Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \sin x. \cos x - \sin x - \cos x + m = 0 có nghiệm:

     Đặt t = \sin x + \cos x;\left( {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]} ight)

    => \sin x.\cos x = \frac{{{t^2} - 1}}{2}

    Phương trình trở thành:

    \begin{matrix}  \dfrac{{{t^2} - 1}}{2} - t + m = 0 \hfill \\   \Rightarrow  - 2m = {t^2} - 2t - 1 \hfill \\   \Rightarrow {\left( {t - 1} ight)^2} =  - 2m + 2 \hfill \\ \end{matrix}

    Do  {t \in \left[ { - \sqrt 2 ;\sqrt 2 } ight]}

    \begin{matrix}   \Leftrightarrow  - \sqrt 2  - 1 \leqslant t - 1 \leqslant \sqrt 2  - 1 \hfill \\   \Leftrightarrow 0 \leqslant {\left( {t - 1} ight)^2} \leqslant 3 + 2\sqrt 2  \hfill \\ \end{matrix}

    Vậy để phương trình có nghiệm

    \begin{matrix}   \Leftrightarrow 0 \leqslant  - 2m + 2 \leqslant 3 + 2\sqrt 2  \hfill \\   \Leftrightarrow  - \dfrac{{1 + 2\sqrt 2 }}{2} \leqslant m \leqslant 1 \hfill \\  m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} ight\} \hfill \\ \end{matrix}

  • Câu 2: Vận dụng

    Cho mẫu dữ liệu ghép nhóm như sau:

    Nhóm

    Tần số

    (0; 10]

    x

    (10; 20]

    8

    (20; 30]

    20

    (30; 40]

    15

    (40; 50]

    7

    (50; 60]

    y

    Tổng

    N = 60

    Nếu trung vị của mẫu dữ liệu ghép nhóm dưới đây có giá trị là 28,5 thì các tần số cần tìm có giá trị là bao nhiêu?

    Bảng số liệu được ghi như sau:

    Nhóm

    Tần số

    Tần số tích lũy

    (0; 10]

    x

    x

    (10; 20]

    8

    x + 8

    (20; 30]

    20

    x + 28

    (30; 40]

    15

    x + 43

    (40; 50]

    7

    x + 50

    (50; 60]

    y

    x + y + 50

    Tổng

    N = 60

     

    Ta có: N = 60

    \Rightarrow x + y = 10

    Theo bài ra ta có: M_{e} =28,5

    => Nhóm chứa trung vị là (20; 30]

    Suy ra: \left\{ \begin{matrix}l = 20,\dfrac{N}{2} = 30 \\m = x + 8,f = 20,d = 10 \\\end{matrix} ight.

    Khi đó ta có:

    M_{e} = l + \dfrac{\dfrac{N}{2} -m}{f}.d

    \Leftrightarrow 28,5 = 20 +\dfrac{\dfrac{60}{2} - (x + 8)}{20}.10

    \Leftrightarrow x = 5

    \Rightarrow y = 10 - 5 = 5

  • Câu 3: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, I =
AC \cap BD. Giả sử mặt phẳng (\alpha) bất kì cắt các cạnh SA,SB,SC,SD lần lượt tại A',B',C',D'. Chọn khẳng định đúng trong các khẳng định sau.

    Hình vẽ minh hoạ

    Ta thấy: \left\{ \begin{matrix}
A'C' = (\alpha) \cap (SAC) \\
B'D' = (\alpha) \cap (SBD) \\
SI = (SBD) \cap (SAC) \\
\end{matrix} ight.

    => Các đường thẳng A'C',B'D',SI đồng quy.

  • Câu 4: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Ta có:

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau hoặc đồng quy tại một điểm.

    => Phương án “Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau” là khẳng định sai.

  • Câu 5: Thông hiểu

    Bạn Lan trồng 50 cây cà rốt bằng loại đất đặc biệt. Khi thu hoạch Lan đo chiều dài của củ cà rốt (chính xác đến mm) và nhóm được các kết quả như sau:

    Chiều dài (mm)

    Chiều dài đại diện (mm)

    (149,5; 154,5]

    152

    (154,5; 159,5]

    157

    (159,5; 164,5]

    162

    (164,5; 169,5]

    167

    (169,5; 174,5]

    172

    (174,5; 179,5]

    177

    (179,5; 184,5]

    182

    (184,5; 189,5]

    187

    Tìm chiều dài trung bình của các củ cà rốt Lan trồng được.

    Ta có:

    Chiều dài (mm)

    Chiều dài đại diện (mm)

    Số củ cà rốt


    Tích các giá trị

    (149,5; 154,5]

    152

    5

    760

    (154,5; 159,5]

    157

    2

    314

    (159,5; 164,5]

    162

    6

    972

    (164,5; 169,5]

    167

    8

    1336

    (169,5; 174,5]

    172

    9

    1548

    (174,5; 179,5]

    177

    11

    1947

    (179,5; 184,5]

    182

    6

    1092

    (184,5; 189,5]

    187

    3

    561

    Tổng

    50

    8530

    Chiều dài trung bình của cà rốt Lan trồng được là:

    \overline{x} = \frac{8530}{50} \approx170,6(mm)

  • Câu 6: Vận dụng

    Cho tứ diện ABCD, biết tam giác BCD có diện tích bằng 16. Mặt phẳng (P) đi qua trung điểm của AB và song song với mặt phẳng (BCD) cắt tứ diện theo một thiết diện có diện tích bằng

    Đáp án: 4

    Đáp án là:

    Cho tứ diện ABCD, biết tam giác BCD có diện tích bằng 16. Mặt phẳng (P) đi qua trung điểm của AB và song song với mặt phẳng (BCD) cắt tứ diện theo một thiết diện có diện tích bằng

    Đáp án: 4

    Hình vẽ minh họa

    Gọi M là trung điểm của AB.

    Gọi MN = (P) \cap (ABD) (N \in AD), do (P)//(BCD) \Rightarrow MN//\ BD \Rightarrow
N là trung điểm của AD.

    Gọi MP = (P) \cap (ABC) (P \in AC), do (P)//(BCD) \Rightarrow MP//BC \Rightarrow
P là trung điểm của AC.

    Thiết diện của tứ diện ABCD cắt bởi mặt phẳng (P)\Delta MNP.

    Gọi I,\ J lần lượt là trung điểm của CDBD.

    Ta chứng minh được \Delta MNP = \Delta
JDI (c – c – c).

    Ta có

    S_{\Delta MNP} = S_{\Delta DIJ} =
\frac{1}{2}DI.DJ.sin\widehat{JDI}

    =
\frac{1}{4}.\frac{1}{2}DB.DC.sin\widehat{BDC} = \frac{1}{4}.S_{\Delta
DBC} = \frac{1}{4}.16 = 4

    Vậy S_{\Delta MNP} = 4.

  • Câu 7: Vận dụng

    Tính giá trị của giới hạn \lim\dfrac{1^{2}+ 2^{2} + 3^{2} + ... + n^{2}}{n\left( n^{2} + 1 ight)}.

    Đặt P(n) = \frac{2n^{3} - 3n^{2} + n}{6}
= \frac{n(n - 1)(2n + 1)}{6}thì ta có:

    1^{2} + 2^{2} + 3^{2} + ... +
n^{2}

    = \left\lbrack P(2) - P(1) ightbrack
+ \left\lbrack P(3) - P(2) ightbrack + ... + \left\lbrack P(n + 1) -
P(n) ightbrack

    = P(n + 1) - P(1) = \frac{n(n + 1)(2n +
3)}{6}

    Do đó: \lim\frac{1^{2} + 2^{2} + 3^{2} +
... + n^{2}}{n\left( n^{2} + 1 ight)} = \lim\frac{n(n + 1)(2n +
3)}{6n\left( n^{2} + 1 ight)} = \frac{1}{3}

  • Câu 8: Nhận biết

    Mệnh đề nào sau đây là sai?

    Hàm số  y = \cot x tuần hoàn với chu kì \pi

  • Câu 9: Thông hiểu

    Tìm chu kì T của hàm số y = \tan 3\pi x.

    Hàm số y = \tan \left( {ax + b} ight) tuần hoàn với chu kì T\,\, = \,\,\frac{\pi }{{\left| a ight|}}

    Áp dụng: Hàm số y = \tan 3\pi x tuần hoàn với chu kì T = \frac{1}{3}

  • Câu 10: Vận dụng

    Cho dãy số (an) được xác định bởi \left\{ \begin{matrix}
a_{1} = 1;a_{2} = 2 \\
a_{n + 2} - a_{n + 1} - a_{n} = 0 \\
\end{matrix} ight..

    Phát biểu nào dưới đây về dãy số (an) là đúng?

    Mỗi số hạng thứ ba trở đi luôn bằng tổng của hai số đứng ngay trước nó. Đồng thời số hạng đầu tiên và số hạng thứ hai của dãy là các số dương nên dễ thấy dãy số là một dãy tăng.

  • Câu 11: Thông hiểu

    Cho cấp số cộng \left( u_{n} ight)d = - 2;S_{8} = 72. Tìm số hạng đầu tiên u_{1}.

    Ta có:

    \left\{ \begin{matrix}d = - 2 \\S_{8} = 72 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}d = - 2 \\8u_{1} + \dfrac{8.7.d}{2} = 72 \\\end{matrix} ight.

    \Rightarrow 8u_{1} + 28.( - 2) =
72

    \Rightarrow u_{1} = 16

  • Câu 12: Nhận biết

    \mathop {\lim }\limits_{x \to  + \infty } x(\sqrt {{x^2} + 1}  - x) bằng

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  + \infty } x\left( {\sqrt {{x^2} + 1}  - x} ight) \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x\left( {\sqrt {{x^2} + 1}  - x} ight)\left( {\sqrt {{x^2} + 1}  + x} ight)}}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{x}{{\sqrt {{x^2} + 1}  + x}} \hfill \\   = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{1}{{\sqrt {1 + \dfrac{1}{{{x^2}}}}  + 1}} = \dfrac{1}{2} \hfill \\ \end{matrix}

  • Câu 13: Nhận biết

    Cho cấp số cộng \left( u_{n} ight) có số hạng đầu và công sai lần lượt là - 2;3. Số hạng thứ 10 bằng:

    Ta có: u_{1} = - 2;d = 3

    \Rightarrow u_{10} = u_{1} + 9d =
25

  • Câu 14: Vận dụng

    Phương trình 3\sin^{2}x + m \sin 2 x -4\cos^{2}x=0 có nghiệm khi:

     Xét phương trình:

    \begin{matrix}  3{\sin ^2}x + m.\sin 2x - 4{\cos ^2}x = 0 \hfill \\   \Rightarrow 3{\sin ^2}x + 2m.\sin x.\cos x - 4{\cos ^2}x = 0\left( * ight) \hfill \\ \end{matrix}

    Trường hợp 1: \cos x = 0 \Rightarrow \sin x =  \pm 1

    Phương trình (*) trở thành:

    3 + 3.m - 4.0 = 0 (Vô lí)

    Trường hợp 2: \cos x e 0

    Chia cả hai vế của phương trình (*) cho cos2x

    Phương trình (*) trờ thành: 3{\tan ^2}x + 2m\tan x - 4 = 0 (**)

    Đặt tanx = t, phương trình trở thành: 3{t^2} + 2mt - 4 = 0\left( {***} ight)

    Phương trình đã cho có nghiệm => (***) có nghiệm

    => \Delta ' \geqslant 0 \Rightarrow {m^2} + 12 \geqslant 0 (luôn đúng với mọi m)

    => Phương trình đã cho có nghiệm với mọi 

    • m\in \mathbb{R}
  • Câu 15: Thông hiểu

    Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là: 

    Ta có: \frac{{4{x^2} - 1}}{{2x + 1}} = 2x - 1

    Vậy công sai của cấp số nhân là 2x - 1

    Vậy số hạng tiếp theo sẽ là: \left( {4{x^2} - 1} ight)\left( {2x - 1} ight) = 8{x^3} - 4{x^2} - 2x + 1

  • Câu 16: Thông hiểu

    Cho \sin a =
\frac{3}{5};cosa < 0;cosb = \frac{3}{5};sinb > 0. Giá trị sin(a - b) bằng:

    Ta có:

    \left\{ \begin{matrix}
\sin a = \frac{3}{5} \\
\cos a < 0 \\
\end{matrix} \Rightarrow cosa = - \sqrt{1 - \sin^{2}a} = - \frac{4}{5}
ight.

    \left\{ \begin{matrix}
\cos b = \frac{3}{5} \\
\sin b > 0 \\
\end{matrix} \Rightarrow sinb = \sqrt{1 - \cos^{2}b} = \frac{4}{5}
ight.

    sin(a - b) = sina\cos b - cosa\sin b =
\frac{3}{5} \cdot \frac{3}{5} - \left( - \frac{4}{5} ight) \cdot
\frac{4}{5} = 1

  • Câu 17: Thông hiểu

    Cho hai dãy số \left( u_{n}
ight);\left( v_{n} ight) với u_{n} = 2n + 1v_{n} = \frac{1}{1 - n}. Khi đó \lim_{n ightarrow + \infty}\left( u_{n}v_{n}
ight) bằng:

    Ta có:

    u_{n}v_{n} = (2n + 1).\frac{1}{1 - n} =
\frac{2n + 1}{1 - n}

    \Rightarrow \lim_{n ightarrow +
\infty}\left( u_{n}v_{n} ight) = \lim_{n ightarrow + \infty}\frac{2n
+ 1}{1 - n} = \lim_{n ightarrow + \infty}\frac{2 +
\frac{1}{n}}{\frac{1}{n} - 1} = - 2

  • Câu 18: Nhận biết

    Phương án nào sau đây sai với mọi k\in\mathbb{ Z}?

    Ta có:

    \sin x = 0 \Leftrightarrow x =
k\pi;\left( k\mathbb{\in Z} ight)

    Vậy đáp án sai là: \sin x = 0
\Leftrightarrow x = \frac{\pi}{2} + k\pi

  • Câu 19: Nhận biết

    Hình chóp lục giác có bao nhiêu mặt?

    Hình chóp có 7 mặt trong đó có 6 mặt bên và 1 mặt đáy.

  • Câu 20: Vận dụng cao

    Biết \lim_{xightarrow \frac{1}{2}}\dfrac{\sqrt{1 + ax^{2}} - bx - 2}{4x^{3} - 3x +1} = c với a,b,c\in\mathbb{R}. Tập nghiệm của phương trình ax^{4} + bx^{2} + c = 0 trên \mathbb{R} có số phần tử là:

    Ta có:

    \lim_{x ightarrow
\frac{1}{2}}\frac{\sqrt{1 + ax^{2}} - bx - 2}{4x^{3} - 3x +
1}

    = \lim_{x ightarrow
\frac{1}{2}}\frac{1 + ax^{2} - (bx + 2)^{2}}{\left( 4x^{3} - 3x + 1
ight)\left( \sqrt{1 + ax^{2}} + bx + 2 ight)}

    = \lim_{x ightarrow
\frac{1}{2}}\frac{\left( a - b^{2} ight)x^{2} - 4bx - 3}{(2x -
1)^{2}(x + 1)\left( \sqrt{1 + ax^{2}} + bx + 2 ight)}

    Theo đề I tồn tại hữu hạn nên phương trình \left( a - b^{2} ight)x^{2} - 4bx - 3 =
0phải có nghiệm kép x =
\frac{1}{2}. Tức là:

    \left\{ \begin{matrix}\Delta' = 0 \\\dfrac{2b}{a - b^{2}} = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4b^{2} + 3\left( a - b^{2} ight) = 0 \\4b = a - b^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b^{2} + 3b = 0 \\
a = b^{2} + 4b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 3 \\
\end{matrix} ight.\ ;(a,b eq 0)

    Khi a = - 3;b = - 3 thì

    I = \lim_{x ightarrow
\frac{1}{2}}\frac{- 12x^{2} + 12x - 3}{(2x - 1)^{2}(x + 1)\left( \sqrt{1
+ ax^{2}} + bx + 2 ight)}

    I = \lim_{x ightarrow
\frac{1}{2}}\frac{- 3}{(x + 1)\left( \sqrt{1 - 3x^{2}} - 3x + 2
ight)}

    I = \dfrac{- 3}{\dfrac{3}{2}.\left(\sqrt{1 - \dfrac{3}{4}} - \dfrac{3}{2} + 2 ight)} = - 2

    Do đó a = - 3;b = - 3;c = - 2 nên phương trình - 3x^{4} - 3x^{2} - 2 =
0 vô nghiệm.

  • Câu 21: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

  • Câu 22: Thông hiểu

    Phương trình 1 + 2\cos 2x = 0 có nghiệm là:

     Giải phương trình:

    \begin{matrix}  1 + 2\cos 2x = 0 \hfill \\   \Leftrightarrow \cos 2x =  - \dfrac{1}{2} \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {2x = \dfrac{{2\pi }}{3} + k2\pi } \\   {2x =  - \dfrac{{2\pi }}{3} + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = \dfrac{\pi }{3} + k\pi } \\   {x =  - \dfrac{\pi }{3} + k\pi } \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Biết rằng \lim_{x ightarrow 1}f(x)
= 1;\lim_{x ightarrow 1}g(x) = - 2 khi đó \lim_{x ightarrow 1}\left\lbrack f(x) + g(x)
ightbrack = - 1 Đúng||Sai

    b) Cho hàm số y = f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack
a;bbrack\mathop {\lim }\limits_{x \to {a^ - }} f\left( x ight) = f\left( a ight);\mathop {\lim }\limits_{x \to {b^ + }} f\left( x ight) = f\left( b ight). Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{3x^{4} - 2x}{5x + 1} = + \infty Sai||Đúng

    d) Cho hàm số f(x) xác định với mọi x eq 0 thỏa mãn f(x) + 2f\left( \frac{1}{x} ight) = 3x;(x eq
0). Khi đó \mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{f\left( x ight)}}{{x - \sqrt 2 }} = 0 Sai||Đúng

    Đáp án là:

    Kiểm tra sự đúng sai của các kết luận sau?

    a) Biết rằng \lim_{x ightarrow 1}f(x)
= 1;\lim_{x ightarrow 1}g(x) = - 2 khi đó \lim_{x ightarrow 1}\left\lbrack f(x) + g(x)
ightbrack = - 1 Đúng||Sai

    b) Cho hàm số y = f(x) liên tục trên (a;b). Điều kiện cần và đủ để hàm số liên tục trên \lbrack
a;bbrack\mathop {\lim }\limits_{x \to {a^ - }} f\left( x ight) = f\left( a ight);\mathop {\lim }\limits_{x \to {b^ + }} f\left( x ight) = f\left( b ight). Sai||Đúng

    c) \lim_{x ightarrow -
\infty}\frac{3x^{4} - 2x}{5x + 1} = + \infty Sai||Đúng

    d) Cho hàm số f(x) xác định với mọi x eq 0 thỏa mãn f(x) + 2f\left( \frac{1}{x} ight) = 3x;(x eq
0). Khi đó \mathop {\lim }\limits_{x \to \sqrt 2 } \frac{{f\left( x ight)}}{{x - \sqrt 2 }} = 0 Sai||Đúng

    a) Ta có: \lim_{x ightarrow
1}\left\lbrack f(x) + g(x) ightbrack = \lim_{x ightarrow 1}f(x) +
\lim_{x ightarrow 1}g(x) = - 1

    b) Ta có:

    Điều kiện cần và đủ để hàm số liên tục trên \lbrack a;bbrack\lim_{x ightarrow a^{+}}f(x) = f(a);\lim_{x
ightarrow b^{-}}f(x) = f(b)

    c) \lim_{x ightarrow -\infty}\dfrac{3x^{4} - 2x}{5x + 1} = \lim_{x ightarrow -\infty}\dfrac{x^{4}\left( 3 - \dfrac{2}{x^{3}} ight)}{x\left( 5 +\dfrac{1}{x} ight)} = \lim_{x ightarrow - \infty}\left( x^{3}.\dfrac{3- \dfrac{2}{x^{3}}}{5 + \dfrac{1}{x}} ight)

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } {x^3} =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {\frac{{3 - \frac{2}{{{x^3}}}}}{{5 + \frac{1}{x}}}} ight) = \frac{3}{5} > 0 \hfill \\ 
\end{gathered}  ight. \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \frac{{3{x^4} - 2x}}{{5x + 1}} =  - \infty

    d) Ta có:

    f(x) + 2f\left( \frac{1}{x} ight) =
3x;(x eq 0)(*)

    \Rightarrow f\left( \frac{1}{x} ight)
+ 2f(x) = \frac{3}{x};(x eq 0)(**)

    Từ (*) và (**) ta có:

    \left\{ \begin{matrix}f(x) + 2f\left( \dfrac{1}{x} ight) = 3x \\f\left( \dfrac{1}{x} ight) + 2f(x) = \dfrac{3}{x} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}f(x) + 2f\left( \dfrac{1}{x} ight) = 3x \\2f\left( \dfrac{1}{x} ight) + 4f(x) = \dfrac{6}{x} \\\end{matrix} ight.

    \Rightarrow f(x) = - x +
\frac{2}{x}

    Do đó: \lim_{x ightarrow\sqrt{2}}\dfrac{f(x)}{x - \sqrt{2}} = \lim_{x ightarrow \sqrt{2}}\left(\dfrac{- x + \dfrac{2}{x}}{x - \sqrt{2}} ight)

    = \lim_{x ightarrow \sqrt{2}}\frac{-
\left( x - \sqrt{2} ight)\left( x + \sqrt{2} ight)}{x\left( x -
\sqrt{2} ight)} = \lim_{x ightarrow \sqrt{2}}\frac{- \left( x -
\sqrt{2} ight)}{x} = - 2

  • Câu 24: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 1^{+}}\frac{2x + 1}{x -
1}

    Khi x \mapsto 1^{+} ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} \left( {2x + 1} ight) = 3 > 0 \hfill \\
  \mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} ight) = 0 \hfill \\
  x - 1 > 0 \hfill \\ 
\end{gathered}  ight.

    \Rightarrow \lim_{x ightarrow
1^{+}}\frac{2x + 1}{x - 1} = + \infty

  • Câu 25: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy số 1; 2; 3; 4; 5 là một cấp số cộng với công sai là d = 1

    Dãy số 1; 2; 4; 8; 16 là một cấp số nhân với công bội q = 2

    Dãy số 1; -1; 1; -1; 1 là một cấp số nhân với công bội q = -1

    Dãy số 1; -2; 4; -8; 16 là một cấp số nhân với công bội q = -2

  • Câu 26: Vận dụng

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\sin \pi x{\text{     khi }}\left| x ight| \leqslant 1} \\   {x + 1{\text{       khi }}\left| x ight| > 1} \end{array}} ight.. Mệnh đề nào sau đây là đúng?

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2} \\   {\mathop {\lim }\limits_{x \to {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {\sin \pi x} ight) = \sin \pi  = 0} \end{array}} ight.

    => Hàm số gián đoạn tại x=1

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \mathop {\lim }\limits_{x \to  - {1^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ - }} \left( {x + 1} ight) = 0 \hfill \\  f\left( { - 1} ight) = \sin \left( { - \pi } ight) = 0 \hfill \\ \end{gathered}  \\   {\mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to  - {1^ + }} \left( {\sin \pi x} ight) = \sin \left( { - \pi } ight) = 0} \end{array}} ight.

    => Hàm số liên tục tại x=-1

    Vậy hàm số liên tục trên các khoảng \left( { - \infty ; 1} ight)\left( {  1; + \infty } ight).

  • Câu 27: Vận dụng cao

    Cho tổng S_{n} =
\frac{3}{(1.2)^{2}} + \frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots
+ \frac{2n + 1}{\lbrack n(n + 1)brack^{2}}. Giá trị S10

    Cách 1:

    Ta có \frac{3}{(1.2)^{2}} = \frac{1}{1} -
\frac{1}{4};\frac{5}{(2.3)^{2}} = \frac{1}{4} -
\frac{1}{9};\ldots

    Suy ra S_{n} = \frac{1}{1} - \frac{1}{4} +
\frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{n^{2}} - \frac{1}{(n +
1)^{2}} = \frac{n(n + 2)}{(n + 1)^{2}}

    Vậy S_{10} = \frac{10(10 + 2)}{(10 +
1)^{2}} = \frac{120}{121}.

    Cách 2:

    Ta có S_{10} = \frac{3}{(1.2)^{2}} +
\frac{5}{(2.3)^{2}} + \frac{7}{(3.4)^{2}} + \ldots +
\frac{21}{(10.11)^{2}}

    Suy ra S_{10} = \frac{1}{1} - \frac{1}{4}
+ \frac{1}{4} - \frac{1}{9} + \ldots + \frac{1}{10^{2}} -
\frac{1}{11^{2}} = \frac{1}{1} - \frac{1}{11^{2}} =
\frac{120}{121}.

  • Câu 28: Thông hiểu

    Cho hàm số f(x)=x^{3}-3x-1. Số nghiệm của phương trình f(x)  =0 trên \mathbb{R} là:

    Hàm số f(x)=x^{3}-3x-1 là hàm đa thức có tập xác định là \mathbb{R} nên liên tục trên \mathbb{R}

    => Hàm số liên tục trên mỗi khoảng \left( { - 2; - 1} ight),\left( { - 1;0} ight),\left( {0;2} ight)

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 2} ight) =  - 3} \\   {f\left( { - 1} ight) = 1} \end{array} \Rightarrow } ight.f\left( { - 2} ight).f\left( { - 1} ight) < 0 => Hàm số có ít nhất một nghiệm thuộc khoảng \left( { - 2; - 1} ight)

    \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = 1} \\   {f\left( 0 ight) =  - 1} \end{array} \Rightarrow } ight.f\left( { - 1} ight).f\left( 0 ight) < 0=> Hàm số có ít nhất một nghiệm thuộc khoảng \left( { - 1; 0} ight)

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 2 ight) = 1} \\   {f\left( 0 ight) =  - 1} \end{array} \Rightarrow } ight.f\left( 2 ight).f\left( 0 ight) < 0=> Hàm số có ít nhất một nghiệm thuộc khoảng \left( { 0; 2} ight)

    Vậy phương trình f(x)  =0 có ít nhất ba nghiệm thuộc khoảng \left( { -2; 2} ight)

    Mặt khác phương trình f(x)  =0 là phương trình bậc ba có nhiều nhất ba nghiệm

    => Phương trình f(x)  =0 có đúng ba nghiệm trên \mathbb{R}

  • Câu 29: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Điểm trung bình môn của lớp 11A thuộc nhóm nào?

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Giá trị đại diện

    10

    30

    50

    70

    90

    Số học sinh

    5

    9

    12

    10

    6

    Điểm trung bình của lớp 11A là:

    \overline{x} = \frac{5.10 + 9.30 + 12.50+ 10.70 + 6.90}{42} \approx 51,43

    \Rightarrow \overline{x} \in \lbrack40;60)

  • Câu 30: Nhận biết

    Đổi số đo của góc - 5rad sang đơn vị độ, phút, giây

    Cách 1: Từ công thức \alpha =
\frac{m\pi}{180} \Rightarrow m = \left( \frac{\alpha.180}{\pi}
ight)^{0}khi đó:

    m = \left( \frac{- 5.180}{\pi}
ight)^{0} = - 286^{0}28'44''

    Cách 2: Bấm máy tính:

    Bước 1. Bấm shift mode 3 để chuyển về chế độ độ, phút, giây.

    Bước 2. Bấm -5 shift DRG 2 =

  • Câu 31: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 32: Vận dụng

    Cho khai triển {\left( {x - 2y + m} ight)^4}. Tìm m để tổng các hệ số của khai triển bằng 0.

    Tổng các hệ số của khai triển là giá trị của biểu thức tại x=y=1

    Vậy tổng các hệ số của khai triển là: {\left( {1 - 2.1 + m} ight)^4} = {\left( {m - 1} ight)^4}

    Để tổng các hệ số khai triển bằng 0 thì {\left( {m - 1} ight)^4} = 0 \Leftrightarrow m = 1

  • Câu 33: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề: "Hai đường thẳng có một điểm chung thì chúng có vô số điểm chung khác." sai. Vì trong trường hợp 2 đường thẳng cắt nhau thì chúng chỉ có 1 điểm chung.

    Mệnh đề: "Hai đường thẳng song song khi và chỉ khi chúng không điểm chung." và "Hai đường thẳng song song khi và chỉ khi chúng không đồng phẳng." sai. Vì hai đường thẳng song song khi và chỉ khi chúng đồng phẳng và không có điểm chung.

    Vậy mệnh đề đúng là: "Hai đường thẳng chéo nhau khi và chỉ khi chúng không đồng phẳng."

  • Câu 34: Thông hiểu

    Cho hình chóp ABCD có đáy ABCD là hình thang (AB//CD). Gọi M;N;Q lần lượt là trung điểm của BC;AD;SB. Giao tuyến của mặt phẳng (SAB)(MNQ) là:

    Hình vẽ minh họa

    Ta có: Q \in SB;SB \subset
(SAB)

    Q \in (MNQ) nên Q là điểm chung thứ nhất của mặt phẳng (SAB)(MNQ)

    Mặt khác MN//AB

    Vậy giao tuyến của mặt phẳng (SAB)(MNQ) là đường thẳng qua Q và song song với AB.

  • Câu 35: Vận dụng

    Cho hình chóp tứ giác S.ABCD. Gọi A_{1} là trung điểm của SA, B_{1} \in
SB. Xác định các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight)với các mặt của hình chóp. Khi đó hình tạo bởi các giao tuyến trên là:

    Trường hợp 1:

    Hình vẽ minh hoạ

    Nếu B_{1} eq S. Gọi O = AC \cap BD,\ I = SO \cap A_{1}C

    Nếu P = IB_{1} \cap SD

    => Hình tạo bởi các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight) với hình chóp là tứ giác A_{1}B_{1}CP

    Nếu P = IB \cap BD. Gọi Q = CP \cap AD

    Hình tạo bởi các giao tuyến của mặt phẳng \left( A_{1}B_{1}C ight) với hình chóp là tứ giác A_{1}B_{1}CQ

    Trường hợp 2:

    Hình vẽ minh hoạ

    Nếu B_{1} \equiv S. Hình tạo bởi các giao tuyến của mặt phẳng \left(
A_{1}B_{1}C ight) với hình chóp là tam giác SAC.

    Vậy hình tạo bởi các giao tuyến trên có thể là tứ giác hoặc tam giác.

  • Câu 36: Thông hiểu

    Cho dãy số (un) với \left\{ \begin{matrix}
u_{1} = \frac{1}{2} \\
u_{n + 1} = 2u_{n} \\
\end{matrix} ight.. Công thức số hạng tổng quát của dãy số là?

    Ta có

    \left\{ \begin{matrix}u_{1} = \frac{1}{2} \\u_{2} = 2u_{1} \\u_{3} = 2u_{2} \\\cdots \\u_{n} = 2u_{n - 1} \\\end{matrix} ight.

    Nhân vế với vế của các đẳng thức trên, ta được: u_{1} \cdot u_{2} \cdot u_{3}\ldots u_{n} =
\frac{1}{2} \cdot 2^{n - 1} \cdot u_{1} \cdot u_{2}\ldots u_{n - 1}
\Leftrightarrow u_{n} = 2^{n - 2}.

  • Câu 37: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa trung vị của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{2} =10

    => Nhóm chứa trung vị là [9; 11)

    (Vì 10 nằm giữa hai tần số tích lũy 9 và 16)

  • Câu 38: Thông hiểu

    Khẳng định nào sau đây đúng khi nói về mặt phẳng?

    Theo cách xác định mặt phẳng thì “Có duy nhất một mặt phẳng chứa hai đường thẳng cắt nhau”.

  • Câu 39: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Mệnh đề: “Hai đường thẳng không song song thì chéo nhau” sai vì có thể cắt nhau.

    Mệnh đề: “Hai đường thẳng chéo nhau thì không có điểm chung” đúng.

    Mệnh đề: “Hai đường thẳng không cắt nhau và không song song thì chéo nhau” sai vì có thể trùng nhau.

    Mệnh đề: “Hai đường thẳng không có điểm chung thì chéo nhau” sai vì có thể song song.

  • Câu 40: Nhận biết

    Cho dãy số (u_n) xác định bởi u_{n}=\frac{n^{2}}{3^{n}} với \forall  n\geq 1. Khi đó số hạng u_{2n} của dãy (u_{n}) là 

     Ta có:

    \begin{matrix}  {u_n} = \dfrac{{{n^2}}}{{{3^n}}} \hfill \\   \Rightarrow {u_{2n}} = \dfrac{{{{\left( {2n} ight)}^2}}}{{{3^{2n}}}} = \dfrac{{4{n^2}}}{{{9^n}}} \hfill \\ \end{matrix}

  • Câu 41: Nhận biết

    Trong không gian cho hai mặt phẳng (P)(Q) song song. Số giao điểm chung của hai mặt phẳng (P)(Q)

    Theo định nghĩa hai mặt phẳng song song.

    Đáp án cần tìm là: 0

  • Câu 42: Nhận biết

    \lim(5n-4n^{3}) bằng

    Ta có: 

    \begin{matrix}  \lim \left( {5n - 4{n^3}} ight) \hfill \\   = \lim \left[ {{n^3}\left( {\dfrac{5}{{{n^2}}} - 4} ight)} ight] \hfill \\   =  - \infty  \hfill \\ \end{matrix}

  • Câu 43: Vận dụng cao

    Có bao nhiêu giá trị nguyên của m để phương trình 3sinx + m - 1 = 0 có nghiệm?

    Ta có:

    \begin{matrix}  \sin x = \dfrac{{1 - m}}{3} \in \left[ { - 1;1} ight] \hfill \\   \Rightarrow  - 3 \leqslant  - m \leqslant  \Leftrightarrow  - 2 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với m thuộc tập số nguyên

    Suy ra 4 – (-2) + 1 = 7 giá trị nguyên của m

  • Câu 44: Nhận biết

    Khảo sát thời gian vui chơi trong ngày của học sinh (đơn vị: giờ) thu được kết quả ghi lại trong bảng sau:

    Thời gian

    Học sinh

    [0; 2)

    8

    [2; 4)

    16

    [4; 6)

    4

    [6; 8)

    2

    [8; 10)

    2

    Xác định giá trị đại diện của nhóm dữ liệu thứ ba?

    Trong mẫu dữ liệu ghép nhóm, giá trị đại diện là giá trị trung bình cộng của giá trị hai đầu mút.

    Nhóm dữ liệu thứ ba là [4; 6)

    => Giá trị đại diện của nhóm dữ liệu thứ ba là: \frac{4 + 6}{2} = 5

  • Câu 45: Thông hiểu

    Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:

    Khoảng thời gian học (phút)

    [10; 20)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    [70; 80)

    Tần số

    2

    3

    14

    8

    3

    8

    2

    Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?

    Số học sinh tham gia khảo sát là: 40 học sinh.

    Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm \frac{19.100\%}{40} = 47,5\%

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo