Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?
Hình vẽ minh họa
Ta có:
, d đi qua S và
.
Cho hình chóp S.ABCD, đáy ABCD là hình bình hành. Giao tuyến của hai mặt phẳng (SAD) và (SBC) là đường thẳng song song với đường thẳng nào sau đây?
Hình vẽ minh họa
Ta có:
, d đi qua S và
.
Giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số
là:
Ta có:
=> M = 12; m = 4
Tính giới hạn
.
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi I, J, K lần lượt là trung điểm
các cạnh SA, BC, CD. Thiết diện của S.ABCD cắt bởi mặt phẳng (IJK) là
Hình vẽ minh họa

Ta có thiết diện của S.ABCD cắt bởi
mặt phẳng (IJK) là ngũ giác
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
. Trên cạnh
lấy điểm
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính tỉ số ![]()
Đáp án: 2
Cho tứ diện . Gọi
lần lượt là trung điểm của
và
. Trên cạnh
lấy điểm
sao cho
. Gọi
là giao điểm của
với mặt phẳng
. Tính tỉ số
Đáp án: 2
Hình vẽ minh họa
+ Cho
Trong mặt phẳng hai đường thẳng
không song song nên gọi
là giao điểm của hai đường thẳng
và
. Khi đó
.
+ Ta thấy
+ Trong . Khi đó
.
Xét tam giác , áp dụng định lí Menelaus có:
Xét tam giác , áp dụng định lí Menelaus có:
Vậy .
Giải phương trình
thu được kết quả là:
Điều kiện
.
Giá trị của
bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn thỏa mãn:
Ta có:
Suy ra .
Cho dãy xác định bởi công thức
. Số hạng tổng quát của dãy un là?
Ta có
Ta đi chứng minh cho dãy số có số hạng tổng quát là
Thật vậy, n = 1 thì u1 = 3 (đúng).
Giả sử với n = k(k≥1) thì . Ta đi chứng minh
Ta có (điều phải chứng minh).
Vậy số hạng tổng quát của dãy số là
Giá trị của
bằng:
Tính tứ phân vị thứ nhất cho dữ liệu dưới đây:
Cân nặng (kg) | [32; 35) | [35; 38) | [38; 41) | [41; 44) | [44; 47) |
Số người | 14 | 60 | 95 | 24 | 7 |
Ta có:
Cân nặng (kg) | [32; 35) | [35; 38) | [38; 41) | [41; 44) | [44; 47) |
Số người | 14 | 60 | 95 | 24 | 7 |
Tần số tích lũy | 14 | 74 | 169 | 193 | 200 |
Ta có:
=> Nhóm chứa là [35; 38)
Khi đó ta tìm được các giá trị:
Cho hình bình hành ABCD. Qua các đỉnh A, B, C, D ta dựng các nửa đường thẳng song song với nhau và nằm về một phía đối với mặt phẳng (ABCD). Một mặt phẳng (P) cắt bốn đường thẳng nói trên tại A’, B’, C’, D’. Hỏi A’B’C’D’ là hình gì?
Ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Chứng minh tương tự ta có:
=> cắt hai mặt phẳng trên theo hai giao tuyến
và
=>
Từ (1) và (2) => là hình bình hành.
Số cạnh của một hình chóp có đáy là một bát giác là:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.
Theo giả thiết ta có:
Cho hàm số
xác định và liên tục tại
với
. Xác định giá trị tham số m thỏa mãn điều kiện đề bài.
Với mọi ta có:
Theo giả thiết ta phải có
Cho
là hằng số,
là một số nguyên dương. Quy tắc nào sau đây sai?
Ta có với
là một số nguyên dương.
Biết rằng
, với
là phân số tối giản và
. Tính
.
Ta có:
.
Vậy: .
Cho dãy số
thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Cho dãy số thỏa mãn
. Đặt
. Tìm số nguyên dương lớn nhất của n thỏa mãn
?
Các bước để chuyển mẫu số liệu không ghép nhóm sang mẫu số liệu ghép nhóm là:
Nghiệm dương bé nhất của phương trình
là
Giải phương trình
Với k = 0 => (Thỏa mãn)
Vậy nghiệm nguyên dương nhỏ nhất của phương trình là
Cho tứ diện ABCD. Gọi M và N theo thứ tự là trung điểm của AD và AC; G là trọng tâm của tam giác BCD. Xác định giao tuyến của hai mặt phẳng (GMN) và (BCD) là

Hình vẽ minh họa
Gọi
Khi đó đi qua
. Xét ba mặt phẳng
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Vậy giao tuyến của hai mặt phẳng (GMN) và (BCD) là đường thẳng đi qua G và song song với CD.
Tính tất cả số cạnh của hình lăng trụ biết hình lăng trụ có đúng 11 cạnh bên?
Hình lăng trụ có đúng 11 cạnh bên suy ra đáy là đa giác có 11 đỉnh và đa giác đáy có 11 cạnh.
Vậy hình lăng trụ có đúng 11 cạnh bên thì có:
(cạnh)
Tìm
để các số
theo thứ tự đó lập thành một cấp số nhân.
Các số theo thứ tự đó lập thành một cấp số nhân
Một tổ học sinh gồm 4 nam và 3 nữ. Điểm kiểm tra trung bình của nam và nữ lần lượt là 7 và 8. Tính điểm kiểm tra trung bình của cả tổ.
Ta có:
Khi đó điểm số trung bình của cả tổ là:
Cho hình chóp
có đáy là tam giác ABC thỏa mãn
. Mặt phẳng
song song với
cắt đoạn
tại
sao cho
. Tính diện tích thiết diện tạo bởi mặt phẳng
và hình chóp
?
Cho hình chóp có đáy là tam giác ABC thỏa mãn
. Mặt phẳng
song song với
cắt đoạn
tại
sao cho
. Tính diện tích thiết diện tạo bởi mặt phẳng
và hình chóp
?
Cho dãy số (un) có u1 = 1 và
.
Trong các phát biểu sau, có bao nhiêu phát biểu đúng?
(1) (un) là dãy số tăng.
(2) (un) là dãy số bị chặn dưới.
(3) (un) là dãy số bị chặn trên.
Ta có nên dãy số tăng.
Vậy phát biểu (1) đúng.
Vì dãy số tăng nên dãy số bị chặn dưới bởi u1.
Vậy phát biểu (2) đúng.
Ta lại có
Cộng các đẳng thức trên theo từng vế, ta được:
Mặt khác
Vậy dãy số bị chặn trên bởi 2 nên phát biểu (3) đúng.
Có bao nhiêu giá trị nguyên của tham số m để hàm số
liên tục trên
?
Ta có:
Hàm số liên tục trên các khoảng
. Khi đó hàm số đã cho liên tục trên
khi và chỉ khi nó liên tục tại
, tức là ta cần có:
Ta lại có:
Khi đó không thỏa mãn với mọi
Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.
Cho phương trình
. Chọn khẳng định đúng trong các khẳng định sau.
Ta có:
=> Phương trình có ít nhất hai nghiệm trên khoảng .
Tìm giá trị lớn nhất M của hàm số ![]()
Ta có
Mà
.
Vậy giá trị lớn nhất của hàm số là
Phương trình
có bao nhiêu nghiệm thuộc khoảng
?
Ta có:
Mà
Vậy phương trình có hai nghiệm thuộc khoảng .
Tính tổng các nghiệm trong đoạn [0;30] của phương trình: ![]()
Điều kiện để phương trình có nghĩa:
Khi đó, phương trình so sánh với đk
Vậy, tổng các nghiệm trong đoạn [0;30] của phương trình là: .
Số thập phân vô hạn tuần hoàn 0,353535 . . . được biểu diễn bởi phân số tối giản
. Tính ![]()
Ta có:
Dãy số là một cấp số nhân lùi vô hạn có số hạng đầu là
, công sai là
=>
Vậy
Cho bảng dữ liệu như sau
Đại diện A | Tần số |
[0; 10) | 6 |
[10; 20) | 24 |
[20; 30) | x |
[30; 40) | 16 |
[40; 50) | 9 |
Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm là 32.
Ta có:
Đại diện A | Tần số | Tần số tích lũy |
[0; 10) | 6 | 6 |
[10; 20) | 24 | 30 |
[20; 30) | 25 | 55 |
[30; 40) | x | 55 + x |
[40; 50) | 9 | 64 + x |
Tổng | N = 64 + x |
|
Trung vị là 24 => Nhóm chứa trung vị là [20; 30)
Biết rằng kết quả kiểm tra môn Tiếng Anh của 4 lớp 11 được ghi trong bảng sau:
Lớp 11A | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 8 | 12 | 10 | 6 | |
Lớp 11B | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 5 | 12 | 10 | 8 | 4 | |
Lớp 11C | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 10 | 15 | 9 | 3 | |
Lớp 11D | Điểm | (0; 5] | (5; 6] | (6; 7] | (7; 8] | (8; 10] |
Số học sinh | 4 | 9 | 16 | 11 | 3 |
Lớp nào có số học sinh đạt điểm (6; 8] nhiều nhất?
Số học sinh lớp 11A đạt điểm từ (6; 8] là:
12 + 10 = 22 (học sinh)
Số học sinh lớp 11B đạt điểm từ (6; 8] là:
10 + 8 = 18 (học sinh)
Số học sinh lớp 11C đạt điểm từ (6; 8] là:
15 + 9 = 24 (học sinh)
Số học sinh lớp 11D đạt điểm từ (6; 8] là:
16 + 11 = 27 (học sinh)
Vậy lớp 11D có nhiều học sinh đạt điểm từ (6; 8] nhất.
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Tính tổng sau ![]()
Ta có:
là tổng của 100 số hạng đầu tiên của cấp số cộng có
.
Cho các đường thẳng
và các mặt phẳng
. Giả thiết nào sau đây đủ để kết luận đường thẳng
song song với đường thẳng
?
Nếu thì a // b hoặc a, b chéo nhau.
Nếu thì a // b hoặc a ≡ b.
Nếu thì không kết luận được quan hệ giữa a và b.
Khẳng định nào sau đây đúng?
Ta có:
Nếu
thì khẳng định nào sau đây đúng?
Ta có:
Ta lại có:
Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Cỡ mẫu của mẫu số liệu ghép nhóm là:
Cho dãy số (un) với
.
Số hạng tổng quát un là?
Ta có u1 = 1; u2 = u1 + 3; u3 = u2 + 5; u4 = u3 + 7; …; un = un − 1 + (2n−1)
Cộng từng vế với vế của các đẳng thức trên và rút gọn ta được
un = 1 + 3 + 5 + 7 + … + (2n−1) = n2.
Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?
Xét dãy số ta có:
d không cố định => Dãy số không phải là một cấp số cộng.
Hai hàm số nào sau đây có chu kì khác nhau?
Hai hàm số có cùng chu kì 2π
Hai hàm số có cùng chu kì 4π
Hai hàm số có cùng chu kì
Hàm số y = sinx có chu kì 2π, hàm số y = tanx có chu kì
Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.
Khẳng định nào sau đây đúng với mọi n nguyên dương?
Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n
Từ đó 2Sn = − 1 − 3 − 32 − … − 3n − 1 + n.3n
Cho tứ diện
. Gọi
và
lần lượt là trọng tâm của tam giác
và
. Mệnh đề nào dưới đây đúng?
Hình vẽ minh họa
Giả sử là trung điểm của
.
Ta có:
Cho dãy số
xác định bởi
. Tính
.
Giả sử khi đó ta có: