Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.
Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …
Cho cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; … Tìm số hạng tổng quát un của cấp số nhân đã cho.
Cấp số nhân có các số hạng lần lượt là 3; 9; 27; 81; …
Cho tứ diện cạnh bằng 1. Gọi
là trung điểm của
,
đối xứng với
qua
,
đối xứng với
qua
. Xác định các giao điểm của mặt phẳng
với các mặt của hình tứ diện. Tính diện tích hình tạo bởi các giao tuyến đó.
Hình vẽ minh họa
Gọi
Ta thấy tam giác MIH là thiết diện của hình chóp cắt bởi mặt phẳng.
Ta có M, C lần lượt là trung điểm của AB, BE nên H là trọng tâm ∆ABE.
Suy ra . Chứng minh tương tự ta có:
. Do đó ta có:
Tứ diện đều ABCD có cạnh bằng 1 nên
Áp dụng định lí cosin cho tam giác ta có:
Áp dụng công thức Hê- rông tính diện tích tam giác ta được:
Cho hình lập phương cạnh
. Mặt phẳng
đi qua tâm của hình lập phương và song song với
. Xác định các giao tuyến của mặt phẳng
và tứ diện
. Hình tạo bởi các giao tuyến đó có diện tích bằng bao nhiêu?
Hình vẽ minh họa:
Gọi I là tâm của hình lập phương
=> I là trung điểm của AC’.
Gọi (P) là mặt phẳng qua I và song song với (ABC).
Khi đó (P) cắt các đường thẳng AB’, B’C, CD’, AD’ lần lượt tại các trung điểm M, N, P, Q.
Khi đó
=> Hình tạo bởi các giao tuyến của mặt phẳng và tứ diện
là hình thoi MNPQ cạnh bằng
Mặt khác
Diện tích hình thoi MNPQ là
Cho hình chóp có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Cho hình chóp có đáy
là hình thang cân với cạnh bên
, đáy
. Mặt phẳng
song song với
và cắt các cạnh
tại M sao cho
. Tính diện tích thiết diện tạo bởi
và hình chóp
?
Cho hàm số . Tìm
để hàm số liên tục tại
Đáp án: -3||- 3
Cho hàm số . Tìm
để hàm số liên tục tại
Đáp án: -3||- 3
Xét
Hàm số liên tục tại
.
Tìm giá trị của a để hàm số liên tục tại
.
Ta có:
Hàm số liên tục tại
khi và chỉ khi
Cho hình chóp , có đáy
là hình bình hành. Phép chiếu song song theo phương
lên mặt phẳng
biến điểm
thành:
Do suy ra hình chiếu song song của điểm
theo phương
lên mặt phẳng
là điểm
.
Cho hình chóp có đáy
là hình bình hành. Lấy điểm
, mặt phẳng
đi qua
và song song với
. Giao điểm của mặt phẳng
với các cạnh
lần lượt tại
. Kết luận nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Tính
Ta có:
Vậy
Cho hàm số có giá trị nhỏ nhất và giá trị lớn nhất lần lượt là
,
. Tính giá trị của biểu thức
.
Ta có:
Nên .
Suy ra .
Cho tứ diện ABCD. Gọi E, F lần lượt là trung điểm của AB, CD và G là trọng tâm của tam giác BCD. Giao điểm của đường thẳng EG và mặt phẳng (ACD) là
Hình vẽ minh họa
Ta có và
=> Giao điểm của đường thẳng EG và mặt phẳng (ACD) là giao điểm của đường thẳng EG và AF.
Cho cấp số nhân có số hạng đầu
và công bội
. Số hạng thứ sáu của
là:
Ta có:
Cho hàm số xác định trên tập số thực và có đồ thị như hình vẽ:
Hỏi hàm số không liên tục tại điểm nào sau đây?
Quan sát đồ thị hàm số ta thấy:
Vậy nên không tồn tại
. Do đó hàm số gián đoạn tại
.
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm các cạnh
và
,
là trung điểm cạnh
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) cắt mặt phẳng
Sai||Đúng
Cho hình chóp có đáy
là hình bình hành tâm
. Gọi
lần lượt là trung điểm các cạnh
và
,
là trung điểm cạnh
. Khi đó:
a) Đúng||Sai
b) Sai||Đúng
c) Đúng||Sai
d) cắt mặt phẳng
Sai||Đúng
Hình vẽ minh họa
a) Đúng
Vì lần lượt là trung điểm các cạnh
và
nên
là hình bình hành nên
.
b) Sai
Do không đồng phẳng nên
không thể song song với
c) Đúng
Do mà
.
d) Sai
Do là đường trung bình của tam giác
nên
, mà
nên
.
Cho dãy số , biết
. Tìm số hạng
Ta có:
Tính tứ phân vị thứ nhất cho dữ liệu dưới đây:
Cân nặng (kg) | [32; 35) | [35; 38) | [38; 41) | [41; 44) | [44; 47) |
Số người | 14 | 60 | 95 | 24 | 7 |
Ta có:
Cân nặng (kg) | [32; 35) | [35; 38) | [38; 41) | [41; 44) | [44; 47) |
Số người | 14 | 60 | 95 | 24 | 7 |
Tần số tích lũy | 14 | 74 | 169 | 193 | 200 |
Ta có:
=> Nhóm chứa là [35; 38)
Khi đó ta tìm được các giá trị:
bằng
Ta có:
Trong các mệnh đề sau mệnh đề nào sai?
Tính chất của phép chiếu song song: Phép chiếu song song biến hai đường thẳng song song thành hai đường thẳng song song hoặc trùng nhau.
Tập nghiệm của phương trình là
Ta có
.
Tổng S = sin(x) + sin(2x) + … + sin(nx) (với x ≠ kπ ) có công thức thu gọn là?
Ta có
Vậy
Cho hai mặt phẳng và
song song với nhau. Mệnh đề nào sau đây sai?
Đáp án “Đường thẳng và đường thẳng
thì
” sai vì nếu
và đường thẳng
thì
và
có thể chéo nhau.
Cho cấp số nhân (un) có tổng n số hạng đầu tiên là . Tìm số hạng đầu và công bội của cấp số nhân đó?
Ta có:
Cho hai đường thẳng chéo nhau a và b. Lấy A, B thuộc a và C, D thuộc b. Khẳng định nào sau đây đúng khi nói về hai đường thẳng AD và BC?
Ta có:
Hai đường thẳng a và b chéo nhau nên A, B, C, D không đồng phẳng.
=> Hai đường thẳng AD và BC chéo nhau.
Nhóm số liệu ghép nhóm có dạng . Khi đó giá trị đại diện của nhóm tính bằng công thức nào sau đây?
Giá trị đại diện của một nhóm số liệu là trung bình cộng giá trị hai đầu mút của nhóm số liệu.
Công thức tính giá trị đại diện của nhóm là
Chiều cao của 50 học sinh (chính xác đến cm) và nhóm được các kết quả như sau:
Chiều cao (cm) | Số học sinh |
[150; 154] | 5 |
[155; 159] | 2 |
[160; 164] | 6 |
[165; 169] | 8 |
[170; 174] | 9 |
[175; 179] | 11 |
[180; 184] | 6 |
[185; 189] | 3 |
Tìm trung vị của mẫu số liệu ghép nhóm trên. (Làm tròn đến chữ số thập phân thứ nhất).
Ta có:
Chiều cao (cm) | Số học sinh | Tần số tích lũy |
(149,5; 154,5] | 5 | 5 |
(154,5; 159,5] | 2 | 7 |
(159,5; 164,5] | 6 | 13 |
(164,5; 169,5] | 8 | 21 |
(169,5; 174,5] | 9 | 30 |
(174,5; 179,5] | 11 | 41 |
(179,5; 184,5] | 6 | 47 |
(184,5; 189,5] | 3 | 50 |
Tổng | N = 50 |
|
Ta có:
=> Nhóm chứa trung vị là
Khi đó:
Trung vị của mẫu số liệu là:
Hàm số nào sau đây có chu kì khác ?
Hàm số có chu kì
.
Hàm số có chu kì
.
Hàm số có chu kì
.
Hàm số có chu kì
.
Xác định giới hạn
Ta có:
Chọn khẳng định đúng trong các khẳng định sau:
Theo công thức cộng
.
Cho dãy số có các số hạng đầu là 0,1; 0,001;0,0001; ... Số hạng tổng quát của dãy số có dạng?
Ta có:
Số hạng thứ 1 có 1 chữ số 0;
Số hạng thứ 2 có 2 chữ số 0;
Số hạng thứ 3 có 3 chữ số 0;
Suy ra có chữ số 0.
Công thức số hạng tổng quát của dãy số là:
Cho cấp số cộng có số hạng đầu
và công sai
. Giá trị
bằng
Áp dụng công thức số hạng tổng quát
.
Trong không gian cho bốn điểm không đồng phẳng. Có thể xác định được bao nhiêu mặt phẳng phân biệt từ các điểm đã cho?
Vì điểm không đồng phẳng tạo thành một tứ diện mà tứ diện có
mặt.
Dữ liệu được cho dưới đây biểu hiện thu nhập hàng ngày của các gia đình trong khu vực ở.
Thu nhập (nghìn đồng) | Hộ gia đình |
[0; 100) | 5 |
[100; 200) | 7 |
[200; 300) | 12 |
[300; 400) | 18 |
[400; 500) | 16 |
[500; 600) | 10 |
[600; 700) | 5 |
Tìm thu nhập trung bình của các hộ gia đình.
Ta có:
Thu nhập đại diện (nghìn đồng) | Hộ gia đình | Tích các giá trị |
50 | 5 | 250 |
150 | 7 | 1050 |
250 | 12 | 3000 |
350 | 18 | 6300 |
450 | 16 | 7200 |
550 | 10 | 5500 |
650 | 5 | 3250 |
Tổng | N = 73 | 26550 |
Thu nhập trung bình của các hộ gia đình là:
Giá trị lớn nhất của hàm số tại điểm là nghiệm của phương trình nào dưới đây?
Theo bài ra ta có:
Phương trình (*) có nghiệm
Vậy giá trị lớn nhất của hàm số bằng 1 lúc đó
Tìm số cạnh của một hình chóp có đáy là một bát giác:
Do đáy hình chóp là bát giác nên số cạnh đáy và số cạnh bên của hình chóp đều bằng 8.
Vậy hình chóp có 16 cạnh.
Cung tròn bán kính bằng 8,43cm có số đo 3,85 rad có độ dài là?
Độ dài cung tròn là
Phương trình có bao nhiêu nghiệm thuộc khoảng
?
Điều kiện xác định:
Do
Vậy có tất cả 38 nghiệm
Tính tổng :
Ta có:
Tìm số nghiệm của phương trình trên đoạn
.
Ta có:
Vì nên
. Do đó phương trình
Vì nên
.
Khảo sát thời gian học của học sinh trong một ngày được ghi trong bảng sau:
Khoảng thời gian học (phút) | [10; 20) | [20; 30) | [30; 40) | [40; 50) | [50; 60) | [60; 70) | [70; 80) |
Tần số | 2 | 3 | 14 | 8 | 3 | 8 | 2 |
Số học sinh có thời gian học nhỏ hơn 40 phút chiếm bao nhiêu phần trăm?
Số học sinh tham gia khảo sát là: 40 học sinh.
Số học sinh có thời gian học ít hơn 40 phút là: 19 học sinh chiếm
Giá trị của giới hạn bằng:
Ta có:
Biết , trong đó
là hai số nguyên dương và phân số
tối giản. Tính giá trị của biểu thức
Ta có:
Cho cấp số cộng thỏa mãn
. Tính số hạng đầu tiên
và công sai
của cấp số cộng đã cho.
Ta có:
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Nhóm chứa trung vị của mẫu số liệu là: [100; 150)||[200; 250)||[150; 200)||[50; 100)
Thực hiện khảo sát chi phí thanh toán cước điện thoại trong 1 tháng của cư dân trong một chung cư thu được kết quả ghi trong bảng sau:
Số tiền (nghìn đồng) | Số người |
[0; 50) | 5 |
[50; 100) | 12 |
[100; 150) | 23 |
[150; 200) | 17 |
[200; 250) | 3 |
Nhóm chứa trung vị của mẫu số liệu là: [100; 150)||[200; 250)||[150; 200)||[50; 100)
Ta có:
Số tiền (nghìn đồng) | Số người | Tần số tích lũy |
[0; 50) | 5 | 5 |
[50; 100) | 12 | 17 |
[100; 150) | 23 | 40 |
[150; 200) | 17 | 57 |
[200; 250) | 3 | 60 |
| N = 60 |
|
Cỡ mẫu là:
=> Nhóm chứa trung vị là [100; 150) (vì 30 nằm giữa hai tần số tích lũy 17 và 40)
Cho hàm số . Có bao nhiêu giá trị của tham số m thuộc đoạn [0; 10] để giá trị nhỏ nhất của hàm số nhỏ hơn -2?
Ta có:
y.(cosx + 2) = 1 – m.sinx
=> m.sinx + y.cosx = 1 – 2y
Phương trình có nghiệm khi
Nghiệm của phương trình là
=>
=>
Theo yêu cầu bài toán ta có:
Mặt khác m thuộc đoạn [0; 10] nên m = {5; 6; 7; 8; 9; 10}
Xác định giới hạn của dãy số là:
Ta có: