Tính giới hạn ![]()
Ta có:
Tính giới hạn ![]()
Ta có:
Cho hai đường thẳng
và
lần lượt nằm trên hai mặt phẳng song song
và
.
Mệnh đề đúng là: "Nếu và
không song song với nhau, điểm
không nằm trên
và
thì luôn có duy nhất một đường thẳng đi qua
cắt cả
và
."
Trong giới hạn sau đây, giới hạn nào bằng -1?
Ta có:
Trong các dãy số sau, dãy số nào là một cấp số nhân?
Ta có:
Dãy số là cấp số nhân
Gọi là công bội.
Xét đáp án
Xét đáp án
Xét đáp án
Xét đáp án
Tìm được các giới hạn một bên sau:
a)
Đúng||Sai
b)
Sai||Đúng
c)
Sai||Đúng
d)
Sai||Đúng
Tìm được các giới hạn một bên sau:
a) Đúng||Sai
b) Sai||Đúng
c) Sai||Đúng
d) Sai||Đúng
a) Ta có:
.
b) (do
và
).
c) Ta có:
Do và
.
d) Ta có:
Hàm số
tuần hoàn có chu kì
khi
Hàm số có nghĩa
.
Chu kì của hàm số .
Cho dãy số (un) với ![]()
Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có un + 1 = un + (−1)2n + 1 = un − 1
u1 = 1; u2 = u1 − 1; u3 = u2 − 1; …; un = un − 1 − 1
Cộng vế với vế của các đẳng thức trên, ta được:
un = 1 − (n−1) = 2 − n.
Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình
.
Hình vẽ minh họa
Điều kiện
Ta có:
Với ta được nghiệm
Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.
Với ta được
Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.
Tính diện tích hình chữ nhật ABCD.
Cho hình chóp S.MNP Q có đáy MNP Q là hình chữ nhật. Giao tuyến của hai mặt phẳng
(SMN) và (SPQ) song song với đường thẳng nào sau đây?
Hình vẽ minh họa

Xét (SMN) và (SPQ) có:
S là điểm chung
Mà
=> với d là đường thẳng đi qua S và song song với
Một tổ học sinh gồm 4 nam và 3 nữ. Điểm kiểm tra trung bình của nam và nữ lần lượt là 7 và 8. Tính điểm kiểm tra trung bình của cả tổ.
Ta có:
Khi đó điểm số trung bình của cả tổ là:
Hỏi
là một nghiệm của phương trình nào sau đây?
Với , suy ra
Cho cấp số cộng
với
. Công thức số hạng tổng quát của cấp số cộng này là:
Ta có:
Kết quả kiểm tra học kì 1 môn Toán của học sinh lớp 11A được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

Số học sinh có điểm dưới 7 điểm là:
Quan sát biểu đồ ta thấy số học sinh có điểm dưới 7 điểm là: học sinh.
Có bao nhiêu số tự nhiên chẵn k để 
Ta có:
Bài toán trở thành
Ta có: nên bài toán trở thành tìm k sao cho
Mà
=> Không tồn tại giá trị của k (do k nguyên dương và k chẵn).
Biết
. Hàm số
liên tục trên khoảng nào sau đây?
Tập xác định: có nghĩa là
Khi đó
Cho hàm số
xác định và liên tục trên
với
với mọi
. Tính ![]()
Ta có:
Do hàm số đã cho xác định và liên tục trên
=> Hàm số liên tục tại x = 1
=>
Tính tổng 10 số hạng đầu của cấp số cộng
.
Theo bài ra ta có:
Tính tổng T tất cả các nghiệm của phương trình
trên đoạn
.
Phương trình
Với
là số nguyên dương,
là hằng số, giới hạn
bằng
Ta có và
nên
Trong các mệnh đề sau đây, mệnh đề nào sai?
Hai đường thẳng phân biệt cùng song song với
thì
có thể cắt nhau cùng nằm trong
.
có nghĩa khi nào?
Để có nghĩa thì
=>
Cho hình chóp
. Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Cho hình chóp . Điểm
nằm trên cạnh
.Thiết diện của hình chóp với mặt phẳng
là một đa giác có bao nhiêu cạnh?
Đáp án: 4 cạnh.
Hình vẽ minh họa
Xét và
ta có:
là điểm chung thứ nhất.
Gọi
Có là điểm chung thứ hai.
Gọi . Ta có:
Thiết diện là tứ giác .
Vậy thiết diện là đa giác có 4 cạnh.
Phương trình lượng giác
có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Phương trình lượng giác có nghiệm là
với
;
. Giá trị của biểu thức
là bao nhiêu?
Đáp án: 25
Ta có:
Vậy phương trình có họ nghiệm là:.
Do đó
.
Cho hình chóp
có đáy
là hình bình hành. Gọi
,
,
,
lần lượt là trung điểm của các cạnh bên
,
,
,
. Tứ giác
là hình gì?
Hình vẽ minh họa
Tứ giác là hình bình hành.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho hình chóp
có đáy là hình thang có cạnh đáy là
. Gọi
lần lượt là trung điểm của
, điểm
. Xác định giao tuyến của hai mặt phẳng
.
Hình vẽ minh họa
Ta có:
với
.
Vậy giao tuyến của hai mặt phẳng là đường thẳng qua P và song song với AB.
Quan sát bảng sau và tìm khoảng chứa tứ phân vị thứ ba:
Khoảng dữ liệu | [10; 20) | [20; 30) | [30; 40) | [40; 50) |
Tần số | 8 | 12 | 22 | 17 |
Ta có:
Khoảng dữ liệu | [10; 20) | [20; 30) | [30; 40) | [40; 50) | Tổng |
Tần số | 8 | 12 | 22 | 17 | N = 59 |
Tần số tích lũy | 8 | 20 | 42 | 59 |
|
Ta có:
Vậy nhóm chứa tứ phân vị thứ ba là:
Cho mẫu số liệu ghép nhóm về thời gian đi làm muộn tháng 10/2023 của 100 nhân viên trong công ty X như sau:
Thời gian (phút) | Số nhân viên |
[0; 5) | 25 |
[5; 10) | 14 |
[10; 15) | x |
[15; 20) | 13 |
[20; 25) | 12 |
[25; 30) | y |
Biết trung vị của mẫu dữ liệu bằng 12,5. Xác định giá trị x và y?
Ta có:
Lại có:
Thời gian (phút) | Số nhân viên | Tần số tích lũy |
[0; 5) | 25 | 25 |
[5; 10) | 14 | 39 |
[10; 15) | x | 39 + x |
[15; 20) | 13 | 52 + x |
[20; 25) | 12 | 64 + x |
[25; 30) | y | 64 + x + y |
Ta có: trung vị của mẫu dữ liệu bằng 12,5 nên nhóm chứa trung vị là [10; 15)
Khi đó:
Cho hai hình bình hành ABCD và ABEF có tâm lần lượt là O, O’ và không cùng nằm trong một mặt phẳng. Gọi M là trung điểm của AB.
(I) (ADF) // (BCE)
(II) (MOO’) // (ADF)
(III) (MOO’) // (BCE)
(IV) (AEC) // (BDF)
Khẳng định nào sau đây là đúng
Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)
=> BC // (ADF); BE // (ADF)
Mà BC ∩∩ BE = B
=. (ADF) // (BEC).
O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD
Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF
MO’ // (ADF) (1)
Tương tự MO là đường trung bình của tam giác ABD nên MO // AD
MO // (ADF) (2)
Từ (1) và (2) suy ra (MOO’) // (ADF)
Chứng minh tương tự ta cũng có (MOO’) // (BCE).
Hai mặt phẳng (AEC) và (BDF) có:
AC ∩ DB = O ; AE ∩ BF = O’
Suy ra (AEC) ∩ (BDF) = OO’.
Vậy khẳng định (I); (II); (III) đúng.
Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?
Hàm số là hàm số không tuần hoàn
Tập xác định
Giả sử
Cho x = 0 và x = π ta được
Điều này trái với định nghĩa T > 0
Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn
Tương tự chứng minh cho các hàm số và
không tuần hoàn.
Vậy hàm số là hàm số tuần hoàn
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi E, F lần lượt là trung điểm của các cạnh BA, BC và K là một điểm bất kỳ trên cạnh BC. Gọi I là giao điểm của EF và CD.
a) Giao tuyến của (SEF) và (SCD) là đường thẳng SI.Đúng||Sai
b) Giao tuyến của (EFK) và (SAC) là đường thẳng qua K và song song với EF và AC.Đúng||Sai
c) Giao tuyến của (SBC) và (SAD) là đường thẳng qua S và song song với AD và BC. Đúng||Sai
d) Đường thẳng AB song song với măt phẳng (SFD). Sai||Đúng
Hình vẽ minh họa
a) Ta có:
Trong có
Từ (1) và (2) suy ra
b) Ta có:
do EF là đường trung bình trong tam giác ABC
c) Chọn chứa
Ta có:
d) Đường thẳng AB song song với măt phẳng (SFD) sai.
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có cấp số nhân (un) nên khi đó:
Cho hình chóp
có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là ![]()
Đáp án: 3
Cho hình chóp có đáy
là lục giác đều tâm
. Có bao nhiêu mặt phẳng qua các điểm là đỉnh của hình chóp có chung giao tuyến là
Đáp án: 3
Hình vẽ minh họa
có chung giao tuyến
.
Cho dãy số
xác định bởi công thức
. Tìm số hạng tổng quát của dãy số?
Ta có:
suy ra
…
Cộng các vễ theo đẳng thức trên ta được
Tính tổng
:
Ta có:
Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?
Ta có
Vậy
Cho cung lượng giác
trên đường tròn lượng giác như hình vẽ. Số đo của cung
bằng bao nhiêu?

Ta có:
Cung lượng giác có điểm đầu là A, điểm cuối là M và có hướng theo chiều dương.
Vậy số đo cung AM là
Cho
là hằng số,
là một số nguyên dương. Quy tắc nào sau đây sai?
Ta có với
là một số nguyên dương.
Cho mẫu dữ liệu ghép nhóm kết quả đo chiều cao (đơn vị: cm) của một nhóm học sinh lớp 11 như sau:

Số học sinh có chiều cao không vượt quá 168 cm so với tất cả các học sinh chiếm bao nhiêu phần trăm?
Số học sinh tham gia đo chiều cao là 36 học sinh
Số học sinh cao không quá 168cm là: 9 + 15 = 24 học sinh chiếm
Công bội nguyên dương của cấp số nhân
thỏa mãn
là:
Ta có:
Cho tứ diện
. Lấy
lần lượt là trung điểm của
và
, lấy điểm
. Thiết diện cắt bởi mặt phẳng
với tứ diện
là:
Hình vẽ minh họa
Vì I và J là trung điểm của BC và BD nên IJ//CD (1)
nên giao tuyến của hai mặt phẳng
và
là đường thẳng d qua E và song song với CD.
Gọi ta có tứ giác IJEF là thiết diện của tứ diện với mặt phẳng
.
Vì EF//IJ nên IJEF là hình thang.
Dãy số nào sau đây có giới hạn bằng
?
Vì nên
.
Cho hàm số
xác định trên tập số thực và có đồ thị như hình vẽ:

Hỏi hàm số
không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.
Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

Hỏi hàm số đó là hàm số nào?
Ta có và
nên loại C và D.
Ta thấy tại thì
. Thay vào hai đáp án A và B thì chỉ có B thỏa mãn.
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính mức doanh thu trung bình của cửa hàng?
Đáp án: 9,4 (triệu đồng)
(Kết quả ghi dưới dạng số thập phân)
Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
Số ngày | 2 | 7 | 7 | 3 | 1 |
Tính mức doanh thu trung bình của cửa hàng?
Đáp án: 9,4 (triệu đồng)
(Kết quả ghi dưới dạng số thập phân)
Ta có:
Doanh thu | [5; 7) | [7; 9) | [9; 11) | [11; 13) | [13; 15) |
|
Giá trị đại diện | 6 | 8 | 10 | 12 | 14 |
|
Số ngày | 2 | 7 | 7 | 3 | 1 | N = 20 |
Do đó doanh thu trung bình của cửa hàng là:
(triệu đồng)
Vậy doanh thu trung bình của cửa hàng là 9,4 triệu đồng.