Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hàm số f(x) liên tục trên đoạn [−1; 4] sao cho f(−1) = 2, f(4) = 7. Có thể nói gì về số nghiệm của phương trình f(x) = 5 trên đoạn [−1; 4]:

    Ta có:

    Ta có f(x) = 5 ⇔ f(x) − 5 = 0. Đặt g(x) = f(x) − 5.

    Khi đó

    \left\{ \begin{matrix}g( - 1) = f( - 1) - 5 = 2 - 5 = - 3 \\g(4) = f(4) - 5 = 7 - 5 = 2 \\\end{matrix} ight.

    \Rightarrow g( - 1).g(4) <
0

    Vậy phương trình g(x) = 0 có ít nhất một nghiệm thuộc khoảng (1; 4) hay phương trình f(x) = 5 có ít nhất một nghiệm thuộc khoảng (1; 4)

  • Câu 2: Thông hiểu

    Giải phương trình \sin\left( \frac{2x}{3}
- \frac{\pi}{3} ight) = 0.

    Phương trình

    \sin\left( \frac{2x}{3} - \frac{\pi}{3}
ight) = 0 \Leftrightarrow \frac{2x}{3} - \frac{\pi}{3} =
k\pi

    \Leftrightarrow \frac{2x}{3} =
\frac{\pi}{3} + k\pi \Leftrightarrow x = \frac{\pi}{2} +
\frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

    Vậy đáp án cần tìm là: x = \frac{\pi}{2}
+ \frac{k3\pi}{2}\ \left( k\mathbb{\in Z} ight).

  • Câu 3: Nhận biết

    Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:

    Nhóm dữ liệu

    Tần số

    (0; 15]

    4

    (15; 30]

    12

    (30; 45]

    17

    (45; 60]

    7

    Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.

  • Câu 4: Thông hiểu

    Tính H = \lim_{xightarrow 2}\frac{2 - x}{\sqrt{x + 7} - 3}

    Ta có:

    H = \lim_{x ightarrow 2}\frac{2 -x}{\sqrt{x + 7} - 3}

    H = \lim_{x ightarrow 2}\frac{(2 -x)\left( \sqrt{x + 7} + 3 ight)}{\left( \sqrt{x + 7} - 3 ight)\left(\sqrt{x + 7} + 3 ight)}

    H = \lim_{x ightarrow 2}\frac{(2 -x)\left( \sqrt{x + 7} + 3 ight)}{x + 7 - 9}

    H = \lim_{x ightarrow 2}\frac{(2 -x)\left( \sqrt{x + 7} + 3 ight)}{- (2 - x)} = - 6

  • Câu 5: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Số đường thẳng chứa cạnh của hình lập phương chéo nhau với đường thẳng AB là:

    Các đường thẳng chéo nhau với cạnh AB là CC',DD',C'B',D'A'.

  • Câu 6: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Lấy điểm M \in SA, mặt phẳng (\alpha)đi qua M và song song với SB,AC. Giao điểm của mặt phẳng (\alpha) với các cạnh AB,BC,SC,SD,BD lần lượt tại N,E,F,I,J. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có:\left\{ \begin{matrix}
IJ = (\alpha) \cap (SBD) \\
(\alpha)//SB \subset (SBD) \\
\end{matrix} ight.

    \Rightarrow (\alpha) \cap (SBD) =
IJ//SB

    SB \subset (SAB) \Rightarrow
IJ//(SAB)

  • Câu 7: Nhận biết

    Cho cấp số cộng (u_{n}) có u_{3}=15 và d=-2 . Tìm u_{n} 

    Ta có: 

    \begin{matrix}  {u_3} = 15 \hfill \\   \Leftrightarrow {u_1} + 2d = 15 \hfill \\   \Rightarrow {u_1} = 19 \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow {u_n} = {u_1} + \left( {n - 1} ight).d \hfill \\   = 19 + \left( {n - 1} ight).\left( { - 2} ight) \hfill \\   = 21 - 2n \hfill \\   \Rightarrow {u_n} =  - 2n + 21 \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Giá trị của {D =
\lim}\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}} bằng:

    Ta có:

    \lim\frac{4n + 1}{\sqrt{n^{2} + 3n + 2}}= \lim \dfrac{4+\dfrac{1}{n}}{\sqrt{1+\dfrac{3}{n}+\dfrac{2}{n^2}}}=4

  • Câu 9: Vận dụng cao

    Tính diện tích của đa giác tạo bởi các điểm trên đường tròn lượng giác biểu diễn các nghiệm của phương trình \tan x + \tan\left( x + \frac{\pi}{4} ight) =1.

    Hình vẽ minh họa

    Điều kiện \left\{ \begin{matrix}\cos x eq 0 \\\cos\left( x + \dfrac{\pi}{4} ight) eq 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{\pi}{2} + k\pi \\x eq \dfrac{\pi}{4} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Ta có:

    \tan x + \tan\left( x + \frac{\pi}{4}ight) = 1

    \Leftrightarrow \tan x + \frac{\tan x +1}{1 - \tan x} = 1

    \Leftrightarrow \tan x - tan^{2}x + \tanx + 1 = 1 - \tan x

    \Leftrightarrow tan^{2}x - 3tanx =0

    \Leftrightarrow \left[ \begin{gathered}  \tan x = 0 \hfill \\  \tan x = 3 \hfill \\ \end{gathered}  ight.

    Với tanx = 0 ta được nghiệm x=k\pi

    Kết hợp với điều kiện ở đầu bài và chọn 2 điểm có nghiệm trên đường tròn lượng giác lần lượt biểu diễn bởi điểm A và B.

    Với tanx = 3 ta được x = acrtan 3 + kπ

    Kết hợp với điều kiện ở đầu bài và chọn hai nghiệm biểu diễn lần lượt bởi điểm C và D.

    Tính diện tích hình chữ nhật ABCD.

    \begin{matrix}   \Rightarrow \sin \alpha  = \dfrac{{AT}}{{OT}} = \dfrac{3}{{\sqrt {10} }} \hfill \\  \widehat {ADC} = \dfrac{\alpha }{2} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\sin \dfrac{\alpha }{2} = \dfrac{{AC}}{2}} \\   {\cos \dfrac{\alpha }{2} = \dfrac{{AD}}{2}} \end{array}} ight. \hfill \\   \Rightarrow 2\sin \dfrac{\alpha }{2}\cos \dfrac{\alpha }{2} = \dfrac{3}{{\sqrt {10} }} \hfill \\   \Rightarrow AC.AD = \dfrac{6}{{\sqrt {10} }} \hfill \\   \Rightarrow {S_{ABCD}} = \dfrac{{3\sqrt {10} }}{5} \hfill \\ \end{matrix}

  • Câu 10: Vận dụng

    Dưới đây là tốc độ của 20 phương tiện giao thông di chuyển trên đường.

    Tốc độ

    Tần số

    40 ≤ x < 50

    4

    50 ≤ x < 60

    5

    60 ≤ x < 70

    7

    70 ≤ x < 80

    4

    Xác định giá trị của \Delta = \left|Q_{1} - Q_{3} ight|?

    Ta có:

    Tốc độ

    Tần số

    Tần số tích lũy

    40 ≤ x < 50

    4

    4

    50 ≤ x < 60

    5

    9

    60 ≤ x < 70

    7

    16

    70 ≤ x < 80

    4

    20

    Tổng

    N = 20

     

    Ta có: \frac{N}{4} = \frac{20}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là: [50; 60)

    Khi đó: \left\{ \begin{matrix}l = 50;\dfrac{N}{4} = 5 \\m = 4,f = 5,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{1} = l + \dfrac{\dfrac{N}{4} -m}{f}.d

    \Rightarrow Q_{1} = 50 + \frac{5 -4}{5}.10 = 52

    Ta có: \frac{3N}{4} = \frac{3.20}{4} =15

    => Nhóm chứa tứ phân vị thứ ba là: [60; 70]

    Khi đó: \left\{ \begin{matrix}l = 60;\dfrac{3N}{4} = 15 \\m = 9,f = 7,d = 10 \\\end{matrix} ight.

    Tứ phân vị thứ nhất là:

    Q_{3} = l + \dfrac{\dfrac{3N}{4} -m}{f}.d

    \Rightarrow Q_{3} = 60 + \frac{15 -9}{7}.10 = \frac{480}{7}

    \Rightarrow \Delta = \left| Q_{1} -Q_{3} ight| = \left| 52 - \frac{480}{7} ight| \approx16,6

  • Câu 11: Vận dụng cao

    Giá trị của giới hạn \lim\frac{1 + a +
a^{2} + ... + a^{n}}{1 + b + b^{2} + ... + b^{n}};\left( |a| < 1,|b|
< 1 ight) bằng:

    Ta có:

    1 + a + a^{2} + ... + a^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a

    => 1 + a + a^{2} + ... + a^{n} =
\frac{1.\left( 1 - a^{n + 1} ight)}{1 - a} = \frac{1 - a^{n + 1}}{1 -
a}

    Tương tự:

    1 + b + b^{2} + ... + b^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b

    => 1 + b + b^{2} + ... + b^{n} =
\frac{1.\left( 1 - b^{n + 1} ight)}{1 - b} = \frac{1 - b^{n + 1}}{1 -
b}

    \Rightarrow \lim\frac{1 + a + a^{2} +
... + a^{n}}{1 + b + b^{2} + ... + b^{n}}

    \begin{matrix}
   = \lim \dfrac{{\dfrac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\dfrac{{1 - {b^{n + 1}}}}{{1 - b}}}} \hfill \\
   = \lim \dfrac{{1 - b}}{{1 - a}}.\dfrac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}} = \dfrac{{1 - b}}{{1 - a}} \hfill \\ 
\end{matrix}

  • Câu 12: Vận dụng

    Cho hai hình bình hành ABCD và ABEF có tâm lần lượt là O, O’ và không cùng nằm trong một mặt phẳng. Gọi M là trung điểm của AB.

    (I) (ADF) // (BCE)

    (II) (MOO’) // (ADF)

    (III) (MOO’) // (BCE)

    (IV) (AEC) // (BDF)

    Khẳng định nào sau đây là đúng

    Ta có: BC // AD; BE // AF (ABCD và ABEF là hình bình hành)

    => BC // (ADF); BE // (ADF)

    Mà BC ∩∩ BE = B

    =. (ADF) // (BEC).

    O và O’ lần lượt là tâm của hình bình hành ABCD và ABEF nên O và O’ là trung điểm của BF và BD

    Xét tam giác ABF có MO’ là đường trung bình nên MO’ // AF

    MO’ // (ADF) (1)

    Tương tự MO là đường trung bình của tam giác ABD nên MO // AD

    MO // (ADF) (2)

    Từ (1) và (2) suy ra (MOO’) // (ADF)

    Chứng minh tương tự ta cũng có (MOO’) // (BCE).

    Hai mặt phẳng (AEC) và (BDF) có:

    AC ∩ DB = O ; AE ∩ BF = O’

    Suy ra (AEC) ∩ (BDF) = OO’.

    Vậy khẳng định (I); (II); (III) đúng.

  • Câu 13: Vận dụng

    Xét tính tăng, giảm của dãy số u_{n} = \frac{3^{n} - 1}{2^{n},} ta được kết quả?

    Ta có u_{n + 1} - u_{n} = \frac{3^{n + 1}- 1}{2^{n + 1}} - \frac{3^{n} - 1}{2^{n}}

    = \frac{3^{n + 1} - 1 -{2.3}^{n} + 2}{2^{n + 1}} = \frac{3^{n} + 1}{2^{n + 1}} >0

    dãy (un) là dãy số tăng.

  • Câu 14: Nhận biết

    Số cạnh của một hình chóp có đáy là một bát giác là:

    Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.

    Vậy hình chóp có 16 cạnh.

  • Câu 15: Thông hiểu

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    Đáp án là:

    Tính được các giới hạn sau, khi đó:

    a) \lim(\sqrt{3})^{n} = - \infty Sai||Đúng

    b) \lim\pi^{n} = 0 Sai||Đúng

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= + \infty Đúng||Sai

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = - \infty Đúng||Sai

    a) \lim(\sqrt{3})^{n} = +\infty (do \sqrt{3} >
1)

    b) \lim\pi^{n} = + \infty( do \pi > 1)

    c) \lim\left( n^{3} + 2n^{2} - 4 ight)
= \lim n^{3}.\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = +
\infty.

    \left\{ \begin{matrix}
\lim n^{3} = + \infty \\
\lim\left( 1 + \frac{2}{n} - \frac{4}{n^{3}} ight) = 1 > 0 \\
\end{matrix} ight.

    d) \lim\left( - n^{4} + 5n^{3} - 4n
ight) = \lim n^{4}.\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight)
= - \infty.

    \left\{ \begin{matrix}
\lim n^{4} = + \infty \\
\lim\left( - 1 + \frac{5}{n} - \frac{4}{n^{3}} ight) = - 1 < 0 \\
\end{matrix} ight.

    Kết luận:

    a) Sai

    b) Sai

    c) Đúng

    d) Đúng

  • Câu 16: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 17: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 18: Thông hiểu

    Tìm chu kì T của hàm số y = \cos 3x + \cos 5x.

    Hàm số y = \cos 3x tuần hoàn với chu kì {T_1} = \frac{{2\pi }}{3}

    Hàm số y = \cos 5x tuần hoàn với chu kì {T_2} = \frac{{2\pi }}{5}

    Suy ra hàm số y = \cos 3x + \cos 5x tuần hoàn với chu kì T = 2\pi

  • Câu 19: Nhận biết

    Tìm tập xác định của hàm số y = \frac{2x-1}{{\sin x - \cos x}}

    Hàm số xác định khi

    \begin{matrix}   \Leftrightarrow \sin x - \cos x e 0 \hfill \\   \Leftrightarrow \tan x e 1 \hfill \\   \Leftrightarrow x e \dfrac{\pi }{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} ight\}

  • Câu 20: Thông hiểu

    Cho hình chóp O.ABC, A’ là trung điểm của OA, B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này. Phát biểu nào sau đây là đúng?

    Chọn phát biểu đúng

    Trong mặt phẳng (OAC) ta có: Điểm C’ không là trung điểm của OC nên A’C’ không song song với AC.

    => AC và A’C’ cắt nhau.

    Phương án "Hai đường thẳng CB và C’B’ cắt nhau tại một điểm thuộc (OAB)." sai vì CB, C’B’ cắt nhau tại 1 điểm thuộc mặt phẳng (OBC).

  • Câu 21: Thông hiểu

    Cho hình chóp S.ABCD, có đáy ABCD là hình bình hành. Phép chiếu song song theo phương AB lên mặt phẳng (SBC) biến điểm A thành:

    Do AB \cap (SBC) = \left\{ B
ight\} suy ra hình chiếu song song của điểm A theo phương AB lên mặt phẳng (SBC) là điểm B.

  • Câu 22: Thông hiểu

    Cho dãy số (un) được xác định bởi \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} - u_{n} = 2n - 1 \\
\end{matrix} ight..

    Số hạng tổng quát un của dãy số là?

    Ta có \left\{ \begin{matrix}
u_{1} = 2 \\
u_{2} = u_{1} + 2.2 - 1 \\
u_{3} = u_{2} + 2.3 - 1 \\
\cdots \\
u_{n} = u_{n - 1} + 2.n - 1 \\
\end{matrix} ight.

    Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:

    un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)

     = 2 + (n−1)(n+2) − n + 1

     = n2 + 1

  • Câu 23: Vận dụng cao

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = \frac{1}{2}u_{n} - 1 \\
\end{matrix} ight.. Mệnh đề nào sau đây đúng?

    Ta xét dãy số này bị chặn bằng phương pháp quy nạp toán học.

    Ta sẽ chứng minh bằng quy nạp  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Với n = 1 ta có  − 2 ≤ u1 ≤ 1 (đúng).

    Giả sử mệnh đề trên đúng với n = k ≥ 1. Tức là  − 2 ≤ uk ≤ 1

    \Rightarrow - 1 \leq \frac{1}{2}u_{k}
\leq \frac{1}{2} \Rightarrow - 2 \leq \frac{1}{2}u_{k} - 1 \leq -
\frac{1}{2} \Rightarrow - 2 \leq u_{k + 1} \leq 1

    Theo nguyên lí quy nạp ta đã chứng minh được  − 2 ≤ un ≤ 1, ∀n ∈ ℕ*

    Vậy (un) là dãy số bị chặn.

  • Câu 24: Nhận biết

    Cho các đường thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?

    Khẳng định đúng là: "Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau."

  • Câu 25: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight) thỏa mãn u_{2} = 2001;u_{5} = 1995. Khi đó u_{1001} bằng:

    Ta có:

    \left\{ \begin{matrix}
u_{2} = 2001 \\
u_{5} = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} + d = 2001 \\
u_{1} + 4d = 1995 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 2003 \\
d = - 2 \\
\end{matrix} ight.

    \Rightarrow u_{1001} = u_{1} + 1000d =
3

  • Câu 26: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số a thuộc khoảng (-10; 10) để

    A = \lim\left\lbrack 5n - 3\left( a^{2} - 2
ight)n^{3} ightbrack = - \infty.

    Ta có:

    A = \lim\left\lbrack 5n - 3\left( a^{2} -
2 ight)n^{3} ightbrack

    = \lim\left\{ n^{3}\left\lbrack
\frac{5}{n^{2}} - 3\left( a^{2} - 2 ight) ightbrack ight\} = -
\infty

    \Rightarrow \lim\left\lbrack
\frac{5}{n^{2}} - 3\left( a^{2} - 2 ight) ightbrack = a^{2} - 2
< 0

    \Leftrightarrow - \sqrt{2} < a <
\sqrt{2}

    a\mathbb{\in Z},a \in ( - 10;10)
\Rightarrow a = \left\{ - 1;0;1 ight\}

    Vậy có 3 giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.

  • Câu 27: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Có bao nhiêu học sinh có thời gian vui chơi từ 2 đến 8 tiếng?

    Số học sinh có thời gian vui chơi từ 2 đến 8 tiếng là:

    16 + 4 + 2 = 22 (học sinh)

  • Câu 28: Thông hiểu

    Trong một mẫu dữ liệu ghép nhóm có nhóm (0; 10]; (10; 20]; … độ dài một nhóm là 10. Khi đó giới hạn dưới của mẫu thuộc vào nhóm thứ tư là:

    Theo cách chia nhóm như đề bài đã cho ta có được các nhóm như sau:

    (0; 10]; (10; 20]; (20; 30]; (30; 40]; …

    Mẫu nhóm thứ tư là (30; 40]

    => Giới hạn dưới của nhóm thứ tư là 30.

  • Câu 29: Nhận biết

    Phương trình lượng giác \cos 3x = \cos \frac{\pi }{{15}} có nghiệm là ?

     Ta có: \cos 3x = \cos \frac{\pi }{{15}} \Leftrightarrow 3x =  \pm \frac{\pi }{{15}} + k2\pi

    \Leftrightarrow x =  \pm \frac{\pi }{{45}} + \frac{{k2\pi }}{3}

  • Câu 30: Nhận biết

    Mệnh đề nào trong các mệnh đề sau đây là sai?

     Mệnh đề sai: "Nếu ba mặt phẳng phân biệt cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến đó đôi một song song hoặc đồng quy."

  • Câu 31: Nhận biết

    Cho hình chóp S.ABC. Gọi J;K lần lượt là trung điểm của các đoạn thẳng SB,SC. Đường thẳng JK song song với mặt phẳng nào trong các mặt phẳng dưới đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
JK//CB \\
JK ⊄ (ABC) \\
\end{matrix} ight.\  \Rightarrow JK//(ABC)

  • Câu 32: Thông hiểu

    Theo dõi kích thước của táo trong một khoảng thời gian nhất định ta được kết quả như sau:

    Kích thước (gram)

    [410; 420)

    [420; 430)

    [430; 440)

    [440; 450)

    [450; 460)

    [460; 470)

    [470; 480)

    Số lượng táo

    14

    20

    42

    54

    45

    18

    7

    Tính trung vị của mẫu dữ liệu ghép nhóm trên.

    Ta có:

    Kích thước (gram)

    Số lượng táo

    Tần số tích lũy

    [410; 420)

    14

    14

    [420; 430)

    20

    34

    [430; 440)

    42

    76

    [440; 450)

    54

    130

    [450; 460)

    45

    175

    [460; 470)

    18

    193

    [470; 480)

    7

    200

     

    N = 200

     

    Ta có: \frac{N}{2} = \frac{200}{2} =100

    => Trung vị nằm trong nhóm \lbrack440;450)(vì 100 nằm giữa hai tần số tịc lũy là 76 và 130)

    \Rightarrow l = 440;\frac{N}{2} = 100;m= 76;f = 54,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c = 440 + \dfrac{100 - 76}{54}.10 =444,44

  • Câu 33: Vận dụng

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Đáp án là:

    Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của x (kg) bột đá thạch anh được tính theo công thức sau: P(x) = \left\{
\begin{matrix}
4,5x & \ khi\ 0 < x \leq 400 \\
4x + k & \ khi\ x > 400 \\
\end{matrix}\  ight.(k là một hằng số). Với giá trị nào của k thì hàm số P(x) liên tục trên (0; + \infty) ?

    Đáp án: 200

    Để hàm số P(x) liên tục trên (0; + \infty) thì hàm số phải liên tục tại x_{0} = 400 hay \lim_{xightarrow 400} P(x)=P( 400 )

    Ta có:

    \lim_{x ightarrow 400^{-}}P(x) =
\lim_{x ightarrow 400^{-}}4,5x = 4,5.400 = 1800

    \lim_{x ightarrow 400^{+}}P(x) =
\lim_{x ightarrow 400^{-}}(4x + k) = 4.400 + k = 1600 + k

    Để tồn tại \lim_{xightarrow 400} P( x ) thì 1800 = 1600 +
k.

    Suy ra k = 200

  • Câu 34: Thông hiểu

    Cho góc \alpha thỏa mãn \sin2\alpha = - \frac{4}{5} và \frac{3\pi}{4} < \alpha < \pi. Tính giá trị của biểu thức P = \sin a -
\cos\alpha?

    Do \frac{3\pi}{4} < \alpha <
\pi => \left\{ \begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\end{matrix} ight.\  \Rightarrow P > 0

    Ta lại có:

    P^{2} = \left( \sin\alpha - \cos\alpha
ight)^{2}

    = 1 - 2\sin\alpha\cos\alpha

    = 1 - \sin2\alpha =\frac{9}{5}

    \Rightarrow P =
\frac{3}{\sqrt{5}}

  • Câu 35: Thông hiểu

    Cho bảng thống kê kết quả đo chiều cao một số cây trong vườn như sau:

    Chiều cao

    [120; 150)

    [150; 180)

    [180; 210)

    [210; 240)

    Số cây

    15

    20

    31

    18

    Giá trị đại diện của nhóm [150; 180) là bao nhiêu?

    Giá trị đại diện của nhóm [150; 180) là: \frac{150 + 180}{2} = 165

  • Câu 36: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về ''đường tròn lượng giác''?

    Mỗi đường tròn định hướng có bán kính R =
1, tâm trùng với gốc tọa độ là một đường tròn lượng giác.

  • Câu 37: Vận dụng

    Giải phương trình {\sin ^2}x - \left( {\sqrt 3  + 1} ight)\sin x\cos x + \sqrt 3 {\cos ^2}x = 0

     Ta có: {\sin ^2}x - \left( {\sqrt 3  + 1} ight)\sin x\cos x + \sqrt 3 {\cos ^2}x = 0

       \Leftrightarrow \frac{{{{\sin }^2}x}}{{{{\cos }^2}x}} - \frac{{\left( {\sqrt 3  + 1} ight)\sin x\cos x}}{{{{\cos }^2}x}} + \frac{{\sqrt 3 {{\cos }^2}x}}{{{{\cos }^2}x}} = 0

    \Leftrightarrow {\tan ^2}x - \left( {\sqrt 3  + 1} ight)\tan x + \sqrt 3 \; = 0

             \Leftrightarrow \left[ \begin{gathered}  \tan x = 1 \hfill \\  \tan x = \sqrt 3  \hfill \\ \end{gathered}  ight.

              \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{4} + k\pi  \hfill \\  x = \frac{\pi }{3} + k\pi  \hfill \\ \end{gathered}  ight.\left( {k \in \mathbb{Z}} ight).

  • Câu 38: Nhận biết

    Cho các mệnh đề:

    1) Nếu hàm số y = f(x) liên tục trên (a;b)f(a).f(b) < 0 thì tồn tại x_{0} \in (a;b) sao cho f\left( x_{0} ight) = 0.

    2) Nếu hàm số y = f(x) liên tục trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm.

    3) Nếu hàm số y = f(x) đơn điệu trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm duy nhất trên (a;b).

    Trong các mệnh đề trên:

    Theo tính chất hàm số liên tục thì

    1) Nếu hàm số y = f(x) liên tục trên (a;b)f(a).f(b) < 0 thì tồn tại x_{0} \in (a;b) sao cho f\left( x_{0} ight) = 0. Mệnh đề sai.

    2) Nếu hàm số y = f(x) liên tục trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm. Mệnh đề đúng.

    3) Nếu hàm số y = f(x) đơn điệu trên \lbrack a;bbrackf(a).f(b) < 0 thì phương trình f(x) = 0 có nghiệm duy nhất trên (a;b). Mệnh đề đúng.

  • Câu 39: Nhận biết

    Giá trị của \lim_{x ightarrow 1}\left( 2x^{2} - 3x + 1ight) bằng:

    Ta có: \lim_{x ightarrow 1}\left( 2x^{2} - 3x+ 1 ight) = 0

  • Câu 40: Vận dụng cao

    Tìm giá trị nhỏ nhất m của hàm số y = 2sin^{2}x +\sqrt{3}sin2x.

    Ta có y = 2sin^{2}x + \sqrt{3}sin2x = 1 -cos2x + \sqrt{3}sin2x

    \begin{matrix}= \sqrt{3}sin2x - cos2x + 1 = 2\left( \dfrac{\sqrt{3}}{2}sin2x -\dfrac{1}{2}cos2x ight) + 1 \\= 2\left( sin2x\cos\dfrac{\pi}{6} - \sin\dfrac{\pi}{6}cos2x ight) + 1 =2sin\left( 2x - \dfrac{\pi}{6} ight) + 1. \\\end{matrix}

    - 1 \leq \sin\left( 2x - \frac{\pi}{6}ight) \leq 1

    \begin{matrix}\Leftrightarrow - 1 \leq 1 + 2sin\left( 2x - \dfrac{\pi}{6} ight) \leq3 \hfill\\\Leftrightarrow - 1 \leq y \leq 3 \hfill\\\end{matrix}

    Do đó giá trị nhỏ nhất của hàm số là -1.

  • Câu 41: Vận dụng

    Cho mảnh bìa như hình vẽ sau, biết ABCD là hình vuông cạnh a. Các tam giác S_{1}AB;S_{2}BC;S_{3}CD;S_{4}DA là các tam giác cân bằng nhau. Gọi G;G' lần lượt là trọng tâm của hai tam giác S_{1}ABS_{3}CD. Người ta xếp mảnh bìa này thành hình chóp tứ giác S.ABCD (các điểm S_{1};S_{2};S_{3};S_{4}trùng vào đỉnh S). Khi đó tính độ dài đoạn thẳng GG'.

    Sau khi gấp lại ta được hình chóp như hình vẽ dưới đây:

    Từ giả thiết ta có:

    \frac{SG}{SM} = \frac{SG'}{SN} =
\frac{GG'}{MN} = \frac{2}{3}

    \Rightarrow GG' = \frac{2}{3}MN =
\frac{2a}{3}

  • Câu 42: Vận dụng

    Tính tổng S = -
2 + 4 - 8 + 16 - 32 + 64 - ... + ( - 2)^{n - 1} + ( - 2)^{n} với n \geq 1,n\mathbb{\in N}.

    Các số hạng - 2;4; - 8;16; - 32;64;...;(
- 2)^{n - 1};( - 2)^{n} có tổng S gồm có n số hạng theo thứ tự đó lập thành một cấp số nhân có u_{1} = -
2;q = - 2

    \Rightarrow S = S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q}

    \Rightarrow S = ( - 2).\frac{1 - ( -
2)^{n}}{3}

  • Câu 43: Thông hiểu

    Tìm giới hạn H =
\lim_{x ightarrow 1}\left( \frac{3x^{2} - x - 2}{x^{2} - 1}
ight)

    Ta có:

    H = \lim_{x ightarrow 1}\left(
\frac{3x^{2} - x - 2}{x^{2} - 1} ight)

    H = \lim_{x ightarrow 1}\frac{(x -
1)(3x + 2)}{(x - 1)(x + 1)}

    H = \lim_{x ightarrow 1}\frac{3x +
2}{x + 1} = \frac{5}{2}

  • Câu 44: Nhận biết

    Cho dãy số (u_{n}), biết u_{n}=\frac{n}{3^{n}-1}. Ba số hạng đầu tiên của dãy số đó lần lượt là:

    Ta có:

    \begin{matrix}  {u_1} = \dfrac{1}{{{3^1} - 1}} = \dfrac{1}{2} \hfill \\  {u_2} = \dfrac{2}{{{3^2} - 1}} = \dfrac{1}{4} \hfill \\  {u_3} = \dfrac{3}{{{3^3} - 1}} = \dfrac{3}{{26}} \hfill \\ \end{matrix}

    Ba số hạng đầu tiên của dãy số đó lần lượt là: \frac{1}{2};\frac{1}{4};\frac{3}{26}

  • Câu 45: Nhận biết

    Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?

    Ta có:

    \begin{matrix}  {u_n} = {u_1}.{q^{n - 1}} \hfill \\   \Leftrightarrow {1.2^{n - 1}} = 1024 \hfill \\   \Leftrightarrow {2^{n - 1}} = {2^{10}} \hfill \\   \Rightarrow n - 1 = 10 \hfill \\   \Rightarrow n = 11 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo