Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho ba đường thẳng a,b,c đôi một chéo nhau. Mệnh đề nào đúng trong các mệnh đề sau?

    Gọi M là điểm bất kì nằm trên a.

    Giả sử d là đường thẳng qua M cắt cả b và c.

    Khi đó, d là giao tuyến của mặt phẳng tạo bởi M và b với mặt phẳng tạo bởi M và c.

    Với mỗi điểm M ta được một đường thẳng d.

    Vậy có vô số đường thẳng cắt cả 3 đường thẳng a, b, c.

  • Câu 2: Nhận biết

    Xác định giới hạn D = \lim_{x ightarrow 0}\frac{(1 + 2x)^{2} -
1}{x}

    Ta có:

    D = \lim_{x ightarrow 0}\frac{(1 +
2x)^{2} - 1}{x}

    = \lim_{x ightarrow 0}\frac{4x^{2} +
4x}{x} = \lim_{x ightarrow 0}(4 + 4x) = 4

  • Câu 3: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 4: Nhận biết

    Hỏi x = \frac{{7\pi }}{3} là một nghiệm của phương trình nào sau đây?

     Với x = \frac{{7\pi }}{3}, suy ra \left\{ \begin{gathered}  \sin x = \sin \frac{{7\pi }}{3} = \frac{{\sqrt 3 }}{2} \hfill \\  \cos x = \cos \frac{{7\pi }}{3} = \frac{1}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  2\sin x - \sqrt 3  = 0 \hfill \\  2\cos x - 1 = 0 \hfill \\ \end{gathered}  ight.

  • Câu 5: Vận dụng

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Đáp án là:

    Cho hình chóp S.ABCD. Điểm A' nằm trên cạnh SC (A'
eq S).Thiết diện của hình chóp với mặt phẳng (ABA') là một đa giác có bao nhiêu cạnh?

    Đáp án: 4 cạnh.

    Hình vẽ minh họa

    Xét (ABA')(SCD) ta có:

    \left\{ \begin{matrix}
A' \in SC,SC \subset (SCD) \\
A' \in (ABA') \\
\end{matrix} ight.\  \Rightarrow A' là điểm chung thứ nhất.

    Gọi I = AB \cap CD

    \left\{ \begin{matrix}
I \in AB,AB \subset (ABA') \\
I \in CD,CD \subset (SCD) \\
\end{matrix} ight.\  \Rightarrow I là điểm chung thứ hai.

    \Rightarrow (ABA') \cap (SCD) =
IA'

    Gọi M = IA' \cap SD. Ta có:

    (ABA') \cap (SCD) = A'M

    (ABA')\cap (SAD)=AM

    (ABA') \cap (ABCD) = AB

    (ABA') \cap (SBC) =
BA'

    Thiết diện là tứ giác ABA'M.

    Vậy thiết diện là đa giác có 4 cạnh.

  • Câu 6: Nhận biết

    Tìm tập các định D của hàm số y =\frac{1}{\sin\left( x - \dfrac{\pi}{2} ight)}

    Hàm số xác định khi và chỉ khi

    \begin{matrix}\sin\left( x - \dfrac{\pi}{2} ight) eq 0 \hfill \\\Rightarrow x - \dfrac{\pi}{2} eq k\pi \hfill \\\Rightarrow x eq \dfrac{\pi}{2} + k\pi,k\mathbb{\in Z} \hfill \\\end{matrix}

    Vậy tập xác định D=\mathbb{R}\backslash\left\{ (1 + 2k)\frac{\pi}{2},k\mathbb{\in Z}ight\}

  • Câu 7: Thông hiểu

    Hàm số nào sau đây nhận giá trị âm nếu 0 < x < \frac{\pi }{2}

     Ta có:  y = \cos \left( {x + \pi } ight)  = -\cos x

    0 < x < \frac{\pi }{2} 

    => y = \cos \left( {x + \pi } ight) mang giá trị âm

  • Câu 8: Vận dụng

    Có bao nhiêu giá trị nguyên của a thỏa mãn \lim\left( \sqrt{n^{2} - 8n} - n + a^{2} ight) =
0?

    Ta có:

    \lim\left( \sqrt{n^{2} - 8n} - n + a^{2}
ight)

    = \lim\left( \frac{- 8n}{\sqrt{n^{2} -
8n} + n} + a^{2} ight)

    = \lim\left( \dfrac{- 8}{\sqrt{1 -\dfrac{8}{n}} + 1} + a^{2} ight) = a^{2} - 4

    Do đó:

    a^{2} - 4 = 0 \Leftrightarrow a = \pm
2

    Vậy có hai giá trị nguyên của tham số a thỏa mãn điều kiện đề bài.

  • Câu 9: Vận dụng cao

    Cho dãy số =\left( x_{n} ight) thỏa mãn điều kiện x_{1} = 1; x_{n + 1} - x_{n} = \frac{1}{n(n + 1)} với n = 1;2;3;... số hạng x_{2018} bằng:

    Ta có:

    x_{n + 1} - x_{n} = \frac{1}{n(n + 1)} =\frac{1}{n} - \frac{1}{n + 1}

    \Leftrightarrow \sum_{k = 1}^{n -1}\left( x_{k + 1} - x_{k} ight) = \sum_{k = 1}^{n - 1}\left(\frac{1}{k} - \frac{1}{k + 1} ight)

    \Leftrightarrow x_{n} - x_{1} = 1 -\frac{1}{n}

    \Leftrightarrow x_{n} = \frac{2n -1}{n}

    Vậy x_{2018} =\frac{4035}{2018}

  • Câu 10: Vận dụng

    Phương trình \tan x = \sqrt 3 có bao nhiêu nghiệm thuộc khoảng \left( { - 20\pi ;18\pi } ight)?

     Điều kiện xác định: x e \frac{\pi }{2} + k\pi

    \tan x = \sqrt 3  \Leftrightarrow x = \frac{\pi }{3} + k\pi

    Do x \in \left( { - 20\pi ;18\pi } ight)

    \begin{matrix}   \Rightarrow  - 20\pi  < \dfrac{\pi }{3} + k\pi  < 18\pi  \hfill \\   \Leftrightarrow \dfrac{{ - 61}}{3} < k < \dfrac{{53}}{3} \Rightarrow k \in \left\{ { - 20; - 19;...;17} ight\} \hfill \\ \end{matrix}

    Vậy có tất cả 38 nghiệm

  • Câu 11: Thông hiểu

    Có bao nhiêu đẳng thức dưới đây là đồng nhất thức?

    \cos x - \sin x = \sqrt{2}\sin\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left( x -
\frac{\pi}{4} ight)

    \cos x - \sin x = \sqrt{2}\sin\left(
\frac{\pi}{4} - x ight)

    Ta có:

    \cos x - \sin x = \sqrt{2}\cos\left( x +
\frac{\pi}{4} ight)

    = \sqrt{2}\cos\left\lbrack \frac{\pi}{2}
- \left( \frac{\pi}{4} - x ight) ightbrack

    = \sqrt{2}\sin\left( \frac{\pi}{4} - x
ight)

    Vậy có hai đồng nhất thức.

  • Câu 12: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Ta có:

    Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau hoặc đồng quy tại một điểm.

    => Phương án “Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy song song với nhau” là khẳng định sai.

  • Câu 13: Nhận biết

    Dãy số nào sau đây không phải là cấp số cộng?

    Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: u_{m + 1} - u_{m}=u_{k + 1} -u_{k} thì kết luận ngay dãy số đó không phải là cấp số cộng.

    Xét đáp án: 2;5;8;11;14...\overset{ightarrow}{}3 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}loại

    Xét đáp án: 2;4;8;10;14...\overset{ightarrow}{}2 = u_{2} -u_{1}=u_{3} - u_{2} = 4\overset{ightarrow}{} Chọn

    Xét đáp án: 1;2;3;4;5;6...\overset{ightarrow}{}1 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}Loại

    Xét đáp án: 15;10;5;0; -
5;...\overset{ightarrow}{} - 5 = u_{2} - u_{1} = u_{3} - u_{2} = u_{4}
- u_{3} = \cdots\overset{ightarrow}{}loại

  • Câu 14: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{( -
1)^{n}}{n + 1} là một dãy số giảm. Sai||Đúng

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}". Đúng||Sai

    c) Cấp số cộng \left( u_{n}
ight) thỏa mãn \left\{
\begin{matrix}
u_{1} = - 2020 \\
u_{n + 1} = u_{n} + 5 \\
\end{matrix} ight.\ ;\left( \forall n\mathbb{\in N};n \geq 1
ight) có số hạng tổng quát là u_{n} = 5 - 2020n. Sai||Đúng

    d) Biết rằng khi viết thêm bốn số vào giữa hai số 160 và 5 để được một cấp số nhân. Khi đó tổng các số hạng của cấp số nhân đó bằng 215. Sai||Đúng

    a) Xét dãy số đã cho ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4} \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight. nên dãy số \left( u_{n} ight) không tăng không giảm.

    b) T(n):"1.2 + 2.3 + ... + n(n + 1)
= \frac{(n + 1)(n - 2)(n + 3)}{4};\forall n \in
\mathbb{N}^{*}" đúng bằng chứng minh quy nạp.

    c) Công sai d = 5 và số hạng đầu tiên bằng u_{1} = - 2020

    Khi đó số hạng tổng quát của cấp số cộng là

    u_{n} = u_{1} + 5(n - 1)

    \Rightarrow u_{n} = - 2025 +
5n

    d) Từ giả thiết ta có:

    \left\{ \begin{matrix}
u_{1} = 160 \\
u_{6} = 5 \\
\end{matrix} ight.\  \Rightarrow q = \sqrt[5]{\frac{u_{6}}{u_{1}}} =
\frac{1}{2}

    Suy ra tổng các số hạng của cấp số nhân đó là: S = \dfrac{u_{1}\left( 1 - q^{6} ight)}{1 - q} =\dfrac{160.\left\lbrack 1 - \left( \dfrac{1}{2} ight)^{6}ightbrack}{\dfrac{1}{2}} = 315.

  • Câu 15: Vận dụng

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Đáp án là:

    Một hãng taxi đưa ra giá cước T(x) (đồng) khi đi quãng đường x (km) cho loại xe 4 chỗ như sau: T(x) = \ \left\{ \begin{matrix}
10000 + a\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
\ \ \ \ \ \ \ \ \ \ \ \ khi\ \ \ 0 < x \leq 0,7 \\
11\ 000 + 15\ 100.(x - 0,7)\ \ \ \ \ \ \ khi\ \ \ 0,7 < x \leq 30 \\
453\ 430 + 12\ 000.(x - 30)\ \ \ \ \ \ khi\ \ \ x > 30 \\
\end{matrix} ight.. Tìm a để hàm số T(x) liên tục tại x = 0,7.

    Đáp án: 1000

    Tại x = 0,7 ta có:

    T(0,7) = 10000 + a.

    \lim_{x ightarrow 0,7^{-}}T(x) =
\lim_{x ightarrow 0,7^{-}}10\ 000 + a = 10\ 000 + a

     \lim_{x ightarrow 0,7^{+}}T(x) = \lim_{x
ightarrow 0,7^{+}}\left( 11\ 000 + 15100(x - 0,7) ight) = 11\
000.

    Hàm số liên tục tại x = 0,7 thì \lim_{x ightarrow 0,7^{-}}T(x) = \lim_{x
ightarrow 0,7^{+}}T(x) = T(0,7) \Leftrightarrow a = 1000.

  • Câu 16: Nhận biết

    Hình chiếu của hình vuông không thể là hình nào trong các hình sau?

    Theo tính chất của phép chiếu song song ta được

    Hình chiếu của hình vuông không thể là hình thang có hai cạnh đáy không bằng nhau.

  • Câu 17: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Tìm mặt phẳng song song với mặt phẳng (AB'D').

    Hình vẽ minh họa

    Tìm mặt phẳng song song với mặt phẳng đã cho

    Ta có BDB'D' là hình bình hành nên BD//B'D'

    Tương tự ta có AD'//BC'. Từ đó suy ra BD//\left( {AB'D'} ight)BC'//\left( {AB'D'} ight).

    Vậy \left( {C'BD} ight)//\left( {AB'D'} ight)

  • Câu 18: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tính tứ phân vị thứ ba của mẫu dữ liệu đã cho?

    Đại diện X

    [10; 15)

    [15; 20)

    [20; 25)

    [25; 30)

    [30; 35)

    Tần số

    8

    12

    14

    10

    6

    Tần số tích lũy

    8

    20

    34

    44

    50

    Ta có: \frac{3.N}{4} = \frac{3.50}{4} =37,5

    => Nhóm chứa Q_{3} là [25; 30)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 25;m = 34,f = 10;c =5

    \Rightarrow Q_{3} = l +\dfrac{\dfrac{3N}{4} - m}{f}.c= 25 + \dfrac{37,5 - 34}{10}.5 =26,75

  • Câu 19: Nhận biết

    Cho hai dãy số (un), (vn) được xác định như sau u1 = 3, v1 = 2\left\{ \begin{matrix}
u_{n + 1} = u_{n}^{2} + 2v_{n}^{2} \\
v_{n = 1} = 2u_{n} \cdot v_{n} \\
\end{matrix} ight. với n ≥ 2. Công thức tổng quát của hai dãy (un)(vn) là?

    Chứng minh u_{n} - \sqrt{2}v_{n} =
(\sqrt{2} - 1)^{2n}

    Ta có u_{n} = \sqrt{2}v_{n} = u_{n -
1}^{2} + 2v_{n - 1}^{2} - 2\sqrt{2}u_{n - 1}v_{n - 1} = \left( u_{n - 1}
- \sqrt{2}v_{n - 1} ight)^{2}

    Mặt khác u_{1} - \sqrt{2}v_{1} = 3 -
2\sqrt{2} = (\sqrt{2} - 1)^{2} nên (1) đúng với n = 1 Giả sử u_{k} - \sqrt{2}v_{k} = (\sqrt{2} -
1)^{2k}, ta có u_{k - 1} -
\sqrt{2}v_{k + 1} = \left( u - \sqrt{2}v_{k} ight)^{2} = (\sqrt{2} -
1)^{2k + 1}

    Vậy (1) đúng với n ≥ 1

    Ta có u_{n} + \sqrt{2}v_{n} = (\sqrt{2} +
1)^{2^{n}}

    Do đó ta suy ra:

    \left\{ \begin{matrix}
2u_{n} = (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} - 1)^{2^{n}} \\
2\sqrt{2}v_{n} = (\sqrt{2} + 1)^{2^{n}} - (\sqrt{2} - 1)^{2^{n}} \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
u_{n} = \frac{1}{2}\left\lbrack (\sqrt{2} + 1)^{2^{n}} + (\sqrt{2} -
1)^{2^{n}} ightbrack \\
v_{n} = \frac{1}{2\sqrt{2}}\left\lbrack (\sqrt{2} + 1)^{2^{n}} -
(\sqrt{2} - 1)^{2^{n}} ightbrack \\
\end{matrix} ight.

  • Câu 20: Vận dụng cao

    Xét đường tròn lượng giác như hình vẽ. Biết \widehat {AOC} = \widehat {AOF} = 30^\circ, E và D lần lượt là các điểm đối xứng của C và F qua gốc O. Nghiệm của phương trình 2 \sin x -1 = 0 được biểu diễn trên đường tròn lượng giác là những điểm nào?

     

    Ta có: 2\sin x - 1 = 0 \Leftrightarrow \sin x = \frac{1}{2}

    \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight.\,\,\,,\,k \in \mathbb{Z}

    Dựa vào đường tròn lượng giác ta có điểm biểu diễn nghiệm của phương trình là điểm C và điểm D.

  • Câu 21: Thông hiểu

    Cho hàm số f(x) = x - 1g(x) = x^{3}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Giới hạn \lim_{x ightarrow 1}f(x) =
3. Sai||Đúng

    b) Giới hạn \lim_{x ightarrow 1}g(x) =
1. Đúng||Sai

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = - 1. Đúng||Sai

    d) \lim_{x ightarrow
1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = 1. Sai||Đúng

    Đáp án là:

    Cho hàm số f(x) = x - 1g(x) = x^{3}. Xét tính đúng sai của các khẳng định dưới đây?

    a) Giới hạn \lim_{x ightarrow 1}f(x) =
3. Sai||Đúng

    b) Giới hạn \lim_{x ightarrow 1}g(x) =
1. Đúng||Sai

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = - 1. Đúng||Sai

    d) \lim_{x ightarrow
1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = 1. Sai||Đúng

    a) \lim_{x ightarrow 1}f(x) = \lim_{x
ightarrow 1}(x - 1) = 1 - 1 = 0.

    b) \lim_{x ightarrow 1}g(x) = \lim_{x
ightarrow 1}x^{3} = 1^{3} = 1.

    c) \lim_{x ightarrow 1}\left\lbrack
3f(x) - g(x) ightbrack = 3.0 - 1 = - 1.

    d) \lim_{x ightarrow1}\frac{\left\lbrack f(x) ightbrack^{2}}{g(x)} = \frac{0}{1} =0.

  • Câu 22: Thông hiểu

    Tính \lim\frac{2n + 1}{1 + n} được kết quả là:

    Ta có

    \lim\frac{2n + 1}{1 + n} =
\lim\frac{n\left( 2 + \frac{1}{n} ight)}{n\left( \frac{1}{n} + 1
ight)} = \lim\frac{2 + \frac{1}{n}}{\frac{1}{n} + 1} = \frac{2 + 0}{0
+ 1} = 2.

  • Câu 23: Nhận biết

    Mệnh đề nào sau đây đúng?

    Đáp án đúng là: \sin(a + b) = \sin a\cos b + \sin b\cos a

  • Câu 24: Nhận biết

    Hàm số nào trong các hàm số dưới đây không liên tục trên \mathbb{R}?

    Hàm số y = \frac{x}{x + 1} có tập xác định D\mathbb{= R}\backslash\left\{
- 1 ight\} nên hàm số không liên tục trên \mathbb{R}.

  • Câu 25: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện A

    [15,5; 20,5)

    [20,5; 25,5)

    [25,5; 30,5)

    [30,5; 35,5)

    [35,5; 40,5)

    [40,5; 45,5)

    [45,5; 50,5)

    [50,5; 55,5)

    Tần số

    5

    6

    12

    14

    26

    12

    16

    9

    Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?

    Ta có:

    Đại diện X

    Tần số

    Tần số tích lũy

    [15,5; 20,5)

    5

    5

    [20,5; 25,5)

    6

    11

    [25,5; 30,5)

    12

    23

    [30,5; 35,5)

    14

    37

    [35,5; 40,5)

    26

    63

    [40,5; 45,5)

    12

    75

    [45,5; 50,5)

    16

    91

    [50,5; 55,5)

    9

    100

     

    N = 100

     

    Ta lại có: \frac{N}{4} = \frac{100}{4} =25

    => Nhóm chứa Q_{1}[30,5; 35,5) (vì 25 nằm giữa các tần số tích lũy 23 và 37).

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 30,5;m = 23,f = 14;c =35,5 - 30,5 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 30,5 + \dfrac{25 - 23}{14}.5 \approx31,2

  • Câu 26: Nhận biết

    Cho dãy số \left( u_{n} ight) với u_{n} = \frac{4^{n - 1}}{5^{n -
2}}. Tính \lim_{n ightarrow +
\infty}u_{n}.

    Ta có:

    \lim_{n ightarrow + \infty}u_{n} =
\lim_{n ightarrow + \infty}\frac{4^{n - 1}}{5^{n - 2}} = \lim_{n
ightarrow + \infty}\left( \left( \frac{4}{5} ight)^{n}.\frac{4^{-
1}}{5^{- 2}} ight) = 0

  • Câu 27: Vận dụng

    Cho hộp chữ nhật ABCD.A'B'C'D'. Các điểm M,N tương ứng trên AC',B'D' sao cho MN song song với BA'. Tính tỉ số \frac{MA}{MC'}?

    Xét phép chiếu song song lên mặt phẳng (A'B'C'D') theo phương chiếu BA'.

    Ta có: N là ảnh của M hay M chính là giao điểm của B'D' và ảnh AC' qua phép chiếu này.

    Do đó ta xác định M,N như sau:

    Trên A'B' kéo dài lấy điểm K sao cho A'K = B'A' suy ra K là ảnh của A trên AC' qua phép chiếu song song.

    Gọi N = B'D' \cap
KC'. Đường thẳng qua N và song song với AK cắt AC' tại M. Ta có: M,N là các điểm cần xác định.

    Theo định lí Thales ta có:

    \frac{MA}{MC'} = \frac{NK}{NC'}
= \frac{KB'}{C'D'} = 2

  • Câu 28: Thông hiểu

    Cho hình chóp tứ giác S.ABCD, đáy ABCD là tứ giác lồi. Gọi O = AC \cap BD;M = AB \cap CD; N = AD \cap BC. Xác định giao tuyến của hai mặt phẳng (SAB)(SCD)?

    Hình vẽ minh họa

    Nhận thấy S và M lần lượt là hai điểm chung của hai mặt phẳng (SAB) và (SCD).

    Do đó giao tuyến của hai mặt phẳng (SAB) và (SCD) là SM.

  • Câu 29: Vận dụng cao

    Đường cong trong hình dưới đây là đồ thị của một hàm số trong bốn hàm số được liệt kê ở bốn phương án A, B, C, D.

    Hỏi hàm số đó là hàm số nào?

    Ta có y = 1 + \left| \cos x ight| \geq1y = 1 + \left| \sin x ight|\geq 1 nên loại C và D.

    Ta thấy tại x = \pi thì y = 0. Thay vào hai đáp án A và B thì chỉ có B thỏa mãn.

  • Câu 30: Thông hiểu

    Trong các dãy số dưới đây, dạy số nào không phải là cấp số nhân lùi vô hạn?

     Vì dãy ở đáp án C là một cấp số nhân có công bội q = 3/2 > 0

    \frac{3}{2};\frac{9}{4};\frac{{27}}{8};..;{\left( {\frac{3}{2}} ight)^n};...=> không phải dãy lùi vô hạn

  • Câu 31: Nhận biết

    Lượng nước tiêu thụ trong một tháng của các hộ gia đình trong một khu chung cư được ghi lại như sau:

    Lượng nước (m3)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    [100; 120)

    Số hộ gia đỉnh

    6

    12

    10

    7

    4

    2

    Giá trị đại diện của nhóm chứa mốt của mẫu số liệu trên là.

    Vì nhóm chứa mốt của mẫu số liệu là nhóm \lbrack 20;40)nên giá trị đại diện của nhóm này là 30.

  • Câu 32: Nhận biết

    Điểm kiểm tra của một nhóm học sinh được ghi trong bảng sau:

    Điểm

    Số học sinh

    (20; 30]

    1

    (30; 40]

    1

    (40; 50]

    10

    (50; 60]

    11

    (60; 70]

    5

    (70; 80]

    2

    Số phần tử của mẫu dữ liệu ghép nhóm là:

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    (20; 30]

    1

    1

    (30; 40]

    1

    2

    (40; 50]

    10

    12

    (50; 60]

    11

    23

    (60; 70]

    5

    28

    (70; 80]

    2

    30

    Tổng

    N = 30

     

    Vậy số phần tử mẫu là N = 30

  • Câu 33: Vận dụng

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 1;u_{2} = 2 \\
u_{n + 2} = au_{n + 1} + (1 - a)u_{n},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight.. Các giá trị của a để dãy số (un) tăng là?

    Xét hiệu  un + 2 − un + 1

     = aun + 1 + (1−a)un − un + 1

     = (a−1)(un + 1un)

     ⇒ u3 − u2 = (a−1)(u2u1) = (a−1);

     ⇒ u4 − u3 = (a−1)(u3u2) = (a−1)2

    un + 1 − un = (a−1)n − 1 > 0

    Để dãy số (un) tăng suy ra a − 1 > 0 ⇔ a > 1

  • Câu 34: Vận dụng

    Dân số của thành phố A hiện nay là 4 triệu người. Biết rằng tỉ lệ tăng dân số hằng năm của thành phố A là 1%. Hỏi dân số của thành phố A sau 5 năm nữa sẽ là bao nhiêu?

    Với mỗi số nguyên dương n, ký hiệu u_{n} là số dân của thành phố A sau n năm.

    Khi đó, theo giả thiết của bài toán ta có:

    u_{n} = u_{n - 1} + u_{n - 1}.0,01 =
u_{n - 1}.1,01;(n \geq 2)

    Ta có: \left( u_{n} ight) là một cấp số nhân với số hạng đầu là u_{1} = 4
+ 4.0,01 = 4.1,01 và công bội q =
1,01

    \Rightarrow u_{n} = 4.1,01.(1,01)^{n -
1} = 4.(1,01)^{n};(n \geq 1)

    => Số dân của thành phố A sau 5 năm là: \Rightarrow u_{5} = 4.(1,01)^{5} = 4,2 (triệu người).

  • Câu 35: Thông hiểu

    Xác định \lim_{x
ightarrow 0}\frac{|x|}{x^{2}}.

    Ta có: \lim_{x ightarrow 0}\frac{|x|}{x^{2}}
= \lim_{x ightarrow 0}\frac{1}{|x|} = + \infty.

  • Câu 36: Thông hiểu

    Cho phương trình lượng giác 4cos2x = m - 1\ \ (*)

    a) Với m = 5, phương trình (*) có nghiệm là x = k\pi,\left( k\mathbb{\in Z}
ight) Đúng||Sai

    b) Với m = 3, phương trình (*) có một nghiệm là x = \frac{\pi}{6} Đúng||Sai

    c) Với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 3. Sai||Đúng

    d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng

    Đáp án là:

    Cho phương trình lượng giác 4cos2x = m - 1\ \ (*)

    a) Với m = 5, phương trình (*) có nghiệm là x = k\pi,\left( k\mathbb{\in Z}
ight) Đúng||Sai

    b) Với m = 3, phương trình (*) có một nghiệm là x = \frac{\pi}{6} Đúng||Sai

    c) Với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 3. Sai||Đúng

    d) Số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 8. Sai||Đúng

    Thay m = 5 vào (*) ta được:

    4cos2x = 4 \Leftrightarrow cos2x =
1

    \Leftrightarrow 2x = k2\pi
\Leftrightarrow x = k\pi;\left( k\mathbb{\in Z} ight)

    Thay m = 3 vào (*) ta được:

    4cos2x = 2 \Leftrightarrow cos2x =
\frac{1}{2}

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x = \frac{\pi}{3} + k2\pi \\
2x = - \frac{\pi}{3} + k2\pi \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \frac{\pi}{6} + k\pi \\
x = - \frac{\pi}{6} + k\pi \\
\end{matrix} ight.\ \left( k\mathbb{\in Z} ight)

    Với k = 0 thì phương trình có nghiệm x = \frac{\pi}{6} .

    Thay m = - 3 vào (*) ta được:

    4cos2x = - 4 \Leftrightarrow cos2x = -
1

    \Leftrightarrow 2x = \pi + k2\pi;\left(
k\mathbb{\in Z} ight)

    \Leftrightarrow x = \frac{\pi}{2} +
k\pi;\left( k\mathbb{\in Z} ight)

    Vì xét nghiệm trên đoạn \lbrack
0;2\pibrack nên ta có:

    0 \leq \frac{\pi}{2} + k\pi \leq 2\pi
\Leftrightarrow - \frac{1}{2} \leq k \leq \frac{3}{2}

    k\mathbb{\in Z \Rightarrow}k = \left\{
0;1 ight\}

    Vậy với m = - 3 thì số nghiệm của phương trình (*) trên đoạn \lbrack
0;2\pibrack là 2.

    d) Ta có: 4cos2x = m - 1 \Leftrightarrow
cos2x = \frac{m - 1}{4}

    Để phương trình có nghiệm thì - 1 \leq
\frac{m - 1}{4} \leq 1 \Leftrightarrow - 4 \leq m - 1 \leq
4

    \Leftrightarrow - 3 \leq m \leq
5m\mathbb{\in Z \Rightarrow}m =
\left\{ - 3; - 2; - 1;0;1;2;3;4;5 ight\}

    Vậy số giá trị nguyên của tham số m để phương trình (*) có nghiệm là 10.

  • Câu 37: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đường thẳng nào dưới đây song song với giao tuyến của hai mặt phẳng (SAD)(SBC)?

    Hình vẽ minh họa:

    Ta có: \left\{ \begin{matrix}
S \in (SAD) \cap (SBC) \\
AD//BC \\
AD \subset (SAD);BC \subset (SBC) \\
\end{matrix} ight.

    \Rightarrow (SAD) \cap (SBC) =
d, d đi qua Sd//AD//BC.

    Vậy giao tuyến của hai mặt phẳng (SAD)(SBC) song song với đường thẳng AD.

  • Câu 38: Thông hiểu

    Cho hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{l}}  {\dfrac{{{x^2} - 3x + 2}}{{x - 2}}}&{{\text{ }}khi{\text{ }}x e 2} \\   m&{{\text{  }}khi{\text{ }}x = 2} \end{array}} ight.. Với giá trị nào của m thì hàm số đã cho liên tục tại x = 2?

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to 2} f\left( x ight) = \mathop {\lim }\limits_{x \to 2} \dfrac{{{x^2} - 3x + 2}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 2} \dfrac{{\left( {x - 2} ight)\left( {x - 1} ight)}}{{x - 2}} \hfill \\   = \mathop {\lim }\limits_{x \to 2} \left( {x - 1} ight) = 1 \hfill \\ \end{matrix}

    Để hàm số liên tục tại x=2 thì \mathop {\lim }\limits_{x \to 2} f\left( x ight) = f\left( 2 ight) = 1

  • Câu 39: Thông hiểu

    Cho dãy số \left( u_{n} ight) có số hạng tổng quát u_{n} = \frac{( - 1)^{n}}{1 + n}. Khẳng định nào sau đây sai?

    Ta có:

    u_{1} = - \frac{1}{2};u_{2} =
\frac{1}{3};u_{3} = - \frac{1}{4}

    \Rightarrow \left\{ \begin{matrix}
u_{1} < u_{2} \\
u_{2} > u_{3} \\
\end{matrix} ight.

    Vậy dãy số đã cho không tăng không giảm.

    Khẳng định sai là: “Dãy số \left( u_{n}
ight) là dãy giảm”

  • Câu 40: Vận dụng

    Tìm tần số còn thiếu trong mẫu dữ liệu ghép nhóm dưới đây. Biết số trung bình bằng 19,92?

    Đối tượng

    Tần số

    [4; 8)

    11

    [8; 12)

    13

    [12; 16)

    16

    [16; 20)

    14

    [20; 24)

    a

    [24; 28)

    9

    [28; 32)

    17

    [32; 36)

    6

    [36; 40)

    4

    Ta có:

    Giá trị đại diện

    Tần số

    Tích các giá trị

    6

    11

    66

    10

    13

    130

    14

    16

    224

    18

    14

    252

    22

    a

    22a

    26

    9

    234

    30

    17

    510

    34

    6

    204

    38

    4

    152

    Tổng

    90 + a

    1772 + 22a

    Biết số trung bình bằng  19,92  nên ta có:

    \overline{x} = 19,92

    \Leftrightarrow \frac{1772 + 22a}{90 +a} = 19,92

    \Leftrightarrow a = 10

  • Câu 41: Thông hiểu

    Cho mặt phẳng (\alpha) và đường thẳng d ⊄ (\alpha). Khẳng định nào sau đây sai?

    Ta có khẳng định sai là: “Nếu d//(\alpha)b \subset (\alpha) thì b//d."

  • Câu 42: Vận dụng cao

    Dãy số (un) xác định bởi \left\{ \begin{matrix}u_{1} = \dfrac{1}{3} \\u_{n + 1} = \dfrac{n + 1}{3n}.u_{n} \\\end{matrix} ight. và dãy số (vn) xác định bởi \left\{ \begin{matrix}v_{1} = u_{1} \\v_{n + 1} = v_{n} + \dfrac{u_{n}}{n} \\\end{matrix} ight.. Tính \lim
v_{n}.

    Ta có:

    u_{n + 1} = \frac{n + 1}{3n}.u_{n}
\Leftrightarrow \frac{u_{n + 1}}{n + 1} =
\frac{1}{3}.\frac{u_{n}}{3n} nên dãy \left( \frac{u_{n}}{n} ight)là cấp số nhân với công bội q =
\frac{1}{3}

    Lại có: v_{n + 1} = v_{n} +
\frac{u_{n}}{n} \Leftrightarrow v_{n + 1} - v_{n} =
\frac{u_{n}}{n}, khi đó ta có:

    \begin{matrix}
  {v_2} - {v_1} = \dfrac{{{u_1}}}{1} \hfill \\
  {v_3} - {v_2} = \dfrac{{{u_2}}}{2} \hfill \\
  ..... \hfill \\
  {v_{n + 1}} - {v_n} = \dfrac{{{u_n}}}{n} \hfill \\ 
\end{matrix}

    Cộng vế theo vế ta được

    \begin{matrix}
  {v_{n + 1}} - {v_n} = \dfrac{{{u_1}}}{1} + \dfrac{{{u_2}}}{2} + ... + \dfrac{{{u_n}}}{n} \hfill \\
   = \dfrac{{{u_1}\left[ {1 - {{\left( {\dfrac{1}{3}} ight)}^n}} ight]}}{{1 - \dfrac{1}{3}}} \hfill \\ 
\end{matrix}

    Do đó: v_{n + 1} =
\frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n} ightbrack
+ v_{1} = \frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n}
ightbrack + \frac{1}{3}

    => \lim v_{n} = \lim\left\{
\frac{1}{2}\left\lbrack 1 - \left( \frac{1}{3} ight)^{n} ightbrack
+ \frac{1}{3} ight\} = \frac{5}{6}

  • Câu 43: Thông hiểu

    Hoàn thành bảng số liệu sau:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 154)

    152

    12

    [154; 158)

    156

    18

    [158; 162)

    160

    30

    [162; 166)

    164

    24

    [166; 170)

    168

    10

    Đáp án là:

    Hoàn thành bảng số liệu sau:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 154)

    152

    12

    [154; 158)

    156

    18

    [158; 162)

    160

    30

    [162; 166)

    164

    24

    [166; 170)

    168

    10

    Hoàn thành bảng như sau:

    Đối tượng

    Giá trị đại diện

    Tần số

    [150; 154)

    \frac{150 + 154}{2} = 152

    12

    [154; 158)

    \frac{154 + 158}{2} = 156

    18

    [158; 162)

    \frac{158 + 162}{2} = 160

    30

    [162; 166)

    \frac{162 + 166}{2} = 164

    24

    [166; 170)

    \frac{166 + 170}{2} = 168

    10

  • Câu 44: Nhận biết

    Cho cấp số nhân \left( u_{n}
ight)u_{1} = 3 và công bội q = 3. Số hạng tổng quát của cấp số nhân \left( u_{n}
ight)

    Số hạng tổng quát của cấp số nhân \left(
u_{n} ight)

    u_{n} = u_{1}.q^{n - 1} = 3.3^{n - 1} =
3^{n}.

  • Câu 45: Nhận biết

    Tìm phát biểu sai trong các phát biểu sau?

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi nó đi qua 3 điểm." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết một điểm và một đường thẳng." đúng

    Phát biểu: "Mặt phẳng hoàn toàn xác định khi biết nó chứa hai đường thẳng cắt nhau." đúng.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo