Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.
Ta có: d = 6 - 1 = 5
Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng
=> x = 6 + 5 = 11
Vậy x = 11
Cho các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng. Tìm x.
Ta có: d = 6 - 1 = 5
Các số -4; 1; 6; x theo thứ tự lập thành một cấp số cộng
=> x = 6 + 5 = 11
Vậy x = 11
Cho dãy số
. Chọn khẳng định sai trong các khẳng định sau đây.
Ta có: nên
đúng.
Do nên dãy số bị chặn, do đó “Dãy số (un) bị chặn” đúng.
.
Do nên dãy số không tăng, không giảm.
Vậy “Dãy số (un) không tăng, không giảm” đúng.
Do đó “Dãy số (un) tăng” sai.
Cho hình chóp
có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Cho hình chóp có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Phương trình ![]()
Giá trị của
bằng:
Với mọi số dương M lớn tùy ý ta chọn
Ta có:
.
Hoàn thành mẫu dữ liệu ghép nhóm sau.
Nhóm | Tần số |
(0;10] | 8 |
(10;20] | 14 |
(20;30] | 12 |
(30;40] | 9 |
(40;50] | 7 |
Ghép nối các nội dung thích hợp với nhau:
Cho một cấp số nhân có các số hạng đều không âm thỏa mãn
. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.
Giả sử công bội của cấp số nhân là q
Ta có:
=>
Do cấp số nhân có các số hạng không âm nên q = 2
Ta có:
Giá trị của
bằng:
Ta có:
Cho cấp số cộng
biết
,
Khi đó
bằng
Ta có
Vậy
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính giá trị trung vị của mẫu dữ liệu ghép nhóm trên?
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [9; 11)
(Vì 10 nằm giữa hai tần số tích lũy 9 và 16)
Do đó:
Khi đó trung vị là:
Cho dãy số
thỏa mãn
. Biết dãy số
là dãy tăng và không bị chặn trên. Đặt
. Tính ![]()
Ta có:
Cho hàm số
liên tục tại
. Tính giá trị biểu thức
.
Ta có:
Từ điều kiện hàm số liên tục tại ta có hệ phương trình:
Cho hàm số
liên tục trên đoạn
và có đồ thị như hình vẽ. Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn
. Giá trị của M.n là:

Hàm số liên tục trên
.
Từ đồ thị hàm số đã cho ta thấy giá trị lớn nhất và giá trị nhỏ nhất của hàm số lần lượt là M = 3; m = -1
Vậy M.n = -3
Có bao nhiêu giá trị nguyên của m thuộc
sao cho
là:
Ta có:
Ta có:
Sản lượng xoài (tính bằng kg) được ghi lại trong bảng sau:
Sản lượng | [40; 50) | [50; 60) | [60; 70) | [70; 80) | [80; 90) | [90; 100) |
Số cây | 10 | 15 | 17 | 14 | 12 | 2 |
Tìm mốt của mẫu dữ liệu trên?
Quan sát bảng thống kê ta thấy tần số cao nhất là 17 nằm trong nhóm [60; 70).
Sản lượng | [40; 50) | [50; 60) | [60; 70) | [70; 80) | [80; 90) | [90; 100) |
Số cây | 10 | 15 | 17 | 14 | 12 | 2 |
|
|
|
|
Khi đó ta tính mốt như sau:
Cho cấp số nhân có số hạng thứ bảy là
và công bội
. Hỏi số hạng đầu tiên của cấp số nhân bằng bao nhiêu?
Ta có:
Cho tứ diện
. Gọi
và
lần lượt là trọng tâm của tam giác
và
. Mệnh đề nào dưới đây đúng?
Hình vẽ minh họa
Giả sử là trung điểm của
.
Ta có:
Cho hàm số
. Tính
.
Ta có:
Cho hình chóp
đáy
là hình bình hành tâm
. Chọn khẳng định sai?
Hình vẽ minh họa
Ta có: nên đường thẳng
cắt mặt phẳng
tại điểm
.
Vậy khẳng định sai là “”
Xác định hàm số chẵn trong các hàm số dưới đây?
Ta có:
Hàm số có tập xác định
nên
và
Suy ra hàm số là hàm số lẻ.
Hàm số là hàm số chẵn vì tập xác định
nên
và
Tương tự ta có hàm số là hàm số lẻ, hàm số
không chẵn cũng không lẻ.
Tìm tập các định D của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Một nhóm
học sinh tham gia một kỳ thi. Số điểm thi của
học sinh đó được sắp xếp từ thấp đến cao như sau (thang điểm 10):
. Tìm số trung bình của mẫu số liệu (tính chính xác đến hàng phần trăm).
Số trung bình của mẫu số liệu là:
Cho
. Mệnh đề nào sau đây đúng?
Ta có:
Do đó điểm cuối của cung có số đo thuộc góc phần tư thứ
Vậy
Cho các giới hạn
. Tính giá trị biểu thức ![]()
Ta có:
Khách hàng A gửi 60 triệu đồng vào ngân hàng với kì hạn 1 tháng với lãi suất của loại kì hạn này là
. Ngân hàng đó quy định: “Khi kết thúc kỳ hạn gửi tiền mà người gửi không đến rút tiền thì toàn bộ số tiền (bao gồm cả vốn và lãi) sẽ được chuyển gửi tiếp với kỳ hạn như kỳ hạn mà người gửi đã gửi”. Hỏi nếu sau hai năm, kể từ ngày gửi người đó đến ngân hàng để rút tiền thì số tiền rút được (gồm cả vốn và lãi) là bao nhiêu?
Với số nguyên dương , kí hiệu
là số tiền người đó rút được (gồm cả vốn và lãi) sau
tháng kể từ ngày gửi. khi đó, theo giả thiết của bài toán ta có:
Ta có: là một cấp số nhân với số hạng đầu
với công bội
nên
Số tiền rút được sau 2 năm là:
(đồng)
Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là điểm nào sau đây?
Do mặt phẳng (MAB) chứa AB // CD nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB.
Giả sử đường thẳng này cắt SD tại điểm I.
Khi đó MI là đường trung bình của tam giác SCD
=> I là trung điểm của SD.
Vậy hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là trung điểm của SD.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Gọi
là nghiệm âm lớn nhất của
. Mệnh đề nào sau đây là đúng?
Phương trình
So sánh hai nghiệm ta được nghiệm âm lớn nhất của phương trình là
Cho hình chóp S. ABCD, đáy là hình bình hành ABCD, điểm N thuộc cạnh SC sao cho 2NC = NS, M là trọng tâm của tam giác CBD. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Gọi O là tâm hình bình hành ABCD
Ta có:
M là trọng tâm tam giác BCD =>
ABCD là hình bình hành =>
=>
Xét tam giác SAC có:
Theo định lí Ta - lét suy ra
Tính giới hạn ![]()
Ta có:
Một hình chóp có tổng số đỉnh và số cạnh bằng
. Tìm số cạnh của đa giác đáy?
Một hình chóp có đáy là đa giác cạnh thì có
đỉnh và
cạnh
Tổng số đỉnh và số cạnh bằng 14
=> Số cạnh đáy của hình chóp là: 4.
Với những giá trị nào của x thì giá trị của các hàm số
và
bằng nhau?
Xét phương trình hoành độ giao điểm: sin 3x = sin x
Mệnh đề nào sau đây đúng?
Đáp án đúng là:
Cho dãy số (un) có u1 = 1 và
.
Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) (un) là dãy số bị chặn trên.
Ta có nên dãy số tăng.
Vậy phát biểu (1) đúng.
Vì dãy số tăng nên dãy số bị chặn dưới bởi u1.
Vậy phát biểu (2) đúng.
Ta lại có
Cộng các đẳng thức trên theo từng vế, ta được:
Mặt khác
Vậy dãy số bị chặn trên bởi 2 nên phát biểu (3) đúng.
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số
liên tục trên tập số thực. Sai||Đúng
b)
Đúng||Sai
c) Phương trình
có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số
. Khi đó
. Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Có hai trong ba hàm số liên tục trên tập số thực. Sai||Đúng
b) Đúng||Sai
c) Phương trình có ít nhất hai nghiệm thuộc khoảng
.Đúng||Sai
d) Biết hàm số . Khi đó
. Sai||Đúng
a) Ta có hàm số lượng giác liên tục trên từng khoảng xác định của nó.
Hàm số xác định trên tập số thực suy ra hàm số liên tục trên
Hàm số xác định trên
Hàm số xác định trên
Vậy chỉ có suy nhất một hàm số liên tục trên tập số thực.
b) Ta có:
c) Xét hàm số liên tục trên
Ta có:
Vì nên phương trình đã cho có ít nhất hai nghiệm thuộc khoảng
.
d) Ta có: . Khi
.
Có bao nhiêu hình chóp tứ giác trong các hình sau?

Có 2 hình chóp tứ giác
Có bao nhiêu giá trị nguyên của m để phương trình
có nghiệm?
Ta có:
Kết hợp với m thuộc tập số nguyên
Suy ra 4 – (-2) + 1 = 7 giá trị nguyên của m
Cho hàm số
, số nghiệm thuộc
của phương trình
là?
Ta có:
Do đó
+) Trường hợp 1. Với
Do nên
Suy ra k = 0 ta được .
+) Trường hợp 2. Với
Do nên
Suy ra k = 0 ta được ta được
.
Vậy có 3 nghiệm thuộc của phương trình
là
;
;
.
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Xác định nhóm chứa tứ phân vị thứ ba của mẫu số liệu.
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Tần số tích lũy | 2 | 9 | 16 | 19 | 20 |
|
Cỡ mẫu
=> Nhóm chứa tứ phân vị thứ ba là [9; 11)
(Vì 15 nằm giữa hai tần số tích lũy 9 và 16)
Cho hình chóp tứ giác
, đáy
là tứ giác lồi. Gọi ![]()
. Xác định giao tuyến của hai mặt phẳng
và
?
Hình vẽ minh họa
Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).
Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.
Cho hình chóp
có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a)
Đúng||Sai
b)
Đúng||Sai
c)
Sai||Đúng
d)
Đúng||Sai
Cho hình chóp có đáy
là hình thang
. Gọi O là giao điểm của AC và BD, các điểm
lần lượt là trung điểm các cạnh
. Lấy điểm
thuộc
sao cho
. Hãy xác định tính đúng sai của các khẳng định dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Sai||Đúng
d) Đúng||Sai
Hình vẽ minh họa
Ta có EF là đường trung bình tam giác SAD nên EF // SD
Ta có:
Xét tứ giác BFDC có: suy ra tứ giác BFDC là hình bình hành
=> BF // DC
Ta có:
Ta có:
Do AD // BC nên theo định lí Ta- let ta có:
Mặt khác
Xét tam giác SAC có
Ta có:
Điểm kiểm tra môn Toán của học sinh lớp 11A được ghi trong bảng sau:
Điểm | Số học sinh |
[20; 30) | 4 |
[30; 40) | 6 |
[40; 50) | 15 |
[50; 60) | 12 |
[60; 70) | 10 |
[70; 80) | 6 |
[80; 90) | 4 |
[90; 100] | 3 |
Biết rằng nếu học sinh có ít nhất 60 điểm và không vượt quá 80 điểm sẽ đạt điểm B. Hỏi phần trăm số học sinh đạt điểm B trong lớp 11A chiếm bao nhiêu phần trăm?
Quan sát bảng số liệu ghép nhóm ta thấy:
Số học sinh lớp 11A là 60 học sinh
Nhóm [60; 70) có 10 học sinh
Nhóm [70; 80) có 6 học sinh
=> Số học sinh đạt điểm B là 10 + 6 = 16 (học sinh)
Vậy số học sinh đạt điểm B chiếm
Cho lăng trụ tam giác
có
lần lượt là trọng tâm tam giác
và
,
sao cho
. Mệnh đề nào sai?
Hình vẽ minh họa
sai vì
Cho dãy số
xác định bởi
. Giá trị
là
Ta có: .
Cho dãy số (un) biết un = a sin(n)+b cos(n). Mệnh đề nào sau đây đúng?
Xét |un| = |a sin(n)+b cos(n)| ≤ |a| + |b| ⇒ − (|a|+|b|) ≤ un ≤ |a| + |b|
Vậy dãy số (un) bị chặn.