Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Phương trình \sin x = \frac 1 2 có bao nhiêu nghiệm trên đoạn [0; 20 \pi]?

     Cách 1:

    Ta có \sin x = \frac{1}{2} \Leftrightarrow \left[ \begin{gathered}  x = \frac{\pi }{6} + k2\pi  \hfill \\  x = \frac{{5\pi }}{6} + k2\pi  \hfill \\ \end{gathered}  ight. , với k \in \mathbb {Z}

    +) 0\leqslant \frac{\pi }{6} + k2\pi  \leqslant 20\pi  \Rightarrow  - \frac{1}{{12}} \leqslant k \leqslant \frac{{119}}{{12}}.

    Lại có k \in \mathbb {Z} nên k \in \{0;1;2;3;4;5;6;7;8;9\}

    +)0 \leqslant \frac{{5\pi }}{6} + k2\pi  \leqslant 20\pi  \Rightarrow  - \frac{5}{{12}} \leqslant k \leqslant \frac{{115}}{{12}}.

    Lại có k \in \mathbb {Z} nên k \in \{0;1;2;3;4;5;6;7;8;9\}

    Vậy phương trình có 20 nghiệm trên đoạn [0; 20 \pi]

    Cách 2:

    Dùng đường tròn lượng giác, trên đoạn [0;2\pi] phương trình \sin x = \frac 1 2 có 2 nghiệm, tương tự với \left[ {2\pi ;4\pi } ight],\;\left[ {4\pi ;6\pi } ight],...\left[ {18\pi ;20\pi } ight].

    Có 10 đoạn như vậy, trên mỗi đoạn có 2 nghiệm nên suy ra phương trình đã cho có 2.10=20 trên [0; 20 \pi].

  • Câu 2: Vận dụng

    Cho dãy số (un) biết \left\{ \begin{matrix}
u_{1} = 2 \\
u_{n + 1} = \frac{u_{n}^{2} + 1}{4},\forall n \in \mathbb{N}^{*} \\
\end{matrix} ight..

    Mệnh đề nào sau đây đúng?

    Dự đoán dãy giảm sau đó chứng minh un + 1 − un < 0 bằng quy nạp toán học.

    Từ giả thiết suy ra un > 0, ∀n ∈ ℕ*.

    Ta có u_{2} - u_{1} = \frac{5}{4} - 2 =
\frac{- 3}{4} < 0.

    Giả sử: uk + 1 − uk < 0, ∀k ≥ 1

    Xét hiệu u_{k + 2} - u_{k + 1} =
\frac{u_{k + 1}^{2} + 1}{4} - \frac{u_{k}^{2} + 1}{4}

    = \frac{1}{4}\left( u_{k + 1} + u_{k}
ight)\left( u_{k + 1} - u_{k} ight) < 0

    Theo nguyên lí quy nạp suy ra un + 1 − un < 0, ∀n ∈ ℕ*

    Vậy dãy số (un) là dãy số giảm.

  • Câu 3: Vận dụng cao

    Biết rằng phương trình \dfrac{1}{\sin x} + \dfrac{1}{\sin2x} + \dfrac{1}{\sin4x}+ \cdots + \dfrac{1}{\sin\left( 2^{2018}x ight)} = 0 có nghiệm dạng x = \frac{2k\pi}{2^{a} - b} với k \in \mathbb{Z}a,b \in \mathbb{N}^{*}. Tính S = a + b

    Điều kiện \left\{ \begin{matrix}\sin x eq 0 \\\sin2x eq 0 \\\sin4x eq 0 \\\cdots \\\sin\left( 2^{2018}x ight) eq 0 \\\end{matrix} ight.

    \Leftrightarrow sin\left( 2^{2018}x
ight) eq 0

    \Leftrightarrow 2^{2018}x eq k\pi
\Leftrightarrow x eq \frac{k\pi}{2^{2018}},k \in
\mathbb{Z}

    Ta có:

    \frac{1}{\sin x} = \frac{1 + \cos x -\cos x}{\sin x}

    =\dfrac{2\cos^{2}\dfrac{x}{2}}{2\sin\dfrac{x}{2}cos\dfrac{x}{2}} -cotx

    = cot\frac{x}{2} - cotx

    Thiết lập các đẳng thức tương tự như trên thì phương trình đã cho trở thành

    \cot\frac{x}{2} - \cot x + \cot x -\cot2x

    {+ \cdots \cot\left( 2^{2017}x ight) -\cot\left( 2^{2018}x ight) = 0}{\Leftrightarrow \cot\frac{x}{2} - \cot\left( 2^{2018}x ight) =0}

    {\Leftrightarrow \cot\frac{x}{2} =\cot\left( 2^{2018}x ight)}{\Leftrightarrow \frac{x}{2} = 2^{2018}x + k\pi,k \in\mathbb{Z}}

    {\Leftrightarrow x = \frac{2k\pi}{1 -
2^{2019}},k \in \mathbb{Z}
}{\Leftrightarrow x = \frac{2k\pi}{2^{2019} - 1},k \in
\mathbb{Z}}

    Vậy a = 2019,b = 1 nên a + b = 2020.

  • Câu 4: Thông hiểu

    Cho tứ diện ABCD. Các điểm M\ ,\ \ N lần lượt là trung điểm BD\ ,\ \ AD. Các điểm\ H,\ \ G lần lượt là trọng tâm các tam giác BCD\ \ ;\ \ ACD. Các mệnh đề sau đúng hay sai?

    a) Đường thẳng HG chéo với đường thẳng MN Sai||Đúng

    b) Đường thẳng HG chéo với đường thẳng CD Đúng||Sai

    c) Đường thẳng HG chéo với đường thẳng \mathbf{CN} Sai||Đúng

    d) Đường thẳng HG chéo với đường thẳng {AB} Sai||Đúng

    Đáp án là:

    Cho tứ diện ABCD. Các điểm M\ ,\ \ N lần lượt là trung điểm BD\ ,\ \ AD. Các điểm\ H,\ \ G lần lượt là trọng tâm các tam giác BCD\ \ ;\ \ ACD. Các mệnh đề sau đúng hay sai?

    a) Đường thẳng HG chéo với đường thẳng MN Sai||Đúng

    b) Đường thẳng HG chéo với đường thẳng CD Đúng||Sai

    c) Đường thẳng HG chéo với đường thẳng \mathbf{CN} Sai||Đúng

    d) Đường thẳng HG chéo với đường thẳng {AB} Sai||Đúng

    Hình vẽ minh họa

    Do \frac{OG}{OA} = \frac{OH}{OB} =
\frac{1}{3} \Rightarrow
HG//AB (Định lý Talet)

    Xét tam giác ABD có: MN//AB (do MN là đường trung bình của tam giác)\Rightarrow HG//MN

    Lại có: HG \cap CN = G

    Vậy HGCD chéo nhau.

    Kết luận:

    a) Sai

    b) Đúng

    c) Sai

    d) Sai

  • Câu 5: Nhận biết

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Xét dãy số u_n=7.3^n ta có: 

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{7.3}^{n + 1}}}}{{{{7.3}^n}}} = 3

    => Dãy số u_n=7.3^n là một cấp số nhân 

  • Câu 6: Thông hiểu

    Cho góc lượng giác (Ox,Oy) = 22^{0}30' + k.360^{0}. Với giá trị k bằng bao nhiêu thì góc (Ox,Oy) =
1822^{0}30'?

    Theo bài ra ta có:

    \begin{matrix}(Ox,Oy) = 1822^{0}30\prime  \hfill \\\Rightarrow 22^{0}30\prime  + k.360^{0} = 1822^{0}30\prime  \hfill \\\Rightarrow k = 5 \hfill  \\\end{matrix}

  • Câu 7: Vận dụng cao

    Biết \lim\left( \frac{\left( \sqrt{5}
ight)^{n} - 2^{n + 1} + 1}{5.2^{n} + \left( \sqrt{5} ight)^{n + 1} -
3} + \frac{2n^{2} + 3}{n^{2} - 1} ight) = \frac{a\sqrt{5}}{b} +
cvới a,b,c \mathbb{\in Z}. Tính giá trị của biểu thức S = a^{2} + b^{2}
+ c^{2}.

    Ta có:

    \lim\left( \dfrac{\left( \sqrt{5}ight)^{n} - 2^{n + 1} + 1}{5.2^{n} + \left( \sqrt{5} ight)^{n + 1} -3} + \dfrac{2n^{2} + 3}{n^{2} - 1} ight)

    = \lim\left( \dfrac{1 - 2.\left(\dfrac{2}{\sqrt{5}} ight)^{n} + \left( \dfrac{1}{\sqrt{5}}ight)^{n}}{5.\left( d\frac{2}{\sqrt{5}} ight)^{2} + \sqrt{5} -3.\left( \dfrac{1}{\sqrt{5}} ight)^{n}} + \dfrac{2 + \dfrac{3}{n^{2}}}{1- \dfrac{1}{n^{2}}} ight)

    = \frac{1}{\sqrt{5} + 2} =
\frac{\sqrt{5}}{5} + 2

    Vậy S = a^{2} + b^{2} + c^{2} = 1^{2} +
5^{2} + 2^{2} = 30

  • Câu 8: Vận dụng

    Bác Hoa mua nhà trị giá 900 triệu đồng theo phương thức trả góp. Nếu bác Hoa muốn trả hết nợ trong 3 năm và phải trả lãi mức 6% trên năm thì mỗi tháng bác phải trả bao nhiêu tiền?

    Gọi x (đồng) là số tiền bác Hoa phải trả mỗi năm. (Điều kiện x > 0)

    Ta có:

    x =
\frac{900.10^{6}.0,06.1,06^{3}}{1,06^{3} - 1}

    x = 336698831,5 (đồng)

    Vậy số tiền bác Hoa phải trả mỗi tháng là T = \frac{336698831,5}{12} \approx
28058236(đồng).

  • Câu 9: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình thang ABCD, AD//BC. Gọi M là trung điểm của CD. Giao tuyến của mặt phẳng (MSB)(SAC) là:

    Hình vẽ minh họa

    Gọi I là giao điểm của ACBM. Khi đó: SI = (MSB) \cap (SAC).

  • Câu 10: Vận dụng

    Cho bảng dữ liệu dưới đây:

    Khoảng dữ liệu

    Tần số

    [0; 20)

    16

    [20; 40)

    x

    [40; 60)

    25

    [60; 80)

    y

    [80; 100)

    12

    [100; 120)

    10

    Tổng

    N = 90

    Biết số trung bình là 56. Tính giá trị biểu thức T = 2x – y.

    Ta có:

    Dữ liệu đại diện

    Tần số

    Tích các số liệu

    10

    16

    160

    30

    x

    30x

    50

    25

    1250

    70

    y

    70y

    90

    12

    1080

    110

    10

    1100

    Tổng

    63 + x + y

    3590 + 30x + 70y

    Theo bài ra ta có số trung bình bằng 56 nghĩa là:

    \overline{x} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56

    \Leftrightarrow \frac{3590 + 30x +70y}{90} = 56(*)

    Mặt khác 63 + x + y = 90 \Rightarrow x +y = 27(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}x + y = 27 \\3x + 7y = 145 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 11 \\y = 16 \\\end{matrix} ight.\  \Rightarrow T = 2x - y = 6

  • Câu 11: Nhận biết

    Có bao nhiêu vị trí tương đối của hai đường thẳng phân biệt mn trong không gian?

    Có 3 vị trí tương đối có thể có giữa hai đường thẳng phân biệt mn là:

     

    • m cắt n

    • m song song với n

    • m chéo nhau với n

     

  • Câu 12: Vận dụng

    Cho dãy số \left( u_{n} ight) với u_{n} = \sqrt{2} + \left( \sqrt{2}
ight)^{2} + ... + \left( \sqrt{2} ight)^{n}. Chọn mệnh đề đúng trong các mệnh đề dưới đây?

    Ta có:

    \sqrt{2};\left( \sqrt{2}
ight)^{2};...;\left( \sqrt{2} ight)^{n}lập thành một cấp số nhân có nên

    u_{n} = \sqrt{2}.\frac{1 - \left(
\sqrt{2} ight)^{n}}{1 - \sqrt{2}}

    = \left( 2 - \sqrt{2}
ight).\left\lbrack \left( \sqrt{2} ight)^{n} - 1
ightbrack

    \Rightarrow \lim u_{n} = +
\infty\left\{ \begin{matrix}
a = 2 - \sqrt{2} > 0 \\
q = \sqrt{2} > 1 \\
\end{matrix} ight.

  • Câu 13: Nhận biết

    Chọn đáp án sai

    Trong khoảng \left( {0;\frac{\pi }{2}} ight), hàm số y = \sin x - \cos x là hàm số:

    Ta thấy:

    Trên khoảng \left( {0;\frac{\pi }{2}} ight) hàm y =f(x)= \sin x đồng biến và hàm y= g(x)= - \cos x đồng biến

    => Trên \left( {0;\frac{\pi }{2}} ight) hàm số y = \sin x - \cos x đồng biến.

  • Câu 14: Vận dụng cao

    Tập giá trị của hàm số y = \frac{\cos x +1}{\sin x + 1} trên \left\lbrack0;\frac{\pi}{2} ightbrack

    Ta có:

    \left\{ \begin{matrix}0 \leq \cos x \leq 1 \\0 \leq \sin x \leq 1 \\\end{matrix} ight.\ ;\left( x \in \left\lbrack 0;\frac{\pi}{2}ightbrack ight)

    Nên \frac{0 + 1}{1 + 1} \leq \frac{\cos x+ 1}{1 + 1} \leq \frac{1 + 1}{0 + 1} \Rightarrow \frac{1}{2} \leq y \leq2

  • Câu 15: Thông hiểu

    Hoàn thành bảng số liệu sau:

    Cân nặng

    Giá trị đại diện

    Số học sinh

    [40,5; 45,5)

    43

    7

    [45,5; 50,5)

    48

    16

    [50,5; 55,5)

    53

    10

    [55,5; 60,5)

    58

    5

    [60,5; 65,5)

    63

    4

    [65,5; 70,5)

    68

    2

    Đáp án là:

    Hoàn thành bảng số liệu sau:

    Cân nặng

    Giá trị đại diện

    Số học sinh

    [40,5; 45,5)

    43

    7

    [45,5; 50,5)

    48

    16

    [50,5; 55,5)

    53

    10

    [55,5; 60,5)

    58

    5

    [60,5; 65,5)

    63

    4

    [65,5; 70,5)

    68

    2

    Trong mỗi khoảng cân nặng, giá trị đại diện là giá trị trung bình của giá trị hai đầu mút nên ta hoàn thành bảng số liệu như sau:

    Cân nặng

    Giá trị đại diện

    Số học sinh

    [40,5; 45,5)

    \frac{40,5 + 45,5}{2} =43

    7

    [45,5; 50,5)

    \frac{45,5 + 50,5}{2} =48

    16

    [50,5; 55,5)

    \frac{50,5 + 55,5}{2} =53

    10

    [55,5; 60,5)

    \frac{55,5 + 60,5}{2} =58

    5

    [60,5; 65,5)

    \frac{60,5 + 65,5}{2} =63

    4

    [65,5; 70,5)

    \frac{65,5 + 70,5}{2} =68

    2

     

  • Câu 16: Thông hiểu

    Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

    [50; 100)

    12

    [100; 150)

    23

    [150; 200)

    17

    [200; 250)

    3

    Tính mốt?

    Ta có:

    Số tiền (nghìn đồng)

    Số người

    [0; 50)

    5

     

    [50; 100)

    12

    f_{0}

    [100; 150)

    23

    f_{1}

    [150; 200)

    17

    f_{2}

    [200; 250)

    3

     

     

    N = 60

     

    Ta có: \left\{ \begin{matrix}l = 100,f_{0} = 12;f_{1} = 23,f_{2} = 17 \\c = 150 - 100 = 50 \\\end{matrix} ight.

    => Mốt của dấu hiệu là:

    M_{0} = l + \frac{f_{1} - f_{0}}{2f_{1}- f_{0} - f_{2}}.c

    = 100 + \frac{23 - 12}{2.23 - 12 -17}.50 \approx 132,35

  • Câu 17: Thông hiểu

    Một người xếp chồng những khúc gỗ có kích thước như nhau thành 10 hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?

    Đáp án: 55

    Đáp án là:

    Một người xếp chồng những khúc gỗ có kích thước như nhau thành 10 hàng. Sau khi xếp xong người đó nhận thấy mỗi hàng nằm liền phía trên thì ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ. Hỏi người đó có tổng cộng bao nhiêu khúc gỗ?

    Đáp án: 55

    Mỗi hàng liền phía trên ít hơn hàng dưới 1 khúc gỗ và hàng trên cùng có 1 khúc gỗ nên ta có đây là tổng của một cấp số cộng có: u_{1} = 1;d = 1;n = 10.

    Khi đó, tổng số khúc gỗ là:

    S_{10} = \frac{n\left( 2u_{1} + (n - 1)d
ight)}{2}

    = \frac{10\left( 2.1 + (10 - 1)1
ight)}{2} = 55 (khúc gỗ).

  • Câu 18: Thông hiểu

    Tìm chu kì T của hàm số lượng giác y =cos3x + cos5x

    Hàm số y = cos3x tuần hoàn với chu kì T =\frac{2\pi}{3}

    Hàm số y = cos5x tuần hoàn với chu kì T =\frac{2\pi}{5}

    => Hàm số y = cos3x + cos5x tuần hoàn với chu kì là T =2\pi

  • Câu 19: Nhận biết

    Trong các dãy số sau, dãy số nào là cấp số cộng?

    Ta có: \left\{ \begin{matrix}
3 = 1 + 2 \\
5 = 3 + 2 \\
7 = 5 + 2 \\
9 = 7 + 2 \\
\end{matrix} ight.

    Khi đó theo định nghĩa cấp số cộng dãy số 1;3;5;7;9 là một cấp số cộng với d = 2

  • Câu 20: Nhận biết

    Nghiệm của phương trình \cos x =
\cos\frac{\pi}{4} là:

    Ta có \cos x = \cos\frac{\pi}{4}
\Leftrightarrow x = \pm \frac{\pi}{4} + k2\pi,k\mathbb{\in
Z}.

  • Câu 21: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Lấy điểm M
\in SA sao cho \frac{MA}{MS} =
2. Hình chiếu của điểm S qua phép chiếu song song phương MO mặt phẳng chiếu (ABCD) là điểm N. Khi đó tỉ số độ dài \frac{CN}{CA} bằng bao nhiêu?

    Hình vẽ minh họa:

    Phép chiếu song song phương phương MO mặt phẳng chiếu (ABCD) biến điểm S thành điểm N.

    Do đó: SN//MO \Rightarrow N \in
AC

    Xét tam giác SANta có: \frac{ON}{OA} = \frac{SM}{MA} =
\frac{1}{2}

    => N là trung điểm của OC

    Từ đó suy ra \frac{CN}{CA} =
\frac{1}{4}

  • Câu 22: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}
  {\dfrac{{{x^2} - x - 2}}{{x - 2}}{\text{ khi }}x e 2} \\ 
  {m{\text{               khi }}x = 2} 
\end{array}} ight. liên tục tại x = 2.

    Tập xác định D\mathbb{= R} chứa x = 2

    Theo giả thiết ta có:

    m = f(2) = \lim_{x ightarrow
2}f(x)

    \Rightarrow m = \lim_{x ightarrow
2}\frac{x^{2} - x - 2}{x - 2} = \lim_{x ightarrow 2}(x + 1) =
3

  • Câu 23: Nhận biết

    Nhóm chứa tứ phân vị thứ ba của mẫu số liệu đã cho là:

    Ta có: x_{1},x_{2} \in \lbrack
5;7), x_{3},...,x_{9} \in \lbrack
7;\ 9), x_{9},...,x_{16} \in
\lbrack 9;\ 11), x_{17},...,x_{19}
\in \lbrack 11;\ 13), x_{20} \in
\lbrack 13;\ 15)

    Do đó, tứ phân vị thứ ba của mẫu số liệu thuộc nhóm \lbrack 9;11)

  • Câu 24: Nhận biết

    Trong các mệnh đề sau đây, mệnh đề nào sai?

    Hai đường thẳng phân biệt m,n cùng song song với (\alpha) thì m,n có thể cắt nhau cùng nằm trong (\alpha).

  • Câu 25: Thông hiểu

    Biết  \lim_{x
ightarrow 0}\frac{\sqrt{3x + 1} - 1}{x} = \frac{a}{b}, trong đó a,b là hai số nguyên dương và phân số \frac{a}{b} tối giản. Tính giá trị của biểu thức T = a^{2} +
b^{2}

    Ta có:

    \lim_{x ightarrow 0}\frac{\sqrt{3x +
1} - 1}{x}

    = \lim_{x ightarrow 0}\frac{\left(
\sqrt{3x + 1} - 1 ight)\left( \sqrt{3x + 1} + 1 ight)}{x\left(
\sqrt{3x + 1} + 1 ight)}

    = \lim_{x ightarrow 0}\frac{3x + 1 -
1}{x\left( \sqrt{3x + 1} + 1 ight)} = \lim_{x ightarrow
0}\frac{3x}{x\left( \sqrt{3x + 1} + 1 ight)}

    = \lim_{x ightarrow
0}\frac{1}{\sqrt{3x + 1} + 1} = \frac{3}{2}

    \Rightarrow a = 3;b = 2

    \Rightarrow T = 3^{2} + 2^{2} =
13

  • Câu 26: Thông hiểu

    Tìm tất cả các giá trị m để phương trình \sin{2x}.cos2x + m - 1 = 0 có nghiệm?

    Ta có:

    \sin{2x}.cos2x + m - 1 = 0

    \Leftrightarrow \frac{1}{2}sin4x + m - 1
\Leftrightarrow sin4x = 2 - 2m\ (*)

    Phương trình (*) có nghiêm \Leftrightarrow - 1 \leq 2 - 2m \leq 1
\Leftrightarrow \frac{1}{2} \leq m \leq \frac{3}{2}.

  • Câu 27: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình thang AB//CD;AB = 2CD. Gọi I;J;H;K lần lượt là các điểm thuộc các cạnh SA;AB;CD;SD thỏa mãn 3SI = SA;JA = 2JB;2CD = 3CK;SH = 2DH. Biết AC \cap BD = OE là trung điểm của SB. Phân tích sự đúng sai của các phát biểu dưới đây?

    a) (IJK) \cap (ABCD) = OK Đúng||Sai

    b) (IJK) \cap (SBD) = OH Đúng||Sai

    c) IH//CE Đúng||Sai

    d) Thiết diện tạo bởi mặt phẳng (IJK) và mặt phẳng (ABCD) là một hình thang. Sai||Đúng

    Hình vẽ minh họa

    Xét tam giác DBC có \frac{DO}{DB} =\frac{DK}{DC} = \frac{1}{3} \Rightarrow OK//BC

    Xét tam giác ABC có: \frac{AO}{AC} =\frac{AJ}{AB} = \frac{2}{3} \Rightarrow OJ//BC

    Suy ra ba điểm O; K; J thẳng hàng

    Suy ra (IJK) \cap (ABCD) = OK đúng

    Tương tự ta cũng chúng minh được OH//IJ (Vì OH//SB;IJ//SB)

    Suy ra H \in (IJO) \Rightarrow (IJO) \cap(SBD) = OH

    Gọi F là trung điểm của SA khi đó \frac{SI}{SF} = \frac{SH}{SD} = \frac{2}{3}\Rightarrow IH//DF

    Mà tứ giác CDEF là hình bình hành nên CE // DF. Từ đó suy ra IH // CE.

    Ta lại có: IJKH là thiết diện của hình chóp S.ABCD và (IJK) và nó không là hình thang.

  • Câu 28: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Trong các cặp đường thẳng sau, cặp đường thẳng nào cắt nhau?

    Hình vẽ minh họa

    Quan sát hình vẽ ta thấy kết quả cần tìm là: AC và BD.

  • Câu 29: Thông hiểu

    Cho dãy số có các số hạng đầu là 0,1; 0,001;0,0001; ... Số hạng tổng quát của dãy số có dạng?

    Ta có:

    Số hạng thứ 1 có 1 chữ số 0;

    Số hạng thứ 2 có 2 chữ số 0;

    Số hạng thứ 3 có 3 chữ số 0;

    Suy ra có chữ số 0.

    Công thức số hạng tổng quát của dãy số là: u_n=\underbrace{0,00...01}_{\text{n chữ số 0}}

  • Câu 30: Thông hiểu

    Khẳng định nào sau đây là sai.

    Khẳng định sai: "Nếu 3 đường thẳng chắn trên hai cát tuyến những đoạn thẳng tương ứng tỉ lệ thì ba đường thẳng đó song song với nhau."

  • Câu 31: Vận dụng

    Phương trình nào dưới đây có nghiệm trong khoảng (0;1)?

    Xét phương án 2x^{2} - 3x + 4 =
0: 2x^{2} - 3x + 4 = 0\Delta = 9 - 32 = - 23

    => Phương trình vô nghiệm.

    Xét phương án 3x^{4} - 4x^{2} + 5 =
0: 3x^{4} - 4x^{2} + 5 =
0

    Đặt t = x^{2}(t \geq 0), phương trình trở thành: 3t^{2} - 4t + 5 =
0.

    \Delta' = 4 - 15 = - 11

    => Phương trình vô nghiệm.

    Xét phương án (x - 1)^{5} - x^{7} - 2 =
0: (x - 1)^{5} - x^{7} - 2 = 0
\Leftrightarrow (x - 1)^{5} = x^{7} + 2

    \forall x \in (0;1) \Rightarrow \left\{
\begin{matrix}
x - 1 < 0 \Rightarrow (x - 1)^{5} < 0 \\
x^{7} + 2 > 2 \\
\end{matrix} ight.

    \Rightarrow Phương trình vô nghiệm.

    Xét phương án 3x^{2024} - 8x + 4 =
0: 3x^{2024} - 8x + 4 = 0, xét f(x) = 3x^{2024} - 8x + 4.

    \left\{ \begin{matrix}
f(0) = 3.0 - 8.0 + 4 = 4 \\
f(1) = 3.1 - 8.1 + 4 = - 1 \\
\end{matrix} ight.\  \Rightarrow f(0).f(1) < 0

    Mặc khác hàm số f(x) liên tục trên \mathbb{R} do đó liên tục trên \lbrack 0;1brack.

    Vậy phương trình 3x^{2024} - 8x + 4 =
0 có ít nhất một nghiệm trong khoảng (0;1).

  • Câu 32: Nhận biết

    Quy ước chọn chiều dương của một đường tròn định hướng là

    Quy ước chọn chiều dương của một đường tròn định hướng là luôn ngược chiều quay kim đồng hồ

  • Câu 33: Nhận biết

    Có bao nhiêu vị trí tương đối của hai mặt phẳng tùy ý?

    Có 3 vị trí tương đối của hai mặt phẳng trong không gian, đó là “cắt nhau”, “trùng nhau ”và “song song nhau”.

  • Câu 34: Vận dụng

    Cho tứ diện ABCD. Các điểm P , Q lần lượt là trung điểm của ABCD; điểm R nằm trên cạnh BC sao cho BR
= 2RC. Gọi S là giao điểm của mp(PQR) và cạnh AD. Tính tỉ số \frac{SA}{SD}.

    Đáp án: 2

    Đáp án là:

    Cho tứ diện ABCD. Các điểm P , Q lần lượt là trung điểm của ABCD; điểm R nằm trên cạnh BC sao cho BR
= 2RC. Gọi S là giao điểm của mp(PQR) và cạnh AD. Tính tỉ số \frac{SA}{SD}.

    Đáp án: 2

    Hình vẽ minh họa

    Trong mặt phẳng (BCD), gọi I = RQ \cap BD.

    Trong (ABD), gọi S = PI \cap AD \Rightarrow S = AD \cap (PQR).

    Trong mặt phẳng (BCD), dựng DE//BC \Rightarrow DE là đường trung bình của tam giác IBR.

    \Rightarrow \  D là trung điểm của BI.

    Trong (ABD), dựng DF//AB \Rightarrow \frac{DF}{BP} = \frac{1}{2}
\Rightarrow \frac{DF}{PA} = \frac{1}{2} \Rightarrow \frac{SA}{SD} =
2.

  • Câu 35: Nhận biết

    \mathop {\lim }\limits_{x \to  - 1} \frac{{{x^3} + 1}}{{{x^2} + x}} bằng:

    Ta có:

    \begin{matrix}  \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^3} + 1}}{{{x^2} + x}} = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{\left( {x + 1} ight)\left( {{x^2} - x + 1} ight)}}{{x\left( {x + 1} ight)}} \hfill \\   = \mathop {\lim }\limits_{x \to  - 1} \dfrac{{{x^2} - x + 1}}{x} =  - 3 \hfill \\ \end{matrix}

  • Câu 36: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 37: Nhận biết

    Giá trị của B =
\lim\frac{2n + 3}{n^{2} + 1} bằng:

    Với số thực a>0 nhỏ tùy ý, ta chọn \ \
n_{a} thỏa mãn:

    \frac{2n_{a} +
3}{n_{a}^{2} + 1} < a

    \Leftrightarrow n_{a} > \frac{1 +
\sqrt{a^{2} - 4a + 13}}{a}

    Ta có: \frac{2n + 3}{n^{2} + 1} < a\
với\ mọi\ n > n_{a}

    Suy ra  B =\lim\frac{2n + 3}{n^{2} + 1} =0 .

  • Câu 38: Nhận biết

    Bảng số liệu ghép nhóm sau cho biết chiều cao (cm) của 50 học sinh lớp 11D.

    Khoảng chiều cao (cm)

    [150; 155)

    [155; 160)

    [160; 165)

    [165; 170)

    Số học sinh

    12

    13

    9

    10

    Mẫu số liệu trên có bao nhiêu nhóm?

    Quan sát bảng số liệu ta thấy mẫu số liệu có 4 nhóm.

  • Câu 39: Nhận biết

    Cho dãy số (un) với un = 2n + 1. Số hạng thứ 2019 của dãy là?

    Ta có u2019 = 2.2019 + 1 = 4039

  • Câu 40: Nhận biết

    Cho hàm số f(x) xác định và liên tục trên \mathbb{R} với f(x) = \frac{x^{2} - 3x + 2}{x - 1} với mọi x eq 1. Tính f(1).

    Ta có: f(x) xác định và liên tục trên \mathbb{R} nên suy ra

    f(1) = \lim_{x ightarrow
1}f(x)

    = \lim_{x ightarrow 1}\frac{x^{2} - 3x
+ 2}{x - 1} = \lim_{x ightarrow 1}(x - 2) = 1

    Vậy f(1) = 1

  • Câu 41: Thông hiểu

    Tính giới hạn \lim_{x ightarrow 2}\frac{\left( x^{2} - x - 2
ight)^{20}}{\left( x^{3} - 12x + 16 ight)^{10}}.

    Ta có:

    \lim_{x ightarrow 2}\dfrac{\left( x^{2}- x - 2 ight)^{20}}{\left( x^{3} - 12x + 16 ight)^{10}}

    = \lim_{x ightarrow 2}\dfrac{(x +1)^{20}.(x - 2)^{20}}{(x - 2)^{20}.(x + 4)^{10}}

    = \lim_{x ightarrow 2}\dfrac{(x +1)^{20}}{(x + 4)^{10}} = \frac{3^{20}}{6^{10}} = \left( \frac{3}{2}ight)^{10}

  • Câu 42: Thông hiểu

    Cho cấp số nhân có các số hạng lần lượt là 1;5;16;64. Gọi S_{n} là tổng của n số hạng đầu tiên của cấp số nhân đó. Mệnh đề nào sau đây đúng?

    Cấp số nhân đã cho có: \left\{
\begin{matrix}
u_{1} = 1 \\
q = 4 \\
\end{matrix} ight.

    \Rightarrow S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q} = 1.\frac{1 - 4^{n}}{1 - 4} = \frac{4^{n} -
1}{3}

  • Câu 43: Thông hiểu

    Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở. Tìm mốt của mẫu dữ liệu.

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

    [100; 200)

    7

    [200; 300)

    12

    [300; 400)

    18

    [400; 500)

    16

    [500; 600)

    10

    [600; 700)

    5

    Quan sát bảng thống kê ta thấy tần số cao nhất là 18 nằm trong nhóm [300; 400)

    Thu nhập (nghìn đồng)

    Hộ gia đình

    [0; 100)

    5

     

    [100; 200)

    7

     

    [200; 300)

    12

    {f_0}

    [300; 400)

    18

    {f_1}

    [400; 500)

    16

    {f_2}

    [500; 600)

    10

     

    [600; 700)

    5

     

    \Rightarrow l = 300;f_{0} = 12;f_{1} =18;f_{2} = 16;c = 400 - 300 = 100

    Khi đó ta tính mốt như sau:

    \begin{matrix}  {M_0} = l + \dfrac{{{f_1} - {f_0}}}{{2{f_1} - {f_0} - {f_2}}}.c \hfill \\   \Rightarrow {M_0} = 300 + \dfrac{{18 - 12}}{{2.18 - 12 - 16}}.100 = 375 \hfill \\ \end{matrix}

  • Câu 44: Thông hiểu

    Giá trị của D =
\lim\frac{\sqrt{n^{2} + 1} - \sqrt[3]{3n^{3} + 2}}{\sqrt[4]{2n^{4} + n +
2} - n} bằng:

    Ta có:

    D =
\lim\frac{\sqrt{n^{2} + 1} - \sqrt[3]{3n^{3} + 2}}{\sqrt[4]{2n^{4} + n +
2} - n}  

    = \lim\dfrac{n\left( \sqrt{1 + \dfrac{1}{n^{2}}} - \sqrt[3]{3 +\dfrac{2}{n^{3}}} ight)}{n\left( \sqrt[4]{2 + \dfrac{1}{n^{3}} +\dfrac{2}{n^{4}}} - 1 ight)}

       =\frac{1 - \sqrt[3]{3}}{\sqrt[4]{2} -1}

  • Câu 45: Vận dụng cao

    Cho Sn = 1 + 2 ⋅ 3 + 3 ⋅ 32 + … + n ⋅ 3n − 1.

    Khẳng định nào sau đây đúng với mọi n nguyên dương?

    Ta có 3Sn = 3 + 2.32 + 3.33 + … + n.3n

    Từ đó 2Sn =  − 1 − 3 − 32 − … − 3n − 1 + n.3n

    \Leftrightarrow 2S_{n} = - \frac{3^{n} -
1}{2} + n{.3}^{n}

    \Leftrightarrow S_{n} = - \frac{3^{n} -
1}{4} + \frac{n}{2} \cdot 3^{n}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo