Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Vào mùa thu hoạch dưa hấu, bác T bán cho những người vào vườn mua dưa như sau:
Người thứ nhất mua bác bán nửa số dưa thu hoạch được và tặng thêm 1 quả.
Người thứ hai mua bác bán nửa số dưa còn lại và tặng thêm 1 quả.
…
Bác cứ tiếp tục bán như trên, đến người mua thứ 15 thì bác bán hết.
Tính số dưa mà bác T thu hoạch được.
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Với
Thuộc góc phần tư thứ IV và thứ nhất nên hàm số đồng biến trên khoảng
Biết rằng
liên tục trên
với a là tham số. Khẳng định nào sau đây về giá trị a là đúng?
Ta có:
Hàm số xác định và liên tục trên
Khi đó liên tục trên
khi và chỉ khi
Ta có:
Cho
. Biết
(với
tối giản). Khi đó:
a)
Đúng||Sai
b)
Sai||Đúng
c) Bộ ba số
tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số
tạo thành một cấp số nhân có công bội
Đúng||Sai
Cho . Biết
(với
tối giản). Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Bộ ba số tạo thành một cấp số cộng có công sai
Đúng||Sai
d) Bộ ba số tạo thành một cấp số nhân có công bội
Đúng||Sai
Ta có
.
Do đó suy ra .
Kết luận:
|
a) Đúng |
b) Sai |
c) Đ |
d) Đúng |
Cho hình chóp
có đáy
là hình bình hành tâm
. Lấy điểm
sao cho
. Hình chiếu của điểm
qua phép chiếu song song phương
mặt phẳng chiếu
là điểm
. Khi đó tỉ số độ dài
bằng bao nhiêu?
Hình vẽ minh họa:
Phép chiếu song song phương phương mặt phẳng chiếu
biến điểm
thành điểm
.
Do đó:
Xét tam giác ta có:
=> là trung điểm của
Từ đó suy ra
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Tổng | N = 100 |
Xác định giá trị đại diện của nhóm thứ tư?
Giá trị đại diện của nhóm thứ tư là
Cho tứ diện
có độ dài tất cả các cạnh bằng
. Gọi
là trọng tâm tam giác
. Tính diện tích thiết diện tạo bởi mặt phẳng
và tứ diện
?
Hình vẽ minh họa:
Gọi lần lượt là trung điểm các cạnh
Ta có:
Suy ra tam giác MCD là thiết diện của mặt phẳng và tứ diện
Tam giác ABD đều cạnh bằng có
là trung điểm của
Tam giác ABC đều cạnh bằng có
là trung điểm của
Gọi H là trung điểm của CD
Ta có:
Trong các khẳng định sau, khẳng định nào đúng?
Khẳng định đúng: "Hai đường thẳng không có điểm chung là hai đường thẳng song song hoặc chéo nhau."
Hàm số
có tất cả bao nhiêu giá trị nguyên?
Ta có
Điều kiện để phương trình có nghiệm
nên có 2 giá trị nguyên.
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Cho tứ diện
. Trên các cạnh
lần lượt lấy các điểm
làm trung điểm, lấy
sao cho
và
sao cho bốn điểm
đồng phẳng. Chọn khẳng định đúng trong các khẳng định dưới đây?
Hình vẽ minh họa
Xét mặt phẳng ta có:
=>
Vì lần lượt là trung điểm của
do đó
Mà hay
.
Tổng
có công thức thu gọn là?
Có bao nhiêu giá trị nguyên của m để phương trình
có nghiệm?
Ta có:
Kết hợp với m thuộc tập số nguyên
Suy ra 4 – (-2) + 1 = 7 giá trị nguyên của m
Hãy liệt kê năm số hạng đầu của dãy số
có số hạng tổng quát
?
Ta có:
Vậy năm số hạng đầu tiên của dãy số là
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
là điểm thuộc đoạn
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính tỉ số
.
Hình vẽ minh họa
Giả sử . Nối
với
cắt
tại
Suy ra
Ta có: . Suy ra
.
Tìm số trung bình của mẫu dữ liệu ghép nhóm dưới đây:
Nhóm | Tần số |
(2; 4] | 3 |
(4; 6] | 4 |
(6; 8] | 2 |
(8; 10] | 1 |
Ta có:
Giá trị đại diện | Tần số | Tích các giá trị |
3 | 3 | 9 |
5 | 4 | 20 |
7 | 2 | 14 |
9 | 1 | 9 |
Tổng | N = 10 | 52 |
Số trung bình là:
Cho hình chóp
có đáy
là hình bình hành. Lấy một điểm
trên cạnh
. Thiết diện tạo bởi mặt phẳng
với hình chóp là:
Hình vẽ minh họa
Sử dụng định lý về giao tuyến của ba mặt phẳng ta có giao tuyến của ( ADM ) với (SBC) là MN sao cho MN // BC.
Ta có: MN // BC // AD nên thiết diện AMND là hình thang.
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Tính ![]()
Ta có:
Trong các phương trình sau, phương trình nào tương đương với phương trình
?
Ta có . Chi hai vế phương trình cho
, ta được
.
Cho dãy số
với
trong đó a là tham số thực. tìm a để ![]()
Ta có:
Ta có:
Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.
Tốc độ | Tần số |
40 ≤ x < 50 | 4 |
50 ≤ x < 60 | 5 |
60 ≤ x < 70 | 7 |
70 ≤ x < 80 | 4 |
Xác định giá trị của
?
Ta có:
Tốc độ | Tần số | Tần số tích lũy |
40 ≤ x < 50 | 4 | 4 |
50 ≤ x < 60 | 5 | 9 |
60 ≤ x < 70 | 7 | 16 |
70 ≤ x < 80 | 4 | 20 |
Tổng | N = 20 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Khi đó:
Tứ phân vị thứ nhất là:
Ta có:
=> Nhóm chứa tứ phân vị thứ ba là:
Khi đó:
Tứ phân vị thứ nhất là:
Tính ![]()
Ta có:
Ta có:
với
. Xác định giá trị của biểu thức
?
Ta có:
Cho các bảng số liệu sau:
Bảng A | Số khách hàng | [35; 40) | [40; 45) | [45; 50) | [50; 55) |
Số ngày | 5 | 3 | 2 | 4 | |
Bảng B | Điểm | [0; 2,5) | [2,5; 5) | [5; 7,5) | [7,5; 10) |
Số học sinh | 4 | 6 | 10 | 12 | |
Bảng C | Chiều cao | [120; 150) | [150; 180) | [180; 210) | [210; 240) |
Số cây | 15 | 20 | 31 | 18 | |
Bảng D | Số sách | [0; 10) | [10; 20) | [20; 30) | [30; 40) |
Số khách hàng | 12 | 5 | 7 | 10 |
Chọn bảng số liệu có độ dài nhóm số liệu bằng 10?
Bảng A có độ dài nhóm số liệu là: 5
Bảng B có độ dài nhóm số liệu là: 2,5
Bảng C có độ dài nhóm số liệu là: 30
Bảng D có độ dài nhóm số liệu là: 10
Số hạng đầu tiên của cấp số nhân
thỏa mãn hệ
là:
Ta có:
Cho cấp số cộng
có
. Số 100 là số hạng thứ mấy của cấp số cộng?
Ta có:
Tính tổng
:
Ta có:
Từ thời điểm đồng hồ chỉ đúng 12 giờ đến khi kim giờ chỉ 1 giờ đúng thì kim phút quay được góc bao nhiêu độ?
Khi kim giờ chỉ đúng 1 giờ thì kim phút đã quay được 1 vòng ứng với góc lượng giác là:
Trong các dãy số sau, dãy số nào là dãy số giảm?
Xét đáp án :
Ta có . Khi đó:
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có . Khi đó
Vậy (un) là dãy số tăng.
Xét đáp án :
Ta có
Vậy (un) là dãy số giảm.
Xét đáp án :
Ta có
Vậy (un) là dãy số không tăng, không giảm.
Cho hình chóp
có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là ![]()
Đáp án: 3
Cho hình chóp có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là
Đáp án: 3
Hình vẽ minh họa
có chung giao tuyến
.
Xét tính tăng giảm của dãy số
, ta thu được kết quả
Ta có
Vậy dãy (un) là dãy số giảm.
Cho hình chóp S.ABC, tam giác ABC vuông tại A,
. Gọi I là trung điểm của BC, SB ⊥ AI. Giả sử mặt phẳng
là mặt phẳng đi qua M và song song với SB, AI. Xác định hình tạo bởi các giao tuyến của mặt phẳng
với các mặt của hình chóp.
Hình vẽ minh họa
Ta có:
Do đó giao tuyến của với (ABC) là đường thẳng đi qua M và song song với AI cắt BC tại N.
Tương tự
Vậy giao tuyến của với hình chóp S.ABC là tứ giác
.
Cho hàm số
liên tục trên đoạn
sao cho
. Có thể nói gì về số nghiệm của phương trình
trên đoạn
:
Ta có:
Đặt
Khi đó:
Vậy phương trình có ít nhất một nghiệm thuộc khoảng
hay phương trình
có ít nhất một nghiệm thuộc khoảng
.
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn thỏa mãn:
Ta có:
Suy ra .
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Tính giá trị trung vị của mẫu dữ liệu?
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [40; 60)
(Vì 21 nằm giữa hai tần số tích lũy 14 và 26)
Do đó:
Khi đó trung vị là:
Cho các đoạn thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?
Khẳng định đúng là: "Phép chiếu song song không làm thay đổi tỉ số độ dài của hai đoạn thẳng cùng nằm trên một đường thẳng hoặc nằm trên hai đường thẳng song song."
Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.
Ta có: d = 6 - 1 = 5
Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng
=> x = 6 + 5 = 11
Vậy x = 11
Cho
là hằng số,
là một số nguyên dương. Quy tắc nào sau đây sai?
Ta có với
là một số nguyên dương.
Trên đường tròn lượng giác, cung có số đo
được biểu diễn bởi bao nhiêu điểm?
Xét theo chiều dương với ta thấy cung có số đo
được biểu diễn bởi ba điểm trên đường tròn lượng giác như sau:
Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:
Nhóm dữ liệu | Tần số |
(0; 15] | 4 |
(15; 30] | 12 |
(30; 45] | 17 |
(45; 60] | 7 |
Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.
Cho hình chóp
đáy
là hình bình hành tâm
. Chọn khẳng định sai?
Hình vẽ minh họa
Ta có: nên đường thẳng
cắt mặt phẳng
tại điểm
.
Vậy khẳng định sai là “”
Nếu
thì khẳng định nào sau đây đúng?
Ta có: