Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Điểm kiểm tra của một nhóm học sinh được ghi trong bảng sau:

    Điểm

    Số học sinh

    (20; 30]

    1

    (30; 40]

    1

    (40; 50]

    10

    (50; 60]

    11

    (60; 70]

    5

    (70; 80]

    2

    Số phần tử của mẫu dữ liệu ghép nhóm là:

    Ta có:

    Điểm

    Số học sinh

    Tần số tích lũy

    (20; 30]

    1

    1

    (30; 40]

    1

    2

    (40; 50]

    10

    12

    (50; 60]

    11

    23

    (60; 70]

    5

    28

    (70; 80]

    2

    30

    Tổng

    N = 30

     

    Vậy số phần tử mẫu là N = 30

  • Câu 2: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính mốt?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

     

    [50; 100)

    12

    f_{0}

    [100; 150)

    23

    f_{1}

    [150; 200)

    17

    f_{2}

    [200; 250)

    3

     

     

    N = 60

     

    Ta có: \left\{ \begin{matrix}l = 100,f_{0} = 12;f_{1} = 23,f_{2} = 17 \\c = 150 - 100 = 50 \\\end{matrix} ight.

    => Mốt của dấu hiệu là:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    = 100 + \frac{23 - 12}{2.23 - 12 -17}.50 \approx 132,35

  • Câu 3: Thông hiểu

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Đáp án là:

    Điền chữ “Đ” vào mệnh đề đúng và “S” vào mệnh đề sai.

    a) Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau. S

    b) Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó. S

    c) Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P). S

    d) Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α). S

    Xét từng mệnh đề ta có

    a) “Hai đường thẳng phân biệt cùng song song với một mặt phẳng thì song song với nhau” là mệnh đề sai, vì hai đường thẳng có thể chéo nhau.

    b) “Hai mặt phẳng phân biệt chứa hai đường thẳng song song cắt nhau theo giao tuyến song song với hai đường thẳng đó” là mệnh đề sai, vì hai mặt phẳng đó có thể song song nhau.

    c) “Nếu đường thẳng a song song với đường thẳng b, đường thẳng b nằm trên mặt phẳng (P) thì a song song với (P)” là mệnh đề sai, vì đường thẳng a vẫn có thể nằm trong mặt phẳng (P).

    d) “Qua điểm A không thuộc mặt phẳng (α), kẻ được đúng một đường thẳng song song với (α)” là mệnh đề sai, vì có vô số đường thẳng đi qua điểm A và song song với (α).

    Vậy không có mệnh đề nào đúng trong các mệnh đề nêu trên

  • Câu 4: Thông hiểu

    Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    Số học sinh

    5

    9

    12

    10

    6

    Tính giá trị Q_{1}?

    Ta có:

    Điểm

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

     

    Số học sinh

    5

    9

    12

    10

    6

    N = 42

    Tần số tích lũy

    5

    14

    26

    36

    42

     

    Cỡ mẫu N = 42 \Rightarrow \frac{N}{4} =10,5

    => Nhóm chứa Q_{1} là [20; 40)

    (Vì 10,5 nằm giữa hai tần số tích lũy 5 và 14)

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 20;m = 5,f = 9;c = 40 -20 = 20

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 20 + \frac{10,5 - 5}{9}.20 =\frac{290}{9}

  • Câu 5: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=7.3^n ta có: 

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{7.3}^{n + 1}}}}{{{{7.3}^n}}} = 3

    => Dãy số u_n=7.3^n là một cấp số nhân 

  • Câu 6: Vận dụng

    Cho dãy số (un) xác định bởi {u_1} = 2;{u_{n + 1}} =  - 2{u_n};\left( {n \geqslant 1,n \in \mathbb{N}} ight). Tính tổng của 10 số hạng đầu tiên của dãy số?

     Ta có:

    \begin{matrix}  \dfrac{{{u_{n + 1}}}}{{{u_n}}} =  - 2 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {q =  - 2} \end{array}} ight. \hfill \\   \Rightarrow {S_{10}} = \dfrac{{{u_1}.\left( {1 - {q^{10}}} ight)}}{{1 - q}} =  - 682 \hfill \\ \end{matrix}

  • Câu 7: Vận dụng

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Đáp án là:

    Số điểm gián đoạn của hàm số f(x) =
\left\{ \begin{matrix}
0,5 & khi\ \ x = - 1 \\
\frac{x(x + 1)}{x^{2} - 1} & khi\ \ \ x eq - 1,x eq 1 \\
1 & khi\ \ \ x = 1 \\
\end{matrix} ight. là:

    Đáp án: 1

    Hàm số y = f(x) có TXĐ D\mathbb{= R}.

    Hàm số f(x) = \frac{x(x + 1)}{x^{2} -
1} liên tục trên mỗi khoảng ( -
\infty; - 1), ( - 1;1)(1; + \infty).

    (i) Xét tại x = - 1, ta có \lim_{x ightarrow - 1}f(x) = \lim_{x ightarrow
- 1}\frac{x(x + 1)}{x^{2} - 1} = \lim_{x ightarrow - 1}\frac{x}{x - 1}
= \frac{1}{2} = f( - 1)\overset{}{ightarrow} Hàm số liên tục tại x = - 1.

    (ii) Xét tại x = 1, ta có 

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} {\mkern 1mu} \frac{x}{{x - 1}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} f\left( x ight) = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{{x\left( {x + 1} ight)}}{{{x^2} - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} {\mkern 1mu} \frac{x}{{x - 1}} =  - \infty  \hfill \\ 
\end{gathered}  ight. \toHàm số y = f(x) gián đoạn tại x = 1.

    Vậy số điểm gián đoạn cần tìm là 1.

  • Câu 8: Thông hiểu

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    Đáp án là:

    Tìm được các giới hạn một bên sau:

    a) \lim_{x ightarrow 2^{+}}\frac{x}{x +
1} = \frac{2}{3} Đúng||Sai

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = - \infty Sai||Đúng

    c) \lim_{x ightarrow 3^{-}}\frac{x^{2}
- 3x}{x^{2} - 6x + 9} = + \infty Sai||Đúng

    d) \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack = + \infty Sai||Đúng

    a) Ta có:

    \lim_{x ightarrow 2^{+}}\frac{x}{x +1} = \frac{2}{2 + 1} = \frac{2}{3}.

    b) \lim_{x ightarrow 1^{+}}\frac{2x -
1}{x - 1} = \lim_{x ightarrow 1^{+}}\left\lbrack (2x - 1) \cdot
\frac{1}{x - 1} ightbrack = + \infty (do \lim_{x ightarrow 1^{+}}(2x - 1) = 1\lim_{x ightarrow 1^{+}}\frac{1}{x - 1} =
+ \infty).

    c) Ta có:

    \lim_{x ightarrow 3^{-}}\frac{x^{2}- 3x}{x^{2} - 6x + 9} = \lim_{x ightarrow 3^{-}}\frac{x(x - 3)}{(x -3)^{2}}

    = \lim_{x ightarrow 3^{-}}\frac{x}{x -
3} = \lim_{x ightarrow 3^{-}}\left( x\frac{1}{x - 3} ight) = -
\infty

    Do \lim_{x ightarrow 3^{-}}x =
3\lim_{x ightarrow
3^{-}}\frac{1}{x - 3} = - \infty.

    d) Ta có:

    \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{3} - 1 ight)\left( \sqrt{\frac{x}{x^{2} - 1}} ight)
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
(x - 1)\left( x^{2} + x + 1 ight)\sqrt{\frac{x}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)^{2}}{(x - 1)(x + 1)}}
ightbrack

    = \lim_{x ightarrow 1^{+}}\left\lbrack
\left( x^{2} + x + 1 ight)\sqrt{\frac{x(x - 1)}{x + 1}} ightbrack
= 3 \cdot \sqrt{\frac{0}{2}} = 0

  • Câu 9: Nhận biết

    Cho c là hằng số, k là số nguyên dương khác không. Tìm khẳng định sai.

    Mệnh đề \lim_{x ightarrow -
\infty}x^{k} = - \infty sai khi k là số chẵn.

  • Câu 10: Nhận biết

    Khẳng định nào dưới đây đúng?

    Ta có: \pi rad tương ứng với 180^{0}

    => 1rad ightarrow x^{0}

    \Rightarrow x^{0} = \frac{180.1}{\pi} =\frac{180}{\pi}

  • Câu 11: Vận dụng cao

    Hàm số y = sin^{4}x - cos^{4}x đạt giá trị nhỏ nhất tại x = x_{0}. Mệnh đề nào sau đây là đúng?

    Ta có y = sin^{4}x - cos^{4}x

    = \left(sin^{2}x + cos^{2}x ight)\left( sin^{2}x - cos^{2}x ight) = -cos2x.

    - 1 \leq cos2x \leq 1 \Rightarrow - 1\geq - cos2x \geq 1

    \Rightarrow - 1 \geq y \geq 1

    Do đó giá trị nhỏ nhất của hàm số là -1.

    Đẳng thức xảy ra \Leftrightarrow cos2x =1 \Leftrightarrow 2x = k2\pi \Leftrightarrow x = k\pi\ \left(k\mathbb{\in Z} ight).

  • Câu 12: Nhận biết

    Chọn mệnh đề sai.

    Mệnh đề "Tồn tại duy nhất một đường thẳng qua một điểm và song song với một đường thẳng" sai vì nếu điểm đó thuộc đường thẳng đã cho thì không tồn tại đường thẳng nào đi qua điểm đó và song song với đường thẳng cho trước

  • Câu 13: Vận dụng cao

    Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?

    Ta có 2sin\frac{x}{2} \cdot S = 2sinx\cdot sin\frac{x}{2} + 2sin2x \cdot sin\frac{x}{2} + .. + 2sinnx \cdotsin\frac{x}{2}

    = \cos\frac{x}{2} - \cos\frac{3x}{2} +\cos\frac{3x}{2} - \cos{x\frac{5x}{2}} + \ldots + \cos{x\frac{2n -1}{2}x} - \cos{\frac{2n + 1}{2}x}

    = cos\frac{x}{2} - cos\frac{2n +1}{2}x

    Vậy S = \frac{cos\frac{x}{2} - cos\frac{2n+ 1}{2}x}{2sin\frac{x}{2}}

  • Câu 14: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C' có tất cả các cạnh bằng nhau. Mặt phẳng (\beta) bất kì song song với mặt phẳng (ABC). Hình tạo bởi các giao tuyến giữa hai mặt phẳng trên là:

    Hình vẽ minh họa

    Gọi M,N,P lần lượt là giao điểm của (\beta) với các cạnh AA',BB',CC'.

    Khi đó ta có: \left\{ \begin{matrix}
MN = AB \\
NP = BC \\
PM = AC \\
\end{matrix} ight.

    Vậy hình tạo bởi các giao tuyến giữa hai mặt phẳng là tam giác đều

  • Câu 15: Thông hiểu

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Giá trị đại diện cho nhóm [155; 160) bằng:

    Giá trị đại diện của nhóm [155; 160) là \frac{155 + 160}{2} = 157,5

  • Câu 16: Vận dụng cao

    Cho hình lập phương ABCD.A'B'C'D' cạnh a. Mặt phẳng (\alpha) đi qua tâm của hình lập phương và song song với (ABC). Xác định các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD'. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?

    Hình vẽ minh họa:

    Gọi I là tâm của hình lập phương

    => I là trung điểm của AC’.

    Gọi (P) là mặt phẳng qua I và song song với (ABC).

    Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.

    Khi đó \left\{ \begin{matrix}MN = QP = \dfrac{1}{2}AC = \dfrac{a\sqrt{2}}{2} \\NP = MQ = \dfrac{1}{2}B'D' = \dfrac{a\sqrt{2}}{2} \\\end{matrix} ight.

    => Hình tạo bởi các giao tuyến của mặt phẳng (\alpha) và tứ diện AB'CD' là hình thoi MNPQ cạnh bằng \frac{a\sqrt{2}}{2}

    Mặt khác NQ = MP = BC = a

    Diện tích hình thoi MNPQ là S =
\frac{1}{2}NQ.MP = \frac{a^{2}}{2}

  • Câu 17: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm bằng 24.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    x

    30 + x

    [30; 40)

    16

    46 + x

    [40; 50)

    9

    55 + x

     

    N = 55 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow l = 20;\frac{N}{2} =\frac{55 + x}{2};m = 30;f = x,c = 10

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    \Leftrightarrow 24 = 20 + \dfrac{\left(\dfrac{55 + x}{2} - 30 ight)}{x}.10

    \Leftrightarrow 4 = \frac{5(x -5)}{x}

    \Leftrightarrow 4x = 5x -25

    \Leftrightarrow 25 = 5x -4x

    \Leftrightarrow 25 = x

  • Câu 18: Nhận biết

    Trong các dãy số được cho dưới đây, dãy số nào không phải là cấp số cộng?

    Xét dãy số  u_{n}=-2^{n}+15 ta có:

     \begin{matrix}  {u_{n + 1}} =  - {2^{n + 1}} + 15 \hfill \\   \Rightarrow {u_{n + 1}} - {u_n} =  - {2^{n + 1}} + 15 + {2^n} - 15 \hfill \\   =  - {2^{n + 1}} + {2^n}=d \hfill \\ \end{matrix}

    d không cố định => Dãy số u_{n}=-2^{n}+15 không phải là một cấp số cộng.

  • Câu 19: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 20: Nhận biết

    Dãy số có các số hạng cho bởi - 1;1; - 1;1;... có số hạng tổng quát là công thức nào dưới đây?

    Vì dãy số đã cho không phải là dãy hằng nên loại các đáp án u_{n} = 1u_{n} = - 1

    Ta có: u_{1} = - 1 ở các đáp án u_{n} = ( - 1)^{n}u_{n} = ( - 1)^{n + 1}

    Xét đáp án u_{n} = ( - 1)^{n} \Rightarrowu_{1} = - 1

    Xét đáp án u_{n} = ( - 1)^{n + 1}\Rightarrow u_{1} = ( - 1)^{2} = 1 eq - 1

    Vậy công thức tổng quát của dãy số đã cho là u_{n} = ( - 1)^{n}

  • Câu 21: Thông hiểu

    Tìm đẳng thức sai trong các đẳng thức sau (giả sử rằng tất cả các biểu thức lượng giác đều có nghĩa).

    Ta có: sina + sinb = 2sin\frac{a +
b}{2}cos\frac{a - b}{2}, do đó đẳng thức sina + sinb = 2sin\frac{a + b}{2} \cdot sin\frac{a
- b}{2} sai.

  • Câu 22: Thông hiểu

    Cho \frac{\pi}{2}
< \alpha < \pi. Giá trị lượng giác nào sau đây luôn dương?

    Ta có:

    \sin(\pi + \alpha) = -
\sin\alpha

    \cos\left( \frac{\pi}{2} - \alpha
ight) = \sin\alpha

    \cos( - \alpha) =
\cos\alpha

    \tan(\alpha + \pi) =
\tan\alpha

    Theo bài ra \frac{\pi}{2} < \alpha
< \pi

    => \left\{ \begin{matrix}
\sin\alpha > 0 \\
\cos\alpha < 0 \\
\tan\alpha < 0 \\
\end{matrix} ight.

  • Câu 23: Vận dụng

    Kết quả của giới hạn \lim \left( {\dfrac{{\sqrt {3n}  + {{\left( { - 1} ight)}^n}.\cos 3n}}{{\sqrt n  - 1}}} ight) bằng bao nhiêu?

    Ta có:

    \begin{matrix}
  \lim \left( {\dfrac{{\sqrt {3n}  + {{\left( { - 1} ight)}^n}.\cos 3n}}{{\sqrt n  - 1}}} ight) \hfill \\
   = \lim \left( {\dfrac{{\sqrt {3n} }}{{\sqrt n  - 1}} + \dfrac{{{{\left( { - 1} ight)}^n}.\cos 3n}}{{\sqrt n  - 1}}} ight) \hfill \\ 
\end{matrix}

    Ta lại có:

    \lim\left( \frac{\sqrt{3n}}{\sqrt{n} -
1} ight) = \frac{\sqrt{3}}{1} = \sqrt{3}

    0 \leq \left| \frac{( -1)^{n}.\cos3n}{\sqrt{n} - 1} ight| \leq \frac{1}{\sqrt{n} - 1}\Rightarrow \lim\frac{( - 1)^{n}.\cos3n}{\sqrt{n} - 1} = 0

    \Rightarrow \lim\left( \frac{\sqrt{3n} +
( - 1)^{n}cos3n}{rn} - 1 ight) = \sqrt{3}

  • Câu 24: Thông hiểu

    Cho L = \lim_{x ightarrow -
\infty}\left( \sqrt{x^{2} + ax + 5} + x ight) . Khi đó:

    a) Khi L = 3 thì a = - 6. Đúng||Sai

    b) Khi L > 0 thì a > 0. Sai||Đúng

    c) Khi L = 2 thì a = 4. Sai||Đúng

    d) L = - 6 thì giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 = 0. Đúng||Sai

    Đáp án là:

    Cho L = \lim_{x ightarrow -
\infty}\left( \sqrt{x^{2} + ax + 5} + x ight) . Khi đó:

    a) Khi L = 3 thì a = - 6. Đúng||Sai

    b) Khi L > 0 thì a > 0. Sai||Đúng

    c) Khi L = 2 thì a = 4. Sai||Đúng

    d) L = - 6 thì giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 = 0. Đúng||Sai

    Ta có:

    \lim_{x ightarrow - \infty}\left(
\sqrt{x^{2} + ax + 5} + x ight) = - 6

    \Leftrightarrow \lim_{x ightarrow -
\infty}\left( \frac{x^{2} + ax + 5 - x^{2}}{\sqrt{x^{2} + ax + 5} - x}
ight) = - 6

    \Leftrightarrow \lim_{x ightarrow -
\infty}\left( \frac{ax + 5}{\sqrt{x^{2} + ax + 5} - x} ight) = -
6

    \Leftrightarrow \lim_{x ightarrow -\infty}\left( \dfrac{a + \dfrac{5}{x}}{- \sqrt{1 + \dfrac{a}{x} +\dfrac{5}{x^{2}}} - 1} ight) = - 6

    \Leftrightarrow \frac{a}{- 2} = - 6
\Leftrightarrow a = 12.

    Vì vậy giá trị của a là một nghiệm của phương trình x^{2} + 11x - 12 =
0.

    Kết luận:

    a) Đúng

    b) Sai

    c) Sai

    d) Đúng

  • Câu 25: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Giao tuyến của hai mặt phẳng (SAC)(SBD) là:

    Hình vẽ minh họa

    Ta có: S \in (SAC) \cap
(SBD)(*)

    Mặt khác \left\{ \begin{matrix}
O \in AC \subset (SAC) \\
O \in BD \subset (SBD) \\
\end{matrix} ight.

    \Rightarrow O \in (SAC) \cap
(SBD)(**)

    Từ (*) và (**) ta suy ra SO = (SAC) \cap
(SBD)

  • Câu 26: Nhận biết

    \lim \frac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} bằng:

    Ta có:

    \begin{matrix}  \lim \dfrac{{3{n^4} - 2n + 3}}{{4{n^4} + 2n + 1}} \hfill \\   = \lim \dfrac{{3 - \dfrac{2}{{{n^3}}} + \dfrac{3}{{{n^4}}}}}{{4 + \dfrac{2}{{{n^3}}} + \dfrac{1}{{{n^4}}}}} = \dfrac{3}{4} \hfill \\ \end{matrix}

  • Câu 27: Vận dụng

    Cho hộp chữ nhật ABCD.A'B'C'D'. Các điểm M,N tương ứng trên AC',B'D' sao cho MN song song với BA'. Tính tỉ số \frac{MA}{MC'}?

    Xét phép chiếu song song lên mặt phẳng (A'B'C'D') theo phương chiếu BA'.

    Ta có: N là ảnh của M hay M chính là giao điểm của B'D' và ảnh AC' qua phép chiếu này.

    Do đó ta xác định M,N như sau:

    Trên A'B' kéo dài lấy điểm K sao cho A'K = B'A' suy ra K là ảnh của A trên AC' qua phép chiếu song song.

    Gọi N = B'D' \cap
KC'. Đường thẳng qua N và song song với AK cắt AC' tại M. Ta có: M,N là các điểm cần xác định.

    Theo định lí Thales ta có:

    \frac{MA}{MC'} = \frac{NK}{NC'}
= \frac{KB'}{C'D'} = 2

  • Câu 28: Vận dụng

    Phương trình \cot x=\sqrt 3 có bao nhiêu nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight]?

     Ta có: \cot x=\sqrt 3

    \Leftrightarrow x = \frac{\pi }{6} + k\pi \,,\,k \in \mathbb{Z}, mà - 2022\pi  \leqslant x \leqslant 2022\pi.

    \Rightarrow  - 2022\pi  \leqslant \frac{\pi }{6} + k\pi  \leqslant 2022\pi

    \Leftrightarrow  - 2022 \leqslant \frac{1}{6} + k \leqslant 2022

    \Leftrightarrow  - 2022 - \frac{1}{6} \leqslant k \leqslant 2022 - \frac{1}{6}.

    Suy ra - 2022\pi  \leqslant x \leqslant 2022\pi, k \in Z.

    Vậy \cot x=\sqrt 3 có 4044 nghiệm thuộc \left[ { - 2022\pi \,,\,2022\pi } ight].

  • Câu 29: Vận dụng cao

    Tính giới hạn \lim\left\lbrack
\frac{1}{1.4} + \frac{1}{2.5} + ... + \frac{1}{n(n + 3)}
ightbrack

    Ta có:

    \begin{matrix}
  \dfrac{1}{{1.4}} + \dfrac{1}{{2.5}} + ... + \dfrac{1}{{n\left( {n + 3} ight)}} \hfill \\
   = \dfrac{1}{3}\left( {\dfrac{1}{1} - \dfrac{1}{4} + \dfrac{1}{2} - \dfrac{1}{5} + ... + \dfrac{1}{n} - \dfrac{1}{{n + 3}}} ight) \hfill \\ 
\end{matrix}

    = \frac{1}{3}\left\lbrack \left(
\frac{1}{1} + \frac{1}{2} + ... + \frac{1}{n} ight) - \left(
\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + ... + \frac{1}{n + 3} ight)
ightbrack

    = \frac{1}{3}\left( 1 + \frac{1}{2} +
\frac{1}{3} - \frac{1}{n + 1} - \frac{1}{n + 2} - \frac{1}{n + 3}
ight)

    = \frac{1}{3}\left( \frac{11}{6} -
\frac{1}{n + 1} - \frac{1}{n + 2} - \frac{1}{n + 3} ight)

    Do đó \lim\left\lbrack \frac{1}{1.4} +
\frac{1}{2.5} + ... + \frac{1}{n(n + 3)} ightbrack =
\frac{11}{8}

  • Câu 30: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình bình hành, lấyM \in BC;MC =
MB. Giả sử (\gamma) là mặt phẳng đi qua M song song với hai đường thẳng BDSC. Xác định giao tuyến của (\gamma) với các mặt của hình chóp tứ giác S.ABCD. Hình tạo bởi các giao tuyến là hình

    Hình vẽ minh họa

    Gọi trung điểm CD,SD,SB lần lượt là N,P,R.

    Gọi I = AC \cap MN

    Từ I kẻ QI song song với SC.

    Ta có: MR//QI//NP//SC

    \Rightarrow (MNPQR)//SC (1)

    Ta có MN//DB \Rightarrow
(MNPQR)//BD (2)

    Từ (1) và (2) => Các giao tuyến của (\gamma) với các cạnh của hình chóp là hình ngũ giác MNPQR.

  • Câu 31: Vận dụng

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCD. Gọi I,\ \ J lần lượt là trung điểm của ACBC. Trên cạnh BD lấy điểm K sao cho BK
= 2KD. Gọi F là giao điểm của AD với mặt phẳng (IJK). Tính tỉ số \frac{FA}{FD}

    Đáp án: 2

    Hình vẽ minh họa

    + Cho AD \subset (ACD)

    Trong mặt phẳng (BCD) hai đường thẳng IK,\ \ CD không song song nên gọi E là giao điểm của hai đường thẳng IKCD. Khi đó E
\in (ACD).

    + Ta thấy (ACD) \cap (IJK) =
EJ

    + Trong (ACD):\ \ EJ \cap AD =
F. Khi đó (IJK) \cap AD =
F.

    Xét tam giác BCD, áp dụng định lí Menelaus có:

    \frac{IB}{IC}.\frac{EC}{ED}.\frac{KD}{KB} = 1
\Rightarrow 1.\frac{EC}{ED}.\frac{1}{2} = 1 \Rightarrow \frac{EC}{ED} =
2

    Xét tam giác ACD, áp dụng định lí Menelaus có:

    \frac{EC}{ED}.\frac{FD}{FA}.\frac{JA}{JC} = 1
\Rightarrow 2.\frac{FD}{FA}.1 = 1 \Rightarrow \frac{FD}{FA} =
\frac{1}{2}

    Vậy \frac{FA}{FD} = 2.

  • Câu 32: Thông hiểu

    \lim\left( 2^{n}
+ 3^{n} ight) bằng:

    Ta có:

    \lim\left( 2^{n} + 3^{n} ight) =
\lim\left\{ 3^{n}.\left\lbrack \left( \frac{2}{3} ight)^{n} + 1
ightbrack ight\} = + \infty

  • Câu 33: Nhận biết

    Nghiệm của phương trình \cos x = \cos 3x là

     \begin{matrix}  \cos x = \cos 3x \hfill \\   \Leftrightarrow \cos 3x = \cos x \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3x = x + k2\pi } \\   {3x =  - x + k2\pi } \end{array}} ight. \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = k\pi } \\   {x = \dfrac{{k\pi }}{2}} \end{array}} ight.;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    Đáp án là:

    Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?

    a) Dãy số \left( u_{n} ight) xác định bởi công thức u_{n} = \frac{2n -1}{n + 1} là một dãy số tăng. Đúng||Sai

    b) Một cấp số cộng có công sai bằng 7 suy ra u_{30} < u_{15}. Sai||Đúng

    c) Dãy số 6;a; - 2;b cấp số cộng khi a = 2;b = 5. Sai||Đúng

    d) Một cấp số nhân có 6 số hạng với công bội và tổng số các số hạng lần lượt bằng 2189. Khi đó số hạng cuối cùng của cấp số nhân đó là 96. Đúng||Sai

    a) Ta có:

    u_{n} = \frac{2n - 1}{n + 1} = 2 -\frac{3}{n + 1}

    u_{n + 1} = 2 - \frac{3}{n +2}

    Suy ra:

    u_{n + 1} - u_{n} = 2 - \frac{3}{n + 2}- 2 + \frac{3}{n + 1}

    = 3\left( \frac{1}{n + 1} - \frac{1}{n +2} ight) > 0;\forall n \in \mathbb{N}^{*}

    b) Do công sai dương nên cấp số cộng là một dãy tăng nên u_{30} > u_{15}

    c) Ta có: 6;a; - 2;b là một cấp số cộng

    Suy ra \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}2a = 4 \\a + b = - 1 \\\end{matrix} ight.\ \left\{ \begin{matrix}2a = 6 + ( - 2) \\2.( - 2) = a + b \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = - 6 \\\end{matrix} ight.

    d) Ta có:\left\{ \begin{matrix}\left( S_{n} ight) = 189 \\n = 6;q = 2 \\\end{matrix} ight.

    \Rightarrow 189 = \frac{u_{1}\left( 1 -2^{6} ight)}{1 - 2} \Rightarrow u_{1} = 3

    \Rightarrow u_{6} = u_{1}.q^{5} =96

  • Câu 35: Thông hiểu

    Cho cấp số cộng (Un) có u1 = -2 và công sai d = 3. Tìm số hạng u10

    Ta có: {u_{10}} = {u_1} + \left( {10 - 1} ight)d = {u_{10}} =  - 2 + 9.3 = 25

  • Câu 36: Vận dụng

    Cho dãy số (un) biết un = 3n + 6. Mệnh đề nào sau đây đúng?

    Ta có un = 3n + 6 ⇒ un + 1 = 3(n+1) + 6 = 3n + 9

    Xét hiệu un + 1 − un = (3n+9) − (3n+6) = 3 > 0, ∀n ∈ N*

    Vậy (un) là dãy số tăng.

  • Câu 37: Thông hiểu

    Cho \sin x +cosx = \frac{1}{2}. Tính giá trị biểu thức A = \frac{1 + sin2x}{1 - sin2x}

    Do \sin x + cosx = \frac{1}{2} nên bình phương hai vế ta được:

    1 + 2sinx\cos x = \frac{1}{4} \Rightarrowsin2x = - \frac{3}{4}

    Vậy A = \frac{1 + sin2x}{1 - sin2x} =\frac{1 - 3/4}{1 + 3/4} = \frac{1}{7}

  • Câu 38: Thông hiểu

    Trong các dãy số sau, dãy số nào bị chặn trên?

    Ta có:

    \left( v_{n} ight):v_{n} = - n^{2} + 2
\leq 2.

    Vậy đây là dãy số bị chặn trên.

  • Câu 39: Thông hiểu

    Cho tứ diện ABCD. Gọi G là trọng tâm của tam giác ABDM là điểm trên cạnh BC sao cho BM
= 2MC. Đường thẳng MG song song với

    Hình vẽ minh họa

    Gọi E là trung điểm của AD. Do G là trọng tâm của tam giác ABD và M là điểm trên cạnh BC sao cho BM =
2MC nên trong mặt phẳng (BCE) ta có:

    \frac{BG}{BE} = \frac{BM}{BC} =
\frac{2}{3}

    \Rightarrow MG//CE \subset
(ACD)

    \Rightarrow MG//(ACD)

  • Câu 40: Nhận biết

    Trong các khẳng định sau khẳng định nào sai?

    Giả sử (\alpha) song song với (\beta). Một đường thẳng a song song với (\beta) có thể nằm trên (\alpha).

  • Câu 41: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}- \dfrac{x}{2}\ \ khi\ \ x \leq 1 \\\dfrac{x^{2} - 3x + 2}{x^{2} - 1}\ \ khi\ \ x > 1 \\\end{matrix} ight.. Các kết luận dưới đây đúng hay sai?

    a)\ \lim_{x ightarrow 0}f(x) = - \
2. Sai||Đúng

    b)\ \lim_{x ightarrow 3}f(x) = + \
\infty. Sai||Đúng

    c)\lim_{x ightarrow + \ \infty}f(x) =
1. Đúng||Sai

    d) Hàm số f(x) liên tục tại x_{0} = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}- \dfrac{x}{2}\ \ khi\ \ x \leq 1 \\\dfrac{x^{2} - 3x + 2}{x^{2} - 1}\ \ khi\ \ x > 1 \\\end{matrix} ight.. Các kết luận dưới đây đúng hay sai?

    a)\ \lim_{x ightarrow 0}f(x) = - \
2. Sai||Đúng

    b)\ \lim_{x ightarrow 3}f(x) = + \
\infty. Sai||Đúng

    c)\lim_{x ightarrow + \ \infty}f(x) =
1. Đúng||Sai

    d) Hàm số f(x) liên tục tại x_{0} = 1. Đúng||Sai

    a) Sai

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\left( - \frac{x}{2} ight) = 0.

    b) Sai

    \lim_{x ightarrow 3}f(x) = \lim_{xightarrow 3}\left( \frac{x^{2} - 3x + 2}{x^{2} - 1} ight) =\frac{1}{4}.

    c) Đúng

    \lim_{x ightarrow + \ \infty}f(x) =
\lim_{x ightarrow + \ \infty}\left( \frac{x^{2} - 3x + 2}{x^{2} - 1}
ight)

    = \lim_{x ightarrow + \ \infty}\left(
\frac{x - 2}{x + 1} ight) = \lim_{x ightarrow + \ \infty}\left( 1 -
\frac{3}{x + 1} ight) = 1.

    d) Đúng

    Ta có:

    f(1) = - \frac{1}{2}\lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( - \frac{x}{2} ight) = -
\frac{1}{2}.

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\left( \frac{x^{2} - 3x + 2}{x^{2} - 1} ight) =
\lim_{x ightarrow 1^{+}}\left( \frac{x - 2}{x + 1} ight) = -
\frac{1}{2}.

    Vậy f(1) = \lim_{x ightarrow 1^{-}}f(x)
= \lim_{x ightarrow 1^{+}}f(x) nên hàm số f(x) liên tục tại x_{0} = 1.

  • Câu 42: Nhận biết

    Tìm tập xác định của hàm số y = \frac{2x-1}{{\sin x - \cos x}}

    Hàm số xác định khi

    \begin{matrix}   \Leftrightarrow \sin x - \cos x e 0 \hfill \\   \Leftrightarrow \tan x e 1 \hfill \\   \Leftrightarrow x e \dfrac{\pi }{4} + k\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Vậy tập xác định {\text{D}} = \mathbb{R}\backslash \left\{ {\frac{\pi }{4} + k\pi ,k \in \mathbb{Z}} ight\}

  • Câu 43: Nhận biết

    Kết quả kiểm tra chiều cao của 500 cây trong một khu vườn cây giống ghi lại trong bảng sau:

    Chiều cao

    Số cây

    [145; 150)

    25

    [150; 155)

    50

    [155; 160)

    200

    [160; 165)

    175

    [165; 170)

    50

    Các nhóm số liệu trong bảng trên có độ dài là bao nhiêu?

    Độ dài các nhóm là 5.

  • Câu 44: Nhận biết

    Cho điểm A thuộc mặt phẳng (P), mệnh đề nào sau đây đúng:

    Mệnh đề đúng A \in (P).

  • Câu 45: Vận dụng cao

    Có bao nhiêu giá trị nguyên của tham số m để phương trình \cos x=m+1 có nghiệm?

     Áp dụng điều kiện có nghiệm của phương trình \cos x =a.

    - Phương trình có nghiệm khi |a| \leq 1.

    - Phương trình vô nghiệm khi |a|>1.

    Do đó, phương trình \cos x=m+1 có nghiệm khi và chỉ khi \left| {m + 1} ight| \leqslant 1

    \Leftrightarrow  - 1 \leqslant m + 1 \leqslant 1 \Leftrightarrow  - 2 \leqslant m \leqslant 0\xrightarrow{{m \in \mathbb{Z}}}m \in \left\{ { - 2; - 1;0} ight\}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo