
Hình vẽ minh họa

Nhận thấy
Do (1), ta giả sử (P) cắt BB’ tại N, suy ra , kết hợp với
suy ra
, suy ra N thuộc cạnh BB’.
Tương tự, giả sử suy ra
.
Kết hợp với (1) suy ra
Tương tự, sao cho
;
sao cho
;
sao cho
.
Từ đó suy ra thiết diện là lục giác .
Cho dãy số (un) có số hạng tổng quát
. Số
là số hạng thứ mấy của dãy?
Ta có
Vậy là số hạng thứ 250 của dãy số (un)
Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).
Ta có: , do đó đẳng thức
sai.
Tổng
có kết quả bằng?
Ta có
Do đó
Chọn kết quả đúng của giới hạn
?
Một bánh xe của người đi xe ô tô quay được
vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Một bánh xe của người đi xe ô tô quay được vòng trong
giây. Hỏi trong thời gian đó, bánh xe quay được góc có số đo (rad) là bao nhiêu? (làm tròn đến hàng phần trăm).
Đáp án: 6,28
Số đo góc quay của vòng là
.
Cho cấp số nhân (un) có
và công bội q = 3. Số hạng u2 là:
Ta có: u2 = u1 . q = -2 . 3 = -6