Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Phương trình \sin \left( {\frac{\pi }{6} + x} ight) = \cos 2x có nghiệm là

     Giải phương trình:

    \begin{matrix}  \sin \left( {\dfrac{\pi }{6} + x} ight) = \cos 2x \hfill \\   \Leftrightarrow \sin \left( {\dfrac{\pi }{6} + x} ight) = \sin \left( {\dfrac{\pi }{2} - 2x} ight) \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{\pi }{6} + x = \dfrac{\pi }{2} - 2x + k2\pi } \\   {\dfrac{\pi }{6} + x = \pi  - \left( {\dfrac{\pi }{2} - 2x} ight) + k2\pi } \end{array}} ight. \hfill  \\ \end{matrix}

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = \dfrac{\pi }{3} + k2\pi } \\   { - x = \dfrac{\pi }{3} + k2\pi } \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{9} + \dfrac{{k2\pi }}{3}} \\   {x =  - \dfrac{\pi }{3} + k'2\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight)

  • Câu 2: Nhận biết

    Gọi d là giao tuyến của mặt phẳng (P)(Q). Nếu đường thẳng d' song song với cả hai mặt phẳng thì:

    Nếu hai mặt phẳng phân biệt cùng song song với một đường thẳng thì giao tuyến của chúng (nếu có) cũng song song với đường thẳng đó.

  • Câu 3: Nhận biết

    Ba mặt phẳng phân biệt cắt nhau từng đôi một thì ba giao tuyến của chúng sẽ có bao nhiêu vị trí tương đối?

    Ba mặt phẳng phân biệt cắt nhau từng đôi một thì ba giao tuyến song song hoặc đồng quy.

  • Câu 4: Nhận biết

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    Chọn khẳng định đúng?

    Ta có: N = 46

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    f_{0}

    [50; 55)

    12

    f_{1}

    [55; 60)

    10

    f_{2}

    [60; 65)

    6

     

    [65; 70)

    5

     

    [70; 75)

    8

     

    => Nhóm chứa mốt là: [50; 55)

  • Câu 5: Thông hiểu

    Cho tứ diện ABCD, lấy điểm M \in BC,(M eq B,M eq C). Mặt phẳng (\beta) đi qua M và song song với ABBC. Xác định các giao tuyến của (\beta) và các mặt của hình chóp. Hình tạo bởi các giao tuyến là hình gì?

    Hình vẽ minh họa:

    Mặt phẳng (\beta) qua M và song song với AB

    => Mặt phẳng (\beta) cắt mặt phẳng (ABC) theo giao tuyến MN song song với AB,(N \in AC).

    Mặt khác, (\beta) song song với CD nên (\beta) cắt (ACD)(BCD) theo các giao tuyến NPMQ với P \in
AD;Q \in BD

    => Hình tạo bởi các giao tuyến là tứ giác MNPQ.

    Mặt khác \left\{ \begin{matrix}
MN//PQ(//AB) \\
NP//MQ(//CD) \\
\end{matrix} ight.

    => Tứ giác MNPQ là hình bình hành.

    Vậy hình tạo bởi các giao tuyến của (\beta) và các mặt của hình chóp là hình bình hành.

  • Câu 6: Vận dụng

    Cho ba số a; 5; 3b theo thứ tự lập thành cấp số cộng và ba số a; 3; 3b theo thứ tự lập thành cấp số nhân thì \left| {3b - a} ight| bằng?

    Ta có:

    Ba số a; 5; 3b theo thứ tự lập thành cấp số cộng

    => a + 3b = 5.2

    => a = 10 – 3b

    Ba số a; 3; 3b theo thứ tự lập thành cấp số nhân

    => a.3b = 32

    => ab = 3

    \begin{matrix}   \Rightarrow b\left( {10 - 3b} ight) = 3 \hfill \\   \Leftrightarrow 3{b^2} - 10b + 3 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {b = 3 \Rightarrow a = 1 \Rightarrow \left| {3y - x} ight| = 8} \\   {b = \dfrac{1}{3} \Rightarrow a = 9 \Rightarrow \left| {3y - x} ight| = 8} \end{array}} ight. \hfill \\   \Rightarrow \left| {3y - x} ight| = 8 \hfill \\ \end{matrix}

     

  • Câu 7: Nhận biết

    Hàm số nào dưới đây gián đoạn tại x = 1?

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2}}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2}}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. nên hàm số y
= \frac{x^{2} + 2}{x - 1} gián đoạn tại điểm x = 1

  • Câu 8: Vận dụng

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    a) Cân nặng trung bình của học sinh lớp 11H bằng 59,46kg. Đúng||Sai

    b) 60 \leq M_{e} < 65 Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: \lbrack 50;55),\lbrack
65;70) Đúng||Sai

    d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai

    Đáp án là:

    Kết quả khảo sát cân nặng tất cả học sinh trong lớp 11H được ghi trong bảng sau:

    Cân nặng (kg)

    Số học sinh

    [45; 50)

    5

    [50; 55)

    12

    [55; 60)

    10

    [60; 65)

    6

    [65; 70)

    5

    [70; 75)

    8

    a) Cân nặng trung bình của học sinh lớp 11H bằng 59,46kg. Đúng||Sai

    b) 60 \leq M_{e} < 65 Sai||Đúng

    c) Nhóm chứa tứ phân vị thứ nhất và nhóm chưa tứ phân vị thứ ba lần lượt là: \lbrack 50;55),\lbrack
65;70) Đúng||Sai

    d) Tứ phân vị thứ nhất của mẫu số liệu gần nhất với 53 kg. Đúng||Sai

    Ta có: N = 46

    Cân nặng (kg)

    Giá trị đại diện

    Số học sinh

    [45; 50)

    47,5

    5

    [50; 55)

    52,5

    12

    [55; 60)

    57,5

    10

    [60; 65)

    62,5

    6

    [65; 70)

    67,5

    5

    [70; 75)

    72,5

    8

    Cân nặng trung bình của học sinh lớp 11H là:

    \overline{x} = \frac{47,5.5 + 52,5.12 +
57,5.10 + 62,5.6 + 67,5.5 + 72,5.8}{46} \approx 59,46(kg)

    Nhóm chứa mốt là: [50; 55) suy ra 50 \leq
M_{e} < 55.

    Ta có:

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \frac{3N}{4} = 34,5 => Nhóm chứa tứ phân vị thứ ba là: [65; 70)

    Cân nặng (kg)

    Số học sinh

    Tần số tích lũy

    [45; 50)

    5

    5

    [50; 55)

    12

    17

    [55; 60)

    10

    27

    [60; 65)

    6

    33

    [65; 70)

    5

    38

    [70; 75)

    8

    46

    \frac{N}{4} = 11,5 => Nhóm chứa tứ phân vị thứ nhất là: [50; 55)

    \Rightarrow \left\{ \begin{matrix}l = 50,\dfrac{N}{4} = 11,5,m = 5,f = 12 \\c = 55 - 50 = 5 \\\end{matrix} ight.

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c

    \Rightarrow Q_{1} = 50 + \frac{11,5 -
5}{12}.5 \approx 53

  • Câu 9: Nhận biết

    Phép chiếu song song biến ba đường thẳng song song thành:

    Theo tính chất của phép chiếu song song ta có:

    Phép chiếu song song biến ba đường thẳng song song thành ba đường thẳng đôi một song song.

    Vậy các đáp án đúng là:

    Ba đường thẳng đôi một song song với nhau.

    Một đường thẳng.

    Thành hai đường thẳng song song.

  • Câu 10: Nhận biết

    Cho cấp số nhân \left( u_{n} ight) với u_{1} = - 2;q = - 5. Viết bốn số hạng đầu tiên của cấp số nhân.

    Ta có: \left\{ \begin{matrix}
u_{1} = - 2 \\
q = - 5 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
u_{1} = - 2 \\
u_{2} = u_{1}q = 10 \\
u_{3} = u_{1}q^{2} = - 50 \\
u_{4} = u_{1}q^{3} = 250 \\
\end{matrix} ight.

  • Câu 11: Nhận biết

    Quy ước chọn chiều dương của một đường tròn định hướng là

    Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ

  • Câu 12: Vận dụng

    Cho hình chóp S.ABCG,K lần lượt là trọng tâm các tam giác ABCSBC. Gọi E là trung điểm cạnh AC. Mặt phẳng (GEK) cắt SC tại M. Tỉ số \frac{MS}{MC} bằng:

    Hình vẽ minh họa

    Ta có: G là trọng tâm tam giác ABC E là trung điểm của AC.

    => B,G,E thẳng hàng hay (GKE) \equiv (EBK)

    Ta lại có K là trọng tâm tam giác SBC nên BK kéo dài cắt SC tại trung điểm của SC.

    Vậy M là trung điểm của SC suy ra \frac{MS}{MC} = 1

  • Câu 13: Thông hiểu

    Tính giới hạn của hàm số \lim_{x ightarrow 1}\frac{2x^{5} + x^{4} -
4x^{2} + 1}{x^{3} - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{5} +
x^{4} - 4x^{2} + 1}{x^{3} - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( 2x^{4} + 3x^{3} + 3x^{2} - x - 1 ight)}{(x - 1)\left( x^{2} +
x + 1 ight)}

    = \lim_{x ightarrow 1}\frac{2x^{4} +
3x^{3} + 3x^{2} - x - 1}{x^{2} + x + 1} = 2

  • Câu 14: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Gọi M, N, P theo thứ tự là trung điểm của SA, SD và AB. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa:

    Ta có:

    MN // AD (đường trung bình 4SAD)

    OP // AD (đường trung bình 4BAD)

    => MN // OP

    => O, N, M, P cùng nằm trong một mặt phẳng.

    \left\{ \begin{matrix}MN//AD//BC \subset (SBC) \\OM//SC \subset (SBC) \\\end{matrix} ight.

    \Rightarrow (OMN)//(SBC)

  • Câu 15: Vận dụng

    Phương trình nào dưới đây có nghiệm trong khoảng (0;1)?

    Xét phương án 2x^{2} - 3x + 4 =
0: 2x^{2} - 3x + 4 = 0\Delta = 9 - 32 = - 23

    => Phương trình vô nghiệm.

    Xét phương án 3x^{4} - 4x^{2} + 5 =
0: 3x^{4} - 4x^{2} + 5 =
0

    Đặt t = x^{2}(t \geq 0), phương trình trở thành: 3t^{2} - 4t + 5 =
0.

    \Delta' = 4 - 15 = - 11

    => Phương trình vô nghiệm.

    Xét phương án (x - 1)^{5} - x^{7} - 2 =
0: (x - 1)^{5} - x^{7} - 2 = 0
\Leftrightarrow (x - 1)^{5} = x^{7} + 2

    \forall x \in (0;1) \Rightarrow \left\{
\begin{matrix}
x - 1 < 0 \Rightarrow (x - 1)^{5} < 0 \\
x^{7} + 2 > 2 \\
\end{matrix} ight.

    \Rightarrow Phương trình vô nghiệm.

    Xét phương án 3x^{2024} - 8x + 4 =
0: 3x^{2024} - 8x + 4 = 0, xét f(x) = 3x^{2024} - 8x + 4.

    \left\{ \begin{matrix}
f(0) = 3.0 - 8.0 + 4 = 4 \\
f(1) = 3.1 - 8.1 + 4 = - 1 \\
\end{matrix} ight.\  \Rightarrow f(0).f(1) < 0

    Mặc khác hàm số f(x) liên tục trên \mathbb{R} do đó liên tục trên \lbrack 0;1brack.

    Vậy phương trình 3x^{2024} - 8x + 4 =
0 có ít nhất một nghiệm trong khoảng (0;1).

  • Câu 16: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 17: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{n} = - 1;u_{n + 1} = 8. Tính công sai d của cấp số cộng đó:

    Ta có:

    d = u_{n + 1} - u_{n} = 8 - ( - 1) =
9

  • Câu 18: Vận dụng

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t \leq 24) cho bởi hàm số h(t) = a\cos\left( \frac{\pi}{6}t
ight) + b có đồ thị như hình bên dưới (a,b là các số thực dương). Gọi S là tập hợp tất cả các thời điểm t trong ngày để chiều cao của mực nước biển là 15 mét. Tổng tất cả phần tử của S bằng.

    Đáp án: 36

    Đáp án là:

    Hằng ngày, mực nước của một con kênh lên xuống theo thủy triều. Độ sâu h (mét) của mực nước trong kênh tính theo thời gian t (giờ) trong một ngày (0 \leq t \leq 24) cho bởi hàm số h(t) = a\cos\left( \frac{\pi}{6}t
ight) + b có đồ thị như hình bên dưới (a,b là các số thực dương). Gọi S là tập hợp tất cả các thời điểm t trong ngày để chiều cao của mực nước biển là 15 mét. Tổng tất cả phần tử của S bằng.

    Đáp án: 36

    Theo đồ thị ta có: \left\{ \begin{matrix}
h(6) = 9 \\
h(24) = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- a + b = 9 \\
a + b = 15 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = 12 \\
\end{matrix} ight.

    Suy ra: h(t) = 3cos\left( \frac{\pi}{6}t
ight) + 12.

    Theo đề bài yêu cầu:

    h(t) = 15

    \Leftrightarrow 3cos\left(
\frac{\pi}{6}t ight) + 12 = 15

    \Leftrightarrow \cos\left(
\frac{\pi}{6}t ight) = 1

    \Leftrightarrow \frac{\pi}{6}t = k2\pi
\Leftrightarrow t = 12k\left( k\mathbb{\in Z} ight)

    Vì: 0 \leq t \leq 24 nên t = 0,t = 12,t = 24

    Suy ra: S = \left\{ 0;12;24
ight\}

  • Câu 19: Thông hiểu

    Phương trình nào dưới đây có nghiệm trong khoảng (0; 1)?

    Xét hàm số f(x) = 3x^{2017} - 8x +
4 liên tục trên \mathbb{R}.

    \left\{ \begin{matrix}
f(0) = 4 \\
f(1) = - 1 \\
\end{matrix} ight.\  \Rightarrow f(0).f(1) = - 4 < 0

    => Phương trình có ít nhất một nghiệm thuộc khoảng (0;1).

  • Câu 20: Nhận biết

    Giá trị của {D =
\lim}\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}} bằng:

    Ta có:

    \lim\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}}= \lim \dfrac{4+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{n}+\dfrac{2}{n^2}}}=4

  • Câu 21: Thông hiểu

    Cho dãy số \left(
u_{n} ight) với u_{n} =
\frac{n}{4^{n}}\frac{u_{n +
1}}{u_{n}} < \frac{1}{2}. Chọn giá trị đúng của \lim u_{n} trong các số sau:

    Áp dụng phương pháp quy nạp toán học ta có n \leq 2^{n},\ \forall n \in N

    Nên ta có :

    n \leq 2^{n} \Leftrightarrow
\frac{n}{2^{n}} \leq 1 \Leftrightarrow \frac{n}{2^{n}.2^{n}} \leq
\frac{1}{2^{n}} \Leftrightarrow \frac{n}{4^{n}} \leq \left( \frac{1}{2}
ight)^{n}

    Suy ra : 0 < u_{n} \leq \left(
\frac{1}{2} ight)^{n}, mà \lim\left( \frac{1}{2} ight)^{n} = 0

    Vậy \lim u_{n} = 0.

  • Câu 22: Vận dụng cao

    Cho tổng S(n) =
\frac{1}{1.2} + \frac{1}{2.3} + \frac{1}{3.4} + \ldots + \frac{1}{n(n +
1)}.

    Khi đó công thức tính tổng S(n) là?

    S(n) = \frac{1}{1.2} + \frac{1}{2.3} +
\frac{1}{3.4} + \ldots + \frac{1}{n(n + 1)}

    = \frac{1}{1} - \frac{1}{2} +
\frac{1}{3} - \frac{1}{4} + \ldots + \frac{1}{n - 1} - \frac{1}{n} +
\frac{1}{n} - \frac{1}{n + 1}

    = 1 - \frac{1}{n + 1} = \frac{n}{n +
1}

  • Câu 23: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{n} = - 2 \\
u_{n + 1} = - 2 - \frac{1}{u_{n}} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có u_{1} = - \frac{3}{2};u_{2} = -
\frac{4}{3};u_{3} = - \frac{5}{4};\ldots suy ra được u_{n} = - \frac{n + 1}{n}.

  • Câu 24: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tần số tích lũy

    8

    20

    34

    44

    50

    Ta có: \frac{3.N}{4} = \frac{3.50}{4} =37,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 34,f = 10;c =5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c= 25 + \dfrac{37,5 - 34}{10}.5 =26,75

  • Câu 25: Vận dụng

    Xét tính tăng, giảm và bị chặn của dãy số (un), biết u_{n} = \frac{2^{n}}{n!}, ta thu được kết quả?

    Ta có \frac{u_{n + 1}}{u_{n}} = \frac{2^{n
+ 1}}{(n + 1)!}:\frac{2^{n}}{n!} = \frac{2^{n + 1}}{(n + 1)!} \cdot
\frac{n!}{2^{n}} = \frac{2}{n + 1} < 1,\forall n \geq 1

    un > 0, ∀n nên un + 1 < un, ∀n ≥ 1⇒ dãy (un) là dãy số giảm.

    0 < un ≤ u1 = 2, ∀n ≥ 1 nên dãy (un) là dãy bị chặn trên.

  • Câu 26: Thông hiểu

    Cho một cấp số cộng \left( u_{n} ight)u_{4} = - 12;u_{14} = 18. Giá trị S_{16} bằng bao nhiêu?

    Ta có:

    \left\{ \begin{matrix}
u_{4} = - 12 \\
u_{14} = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + 3d = - 12 \\
u_{1} + 13d = 18 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = - 21 \\
d = 3 \\
\end{matrix} ight.

    Tổng của 16 số hạng đầu tiên của cấp số cộng là:

    S_{16} = \frac{\left( 2u_{1} + 15d
ight).16}{2} = 24

  • Câu 27: Nhận biết

    Điều kiện xác định của hàm số y = f\left( x ight) = \frac{{2\cos x - 1}}{{\sin x}}

     Điều kiện xác định của hàm số:

    \begin{matrix}  \sin x e 0 \hfill \\   \Leftrightarrow x e k\pi ,k \in \mathbb{Z} \hfill \\ \end{matrix}

  • Câu 28: Nhận biết

    Tìm tất cả các nghiệm của phương trình \sin\left( x + \frac{\pi}{6} ight) =
1.

    Ta có \sin\left( x + \frac{\pi}{6}
ight) = 1

    \Leftrightarrow x + \frac{\pi}{6} =
\frac{\pi}{2} + k2\pi

    \Leftrightarrow x = \frac{\pi}{3} +
k2\pi\left( k\mathbb{\in Z} ight).

  • Câu 29: Thông hiểu

    Cho \sin a =
\frac{3}{5};cosa < 0;cosb = \frac{3}{5};sinb > 0. Giá trị sin(a - b) bằng:

    Ta có:

    \left\{ \begin{matrix}
\sin a = \frac{3}{5} \\
\cos a < 0 \\
\end{matrix} \Rightarrow cosa = - \sqrt{1 - \sin^{2}a} = - \frac{4}{5}
ight.

    \left\{ \begin{matrix}
\cos b = \frac{3}{5} \\
\sin b > 0 \\
\end{matrix} \Rightarrow sinb = \sqrt{1 - \cos^{2}b} = \frac{4}{5}
ight.

    sin(a - b) = sina\cos b - cosa\sin b =
\frac{3}{5} \cdot \frac{3}{5} - \left( - \frac{4}{5} ight) \cdot
\frac{4}{5} = 1

  • Câu 30: Thông hiểu

    Tính K = \lim_{x
ightarrow + \infty}\left( \sqrt{4x^{2} + 3x + 1} - 2x
ight)

    Ta có:

    K = \lim_{x ightarrow + \infty}\left(
\sqrt{4x^{2} + 3x + 1} - 2x ight)

    K = \lim_{x ightarrow +\infty}\dfrac{4x^{2} + 3x + 1 - 4x^{2}}{\sqrt{4x^{2} + 3x + 1} +2x}

    K = \lim_{x ightarrow +\infty}\dfrac{3x + 1}{\sqrt{4x^{2} + 3x + 1} + 2x}

    K = \lim_{x ightarrow + \infty}\dfrac{3+ \dfrac{1}{x}}{\sqrt{4 + \dfrac{3}{x} + \dfrac{1}{x^{2}}} + 2} =\dfrac{3}{4}

  • Câu 31: Nhận biết

    \mathop {\lim }\limits_{x \to 5} \frac{{{x^2} - 2x - 15}}{{2x - 10}} bằng

     \begin{matrix}  \mathop {\lim }\limits_{x \to 5} \dfrac{{{x^2} - 2x - 15}}{{2x - 10}} \hfill \\   = \mathop {\lim }\limits_{x \to 5} \dfrac{{\left( {x - 5} ight)\left( {x + 3} ight)}}{{2\left( {x - 5} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to 5} \dfrac{{x + 3}}{2} = 4 \hfill \\ \end{matrix}

  • Câu 32: Vận dụng

    Có bao nhiêu giá trị nguyên của m thuộc (0;20) sao cho \lim\sqrt{3 + \frac{mn^{2} - 1}{3 + n^{2}} -
\frac{1}{2^{n}}} là:

    Ta có:

    \left\{ \begin{matrix}\lim\dfrac{mn^{2} - 1}{3 + n^{2}} = \lim\dfrac{m -\dfrac{1}{n^{2}}}{\dfrac{3}{n^{2}} + 1} = m \\\lim\dfrac{1}{2^{n}} = \lim\left( \dfrac{1}{2} ight)^{n} = 0 \\\end{matrix} ight.

    \Rightarrow \lim\sqrt{3 + \frac{mn^{2} -
1}{3 + n^{2}} - \frac{1}{2^{n}}} = \sqrt{3 + m}

    Ta có: \left\{ \begin{matrix}
m \in (0;20);m\mathbb{\in Z} \\
\sqrt{m + 3}\mathbb{\in Z} \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 1;6;13
ight\}

  • Câu 33: Nhận biết

    Xác định số hạng tổng quát của dãy số dãy số \left( u_{n} ight) với \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{n + 1} = u_{n} - 2 \\\end{matrix} ight..

    Từ công thức \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{n + 1} = u_{n} - 2 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = \dfrac{1}{2} \\u_{2} = u_{1} - 2 = \dfrac{1}{2} - 2 = - \dfrac{3}{2} \\u_{3} = u_{2} - 2 = \dfrac{- 3}{2} - 2 = - \dfrac{7}{2} \\\end{matrix} ight.

    Xét đáp án u_{n} = \frac{1}{2} + 2(n -
1) với n = 2 \Rightarrow u_{2} =
\frac{1}{2} + 2(2 - 1) = \frac{5}{2} (loại)

    Xét đáp án u_{n} = \frac{1}{2} - 2(n -
1) ta thấy thỏa mãn

    Xét đáp án u_{n} = \frac{1}{2} -
2n với n = 2 \Rightarrow u_{2} =
\frac{1}{2} - 2.2 = - \frac{7}{2} (loại)

    Xét đáp án u_{n} = \frac{1}{2} +
2n với n = 1 \Rightarrow u_{1} =
\frac{1}{2} + 2.1 = \frac{5}{2} (loại)

  • Câu 34: Vận dụng

    Cho hình chóp S.ABC có các mặt bên là tam giác đều. Gọi M là trung điểm của BC, lấy N \in
SA sao cho NA = 2NS. Hình chiếu của điểm N qua phép chiếu song song phương SM, mặt phẳng chiếu (ABC) là:

    Hình vẽ minh họa

    Do các mặt bên của hình chóp S.ABC là các tam giác đều nên tam giác ABC đều.

    Gọi G là trọng tâm tam giác ABC.

    Ta có NA = 2NS \Rightarrow \frac{NS}{NA}
= \frac{MG}{GA} = \frac{1}{2}

    \Rightarrow NG//SM

    Nên G là hình chiếu song song theo phương SM của N trên (ABC).

    Lại do tam giác ABC đều nên G vừa là trọng tâm, vừa là tâm đường tròn ngoại tiếp, vừa là tâm đường tròn nội tiếp của tam giác ABC.

  • Câu 35: Nhận biết

    Các yếu tố nào sau đây xác định một mặt phẳng duy nhất?

    “Ba điểm phân biệt” sai. Trong trường hợp 3 điểm phân biệt thẳng hàng thì sẽ có vô số mặt phẳng chứa 3 điểm thẳng hàng đã cho.

    “Một điểm và một đường thẳng” sai. Trong trường hợp điểm thuộc đường thẳng đã cho, khi đó ra chỉ có 1 đường thẳng, có vô số mặt phẳng đi qua đường thẳng đó.

    “Bốn điểm phân biệt” sai. Trong trường hợp 4 điểm phân biệt thẳng hàng thì có vô số mặt phẳng đi qua 4 điểm đó hoặc trong trường hợp 4 điểm không đồng phẳng thì sẽ không tạo được mặt phẳng nào đi qua cả 4 điểm.

  • Câu 36: Thông hiểu

    Cho hàm số y =\tan2x. Chọn kết luận đúng trong các kết luận sau khi xét sự biến thiên của hàm số đã cho trên một chu kì tuần hoàn?

    Tập xác định: D\mathbb{=
R}\backslash\left\{ \frac{\pi}{4} + \frac{k\pi}{2}|k\mathbb{\in Z}
ight\}

    Hàm số y = \tan2x tuần hoàn với chu kì \frac{\pi}{2}, dựa vào các đáp án đã cho ta xét tính đơn điệu của hàm số trên \left( 0;\frac{\pi}{2} ight)\backslash\left\{
\frac{\pi}{4} ight\}

    Dựa vào kết quả khảo sát sự biến thiên của hàm số y = \tan x phần lí thuyết ta có thể suy ra với hàm số y = tan2x đồng biến trên khoảng \left( 0;\frac{\pi}{4}
ight)\left(
\frac{\pi}{4};\frac{\pi}{2} ight).

  • Câu 37: Vận dụng cao

    Cho hàm số y = x \sin x, số nghiệm thuộc \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1 là?

     Ta có: y' = \operatorname{s} {\text{inx}} + x\cos x

    y'' = \cos x + \cos x - x\sin x = 2\cos x - x\sin x

    Do đó

    y'' + y = 1 \Leftrightarrow 2\cos x = 1 \Leftrightarrow \cos x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{3} + k2\pi  \hfill \\  x =  - \frac{\pi }{3} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\left( {k \in Z} ight)

    +) Trường hợp 1. Với x = \frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant \frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{5}{6}

    Suy ra k = 0 ta được x = \frac{\pi }{3}.

    +) Trường hợp 2. Với x = -\frac{\pi }{3} + k2\pi \,\,\left( {k \in Z} ight)

    Do x \in \left[ { - \frac{\pi }{2};2\pi } ight] nên - \frac{\pi }{2} \leqslant -\frac{\pi }{3} + k2\pi  \leqslant 2\pi  \Leftrightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{7}{6}

    Suy ra k = 0 ta được x =  - \frac{\pi }{3};\,\,\,\,k = 1 ta được x = \frac{{5\pi }}{3}.

    Vậy có 3 nghiệm thuộc x \in \left[ { - \frac{\pi }{2};2\pi } ight] của phương trình y''+y=1

    x = \frac{\pi }{3}; x = -\frac{\pi }{3}; x = \frac{{5\pi }}{3}.

  • Câu 38: Thông hiểu

    Cho tứ diện ABCD. Gọi M,N là hai điểm phân biệt cùng thuộc đường thẳng AB, hai điểm P,Q phân biệt thuộc đường thẳng CD. Khi đó vị trí tương đối của hai đoạn thẳng MPNQ là:

    Giả sử đường thẳng MPNQ không chéo nhau, tức là cùng thuộc một mặt phẳng.

    Khi đó ABCD cùng thuộc một mặt phẳng hay ABCD là một tứ giác (trái giả thiết).

    Vậy đường thẳng MPNQ chéo nhau.

  • Câu 39: Nhận biết

    Kết quả kiểm tra học kì 1 môn Toán của học sinh lớp 11A được cho bằng biểu đồ tần số ghép nhóm như hình vẽ:

    Số học sinh có điểm dưới 7 điểm là:

    Quan sát biểu đồ ta thấy số học sinh có điểm dưới 7 điểm là: 6 + 7 + 17 = 30 học sinh.

  • Câu 40: Thông hiểu

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD//BC \\
AD \subset (SAD) \\
BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d, d đi qua S và d // AD // BC.

  • Câu 41: Thông hiểu

    Kết quả chạy 50m của học sinh lớp 11A (đơn vị: giây) được liệt kê như sau:

    7,8

    7,7

    7,5

    7,8

    7,7

    7,6

    8,7

    7,6

    7,5

    7,5

    7,3

    7,1

    8,1

    8,4

    7,0

    7,1

    7,2

    7,3

    7,4

    8,5

    8,3

    7,2

    7,1

    7,0

    6,7

    6,6

    8,6

    8,2

    6,9

    6,8

    6,5

    6,2

    6,3

      

    Tính phần trăm số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây?

    Từ số liệu thống kê đã cho, ta xác định được tần số của các lớp như sau:

    Thời gian (giây)

    Tần suất (%)

    [6,0; 6,5)

    6,06

    [6,5; 7,0)

    15,15

    [7,0; 7,5)

    30,3

    [7,5; 8,0)

    27,27

    [8,0; 8,5)

    12,12

    [8,5; 9)

    9,1

    Tổng

    100%

    Suy ra số học sinh có thành tích chạy ít nhất 7 giây và cao nhất 8,5 giây chiếm số phần trăm là:

    30,3\% + 27,27\% + 12,12\% =69,69\%

  • Câu 42: Thông hiểu

    Tìm z để 2; 8; z; 128 lập thành một cấp số nhân.

    Dãy số 2; 8; z; 128 theo thứ tự là u1; u2; u3; u4 ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \\   {\dfrac{{{u_2}}}{{{u_1}}} = \dfrac{{{u_3}}}{{{u_2}}}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\dfrac{8}{2} = \dfrac{z}{8}} \\   {\dfrac{{128}}{z} = \dfrac{z}{8}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {z = 32} \\   {{z^2} = 1024} \end{array}} ight. \Rightarrow z = 32

  • Câu 43: Vận dụng cao

    Tính \lim_{xightarrow 0}\dfrac{(1 + x)(1 + 2x)(1 + 3x)...(1 + 2018x) -1}{x}.

    Ta chứng minh bằng phương pháp quy nạp, với \forall n \geq 1;n\mathbb{\in N} thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + nx) - 1}{x} = \frac{n(n + 1)}{2}(*)

    Với n = 1 thì \left\{ \begin{gathered}
  VT = \mathop {\lim }\limits_{x \to 0} \dfrac{{1 + x - 1}}{x} = \mathop {\lim }\limits_{x \to 0} 1 = 1 \hfill \\
  VP = \dfrac{{1\left( {1 + 1} ight)}}{2} = 1 \hfill \\ 
\end{gathered}  ight. \Rightarrow VT = VP nên (*) đúng với n = 1

    Giả sử (*) đúng với n = k,k \geq
1;k\mathbb{\in N} nghĩa là:

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + kx) - 1}{x} = \frac{k(k + 1)}{2}

    Xét n = k + 1 ta có:

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx + x) - 1}{x}

    VT = \lim_{x ightarrow 0}\frac{(1 +
x)(1 + 2x)(1 + 3x)...(1 + kx)(1 + kx) - 1}{x}

    + \lim_{x ightarrow 0}\frac{(1 + x)(1
+ 2x)(1 + 3x)...(x + kx) - 1}{x}

    VT = \frac{k(k + 1)}{2} + \lim_{x
ightarrow 0}\left\lbrack (1 + x)(1 + 2x)(1 + 3x)...(1 + k)
ightbrack

    VT = \frac{k(k + 1)}{2} + k + 1 =
\frac{(k + 1)(k + 2)}{2} = VP

    Vậy (*) đúng với n = k + 1;k \geq
1;k\mathbb{\in N}

    Bây giờ ta áp dụng với n = 2018 thì

    \lim_{x ightarrow 0}\frac{(1 + x)(1 +
2x)(1 + 3x)...(1 + 2018x) - 1}{x}

    = \frac{2018.(2018 + 1)}{2} =
1009.2019

  • Câu 44: Vận dụng cao

    Hình chữ nhật ABCD có hai đỉnh A, B thuộc trục Ox, hai đỉnh C, D thuộc đồ thị hàm số y = cos x (như hình vẽ). Biết rằng AB = \frac{2\pi}{3}. Diện tích hình chữ nhật ABCD bằng bao nhiêu?

    Gọi C(a;cosa) \Rightarrow D\left( a +\frac{2\pi}{3};cos\left( a + \frac{2\pi}{3} ight) ight)

    Do ABCD là hình chữ nhật nên AB // CD

    => y_{C} = y_{D} \Rightarrow \cos a =\cos\left( a + \frac{2\pi}{3} ight)

    => a = - a - \frac{2\pi}{3}\Rightarrow a = - \frac{\pi}{3} \Rightarrow AD = \left| \cos\left( -\frac{\pi}{3} ight) ight| = \frac{1}{2}

    Diện tích hình chữ nhật ABCD bằng AB.BC =\frac{\pi}{3}

  • Câu 45: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Mốt của dữ liệu bằng bao nhiêu?

    Mốt M_{0} thuộc nhóm \lbrack 40;60)

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

     

    f_{0}f_{1}f_{2}

     

    \Rightarrow l = 40;f_{0} = 9;f_{1} =12;f_{2} = 10;c = 60 - 40 = 20

    Khi đó mốt của dữ liệu được tính như sau:

    M_{0} = l + \frac{f_{1} - f_{0}}{\left(f_{1} - f_{0} ight) + \left( f_{1} - f_{2} ight)}.c

    \Rightarrow M_{0} = 40 + \frac{12 -9}{12 - 9 + 12 - 10}.20 = 52

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo