Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 2: Vận dụng

    Dữ liệu sau đây liên quan đến các điểm đạt được của học sinh trong một trường:

    Điểm>10>20>30>40>50>60>70>80>90
    Số học sinh7062503830241794

    Tìm trung vị của mẫu dữ liệu.

    Ta có:

    Điểm(10; 20](20; 30](30; 40](40; 50](50; 60](60; 70](70; 80](80; 90](90; 100]
    Số học sinh7062503830241794
    Tần số tích lũy70132182220250274291300304

    Ta có: \frac{N}{2} = \frac{304}{2} =152

    Nên khoảng chứa trung vị là: (30; 40]

    \Rightarrow l = 30;\frac{N}{2} = 152;m =132;f = 50,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c

    = 30 + \frac{152 - 132}{50}.10 =34

  • Câu 3: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) có số hạng đầu là u_{1} = 1, công bội là q = 2019. Tính u_{2019}?

    Theo công thức cấp số nhân ta có: u_{2019} = u_{1}.q^{n - 1} = 1.2019^{2019 - 1} =
2019^{2018}

  • Câu 4: Nhận biết

    Cho hai đường thẳng a và b chéo nhau. Có bao nhiêu mặt phẳng chứa a và song song với b?

    Cho hai đường thẳng chéo nhau, có duy nhất một mặt phẳng qua đường thẳng này và song song với đường thẳng kia.

  • Câu 5: Nhận biết

    Cho dãy số (u_{n}), biết {u_n} = {( - 1)^n}.\frac{{{2^n}}}{n}. Tìm số hạng u_{3}

    Ta có:

    {u_3} = {( - 1)^3}.\frac{{{2^3}}}{3} =  - \frac{8}{3}

  • Câu 6: Thông hiểu

    Số nghiệm trong khoảng ( - \pi\ ;\
\pi) của phương trình 1 - \cos2x =0 là

    Ta có:

    1 - cos2x = 0

    \Leftrightarrow cos2x = 1

    \Leftrightarrow 2x = k2\pi;\left(
k\mathbb{\in Z} ight)

    \Leftrightarrow x = k\pi\left(
k\mathbb{\in Z} ight).

    Với - \pi < x < \pi thì - 1 < k < 1.

    Suy ra k = 0.

    Vậy có 1 nghiệm trong khoảng ( - \pi\ ;\
\pi).

  • Câu 7: Nhận biết

    Giải phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0?

     Phương trình \sin \left( {\frac{{2x}}{3} - \frac{\pi }{3}} ight) = 0 \Leftrightarrow \frac{{2x}}{3} - \frac{\pi }{3} = k\pi

    \Leftrightarrow \frac{{2x}}{3} = \frac{\pi }{3} + k\pi  \Leftrightarrow x = \frac{\pi }{2} + \frac{{k3\pi }}{2}{\text{ }}\left( {k \in \mathbb{Z}} ight).

  • Câu 8: Thông hiểu

    Cho tứ diện ABCD. Lấy I\in AD,J \in BC sao cho AI = 2DI;BJ= 2CJ. Giả sử (\beta) là mặt phẳng qua IJ song song với AB. Xác định các giao tuyến của tứ diện ABCD và mặt phẳng (\beta). Hình tạo bởi các giao tuyến đó là hình gì?

    Giả sử (\beta) cắt các mặt của tứ diện (ABC)(ABD) theo hai giao tuyến JHIK.

    Ta có: \left\{ \begin{matrix}(\beta) \cap (ABC) = JH \\(\beta) \cap (ABD) = IK \\(ABC) \cap (ABD) = AB \\(\beta)//AB \\\end{matrix} ight.

    \Rightarrow JH//IK//AB

    Theo định lí Ta – lét ta có:

    \left\{ \begin{matrix}\dfrac{HJ}{AB} = \dfrac{CJ}{CB} = \dfrac{1}{3} \Rightarrow HJ =\dfrac{1}{3}AB \\\dfrac{IK}{AB} = \dfrac{DJ}{DA} = \dfrac{1}{3} \Rightarrow KI =\dfrac{1}{3}AB \\\end{matrix} ight.

    \Rightarrow HJ = KI

    => HIKJ là hình bình hành

    Do đó hình tạo bởi các giao tuyến của tứ diện ABCD và mặt phẳng (\beta) là hình bình hành HIKJ.

  • Câu 9: Vận dụng

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Đáp án là:

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Để hàm số P(x) liên tục trên (0; + \infty) thì hàm số phải liên tục tại x_{0} = 400 hay \lim_{xightarrow 400} P(x)=P( 400 )

    Ta có:

    \lim_{x ightarrow 400^{-}}P(x) =
\lim_{x ightarrow 400^{-}}4,5x = 4,5.400 = 1800

    \lim_{x ightarrow 400^{+}}P(x) =
\lim_{x ightarrow 400^{-}}(4x + k) = 4.400 + k = 1600 + k

    Để tồn tại \lim_{xightarrow 400} P( x ) thì 1800 = 1600 +
k.

    Suy ra k = 200

  • Câu 10: Vận dụng cao

    Tổng Sn = 1.3 + 2.5 + 3.7 + … + n(2n+1) có công thức thu gọn là?

    Sn = Σi = 1ni(2i+1) = Σi = 1n (2i2+1)

    = 2\Sigma_{i = 1}^{n}\mspace{2mu} i^{2}
+ \Sigma_{i = 1}^{n}\mspace{2mu} i = \frac{2n(n + 1)(2n +
1)}{6}

    = \frac{n(n + 1)}{2} = \frac{n(n + 1)(4n
+ 5)}{6}

  • Câu 11: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Trên các cạnh AB,CD lần lượt lấy các điểm M,N làm trung điểm. Xác định giao tuyến hai mặt phẳng (SAC)(SMN)?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}AM//NC;(AB//CD) \\AM = NC = \dfrac{AB}{2} = \dfrac{DC}{2} \\\end{matrix} ight. suy ra tứ giác AMCN là hình bình hành.

    Do đó AC và MN cắt nhau tại trung điểm của mỗi đường.

    Mà O là trung điểm của AC nên O cũng là trung điểm của MN, hay ba điểm M, O, N thẳng hàng.

    Ta có: S \in (SAC) \cap
(SMN)(*)

    Mặt khác \left\{ \begin{matrix}
O \in (SAC);AC \subset (SAC) \\
O \in (SMN);MN \subset (SMN) \\
\end{matrix} ight.

    \Leftrightarrow O \in (SAC) \cap
(SMN)(**)

    Từ (*)(**) \Rightarrow (SAC) \cap (SMN) =
SO

  • Câu 12: Vận dụng

    Cho dãy số (un) xác định bởi {u_1} = \frac{{ - 41}}{{20}};{u_{n + 1}} = 21{u_n} + 1;\left( {n \geqslant 1} ight). Tìm số hạng thứ 2018 của dãy số đã cho.

    Ta có: {u_{n + 1}} = 21{u_n} + 1 \Rightarrow {u_{n + 1}} + \frac{1}{{20}} = 21\left( {{u_n} + \frac{1}{{20}}} ight)

    Đặt {v_n} = {u_n} + \frac{1}{{20}} \Rightarrow {v_{n + 1}} = 21{v_n}

    Khi đó (vn) là một cấp số nhân với và công bội q = 21

    Do đó số hạng tổng quát của dãy (vn) là {v_n} = {v_1}.{q^{n - 1}} =  - {2.21^{n - 1}} \Rightarrow {u_n} =  - {2.21^{n - 1}} - \frac{1}{{20}}

    => {u_{2018}} =  - {2.21^{2017}} - \frac{1}{{20}}

  • Câu 13: Nhận biết

    Tính giới hạn \lim\frac{n^{2} - 4n^{3}}{2n^{3} + 5n -
2}

    Ta có:

    \lim\dfrac{n^{2} - 4n^{3}}{2n^{3} + 5n -2} = \lim\dfrac{\dfrac{1}{n} - 4}{2 + \dfrac{5}{n^{2}} - \dfrac{2}{n^{3}}} =\dfrac{0 - 4}{2 + 0 - 0} = - 2

  • Câu 14: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Trung vị của mẫu số liệu có giá trị bằng: 128,26||130,42||129,54||127,73

    Đáp án là:

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Trung vị của mẫu số liệu có giá trị bằng: 128,26||130,42||129,54||127,73

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{2}= 30

    => Nhóm chứa trung vị là [100; 150) (vì 30 nằm giữa hai tần số tích lũy 17 va 40)

    Khi đó \left\{ \begin{matrix}l = 100;\dfrac{N}{2} = 30;m = 17;f = 23 \\c = 150 - 100 = 50 \\\end{matrix} ight.

    \Rightarrow M_{e} = l +\dfrac{\dfrac{N}{2} - m}{f}.c

    \Rightarrow M_{e} = 100 + \frac{30 -17}{23}.50 \approx 128,26

  • Câu 15: Vận dụng cao

    Gọi T là tập giá trị của hàm số y =\frac{1}{2}sin^{2}x - \frac{3}{4}cos2x + 3. Tìm tổng các giá trị nguyên của T.

    Ta có:

    y = \frac{1 - cos2x}{2} -\frac{3}{4}cos2x + 3 = \frac{7}{2} - \frac{5}{4}cos2x = \frac{14 -5cos2x}{4}

    - 1 \leq cos2x \leq 1

    \begin{matrix}\Rightarrow \dfrac{9}{4} \leq \dfrac{14 - 5cos2x}{4} \leq\dfrac{19}{4};y\mathbb{\in Z} \hfill\\\Rightarrow y = \left\{ 3;4 ight\} \hfill\\\end{matrix}

    Do đó tổng các giá trị nguyên của T là 7.

  • Câu 16: Vận dụng

    Giải phương trình \sqrt 3 \cos \left( {x + \frac{\pi }{2}} ight) + \sin \left( {x - \frac{\pi }{2}} ight) = 2\sin 2x?

     

    Ta có \cos \left( {x + \frac{\pi }{2}} ight) =  - \sin x và .\sin \left( {x - \frac{\pi }{2}} ight) =  - \cos x

    Do đó phương trình \Leftrightarrow  - \sqrt 3 \sin x - \cos x = 2\sin 2x

    \Leftrightarrow \sqrt 3 \sin x + \cos x =  - 2\sin 2x

    \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin x + \frac{1}{2}\cos x =  - \sin 2x

    \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} ight) =  - \sin 2x

    \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} ight) = \sin \left( { - 2x} ight)

    \Leftrightarrow \left[ \begin{gathered}  x + \frac{\pi }{6} =  - 2x + k2\pi  \hfill \\  x + \frac{\pi }{6} = \pi  + 2x + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x =  - \frac{\pi }{{18}} + k\frac{{2\pi }}{3} \hfill \\  x =  - \frac{{5\pi }}{6} - k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Xét nghiệm x =  - \frac{{5\pi }}{6} - k2\pi \xrightarrow[{k \in \mathbb{Z},{\text{ }}k' \in \mathbb{Z}}]{{k =  - 1 - k'}}x = \frac{{7\pi }}{6} + k'2\pi.

    Vậy phương trình có nghiệm x =  - \frac{\pi }{{18}} + k\frac{{2\pi }}{3},{\text{ }}x = \frac{{7\pi }}{6} + k'2\pi {\text{ }}\left( {k,k' \in \mathbb{Z}} ight).

  • Câu 17: Nhận biết

    Hình lăng trụ tam giác có bao nhiêu mặt?

    Hình lăng trụ tam giác có 5 mặt.

  • Câu 18: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.

     Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 3} \\   {q = \dfrac{9}{3} = 3} \end{array}} ight. \Rightarrow {u_n} = {u_1}.{q^{n - 1}} = {3.3^{n - 1}} = {3^n}

  • Câu 19: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} = 2001;u_{5} = 1995. Khi đó u_{1001} bằng:

    Ta có:

    \left\{ \begin{matrix}
u_{2} = 2001 \\
u_{5} = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + d = 2001 \\
u_{1} + 4d = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2003 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{1001} = u_{1} + 1000d =
3

  • Câu 20: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Đối tượng

    Tần số

    [150; 155)

    15

    [155; 160)

    10

    [160; 165)

    40

    [165; 170)

    27

    [170; 175)

    5

    [175; 180)

    3

    Tổng

    N = 100

    Sắp xếp các nhóm theo thứ tự lần lượt là nhóm chứa trung vị, tứ phân vị thứ nhất, tứ phân vị thứ ba của mẫu số liệu:

    • [160; 165)
    • [155; 160)
    • [165; 170)
    Thứ tự là:
    • [160; 165)
    • [155; 160)
    • [165; 170)

    Ta có:

    Đối tượng

    Tần số

    Tần số tích lũy

    [150; 155)

    15

    15

    [155; 160)

    11

    26

    [160; 165)

    39

    65

    [165; 170)

    27

    92

    [170; 175)

    5

    97

    [175; 180)

    3

    100

    Cỡ mẫu là: N = 100

    \frac{N}{2} = 50=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)

    \frac{N}{4} = 25=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)

    \frac{3N}{4} = 75=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)

  • Câu 21: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{3}=15 và d=-2 . Tìm u_{n} 

    Ta có: 

    \begin{matrix}  {u_3} = 15 \hfill \\   \Leftrightarrow {u_1} + 2d = 15 \hfill \\   \Rightarrow {u_1} = 19 \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   = 19 + \left( {n - 1} ight).\left( { - 2} ight) \hfill \\   = 21 - 2n \hfill \\   \Rightarrow {u_n} =  - 2n + 21 \hfill \\ \end{matrix}

  • Câu 22: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 60;80). Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40). Đúng||Sai

    d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là 52;71. Sai||Đúng

    Đáp án là:

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 60;80). Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40). Đúng||Sai

    d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là 52;71. Sai||Đúng

    a) Điểm trung bình của lớp 11A là:

    \overline{x} = \frac{5.10 + 9.30 + 12.50
+ 10.70 + 6.90}{42} \approx 51,43

    b) Nhóm chứa trung vị của mẫu số liệu là \lbrack 40;60)

    c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: \lbrack 20;40)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{3N}{4} =
31,5

    => Nhóm chứa Q_{3} là [60; 80)

    (Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 60;m = 26,f = 10;c = 80
- 60 = 20

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c = 60 + \frac{31,5 - 26}{10}.20 =71

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

     

    f_{0} f_{1} f_{2}

     

    \Rightarrow l = 40;f_{0} = 9;f_{1} =
12;f_{2} = 10;c = 60 - 40 = 20

    Khi đó mốt của dữ liệu được tính như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{\left(
f_{1} - f_{0} ight) + \left( f_{1} - f_{2} ight)}.c

    \Rightarrow M_{0} = 40 + \frac{12 -
9}{12 - 9 + 12 - 10}.20 = 52

  • Câu 23: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) \lim_{x ightarrow \infty}\frac{2n +
5}{3n + 7} = \frac{5}{3} Sai||Đúng

    b) \lim_{x ightarrow - 2}\left( x^{2}
- 2ax + 3 + a^{2} ight) = 3 khi a
= - 2 Đúng||Sai

    c) Hàm số f(x) = \left\{ \begin{matrix}\dfrac{x^{2} - 3}{x - \sqrt{3}}\ \ \ khi\ x\  eq \sqrt{3} \\2\sqrt{3}\ \ \ khi\ x\  = \ \sqrt{3} \\\end{matrix} ight. liên tục tại x = \sqrt{3} Đúng||Sai

    c) \lim\frac{\cos n}{n} = +
\infty Sai||Đúng

    Ta có: \lim_{x ightarrow\infty}\dfrac{2n + 5}{3n + 7} = \lim_{x ightarrow\infty}\dfrac{\dfrac{2n}{n} + \dfrac{5}{n}}{\dfrac{3n}{n} + \dfrac{7}{n}} =\dfrac{2}{3}

    Ta có: Khi a = - 2 thì \lim_{x ightarrow - 2}\left( x^{2} + 4x + 3 + 4
ight) = \lim_{x ightarrow - 2}\left( x^{2} + 4x + 7 ight) =
3

    Ta có: \left\{ \begin{gathered}
  f\left( {\sqrt 3 } ight) = 2\sqrt 3  \hfill \\
  \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {\frac{{{x^2} - 3}}{{x - \sqrt 3 }}} ight) = \mathop {\lim }\limits_{x \to \sqrt 3 } \left( {x + \sqrt 3 } ight) = 2\sqrt 3  \hfill \\ 
\end{gathered}  ight.

    Vậy hàm số f\left( x ight) = \left\{ \begin{gathered}
  \frac{{{x^2} - 3}}{{x - \sqrt 3 }}{\text{   khi x }} e \sqrt 3  \hfill \\
  2\sqrt 3 {\text{   khi x  =  }}\sqrt 3  \hfill \\ 
\end{gathered}  ight. liên túc tại x = \sqrt{3}

    Ta có: \left\{ \begin{gathered}
  \left| {\frac{{\cos n}}{n}} ight| \leqslant \frac{1}{n} \hfill \\
  \lim \frac{1}{n} = 0 \hfill \\ 
\end{gathered}  ight. \Rightarrow \lim \frac{{\cos n}}{n} = 0

  • Câu 24: Nhận biết

    \lim_{x ightarrow 1^{+}}\frac{x + 1}{x
- 1} bằng

    Đặt f(x) = x + 1;g(x) = x -
1.

    Ta có \lim_{x ightarrow 1^{+}}f(x) =
2;\lim_{x ightarrow 1^{+}}g(x) = 0;g(x) > 0 khi x ightarrow 1^{+}

    Vậy \lim_{x ightarrow 1^{+}}\frac{x +
1}{x - 1} = + \infty.

  • Câu 25: Thông hiểu

    Cho dãy số (un) với u_{n} = \frac{n - 1}{n^{2} + 1}, biết u_{k} = \frac{2}{13}. Hỏi uk là số hạng thứ mấy của dãy số đã cho?

    Ta có:

    u_{k} = \frac{k - 1}{k^{2} + 1}
\Rightarrow \frac{k - 1}{k^{2} + 1} = \frac{2}{13} \Rightarrow k =
5 (do  k∈ℕ*)

  • Câu 26: Nhận biết

    Hàm số y =
\frac{- 5}{x\left( x^{2} - 4 ight)} liên tục tại điểm nào dưới đây?

    Hàm số y = \frac{- 5}{x\left( x^{2} - 4
ight)} có tập xác định D\mathbb{=
R}\backslash\left\{ - 2;0;2 ight\}

    Theo lí thuyết ta có hàm phân thức luôn liên tục trên tập xác định D.

    Khi đó x = 1 \in D suy ra hàm số đã cho liên tục tại điểm x = 1.

  • Câu 27: Thông hiểu

    Cho tứ diện ABCD. Gọi I;J lần lượt là trọng tâm tam giác ABC;ABD. Khi đó đường thẳng IJ song song với đường thẳng:

    Hình vẽ minh họa

    Gọi M, N lần lượt là trung điểm các cạnh BD và BC nên ta có MN // CD (1)

    Vì I; J lần lượt là trọng tâm tam giác ABC và ABD nên ta có:

    \frac{AI}{AN} = \frac{AJ}{AM} =
\frac{2}{3} \Rightarrow IJ//MN\ (2)

    Từ (1) và (2) suy ra IJ//CD.

  • Câu 28: Nhận biết

    Cho góc \alpha được biểu diễn trên đường tròn lượng giác như hình vẽ. Mệnh đề nào dưới đây đúng?

    Góc \alpha được biểu diễn như hình vẽ, khi đó \sin\alpha > 0,cos\alpha
< 0,tan\alpha < 0,cot\alpha < 0.

    Tung độ của điểm M\sin\alpha suy ra \sin\alpha > \frac{1}{2}

    Mệnh đề đúng là \sin\alpha - \frac{1}{2}
> 0.

  • Câu 29: Vận dụng

    Cho tứ diện ABCD cạnh bằng 1. Gọi M là trung điểm của AB, E đối xứng với B qua C, F đối xứng với B qua D. Xác định các giao điểm của mặt phẳng (MEF) với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.

    Hình vẽ minh họa

    Gọi I = MF \cap AD,H = ME \cap
AC

    Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.

    Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.

    Suy ra \frac{HA}{HC} =
\frac{1}{2}. Chứng minh tương tự ta có: \frac{IA}{ID} = \frac{1}{2}. Do đó ta có:

    \frac{HI}{CD} = \frac{2}{3} \Rightarrow
HI = \frac{2}{3}

    Tứ diện đều ABCD có cạnh bằng 1 nên \left\{ \begin{matrix}
\widehat{MAI} = 60^{0} \\
AM = \frac{1}{2};AI = \frac{2}{3} \\
\end{matrix} ight.

    Áp dụng định lí cosin cho tam giác ta có:

    MI^{2} = MA^{2} + IA^{2} -
2MA.IA.cos60^{0}

    \Rightarrow MI^{2} =
\frac{13}{36}

    \Rightarrow MI = \sqrt{\frac{13}{36}} =
\frac{\sqrt{13}}{6} = MH

    Áp dụng công thức Hê- rông tính diện tích tam giác ta được: S_{MHI} = \frac{1}{6}

  • Câu 30: Vận dụng

    Cho tứ diện ABCD, biết tam giác BCD có diện tích bằng 16. Mặt phẳng (P) đi qua trung điểm của AB và song song với mặt phẳng (BCD) cắt tứ diện theo một thiết diện có diện tích bằng

    Đáp án: 4

    Đáp án là:

    Cho tứ diện ABCD, biết tam giác BCD có diện tích bằng 16. Mặt phẳng (P) đi qua trung điểm của AB và song song với mặt phẳng (BCD) cắt tứ diện theo một thiết diện có diện tích bằng

    Đáp án: 4

    Hình vẽ minh họa

    Gọi M là trung điểm của AB.

    Gọi MN = (P) \cap (ABD) (N \in AD), do (P)//(BCD) \Rightarrow MN//\ BD \Rightarrow
N là trung điểm của AD.

    Gọi MP = (P) \cap (ABC) (P \in AC), do (P)//(BCD) \Rightarrow MP//BC \Rightarrow
P là trung điểm của AC.

    Thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P)\Delta MNP.

    Gọi I,\ J lần lượt là trung điểm của CDBD.

    Ta chứng minh được \Delta MNP = \Delta
JDI (c – c – c).

    Ta có

    S_{\Delta MNP} = S_{\Delta DIJ} =
\frac{1}{2}DI.DJ.sin\widehat{JDI}

    =
\frac{1}{4}.\frac{1}{2}DB.DC.sin\widehat{BDC} = \frac{1}{4}.S_{\Delta
DBC} = \frac{1}{4}.16 = 4

    Vậy S_{\Delta MNP} = 4.

  • Câu 31: Nhận biết

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Nhóm nào chứa tứ phân vị thứ nhất của mẫu số liệu?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    Tần số tích lũy

    [0; 50)

    5

    5

    [50; 100)

    12

    17

    [100; 150)

    23

    40

    [150; 200)

    17

    57

    [200; 250)

    3

    60

     

    N = 60

     

    Cỡ mẫu là: N = 60 \Rightarrow \frac{N}{4}= 15

    => Nhóm chứa tứ phân vị thứ nhất là [50; 100) (vì 15 nằm giữa hai tần số tích lũy 5 và 17)

  • Câu 32: Nhận biết

    Tập xác định của hàm số f(x) = \tan x là:

    Ta có: f(x) = \tan x xác định khi và chỉ khi

    \cos x eq 0

    \Leftrightarrow x eq \frac{\pi}{2} +k\pi;\left( k\mathbb{\in Z} ight)

    Vậy tập xác định của hàm số là: \mathbb{R}\backslash\left\{ (2k +1).\frac{\pi}{2}|k\mathbb{\in Z} ight\}

  • Câu 33: Thông hiểu

    Cho \sin x +
\cos x = \sqrt{2}. Tính giá trị \sin2x bằng

    Ta có:

    \sin x + \cos x = \sqrt{2}

    \Rightarrow \left( \sin x + \cos x
ight)^{2} = 2

    \Rightarrow 1 + 2\sin x.\cos x =2

    \Rightarrow \sin2x = 1

  • Câu 34: Thông hiểu

    Giá trị của B =
\frac{\sqrt{n^{2} + 2n}}{n - \sqrt{3n^{2} + 1}}bằng:

    Ta có:

    B = \lim\dfrac{\dfrac{\sqrt{n^{2} +n}}{n}}{\dfrac{n - \sqrt{3n^{2} + 1}}{n}}

    = \lim\frac{\sqrt{1 +\frac{1}{n}}}{1 - \sqrt{3 + \frac{1}{n^{2}}}} = \frac{1}{1 -\sqrt{3}}

  • Câu 35: Vận dụng cao

    Tính tổng các nghiệm trong đoạn [0;30] của phương trình: \tan x = \tan 3x

    Điều kiện để phương trình có nghĩa:

    \left\{ {\begin{array}{*{20}{c}}  {\cos {\text{x}} e 0} \\   {\cos 3{\text{x}} e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x e \dfrac{\pi }{2} + k\pi } \\   {x e \dfrac{\pi }{6} + \dfrac{{k\pi }}{3}} \end{array}} ight.\left( * ight)

    Khi đó, phương trình 3{\text{x}} = x + k\pi  \Leftrightarrow x = \frac{{k\pi }}{2} so sánh với đk

    \left[ \begin{gathered}  x = k2\pi  \hfill \\  x = \pi  + k2\pi  \hfill \\ \end{gathered}  ight.\,,\,x =  \in \left[ {0;30} ight]

    \Rightarrow k = \left\{ {0;...;4} ight\} \Rightarrow x \in \left\{ {0;\pi ;2\pi ;....;9\pi } ight\}

    Vậy, tổng các nghiệm trong đoạn  [0;30]  của phương trình là: 45\pi.

  • Câu 36: Nhận biết

    Cho hai mặt phẳng (P)(Q) song song với nhau. Mệnh đề nào sau đây sai?

    Đáp án “Đường thẳng a \subset
(P) và đường thẳng b \subset
(Q) thì a\ //\ b” sai vì nếu (P)//(Q)và đường thẳng a \subset (P);\ b \subset (Q) thì ab có thể chéo nhau.

  • Câu 37: Thông hiểu

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    Đáp án là:

    Nhận định sự đúng sai của các kết luận sau?

    a) Hàm số f(x) = \frac{2x + 3}{x -
2} liên tục tại x = 2. Sai||Đúng

    b) Cho hàm số y = f(x) liên tục trên đoạn \lbrack 1;5brackf(1) = 2;f(5) = 10. Khi đó phương trình f(x) = 7 có ít nhất một nghiệm trên khoảng (1;5). Đúng||Sai

    c) Biết \lim_{x ightarrow 1}\frac{f(x)
+ 1}{x - 1} = - 1 khi đó I =
\lim_{x ightarrow 1}\frac{xf(x) + 1}{x - 1} = 0 Sai||Đúng

    d) Trong các hàm số y = x^{2};y = \tan
x;y = \sin x;y = \frac{x^{2} - 1}{x^{2} + x + 1}, có 3 hàm số liên tục trên tập số thực. Đúng||Sai

    a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.

    b) Xét phương trình f(x) = 7 \Rightarrow
f(x) - 7 = 0

    Đặt g(x) = f(x) - 7 ta có:

    \left\{ \begin{matrix}
g(1) = f(1) - 7 = - 5 \\
g(5) = f(5) - 7 = 3 \\
\end{matrix} ight.\  \Rightarrow g(1).g(5) < 0

    Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng (1;5).

    c) Ta có:

    I = \lim_{x ightarrow 1}\frac{xf(x) +
1}{x - 1} = \lim_{x ightarrow 1}\frac{xf(x) + x - x + 1}{x -
1}

    = \lim_{x ightarrow
1}\frac{x\left\lbrack f(x) + 1 ightbrack - (x - 1)}{x - 1} = \lim_{x
ightarrow 1}\left\{ \frac{x\left\lbrack f(x) + 1 ightbrack}{x - 1}
ight\} - 1

    = 1.( - 1) - 1 = - 2

    d) Các hàm số liên tục trên tập số thực là y = x^{2};y = \sin x;y = \frac{x^{2} - 1}{x^{2} +
x + 1}.

  • Câu 38: Vận dụng

    Cho dãy số (an) được xác định bởi \left\{ \begin{matrix}
a_{1} = 1;a_{2} = 2 \\
a_{n + 2} - a_{n + 1} - a_{n} = 0 \\
\end{matrix} ight..

    Phát biểu nào dưới đây về dãy số (an) là đúng?

    Mỗi số hạng thứ ba trở đi luôn bằng tổng của hai số đứng ngay trước nó. Đồng thời số hạng đầu tiên và số hạng thứ hai của dãy là các số dương nên dễ thấy dãy số là một dãy tăng.

  • Câu 39: Vận dụng cao

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để bất phương trình

    \frac{\left( 2m^{2} - 7m + 3
ight)x^{3} + x^{2} - (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq
0

    Đúng với mọi x thuộc tập xác định của bất phương trình đó. Số phần tử S bằng:

    Giả sử m là số thực thỏa mãn yêu cầu bài toán:

    Với m = 2 bất phương trình trở thành \frac{- 3x^{3} + x^{2} - x + 2}{2x -
3} \leq 0, bất phương trình không đúng với \frac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2}
- (m - 1)x + 2}{(2 - m)x^{2} + 2x - 3} \leq 0

    => Không thỏa mãn yêu cầu bài toán.

    Với m = 3 bất phương trình trở thành \frac{x^{2} - 2x + 2}{- x^{2} + 2x -
3} \leq 0, tập nghiệm của bất phương trình là \mathbb{R}

    => Thỏa mãn yêu cầu bài toán.

    Với m = \frac{1}{2} bất phương trình trở thành \dfrac{x^{2} + \dfrac{1}{2}x +2}{\dfrac{3}{2}x^{2} + 2x - 3} \leq 0, bất phương trình không đúng với x = 1

    => Không thỏa mãn yêu cầu bài toán.

    Với m eq 2;m eq 3;m eq
\frac{1}{2} đặt \left\{\begin{matrix}f(x) = \dfrac{\left( 2m^{2} - 7m + 3 ight)x^{3} + x^{2} - (m - 1)x +2}{(2 - m)x^{2} + 2x - 3} \\A = 2m^{2} - 7m + 3 \\\end{matrix} ight. thì A eq
0

    Theo giả thiết ta có:

    f(x) \leq 0 với mọi giá trị x thuộc tập xác định (*)

    Nếu A < 0 thì \lim_{x ightarrow - \infty}f(x) = +
\infty mâu thuẫn với (*)

    Nếu A > 0 thì \lim_{x ightarrow + \infty}f(x) = +
\infty mâu thuẫn với (*)

    Vậy S = \left\{ 3 ight\} nên số phần tử của S là 1.

  • Câu 40: Nhận biết

    Giá trị đại diện của nhóm \lbrack
58;60)

    Giá trị đại diện của mẫu là: \frac{58 +
60}{2} = 59.

  • Câu 41: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{\frac{1 - \sin x}{1 + \sin
x}}?

    Ta có: - 1 \leq \sin x \leq 1
\Leftrightarrow \left\{ \begin{matrix}
1 - \sin x \geq 0 \\
1 + \sin x \geq 0 \\
\end{matrix} ight.

    Hàm số được xác định khi 1 + \sin x eq
0 \Leftrightarrow x eq - \frac{\pi}{2} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Vậy tập xác định của hàm số là D\mathbb{=
R}\backslash\left\{ - \frac{\pi}{2} + k2\pi|k\mathbb{\in Z}
ight\}

  • Câu 42: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy M \in AD sao cho \frac{AD}{AM} = 3, G là trọng tâm tam giác SAB. Đường thẳng GM song song với mặt phẳng:

    Hình vẽ minh họa

    Gọi N là trung điểm của AB, lấy K \in
SA sao cho AS = 3AK

    Ta có: \frac{AK}{AS} = \frac{AM}{AD} =
\frac{1}{3} \Rightarrow KM//SD

    Mặt khác \frac{SK}{SA} = \frac{SG}{SM} =
\frac{2}{3} \Rightarrow GK//AN

    \Rightarrow GK//CD

    \Rightarrow (GMK)//(SCD) \Rightarrow
GM//(SCD)

  • Câu 43: Nhận biết

    Cho tứ diện ABCD như hình vẽ.

    Khẳng định nào sau đây đúng?

    Khẳng định đúng là (MND) \cap (ABC) =
MN

  • Câu 44: Vận dụng

    Kết quả của giới hạn \lim\left\lbrack \frac{\sqrt{3n} + ( -
1)^{n}.cos3n}{\sqrt{n} - 1} ightbrack bằng:

    Ta có

    \lim\left\lbrack \frac{\sqrt{3n} + ( -1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack

    = \lim\left\lbrack\frac{\sqrt{3n}}{\sqrt{n} - 1} ightbrack + \lim\left\lbrack \frac{(- 1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack

    Khi đó ta có:

    \lim\left\lbrack
\frac{\sqrt{3n}}{\sqrt{n} - 1} ightbrack = \frac{\sqrt{3}}{1} =
\sqrt{3}

    0 \leq \left| \frac{( -1)^{n}.\cos3n}{\sqrt{n} - 1} ight| \leq \frac{1}{\sqrt{n} - 1}ightarrow 0 \Rightarrow \lim\frac{( - 1)^{n}.\cos3n}{\sqrt{n} - 1} =0

    Vậy \lim\left\lbrack \frac{\sqrt{3n} + (- 1)^{n}.\cos3n}{\sqrt{n} - 1} ightbrack = \sqrt{3}

  • Câu 45: Thông hiểu

    Hàm số nào trong các hàm số sau liên tục tại x = 1?

    Xét hàm số f(x) = \left\{ \begin{matrix}
x + 1\ khi\ x \geq 1 \\
3x - 1\ khi\ x < 1 \\
\end{matrix} ight. có:

    \left\{ \begin{matrix}
f(1) = 2 \\
\lim_{x ightarrow 1^{+}}f(x) = \lim_{x ightarrow 1^{+}}(x + 1) = 2
\\
\lim_{x ightarrow 1^{-}}f(x) = \lim_{x ightarrow 1^{-}}(3x - 1) = 2
\\
\end{matrix} ight.

    Vậy hàm số liên tục tại x =
1.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo