Cho tứ giác ABCD và các điểm M, N phân biệt thuộc cạnh AB, các điểm P, Q phân biệt thuộc cạnh CD. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Phát biểu đúng là: "MP và NQ chéo nhau"
Cho tứ giác ABCD và các điểm M, N phân biệt thuộc cạnh AB, các điểm P, Q phân biệt thuộc cạnh CD. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Phát biểu đúng là: "MP và NQ chéo nhau"
Tính giới hạn ![]()
Ta có:
Do đó
Trong các dãy số sau, dãy số nào là một cấp số nhân?
Ta có:
Dãy số là cấp số nhân
Gọi là công bội.
Xét đáp án
Xét đáp án
Xét đáp án
Xét đáp án
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
có nghiệm?
Ta có
Phương trình có nghiệm
.
Vậy có tất cả 2023 giá trị nguyên của tham số m.
Giả sử A là tập con của tập hợp các số nguyên dương sao cho
(I) k ∈ A
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k
Lúc đó, ta có:
(I) k ∈ A : số nguyên dương k thuộc tập A.
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k : nếu số nguyên dương n(n≥k) thuộc tập A thì số nguyên dương đứng ngay sau nó (n+1) cũng thuộc A. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc A.
Cho hai đường thẳng song song
và
. Có bao nhiêu mặt phẳng chứa
và song song với
?
Có vô số mặt phẳng chứa và song song với
(đó là tất cả các mặt phẳng chứa
nhưng không chứa
).
Xét tính tăng, giảm và bị chặn của dãy số (un), biết
, ta thu được kết quả?
Ta có
Mà un > 0, ∀n nên un + 1 < un, ∀n ≥ 1⇒ dãy (un) là dãy số giảm.
Vì 0 < un ≤ u1 = 2, ∀n ≥ 1 nên dãy (un) là dãy bị chặn trên.
Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.
Ta có:
Với
là các số nguyên dương và
là phân số tối giản. Biết rằng
khi
và
. Tính
.
Ta có:
Vì nên
Khi đó =>
Có bao nhiêu giá trị nguyên của m để phương trình
có nghiệm?
Ta có:
Kết hợp với m thuộc tập số nguyên
Suy ra 4 – (-2) + 1 = 7 giá trị nguyên của m
Cho hình chóp
có đáy
là hình bình hành. Giả sử
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Ta lại có: suy ra đường thẳng d đi qua S và song song với AB.
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Cho mẫu dữ liệu ghép nhóm sau đây:
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | x |
(30;40] | 9 |
(40;50] | 7 |
Biết
. Tìm cỡ mẫu?
Ta có:
Đại diện | Tần số | Tích các giá trị |
5 | 8 | 40 |
15 | 14 | 210 |
25 | x | 25x |
35 | 9 | 315 |
45 | 7 | 315 |
Tổng | N = 38 + x | 880 + 25x |
Theo bài ra ta có giá trị trung bình là:
Vậy số phần tử của mẫu dữ liệu là N = 38 + 12 = 50
Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:
Thời gian | Học sinh |
[0; 2) | 8 |
[2; 4) | 16 |
[4; 6) | 4 |
[6; 8) | 2 |
[8; 10) | 2 |
Xác định giá trị đại diện của nhóm dữ liệu thứ ba?
Trong mẫu dữ liệu ghép nhóm, giá trị đại diện là giá trị trung bình cộng của giá trị hai đầu mút.
Nhóm dữ liệu thứ ba là [4; 6)
=> Giá trị đại diện của nhóm dữ liệu thứ ba là:
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
Ta có:
Cấp số nhân có số hạng đầu bằng 2 và số hạng thứ sáu bằng 486
=>
=>
=> =>
Vậy công bội q của cấp số nhân đã cho là q = 3
Biết giới hạn
và
. Khi đó:
a) Tích
. Sai||Đúng
b) Hàm số
có tập xác định là
. Đúng||Sai
c) Giá trị
là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác
vô nghiệm. Sai||Đúng
Biết giới hạn và
. Khi đó:
a) Tích . Sai||Đúng
b) Hàm số có tập xác định là
. Đúng||Sai
c) Giá trị là số lớn hơn
. Đúng||Sai
d) Phương trình lượng giác vô nghiệm. Sai||Đúng
Ta có: ,
Do
a) Tích
b) Hàm số có tập xác định là
c) Giá trị là số lớn hơn
d) Phương trình lượng giác có nghiệm
Kết luận:
|
a) Sai |
b) Đúng |
c) Đúng |
d) Sai |
Tính giới hạn của hàm số
.
Ta có:
Cho
là hằng số,
là số nguyên dương khác không. Tìm khẳng định sai.
Mệnh đề sai khi
là số chẵn.
Tính tổng
?
Xét dãy số là cấp số nhân với
Cho hộp chữ nhật
có
lần lượt là tâm của
. Trung điểm của
lần lượt là
. Xác định hình chiếu của tam giác
qua phép chiếu song song phương
lên mặt phẳng
.
Hình vẽ minh họa
Ta có: nên tứ giác
là hình bình hành.
Do đó hình chiếu của điểm qua phép chiếu song song theo phương
lên mặt phẳng
là điểm
.
Mặt khác thuộc mặt phẳng
nên hình chiếu của
qua phép chiếu song song
lên mặt phẳng
lần lượt là điểm
và
.
Vậy qua phép chiếu song song theo phương lên mặt phẳng
thì hình chiếu của tam giác
là đoạn thẳng
.
Biết rằng phương trình
có nghiệm dạng
với
và
. Tính
.
Điều kiện xác định
Ta có:
=> Phương trình tương đương
=>
Trong phát biểu sau đây, phát biểu nào đúng?
Phương án "Hình chóp có tất cả các mặt là hình tam giác" sai vì mặt đáy có thể không là tam giác.
Phương án "Tất cả các mặt bên của hình chóp là hình tam giác" đúng vì theo định nghĩa
Phương án "Tồn tại một mặt bên của hình chóp không phải là hình tam giác" sai vì theo định nghĩa mặt bên của hình chóp luôn là tam giác
Phương án "Số cạnh bên của hình chóp bằng số mặt của nó" sai vì số cạnh bên bằng số mặt bên trong khi các mặt hình chóp gồm các mặt bên và mặt đáy.
Có thể giải thích "Số cạnh bên của hình chóp bằng số mặt của nó" sai vì xét với hình chóp tam giác số cạnh bên bằng 3 nhưng số mặt bằng 4.
Cho hàm số.![]()
a) Giới hạn:
Sai||Đúng
b) Giới hạn:
Đúng||Sai
c) Giới hạn:
Đúng||Sai
d) Giới hạn:
Sai||Đúng
Cho hàm số.
a) Giới hạn: Sai||Đúng
b) Giới hạn: Đúng||Sai
c) Giới hạn: Đúng||Sai
d) Giới hạn: Sai||Đúng
a) Ta có
b) Xét dãy số bất kì sao cho
và
, ta có:
.
Khi đó: .
c) Xét dãy số bất kì sao cho
và
, ta có
.
Khi đó: .
d) Vì (hay
) nên không tồn tại
.
Số lượng từ trong mỗi câu trong N câu đầu tiên của một cuốn sách được đếm và kết quả được ghi trong bảng sau:
Khoảng số từ | Số câu |
[1; 5) | 2 |
[5; 9) | 5 |
[9; 13) |
|
[13; 17) | 23 |
[17; 21) | 21 |
[21; 25) | 13 |
[25; 29) | 4 |
[29; 33) | 1 |
Biết mốt của mẫu dữ liệu có giá trị là 16. Giá trị của N là:
Ta có: Mốt của mẫu dữ liệu nằm trong nhóm [13; 17)
Khoảng số từ | Số câu |
|
[1; 5) | 2 |
|
[5; 9) | 5 |
|
[9; 13) | ||
[13; 17) | 23 | |
[17; 21) | 21 | |
[21; 25) | 13 |
|
[25; 29) | 4 |
|
[29; 33) | 1 |
|
Do đó:
Khi đó ta có:
Vậy cỡ mẫu N = 86.
Hai hàm số nào sau đây có chu kì khác nhau?
Hai hàm số có cùng chu kì 2π
Hai hàm số có cùng chu kì 4π
Hai hàm số có cùng chu kì
Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì
Cho hàm số
. Hãy chọn kết luận đúng.
Ta có:
Lại có:
=> Hàm số liên tục phải tại x = 1
Cho cấp số cộng
có
và
. Khẳng định nào sau đây là đúng?
Ta có:
Hàm số 
Ta có: liên tục tại
Tại ta có:
Vậy hàm số liên tục tại
Tại ta có:
Vậy hàm số bị gián đoạn tại
Kết luận: Hàm số đã cho liên tục tại mọi điểm trừ x = 1.
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 15 |
[155; 160) | 10 |
[160; 165) | 40 |
[165; 170) | 27 |
[170; 175) | 5 |
[175; 180) | 3 |
Tổng | N = 100 |
Mốt của mẫu số liệu thuộc nhóm số liệu nào?
Mốt của mẫu số liệu thuộc nhóm [160; 165).
Xác định nghiệm của phương trình
?
Ta có:
Vậy phương trình đã cho có nghiệm .
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
,
là trọng tâm tam giác
. Khi đó, giao điểm của
và
là:
Hình vẽ minh họa
Kéo dài cắt
tại
.
Khi đó là giao điểm của
và
.
Nhận định sự đúng sai của các kết luận sau?
a)
. Đúng||Sai
b) Phương trình
có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu
thì
bằng
. Sai||Đúng
d) Hàm số
gián đoạn tại
. Sai||Đúng
Nhận định sự đúng sai của các kết luận sau?
a) . Đúng||Sai
b) Phương trình có đúng 3 nghiệm phân biệt. Đúng||Sai
c) Nếu thì
bằng
. Sai||Đúng
d) Hàm số gián đoạn tại
. Sai||Đúng
Ta có:
Xét phương trình . Đặt
là hàm số liên tục trên
suy ra hàm số cũng liên tục trên
.
Ta có:
Khi đó: nên phương trình
có ít nhất 3 nghiệm
là phương trình bậc 3 có tối đa 3 nghiệm
Vậy phương trình đã cho có đúng 3 nghiệm.
Ta có:
Nếu suy ra
Ta có:
Vậy hàm số đã cho liên tục tại x = 0.
Cho tứ diện
. Trên
,
lần lượt lấy hai điểm
sao cho
cắt
tại
. Tìm giao tuyến của hai mặt phẳng
và
.
Hình vẽ minh họa:
Ta có: là điểm chung của hai mặt phẳng
và
Ta lại có: nên
là điểm chung thứ hai.
Vậy giao tuyến của hai mặt phẳng và
là
Cho dãy số
, biết
. Số
là số hạng thứ mấy của dãy số?
Ta có:
Vậy số là số hạng thứ 8 của dãy số.
Tập nghiệm của phương trình
là:
Ta có:
=> Phương trình vô nghiêm.
Tính giá trị của biểu thức ![]()
Ta có:
Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ:
Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ Song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.
Công thức nào sau đây đúng?
Ta có:
Giá trị của
với
bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy .
Hình chiếu của hình vuông không thể là hình nào trong các hình sau?
Theo tính chất của phép chiếu song song ta được
Hình chiếu của hình vuông không thể là hình thang có hai cạnh đáy không bằng nhau.
Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:
Nữ | 6 | 7 | 9 | 8 | 10 | 10 |
Nam | 7 | 9 | 12 | 14 | 13 | 17 |
a) Khoảng biến thiên giá trị của nữ là: 4
Khoảng biến thiên giá trị của nam là: 10
b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11
Tuổi (tính theo năm) của 6 nam và 6 nữ được thống kê như sau:
Nữ | 6 | 7 | 9 | 8 | 10 | 10 |
Nam | 7 | 9 | 12 | 14 | 13 | 17 |
a) Khoảng biến thiên giá trị của nữ là: 4
Khoảng biến thiên giá trị của nam là: 10
b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là: 11
a) Khoảng biến thiên giá trị của nữ là:
Khoảng biến thiên giá trị của nam là:
b) Nếu tuổi của hai nhóm được kết hợp với nhau thì khoảng biến thiên là:
Cho hình bình hành ABCD. Qua các đỉnh A, B, C, D ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với mặt phẳng (ABCD). Một mặt phẳng (P) cắt bốn đường thẳng nói trên tại A’, B’, C’, D’. Hỏi A’B’C’D’ là hình gì?
Ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Chứng minh tương tự ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Từ (1) và (2) => là hình bình hành.
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Trung vị của mẫu số liệu có giá trị bằng: 128,26||130,42||129,54||127,73
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Trung vị của mẫu số liệu có giá trị bằng: 128,26||130,42||129,54||127,73
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa trung vị là [100; 150) (vì 30 nằm giữa hai tần số tích lũy 17 va 40)
Khi đó
Cho dãy số (un), biết
. Khẳng định nào sau đây đúng về dãy số (un) ?
Ta có
Do un + 1 − un > 0 nên (un) là dãy số tăng.
Lại có suy ra dãy số bị chặn.
Cho dãy số
với
trong đó a là tham số thực. tìm a để ![]()
Ta có:
Ta có: