Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 2

Mô tả thêm: Đề thi cuối kì 1 Toán 11 được biên soạn gồm 45 câu hỏi trắc nghiệm thuộc 5 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 11 sách Kết nối tri thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 45 câu
  • Số điểm tối đa: 45 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Biết \lim_{xightarrow \frac{1}{2}}\dfrac{\sqrt{1 + ax^{2}} - bx - 2}{4x^{3} - 3x +1} = c với a,b,c\in\mathbb{R}. Tập nghiệm của phương trình ax^{4} + bx^{2} + c = 0 trên \mathbb{R} có số phần tử là:

    Ta có:

    \lim_{x ightarrow
\frac{1}{2}}\frac{\sqrt{1 + ax^{2}} - bx - 2}{4x^{3} - 3x +
1}

    = \lim_{x ightarrow
\frac{1}{2}}\frac{1 + ax^{2} - (bx + 2)^{2}}{\left( 4x^{3} - 3x + 1
ight)\left( \sqrt{1 + ax^{2}} + bx + 2 ight)}

    = \lim_{x ightarrow
\frac{1}{2}}\frac{\left( a - b^{2} ight)x^{2} - 4bx - 3}{(2x -
1)^{2}(x + 1)\left( \sqrt{1 + ax^{2}} + bx + 2 ight)}

    Theo đề I tồn tại hữu hạn nên phương trình \left( a - b^{2} ight)x^{2} - 4bx - 3 =
0phải có nghiệm kép x =
\frac{1}{2}. Tức là:

    \left\{ \begin{matrix}\Delta' = 0 \\\dfrac{2b}{a - b^{2}} = \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}4b^{2} + 3\left( a - b^{2} ight) = 0 \\4b = a - b^{2} \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
b^{2} + 3b = 0 \\
a = b^{2} + 4b \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 3 \\
\end{matrix} ight.\ ;(a,b eq 0)

    Khi a = - 3;b = - 3 thì

    I = \lim_{x ightarrow
\frac{1}{2}}\frac{- 12x^{2} + 12x - 3}{(2x - 1)^{2}(x + 1)\left( \sqrt{1
+ ax^{2}} + bx + 2 ight)}

    I = \lim_{x ightarrow
\frac{1}{2}}\frac{- 3}{(x + 1)\left( \sqrt{1 - 3x^{2}} - 3x + 2
ight)}

    I = \dfrac{- 3}{\dfrac{3}{2}.\left(\sqrt{1 - \dfrac{3}{4}} - \dfrac{3}{2} + 2 ight)} = - 2

    Do đó a = - 3;b = - 3;c = - 2 nên phương trình - 3x^{4} - 3x^{2} - 2 =
0 vô nghiệm.

  • Câu 2: Nhận biết

    Hình chóp lục giác có bao nhiêu mặt?

    Hình chóp có 7 mặt trong đó có 6 mặt bên và 1 mặt đáy.

  • Câu 3: Nhận biết

    Dãy số nào sau đây không phải là cấp số cộng?

    Chỉ cần tồn tại hai cặp số hạng liên tiếp của dãy số có hiệu khác nhau: u_{m + 1} - u_{m}=u_{k + 1} -u_{k} thì kết luận ngay dãy số đó không phải là cấp số cộng.

    Xét đáp án: 2;5;8;11;14...\overset{ightarrow}{}3 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}loại

    Xét đáp án: 2;4;8;10;14...\overset{ightarrow}{}2 = u_{2} -u_{1}=u_{3} - u_{2} = 4\overset{ightarrow}{} Chọn

    Xét đáp án: 1;2;3;4;5;6...\overset{ightarrow}{}1 = u_{2} -
u_{1} = u_{3} - u_{2} = u_{4} - u_{3} =
\cdots\overset{ightarrow}{}Loại

    Xét đáp án: 15;10;5;0; -
5;...\overset{ightarrow}{} - 5 = u_{2} - u_{1} = u_{3} - u_{2} = u_{4}
- u_{3} = \cdots\overset{ightarrow}{}loại

  • Câu 4: Nhận biết

    Cho hàm số y =
f(x) có đồ thị như hình dưới đây. Chọn khẳng định đúng.

    Dựa vào đồ thị ta thấy hàm số liên tục trên (1;4)

  • Câu 5: Thông hiểu

    Chuyển đổi dữ liệu sau: 3; 5; 1; 2; 3; 2; 2; 1; 6; 9; 5; 3; 9; 2 thành dạng ghép nhóm, chia thành 5 nhóm có độ dài bằng nhau:

    Đại diện X

    Tần số

    [0; 2)

    2

    [2; 4)

    7

    [4; 6)

    2

    [6; 8)

    1

    [8; 10)

    2

    Đáp án là:

    Chuyển đổi dữ liệu sau: 3; 5; 1; 2; 3; 2; 2; 1; 6; 9; 5; 3; 9; 2 thành dạng ghép nhóm, chia thành 5 nhóm có độ dài bằng nhau:

    Đại diện X

    Tần số

    [0; 2)

    2

    [2; 4)

    7

    [4; 6)

    2

    [6; 8)

    1

    [8; 10)

    2

    Để chia thành 5 nhóm với độ dài bằng nhau ta lấy điểm đầu mút phải trái của nhóm đầu tiên là 0 và đầu mút phải của nhóm cuối cùng là 10 với độ dài mỗi nhóm là 6 – 4 = 2.

    Ta được mẫu số ghép nhóm như sau:

    Đại diện X

    Tần số

    [0; 2)

    2

    [2; 4)

    7

    [4; 6)

    2

    [6; 8)

    1

    [8; 10)

    2

  • Câu 6: Nhận biết

    Khẳng định nào sau đây là đúng khi nói về "góc lượng giác"?

    Trên đường tròn định hướng, góc hình học AOB có phân biệt điểm đầu A và điểm cuối B là góc lượng giác.

  • Câu 7: Nhận biết

    Cho c là hằng số, k là một số nguyên dương. Quy tắc nào sau đây sai?

    Ta có \lim_{x ightarrow +
\infty}\frac{1}{x^{k}} = 0 với k là một số nguyên dương.

  • Câu 8: Vận dụng

    Tìm chu kì T của hàm số y = 2\sin^{2}x +3\cos^{2}3x

    Ta có:

    \begin{matrix}y = 2\sin^{2}x + 3\cos^{2}3x \hfill \\= 2.\dfrac{1 - \cos2x}{2} + 3.\dfrac{1 + \cos6x}{2} \hfill\\= \dfrac{1}{2}(3.\cos6x - 2\cos2x + 5)\hfill \\\end{matrix}

    Hàm số y = 3.\cos6x tuần hoàn với chu kì T_{1} = \frac{\pi}{3}

    Hàm số y = - 2\cos2x tuần hoàn với chu kì T_{2} = \pi

    T là chu kì của hàm số y = \tan3x + \cot{x} là bội chung nhỏ nhất của T1 và T2

    Suy ra hàm số y = \dfrac{1}{2}(3.\cos6x -2\cos2x + 5) tuần hoàn với chu kì T
= \pi

  • Câu 9: Thông hiểu

    Cho dãy số (u_{n}), biết {u_n} = \sin n - \cos n. Dãy số (u_{n}) bị chặn dưới bởi số nào dưới đây?

    Ta có:

    \begin{matrix}  {u_n} = \sin n - \cos n \hfill \\   = \sqrt 2 \left( {\dfrac{1}{{\sqrt 2 }}\sin n - \dfrac{1}{{\sqrt 2 }}\cos n} ight) \hfill \\   = \sqrt 2 \left( {\cos \dfrac{\pi }{4}\sin n - \sin \dfrac{\pi }{4}\cos n} ight) \hfill \\   = \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \hfill \\   \Rightarrow 1 \geqslant \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - 1 \hfill \\   \Rightarrow \sqrt 2  \geqslant \sqrt 2 \sin \left( {n - \dfrac{\pi }{4}} ight) \geqslant  - \sqrt 2  \hfill \\ \end{matrix}

  • Câu 10: Vận dụng cao

    Hình chữ nhật ABCD có hai đỉnh A, B thuộc trục Ox, hai đỉnh C, D thuộc đồ thị hàm số y = cos x (như hình vẽ). Biết rằng AB = \frac{2\pi}{3}. Diện tích hình chữ nhật ABCD bằng bao nhiêu?

    Gọi C(a;cosa) \Rightarrow D\left( a +\frac{2\pi}{3};cos\left( a + \frac{2\pi}{3} ight) ight)

    Do ABCD là hình chữ nhật nên AB // CD

    => y_{C} = y_{D} \Rightarrow \cos a =\cos\left( a + \frac{2\pi}{3} ight)

    => a = - a - \frac{2\pi}{3}\Rightarrow a = - \frac{\pi}{3} \Rightarrow AD = \left| \cos\left( -\frac{\pi}{3} ight) ight| = \frac{1}{2}

    Diện tích hình chữ nhật ABCD bằng AB.BC =\frac{\pi}{3}

  • Câu 11: Thông hiểu

    Kết quả đúng của \lim\left( 5 - \frac{n.\cos{2n}}{n^{2} + 1}
ight) là:

    Xét: \frac{n}{n^{2} + 1} \leq
\frac{n.\cos{2n}}{n^{2} + 1} \leq \frac{n}{n^{2} + 1}

    Ta có: \lim\left( - \frac{n}{n^{2} + 1}ight) = \lim( - \frac{1}{n}.\frac{1}{1 + 1:n^{2}}) = 0

    Suy ra \lim\left( - \frac{n}{n^{2} + 1}
ight) = 0

    \Rightarrow \lim\left(
\frac{n.\cos{2n}}{n^{2} + 1} ight) = 0\  \Rightarrow \lim\left( 5 -
\frac{n.\cos{2n}}{n^{2} + 1} ight) = 5.

  • Câu 12: Thông hiểu

    Cho hình chóp tứ giác S.ABCD đáy là hình bình hành, M là trung điểm của AB. Giả sử (\gamma) là mặt phẳng đi qua M đồng thời song song với SBCD. Xác định các giao tuyến của mặt phẳng (\gamma) và các mặt của hình chóp. Hỏi hình tạo bởi các giao tuyến trên là hình gì?

    Hình vẽ minh họa

    Ta có:

    (\gamma)//SB nên (\gamma) cắt mặt phẳng (SBC) theo giao tuyến MN đi qua M và song song với SB, với N là trung điểm của SC.

    (\gamma)//CD nên (\gamma) cắt mặt phẳng (SCD) theo giao tuyến NP đi qua N và song song với CD, với P là trung điểm của SD.

    (\gamma)//CD nên (\gamma) cắt mặt phẳng (ABCD) theo giao tuyến MQ đi qua M và song song với CD, với Q là trung điểm của AD.

    Các giao tuyến của mặt phẳng (\gamma) và hình chóp là tứ giác MNPQ

    Lại có MQ//CD//NP nên MNPQ là hình thang.

  • Câu 13: Nhận biết

    Lượng nước tiêu thụ trong một tháng của các hộ gia đình trong một khu chung cư được ghi lại như sau:

    Lượng nước (m3)

    [0; 20)

    [20; 40)

    [40; 60)

    [60; 80)

    [80; 100)

    [100; 120)

    Số hộ gia đỉnh

    6

    12

    10

    7

    4

    2

    Giá trị đại diện của nhóm chứa mốt của mẫu số liệu trên là.

    Vì nhóm chứa mốt của mẫu số liệu là nhóm \lbrack 20;40)nên giá trị đại diện của nhóm này là 30.

  • Câu 14: Vận dụng cao

    Cho xeq 0 và x+\frac{1}{x} là một số nguyên. Khi đó với mọi số nguyên dương n, có kết luận gì về T(n,x)=x^{n}+\frac{1}{x^{n}}?

    Ta có:

    T\left( {1;x} ight) = x + \frac{1}{x} là một số nguyên

    T\left( {2;x} ight) = {x^2} + \frac{1}{{{x^2}}} = {\left( {x + \frac{1}{x}} ight)^2} - 2 cũng là một số nguyên

    Ta sẽ chứng minh T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

    Ta có: 

    T\left( {1;x} ight) là một số nguyên 

    Giả sử T(n,x) là số nguyên với n \ge1. Ta sẽ chứng minh T\left( {n + 1;x} ight) cũng là số nguyên.

    Ta có: 

    \begin{matrix}  T\left( {n + 1;x} ight) = {x^{n + 1}} + \dfrac{1}{{{x^{n + 1}}}} \hfill \\   = \left( {x + \dfrac{1}{x}} ight).\left( {{x^n} + \dfrac{1}{{{x^n}}}} ight) - \left( {{x^{n - 1}} + \dfrac{1}{{{x^{n - 1}}}}} ight) \hfill \\   = T\left( {1;x} ight).T\left( {n;x} ight) - T\left( {n - 1;x} ight) \hfill \\ \end{matrix}

    Theo giả thiết quy nạp ta có: 

    \left\{ \begin{gathered}  T\left( {1;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n;x} ight) \in \mathbb{Z} \hfill \\  T\left( {n - 1;x} ight) \in \mathbb{Z} \hfill \\ \end{gathered}  ight. \Rightarrow T\left( {n + 1;x} ight) \in \mathbb{Z}

    Vậy T(n,x)=x^{n}+\frac{1}{x^{n}} là một số nguyên.

  • Câu 15: Nhận biết

    Trên đường tròn lượng giác, cung có số đo \frac{\pi}{6} + \frac{k2\pi}{3};\left(k\in\mathbb{ Z} ight) được biểu diễn bởi bao nhiêu điểm?

    Xét theo chiều dương với k =
0,1,2,3 ta thấy cung có số đo \frac{\pi}{6} + \frac{k2\pi}{3};\left(
k\mathbb{\in Z} ight) được biểu diễn bởi ba điểm trên đường tròn lượng giác như sau:

  • Câu 16: Thông hiểu

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = 1 và công sai d = 2. Tổng 10 số hạng đầu của cấp số cộng bằng:

    Tổng 10 số hạng đầu của cấp số cộng là

    S_{n} = \frac{n}{2}\left\lbrack 2u_{1} +
(n - 1)d ightbrack

    \Rightarrow S_{10} =
\frac{10}{2}\left\lbrack 2.1 + (10 - 1)2 ightbrack =
100

  • Câu 17: Nhận biết

    Tổng các nghiệm thuộc khoảng \left( { - \frac{\pi }{2};\frac{\pi }{2}} ight) của phương trình: \cos x = \frac{1}{2}

     Giải phương trình:

    \begin{matrix}  \cos x = \dfrac{1}{2} \hfill \\   \Leftrightarrow \cos x = \cos \left( {\dfrac{\pi }{3}} ight) \hfill \\   \Leftrightarrow x =  \pm \dfrac{\pi }{3} + k2\pi ;\left( {k \in \mathbb{Z}} ight) \hfill \\ \end{matrix}

    Tổng nghiệm của phương trình bằng 0.

  • Câu 18: Vận dụng cao

    Cho tứ diện ABCDAC =6;BD = 3;BC = 9. Lấy một điểm M bất kì trên cạnh BC. Gọi mặt phẳng (\alpha) là mặt phẳng qua M song song với ACBD. Biết các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác. Khi điểm M di chuyển đến vị trí M' hình tứ giác trên trở thành hình thoi. Tính giá trị biểu thức M'B.M'C.

    Hình vẽ minh họa:

    Giao tuyến của (\alpha) với mặt phẳng (ABC) là đường thẳng qua M và song song với AC, đường thẳng này cắt AB tại Q.

    => MQ//AC

    Giao tuyến của (\alpha) với mặt phẳng (ABD) là đường thẳng qua Q và song song với BD, đường thẳng này cắt AD tại P.

    => QP//BD

    Giao tuyến của (\alpha) với mặt phẳng (ACD) là đường thẳng qua P và song song với AC, đường thẳng này cắt CD tại N.

    => NP//AC

    Vậy các giao tuyến của mặt phẳng (\alpha) với tứ diện tạo thành một tứ giác là hình bình hành MNPQ.

    Do đó \Delta CMN\sim\Delta CBD\Rightarrow \frac{MN}{BD} = \frac{CM}{CB}

    Chứng minh tương tự ta được \frac{MQ}{AC}= \frac{BM}{BC}

    Do đó: \frac{MN}{BD} + \frac{MQ}{AC} =\frac{CM}{CB} + \frac{BM}{BC} = 1

    Khi M trùng với M' ta có: M'N = M'Q

    Suy ra \frac{M'N}{BD} +\frac{M'N}{AC} = 1 \Rightarrow M'N = M'Q = 2

    \Rightarrow \frac{M'N}{BD} =\frac{M'C}{CB} \Rightarrow M'C = 6; = M'B = 3

    Vậy M'B.M'C = 18

  • Câu 19: Thông hiểu

    Cho mặt phẳng (\alpha) và hai đường thẳng m,n. Khẳng định nào sau đây đúng?

    “Nếu m//(\alpha)n//(\alpha) thì m,n đồng phẳng.” sai vì có thể chéo nhau.

    “Nếu m \subset (\alpha)m cắt n thì n cắt (\alpha).” sai vì có thể nằm trên (\alpha) 

    “Nếu m//nn//(\alpha) thì m//(\alpha).” sai vì có thể nằm trên (\alpha) .

  • Câu 20: Thông hiểu

    Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ:

    Cho hai mặt phẳng phân biệt lần lượt chứa hai đường thẳng song song thì giao tuyến của chúng (nếu có) sẽ Song song với hai đường thẳng đó hoặc trùng với một trong hai đường thẳng đó.

  • Câu 21: Nhận biết

    Chiều cao một số cây được ghi lại trong bảng số liệu dưới đây:

    Chiều cao h (cm)

    Số cây

    130 < h ≤ 140

    3

    140 < h ≤ 150

    7

    150 < h ≤ 160

    5

    Nhóm chứa trung vị là:

    Ta có:

    Chiều cao h (cm)

    Số cây

    Tần số tích lũy

    130 < h ≤ 140

    3

    3

    140 < h ≤ 150

    7

    10

    150 < h ≤ 160

    5

    15

    Tổng

    N = 15

     

    Ta có: \frac{N}{2} = \frac{15}{2} =7,5

    => Nhóm chứa trung vị là: 140 < h ≤ 150

  • Câu 22: Thông hiểu

    Kết quả của giới hạn \lim \left( {\frac{{\sin 5n}}{{3n}} - 2} ight) bằng:

    Ta có:

    \begin{matrix}  \left\{ \begin{gathered}  0 \leqslant \left| {\dfrac{{\sin 5n}}{{3n}}} ight| \leqslant \dfrac{1}{{3n}} \to 0 \hfill \\  \lim \left( { - 2} ight) =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\   \Rightarrow \lim \left( {\dfrac{{\sin 5n}}{{3n}} - 2} ight) =  - 2 \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu

    Cho bảng dữ liệu như sau:

    Đại diện A

    [15,5; 20,5)

    [20,5; 25,5)

    [25,5; 30,5)

    [30,5; 35,5)

    [35,5; 40,5)

    [40,5; 45,5)

    [45,5; 50,5)

    [50,5; 55,5)

    Tần số

    5

    6

    12

    14

    26

    12

    16

    9

    Tính tứ phân vị thứ nhất của mẫu dữ liệu đã cho?

    Ta có:

    Đại diện X

    Tần số

    Tần số tích lũy

    [15,5; 20,5)

    5

    5

    [20,5; 25,5)

    6

    11

    [25,5; 30,5)

    12

    23

    [30,5; 35,5)

    14

    37

    [35,5; 40,5)

    26

    63

    [40,5; 45,5)

    12

    75

    [45,5; 50,5)

    16

    91

    [50,5; 55,5)

    9

    100

     

    N = 100

     

    Ta lại có: \frac{N}{4} = \frac{100}{4} =25

    => Nhóm chứa Q_{1}[30,5; 35,5) (vì 25 nằm giữa các tần số tích lũy 23 và 37).

    Khi đó ta tìm được các giá trị:

    \Rightarrow l = 30,5;m = 23,f = 14;c =35,5 - 30,5 = 5

    \Rightarrow Q_{1} = l +\dfrac{\dfrac{N}{4} - m}{f}.c = 30,5 + \dfrac{25 - 23}{14}.5 \approx31,2

  • Câu 24: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}- \dfrac{x}{2}\ \ khi\ \ x \leq 1 \\\dfrac{x^{2} - 3x + 2}{x^{2} - 1}\ \ khi\ \ x > 1 \\\end{matrix} ight.. Các kết luận dưới đây đúng hay sai?

    a)\ \lim_{x ightarrow 0}f(x) = - \
2. Sai||Đúng

    b)\ \lim_{x ightarrow 3}f(x) = + \
\infty. Sai||Đúng

    c)\lim_{x ightarrow + \ \infty}f(x) =
1. Đúng||Sai

    d) Hàm số f(x) liên tục tại x_{0} = 1. Đúng||Sai

    Đáp án là:

    Cho hàm số f(x) = \left\{ \begin{matrix}- \dfrac{x}{2}\ \ khi\ \ x \leq 1 \\\dfrac{x^{2} - 3x + 2}{x^{2} - 1}\ \ khi\ \ x > 1 \\\end{matrix} ight.. Các kết luận dưới đây đúng hay sai?

    a)\ \lim_{x ightarrow 0}f(x) = - \
2. Sai||Đúng

    b)\ \lim_{x ightarrow 3}f(x) = + \
\infty. Sai||Đúng

    c)\lim_{x ightarrow + \ \infty}f(x) =
1. Đúng||Sai

    d) Hàm số f(x) liên tục tại x_{0} = 1. Đúng||Sai

    a) Sai

    \lim_{x ightarrow 0}f(x) = \lim_{x
ightarrow 0}\left( - \frac{x}{2} ight) = 0.

    b) Sai

    \lim_{x ightarrow 3}f(x) = \lim_{xightarrow 3}\left( \frac{x^{2} - 3x + 2}{x^{2} - 1} ight) =\frac{1}{4}.

    c) Đúng

    \lim_{x ightarrow + \ \infty}f(x) =
\lim_{x ightarrow + \ \infty}\left( \frac{x^{2} - 3x + 2}{x^{2} - 1}
ight)

    = \lim_{x ightarrow + \ \infty}\left(
\frac{x - 2}{x + 1} ight) = \lim_{x ightarrow + \ \infty}\left( 1 -
\frac{3}{x + 1} ight) = 1.

    d) Đúng

    Ta có:

    f(1) = - \frac{1}{2}\lim_{x ightarrow 1^{-}}f(x) = \lim_{x
ightarrow 1^{-}}\left( - \frac{x}{2} ight) = -
\frac{1}{2}.

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{x
ightarrow 1^{+}}\left( \frac{x^{2} - 3x + 2}{x^{2} - 1} ight) =
\lim_{x ightarrow 1^{+}}\left( \frac{x - 2}{x + 1} ight) = -
\frac{1}{2}.

    Vậy f(1) = \lim_{x ightarrow 1^{-}}f(x)
= \lim_{x ightarrow 1^{+}}f(x) nên hàm số f(x) liên tục tại x_{0} = 1.

  • Câu 25: Thông hiểu

    Hàm số y = \sin 2x nghịch biến trên khoảng nào sau đây?

     Hàm số y = \sin 2x tuần hoàn với chu kì T = \frac{{2\pi }}{2} = \pi

    Do hàm số y=\sin x nghịch biến trên \left( {\frac{\pi }{2} + k2\pi ;\frac{{3\pi }}{2} + k2\pi } ight)

    => Hàm số y = \sin{2x} nghịch biến khi 

    \begin{matrix}  \dfrac{\pi }{2} + k2\pi  < 2x < \dfrac{{3\pi }}{2} + k2\pi  \hfill \\   \Rightarrow \dfrac{\pi }{4} + k\pi  < x < \dfrac{{3\pi }}{4} + k\pi  \hfill \\ \end{matrix}

    Vậy đáp án đúng là \left( {\frac{\pi }{2};\pi } ight)

  • Câu 26: Nhận biết

    Trong các mệnh đề sau đây, mệnh đề nào sai?

    Hai đường thẳng phân biệt m,n cùng song song với (\alpha) thì m,n có thể cắt nhau cùng nằm trong (\alpha).

  • Câu 27: Thông hiểu

    Biết rằng \lim_{x ightarrow
3}\frac{x^{2} - 5x + 6}{x^{2} - 9} = \frac{a}{b}, với \frac{a}{b} là phân số tối giản và a,b\mathbb{\in N}. Tính a + b.

    Ta có:

    \lim_{x ightarrow 3}\frac{x^{2} - 5x +
6}{x^{2} - 9} = \lim_{x ightarrow 3}\frac{(x - 2)(x - 3)}{(x - 3)(x +
3)}

    = \lim_{x ightarrow 3}\frac{x - 2}{x +3} = \frac{1}{6} = \frac{a}{b} \Rightarrow a = 1,b = 6.

    Vậy: a + b = 7.

  • Câu 28: Vận dụng

    Cho bảng dữ liệu như sau

    Đại diện A

    Tần số

    [0; 10)

    6

    [10; 20)

    24

    [20; 30)

    x

    [30; 40)

    16

    [40; 50)

    9

    Tính giá trị của x. Biết trung vị của mẫu dữ liệu ghép nhóm là 32.

    Ta có:

    Đại diện A

    Tần số

    Tần số tích lũy

    [0; 10)

    6

    6

    [10; 20)

    24

    30

    [20; 30)

    25

    55

    [30; 40)

    x

    55 + x

    [40; 50)

    9

    64 + x

    Tổng

    N = 64 + x

     

    Trung vị là 24 => Nhóm chứa trung vị là [20; 30)

    \Rightarrow \left\{ \begin{matrix}l = 20;\dfrac{N}{2} = \dfrac{64 + x}{2} \\m = 30;f = 25,c = 10 \\\end{matrix} ight.

    M_{e} = l + \dfrac{\left( \dfrac{N}{2} - might)}{f}.c

    24 = 20 + \dfrac{\dfrac{64 + x}{2} -30}{25}.10

    \Leftrightarrow 16 = x

  • Câu 29: Nhận biết

    Cho cấp số cộng \left( u_{n}
ight)u_{1} = - 5d = 3. Mệnh đề nào sau đây đúng?

    Ta có

    \left\{ \begin{matrix}
u_{1} = - 5 \\
d = 3 \\
\end{matrix} ight.\ \overset{CTTQ}{ightarrow}u_{13} = u_{1} + (13 -
1)d = - 5 + 3(13 - 1) = 31

  • Câu 30: Vận dụng

    Cho tứ diện đều S.ABC. Gọi I là trung điểm của AB, M là một điểm lưu động trên đoạn AI. Qua M vẽ mặt phẳng (∝) // (SIC). Khi đó thiết diện của mặt phẳng (∝) và tứ diện S.ABC là:

    Qua M kẻ đường thẳng song song với IC cắt AC tại E và kẻ đường thẳng song song với SI cắt SA tại D.

    Khi đó thiết diện của mặt phẳng (α)) với tứ diện S.ABC là tam giác MED

    Lại có: MD // SI => \frac{{AM}}{{AI}} = \frac{{MD}}{{SI}} (1)

    ME // IC => \frac{{AM}}{{AI}} = \frac{{ME}}{{IC}} (2)

    Từ (1) và (2) suy ra: \frac{{ME}}{{IC}} = \frac{{MD}}{{SI}}

    Vì S.ABC là tứ diện đều nên SI = CI (vì hai tam giác SAB và CAB là hai tam giác bằng nhau nên hai đường trung tuyến tương ứng bằng nhau)

    Suy ra MD = ME

    Vậy tam giác MED cân tại M.

  • Câu 31: Nhận biết

    Nếu các dãy số \left( u_{n}
ight),\left( v_{n} ight) thỏa mãn \lim u_{n} = 4 và \lim v_{n} = 3 thì \lim\left( u_{n} + v_{n} ight) bằng:

    Ta có \lim\left( u_{n} + v_{n} ight) =
\lim u_{n} + \lim v_{n} = 7.

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình bình hành. M là trung điểm của SC. Hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là điểm nào sau đây?

    Do mặt phẳng (MAB) chứa AB // CD nên giao tuyến của (MAB) với (SCD) là đường thẳng đi qua M và song song với AB.

    Giả sử đường thẳng này cắt SD tại điểm I.

    Khi đó MI là đường trung bình của tam giác SCD

    => I là trung điểm của SD.

    Vậy hình chiếu song song của điểm M theo phương AB lên mặt phẳng (SAD) là trung điểm của SD.

  • Câu 33: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề dưới đây:

    Theo định nghĩa về vị trí tương đối của hai đường thẳng trong không gian thì đáp án đúng là: " Hai đường thẳng chéo nhau thì không có điểm chung."

  • Câu 34: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) xác định trên \mathbb{R} thỏa mãn \lim_{x ightarrow 2}\frac{f(x) - 16}{x - 2} =
12. Tính giới hạn \lim_{x
ightarrow 2}\frac{\sqrt[3]{5f(x) - 16} - 4}{x^{2} + 2x -
8}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 35: Nhận biết

    Tìm chu kì của hàm số y = \sin\left( 5x - \frac{\pi}{4}
ight)?

    Hàm số y = \sin(ax + b) tuần hoàn với chu kì T =
\frac{2\pi}{|a|}

    Áp dụng công thức trên ta suy ra hàm số y
= \sin\left( 5x - \frac{\pi}{4} ight) tuần hoàn với chu kì T = \frac{2\pi}{5}.

  • Câu 36: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Số đường thẳng chứa cạnh của hình lập phương chéo nhau với đường thẳng AB là:

    Các đường thẳng chéo nhau với cạnh AB là CC',DD',C'B',D'A'.

  • Câu 37: Vận dụng

    Một hình chóp có tổng số đỉnh và số cạnh bằng 14. Tìm số cạnh của đa giác đáy?

    Một hình chóp có đáy là đa giác n cạnh thì có n + 1 đỉnh và 2n + 1 cạnh

    Tổng số đỉnh và số cạnh bằng 14

    \begin{matrix}
   \Leftrightarrow n + 1 + 2n + 1 = 14 \hfill \\
   \Leftrightarrow 3n + 2 = 14 \hfill \\
   \Leftrightarrow 3n = 12 \hfill \\
   \Leftrightarrow n = 4 \hfill \\ 
\end{matrix}

    => Số cạnh đáy của hình chóp là: 4.

  • Câu 38: Thông hiểu

    Biết giới hạn \lim\left( - 2n^{3} - 5n +
9 ight) = a\lim\frac{4^{n} +
3}{1 + 3 \cdot 4^{n + 1}} = b. Khi đó:

    a) Tích a.b = 3. Sai||Đúng

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D(a;1brack. Đúng||Sai

    c) Giá trị b là số lớn hơn 0. Đúng||Sai

    d) Phương trình lượng giác \cos x =
b vô nghiệm. Sai||Đúng

    Đáp án là:

    Biết giới hạn \lim\left( - 2n^{3} - 5n +
9 ight) = a\lim\frac{4^{n} +
3}{1 + 3 \cdot 4^{n + 1}} = b. Khi đó:

    a) Tích a.b = 3. Sai||Đúng

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D(a;1brack. Đúng||Sai

    c) Giá trị b là số lớn hơn 0. Đúng||Sai

    d) Phương trình lượng giác \cos x =
b vô nghiệm. Sai||Đúng

    Ta có: \lim\left( - 2n^{3} - 5n + 9
ight) = \lim n^{3}\left( - 2 - \frac{5}{n^{2}} + \frac{9}{n^{3}}
ight) = - \infty,

    Do \left\{ \begin{matrix}
\lim n^{3} = + \infty \\
\lim\left( - 2 - \frac{5}{n^{2}} + \frac{9}{n^{3}} ight) = - 2 \\
\end{matrix} ight.

    \lim\frac{4^{n} + 3}{1 + 3 \cdot 4^{n +
1}} = \lim\frac{4^{n} + 3}{1 + 12 \cdot 4^{n}}

    = \lim\frac{4^{n}\left( 1 +
\frac{3}{4^{n}} ight)}{4^{n}\left( \frac{1}{4^{n}} + 12 ight)} =
\lim\frac{1 + \frac{3}{4^{n}}}{\frac{1}{4^{n}} + 12} =
\frac{1}{12}

    a) Tích a.b = - \infty

    b) Hàm số y = \sqrt{1 - x} có tập xác định là D( -
\infty;1brack

    c) Giá trị \frac{1}{12} là số lớn hơn 0

    d) Phương trình lượng giác \cos x =
\frac{1}{12} có nghiệm

    Kết luận:

    a) Sai

    b) Đúng

    c) Đúng

    d) Sai

  • Câu 39: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{{x^2} - 3x + 2}}{{\left| {x - 1} ight|}}{\text{   khi }}x e 1} \\   {{\text{m                  khi }}x = 1} \end{array}} ight. liên tục trên \mathbb{R}?

    Ta có:

    Hàm số f(x) liên tục trên các khoảng ( - \infty;1),(1; + \infty). Khi đó hàm số đã cho liên tục trên \mathbb{R} khi và chỉ khi nó liên tục tại x = 1, tức là ta cần có:

    \lim_{x ightarrow 1}f(x) =f(1)

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{-}}f(x) = f(1)\ \ (*)

    Ta lại có:

    f(x) = \left\{ \begin{matrix}x - 2\ \ \ khi\ x > 1 \\m\ \ \ \ \ \ \ \ khi\ x < 1 \\2 - x\ \ \ \ \ khi\ x = 1 \\\end{matrix} ight.

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{+}}(x - 2) = - 1

    \lim_{x ightarrow 1^{-}}f(x) = \lim_{xightarrow 1^{-}}(2 - x) = 1

    Khi đó (*) không thỏa mãn với mọi m\mathbb{\in R}

    Vậy không tồn tại giá trị nào của tham số m thỏa mãn điều kiện đề bài.

  • Câu 40: Vận dụng

    Giải phương trình \sqrt 3 \cos \left( {x + \frac{\pi }{2}} ight) + \sin \left( {x - \frac{\pi }{2}} ight) = 2\sin 2x?

     

    Ta có \cos \left( {x + \frac{\pi }{2}} ight) =  - \sin x và .\sin \left( {x - \frac{\pi }{2}} ight) =  - \cos x

    Do đó phương trình \Leftrightarrow  - \sqrt 3 \sin x - \cos x = 2\sin 2x

    \Leftrightarrow \sqrt 3 \sin x + \cos x =  - 2\sin 2x

    \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin x + \frac{1}{2}\cos x =  - \sin 2x

    \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} ight) =  - \sin 2x

    \Leftrightarrow \sin \left( {x + \frac{\pi }{6}} ight) = \sin \left( { - 2x} ight)

    \Leftrightarrow \left[ \begin{gathered}  x + \frac{\pi }{6} =  - 2x + k2\pi  \hfill \\  x + \frac{\pi }{6} = \pi  + 2x + k2\pi  \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x =  - \frac{\pi }{{18}} + k\frac{{2\pi }}{3} \hfill \\  x =  - \frac{{5\pi }}{6} - k2\pi  \hfill \\ \end{gathered}  ight.{\text{ }}\left( {k \in \mathbb{Z}} ight)

    Xét nghiệm x =  - \frac{{5\pi }}{6} - k2\pi \xrightarrow[{k \in \mathbb{Z},{\text{ }}k' \in \mathbb{Z}}]{{k =  - 1 - k'}}x = \frac{{7\pi }}{6} + k'2\pi.

    Vậy phương trình có nghiệm x =  - \frac{\pi }{{18}} + k\frac{{2\pi }}{3},{\text{ }}x = \frac{{7\pi }}{6} + k'2\pi {\text{ }}\left( {k,k' \in \mathbb{Z}} ight).

  • Câu 41: Nhận biết

    Dãy số nào sau đây không phải là cấp số nhân?

    Dãy 1;\ \ 2;\ \ 4;\ \ 8;\ \ 16 là cấp số nhân với công bội q =
2.

    Dãy 1;  - 1; 1;  - 1;1 là cấp số nhân với công bội q = -
1.

    Dãy 1;\ \  - 2;\ \ 4;\ \  - 8;\ \
16 là cấp số nhân với công bội q =
- 2.

    Dãy 1;2;3; 4;5 là cấp số cộng với công sai d = 1.

  • Câu 42: Thông hiểu

    Ba số hạng đầu của một cấp số nhân là x - 6;xy. Tìm y biết rằng công bội của cấp số nhân là 6?

    Ta có:

    Ba số hạng đầu của một cấp số nhân là x -
6;xy có công bội q = 6

    \Rightarrow \left\{ \begin{matrix}u_{1} = x - 6;q = 6 \\x = u_{2} = u_{1}q = 6(x - 6) \\y = u_{3} = u_{2}q^{2} = 36x \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}x = \dfrac{36}{5} \\y = 36.\dfrac{36}{5} = \dfrac{1296}{5} \\\end{matrix} ight.

  • Câu 43: Vận dụng

    Tính tổng S = -
2 + 4 - 8 + 16 - 32 + 64 - ... + ( - 2)^{n - 1} + ( - 2)^{n} với n \geq 1,n\mathbb{\in N}.

    Các số hạng - 2;4; - 8;16; - 32;64;...;(
- 2)^{n - 1};( - 2)^{n} có tổng S gồm có n số hạng theo thứ tự đó lập thành một cấp số nhân có u_{1} = -
2;q = - 2

    \Rightarrow S = S_{n} = u_{1}.\frac{1 -
q^{n}}{1 - q}

    \Rightarrow S = ( - 2).\frac{1 - ( -
2)^{n}}{3}

  • Câu 44: Nhận biết

    Tìm chu kì T của hàm số y = \sin\left( 5x- \frac{\pi}{4} ight)

    Hàm số y = sin(ax + b) tuần hoàn với chu kì T = \frac{2\pi}{|a|}

    => y = \sin\left( 5x- \frac{\pi}{4} ight) tuần hoàn với chu kì T =\frac{2\pi}{5}

  • Câu 45: Thông hiểu

    Kết luận nào đúng về tập nghiệm của phương trình \cos\left( \frac{\pi}{3} + \pi x
ight) = \sin(\pi x)?

    Ta có:

    \cos\left( \frac{\pi}{3} + \pi x ight)
= \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{2}
- \frac{\pi}{3} - \pi x ight) = \sin(\pi x)

    \Leftrightarrow \sin\left( \frac{\pi}{6}
- \pi x ight) = \sin(\pi x)

    \Leftrightarrow \left\lbrack\begin{matrix}\pi x = \dfrac{\pi}{6} - \pi x + k2\pi \\\pi x = \pi - \dfrac{\pi}{6} + \pi x + k2\pi(L) \\\end{matrix} ight.

    \Leftrightarrow x = \frac{1}{12} +
k;\left( k\mathbb{\in Z} ight)

    Vậy tập nghiệm của phương trình đã cho là \pi x = \frac{\pi}{6} - \pi x +
k2\pi.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 11 Kết nối tri thức Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 20 lượt xem
Sắp xếp theo