Cho góc
thỏa mãn
. Tính giá trị biểu thưc
.
Theo bài ra ta có:
Cho góc
thỏa mãn
. Tính giá trị biểu thưc
.
Theo bài ra ta có:
Cho cấp số cộng
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
Cho hình chóp
có đáy
là hình bình hành tâm
. Gọi
là trung điểm của
và
là giao điểm của
và mặt phẳng
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Trong mặt phẳng gọi
mà
và
là trọng tâm tam giác
Cho mẫu số liệu ghép nhóm về thống kê điểm số (thang điểm
) của
học sinh tham dự kỳ thi giữa kỳ
của lớp
, ta có bảng số liệu sau:
|
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh |
5 |
7 |
13 |
18 |
7 |
Tìm tứ phân vị thứ nhất của mẫu số liệu ghép nhóm trên. (Kết quả làm tròn đến hàng phần trăm)
Ta có bảng số liệu:
|
Điểm |
[0; 2) |
[2; 4) |
[4; 6) |
[6; 8) |
[8; 10) |
|
Số học sinh |
5 |
7 |
13 |
18 |
7 |
|
Tần số tích lũy |
5 |
12 |
25 |
43 |
50 |
Vì nên nhóm chứa tứ phân vị thứ nhất là
.
Khi đó tứ phân vị thứ nhất là
.
Có bao nhiêu giá trị nguyên của tham số m để phương trình
có nghiệm:
Đặt
=>
Phương trình trở thành:
Do
Vậy để phương trình có nghiệm
Cho hình chóp
. Gọi
lần lượt là trung điểm
. Khi đó khẳng định nào sai?
Hình vẽ minh họa
Qua phép chiếu song song theo phương lên mặt phẳng
biến: M thành P, N thành
.
Do đó
Qua phép chiếu song song theo phương lên mặt phẳng
biến:
thành
, R thành R, M thành Q, P thành P, L thành L, Q thành Q.
Vậy
Vậy khẳng định sai là:
Trong các hàm số sau hàm số nào là hàm số lẻ?
Xét hàm số y = sinx:
Lấy ta có:
Vậy hàm số y = sinx là hàm số lẻ.
Tìm nhóm chứa mốt của mẫu dữ liệu dưới đây:
Nhóm dữ liệu | Tần số |
(0; 15] | 4 |
(15; 30] | 12 |
(30; 45] | 17 |
(45; 60] | 7 |
Nhóm chứa mốt là: (30; 45] vì có tần số cao nhất.
Tính giới hạn
.
Ta có:
Vì nên
Do đó
Cho hình chóp
có đáy
là hình bình hành. Xác định giao tuyến của hai mặt phẳng
và
:
Hình vẽ minh họa
Gọi
Khi đó đi qua
.
Xét ba mặt phẳng .
Ba mặt phẳng này đôi một cắt nhau theo ba giao tuyến là .
Theo định lí về giao tuyến của ba mặt phẳng thì đồng quy hoặc đôi một song song.
Mà
Cho hình lập phương
cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Phương trình
có nghiệm là:
Ta có:
Vậy phương trình có nghiệm là
Cho hình chóp tứ giác
có đáy là hình bình hành. Gọi
lần lượt là trung điểm của
và
(như hình vẽ). Chọn mệnh đề đúng trong các mệnh đề dưới đây.

Ta có:
Cho hàm số
. Số nghiệm của phương trình
trên tập số thực là:
Hàm số là hàm đa thức có tập xác định
=> Hàm số liên tục trên
=> Hàm số liên tục trên các khoảng
Ta có:
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
vậy phương trình có ít nhất một nghiệm trên
Vậy phương trình đã cho có ít nhất ba nghiệm thuộc khoảng . Tuy nhiên phương trình
là phương trình bậc ba có nhiều nhất ba nghiệm
Vậy phương trình có đúng ba nghiệm.
Cho hình chóp tứ giác
. Gọi
là trung điểm của
,
. Xác định các giao tuyến của mặt phẳng
với các mặt của hình chóp. Khi đó hình tạo bởi các giao tuyến trên là:
Trường hợp 1:
Hình vẽ minh hoạ
Nếu . Gọi
Nếu
=> Hình tạo bởi các giao tuyến của mặt phẳng với hình chóp là tứ giác
Nếu . Gọi
Hình tạo bởi các giao tuyến của mặt phẳng với hình chóp là tứ giác
Trường hợp 2:
Hình vẽ minh hoạ
Nếu . Hình tạo bởi các giao tuyến của mặt phẳng
với hình chóp là tam giác
.
Vậy hình tạo bởi các giao tuyến trên có thể là tứ giác hoặc tam giác.
Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để bất phương trình
![]()
Đúng với mọi x thuộc tập xác định của bất phương trình đó. Số phần tử
bằng:
Giả sử m là số thực thỏa mãn yêu cầu bài toán:
Với bất phương trình trở thành
, bất phương trình không đúng với
=> Không thỏa mãn yêu cầu bài toán.
Với bất phương trình trở thành
, tập nghiệm của bất phương trình là
=> Thỏa mãn yêu cầu bài toán.
Với bất phương trình trở thành
, bất phương trình không đúng với
=> Không thỏa mãn yêu cầu bài toán.
Với đặt
thì
Theo giả thiết ta có:
với mọi giá trị x thuộc tập xác định (*)
Nếu thì
mâu thuẫn với (*)
Nếu thì
mâu thuẫn với (*)
Vậy nên số phần tử của S là 1.
Cho cấp số nhân
có công bội nguyên và các số hạng thoả mãn
. Các khẳng định dưới đây là đúng hay sai?
a) Số hạng đầu của cấp số nhân bằng
. Đúng||Sai
b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai
c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng
d) Gọi dãy số
, với
. Khi đó tổng
. Sai||Đúng
Cho cấp số nhân có công bội nguyên và các số hạng thoả mãn
. Các khẳng định dưới đây là đúng hay sai?
a) Số hạng đầu của cấp số nhân bằng . Đúng||Sai
b) Tổng của 9 số hạng đầu tiên bằng 4599. Đúng||Sai
c) Số 576 là số hạng thứ 6 của cấp số nhân. Sai||Đúng
d) Gọi dãy số , với
. Khi đó tổng
. Sai||Đúng
a) Đúng
Ta có:
.
b) Đúng.
Ta có:
Vậy tổng của 9 số hạng đầu tiên bằng 4599 nên mệnh đề đúng.
c) Sai.
Ta có:
Vậy số 576 là số hạng thứ 7 của cấp số nhân nên mệnh đề sai.
d) Sai.
Ta có , nên
là cấp số nhân với
và công bội
.
Nên .
Cho hàm số
và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số
là hàm số chẵn. Sai||Đúng
b) Trong khoảng
đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số
bằng
. Sai||Đúng
d) Hàm số
đạt giá trị nhỏ nhất khi
. Đúng||Sai
Cho hàm số và
. Trong các mệnh đề sau, mệnh đề nào đúng, mệnh đề nào sai?
a) Hàm số là hàm số chẵn. Sai||Đúng
b) Trong khoảng đồ thị hai hàm số
và
cắt nhau tại hai điểm. Đúng||Sai
c) Giá trị lớn nhất của hàm số bằng
. Sai||Đúng
d) Hàm số đạt giá trị nhỏ nhất khi
. Đúng||Sai
a) Sai
TXĐ: . Do đó
Ta có là hàm số lẻ.
b) Đúng
Phương trình trong khoảng
có hai nghiệm
và
c) Sai
Ta có: , mà
.
Vậy giá trị lớn nhất của hàm số bằng
, khi
.
d) Đúng
Giá trị nhỏ nhất của hàm số bằng
, khi
Tìm hiểu thời gian tập thể dục mỗi ngày của học sinh (đơn vị: phút) ta thu được kết quả ghi trong bảng sau:
Thời gian (phút) | [0; 5) | [5; 10) | [10; 15) | [15; 20) | [20; 25) |
Số học sinh | 8 | 16 | 4 | 2 | 2 |
Giá trị đại diện nhóm [20; 25) bằng bao nhiêu?
Giá trị đại diện nhóm [20; 25) là:
Xác định giới hạn ![]()
Ta có:
Tính giới hạn
.
Ta có:
Cho dãy số
biết
. Số hạng có ba chữ số lớn nhất của dãy là:
Tìm số hạng tổng quát của dãy số
Dự đoán
Ta chứng minh theo phương pháp quy nạp
Với ta có:
Giả sử , khi đó ta có:
Vậy công thức tổng quát được chứng minh theo nguyên lí quy nạp.
Ta có:
Mà
Nên ta chọn
Vậy là số hạng cần tìm.
Cho hình hộp
, gọi
là trung điểm của
. Xác định hình tạo bởi các giao tuyến của mặt phẳng
với hình hộp.
Hình vẽ minh họa
Ta có:
Suy ra giao tuyến của và
là đường thẳng
qua
song song với
;
.
Vì nên hình tạo bởi các giao tuyến của mặt phẳng
với hình hộp
là hình thang
.
Cho
. Khi đó:
a) Khi
thì
. Đúng||Sai
b) Khi
thì
. Sai||Đúng
c) Khi
thì
. Sai||Đúng
d)
thì giá trị của
là một nghiệm của phương trình
. Đúng||Sai
Cho . Khi đó:
a) Khi thì
. Đúng||Sai
b) Khi thì
. Sai||Đúng
c) Khi thì
. Sai||Đúng
d) thì giá trị của
là một nghiệm của phương trình
. Đúng||Sai
Ta có:
.
Vì vậy giá trị của là một nghiệm của phương trình
.
Kết luận:
|
a) Đúng |
b) Sai |
c) Sai |
d) Đúng |
Có bao nhiêu giá trị nguyên của tham số m để hàm số
xác định trên tập số thực?
Hàm số đã cho xác định khi
Kết hợp với điều kiện m là số nguyên
=> m = {-4; -3; ... ; 2; 3}
Vậy có 8 giá trị của tham số m thỏa mãn điều kiện.
Cho cấp số nhân
có tổng n số hạng đầu tiên là
. Tìm số hạng thứ 5 của cấp số nhân đã cho.
Mặt khác
Cho
với n ∈ ℕ*. Mệnh đề nào sau đây đúng?
Ta có dự đoán
Với n = 1, ta được (đúng)
Giả sử mệnh đề đúng khi n = k (k≥1), tức là
Ta có
Suy ra mệnh đề đúng với n = k + 1.
Trong không gian, cho ba đường thẳng
. Trong các mệnh đề sau mệnh đề nào đúng?
Nếu và
chéo nhau thì
và
không cùng thuộc một mặt phẳng.
Cho các đường thẳng không song song với phương chiếu. Khẳng định nào sau đây là đúng?
Khẳng định đúng là: "Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau."
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số
xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra
. Sai||Đúng
c) Dãy số
cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng
và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Dãy số xác định bởi công thức
là một dãy số tăng. Đúng||Sai
b) Một cấp số cộng có công sai bằng 7 suy ra . Sai||Đúng
c) Dãy số cấp số cộng khi
. Sai||Đúng
d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng và
. Khi đó số hạng cuối cùng của cấp số nhân đó là
. Đúng||Sai
a) Ta có:
Suy ra:
b) Do công sai dương nên cấp số cộng là một dãy tăng nên
c) Ta có: là một cấp số cộng
Suy ra
d) Ta có:
Dãy số nào sau đây không phải là cấp số cộng?
Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: thì kết luận ngay dãy số đó không phải là cấp số cộng.
Xét đáp án: loại
Xét đáp án: Chọn
Xét đáp án: Loại
Xét đáp án: loại
Tìm tứ phân vị thứ nhất trong bảng dữ liệu dưới đây:
Nhóm | Tần số |
[0; 20) | 16 |
[20; 40) | 12 |
[40; 60) | 25 |
[60; 80) | 15 |
[80; 100) | 12 |
[100; 120) | 10 |
Tổng | N = 90 |
Kết quả làm tròn đến chữ số thập phân thứ nhất.
Ta có:
Nhóm | Tần số | Tần số tích lũy |
[0; 20) | 16 | 16 |
[20; 40) | 12 | 28 |
[40; 60) | 25 | 53 |
[60; 80) | 15 | 68 |
[80; 100) | 12 | 80 |
[100; 120) | 10 | 90 |
Tổng | N = 90 |
|
Ta có:
=> Nhóm chứa tứ phân vị thứ nhất là:
Khi đó ta có:
Tứ phân vị thứ nhất được tính như sau:
Cho mẫu dữ liệu ghép nhóm như sau:
Nhóm | Tần số |
(0; 10] | x |
(10; 20] | 8 |
(20; 30] | 20 |
(30; 40] | 15 |
(40; 50] | 7 |
(50; 60] | y |
Tổng | N = 60 |
Nếu trung vị của mẫu dữ liệu ghép nhóm dưới đây có giá trị là 28,5 thì các tần số cần tìm có giá trị là bao nhiêu?
Bảng số liệu được ghi như sau:
Nhóm | Tần số | Tần số tích lũy |
(0; 10] | x | |
(10; 20] | 8 | x + 8 |
(20; 30] | 20 | x + 28 |
(30; 40] | 15 | x + 43 |
(40; 50] | 7 | x + 50 |
(50; 60] | x + y + 50 | |
Tổng | N = 60 |
|
Ta có:
Theo bài ra ta có:
=> Nhóm chứa trung vị là
Suy ra:
Khi đó ta có:
Điểm cuối của góc lượng giác a ở góc phần tư thứ mấy nếu
cùng dấu?
Điểm cuối của góc lượng giác a ở góc phần tư thứ I hoặc thứ III thì cùng dấu
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề: “Hai đường thẳng không song song thì chéo nhau” sai vì có thể cắt nhau.
Mệnh đề: “Hai đường thẳng chéo nhau thì không có điểm chung” đúng.
Mệnh đề: “Hai đường thẳng không cắt nhau và không song song thì chéo nhau” sai vì có thể trùng nhau.
Mệnh đề: “Hai đường thẳng không có điểm chung thì chéo nhau” sai vì có thể song song.
Bạn Lan trồng 50 cây cà rốt bằng loại đất đặc biệt. Khi thu hoạch Lan đo chiều dài của củ cà rốt (chính xác đến mm) và nhóm được các kết quả như sau:
Chiều dài (mm) | Chiều dài đại diện (mm) |
(149,5; 154,5] | 152 |
(154,5; 159,5] | 157 |
(159,5; 164,5] | 162 |
(164,5; 169,5] | 167 |
(169,5; 174,5] | 172 |
(174,5; 179,5] | 177 |
(179,5; 184,5] | 182 |
(184,5; 189,5] | 187 |
Tìm chiều dài trung bình của các củ cà rốt Lan trồng được.
Ta có:
Chiều dài (mm) | Chiều dài đại diện (mm) | Số củ cà rốt |
|
(149,5; 154,5] | 152 | 5 | 760 |
(154,5; 159,5] | 157 | 2 | 314 |
(159,5; 164,5] | 162 | 6 | 972 |
(164,5; 169,5] | 167 | 8 | 1336 |
(169,5; 174,5] | 172 | 9 | 1548 |
(174,5; 179,5] | 177 | 11 | 1947 |
(179,5; 184,5] | 182 | 6 | 1092 |
(184,5; 189,5] | 187 | 3 | 561 |
| Tổng | 50 | 8530 |
Chiều dài trung bình của cà rốt Lan trồng được là:
Cho ba mặt phẳng phân biệt
có
. Khi đó ba đường thẳng
:
Nếu ba mặt phẳng đôi một cắt nhau theo ba giao tuyến phân biệt thì ba giao tuyến ấy hoặc đồng quy hoặc đôi một song song.
Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn
để phương trình
vô nghiệm?
Phương trình vô nghiệm
có 18 giá trị.
Hàm số
liên tục trên:
Điều kiện
Tập xác định
=> Hàm số liên tục trên
Kiểm tra sự đúng sai của các kết luận sau?
a)
Sai||Đúng
b)
khi
Đúng||Sai
c) Hàm số
liên tục tại
Đúng||Sai
c)
Sai||Đúng
Kiểm tra sự đúng sai của các kết luận sau?
a) Sai||Đúng
b) khi
Đúng||Sai
c) Hàm số liên tục tại
Đúng||Sai
c) Sai||Đúng
Ta có:
Ta có: Khi thì
Ta có:
Vậy hàm số liên túc tại
Ta có:
Tính giá trị của giới hạn sau
là?
Ta có:
Nhưng và
Nên
Trong các dãy số
cho bởi số hạng tổng quát
, dãy nào là cấp số nhân?
Dãy là cấp số nhân có
Số đo ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân. Biết thể tích của khối hộp là
và diện tích toàn phần là
. Tính tổng số đo ba kích thước của hình hộp chữ nhật đó.
Ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân nên ta có thể gọi ba kích thước đó là .
Thể tích khối hộp chữ nhật:
Diện tích toàn phần của hình hộp chữ nhật là
Theo giả thiết ta có:
Với hoặc
thì kích thước của hình hộp chữ nhật là
=> Tổng các kích thước là 17,5cm.
bằng
Ta có:
Tìm nghiệm dương nhỏ nhất của phương trình ![]()
Ta có
TH1. Với
TH2. Với
So sánh hai nghiệm ta được là nghiệm dương nhỏ nhất.