Biết bốn số theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức
bằng
Ta có:
Biết bốn số theo thứ tự lập thành cấp số cộng. Giá trị của biểu thức
bằng
Ta có:
Cho mặt phẳng và hai đường thẳng
. Khẳng định nào sau đây đúng?
Xét phương án “Nếu và
thì
” ta có:
Nếu thì
hoặc
chéo
, vậy phương án sai.
Xét phương án “Nếu và
thì
.” ta có:
Nếu thì
hoặc
, vậy phương án sai.
Xét phương án “Nếu và
thì
.” ta có:
Nếu , vậy phương án đúng.
Xét phương án “Nếu và
thì
” ta có:
Nếu thì
hoặc
chéo
hoặc
cắt
, vậy phương án sai.
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
Số học sinh |
5 |
9 |
12 |
10 |
6 |
a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai
b) Nhóm chứa trung vị của mẫu số liệu là . Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: . Đúng||Sai
d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là . Sai||Đúng
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
Số học sinh |
5 |
9 |
12 |
10 |
6 |
a) Điểm kiểm tra trung bình của học sinh lớp 11A khoảng 51 điểm. Đúng||Sai
b) Nhóm chứa trung vị của mẫu số liệu là . Sai||Đúng
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là: . Đúng||Sai
d) Giá trị tứ phân vị thứ ba và mốt của mẫu dữ liệu lần lượt là . Sai||Đúng
a) Điểm trung bình của lớp 11A là:
b) Nhóm chứa trung vị của mẫu số liệu là
c) Nhóm chứa tứ phân vị thứ nhất của mẫu số liệu là:
Ta có:
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
|
Số học sinh |
5 |
9 |
12 |
10 |
6 |
N = 42 |
Tần số tích lũy |
5 |
14 |
26 |
36 |
42 |
|
Cỡ mẫu
=> Nhóm chứa là [60; 80)
(Vì 31,5 nằm giữa hai tần số tích lũy 26 và 36)
Khi đó ta tìm được các giá trị:
Mốt thuộc nhóm
Ta có:
Điểm |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
Số học sinh |
5 |
9 |
12 |
10 |
6 |
|
|
|
Khi đó mốt của dữ liệu được tính như sau:
Giá trị của bằng:
Chia cả tử và mẫu cho ta có được.
Khẳng định nào sau đây là đúng khi nói về đường tròn lượng giác
?
Mỗi đường tròn định hướng có bán kính , tâm trùng với gốc tọa độ là một đường tròn lượng giác.
Trong các khẳng định sau khẳng định nào sai?
Giả sử song song với
. Một đường thẳng
song song với
có thể nằm trên
.
Cho tứ diện . Gọi
lần lượt là trung điểm các cạnh
và
;
là trọng tâm tam giác
. Khi đó giao điểm của đường thẳng
và
là
Hình vẽ minh họa
Trong gọi
, mà
Giá trị của giới hạn là:
Ta có:
Cho hình chóp S.ABCD đấy ABCD là hình bình hành tâm O. gọi M, N lần lượt là trung điểm của SA và SB. Giao tuyến của hai mặt phẳng (MNC) và (ABD) là đường nào trong các đường thẳng sau đây?
Hình vẽ minh họa
Xét tam giác SAB có:
M và N lần lượt là trung điểm của SA và SB
=> MN là đường trung bình của tam giác SAB
Mà (ABCD là hình bình hành)
=>
Mặt phẳng (MNC) và (ABD) (hay (ABCD)) lần lượt chứa hai đường thẳng MN và CD song song với nhau và điểm C chung
=> Giao tuyến của hai mặt phẳng này là đường thẳng đi qua điểm chung C và song song với AB là đường thẳng CD
Hay
Tính tổng 10 số hạng đầu của cấp số cộng .
Theo bài ra ta có:
Cho các số thực thỏa mãn
và
. Tính giá trị biểu thức
.
Ta có:
Khi và chỉ khi: .
Kết hợp với
Khi đó và
(vì
Vậy nên
.
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục tại
. Sai||Đúng
b) Cho hàm số liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết khi đó
Sai||Đúng
d) Trong các hàm số , có 3 hàm số liên tục trên tập số thực. Đúng||Sai
Nhận định sự đúng sai của các kết luận sau?
a) Hàm số liên tục tại
. Sai||Đúng
b) Cho hàm số liên tục trên đoạn
và
. Khi đó phương trình
có ít nhất một nghiệm trên khoảng
. Đúng||Sai
c) Biết khi đó
Sai||Đúng
d) Trong các hàm số , có 3 hàm số liên tục trên tập số thực. Đúng||Sai
a) Vì không tồn tại f(2) nên hàm số đã cho gián đoạn tại x = 2.
b) Xét phương trình
Đặt ta có:
Vậy phương trình đã cho cót ít nhất một nghiệm thuộc khoảng .
c) Ta có:
d) Các hàm số liên tục trên tập số thực là .
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm các cạnh
và
,
là trung điểm cạnh
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) cắt mặt phẳng
Sai||Đúng
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm các cạnh
và
,
là trung điểm cạnh
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) cắt mặt phẳng
Sai||Đúng
Hình vẽ minh họa
a) Đúng
Vì lần lượt là trung điểm các cạnh
và
nên
là hình bình hành nên
.
b) Sai
Do không đồng phẳng nên
không thể song song với
c) Đúng
Do mà
.
d) Sai
Do là đường trung bình của tam giác
nên
, mà
nên
.
Xác định .
Ta có: .
Khẳng định nào sau đây sai?
Đáp án: “Hai mặt phẳng có một điểm chung thì chúng còn có vô số điểm chung khác nữa.” đúng vì:
TH1: Hai mặt phẳng phân biệt nếu có một điểm chung thì hai mặt phẳng đó có một đường thẳng chung (giao tuyến của hai mặt phẳng) do đó có hai mặt phẳng có vô số điểm chung.
TH2: Hai mặt phẳng không phân biệt thì chúng có vô số điểm chung (vì hai mặt phẳng trùng nhau)”
Đáp án: “Hai mặt phẳng phân biệt có một điểm chung thì chúng có một đường thẳng chung duy nhất” đúng vì tập hợp các điểm chung của hai mặt phẳng phân biệt là một đường thẳng.
Đáp án: “Hai mặt phẳng có một điểm chung thì chúng có một đường thẳng chung duy nhất.” sai vì chưa xét đến trường hợp hai mặt phẳng không phân biệt.
Đáp án: “Nếu ba điểm A, B, C phân biệt cùng thuộc hai mặt phẳng phân biệt thì chúng thẳng hàng.” đúng vì khi đó ba điểm A, B, C cùng nằm trên giao tuyến của hai mặt phẳng do đó ba điểm A, B, C thẳng hàng.
Cho các hàm số sau, hàm số nào là hàm số lẻ?
Ta có:
Ta kiểm tra được và
là hàm số không chẵn không lẻ
là hàm số chẵn
là hàm số lẻ
Vậy là hàm số lẻ
Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:
Ta có:
Với những giá trị nào của x thì giá trị của các hàm số và
bằng nhau?
Xét phương trình hoành độ giao điểm: sin 3x = sin x
Cho dãy số (un) được xác định bởi .
Số hạng tổng quát un của dãy số là?
Ta có
Cộng vế với vế của các đẳng thức trên rồi rút gọn, ta được:
un = 2 + 2 ⋅ (2+3+…+n) − (n − 1)
= 2 + (n−1)(n+2) − n + 1
= n2 + 1
Giải phương trình ta được nghiệm âm lớn nhất và nghiệm dương nhỏ nhất lần lượt là:
Ta có:
Suy ra:
Nghiệm âm lớn nhất của phương trình là: ứng với
Nghiệm dương nhỏ nhất của phương trình là: ứng với
Khảo sát thời gian tập thể dục trong ngày của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm như sau:
Thời gian (phút) |
[0; 10) |
[10; 20) |
[20; 30) |
[30; 40) |
[40; 50) |
[50; 60) |
Số học sinh |
7 |
13 |
9 |
18 |
22 |
6 |
Nhóm chứa trung vị là:
Cỡ mẫu của bảng số liệu này là , nên nhóm chứa trung vị là nhóm chứa giá trị thứ
, suy ra đó là nhóm
Cho cấp số nhân (un) có u1 = 1; q = 2. Hỏi số 1024 là số hạng thứ mấy?
Ta có:
Cho hàm số có đồ thị như hình dưới đây. Chọn khẳng định đúng.
Dựa vào đồ thị ta thấy hàm số liên tục trên
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của (kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Tại một xưởng sản xuất bột đá thạch anh, giá bán (tính theo nghìn đồng) của (kg) bột đá thạch anh được tính theo công thức sau:
(
là một hằng số). Với giá trị nào của
thì hàm số
liên tục trên
?
Đáp án: 200
Để hàm số liên tục trên
thì hàm số phải liên tục tại
hay
Ta có:
Để tồn tại thì
.
Suy ra
Giá trị của bằng:
Với số thực a>0 nhỏ tùy ý, ta chọn
Ta có:
Vậy A=2.
Trên đường tròn lượng giác, cung có số đo được biểu diễn bởi bao nhiêu điểm?
Xét theo chiều dương với ta thấy cung có số đo
được biểu diễn bởi ba điểm trên đường tròn lượng giác như sau:
bằng
Ta có:
Cường độ dòng điện trong một đoạn mạch là (A). Tại thời điểm
thì cường độ trong mạch có giá trị bằng.
Thay vào biểu thức cường độ dòng điện ta được:
.
Mỗi ngày, bạn Chi đều đi bộ để rèn luyện sức khoẻ. Quãng đường đi bộ mỗi ngày (đơn vị: km) của bạn Chi được thống kê lại ở bảng sau:
Quãng đường trung bình mà bạn Chi chạy được là?
Ta có bảng tần số ghép nhóm chứa giá trị đại diện như sau:
Cỡ mẫu là: n = 3 + 6 + 5 + 4 + 2 = 20.
Số trung bình của mẫu số liệu là:
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng |
Tần số |
[150; 155) |
15 |
[155; 160) |
10 |
[160; 165) |
40 |
[165; 170) |
27 |
[170; 175) |
5 |
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d) Đúng||Sai
Cho mẫu dữ liệu ghép nhóm như sau:
Đối tượng |
Tần số |
[150; 155) |
15 |
[155; 160) |
10 |
[160; 165) |
40 |
[165; 170) |
27 |
[170; 175) |
5 |
[175; 180) |
3 |
Xác định tính đúng sai của các phát biểu sau:
a) Nhóm chứa trung vị là [160; 165) Đúng||Sai
b) Nhóm chứa tứ phân vị thứ nhất là [165; 170) Sai||Đúng
c) Nhóm chứa tứ phân vị thứ ba là [155; 160) Sai||Đúng
d) Đúng||Sai
Ta có:
Đối tượng |
Tần số |
Tần số tích lũy |
[150; 155) |
15 |
15 |
[155; 160) |
11 |
26 |
[160; 165) |
39 |
65 |
[165; 170) |
27 |
92 |
[170; 175) |
5 |
97 |
[175; 180) |
3 |
100 |
Cỡ mẫu là:
=> trung vị thuộc nhóm [160; 165) (vì 50 nằm giữa hai tần số tích lũy 25 và 65)
=> tứ phân vị thứ nhất thuộc nhóm [155; 160) (vì 25 nằm giữa hai tần số tích lũy 15 và 26)
Do đó:
Khi đó tứ phân vị thứ nhất là:
=> tứ phân vị thứ ba nhóm [165; 170) (vì 75 nằm giữa hai tần số tích lũy 65 và 92)
Do đó:
Khi đó tứ phân vị thứ ba là:
Số nghiệm thuộc đoạn của phương trình:
Điều kiện xác định
Vậy có tất cả 15 nghiệm.
Cho hình lập phương cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?
Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho hình lập phương cạnh a. Gọi M là trung điểm của AB, N là tâm hình vuông
. Xác định các giao tuyến của hình lập phương
tạo với mặt phẳng
. Tính diện tích hình tạo bởi các giao tuyến.
Hình vẽ minh họa
Hình tạo bởi các giao tuyến được biểu diễn như hình vẽ.
Tứ giác là hình thang có
Ta có:
với
Thay giá trị các cạnh ta có
Điểm kiểm tra khảo sát môn Tiếng Anh của lớp 11A được ghi trong bảng số liệu ghép nhóm như sau:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
Số học sinh | 5 | 9 | 12 | 10 | 6 |
Tính giá trị trung vị của mẫu dữ liệu?
Ta có:
Điểm | [0; 20) | [20; 40) | [40; 60) | [60; 80) | [80; 100) |
|
Số học sinh | 5 | 9 | 12 | 10 | 6 | N = 42 |
Tần số tích lũy | 5 | 14 | 26 | 36 | 42 |
|
Cỡ mẫu
=> Nhóm chứa trung vị là [40; 60)
(Vì 21 nằm giữa hai tần số tích lũy 14 và 26)
Do đó:
Khi đó trung vị là:
Tìm tập xác định của hàm số
Hàm số xác định khi và chỉ khi
Vậy tập xác định
Chọn kết quả đúng của :
Ta có :
Vì nên suy ra:
Rút gọn biểu thức với
Ta có:
Hàm số nghịch biến trên khoảng nào sau đây?
Hàm số tuần hoàn với chu kì
Do hàm số nghịch biến trên
=> Hàm số nghịch biến khi
Vậy đáp án đúng là
Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?
Ta có
Vậy
Tính tổng 10 số hạng đầu tiên của cấp số nhân(un) có
Ta có:
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm của
và
. Đường thẳng
song song với đường thẳng nào?
Hình vẽ minh họa:
Dễ dàng thấy được: là đường trung bình của tam giác
.
Hàm số đạt giá trị nhỏ nhất tại
. Mệnh đề nào sau đây là đúng?
Ta có:
Mà
.
Suy ra giá trị nhỏ nhất của hàm số bằng .
Dấu xảy ra
Cho hình chóp có đáy
là hình thang
. Gọi
lần lượt là các điểm thuộc các cạnh
thỏa mãn
. Biết
và
là trung điểm của
. Phân tích sự đúng sai của các phát biểu dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Thiết diện tạo bởi mặt phẳng và mặt phẳng
là một hình thang. Sai||Đúng
Cho hình chóp có đáy
là hình thang
. Gọi
lần lượt là các điểm thuộc các cạnh
thỏa mãn
. Biết
và
là trung điểm của
. Phân tích sự đúng sai của các phát biểu dưới đây?
a) Đúng||Sai
b) Đúng||Sai
c) Đúng||Sai
d) Thiết diện tạo bởi mặt phẳng và mặt phẳng
là một hình thang. Sai||Đúng
Hình vẽ minh họa
Xét tam giác DBC có
Xét tam giác ABC có:
Suy ra ba điểm O; K; J thẳng hàng
Suy ra đúng
Tương tự ta cũng chúng minh được (Vì
)
Suy ra
Gọi F là trung điểm của SA khi đó
Mà tứ giác CDEF là hình bình hành nên CE // DF. Từ đó suy ra IH // CE.
Ta lại có: IJKH là thiết diện của hình chóp S.ABCD và (IJK) và nó không là hình thang.
Cho cấp số cộng có
và công sai
. Tổng 10 số hạng đầu của cấp số cộng bằng:
Tổng 10 số hạng đầu của cấp số cộng là
Cho tứ diện . Gọi
là trung điểm
là điểm thuộc cạnh
sao cho
, gọi
. Tìm giao tuyến của
và
. Giao tuyến của
và
cắt đoạn
tại mấy điểm.
Đáp án: 0
Cho tứ diện . Gọi
là trung điểm
là điểm thuộc cạnh
sao cho
, gọi
. Tìm giao tuyến của
và
. Giao tuyến của
và
cắt đoạn
tại mấy điểm.
Đáp án: 0
Hình vẽ minh họa
Trong mặt phẳng , có
.
Suy ra không thuộc đoạn
.
Ta có:
Mà không thuộc đoạn
nên giao tuyến của
và
không cắt đoạn
.