Cho cấp số cộng có
. Tính tổng 100 số hạng đầu tiên của cấp số cộng.
Ta có:
Cho cấp số cộng có
. Tính tổng 100 số hạng đầu tiên của cấp số cộng.
Ta có:
Tính giới hạn .
Ta có:
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Tính ?
Đáp án: 164,7
(Kết quả ghi dưới dạng số thập phân làm tròn đến chữ số thập phân thứ nhất)
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Tính ?
Đáp án: 164,7
(Kết quả ghi dưới dạng số thập phân làm tròn đến chữ số thập phân thứ nhất)
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa tứ phân vị thứ ba là [150; 200) (vì 45 nằm giữa hai tần số tích lũy 40 va 57)
Khi đó
Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (h) được cho bởi công thức . Khi nào mực nước của kênh là cao nhất với thời gian ngắn nhất?
Ta có:
Do đó mực nước của kênh cao nhất khi
Vì
Vậy mực nước của kênh là cao nhất khi t = 14 (h)
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng . Sai||Đúng
Cho phương trình lượng giác , vậy:
a) Phương trình đã cho tương đương với phương trình . Đúng||Sai
b) Phương trình có 3 nghiệm nguyên dương. Sai||Đúng
c) Phương trình có 2 nghiệm nguyên dương. Đúng||Sai
d) Tổng các nghiệm nguyên dương của phương trình bằng . Sai||Đúng
Điều kiện: .
Phương trình
.
Yêu cầu bài toán .
Ta có:
Vì .
Kết hợp điều kiện, ta có là những giá trị cần tìm.
Kết luận:
a) Đúng |
b) Sai |
c) Đúng |
d) Sai |
Tìm để
theo thứ tự đó lập thành một cấp số nhân.
Cấp số nhân theo thứ tự là
ta có:
Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?
Đáp án: 666
Một người nhảy bungee (một trò chơi mạo hiểm mà người chơi nhảy từ một nơi có địa thế cao xuống với dây dai an toàn buộc xung quanh người) từ một cây cầu và căng một sợi dây dài 100 m. Sau mỗi lần rơi xuống, nhờ sự đàn hồi của dây, người nhảy dược kéo lên một quãng đường có độ dài bằng so với lần rơi trước đó và lại bị rơi xuống đúng bằng quãng đường vừa dược kéo lên. Tính tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống (làm tròn kết quả đến hàng đơn vị của mét)?
Đáp án: 666
Gọi là quãng dường người đó dược kéo lên ở lần thứ
(đơn vị tính: mét).
Ta có và
.
Vậy là cấp số nhân với số hạng đầu
và công bội
.
Tổng quãng đường người đó đi được sau 10 lần kéo lên và lại rơi xuống là
Hàm số nào không liên tục tại ?
Ta có hàm số không xác định tại
nên hàm số không liên tục tại
NB
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Tổng | N = 100 |
Xác định giá trị đại diện của nhóm thứ tư?
Giá trị đại diện của nhóm thứ tư là
Cho hình chóp tứ giác , đáy
là tứ giác lồi. Gọi
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Biết liên tục trên
. Khẳng định nào sau đây đúng?
Dễ thấy liên tục trên mỗi khoảng
và
. Khi đó hàm số liên tục trên đoạn
khi và chỉ khi hàm số liên tục tại
Tức là ta cần có:
Ta có:
Khi đó (*) trở thành
Cho tứ diện , lấy điểm
. Mặt phẳng
đi qua
và song song với
và
. Xác định các giao tuyến của
và các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?
Hình vẽ minh họa:
Mặt phẳng qua
và song song với
=> Mặt phẳng cắt mặt phẳng
theo giao tuyến
song song với
.
Mặt khác, song song với
nên
cắt
và
theo các giao tuyến
và
với
=> Hình tạo bởi các giao tuyến là tứ giác .
Mặt khác
=> Tứ giác là hình bình hành.
Vậy hình tạo bởi các giao tuyến của và các mặt của hình chóp là hình bình hành.
Cho dãy số xác định bởi
. Giá trị
là
Ta có: .
Biết rằng phương trình có nghiệm dạng
với
và
. Tính
.
Điều kiện xác định
Ta có:
=> Phương trình tương đương
=>
Cho hình chóp có đáy
là hình bình hành. Lấy
; (
). Khi đó, giao tuyến của mặt phẳng
với các mặt của hình chóp là:
Hình vẽ minh họa
Ta có:
Trong mặt phẳng giả sử
Do đó là giao tuyến của mặt phẳng
với các mặt của hình chóp.
Vì nên
là hình thang.
Trong các hàm số sau đây, hàm số nào là hàm số tuần hoàn?
Hàm số không tuần hoàn. Thật vậy:
Tập xác định .
Giả sử
.
Cho x = 0 và x = π, ta được
Điều này trái với định nghĩa là T > 0
Vậy hàm số không phải là hàm số tuần hoàn.
Tương tự chứng minh cho các hàm số và
không tuần hoàn.
Cho dãy số (un) biết . Mệnh đề nào sau đây đúng?
Ta có
Xét tỉ số:
Vậy (un) là dãy số tăng.
Cho tứ diện ABCD, M, N lần lượt là trọng tâm của tam giác ABC, ABD. Những khẳng định nào sau đây là đúng? (Có thể chọn nhiều đáp án)
Gọi E là trung điểm của AB
Vì M và N lần lượt là trọng tâm của tam giác ABC, ABD nên:
Theo định lí Ta - lét ta có: (1)
Mà (2)
Từ (1) và (2) =>
Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:
Chiều cao (cm) | Số học sinh |
[95; 105) | 9 |
[105; 115) | 13 |
[115; 125) | 26 |
[125; 135) | 30 |
[135; 145) | 12 |
[145; 155) | 10 |
Tứ phân vị thứ nhất thuộc nhóm chiều cao nào?
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Thời gian chạy trung bình cự li (giây) của các bạn học sinh là
Thời gian chạy trung bình cự li (giây) của các bạn học sinh là:
(giây)
Kết luận nào đúng về tập nghiệm của phương trình ?
Ta có:
Vậy tập nghiệm của phương trình đã cho là .
Một hình chóp có tổng số đỉnh và số cạnh bằng . Tìm số cạnh của đa giác đáy?
Một hình chóp có đáy là đa giác cạnh thì có
đỉnh và
cạnh
Tổng số đỉnh và số cạnh bằng 14
=> Số cạnh đáy của hình chóp là: 4.
Cho hình chóp tứ giác , đáy
là hình bình hành tâm
. Các điểm
qua phép chiếu song song phương
trên mặt phẳng
ta thu được ảnh lần lượt là
. Khi đó tứ giác
là hình gì?
Hình vẽ minh họa
Theo bài ra ta có: lần lượt là ảnh của
qua phép chiếu song song phương
trên mặt phẳng
.
Ta có:
=> là đường trung bình của các tam giác
=>
=> là hình bình hành
=>
là hình bình hành.
Xác định giới hạn của dãy số là:
Ta có:
Tìm giới hạn
Ta có:
Tìm giá trị thực của tham số a để hàm số liên tục tại
.
Ta có:
Hàm số liên tục tại
Cho bảng dữ liệu như sau
Đại diện A | Tần số |
[0; 10) | 6 |
[10; 20) | 24 |
[20; 30) | x |
[30; 40) | 16 |
[40; 50) | 9 |
Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm bằng 24.
Ta có:
Đại diện A | Tần số | Tần số tích lũy |
[0; 10) | 6 | 6 |
[10; 20) | 24 | 30 |
[20; 30) | x | 30 + x |
[30; 40) | 16 | 46 + x |
[40; 50) | 9 | 55 + x |
| N = 55 + x |
|
Trung vị là 24 => Nhóm chứa trung vị là
Giới hạn bằng
Ta có:
.
Khẳng định nào dưới đây đúng?
Đáp án: “Không có mặt phẳng nào chứa cả hai đường thẳng a và b thì ta nói a và b chéo nhau” đúng vì theo định nghĩa hai đường thẳng chéo nhau.
Đáp án: “Hai đường thẳng cùng song song với đường thẳng thứ ba thì song song với nhau” sai vì hai đường thẳng đó chưa chắc đã phân biệt.
Đáp án: “Hai đường thẳng cùng song song với một mặt phẳng thì song song với nhau” sai vì hai đường thẳng đó có thể chéo nhau.
Đáp án: “Hai đường thẳng song song với nhau nếu chúng không có điểm chung” sai vì hai đường thẳng đó có thể chéo nhau.
Số cạnh của hình chóp tam giác là:
Số cạnh của hình chóp tam giác là: 6 cạnh.
Hình lăng trụ tam giác có bao nhiêu mặt?
Hình lăng trụ tam giác có 5 mặt.
Bảng số liệu dưới đây cho biết lương của 113 nhân viên trong một nhà máy trong một tháng (đơn vị: triệu đồng):
Lương | [0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) |
Số nhân viên | 18 | 23 | 30 | 20 | 12 | 10 |
Tính mức lương trung bình của các nhân viên trên đây. (Làm tròn đến chữ số thập phân thứ hai)
Ta có:
Lương | |||
[0; 10) | 18 | 5 | 90 |
[10; 20) | 23 | 15 | 345 |
[20; 30) | 30 | 25 | 750 |
[30; 40) | 20 | 35 | 700 |
[40; 50) | 12 | 45 | 540 |
[50; 60) | 10 | 55 | 550 |
| N = 113 |
| T = 2975 |
Mức lương trung bình của nhân viên là:
(triệu đồng)
Giá trị của bằng:
Với a>0 nhỏ tùy ý, ta chọn
Suy ra:
Vậy = 0.
Trong các dãy số cho bởi số hạng tổng quát
sau, dãy số nào là một cấp số nhân?
Xét dãy số ta có:
Vậy dãy số là cấp số nhân với q = 1/3
Cho bốn cung (trên một đường tròn định hướng) các cung nào có điểm cuối trùng nhau?
Ta có:
=> và
có điểm cuối trùng nhau
=> và
có điểm cuối trùng nhau.
Cho hình lập phương cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?
Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Trên đường tròn bán kính 20cm. Tính độ dài của cung có số đo .
Độ dài cung tròn là:
Cho a, b là các số thực thuộc (-1; 1) và các biểu thức:
Chọn khẳng định đúng.
Ta có: khi đó:
Hàm số xác định khi và chỉ khi:
Điều kiện các định:
Xét tính tăng, giảm và bị chặn của dãy số (un), biết , ta thu được kết quả?
Ta có
Mà un > 0, ∀n nên un + 1 < un, ∀n ≥ 1⇒ dãy (un) là dãy số giảm.
Vì 0 < un ≤ u1 = 2, ∀n ≥ 1 nên dãy (un) là dãy bị chặn trên.
Trong các dãy số sau dãy số nào bị chặn?
Xét dãy (an) có nên dãy số (an) bị chặn dưới.
Xét dãy (bn) có nên dãy số (bn) bị chặn dưới.
Xét dãy (cn) có cn = (−2)n + 3, ∀n ∈ ℕ* nên dãy số (cn) không bị chặn.
Xét dãy (dn) có .
Ta có
bị chặn.
Gọi S là tập nghiệm của phương trình . Khẳng định nào sau đây là đúng?
Ta có
Nhận thấy với nghiệm .
Giá trị của giới hạn là:
Ta có:
Cho cấp số cộng có số hạng đầu
công sai
Năm số hạng liên tiếp đầu tiên của cấp số cộng là:
Ta dùng công thức tổng quát , hoặc
để tính các số hạng của một cấp số cộng.
Ta có
Cho hình lăng trụ ABC.A’B’C’. Gọi I. J. K lần lượt là trọng tâm của các tam giác ABC, ACC’, A’B’C’. Mặt phẳng nào sau đây song song với (IJK)
Hình vẽ minh họa
Gọi M, N, E lần lượt là trung điểm của BC, CC' và B'C'.
=> (tính chất trọng tâm tam giác)
=>
Xét mặt phẳng ta có:
=>
Mà
=>
Từ (1) và (2) => và
là hai mặt phẳng phân biệt. Khi đó ta có: