Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình chóp S.ABCD, đáy ABCD là hình bình hành ABCD tâm O. Giao tuyến của hai mặt phẳng (SAC)(SAD)

    Ta có (SAC) \cap (SAD) = SA.

  • Câu 2: Nhận biết

    Hàm số nào sau đây gián đoạn tại x = 1?

    Xét hàm số y = \frac{x}{x^{2} -
1} hàm số này không xác định tại x = 1 nên hàm số gián đoạn tại x = 1.

  • Câu 3: Vận dụng

    Số lượng từ trong mỗi câu trong N câu đầu tiên của một cuốn sách được đếm và kết quả được ghi trong bảng sau:

    Khoảng số từ

    Số câu

    [1; 5)

    2

    [5; 9)

    5

    [9; 13)

    x

    [13; 17)

    23

    [17; 21)

    21

    [21; 25)

    13

    [25; 29)

    4

    [29; 33)

    1

    Biết mốt của mẫu dữ liệu có giá trị là 16. Giá trị của N là:

    Ta có: Mốt của mẫu dữ liệu nằm trong nhóm [13; 17)

    Khoảng số từ

    Số câu

    [1; 5)

    2

     

    [5; 9)

    5

     

    [9; 13)

    x

    f_{0}

    [13; 17)

    23

    f_{1}

    [17; 21)

    21

    f_{2}

    [21; 25)

    13

     

    [25; 29)

    4

     

    [29; 33)

    1

     

    Do đó:

    \Rightarrow \left\{ \begin{matrix}l = 13;f_{0} = x;f_{1} = 23;f_{2} = 21 \\c = 17 - 13 = 4,M_{0} = 16 \\\end{matrix} ight.

    Khi đó ta có:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    \Leftrightarrow 16 = 13 + \frac{23 -x}{2.23 - x - 21}.4

    \Leftrightarrow x = 17

    Vậy cỡ mẫu N = 86.

  • Câu 4: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD  là hình bình hành. Mặt phẳng (α) qua BD và song song với SA, mặt phẳng (\alpha) cắt SC tại K. Tính tỉ số \frac{SK}{KC}.

    Hình vẽ minh họa

    Gọi O = AC \cap BD.

    Trong (SAC), kẻ OK//SA\ \ (K \in SC).

    Do đó (\alpha) là mặt phẳng (KBD).

    Vì ABCD là hình bình hành nên O là trung điểm của AC \Rightarrow
\frac{OC}{OA} = 1.

    Do OK//SA \Rightarrow \frac{OC}{OA} =
\frac{KC}{KS} = 1 \Rightarrow \frac{SK}{KC} = 1.

  • Câu 5: Vận dụng cao

    Cho dãy số \left(
u_{n} ight) biết \left\{
\begin{matrix}
u_{1} = 2 \\
u_{n + 1} = 2u_{n - 1} + 3;(n \geq 2) \\
\end{matrix} ight.. Số hạng có ba chữ số lớn nhất của dãy là:

    Tìm số hạng tổng quát của dãy số

    Dự đoán u_{n} = 5.2^{n - 1} - 3;(n \geq
2)

    Ta chứng minh theo phương pháp quy nạp

    Với n = 1 ta có: u_{2} = 5.2 - 3 = 7(tm)

    Giả sử u_{k} = 5.2^{k - 1} - 3, khi đó ta có:

    u_{k + 1} = 2u_{k} + 3

    = 2\left( 5.2^{k - 1} - 3 ight) +
3

    = 5.2^{k} - 3

    Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.

    Ta có: u_{n} < 1000 \Rightarrow 2^{n -
1} < \frac{1003}{5} = 200,6

    2^{7} = 128;2^{8} = 256

    Nên ta chọn 2^{n - 1} = 2^{7} \Rightarrow
n = 8

    Vậy u_{8} là số hạng cần tìm.

  • Câu 6: Vận dụng

    Cho tứ diện ABCD có độ dài tất cả các cạnh bằng x. Gọi G là trọng tâm tam giác ABC. Tính diện tích thiết diện tạo bởi mặt phẳng (CDG) và tứ diện ABCD?

    Hình vẽ minh họa:

    Gọi M,N lần lượt là trung điểm các cạnh AB,BC

    \Rightarrow AN \cap MC = G

    Ta có: (CDG) \cap AB = M

    Suy ra tam giác MCD là thiết diện của mặt phẳng (CDG) và tứ diện ABCD

    Tam giác ABD đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MD =
\frac{x\sqrt{3}}{2}

    Tam giác ABC đều cạnh bằng xM là trung điểm của AB

    \Rightarrow MC =
\frac{x\sqrt{3}}{2}

    Gọi H là trung điểm của CD \Rightarrow
MH\bot CD

    \Rightarrow S_{MCD} =
\frac{1}{2}MH.CD

    Ta có: MH = \sqrt{MC^{2} -
HC^{2}}

    \Leftrightarrow MH = \sqrt{MC^{2} -
\frac{CD^{2}}{2}}

    \Leftrightarrow MH =
\frac{x\sqrt{2}}{2}

    \Rightarrow S_{MCD} =
\frac{1}{2}.\frac{x\sqrt{2}}{2}.x = \frac{x^{2}\sqrt{2}}{4}

  • Câu 7: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

  • Câu 8: Thông hiểu

    Cho a,b là các số thực khác 0. Tìm điều kiện của a,b để giới hạn \lim_{x ightarrow - \infty}\frac{\sqrt{x^{2} -
3x} + ax}{bx - 1} = 3

    Ta có:

    \lim_{x ightarrow -
\infty}\frac{\sqrt{x^{2} - 3x} + ax}{bx - 1} = 3

    \Leftrightarrow \lim_{x ightarrow -\infty}\dfrac{- \sqrt{1 - \dfrac{3}{x}} + a}{b - \dfrac{1}{x}} =3

    \Leftrightarrow \frac{- 1 + a}{b} =
3

    \Leftrightarrow \frac{a - 1}{b} =
3

  • Câu 9: Nhận biết

    Cho hình chóp S.ABC. Gọi J;K lần lượt là trung điểm của các đoạn thẳng SB,SC. Đường thẳng JK song song với mặt phẳng nào trong các mặt phẳng dưới đây?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
JK//CB \\
JK ⊄ (ABC) \\
\end{matrix} ight.\  \Rightarrow JK//(ABC)

  • Câu 10: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 11: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành, lấyM \in BC;MC =
MB. Giả sử (\gamma) là mặt phẳng đi qua M song song với hai đường thẳng BDSC. Xác định giao tuyến của (\gamma) với các mặt của hình chóp tứ giác S.ABCD. Hình tạo bởi các giao tuyến là hình

    Hình vẽ minh họa

    Gọi trung điểm CD,SD,SB lần lượt là N,P,R.

    Gọi I = AC \cap MN

    Từ I kẻ QI song song với SC.

    Ta có: MR//QI//NP//SC

    \Rightarrow (MNPQR)//SC (1)

    Ta có MN//DB \Rightarrow
(MNPQR)//BD (2)

    Từ (1) và (2) => Các giao tuyến của (\gamma) với các cạnh của hình chóp là hình ngũ giác MNPQR.

  • Câu 12: Nhận biết

    Chọn khẳng định đúng.

    Ta có: \pi rad tương ứng với 180^{0}.

  • Câu 13: Vận dụng cao

    Giá trị của giới hạn \lim\frac{1 + a +
a^{2} + ... + a^{n}}{1 + b + b^{2} + ... + b^{n}};\left( |a| < 1,|b|
< 1 ight) bằng:

    Ta có:

    1 + a + a^{2} + ... + a^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là a

    => 1 + a + a^{2} + ... + a^{n} =
\frac{1.\left( 1 - a^{n + 1} ight)}{1 - a} = \frac{1 - a^{n + 1}}{1 -
a}

    Tương tự:

    1 + b + b^{2} + ... + b^{n} là tổng n + 1 số hạng đầu tiên của cấp số nhân với số hạng đầu là 1 và công bội là b

    => 1 + b + b^{2} + ... + b^{n} =
\frac{1.\left( 1 - b^{n + 1} ight)}{1 - b} = \frac{1 - b^{n + 1}}{1 -
b}

    \Rightarrow \lim\frac{1 + a + a^{2} +
... + a^{n}}{1 + b + b^{2} + ... + b^{n}}

    \begin{matrix}
   = \lim \dfrac{{\dfrac{{1 - {a^{n + 1}}}}{{1 - a}}}}{{\dfrac{{1 - {b^{n + 1}}}}{{1 - b}}}} \hfill \\
   = \lim \dfrac{{1 - b}}{{1 - a}}.\dfrac{{1 - {a^{n + 1}}}}{{1 - {b^{n + 1}}}} = \dfrac{{1 - b}}{{1 - a}} \hfill \\ 
\end{matrix}

  • Câu 14: Thông hiểu

    Cho phương trình \sin x.\cos x = 1 có nghiệm là:

     Giải phương trình như sau:

    \begin{matrix}  \sin x.\cos x = 1 \hfill \\   \Leftrightarrow 2\sin x.\cos x = 2 \hfill \\   \Leftrightarrow \sin 2x = 2\left( L ight) \hfill \\ \end{matrix}

    \sin 2x \in \left[ { - 1;1} ight]

    vậy phương trình lượng giác đã cho vô nghiệm.

  • Câu 15: Vận dụng

    Cho hàm số f(x)
= x^{3} - 3x - 1. Số nghiệm của phương trình f(x) = 0 trên tập số thực là:

    Hàm số f(x) = x^{3} - 3x - 1 là hàm đa thức có tập xác định \mathbb{R}

    => Hàm số liên tục trên \mathbb{R}

    => Hàm số liên tục trên các khoảng ( -
2; - 1),( - 1;0),(0;2)

    Ta có:

    \left\{ \begin{matrix}
f( - 2) = - 3 < 0 \\
f( - 1) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f( - 2).f( - 1) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
2; - 1)

    \left\{ \begin{matrix}
f( - 1) = 1 > 0 \\
f(0) = - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow f( - 1).f(0) < 0 vậy phương trình có ít nhất một nghiệm trên ( -
1;0)

    \left\{ \begin{matrix}
f(0) = - 1 < 0 \\
f(2) = 1 > 0 \\
\end{matrix} ight.\  \Rightarrow f(0).f(2) < 0 vậy phương trình có ít nhất một nghiệm trên (0;2)

    Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng ( - 2;2). Tuy nhiên phương trình f(x) = 0 là phương trình bậc ba có nhiều nhất ba nghiệm

    Vậy phương trình f(x) = 0 có đúng ba nghiệm.

  • Câu 16: Thông hiểu

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Đáp án là:

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{n^{2} + an + 5} -\sqrt{n^{2} + 1}, trong đó a là tham số thực.

    a) Khi a = 2 thì \lim u_{n} = 1. Đúng||Sai

    b) Khi a = 3 thì \lim u_{n} = \frac{1}{2}. Sai||Đúng

    c) Khi a = - 3 thì \lim u_{n} = - \frac{3}{2}. Đúng||Sai

    d) Khi a = - 2 thì \lim u_{n} = - 1. Đúng||Sai

    Ta có

    \sqrt{n^{2} + an + 5} - \sqrt{n^{2} + 1}ightarrow 0\overset{ightarrow}{}Nhận lượng liên hợp :

    \lim u_{n} = \lim\left( \sqrt{n^{2} + an+ 5} - \sqrt{n^{2} + 1} ight)

    = \lim\frac{an + 4}{\sqrt{n^{2} + an +5} + \sqrt{n^{2} + 1}}

    = \lim\frac{a + \dfrac{4}{n}}{\sqrt{1 +\dfrac{a}{n} + \dfrac{5}{n^{2}}} + \sqrt{1 + \dfrac{1}{n^{2}}}} =\dfrac{a}{2}

  • Câu 17: Nhận biết

    Tính A = \lim_{x
ightarrow - 1}\left( x^{2} - x + 7 ight).

    Ta có: A = \lim_{x ightarrow - 1}\left(
x^{2} - x + 7 ight) = 1 + 1 + 7 = 9

  • Câu 18: Thông hiểu

    Cho tứ diện ABCD. Gọi I,J,K lần lượt là các điểm nằm trên các cạnh AB,BC,CD. Giao tuyến của mặt phẳng (IJK) và mặt phẳng (BCD) là đường thẳng

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
J \in (IJK) \\
J \in BC \subset (BCD) \\
\end{matrix} ight.

    => J là điểm chung của hai mặt phẳng (IJK)(BCD).

    Ta lại có: \left\{ \begin{matrix}
K \in (IJK) \\
K \in CD \subset (BCD) \\
\end{matrix} ight.

    => K là điểm chung của hai mặt phẳng (IJK)(BCD).

    Vậy giao tuyến của mặt phẳng (IJK) và mặt phẳng (BCD) là đường thẳng JK.

  • Câu 19: Vận dụng

    Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử một người nào đó có nhịp tim là 70lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số P(t) = 100 + 20\sin\left( \frac{7\pi}{3}tight)ở đó P(t)là huyết áp tính theo đơn vị mmHg( milimét thuỷ ngân) và thời gian ttính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120 mmHg?

    Đáp án: 1

    Đáp án là:

    Huyết áp là áp lực cần thiết tác động lên thành của động mạch để đưa máu từ tim đến nuôi dưỡng các mô trong cơ thể. Huyết áp được tạo ra do lực co bóp của cơ tim và sức cản của thành động mạch. Mỗi lần tim đập, huyết áp của chúng ta tăng rồi giảm giữa các nhịp. Huyết áp tối đa và huyết áp tối thiểu gọi là huyết áp tâm thu và tâm trương, tương ứng. Chỉ số huyết áp của chúng ta được viết là tâm thu/tâm trương. Chỉ số huyết áp 120/80 là bình thường. Giả sử một người nào đó có nhịp tim là 70lần trên phút và huyết áp của người đó được mô hình hoá bởi hàm số P(t) = 100 + 20\sin\left( \frac{7\pi}{3}tight)ở đó P(t)là huyết áp tính theo đơn vị mmHg( milimét thuỷ ngân) và thời gian ttính theo giây. Trong khoảng từ 0 đến 1 giây, hãy xác định số lần huyết áp là 120 mmHg?

    Đáp án: 1

    Huyết áp là 120 mmHgkhi

    P(t) = 120 \Leftrightarrow 100 +20sin\left( \frac{7\pi}{3}t ight) = 120

    \Leftrightarrow \sin\left(
\frac{7\pi}{3}t ight) = 1

    \Leftrightarrow \frac{7\pi}{3}t =\frac{\pi}{2} + k2\pi

    \Leftrightarrow t = \frac{3}{14} +
\frac{6k}{7}\left( k\mathbb{\in Z} ight)

    Xét 0 < t < 1

    \Leftrightarrow 0 < \frac{3}{14} +
\frac{6k}{7} < 1\Leftrightarrow  - \frac{1}{4} < k < \frac{{11}}{{12}} \Leftrightarrow k = 0

     k\mathbb{\in Z}.

    Vậy trong khoảng từ 0 đến 1 giây, có 1 lần huyết áp là 120 mmHg.

  • Câu 20: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm như sau:

    Mức lương (USD)

    [60; 70)

    [50; 60)

    [40; 50)

    [30; 40)

    [20; 30)

    Nhân viên

    5

    10

    20

    5

    3

    Điền đáp án vào ô trống

    a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD

    (Làm tròn kết quả đến số thập phân thứ nhất)

    b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75

    Đáp án là:

    Cho mẫu dữ liệu ghép nhóm như sau:

    Mức lương (USD)

    [60; 70)

    [50; 60)

    [40; 50)

    [30; 40)

    [20; 30)

    Nhân viên

    5

    10

    20

    5

    3

    Điền đáp án vào ô trống

    a) Mức lương trung bình (USD) của nhân viên là: 47,1 USD

    (Làm tròn kết quả đến số thập phân thứ nhất)

    b) Trung vị của mẫu dữ liệu ghép nhóm là: 46,75

    Sắp xếp nhóm dữ liệu theo chiều tăng như sau:

    Mức lương (USD)

    [20; 30)

    [30; 40)

    [40; 50)

    [50; 60)

    [60; 70)

    Mức lương trung bình (USD)

    25

    35

    45

    55

    65

    Nhân viên

    3

    5

    20

    10

    5

    Tần số tích lũy

    3

    8

    28

    38

    43

    Mức lương trung bình là:

    \overline{x} = \frac{25.3 + 35.5 + 45.20+ 55.10 + 65.5}{43} \approx 47,1

    Ta có: \frac{N}{2} = \frac{43}{2} =21,5

    Nên khoảng chứa trung vị là: [40; 50) vì 21,5 nằm giữa hai tần số tích lũy là 8 và 28.

    \Rightarrow l = 40;\frac{N}{2} = 21,5;m =8;f = 20,c = 10

    \Rightarrow M_{e} = l + \dfrac{\left(\dfrac{N}{2} - m ight)}{f}.c

    = 40 + \frac{21,5 - 8}{20}.10 =46,75

  • Câu 21: Thông hiểu

    Tuổi thọ (tính bằng giờ) của 100 bóng đèn được quan sát trong thử nghiệm kiểm tra chất lượng được đưa ra hiển thị trong bảng dưới đây:

    Tuổi thọ (giờ)

    [600; 650)

    [650; 700)

    [700; 750)

    [750; 800)

    [800; 850)

    Số bóng đèn

    6

    14

    40

    34

    6

    Tính trung vị của mẫu số liệu ghép nhóm trên.

    Ta có:

    Tuổi thọ (giờ)

    [600; 650)

    [650; 700)

    [700; 750)

    [750; 800)

    [800; 850)

    Số bóng đèn

    6

    14

    40

    34

    6

    Tần số tích lũy

    6

    20

    60

    94

    100

    Ta có: \frac{N}{2} = \frac{100}{2} =50

    => Trung vị nằm trong nhóm \lbrack700;750)(vì 50 nằm giữa hai tần số tích lũy là 20 và 60)

    \Rightarrow l = 700;\frac{N}{2} = 50;m =20;f = 40,c = 50

    \Rightarrow M_{e} = l + \frac{\left(\frac{N}{2} - m ight)}{f}.c

    = 700 + \frac{50 - 20}{40}.50 =737,5 (giờ)

  • Câu 22: Thông hiểu

    Tính giới hạn của hàm số \lim_{x ightarrow 1}\frac{2x^{5} + x^{4} -
4x^{2} + 1}{x^{3} - 1}.

    Ta có:

    \lim_{x ightarrow 1}\frac{2x^{5} +
x^{4} - 4x^{2} + 1}{x^{3} - 1}

    = \lim_{x ightarrow 1}\frac{(x -
1)\left( 2x^{4} + 3x^{3} + 3x^{2} - x - 1 ight)}{(x - 1)\left( x^{2} +
x + 1 ight)}

    = \lim_{x ightarrow 1}\frac{2x^{4} +
3x^{3} + 3x^{2} - x - 1}{x^{2} + x + 1} = 2

  • Câu 23: Thông hiểu

    Cho \frac{\pi}{4} < x \leq \frac{3\pi}{4} và biểu thức P = \tan\left( x +
\frac{\pi}{4} ight). Mệnh đề nào sau đây đúng?

    Ta có: \frac{\pi}{4} < x \leq
\frac{3\pi}{4} nên \frac{\pi}{4}
< x + \frac{\pi}{4} \leq \pi

    => P = \tan\left( x + \frac{\pi}{4}
ight) \leq 0

  • Câu 24: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {3x - 5}&{{\text{ }}khi{\text{ }}x \leqslant  - 2} \\   {mx + 3}&{{\text{ }}khi{\text{ }}x >  - 2} \end{array}} ight.. Giá trị của m để hàm số đã cho liên tục tại x = -2 là:

    Ta có:

     \begin{matrix}  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} \left( {3x - 5} ight) = -11 \hfill \\  f\left( { - 2} ight) = -11 \hfill \\  \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} \left( {mx + 3} ight) =  - 2m + 3 \hfill \\ \end{matrix}

    Để hàm số liên tục tại x=-2 thì 

    \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ - }} f\left( x ight) = \mathop {\lim }\limits_{x \to {{\left( { - 2} ight)}^ + }} f\left( x ight) = f\left( { - 2} ight)

    \Leftrightarrow  - 2m + 3 = -11 \Rightarrow m = 7

  • Câu 25: Nhận biết

    Cho ba mặt phẳng phân biệt cắt nhau từng đôi theo ba giao tuyến a, b, c, trong đó a song song với b. Khi đó vị trí tương đối của b và c là

    Theo nội dung hệ quả của định lý về ba giao tuyến ta suy ra vị trí tương đối của b và c là song song.

  • Câu 26: Thông hiểu

    Hình chiếu song song của hai đường thẳng cắt nhau có thể song song với nhau hay không?

    Hình chiếu song song của hai đường thẳng cắt nhau thì không thể song song với nhau.

  • Câu 27: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 28: Vận dụng

    Tính giới hạn của hàm số \lim\left(
\frac{1}{n^{2}} + \frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}}
ight).

    Ta có:

    \frac{1}{n^{2}} + \frac{2}{n^{2}} + ...
+ \frac{n - 1}{n^{2}}

    = \frac{1}{n^{2}}(1 + 2 + .. + n -
1)

    = \frac{1}{n^{2}}.\frac{(n - 1)(1 + n -
1)}{2}

    = \frac{n^{2} - n}{2n^{2}}

    \Rightarrow \lim\left( \frac{1}{n^{2}} +
\frac{2}{n^{2}} + ... + \frac{n - 1}{n^{2}} ight) = \lim\frac{n^{2} -
n}{2n} = \frac{1}{2}

  • Câu 29: Nhận biết

    Trong các dãy số sau, dãy số nào không phải cấp số nhân?

    Xét đáp án 1^{2};2^{2};3^{2};4^{2};...\Leftrightarrow \frac{u_{2}}{u_{1}} = 4 eq
\frac{9}{4} = \frac{u_{3}}{u_{2}}

    => Dãy số 1^{2};2^{2};3^{2};4^{2};... không phải là cấp số nhân.

  • Câu 30: Nhận biết

    Cho điểm A, đường thẳng d và mặt phẳng (P). Kí hiệu nào sau đây đúng?

    Kí hiệu đúng là: d \subset
(P)

  • Câu 31: Vận dụng

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1 \\
u_{n + 1} = au_{n} + 1,\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Tất cả các giá trị của a để (un) là dãy số tăng là?

    Xét hiệu un + 1 − un = (aun+1) − (aun − 1+1) = a(unun − 1)

    Áp dụng, ta có u2 = au1 + 1 = a + 1 ⇒ u2 − 1 = a ⇒ u2 − u1 = a

     ⇒ u3 − u2 = a(u2u1) = a2

     ⇒ u4 − u3 = a(u3u2) = a3

     ⇒ un + 1 − un = an > 0

    Để dãy số (un) tăng thì un > un − 1 > … > u2 > u1 ⇒ a > 0

  • Câu 32: Nhận biết

    Cho dãy số có các số hạng đầu là - 2;0;2;4;6;.... Số hạng tổng quát của dãu số này là đẳng thức nào dưới đây?

    Ta có: u_{1} = - 2 loại các đáp án u_{n} = n - 2u_{n} = - 2(n + 1). Ta kiểm tra u_{2} = 0

    Xét đáp án u_{n} = - 2nu_{2} = - 4 eq 0

    Xét đáp án u_{n} = 2n - 4u_{2} = 2.2 - 4 = 0 là đáp án đúng.

  • Câu 33: Thông hiểu

    Trong các hàm số sau, hàm số nào là hàm số tuần hoàn?

    Hàm số y = x + \sin x là hàm số không tuần hoàn

    Tập xác định D=\mathbb{ R}

    Giả sử

    \begin{matrix}f(x + T) = f(x),\forall x \in D \hfill \\\Rightarrow (x + T) + \sin(x + T) = x + \sin x;\forall x \in D \hfill \\\Rightarrow T + \sin(x + T) = \sin x,\forall x \in D \hfill \\\end{matrix}

    Cho x = 0 và x = π ta được

    \begin{matrix}\left\{ \begin{matrix}T + \sin x = sin0 = 0 \\T + \sin(T + \pi) = \sin\pi = 0 \hfill\\\end{matrix} ight.\ \hfill \\\Rightarrow 2T + \sin T + \sin(T + \pi) = 0 \Rightarrow T = 0 \hfill\\\end{matrix}

    Điều này trái với định nghĩa T > 0

    Vậy hàm số y = x + sinx không phải là hàm số tuần hoàn

    Tương tự chứng minh cho các hàm số y =
x\cos xy = \frac{\sin
x}{x} không tuần hoàn.

    Vậy hàm số y = \sin x là hàm số tuần hoàn

  • Câu 34: Vận dụng

    Bác Hoa mua nhà trị giá 900 triệu đồng theo phương thức trả góp. Nếu cuối mỗi tháng bắt đầu từ tháng thứ nhất bác Hoa trả 8 000 000 và chịu lãi số tiền chưa trả là 0,6% mỗi tháng thì sau bao lâu bác Hoa trả hết số tiền trên?

    Ta có:

    8000000 =
\frac{900.10^{6}.0,006.1,006^{n}}{1,006^{n} - 1}

    \Leftrightarrow 1,006^{n} =
3,077

    \Leftrightarrow n \approx
187,887

    Vậy sau khoảng 188 tháng thì bác Hoa sẽ trả hết số tiền đó.

  • Câu 35: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 36: Thông hiểu

    Cho mẫu dữ liệu ghép nhóm kết quả đo chiều cao (đơn vị: cm) của một nhóm học sinh lớp 11 như sau:

    Số học sinh có chiều cao không vượt quá 168 cm so với tất cả các học sinh chiếm bao nhiêu phần trăm?

    Số học sinh tham gia đo chiều cao là 36 học sinh

    Số học sinh cao không quá 168cm là: 9 + 15 = 24 học sinh chiếm \frac{24.100\%}{36} \approx 66,7\%

  • Câu 37: Nhận biết

    Dãy số nào sau đây không phải là một cấp số cộng?

    Xét đáp án A: - \frac{2}{3}; - \frac{1}{3};0;\frac{1}{3};\frac{2}{3};1;\frac{4}{3};....

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = \frac{1}{3}

    => Loại đáp án A 

    Xét đáp án B: 15\sqrt 2 ;12\sqrt 2 ;9\sqrt 2 ;6\sqrt 2 ;...

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = 3\sqrt 2

    => Loại đáp án B

    Xét đáp án C: \frac{4}{5};1;\frac{7}{5};\frac{9}{5};\frac{{11}}{5};...

    {u_2} - {u_1} = \frac{1}{5} e {u_3} - {u_2} = \frac{2}{5}

    => Chọn đáp án C

    Xét đáp án D: \frac{1}{{\sqrt 3 }};\frac{{2\sqrt 3 }}{3};\sqrt 3 ;\frac{{4\sqrt 3 }}{3};\frac{5}{{\sqrt 3 }};...

    {u_2} - {u_1} = {u_3} - {u_2} = {u_4} - {u_3} = ... = \frac{{\sqrt 3 }}{3}

    => Loại đáp án D

  • Câu 38: Nhận biết

    Hàm số y = \cos x đồng biến trên khoảng nào sau đây?

    Hàm số y = cosx đồng biến trên mỗi khoảng (-π + k2π; k2π) và nghịch biến trên mỗi khoảng (k2π; π + k2π) với k ∈ Z.

  • Câu 39: Thông hiểu

    Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.

    Theo giả thiết ta có:

    \left\{ \begin{matrix}u_{1} = 2 \\u_{6} = 486 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\u_{1}q^{5} = 486 \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q^{5} = 243 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}u_{1} = 2 \\q = 3 \\\end{matrix} ight.

  • Câu 40: Vận dụng cao

    Có bao nhiêu giá trị nguyên của m để phương trình 3sinx + m - 1 = 0 có nghiệm?

    Ta có:

    \begin{matrix}  \sin x = \dfrac{{1 - m}}{3} \in \left[ { - 1;1} ight] \hfill \\   \Rightarrow  - 3 \leqslant  - m \leqslant  \Leftrightarrow  - 2 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với m thuộc tập số nguyên

    Suy ra 4 – (-2) + 1 = 7 giá trị nguyên của m

  • Câu 41: Thông hiểu

    Một cấp số cộng có 6 số hạng. Biết rằng tổng của số hạng đầu và số hạng cuối bằng 17; tổng của số hạng thứ hai và số hạng thứ tư bằng 14. Tìm công sai d của câp số cộng đã cho.

    Ta có:

    \left\{ \begin{matrix}
u_{1} + u_{6} = 17 \\
u_{2} + u_{4} = 14 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2u_{1} + 5d = 17 \\
2u_{1} + 6d = 14 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
u_{1} = 16 \\
d = - 3 \\
\end{matrix} ight.

  • Câu 42: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh bên BC = 2, đáy AB = 6;DC = 4. Mặt phẳng (P) song song với \left( {ABCD} ight) và cắt các cạnh SA tại M sao cho \frac{{SA}}{{SM}} = 3. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân với cạnh bên BC = 2, đáy AB = 6;DC = 4. Mặt phẳng (P) song song với \left( {ABCD} ight) và cắt các cạnh SA tại M sao cho \frac{{SA}}{{SM}} = 3. Tính diện tích thiết diện tạo bởi (P) và hình chóp S.ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 43: Nhận biết

    Chị A lập bảng doanh thu bán hải sản của cửa hàng trong 20 ngày (đơn vị: triệu đồng) như sau:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

    Số ngày

    2

    7

    7

    3

    1

    Xác định nhóm chứa tứ phân vị thứ nhất của mẫu số liệu.

    Ta có:

    Doanh thu

    [5; 7)

    [7; 9)

    [9; 11)

    [11; 13)

    [13; 15)

     

    Số ngày

    2

    7

    7

    3

    1

    N = 20

    Tần số tích lũy

    2

    9

    16

    19

    20

     

    Cỡ mẫu N = 20 \Rightarrow \frac{N}{4} =5

    => Nhóm chứa tứ phân vị thứ nhất là [7; 9)

    (Vì 5 nằm giữa hai tần số tích lũy 2 và 9)

  • Câu 44: Nhận biết

    Giá trị của \lim\frac{3n^{3} + n}{n^{2}} bằng:

    Với mọi M >0 lớn tùy ý, ta chọn n_{M}
= \left\lbrack \frac{M}{3} ightbrack + 1

    Ta có:

    \frac{3n^{3} + n}{n^{2}} = 3n +
\frac{1}{n} > M với mọi n >
n_{M}

    Vậy \lim\frac{3n^{3} + n}{n^{2}} = +
\infty.

  • Câu 45: Nhận biết

    Độ dài của nhóm dữ liệu 1,5 < x ≤ 2 là:

    Độ dài của nhóm là: 2 - 1,5 =0,5

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo