Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Dãy số nào sau đây không phải là cấp số cộng?

    Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: u_{m + 1} - u_{m}=u_{k + 1} -u_{k} thì kết luận ngay dãy số đó không phải là cấp số cộng.

    Xét đáp án: 2;5;8;11;14...\overset{ightarrow}{}3 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}loại

    Xét đáp án: 2;4;8;10;14...\overset{ightarrow}{}2 = u_{2} -u_{1}=u_{3} - u_{2} = 4\overset{ightarrow}{} Chọn

    Xét đáp án: 1;2;3;4;5;6...\overset{ightarrow}{}1 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}Loại

    Xét đáp án: 15;10;5;0; -
5;...\overset{ightarrow}{} - 5 = u_{2} - u_{1} = u_{3} - u_{2} = u_{4}
- u_{3} = \cdots\overset{ightarrow}{}loại

  • Câu 2: Vận dụng

    Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

    Kí hiệu p_{n} là chu vi của hình vuông thứ nQ_{n} là tổng chu vi của n hình vuông đầu tiên. Viết công thức tính p_{n}Q_{n}(n = 1,2,3,\ldots) và tìm lim Q_{n} (giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).

    Đáp án: 13,66

    Đáp án là:

    Từ hình vuông đầu tiên có cạnh bằng 1 (đơn vị độ dải), nối các trung điểm của bốn cạnh để có hình vuông thứ hai. Tiếp tục nối các trung điểm của bốn cạnh của hình vuông thứ hai để được hình vuông thứ ba. Cứ tiếp tục làm như thế, nhận được một dãy hình vuông (xem Hình 5).

    Kí hiệu p_{n} là chu vi của hình vuông thứ nQ_{n} là tổng chu vi của n hình vuông đầu tiên. Viết công thức tính p_{n}Q_{n}(n = 1,2,3,\ldots) và tìm lim Q_{n} (giới hạn này nếu có được gọi là tổng chu vi của các hình vuông).

    Đáp án: 13,66

    Ta có:

    p_{n} = 4 \cdot \frac{1}{(\sqrt{2})^{n -
1}}

    Q_{n} = 4 + 4 \cdot \frac{1}{\sqrt{2}} +
4 \cdot \frac{1}{(\sqrt{2})^{2}} + \ldots + 4 \cdot
\frac{1}{(\sqrt{2})^{n - 1}}

    = 4 \cdot \frac{1}{1 -
\frac{1}{\sqrt{2}}} \approx 13,66

  • Câu 3: Thông hiểu

    Cho tứ diện ABCD, G là trọng tâm tam giác ABD, N là trung điểm của AD, M là trung điểm trên cạnh BC sao cho MB = 2MC. Khẳng định nào sau đây là đúng?

    Chọn khẳng định đúng

    Ta có: G là trọng tâm giác ABD 

    => \frac{{BG}}{{GN}} = 2 = \frac{{BM}}{{MC}} \Rightarrow MG//CN

  • Câu 4: Vận dụng cao

    Tính giới hạn \lim\left\lbrack
\frac{1}{1.4} + \frac{1}{2.5} + ... + \frac{1}{n(n + 3)}
ightbrack

    Ta có:

    \begin{matrix}
  \dfrac{1}{{1.4}} + \dfrac{1}{{2.5}} + ... + \dfrac{1}{{n\left( {n + 3} ight)}} \hfill \\
   = \dfrac{1}{3}\left( {\dfrac{1}{1} - \dfrac{1}{4} + \dfrac{1}{2} - \dfrac{1}{5} + ... + \dfrac{1}{n} - \dfrac{1}{{n + 3}}} ight) \hfill \\ 
\end{matrix}

    = \frac{1}{3}\left\lbrack \left(
\frac{1}{1} + \frac{1}{2} + ... + \frac{1}{n} ight) - \left(
\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + ... + \frac{1}{n + 3} ight)
ightbrack

    = \frac{1}{3}\left( 1 + \frac{1}{2} +
\frac{1}{3} - \frac{1}{n + 1} - \frac{1}{n + 2} - \frac{1}{n + 3}
ight)

    = \frac{1}{3}\left( \frac{11}{6} -
\frac{1}{n + 1} - \frac{1}{n + 2} - \frac{1}{n + 3} ight)

    Do đó \lim\left\lbrack \frac{1}{1.4} +
\frac{1}{2.5} + ... + \frac{1}{n(n + 3)} ightbrack =
\frac{11}{8}

  • Câu 5: Thông hiểu

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{6} = 17 \\
u_{2} + u_{4} = 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 5d = 17 \\
2u_{1} + 6d = 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 16 \\
d = - 3 \\
\end{matrix} ight.

  • Câu 6: Nhận biết

    Tập nghiệm của phương trình \sin x = 0 là: 

     Ta có:

    \begin{matrix}  \sin x = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k2\pi } \\   {x = \pi  + k2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\   \Leftrightarrow x = k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 7: Vận dụng cao

    Tìm giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số y = 1 - 2|cos3x|.

    Ta có

    \begin{matrix}- 1 \leq cos3x \leq 1 \hfill \\ \Rightarrow 0 \leq |cos3x| \leq 1 \hfill \\ \Rightarrow 0 \geq - 2|cos3x| \geq - 2 \hfill\\\end{matrix}

    \begin{matrix}\Rightarrow 1 \geq 1 - 2|cos3x| \geq - 1  \\\Rightarrow 1 \geq y \geq - 1  \hfill\\\Rightarrow \left\{ \begin{matrix}M = 1 \\m = - 1 \\\end{matrix} ight.\ \hfill \\\end{matrix}

  • Câu 8: Vận dụng

    Cho cấp số nhân \left( u_{n}
ight) có công bội nguyên và các số hạng thoả mãn \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} ight.. Các khẳng định dưới đây là đúng hay sai?

    a) Số hạng đầu của cấp số nhân bằng 9. Đúng||Sai

    b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai

    c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng

    d) Gọi dãy số \left( v_{n} ight):\ \
v_{n} = u_{3n}, với n \in
\mathbb{N}^{*}. Khi đó tổng v_{1} +
v_{2} + v_{3} + ... + v_{10} = 12\left( 4^{10} - 1 ight). Sai||Đúng

    Đáp án là:

    Cho cấp số nhân \left( u_{n}
ight) có công bội nguyên và các số hạng thoả mãn \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} ight.. Các khẳng định dưới đây là đúng hay sai?

    a) Số hạng đầu của cấp số nhân bằng 9. Đúng||Sai

    b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai

    c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng

    d) Gọi dãy số \left( v_{n} ight):\ \
v_{n} = u_{3n}, với n \in
\mathbb{N}^{*}. Khi đó tổng v_{1} +
v_{2} + v_{3} + ... + v_{10} = 12\left( 4^{10} - 1 ight). Sai||Đúng

    a) Đúng

    Ta có:

    \left\{ \begin{matrix}
u_{4} - u_{2} = 54 \\
u_{5} - u_{3} = 108 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
u_{1}q^{3} - u_{1}q = 54 \\
u_{1}q^{4} - u_{1}q^{2} = 108 \\
\end{matrix} ight.\  ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1}q\left( q^{2} - 1 ight) = 54 \\
u_{1}q^{2}\left( q^{2} - 1 ight) = 108 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = \frac{54}{q(q^{2} - 1)} \\
\frac{1}{q} = \frac{54}{108} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = \frac{54}{2(2^{2} - 1)} \\
q = 2 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 9 \\
q = 2 \\
\end{matrix} ight.\  ight..

    b) Đúng.

    Ta có: S_{9} = \frac{u_{1} \cdot \left( 1
- q^{9} ight)}{1 - q} = \frac{9 \cdot \left( 1 - 2^{9} ight)}{1 - 2}
= 4599

    Vậy tổng của 9 số hạng đầu tiên bằng 4599 nên mệnh đề đúng.

    c) Sai.

    Ta có:

    u_{k} = 576 \Leftrightarrow u_{1} \cdot
q^{k - 1} = 576 \Leftrightarrow 9.2^{k - 1} = 576

    \Leftrightarrow 2^{k - 1} = 64
\Leftrightarrow k - 1 = 6 \Leftrightarrow k = 7

    Vậy số 576 là số hạng thứ 7 của cấp số nhân nên mệnh đề sai.

    d) Sai.

    Ta có v_{n} = u_{3n}, nên \left( v_{n} ight) là cấp số nhân với v_{1} = u_{3} = 36 và công bội q = \frac{v_{2}}{v_{1}} =
\frac{u_{6}}{u_{3}} = \frac{9.2^{5}}{9.2^{2}} = 8.

    Nên S_{10} = 36.\frac{8^{10} -
1}{7}.

  • Câu 9: Vận dụng

    Có bao nhiêu giá trị nguyên của m thuộc (0;20) sao cho \lim\sqrt{3 + \frac{mn^{2} - 1}{3 + n^{2}} -
\frac{1}{2^{n}}} là:

    Ta có:

    \left\{ \begin{matrix}\lim\dfrac{mn^{2} - 1}{3 + n^{2}} = \lim\dfrac{m -\dfrac{1}{n^{2}}}{\dfrac{3}{n^{2}} + 1} = m \\\lim\dfrac{1}{2^{n}} = \lim\left( \dfrac{1}{2} ight)^{n} = 0 \\\end{matrix} ight.

    \Rightarrow \lim\sqrt{3 + \frac{mn^{2} -
1}{3 + n^{2}} - \frac{1}{2^{n}}} = \sqrt{3 + m}

    Ta có: \left\{ \begin{matrix}
m \in (0;20);m\mathbb{\in Z} \\
\sqrt{m + 3}\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 1;6;13
ight\}

  • Câu 10: Nhận biết

    Dãy số nào sau đây có giới hạn bằng 0?

    \left| q ight| < 1 nên \lim {q^n} = 0.

  • Câu 11: Thông hiểu

    Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của ACBC. Trên đoạn BD lấy P sao cho PB = 2PD. Khi đó giao điểm của đường thẳng CD với (MNP) là:

    Hình vẽ minh họa

    Trong tam giác BCD, gọi I = NP \cap CD

    Khi đó \left\{ \begin{matrix}
I \in CD \\
I \in NP,NP \subset (MNP) \\
\end{matrix} \Rightarrow I = CD \cap (MNP) ight..

    Vậy giao điểm của đường thẳng CD với (MNP) là giao điểm của NPCD.

  • Câu 12: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Xác định số nhóm trong mẫu dữ liệu ghép nhóm trên?

    Mẫu dữ liệu ghép nhóm trên có 5 nhóm.

  • Câu 13: Nhận biết

    Tập xác định của hàm số: y = \frac{1}{{\sin x}} + 3\tan x

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\sin x e 0} \\   {\cos x e 0} \end{array}} ight. \Rightarrow \sin x.\cos x e 0 \hfill \\   \Rightarrow \sin 2x e 0 \Rightarrow x e \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight) với u_{1} = 3u_{2} = 12. Công bội của cấp số nhân đã cho bằng

    Ta có u_{2} = u_{1}.q \Rightarrow q =
\frac{u_{2}}{u_{1}} = \frac{12}{3} = 4.

  • Câu 15: Vận dụng

    Cho hình hộp ABCD.A'B'C'D'. Gọi G,G' lần lượt là trọng tâm của tam giác BDA'B'D'C. Khi đó tỉ số độ dài \frac{GG'}{AC'} là:

    Hình vẽ minh họa

    Gọi O,O' lần lượt là tâm của các hình bình hành ABCD,A'B'C'D'

    ACC'A' là hình bình hành nên A'O//O'C

    Từ đó ta có:

    \Delta AOG\sim\Delta
ACG'

    \Rightarrow \frac{AG}{AG'} =
\frac{AO}{AC} = \frac{1}{2} \Rightarrow AG = GG' (*)

    \Delta C'A'G\sim\Delta
C'O'G'

    \Rightarrow
\frac{C'O'}{C'A'} = \frac{C'G'}{C'G} =
\frac{1}{2} \Rightarrow C'G' = GG'(**)

    Từ (*) và (**) suy ra GG' =
\frac{1}{3}AC' hay \frac{GG'}{AC'} = \frac{1}{3}

  • Câu 16: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

  • Câu 17: Nhận biết

    Hàm số nào dưới đây gián đoạn tại x = 1?

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2}}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2}}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. nên hàm số y
= \frac{x^{2} + 2}{x - 1} gián đoạn tại điểm x = 1

  • Câu 18: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \sin x. \cos x - \sin x - \cos x + m = 0 có nghiệm:

     Đặt t = \sin x + \cos x;\left( {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]} ight)

    => \sin x.\cos x = \frac{{{t^2} - 1}}{2}

    Phương trình trở thành:

    \begin{matrix}  \dfrac{{{t^2} - 1}}{2} - t + m = 0 \hfill \\   \Rightarrow  - 2m = {t^2} - 2t - 1 \hfill \\   \Rightarrow {\left( {t - 1} ight)^2} =  - 2m + 2 \hfill \\ \end{matrix}

    Do  {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]}

    \begin{matrix}   \Leftrightarrow  - \sqrt 2  - 1 \leqslant t - 1 \leqslant \sqrt 2  - 1 \hfill \\   \Leftrightarrow 0 \leqslant {\left( {t - 1} ight)^2} \leqslant 3 + 2\sqrt 2  \hfill \\ \end{matrix}

    Vậy để phương trình có nghiệm

    \begin{matrix}   \Leftrightarrow 0 \leqslant  - 2m + 2 \leqslant 3 + 2\sqrt 2  \hfill \\   \Leftrightarrow  - \dfrac{{1 + 2\sqrt 2 }}{2} \leqslant m \leqslant 1 \hfill \\  m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} ight\} \hfill \\ \end{matrix}

  • Câu 19: Vận dụng

    Dữ liệu sau đây liên quan đến các điểm đạt được của học sinh trong một trường:

    Điểm>10>20>30>40>50>60>70>80>90
    Số học sinh7062503830241794

    Tìm trung vị của mẫu dữ liệu.

    Ta có:

    Điểm(10; 20](20; 30](30; 40](40; 50](50; 60](60; 70](70; 80](80; 90](90; 100]
    Số học sinh7062503830241794
    Tần số tích lũy70132182220250274291300304

    Ta có: \frac{N}{2} = \frac{304}{2} =152

    Nên khoảng chứa trung vị là: (30; 40]

    \Rightarrow l = 30;\frac{N}{2} = 152;m =132;f = 50,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c

    = 30 + \frac{152 - 132}{50}.10 =34

  • Câu 20: Thông hiểu

    Tập giá trị của hàm số y = {\sin ^2}x - \sin x - 1 là:

     Ta có: y = {\sin ^2}x + \sin x + 1 = {\left( {\sin x - \frac{1}{2}} ight)^2} - \frac{5}{4}

    \sin x \in \left[ { - 1;1} ight]

    => - \frac{5}{4} \leqslant {\left( {\sin x - \frac{1}{2}} ight)^2} - \frac{5}{4} \leqslant 1

  • Câu 21: Vận dụng

    Cho hình chóp tứ giác S.ABCD. Gọi A_{1} là trung điểm của SA, B_{1} \in
SB. Xác định các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight)với các mặt của hình chóp. Khi đó hình tạo bởi các giao tuyến trên là:

    Trường hợp 1:

    Hình vẽ minh hoạ

    Nếu B_{1} eq S. Gọi O = AC \cap BD,\ I = SO \cap A_{1}C

    Nếu P = IB_{1} \cap SD

    => Hình tạo bởi các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight) với hình chóp là tứ giác A_{1}B_{1}CP

    Nếu P = IB \cap BD. Gọi Q = CP \cap AD

    Hình tạo bởi các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight) với hình chóp là tứ giác A_{1}B_{1}CQ

    Trường hợp 2:

    Hình vẽ minh hoạ

    Nếu B_{1} \equiv S. Hình tạo bởi các giao tuyến của mặt phẳng \left(
A_{1}B_{1}C ight) với hình chóp là tam giác SAC.

    Vậy hình tạo bởi các giao tuyến trên có thể là tứ giác hoặc tam giác.

  • Câu 22: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{3} - x^{2} + 2x - 2}{x - 1}\ khi\ x eq 1 \\3x + m\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ khi\ x = 2 \\\end{matrix} ight.liên tục tại x = 1.

    Tập xác định D\mathbb{= R}

    Theo giả thiết ta có:

    3 + m = f(1) = \lim_{x ightarrow
1}f(x)

    \Rightarrow 3 + m = \lim_{x ightarrow
1}\left( \frac{x^{3} - x^{2} + 2x - 2}{x - 1} ight)

    \Leftrightarrow 3 + m = \lim_{x
ightarrow 1}\frac{(x - 1)\left( x^{2} + 2 ight)}{x - 1}

    \Leftrightarrow 3 + m = \lim_{x
ightarrow 1}\left( x^{2} + 2 ight)

    \Leftrightarrow 3 + m = 3

    \Leftrightarrow m = 0

  • Câu 23: Thông hiểu

    Tính giới hạn của hàm số f(x) = \frac{\sqrt{4x^{2} + 1}}{x + 1} khi x \mapsto - \infty.

    Ta có:

    \lim_{x ightarrow - \infty}f(x) =
\lim_{x ightarrow - \infty}\frac{\sqrt{4x^{2} + 1}}{x +
1}

    = \lim_{x ightarrow -\infty}\dfrac{|x|\sqrt{4 + \dfrac{1}{x^{2}}}}{x + 1} = \lim_{x ightarrow- \infty}\dfrac{- x\sqrt{4 + \dfrac{1}{x^{2}}}}{x + 1}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{4 + \dfrac{1}{x^{2}}}}{1 + \dfrac{1}{x}} = \dfrac{- \sqrt{4}}{1} = -2

  • Câu 24: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính mốt?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

     

    [50; 100)

    12

    f_{0}

    [100; 150)

    23

    f_{1}

    [150; 200)

    17

    f_{2}

    [200; 250)

    3

     

     

    N = 60

     

    Ta có: \left\{ \begin{matrix}l = 100,f_{0} = 12;f_{1} = 23,f_{2} = 17 \\c = 150 - 100 = 50 \\\end{matrix} ight.

    => Mốt của dấu hiệu là:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    = 100 + \frac{23 - 12}{2.23 - 12 -17}.50 \approx 132,35

  • Câu 25: Nhận biết

    Cho ba mặt phẳng phân biệt cắt nhau từng đôi theo ba giao tuyến a, b, c, trong đó a song song với b. Khi đó vị trí tương đối của b và c là

    Theo nội dung hệ quả của định lý về ba giao tuyến ta suy ra vị trí tương đối của b và c là song song.

  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AD//BC;AD = 2BC. Gọi O là giao điểm của AC và BD, các điểm E,F lần lượt là trung điểm các cạnh SA,AD. Lấy điểm K thuộc SC sao cho SK
= 2CK. Hãy xác định tính đúng sai của các khẳng định dưới đây?

    a) EF//(SCD) Đúng||Sai

    b) (BEF)//(SCD) Đúng||Sai

    c) \frac{CO}{CA} = \frac{2}{3} Sai||Đúng

    d) SA//(KBD) Đúng||Sai

    Hình vẽ minh họa

    Ta có EF là đường trung bình tam giác SAD nên EF // SD

    Ta có: \left\{ \begin{matrix}
EF//SD \\
SD \subset (SCD) \\
EF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow EF//(SCD)

    Xét tứ giác BFDC có: \left\{
\begin{matrix}
BC//DF \\
BC = DF = \frac{1}{2}AD \\
\end{matrix} ight. suy ra tứ giác BFDC là hình bình hành

    => BF // DC

    Ta có: \left\{ \begin{matrix}
BF//CD \\
CD \subset (SCD) \\
BF ⊄ (SCD) \\
\end{matrix} ight.\  \Rightarrow BF//(SCD)

    Ta có: \left\{ \begin{matrix}
EF//(SCD) \\
BF//(SCD) \\
EF \cap BF \\
EF;BF \subset (BEF) \\
\end{matrix} ight.\  \Rightarrow (BEF)//(SCD)

    Do AD // BC nên theo định lí Ta- let ta có: \frac{OB}{OD} = \frac{OC}{OA} = \frac{BC}{AD} =
\frac{1}{2}

    \Rightarrow OA = 2OC \Rightarrow
\frac{CO}{CA} = \frac{1}{3}

    Mặt khác SK = 2CK \Rightarrow
\frac{CK}{CS} = \frac{1}{3}

    Xét tam giác SAC có \frac{CO}{CA} =
\frac{CK}{CS} = \frac{1}{3} \Rightarrow OK//SA

    Ta có: \left\{ \begin{matrix}
OK//SA \\
OK \subset (KBD) \\
SA ⊄ (KBD) \\
\end{matrix} ight.\  \Rightarrow SA//(KBD)

  • Câu 27: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{n + 3}{2n^{2} - 1}. Biết rằng u_{k} = \frac{7}{31}. Khi đó u_{k} là số hạng thứ mấy trong dãy số?

    Ta có:

    u_{k} = \frac{7}{31} \Rightarrow \frac{k
+ 3}{2k^{2} - 1} = \frac{7}{31}

    \Leftrightarrow 14k^{2} - 7 = 31k +
93

    \Leftrightarrow 14k^{2} - 31k - 100 = 0\Leftrightarrow \left\lbrack \begin{matrix}k = 4(tm) \\k = - \dfrac{25}{14}(ktm) \\\end{matrix} ight.

    Vậy u_{k} là số hạng thứ tư trong dãy số.

  • Câu 28: Vận dụng

    Cho phương trình 3\cos x + \cos2x - \cos3x + 1 = 2\sin x.\sin2x. Gọi \alpha là nghiệm nhỏ nhất thuộc khoảng (0;2\pi) của phương trình. Tính \sin\left( \alpha - \frac{\pi}{4}
ight).

    Phương trình tương đương:

    3\cos x + \cos2x - \cos3x + 1 =2\sin x.\sin2x

    \Leftrightarrow 2\cos x + \cos2x + 1 =0

    \Leftrightarrow \cos^{2}x + \cos x =0

    \Leftrightarrow \left\lbrack\begin{matrix}\cos x = 0 \\\cos x = - 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{\pi}{2} + k\pi \\x = \pi + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    (0;2\pi) nên x \in \left\{ \frac{\pi}{2};\pi;\frac{3\pi}{2}
ight\}. Nghiệm lớn nhất của phương trình là \alpha = \frac{\pi}{2}

    Vậy \sin\left( \alpha - \frac{\pi}{4}
ight) = \sin\left( \frac{\pi}{2} - \frac{\pi}{4} ight) =
\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2}

  • Câu 29: Nhận biết

    Cho mặt phẳng (P) và đường thẳng d ∈ (P). Mệnh đề nào sau đây đúng:

    Mệnh đề đúng: "\forall A,A \in d \Rightarrow A \in (P)".

  • Câu 30: Vận dụng cao

    Xác định công thức tổng quát của dãy số \left\{ \begin{matrix}u_{1} = \dfrac{- 1}{2} \\u_{n + 1} = \sqrt{\dfrac{u_{n} + 1}{2}};n \geq 1 \\\end{matrix} ight..

    Ta có: \left\{ \begin{matrix}u_{2} = \sqrt{\dfrac{u_{1} + 1}{2} = \dfrac{1}{2}} \\u_{3} = \sqrt{\dfrac{u_{2} + 1}{2}} = \dfrac{\sqrt{3}}{2} \\\end{matrix} ight.

    Nhận thấy \left\{ \begin{matrix}u_{1} = - \dfrac{1}{2} = \cos\left( \dfrac{2\pi}{3} ight) \\u_{2} = \dfrac{1}{2} = \cos\left( \dfrac{\pi}{3} ight) \\u_{3} = \dfrac{1}{2} = \dfrac{\sqrt{3}}{2} = \cos\left( \frac{\pi}{6}ight) \\\end{matrix} ight.

    Dự đoán u_{n} = \cos\left(
\frac{4\pi}{3.2^{n}} ight)(*)

    Ta chứng minh bằng quy nạp

    Trước hết u_{1} = \cos\left(
\frac{2\pi}{3} ight) = \cos\left( \frac{4\pi}{3.2^{1}}
ight) đúng với n = 1

    Giả sử (*) đúng khi n = k;k \in \mathbb{N}^{*}. Khi đó u_{k} = \cos\left( \frac{4\pi}{3.2^{k}}
ight)

    Ta có:

    u_{k + 1} = \sqrt{\dfrac{u_{k} + 1}{2}} =\sqrt{\dfrac{\cos\left( \dfrac{4\pi}{3.2^{k}} ight) +1}{2}}

    = \sqrt{\dfrac{\cos\left(2.\dfrac{4\pi}{3.2^{k + 1}} ight) + 1}{2}}

    = \sqrt{\dfrac{2.\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2} - 1 +1}{2}}

    = \sqrt{\left\lbrack \cos\left(\dfrac{4\pi}{3.2^{k + 1}} ight) ightbrack^{2}}

    = \left| \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight) ight|

    Mặt khác ta có k \geq 1. Do đó 0 \leq \frac{4\pi}{3.2^{k + 1}} \leq
\frac{4\pi}{3.2^{1 + 1}} = \frac{\pi}{3} < \frac{\pi}{2}

    Vậy \cos\left( \dfrac{4\pi}{3.2^{k + 1}}ight) \geq 0 \Rightarrow u_{k + 1} = \cos\left( \dfrac{4\pi}{3.2^{k +1}} ight)

    Vậy (*) đúng với n = k + 1. Theo nguyên lí quy nạp, ta có điều phải chứng minh.

  • Câu 31: Nhận biết

    Cho hình lăng trụ ABCD.A_{1}B_{1}C_{1}D_{1}. Tìm mệnh đề sai trong các mệnh đề dưới đây:

    Khẳng định sai là: A_{1}B_{1}//\left(
A_{1}D_{1}DA ight)

  • Câu 32: Nhận biết

    Cho \alpha \in
\left( 0;\frac{\pi}{2} ight). Khẳng định nào sau đây đúng?

    Ta có:

    \alpha \in \left( 0;\frac{\pi}{2}
ight) \Rightarrow \alpha - \pi \in \left( - \pi; - \frac{\pi}{2}
ight)

    \Rightarrow \sin(\alpha - \pi) <
0

  • Câu 33: Thông hiểu

    Dãy số \left(
u_{n} ight) có công thức số hạng tổng quát nào dưới đây xác định một cấp số nhân?

    Xét dãy số U_{n} = 2020^{n} ta có:

    \frac{U_{n + 1}}{U_{n}} = \frac{2020^{n +
1}}{2020^{n}} = 2020;\forall n \in \mathbb{N}^{*} nên U_{n} = 2020^{n} là công thức số hạng tổng quát xác định một cấp số nhân.

    Xét dãy số U_{n} =
2020^{n^{3}}

    \frac{U_{n + 1}}{U_{n}} = \frac{2020^{(n
+ 1)^{3}}}{2020^{n^{3}}} = 2020^{3n^{2} + 3n + 1};\forall n \in
\mathbb{N}^{*} nên U_{n} =
2020^{n^{3}} không là công thức số hạng tổng quát xác định một cấp số nhân.

    Xét dãy số U_{n} = \frac{2020}{n +
2019}

    \frac{U_{n + 1}}{U_{n}} =
\frac{\frac{2020}{n + 1 + 2019}}{\frac{2020}{n + 2019}} = \frac{n +
2019}{n + 2020};\forall n \in \mathbb{N}^{*} nên U_{n} = \frac{2020}{n + 2019} không là công thức số hạng tổng quát xác định một cấp số nhân.

    Xét dãy số U_{n} = 2020n +
2019

    \frac{U_{n + 1}}{U_{n}} = \frac{2020(n +
1) + 2019}{2020n + 2019} = \frac{2020n + 4039}{2020n + 2019};\forall n
\in \mathbb{N}^{*} nên U_{n} =
2020n + 2019 không là công thức số hạng tổng quát xác định một cấp số nhân

  • Câu 34: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 35: Thông hiểu

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Giá trị đại diện cho nhóm [155; 160) bằng:

    Giá trị đại diện của nhóm [155; 160) là \frac{155 + 160}{2} = 157,5

  • Câu 36: Thông hiểu

    Cho góc \alpha thỏa mãn \cot\alpha = - 3\sqrt{2}\alpha \in \left( \frac{\pi}{2};\pi
ight). Tính giá trị của biểu thức P = \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2}.

    Ta có:

    P = \tan\frac{\alpha}{2} +
\cot\frac{\alpha}{2}

    P =\dfrac{\sin\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}} +\dfrac{\cos\dfrac{\alpha}{2}}{\sin\dfrac{\alpha}{2}}

    P = \dfrac{\sin^{2}\dfrac{\alpha}{2} +\cos^{2}\dfrac{\alpha}{2}}{\cos\dfrac{\alpha}{2}.\sin\dfrac{\alpha}{2}}

    P = \dfrac{1}{\dfrac{\sin\alpha}{2}} =\dfrac{2}{\sin\alpha}

    Mặt khác \alpha \in \left(\frac{\pi}{2};\pi ight) \Rightarrow \sin\alpha > 0

    1 + \cot^{2}\alpha =\dfrac{1}{\sin^{2}\alpha}

    \Rightarrow \sin^{2}\alpha =\dfrac{1}{19}

    \Rightarrow \sin\alpha =
\sqrt{\frac{1}{19}}

    \Rightarrow P = 2\sqrt{19}

  • Câu 37: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 2x - 3}{x + 1}\ \ \ \ khi\ \ x eq - 1 \\2a + 4\ \ \ \ khi\ \ x = - 1 \\\end{matrix} ight.

    Có bao nhiêu giá trị nguyên của a \in
(0;2025) để hàm số gián đoạn tại x
= 1

    Đáp án: 2024

    TXĐ: D\mathbb{= R}

    Ta có:

    f( - 1) = 2a + 4

    \lim_{x ightarrow - 1}f(x) = \lim_{x
ightarrow - 1}\frac{x^{2} - 2x - 3}{x + 1}

    = \lim_{x ightarrow - 1}\frac{(x +
1)(x - 3)}{x + 1} = \lim_{x ightarrow - 1}(x - 3) = - 4

    Để hàm số gián đoạn tại x = - 1 thì \lim_{x ightarrow - 1}f(x) eq
f(1)

    \Leftrightarrow 2a - 4 eq - 4
\Leftrightarrow a eq - 4

    Vậy có 2024 giá trị nguyên của a \in (0;2025) để hàm số gián đoạn tại x = 1

  • Câu 38: Nhận biết

    Tính giá trị \lim\frac{n^{3} - 7n}{1 - 2n^{2}}

    Ta có: \lim\dfrac{n^{3} - 7n}{1 - 2n^{2}}= \lim\dfrac{n^{3}\left( 1 - \dfrac{7}{n^{2}} ight)}{n^{2}\left(\dfrac{1}{n} + 2 ight)}

    = \lim\dfrac{n.\left( 1 - \dfrac{7}{n^{2}}ight)}{\dfrac{1}{n} + 2} = + \infty

  • Câu 39: Thông hiểu

    Số nghiệm của phương trình \sin 2x + \sqrt 3 \cos 2x = \sqrt 3 trên khoảng \left( {0;\frac{\pi }{2}} ight) là?

     Phương trình \Leftrightarrow \frac{1}{2}\sin 2x + \frac{{\sqrt 3 }}{2}\cos 2x = \frac{{\sqrt 3 }}{2} \Leftrightarrow \sin \left( {2x + \frac{\pi }{3}} ight) = \frac{{\sqrt 3 }}{2}\Leftrightarrow \sin \left( {2x + \frac{\pi }{3}} ight) = \sin \frac{\pi }{3} \Leftrightarrow \left[ \begin{gathered}  2x + \frac{\pi }{3} = \frac{\pi }{3} + k2\pi  \hfill \\  2x + \frac{\pi }{3} = \pi  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = k\pi  \hfill \\  x = \frac{\pi }{6} + k\pi  \hfill \\ \end{gathered}  ight.,{\text{ }}k \in \mathbb{Z}.

    - Với 0 < k\pi  < \frac{\pi }{2} \Leftrightarrow 0 < k < \frac{1}{2}\xrightarrow{{k \in \mathbb{Z}}} không có giá trị thỏa mãn.

    - Với 0 < \frac{\pi }{6} + k\pi  < \frac{\pi }{2} \Leftrightarrow  - \frac{1}{6} < k < \frac{1}{3}\xrightarrow{{k \in \mathbb{Z}}}k = 0 \to x = \frac{\pi }{6}

  • Câu 40: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } x(\sqrt {{x^2} + 1}  - x) bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 1}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {{x^2} + 1}  - x} ight)\left( {\sqrt {{x^2} + 1}  + x} ight)}}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{x}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{\sqrt {1 + \dfrac{1}{{{x^2}}}}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 41: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 2}\frac{\left( x^{2} - x - 2
ight)^{20}}{\left( x^{3} - 12x + 16 ight)^{10}}.

    Ta có:

    \lim_{x ightarrow 2}\dfrac{\left( x^{2}- x - 2 ight)^{20}}{\left( x^{3} - 12x + 16 ight)^{10}}

    = \lim_{x ightarrow 2}\dfrac{(x +1)^{20}.(x - 2)^{20}}{(x - 2)^{20}.(x + 4)^{10}}

    = \lim_{x ightarrow 2}\dfrac{(x +1)^{20}}{(x + 4)^{10}} = \frac{3^{20}}{6^{10}} = \left( \frac{3}{2}ight)^{10}

  • Câu 42: Thông hiểu

    Cho hình chóp S
\cdot ABCD có đáy ABCD là hình bình hành. Gọi là giao điểm của hai đường chéo hình bình hành. Một mặt phẳng (\alpha) qua O, song song với SA,CD. Thiết diện tạo bởi (\alpha) và hình chóp là hình gì?

    Hình vẽ minh họa

    Do (a) // CD nên giao tuyến d = (a) ∩ (ABCD) là đường thẳng qua O và song song với CD. Gọi G, H lần lượt là giao điểm của d với BC,AD.

    Do (a) // SA nên giao tuyến a = (a) ∩ (SAB) là đường thẳng qua H và song song với SA.

    Gọi I là giao điểm của a với SD.

    Do (a) // CD nên giao tuyến b = (a) ∩ (SCD) là đường thẳng qua I và song song với CD.

    Gọi J lần lượt là giao điểm của b với SC.

    Vậy thiết diện tạo bởi (a) và hình chóp là hình thang GHIJGH // IJ //CD.

  • Câu 43: Nhận biết

    Cho mặt phẳng (\alpha) và điểm H không thuộc mặt phẳng (\alpha). Số đường thẳng đi qua H và song song với (\alpha)

    Có vô số đường thẳng đi qua H và song song với (\alpha) với điểm H không thuộc mặt phẳng (\alpha).

  • Câu 44: Thông hiểu

    Giá trị của D =
\lim\frac{n^{3} - 3n^{2} + 2}{n^{4} + 4n^{3} + 1} bằng:

    D = \lim\frac{n^{3} - 3n^{2} + 2}{n^{4}
+ 4n^{3} + 1}

    = \dfrac{\dfrac{1}{n} - \dfrac{3}{n^{2}} +\dfrac{2}{n^{4}}}{1 + \dfrac{4}{n} + \dfrac{1}{n^{4}}} = \dfrac{0}{1} =0

  • Câu 45: Thông hiểu

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tìm mốt của mẫu dữ liệu ghép nhóm. (Kết quả làm tròn đến chữ số thập phân thứ nhất)

    Ta có:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

     

    [105; 115)

    13

     

    [115; 125)

    26

    f_{0}

    [125; 135)

    30

    f_{1}

    [135; 145)

    12

    f_{2}

    [145; 155)

    10

     

    Tổng

    N = 100

     

    Ta có: Nhóm chứa mốt của mẫu dữ liệu ghép nhóm là: [125; 135)

    Khi đó: \left\{ \begin{matrix}l = 125;f_{0} = 26 \\f_{1} = 30,f_{2} = 12;d = 135 - 125 = 10 \\\end{matrix} ight.

    Mốt của mẫu dữ liệu ghép nhóm là:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.d

    \Rightarrow M_{0} = 125 + \frac{30 -26}{2.30 - 26 - 12}.10 = 126,8

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo