Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp S. ABCD. Gọi M, N, P, R, Q, L lần lượt là trung điểm SD, SB, DC, BC, AD, AB. Khi đó khẳng định nào sai?

    Hình vẽ minh họa

    Qua phép chiếu song song theo phương SC lên mặt phẳng (ABCD) biến: M thành P, N thành R.

    Do đó MP// NR

    => MP // (NLR)

    Qua phép chiếu song song theo phương SA lên mặt phẳng (ABCD) biến: N thành L, R thành R, M thành Q, P thành P, L thành L, Q thành Q.

    Vậy (NLR)//(MQP)

    Vậy khẳng định sai là: AD//(NLR)

  • Câu 2: Thông hiểu

    Trong không gian, cho 3 đường thẳng a, b, c, biết a//b, a và c chéo nhau. Khi đó hai đường thẳng b và c:

    Giả sử b//c

    => c // a (mâu thuẫn với giả thiết). 

    Vậy hai đường thẳng b và c cắt nhau hoặc chéo nhau.

  • Câu 3: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\sin \pi x{\text{     khi }}\left| x ight| \leqslant 1} \\   {x + 1{\text{       khi }}\left| x ight| > 1} \end{array}} ight.. Mệnh đề nào sau đây là đúng?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2} \\   {\mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\sin \pi x} ight) = \sin \pi  = 0} \end{array}} ight.

    => Hàm số gián đoạn tại x=1

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {x + 1} ight) = 0 \hfill \\  f\left( { - 1} ight) = \sin \left( { - \pi } ight) = 0 \hfill \\ \end{gathered}  \\   {\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {\sin \pi x} ight) = \sin \left( { - \pi } ight) = 0} \end{array}} ight.

    => Hàm số liên tục tại x=-1

    Vậy hàm số liên tục trên các khoảng \left( { - \infty ; 1} ight)\left( {  1; + \infty } ight).

  • Câu 4: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 1}\frac{2x^{2} - 3x + 1}{1 -
x^{2}}

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{2} - 3x
+ 1}{1 - x^{2}} = \lim_{x ightarrow 1}\frac{1 - 2x}{x - 1} = -
\frac{1}{2}

  • Câu 5: Vận dụng cao

    Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.

    Khẳng định nào sau đây đúng với mọi n nguyên dương?

    Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n

    Từ đó 2Sn =  − 1 − 3 − 32 − … − 3n − 1 + n.3n

    \Leftrightarrow 2S_{n} = - \frac{3^{n} -
1}{2} + n{.3}^{n}

    \Leftrightarrow S_{n} = - \frac{3^{n} -
1}{4} + \frac{n}{2} \cdot 3^{n}

  • Câu 6: Thông hiểu

    Cho \alpha =
\frac{\pi}{2} + k2\pi. Xác định k để 10\pi < \alpha < 11\pi.

    Ta có:

    10\pi < \alpha < 11\pi

    \Rightarrow 10\pi < \frac{\pi}{2} +
k2\pi < 11\pi

    \Rightarrow \frac{19\pi}{2} < k2\pi
< \frac{21\pi}{2}

    \Rightarrow k = 5

  • Câu 7: Nhận biết

    Cho c là hằng số, k là một số nguyên dương. Quy tắc nào sau đây sai?

    Ta có \lim_{x ightarrow +
\infty}\frac{1}{x^{k}} = 0 với k là một số nguyên dương.

  • Câu 8: Thông hiểu

    Cho hàm số f(x) xác định và liên tục tại x = 0 với y =
f(x) = \left\{ \begin{matrix}
x^{2}\sin\frac{1}{x}\ khi\ x eq 0 \\
m\ \ \ \ \ \ khi\ x = 0 \\
\end{matrix} ight.. Xác định giá trị tham số m thỏa mãn điều kiện đề bài.

    Với mọi x eq 0 ta có:

    0 \leq \left| f(x) ight| = \left|
x^{2}\sin\frac{1}{x} ight| \leq x^{2} \mapsto 0

    \Rightarrow \lim_{x ightarrow 0}f(x) =
0

    Theo giả thiết ta phải có m = f(0) =
\lim_{x ightarrow 0}f(x) = 0

  • Câu 9: Thông hiểu

    Cho \sin x +cosx = \frac{1}{2}. Tính giá trị biểu thức A = \frac{1 + sin2x}{1 - sin2x}

    Do \sin x + cosx = \frac{1}{2} nên bình phương hai vế ta được:

    1 + 2sinx\cos x = \frac{1}{4} \Rightarrowsin2x = - \frac{3}{4}

    Vậy A = \frac{1 + sin2x}{1 - sin2x} =\frac{1 - 3/4}{1 + 3/4} = \frac{1}{7}

  • Câu 10: Nhận biết

    Khảo sát thời gian tập thể dục của một nhóm học sinh lớp 11 thu được kết quả ghi trong bảng thống kê sau:

    Thời gian (phút)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    8

    9

    15

    12

    6

    Nhóm chứa mốt của mẫu số liệu đã cho là:

    Nhóm chứa mốt là nhóm có giá trị tần số lớn nhất

    Nên nhóm chứa mốt của mẫu số liệu là: \lbrack 40;60).

  • Câu 11: Vận dụng cao

    Tìm tất cả các giá trị nguyên của a thuộc (0; 2018) để\lim\sqrt[4]{\dfrac{4^{n} + 2^{n + 1}}{3^{n} + 4^{n+ a}}} \leq \dfrac{1}{1024}

    Ta có:

    \lim\sqrt[4]{\dfrac{4^{n} + 2^{n +1}}{3^{n} + 4^{n + a}}} = \lim\sqrt[4]{\dfrac{1 + 2\left( \dfrac{1}{2}ight)^{n}}{\left( \dfrac{3}{4} ight)^{n} + 4^{n}}}

    \begin{matrix}
   = \sqrt {\dfrac{1}{{{4^a}}}}  = \sqrt {\dfrac{1}{{{{\left( {{2^a}} ight)}^2}}}}  = \dfrac{1}{{{2^a}}} \leqslant \dfrac{1}{{1024}} \hfill \\
   \Leftrightarrow {2^a} \geqslant 1024 = {2^{10}} \hfill \\
   \Leftrightarrow a \geqslant 10 \hfill \\ 
\end{matrix}

    \left\{ \begin{matrix}
a \in (0;2018) \\
a\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow a \in \left\{ 10;11;...;2017
ight\}

    Vậy có tất cả 2008 giá trị nguyên của a thỏa mãn điều kiện đề bài.

  • Câu 12: Thông hiểu

    Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:

    Thời gian (phút)

    [0; 5)

    [5; 10)

    [10; 15)

    [15; 20)

    [20; 25)

    Số học sinh

    8

    16

    4

    7

    12

    Hỏi số học sinh tập thể dục ít nhất 10 phút mỗi ngày chiếm bao nhiêu phần trăm?

    Số học sinh tập thể dục ít nhất 10 phút mỗi ngày là:

    4 + 7 + 12 = 23 (học sinh) chiếm \frac{23.100\%}{47} \approx49\%

  • Câu 13: Vận dụng

    Tìm nghiệm dương nhỏ nhất x_0 của 3\sin 3x - \sqrt 3 \cos 9x = 1 + 4{\sin ^3}3x?

    Phương trình \Leftrightarrow 3\sin 3x - 4{\sin ^3}3x - \sqrt 3 \cos 9x = 1

    \Leftrightarrow \sin 9x - \sqrt 3 \cos 9x = 1

    \Leftrightarrow \frac{1}{2}\sin 9x - \frac{{\sqrt 3 }}{2}\cos 9x = \frac{1}{2}

    \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} ight) = \frac{1}{2}

    \Leftrightarrow \sin \left( {9x - \frac{\pi }{3}} ight) = \sin \frac{\pi }{6}

    \Leftrightarrow \left[ \begin{gathered}  9x - \frac{\pi }{3} = \frac{\pi }{6} + k2\pi  \hfill \\  9x - \frac{\pi }{3} = \pi  - \frac{\pi }{6} + k2\pi  \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{{18}} + \frac{{k2\pi }}{9} \hfill \\  x = \frac{{7\pi }}{{54}} + \frac{{k2\pi }}{9} \hfill \\ \end{gathered}  ight.

    \xrightarrow{{{\text{Cho}} > 0}}\left[ \begin{gathered}  \frac{\pi }{{18}} + \frac{{k2\pi }}{9} > 0 \Leftrightarrow k >  - \frac{1}{4}\xrightarrow{{k \in \mathbb{Z}}}{k_{\min }} = 0 \to x = \frac{\pi }{{18}} \hfill \\  \frac{{7\pi }}{{54}} + \frac{{k2\pi }}{9} > 0 \Leftrightarrow k >  - \frac{7}{{12}}\xrightarrow{{k \in \mathbb{Z}}}{k_{\min }} = 0 \to x = \frac{{7\pi }}{{54}} \hfill \\ \end{gathered}  ight.

    So sánh hai nghiệm ta được nghiệm dương nhỏ nhất là \frac {\pi}{18}.

  • Câu 14: Thông hiểu

    Giả sử tứ giác ABCD là hình biểu diễn của một hình vuông. Nếu ABCD là một hình bình hành, thì đường tròn ngoại tiếp hình vuông cho trước được biểu diễn là hình gì, có tính chất như thế nào với hình bình hành ABCD:

    Hình biểu diễn của hình vuông thành hình bình hành nên sẽ hình biểu diễn của đường tròn ngoại tiếp hình vuông đó là đường elip đồng thời giữ nguyên mối quan hệ liên thuộc của đỉnh hình vuông với đường tròn ngoại tiếp nên hình biểu diễn của đường tròn ngoại tiếp hình vuông là đường elip đi qua các đỉnh của hình bình hành ABCD.

  • Câu 15: Vận dụng

    Tìm tích các tần số còn thiếu trong bảng dữ liệu dưới đây biết số trung bình là 56.

    Khoảng dữ liệu

    Tần số

    [0; 20)

    16

    [20; 40)

    x

    [40; 60)

    25

    [60; 80)

    y

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Ta có:

    Dữ liệu đại diện

    Tần số

    Tích các số liệu

    10

    16

    160

    30

    x

    30x

    50

    25

    1250

    70

    y

    70y

    90

    12

    1080

    110

    10

    1100

    Tổng

    63 + x + y

    3590 + 30x + 70y

    Theo bài ra ta có số trung bình bằng 56 nghĩa là:

    \overline{x} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56(*)

    Mặt khác 63 + x + y = 90 \Rightarrow x +y = 27(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}x + y = 27 \\3x + 7y = 145 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 11 \\y = 16 \\\end{matrix} ight.\  \Rightarrow x.y = 176

  • Câu 16: Nhận biết

    Dãy số nào sau đây không phải là một cấp số cộng?

    Xét đáp án A: - \frac{2}{3}; - \frac{1}{3};0;\frac{1}{3};\frac{2}{3};1;\frac{4}{3};....

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = \frac{1}{3}

    => Loại đáp án A 

    Xét đáp án B: 15\sqrt 2 ;12\sqrt 2 ;9\sqrt 2 ;6\sqrt 2 ;...

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = 3\sqrt 2

    => Loại đáp án B

    Xét đáp án C: \frac{4}{5};1;\frac{7}{5};\frac{9}{5};\frac{{11}}{5};...

    {u_2} - {u_1} = \frac{1}{5} e {u_3} - {u_2} = \frac{2}{5}

    => Chọn đáp án C

    Xét đáp án D: \frac{1}{{\sqrt 3 }};\frac{{2\sqrt 3 }}{3};\sqrt 3 ;\frac{{4\sqrt 3 }}{3};\frac{5}{{\sqrt 3 }};...

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = \frac{{\sqrt 3 }}{3}

    => Loại đáp án D

  • Câu 17: Nhận biết

    Gọi d là giao tuyến của mặt phẳng (P)(Q). Nếu đường thẳng d' song song với cả hai mặt phẳng thì:

    Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

  • Câu 18: Nhận biết

    Cho phương trình 2x^{4} - 5x^{2} + x + 1 = 0. Chọn khẳng định đúng trong các khẳng định sau.

    Ta có: \left\{ \begin{matrix}
f(0) = 1 \\
f(1) = - 1 \\
f(2) = 15 \\
\end{matrix} ight.

    => Phương trình có ít nhất hai nghiệm trên khoảng (0;2).

  • Câu 19: Vận dụng

    Cho dãy số \left(
u_{n} ight) xác định bởi \left\{
\begin{matrix}
u_{1} = 6 \\
u_{n + 1} = \sqrt{6 + u_{n}};\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta có: \left\{ \begin{matrix}
u_{1} = 6 \\
u_{n + 1} = \sqrt{6 + u_{n}} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = 6 \\
u_{n + 1} \geq 0 \\
\end{matrix} ight.\  \Rightarrow u_{n} \geq 0

    \Rightarrow \left\{ \begin{matrix}
u_{1} = 6 \\
u_{n + 1} = \sqrt{6 + u_{n}} \geq \sqrt{6} \\
\end{matrix} ight.

    Ta chứng minh quy nạp u_{n} \leq
2\sqrt{3};u_{1} \leq 2\sqrt{3};u_{k} \leq 2\sqrt{3}

    u_{k + 1} = \sqrt{6 + u_{k + 1}} \leq
\sqrt{6 + 2\sqrt{3}} \leq \sqrt{6 + 6} = 2\sqrt{3}

    Cách khác:

    Ta có: u_{2} = \sqrt{12} > 3 >
\frac{5}{2} > 2 nên loại các đáp án \sqrt{6} \leq u_{n} < \frac{5}{2}; \sqrt{6} \leq u_{n} < 3; \sqrt{6} \leq u_{n} < 2

  • Câu 20: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng 10. N là điểm trên cạnh SB sao cho 3SN = 2SB. Một mặt phẳng (\alpha) đi qua N, song song với ABAD, cắt hình chóp theo một tứ giác. Gọi S là diện tích tứ giác thiết diện và S = \frac{4a}{b}, với \frac{a}{b} là phân số tối giản, a;b\mathbb{\in N}. Tính giá trị của biểu thức P = a + b + 1 ?

    Đáp án: 110

    Hình vẽ minh họa

    Ta kẻ MN\ //\ AB\ \ (M \in SA), NP\ //BC\ \ (P \in SC), MQ\ //\ BC\ //\ AD\ \ (Q \in SD).

    Vì mặt phẳng (\alpha) đi qua N, song song với ABAD nên M,\ \
P,\ \ Q đều thuộc (\alpha) và thiết diện của hình chóp cắt bởi mặt phẳng (\alpha) là tứ giác MNPQ.

    Khi đó MN//AB \Rightarrow \frac{SM}{SA} = \frac{MN}{AB} =\frac{2}{3}.

    Tương tự, ta có được \frac{NP}{BC} =
\frac{PQ}{CD} = \frac{QM}{DA} = \frac{2}{3}.

    Suy ra MN = NP = PQ = QM = \frac{2}{3}AB
= \frac{20}{3}MNPQ là hình vuông.

    Suy ra S_{MNPQ} = \left( \frac{20}{3}
ight)^{2} = \frac{400}{9}.

    Khi đó a = 100,b = 9

    Vậy P = a + b + 1 = 110.

  • Câu 21: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tính giá trị trung vị của mẫu dữ liệu?

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{2} =21

    => Nhóm chứa trung vị là [40; 60)

    (Vì 21 nằm giữa hai tần số tích lũy 14 và 26)

    Do đó: l = 40;\frac{N}{2} = 21;m = 14;f =12,c = 60 - 40 = 20

    Khi đó trung vị là:

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c = 40 + \dfrac{21 - 14}{12}.20 = \frac{155}{3}

  • Câu 22: Vận dụng cao

    Tính giá trị lớn nhất của hàm số y =\sqrt{1 + \frac{1}{2}cos^{2}x} + \frac{1}{2}\sqrt{5 +2sin^{2}x}

    Ta có:

    \begin{matrix}y = \sqrt{1 + \dfrac{1}{2}cos^{2}x} + \dfrac{1}{2}\sqrt{5 + 2sin^{2}x}\hfill \\= \sqrt{1 + \dfrac{1}{2}cos^{2}x} + \sqrt{\dfrac{5}{4} +\dfrac{1}{2}sin^{2}x}\hfill \\\end{matrix}

    Áp dụng bất đẳng thức 2\left( a^{2} +b^{2} ight) \geq (a + b)^{2}

    Do đó

    \begin{matrix}  2\left[ {\left( {1 + \dfrac{1}{2}{{\cos }^2}x} ight) + \left( {\dfrac{5}{4} + \dfrac{1}{2}{{\sin }^2}x} ight)} ight] \geqslant {y^2} \hfill \\  {y^2} \leqslant 2\left( {\dfrac{9}{4} + \dfrac{1}{2}} ight) = \dfrac{{11}}{2} \hfill \\   \Rightarrow y \leqslant \dfrac{{\sqrt {22} }}{2} \hfill \\ \end{matrix}

    Dấu bằng xảy ra khi

    \begin{matrix}  1 + \dfrac{1}{2}{\cos ^2}x = \dfrac{5}{4} + \dfrac{1}{2}{\sin ^2}x \hfill \\   \Leftrightarrow \dfrac{1}{2}\cos 2x = \dfrac{1}{4} \Rightarrow \cos 2x = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = 2n - 1. Dãy số \left( u_{n} ight) là dãy số

    Ta có:

    u_{n + 1} - u_{n} = \left\lbrack 2(n +
1) - 1 ightbrack - (2n - 1)

    = 2n + 2 - 1 - 2n + 1 = 2 >
0

    Vậy dãy số \left( u_{n} ight) là dãy số tăng.

  • Câu 24: Vận dụng

    Tìm tất cả các giá trị của tham số a để A
= \lim\frac{5n^{2} - 3an^{4}}{(1 - a)n^{4} + 2n + 1} > 0

    Ta có:

    A = \lim\frac{5n^{2} - 3an^{4}}{(1 -
a)n^{4} + 2n + 1}

    = \lim\dfrac{\dfrac{5}{n^{2}} - 3a}{(1 -a) + \dfrac{2}{n^{3}} + \dfrac{1}{n^{4}}}

    = \frac{- 3a}{1 - a} > 0

    Giải bất phương trình ta được kết quả \left\lbrack \begin{matrix}
a < 0 \\
a > 1 \\
\end{matrix} ight.

  • Câu 25: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Mệnh đề sai: "Nếu hai mặt phẳng phân biệt lần lượt đi qua hai đường thẳng song song thì cắt mặt phẳng còn lại." vì hai mặt phẳng cùng vuông góc với một mặt phẳng có thể cắt nhau.

  • Câu 26: Thông hiểu

    Một rạp hát có 30 dãy ghế, dãy đầu tiên có 25 ghế. Mỗi dãy sau có hơn dãy trước 3 ghế. Hỏi rạp hát có tất cả bao nhiêu ghế?

    Số ghế của mỗi dãy (bắt đầu từ dãy đầu tiên) theo thứ tự đó lập thành một cấp số cộng có 30 số hạng có công sai d= 3;u_{1} = 25

    Tổng số ghế là

    S_{30} = u_{1} + u_{2} + ... +u_{30}

    = 30u_{1} + \frac{30.29}{2}.d =2055

  • Câu 27: Thông hiểu

    Cho ba mặt phẳng phân biệt \left( \alpha ight),\;{m{ }}\left( \beta ight),{m{ }}\;\left( \gamma ight)\left( \alpha ight) \cap \left( \beta ight) = {d_1}; \left( \beta ight) \cap \left( \gamma ight) = {d_2}; \left( \alpha ight) \cap \left( \gamma ight) = {d_3}. Khi đó ba đường thẳng {d_1},\;{d_2},\;{d_3}:

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song. 

  • Câu 28: Thông hiểu

    Cho cấp số nhân \left( u_{n}
ight) có tổng n số hạng đầu tiên là S_{n} = 5^{n} - 1 với n = 1,2,.... Tìm số hạng đầu u_{1} và công bội q của cấp số nhân đó?

    Ta có:

    \left\{ \begin{matrix}
u_{1} = S_{1} = 5 - 1 = 4 \\
u_{1} + u_{2} = S_{2} = 5^{2} - 1 = 24 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{1} = 4 \\
u_{2} = 24 - u_{1} = 20 \\
\end{matrix} ight.

    \Rightarrow u_{1} = 4, q = \frac{u_{2}}{u_{1}} = 5.

  • Câu 29: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 30: Thông hiểu

    Giá trị của B =
\frac{\sqrt{n^{2} + 2n}}{n - \sqrt{3n^{2} + 1}}bằng:

    Ta có:

    B = \lim\dfrac{\dfrac{\sqrt{n^{2} +n}}{n}}{\dfrac{n - \sqrt{3n^{2} + 1}}{n}}

    = \lim\frac{\sqrt{1 +\frac{1}{n}}}{1 - \sqrt{3 + \frac{1}{n^{2}}}} = \frac{1}{1 -\sqrt{3}}

  • Câu 31: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Ta có: \lim_{x ightarrow\infty}\dfrac{2n + 5}{3n + 7} = \lim_{x ightarrow\infty}\dfrac{\dfrac{2n}{n} + \dfrac{5}{n}}{\dfrac{3n}{n} + \dfrac{7}{n}} =\dfrac{2}{3}

    Ta có: Khi a = - 2 thì \lim_{x ightarrow - 2}\left( x^{2} + 4x + 3 + 4
ight) = \lim_{x ightarrow - 2}\left( x^{2} + 4x + 7 ight) =
3

    Ta có: \left\{ \begin{gathered}
  f\left( {\sqrt 3 } ight) = 2\sqrt 3  \hfill \\
  \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {\frac{{{x^2} - 3}}{{x - \sqrt 3 }}} ight) = \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {x + \sqrt 3 } ight) = 2\sqrt 3  \hfill \\ 
\end{gathered}  ight.

    Vậy hàm số f\left( x ight) = \left\{ \begin{gathered}
  \frac{{{x^2} - 3}}{{x - \sqrt 3 }}{\text{   khi x }} e \sqrt 3  \hfill \\
  2\sqrt 3 {\text{   khi x  =  }}\sqrt 3  \hfill \\ 
\end{gathered}  ight. liên túc tại x = \sqrt{3}

    Ta có: \left\{ \begin{gathered}
  \left| {\frac{{\cos n}}{n}} ight| \leqslant \frac{1}{n} \hfill \\
  \lim \frac{1}{n} = 0 \hfill \\ 
\end{gathered}  ight. \Rightarrow \lim \frac{{\cos n}}{n} = 0

  • Câu 32: Thông hiểu

    Đơn giản biểu thức A = cos\left( \alpha - \frac{\pi}{2} ight) +
sin(\alpha + \pi), ta có

    Ta có:

    A = cos\left( \alpha - \frac{\pi}{2}
ight) + sin(\alpha + \pi)

    = cos\left( \frac{\pi}{2} - \alpha
ight) - sin\alpha = sin\alpha - sin\alpha = 0

  • Câu 33: Thông hiểu

    Chiều cao của một số học sinh nam được ghi trong bảng dữ liệu sau:

    Chiều cao (cm)

    Số học sinh

    [95; 105)

    9

    [105; 115)

    13

    [115; 125)

    26

    [125; 135)

    30

    [135; 145)

    12

    [145; 155)

    10

    Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm. (Làm tròn đến chữ số thập phân thứ hai)

    Ta có:

    Chiều cao (cm)

    Số học sinh

    Tần số tích lũy

    [95; 105)

    9

    9

    [105; 115)

    13

    22

    [115; 125)

    26

    48

    [125; 135)

    30

    78

    [135; 145)

    12

    90

    [145; 155)

    10

    100

    Tổng

    N = 100

     

    Ta có: N = 100 \Rightarrow \frac{N}{4} =\frac{100}{4} = 25

    => Nhóm chứa tứ phân vị thứ nhất là: [115; 125)

    Khi đó: \left\{ \begin{matrix}l = 115;\dfrac{N}{4} = 25;m = 22 \\f = 26,d = 125 - 115 = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 115 + \frac{25 -22}{26}.10 \approx 116,15

  • Câu 34: Vận dụng

    Cho tập hợp M =
\left\{ 2^{1};2^{2};2^{3};...;2^{2020} ight\}. Số tập hợp con của tập hợp M gồm ba phần tử có thể sắp xếp thành một cấp số nhân tăng là:

    Gọi ba phần tử thỏa mãn yêu cầu bài toán là 2^{a} < 2^{b} < 2^{c} với a,b,c \in \left\{ 1;2;...;2020
ight\}

    2^{a};2^{b};2^{c} lập thành một cấp số nhân

    Suy ra a,b,c lập thành một cấp số cộng

    \Rightarrow a + b = 2c

    Thấy rằng a và c phải cùng tính chẵn lẻ.

    Khi đó số tập con thỏa mãn yêu cầu bài toán là C_{1010}^{2} + C_{1010}^{2} = 1019090

  • Câu 35: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M là trung điểm của SCI là giao điểm của AM và mặt phẳng (SBD). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Trong mặt phẳng (SAC) gọi SO \cap AM \equiv ISO \subset (SBD)

    \Rightarrow AM \cap (SBD) \equiv \left\{
I ight\} I là trọng tâm tam giác SAC

    \Rightarrow IS = 2IO \Rightarrow IS >
IO

  • Câu 36: Nhận biết

    Cho \alpha \in
\left( 0;\frac{\pi}{2} ight). Khẳng định nào sau đây đúng?

    Ta có:

    \alpha \in \left( 0;\frac{\pi}{2}
ight) \Rightarrow \alpha - \pi \in \left( - \pi; - \frac{\pi}{2}
ight)

    \Rightarrow \sin(\alpha - \pi) <
0

  • Câu 37: Nhận biết

    Dãy số u_{n} =
2^{2n} là cấp số nhân với

    Cấp số nhân 4;16;64;....

    \Rightarrow \left\{ \begin{matrix}u_{1} = 4 \\q = \dfrac{u_{2}}{u_{1}} = 4 \\\end{matrix} ight.

  • Câu 38: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 39: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Số học sinh tham gia khảo sát là:

    Số học sinh tham gia khảo sát là:

    8 + 16 + 4 + 2 + 2 = 32 (học sinh)

  • Câu 40: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \sin n - \cos n. Dãy số (u_{n}) bị chặn dưới bởi số nào dưới đây?

    Ta có:

    \begin{matrix}  {u_n} = \sin n - \cos n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n - \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin n - \sin \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow 1 \geqslant \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - 1 \hfill \\   \Rightarrow \sqrt 2  \geqslant \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - \sqrt 2  \hfill \\ \end{matrix}

  • Câu 41: Nhận biết

    Trong không gian, cho tam giác ABC, lấy điểm I trên cạnh AC kéo dài (trong hình vẽ). Mệnh đề nào sau đây sai?

    Ta có: I \in (ABC);B \in
(ABC)

    => BI \subset (ABC)

    Do đó mệnh đề sai là: “BI không nằm trên mặt phẳng (ABC)”.

  • Câu 42: Nhận biết

    Tập xác định của hàm số: y = \frac{1}{{\sin x}} + 3\tan x

     Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {\sin x e 0} \\   {\cos x e 0} \end{array}} ight. \Rightarrow \sin x.\cos x e 0 \hfill \\   \Rightarrow \sin 2x e 0 \Rightarrow x e \dfrac{{k\pi }}{2};\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 43: Nhận biết

    \lim\left( - n^{4} - 50n + 11
ight) bằng

    Ta có:

    \lim\left( - n^{4} - 50n + 11
ight)

    = \lim\left\lbrack n^{4}\left( - 1 -
\frac{50}{n^{3}} + \frac{11}{n^{4}} ight) ightbrack = -
\infty

  • Câu 44: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Tìm đường thẳng song song với giao tuyến hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Xét hai mặt phẳng (SAB)(SCD) ta có:

    S là điểm chung

    \left\{ \begin{matrix}
AB//CD \\
AB \subset (SAB) \\
CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow d = (SAB) \cap (SCD) với d là đường thẳng đi qua S và song song với AB,CD.

  • Câu 45: Nhận biết

    Hỏi trên đoạn [0; 2023 \pi], phương trình \sqrt 3 \cot x - 3 = 0 có bao nhiêu nghiệm? 

     Ta có \cot x = \sqrt 3  \Leftrightarrow \cot x = \cot \frac{\pi }{6}

    \Leftrightarrow x = \frac{\pi }{6} + k\pi {\text{ }}\left( {k \in \mathbb{Z}} ight)

    Theo giả thiết, ta có

    0 \leqslant \frac{\pi }{6} + k\pi  \leqslant 2023\pi \xrightarrow{{{\text{xap xi}}}} - \frac{1}{6} \leqslant k \leqslant 2022,833

    \xrightarrow{{k \in \mathbb{Z}}}k \in \left\{ {0;1;...;2022} ight\}.

    Vậy có tất cả 2023 giá trị nguyên của k tương ứng với có 2023 nghiệm thỏa mãn yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo