Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Cho cấp số cộng
biết
. Tìm công sai của cấp số cộng?
Theo giả thiết ta có:
Vậy
Giải phương trình
được nghiệm là:
Ta có
Vậy phương trình đã cho có nghiệm là
Cho
. Khẳng định nào sau đây đúng?
Ta có:
Trong không gian cho các đường thẳng a, b và các mặt phẳng (α), (β). Trong các khẳng định sau đây, đâu là khẳng định đúng?
Mệnh đề “a // (β) và (β) // b thì a // b” là sai vì a và b có thể cắt nhau.
Mệnh đề “a // b và b ⊂ (α) thì a // (α)” là sai vì có thể a ⊂ (α).
Mệnh đề “a // b và b // (α) thì a // (α)” là sai vì có thể a ⊂ (α).
bằng
Ta có:
Cho tổng
. Giá trị S10 là
Cách 1:
Ta có
Suy ra
Vậy .
Cách 2:
Ta có
Suy ra .
Cho dãy số (un) biết un = 3n + 6. Mệnh đề nào sau đây đúng?
Ta có un = 3n + 6 ⇒ un + 1 = 3(n+1) + 6 = 3n + 9
Xét hiệu un + 1 − un = (3n+9) − (3n+6) = 3 > 0, ∀n ∈ N*
Vậy (un) là dãy số tăng.
Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của AB, CD và G là trọng tâm của tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD) là
Hình vẽ minh họa

Ta có và
=> Giao điểm của đường thẳng EG và mặt phẳng (ACD) là giao điểm của đường thẳng EG và AF.
Cho hình hộp
. Tìm mặt phẳng song song với mặt phẳng
.
Hình vẽ minh họa

Ta có là hình bình hành nên
Tương tự ta có . Từ đó suy ra
và
.
Vậy
Cho tứ diện
có
. Lấy một điểm
bất kì trên cạnh
. Gọi mặt phẳng
là mặt phẳng qua
song song với
và
. Biết các giao tuyến của mặt phẳng
với tứ diện tạo thành một tứ giác. Khi điểm
di chuyển đến vị trí
hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức
.
Hình vẽ minh họa:
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Giao tuyến của với mặt phẳng
là đường thẳng qua
và song song với
, đường thẳng này cắt
tại
.
=>
Vậy các giao tuyến của mặt phẳng với tứ diện tạo thành một tứ giác là hình bình hành
.
Do đó
Chứng minh tương tự ta được
Do đó:
Khi trùng với
ta có:
Suy ra
Vậy
Xác định cỡ mẫu của mẫu số liệu ghép nhóm sau?
Đối tượng | Tần số |
[150; 155) | 5 |
[155; 160) | 18 |
[160; 165) | 40 |
[165; 170) | 26 |
[170; 175) | 8 |
[175; 180) | 3 |
Cỡ mẫu của mẫu số liệu ghép nhóm là:
Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở.
Thu nhập (nghìn đồng) | Hộ gia đình |
[0; 100) | 5 |
[100; 200) | 7 |
[200; 300) | 12 |
[300; 400) | 18 |
[400; 500) | 16 |
[500; 600) | 10 |
[600; 700) | 5 |
Tìm thu nhập trung bình của các hộ gia đình.
Ta có:
Thu nhập đại diện (nghìn đồng) | Hộ gia đình | Tích các giá trị |
50 | 5 | 250 |
150 | 7 | 1050 |
250 | 12 | 3000 |
350 | 18 | 6300 |
450 | 16 | 7200 |
550 | 10 | 5500 |
650 | 5 | 3250 |
Tổng | N = 73 | 26550 |
Thu nhập trung bình của các hộ gia đình là:
Giả sử A là tập con của tập hợp các số nguyên dương sao cho
(I) k ∈ A
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k
Lúc đó, ta có:
(I) k ∈ A : số nguyên dương k thuộc tập A.
(II) n ∈ A ⇒ n + 1 ∈ A, ∀n ≥ k : nếu số nguyên dương n(n≥k) thuộc tập A thì số nguyên dương đứng ngay sau nó (n+1) cũng thuộc A. Mọi số nguyên dương lớn hơn hoặc bằng k đều thuộc A.
Hoàn thành bảng số liệu sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 152 | 12 |
[154; 158) | 156 | 18 |
[158; 162) | 160 | 30 |
[162; 166) | 164 | 24 |
[166; 170) | 168 | 10 |
Hoàn thành bảng số liệu sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 152 | 12 |
[154; 158) | 156 | 18 |
[158; 162) | 160 | 30 |
[162; 166) | 164 | 24 |
[166; 170) | 168 | 10 |
Hoàn thành bảng như sau:
Đối tượng | Giá trị đại diện | Tần số |
[150; 154) | 12 | |
[154; 158) | 18 | |
[158; 162) | 30 | |
[162; 166) | 24 | |
[166; 170) | 10 |
Có một và chỉ một mặt phẳng đi qua
Hoàn thiện mệnh đề: "Có một và chỉ một mặt phẳng đi qua một điểm và một đường thẳng không chứa điểm đó."
Biết
với
. Tập nghiệm của phương trình
trên
có số phần tử là:
Ta có:
Theo đề I tồn tại hữu hạn nên phương trình phải có nghiệm kép
. Tức là:
Khi thì
Do đó nên phương trình
vô nghiệm.
Cho hàm số
. Số nghiệm của phương trình
trên tập số thực là:
Hàm số là hàm đa thức có tập xác định
=> Hàm số liên tục trên
=> Hàm số liên tục trên các khoảng
Ta có:
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng . Tuy nhiên phương trình
là phương trình bậc ba có nhiều nhất ba nghiệm
Vậy phương trình có đúng ba nghiệm.
Cho tứ diện
. Trung điểm của các đường thẳng
lần lượt là
. Tìm giao điểm của đường thẳng
với mặt phẳng
.
Hình vẽ minh họa
Gọi là trung điểm của
.
Ta có: (do
là đường trung bình của tam giác
)
Vậy
Cho một cấp số nhân
có
. Tính
?
Ta có:
Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:
Thời gian (phút) | [0; 5) | [5; 10) | [10; 15) | [15; 20) | [20; 25) |
Số học sinh | 8 | 16 | 4 | 2 | 2 |
Giá trị đại diện nhóm [20; 25) bằng bao nhiêu?
Giá trị đại diện nhóm [20; 25) là:
Cho hình chóp S.ABCD, các điểm A’, B’, C’ lần lượt thuộc các cạnh SA, SB, SC. Phát biểu nào sau đây là đúng?
Hình vẽ minh họa

Ta có: (SAB) ∩ (A’B’C’) = A’B’
(SBC) ∩ (A’B’C’) = B’C’
Gọi O là giao điểm của AC và BD
Trong mặt phẳng (SAC) gọi I là giao điểm của A’C’ và SO
Trong mặt phẳng (SBD) gọi D’ là giao điểm của B’I và SD
Khi đó ta có: (SCD) ∩ (A’B’C’) = C’D’
(SAD) ∩ (A’B’C’) = A’D’
=> Thiết diện của mặt phẳng (A’B’C’) với hình chóp S.ABCD là tứ giác A’B’C’D’.
Cho công thức
biểu thị số giờ có ánh sáng mặt trời tại thành phố A, với
là số ngày trong năm. Ngày nào sau đây của năm thì số giờ có ánh sáng mặt trời của thành phố A đạt giá trị lớn nhất.
Để số giờ có ánh sáng mặt trời lớn nhất thì hàm số đạt giá trị lớn nhất.
Khi đó .
Vì nên ta có
.
Do đó (tháng đầu tiên của năm)
Tính giới hạn
.
Ta có:
Cho hàm số
. Khi đó hàm số đã cho liên tục trên khoảng nào?
Hàm số có nghĩa khi
Vậy hàm số liên tục trên các khoảng
Cho hàm số
. Trong các mệnh đề sau, có bao nhiêu mệnh đề đúng?
i) Hàm số
có tập xác định ![]()
ii) Hàm số
liên tục trên ![]()
iii) Hàm số
gián đoạn tại ![]()
iv) Hàm số
liên tục tại ![]()
Ta có:
i) Hàm số có tập xác định
đúng
ii) Hàm số liên tục trên
sai. Vì hàm số gián đoạn tại x = 1
iii) Hàm số gián đoạn tại
đúng. Vì hàm số không tồn tại giới hạn trái tại
iv) Hàm số liên tục tại
sai vì
Trong các hàm số sau hàm số nào là hàm số lẻ?
Xét hàm số y = sinx:
Lấy ta có:
Vậy hàm số y = sinx là hàm số lẻ.
Cho dãy số (un) xác định bởi
. Tìm số hạng thứ 2018 của dãy số đã cho.
Ta có:
Đặt
Khi đó (vn) là một cấp số nhân với và công bội q = 21
Do đó số hạng tổng quát của dãy (vn) là
=>
Tính giới hạn ![]()
Ta có:
Tìm mệnh đề sai trong các mệnh đề sau.
Cho điểm M nằm ngoài mặt phẳng (α). Khi đó tồn tại vô số đường thẳng a chứa M và song song với (α).
Cho dãy số (un) với
. Số hạng tổng quát un của dãy số là số hạng nào dưới đây?
Ta có
Cộng vế với vế của các đẳng thức trên, ta được
Hằng ngày mực nước của con kênh lên xuống theo thủy triều. Độ sâu h(m) của mực nước trong kênh tính theo thời gian t (h) được cho bởi công thức
. Khi nào mực nước của kênh là cao nhất với thời gian ngắn nhất?
Ta có:
Do đó mực nước của kênh cao nhất khi
Vì
Vậy mực nước của kênh là cao nhất khi t = 14 (h)
Cho hình chóp
có đáy
là hình chữ nhật. Tìm đường thẳng song song với giao tuyến hai mặt phẳng
và
?
Hình vẽ minh họa
Xét hai mặt phẳng và
ta có:
là điểm chung
Mà với
là đường thẳng đi qua
và song song với
.
Tính
.
Ta có:
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Tìm tất các các giá trị thực của tham số m để phương trình
vô nghiệm?
Áp dụng điều kiện có nghiệm của phương trình cos x = a.
- Phương trình có nghiệm khi .
- Phương trình vô nghiệm khi .
Phương trình
Do đó, phương trình vô nghiệm
.
Hàm số đồng biến trên khoảng
là:
Với thuộc góc phần tư thứ IV và thứ nhất nên hàm số
đồng biến trên khoảng
Số lượng từ trong mỗi câu trong N câu đầu tiên của một cuốn sách được đếm và kết quả được ghi trong bảng sau:
Khoảng số từ | Số câu |
[1; 5) | 2 |
[5; 9) | 5 |
[9; 13) |
|
[13; 17) | 23 |
[17; 21) | 21 |
[21; 25) | 13 |
[25; 29) | 4 |
[29; 33) | 1 |
Biết mốt của mẫu dữ liệu có giá trị là 16. Giá trị của N là:
Ta có: Mốt của mẫu dữ liệu nằm trong nhóm [13; 17)
Khoảng số từ | Số câu |
|
[1; 5) | 2 |
|
[5; 9) | 5 |
|
[9; 13) | ||
[13; 17) | 23 | |
[17; 21) | 21 | |
[21; 25) | 13 |
|
[25; 29) | 4 |
|
[29; 33) | 1 |
|
Do đó:
Khi đó ta có:
Vậy cỡ mẫu N = 86.
Cho cấp số cộng có
,
. Khi đó:
a)
. Đúng||Sai
b) Số hạng tổng quát thứ
của cấp số cộng là
. Đúng||Sai
c) Tổng
số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng
. Sai||Đúng
Cho cấp số cộng có ,
. Khi đó:
a) . Đúng||Sai
b) Số hạng tổng quát thứ của cấp số cộng là
. Đúng||Sai
c) Tổng số hạng đầu tiên của cấp số cộng là
. Đúng||Sai
d) Tổng . Sai||Đúng
a) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
b) Áp dụng công thức tính số hạng tổng quát thứ của cấp số cộng ta có:
.
c) Áp dụng công thức tính tổng số hạng đầu tiên của cấp số cộng ta có:
.
d) Ta viết lại
.
Cho cấp số nhân
có
. Tính
.
Ta có
Vậy .
Tìm giới hạn ![]()
Ta có:
Bảng số liệu dưới đây cho biết lương của 113 nhân viên trong một nhà máy trong một tháng (đơn vị: triệu đồng):
Lương | [0; 10) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) |
Số nhân viên | 18 | 23 | 30 | 20 | 12 | 10 |
Tính mức lương trung bình của các nhân viên trên đây. (Làm tròn đến chữ số thập phân thứ hai)
Ta có:
Lương | |||
[0; 10) | 18 | 5 | 90 |
[10; 20) | 23 | 15 | 345 |
[20; 30) | 30 | 25 | 750 |
[30; 40) | 20 | 35 | 700 |
[40; 50) | 12 | 45 | 540 |
[50; 60) | 10 | 55 | 550 |
| N = 113 |
| T = 2975 |
Mức lương trung bình của nhân viên là:
(triệu đồng)
Cho hình chóp
có đáy là tam giác ABC thỏa mãn
. Mặt phẳng
song song với
cắt đoạn
tại
sao cho
. Tính diện tích thiết diện tạo bởi mặt phẳng
và hình chóp
?
Cho hình chóp có đáy là tam giác ABC thỏa mãn
. Mặt phẳng
song song với
cắt đoạn
tại
sao cho
. Tính diện tích thiết diện tạo bởi mặt phẳng
và hình chóp
?
Kết quả của giới hạn ![]()
Ta có:
. Khi đó:
(vì )
Cho hình chóp tứ giác
. Gọi
lần lượt là trung điểm của
và
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Xét có
lần lượt là trung điểm
=> là đường trung bình của
=> mà
Giá trị của biểu thức
là:
Ta có:
Khi đó: