Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 2: Vận dụng cao

    Bất phương trình {25^{ - {x^2} + 2x + 1}} + {9^{ - {x^2} + 2x + 1}} \geqslant {34.15^{ - {x^2} + 2x}} có tập nghiệm là:

    Ta có:  {25^{ - {x^2} + 2x + 1}} + {9^{ - {x^2} + 2x + 1}} \geqslant {34.15^{ - {x^2} + 2x}}

    \Leftrightarrow {\left( {\frac{5}{3}} ight)^{2\left( { - {x^2} + 2x + 1} ight)}} + 1 \geqslant \frac{{34}}{{15}}.{\left( {\frac{5}{3}} ight)^{\left( { - {x^2} + 2x + 1} ight)}}

    \Leftrightarrow \left[ \begin{gathered}  0 \leqslant x \leqslant 2 \hfill \\  x \leqslant 1 - \sqrt 3  \hfill \\  x \geqslant 1 + \sqrt 3  \hfill \\ \end{gathered}  ight.

    Vậy S = \left( { - \infty ;1 - \sqrt 3 } ight] \cup \left[ {0;2} ight] \cup \left[ {1 + \sqrt 3 ; + \infty } ight).

  • Câu 3: Nhận biết

    Tìm số mặt của hình đa diện dưới đây là?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 4: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 5: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Gọi MN lần lượt là trung điểm của các cạnh ABAD; H là giao điểm của CNDM. Biết SH vuông góc với mặt phẳng (ABCD)SH =a \sqrt 3. Tính thể tích khối chóp S.CDNM.

     

    Theo giả thiết, ta có SH = a\sqrt 3.

    Diện tích tứ giác:

    {S_{CDNM}} = {S_{ABCD}} - {S_{\Delta AMN}} - {S_{\Delta BMC}}

    = A{B^2} - \frac{1}{2}AM.AN - \frac{1}{2}BM.BC = {a^2} - \frac{{{a^2}}}{8} - \frac{{{a^2}}}{4} = \frac{{5{a^2}}}{8}

    Vậy  {V_{S.CDNM}} = \frac{1}{3}{S_{CDNM}}.SH = \frac{{5{a^3}\sqrt 3 }}{{24}}.

  • Câu 6: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho (S):(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
1 và điểm A(2;2;2). Xét các điểm M \in (S) sao cho đường thẳng AM luôn tiếp xúc với (S). Điểm M luôn thuộc một mặt phẳng cố định có phương trình là

    Tọa độ tâm mặt cầu là:I(1;1;1)

    Gọi M(x;y;z) khi đó: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;y - 2;z - 2) \\
\overrightarrow{IM} = (x - 1;y - 1;z - 1) \\
\end{matrix} ight..

    Theo đề bài ra ta có:

    \overrightarrow{AM}.\overrightarrow{IM}
= 0

    \Leftrightarrow (x - 2)(x - 1) + (y -
2)(y - 1) + (z - 2)(z - 1) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
3x - 3y - 3z + 6 = 0(*)

    Mặt khác phương trình mặt cầu

    (S):(x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2} = 1

    \Rightarrow x^{2} + y^{2} + z^{2} - 2x -
2y - 2z + 2 = 0(**)

    Lấy (*) trừ (**) ta được: x + y + z - 4 =
0.

  • Câu 7: Vận dụng

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

  • Câu 8: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có đường tiệm cận đứng là:

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow - 1^{-}}f(x) = +
\infty;\lim_{x ightarrow - 1^{+}}f(x) = - \infty

    Suy ra đồ thị hàm số có tiệm cận đứng là đường thẳng x = - 1

  • Câu 9: Nhận biết

    Số giao điểm của hai đồ thị hàm số y =
f(x)y = g(x) bằng số nghiệm phân biệt của phương trình nào sau đây?

    Hoành độ giao điểm là nghiệm của phương trình f(x) = g(x) hay f(x) - g(x) = 0.

  • Câu 10: Thông hiểu

    Viết biểu thức Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} = {x^{\frac{1}{2}}}.{x^{\frac{1}{3}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{1}{3} + \frac{5}{6}}} = {x^{\frac{5}{3}}}

  • Câu 11: Nhận biết

    Điều kiện xác định của bất phương trình {\log _{\frac{1}{2}}}(4x + 2) - {\log _{\frac{1}{2}}}(x - 1) > lo{g_{\frac{1}{2}}}x là:

     BPT xác định khi:  \left\{ \begin{gathered}  x > 0 \hfill \\  4x + 2 > 0 \hfill \\  x - 1 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x >  - \frac{1}{2} \hfill \\  x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 1.

  • Câu 12: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ:

    Có bao nhiêu giá trị nguyên của tham số m\in \lbrack - 200;200brack để hàm số g(x) = \left| f^{2}(x) + 8f(x) - might| có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số bậc ba y = f(x) có đồ thị là đường cong như hình vẽ:

    Có bao nhiêu giá trị nguyên của tham số m\in \lbrack - 200;200brack để hàm số g(x) = \left| f^{2}(x) + 8f(x) - might| có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Vận dụng cao

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Nhận biết

    Trong không gian Oxyz, tìm tất cả các giá trị của m để phương trình x^{2} + y^{2} + z^{2} - 2x - 2y - 4z +
m = 0 là phương trình của một mặt cầu?

    Phương trình x^{2} + y^{2} + z^{2} - 2x -
2y - 4z + m = 0 là một mặt cầu

    \Leftrightarrow 1^{2} + 1^{2} + 2^{2} - m
> 0 \Leftrightarrow m < 6.

  • Câu 15: Nhận biết

    Cho hàm số f(x) có bảng xét dấu của đạo hàm f'(x) như sau:

    Hàm số f(x) có bao nhiêu điểm cực trị?

    Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.

  • Câu 16: Vận dụng

    Nghiệm nguyên lớn nhất của bất phương trình là:

    x=7 || X=7 || x bằng 7 || 7

    Đáp án là:

    Nghiệm nguyên lớn nhất của bất phương trình là:

    x=7 || X=7 || x bằng 7 || 7

     Điều kiện: x>0

    Ta có: \log _2^4x - \log _{\frac{1}{2}}^2\left( {\frac{{{x^3}}}{8}} ight) + 9{\log _2}\left( {\frac{{32}}{{{x^2}}}} ight) < 4\log _{{2^{ - 1}}}^2\left( x ight)

    \Leftrightarrow \log _2^4x - {\left( {3{{\log }_2}x - 3} ight)^2} + 9\left( {5 - 2{{\log }_2}x} ight) - 4\log _2^2x < 0

    \Leftrightarrow \log _2^4x - 13\log _2^2x + 36 < 0

    \Leftrightarrow 4 < \log _2^2x < 9 \Leftrightarrow \left[ \begin{gathered}  2 < {\log _2}x < 3 \hfill \\   - 3 < {\log _2}x <  - 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  4 < x < 8 \hfill \\  \frac{1}{8} < x < \frac{1}{4} \hfill \\ \end{gathered}  ight..

    Vậy nghiệm nguyên lớn nhất của bất phương trình là: x=7.

  • Câu 17: Vận dụng

    Cho lăng trụ ABCD.A'B'C'D'có đáy ABCD là hình chữ nhật tâm OAB = a,AD = a\sqrt 3; A'O vuông góc với đáy (ABCD). Cạnh bên AA' hợp với mặt đáy (ABCD) một góc 45^0. Tính theo a thể tích V của khối lăng trụ đã cho.

     

    A'O \bot \left( {ABCD} ight) nên {45^0} = \widehat {AA',\left( {ABCD} ight)} = \widehat {AA',AO} = \widehat {A'AO}.

    Đường chéo hình chữ nhật: 

    AC = \sqrt {A{B^2} + A{D^2}}  = 2a \Rightarrow AO = \frac{{AC}}{2} = a

    Suy ra tam giác A'OA vuông cân tại O nên A'O = AO = a

    Diện tích hình chữ nhật {S_{ABCD}} = AB.AD = {a^2}\sqrt 3.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'O = {a^3}\sqrt 3.

  • Câu 18: Nhận biết

    Cho các mệnh đề sau:

    (i) Cơ số của logarit phải là số dương.

    (ii) Chỉ số thực dương mới có logarit.

    (iii) \ln \left( {A + B} ight) = \ln A + \ln B với mọi A > 0;B > 0.

    (iv) {\log _a}b.{\log _b}c.{\log _c}a = 1 với mọi a,b,c \in \mathbb{R}.

    Số mệnh đề đúng là:

    (i) Sai vì cơ số của {\log _a}b chỉ cần thỏa mãn 0 < a e 0

    (ii) Đúng vì điều kiện có nghĩa của {\log _a}bb > 0

    (iii) Sai vì \ln \left( {A + B} ight) = \ln A.\ln B với mọi A > 0;B > 0

    (iv) Sai vì nếu a,b,c < 0 thì các biểu thức {\log _a}b;{\log _b}c;{\log _c}a không có nghĩa.

  • Câu 19: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 20: Thông hiểu

    Số điểm cực trị của hàm số f(x) = (x +
2)^{3}(x - 3)^{2}(x - 2)^{5} là:

    Ta có:

    f'(x) = 3(x + 2)^{2}(x - 3)^{2}(x -2)^{5}+ 2(x + 2)^{3}(x - 3)(x - 2)^{5}+ 5(x + 2)^{3}(x - 3)^{2}(x -2)^{4}

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ight brack\left\lbrack 3(x - 3) + 2(x +2)(x - 2) + 5(x + 2)(x - 3) ightbrack

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left\lbrack 3\left( x^{2} -5x + 6 ight) + 2\left( x^{2} - 4 ight) + 5\left( x^{2} - x - 6ight) ightbrack

    \Leftrightarrow f'(x) = \left\lbrack(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 3x^{2} - 15x + 18 +2x^{2} - 8 + 5x^{2} - 5x - 30 ight)

    \Leftrightarrow f'(x) = \left\lbrack
(x + 2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 10x^{2} - 20x - 20
ight)

    Khi đó

    f'(x) = 0

    \Leftrightarrow \left\lbrack (x +
2)^{2}(x - 3)(x - 2)^{4} ightbrack\left( 10x^{2} - 20x - 20 ight)
= 0(*)

    Phương trình (*) có ba nghiệm bội lẻ x =
3;x = 1 \pm \sqrt{3}

    Vậy hàm số ban đầu có ba điểm cực trị.

  • Câu 21: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 22: Vận dụng

    Một sinh viên giỏi X được một công ty trao quỹ học bổng 60 triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất 0,5\% mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền 4 triệu đồng.

    a) Quỹ học bổng còn lại sau 1 tháng là: 56,3 triệu đồng. Đúng||Sai

    b) Quỹ học bổng còn lại sau 2 tháng là:53,2 triệu đồng. Sai||Đúng

    c) Quỹ học bổng còn lại sau n tháng là:60.(1,005)^{n + 1} - 4.\frac{1 - 1,005^{n + 1}}{1
- 1,005} (triệu đồng). Sai||Đúng

    d) Tháng cuối cùng sinh viên đó rút được 2,527348056 triệu đồng thì hết quỹ học bổng trên. Sai||Đúng

    Đáp án là:

    Một sinh viên giỏi X được một công ty trao quỹ học bổng 60 triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất 0,5\% mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền 4 triệu đồng.

    a) Quỹ học bổng còn lại sau 1 tháng là: 56,3 triệu đồng. Đúng||Sai

    b) Quỹ học bổng còn lại sau 2 tháng là:53,2 triệu đồng. Sai||Đúng

    c) Quỹ học bổng còn lại sau n tháng là:60.(1,005)^{n + 1} - 4.\frac{1 - 1,005^{n + 1}}{1
- 1,005} (triệu đồng). Sai||Đúng

    d) Tháng cuối cùng sinh viên đó rút được 2,527348056 triệu đồng thì hết quỹ học bổng trên. Sai||Đúng

    a) Quỹ học bổng còn lại sau 1 tháng là:

    P_{1} = 60(1 + 0.5\%) - 4 = 60.1,005 - 4
= 56,3 triệu đồng.

    Suy ra mệnh đề đúng.

    b) Quỹ học bổng còn lại sau 2 tháng là:

    P_{2} = P_{1}.1,005 - 4 = (60.1,005 -
4).1,005 - 4

    = 60.(1,005)^{2} - 4.1,005 - 4 =
52,5815 (triệu đồng)

    Suy ra mệnh đề sai.

    c) Quỹ học bổng còn lại sau n tháng là:

    P_{n} = 60.(1,005)^{n} - 4.\left(
1,005^{n - 1} + 1,005^{n - 2} + ... + 1 ight)

    = 60.(1,005)^{n} - 4.\frac{1 - 1,005^{n}}{1 -
1,005} (triệu đồng).

    Suy ra mệnh đề sai.

    d) Quỹ học bổng còn lại sau 16 tháng là:

    P_{16} = 60.(1,005)^{16} - 4.\frac{1 -
1,005^{16}}{1 - 1,005} = - 1,472651944 < 0.

    Quỹ học bổng còn lại sau 15 tháng là.

    P_{15} = 60.(1,005)^{15} - 4.\frac{1 -
1,005^{15}}{1 - 1,005} = 2,514774185 triệu đồng.

    Suy ra tháng cuối cùng sinh viên đó rút được 2,527348056 triệu đồng thì hết quỹ học bổng trên.

    Suy ra mệnh đề sai.

  • Câu 23: Thông hiểu

    Nghiệm nguyên nhỏ nhất của phương trình - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight) là?

    3 || ba || Ba

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của phương trình - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight) là?

    3 || ba || Ba

    Điều kiện: x>2

    Ta có: - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight)

    \Leftrightarrow  - 2{\log _3}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight)

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}\left( {x - 2} ight) = 0 \hfill \\  {\log _5}x =  - 1 \hfill \\ \end{gathered}  ight. 

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}\left( {x - 2} ight) = 0 \hfill \\  {\log _5}x =  - 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = \frac{1}{5} \hfill \\ \end{gathered}  ight.

    So điều kiện suy ra phương trình có nghiệm x=3.

  • Câu 24: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số y = -2f(x) đồng biến trên khoảng

    Ta có:

    \begin{matrix}  y' =  - 2f'\left( x ight) =  - 2{x^2} + 4x \hfill \\  y' > 0 \Rightarrow x \in \left( {0;2} ight) \hfill \\ \end{matrix}

    => Hàm số y = -2f(x) đồng biến trên khoảng (0; 2)

  • Câu 25: Vận dụng

    Cho hàm số  y = f\left( x ight) có bảng biến thiên như sau:

    Số nghiệm của phương trình

    Số nghiệm của phương trình {f^2}\left( x ight) = 4 là:

     

    Ta có: {f^2}\left( x ight) = 4 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2\left( * ight)} \\   {f\left( x ight) =  - 2\left( {**} ight)} \end{array}} ight.

    Số nghiệm của phương trình là số giao điểm của đồ thị hàm số y = f\left( x ight) với đường thẳng y = 2;y =  - 2

    Phương trình (*) có 1 nghiệm

    Phương trình (**) có 2 nghiệm

    => Số nghiệm của phương trình {f^2}\left( x ight) = 4 là 3 nghiệm

  • Câu 26: Thông hiểu

    Tổng các nghiệm của phương trình \log_{4}x^{2} - \log_{2}3 = 1 là:

    Điều kiện x eq 0. Có

    \log_{4}x^{2} - \log_{2}3 = 1

    \Leftrightarrow \frac{1}{2}\log_{2}x^{2}= 1 + \log_{2}3

    \Leftrightarrow \frac{1}{2}\log_{2}x^{2}= \log_{2}2 + \log_{2}3

    \Leftrightarrow \log_{2}x^{2} =2.\log_{2}6

    \Leftrightarrow \log_{2}x^{2} =\log_{2}6^{2}

    \Leftrightarrow x^{2} = 6^{2}
\Leftrightarrow x = \pm 6

    Dó đó, tổng các nghiệm sẽ bằng 0.

  • Câu 27: Vận dụng

    Tìm tập xác định của hàm số y = {\left( {x - 2} ight)^{\sqrt 5 }} + {\left( {{x^2} - 9} ight)^{\frac{3}{5}}} + {x^2} - 5x - 2

    Hàm số xác định khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {x - 2 > 0} \\   {{x^2} - 9 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x > 2} \\   {\left[ {\begin{array}{*{20}{c}}  {x <  - 3} \\   {x > 3} \end{array}} ight.} \end{array} \Rightarrow x > 3} ight.

    Vậy tập xác định của hàm số là: D = \left( {3; + \infty } ight)

  • Câu 28: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

  • Câu 29: Thông hiểu

    Tập nghiệm của bất phương trình {\log _2}({x^2} - 3x + 1) \leqslant 0 là?

     BPT \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 3x + 1 > 0 \hfill \\  {\log _2}({x^2} - 3x + 1) \leqslant 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 3x + 1 > 0 \hfill \\  {x^2} - 3x + 1 \leqslant 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 3x + 1 > 0 \hfill \\  {x^2} - 3x + 1 \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x < \frac{{3 - \sqrt 5 }}{2} \vee x > \frac{{3 + \sqrt 5 }}{2} \hfill \\  0 \leqslant x \leqslant 3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow x \in \left[ {0;\frac{{3 - \sqrt 5 }}{2}} ight) \cup \left( {\frac{{3 + \sqrt 5 }}{2};3} ight]

    Vậy bất PT có tập nghiệm là S = \left[ {0;\frac{{3 - \sqrt 5 }}{2}} ight) \cup \left( {\frac{{3 + \sqrt 5 }}{2};3} ight].

  • Câu 30: Vận dụng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Đồ thị hàm số y f’(x) như hình vẽ bên:

    Số điểm cực trị của hàm số

    Số điểm cực trị của hàm số y = f(x) + 2x là:

    Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) = 0 \Leftrightarrow f'\left( x ight) =  - 2 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = \alpha } \end{array}} ight.;\left( {\alpha  > 0} ight)

    g'\left( x ight) < 0 \Leftrightarrow f'\left( x ight) <  - 2 \Leftrightarrow x > \alpha

    Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị x = \alpha

    Từ đó ta có bảng xét dấu như sau:

    Số điểm cực trị của hàm số

    Vậy hàm số đã cho có đúng một cực trị

  • Câu 31: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 32: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên (SAB)(SAD) cùng vuông góc với mặt phẳng đáy (ABCD). Tính theo a thể tích V của khối chóp S.ABCD.

     

    Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra SA \bot \left( {ABCD} ight). Do đó chiều cao khối chóp là SA = a\sqrt {15}.

    Diện tích hình chữ nhật ABCD là {S_{ABCD}} = AB.BC = 2{a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{2{a^3}\sqrt {15} }}{3}

  • Câu 33: Vận dụng cao

    Cho hình chóp đều S.ABCD. Gọi N là trung điểm SB, M là điểm đối xứng với B qua A. Mặt phẳng (MNC) chia khối chóp S.ABCD thành hai phần có thể tích lần lượt là V_1, V_2 với {V_1} < {V_2}. Tính tỉ số \frac{{{V_1}}}{{{V_2}}}.

     

    Gọi h,\,\,S lần lượt là chiều cao và diện tích đáy của khối chóp S.ABCD. Khi đó {V_{S.ABCD}} = \frac{1}{3}S.h. Nối MN cắt SA tại E, MC cắt AD tại F. Tam giác SBM có A, N lần lượt là trung điểm của BM và SB.

    Suy ra E là trọng tâm tam giác SBM.

    Vì tứ giác ACDM là hình bình hành nên F là trung điểm MC.

    Ta có {V_{BNC.AEF}} = {V_{ABCEN}} + {V_{E.ACF}}. Xét tỉ số:

    \frac{{{V_{S.ENC}}}}{{{V_{S.ABC}}}} = \frac{{SE}}{{SA}}.\frac{{SN}}{{SB}} = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}\xrightarrow{{}}{V_{S.ENC}} = \frac{1}{3}{V_{S.ABC}}

    \xrightarrow[{}]{}{V_{ABCEN}} = \frac{2}{3}{V_{S.ABC}} = \frac{2}{3}\left( {\frac{1}{2}{V_{S.ABCD}}} ight) = \frac{1}{3}{V_{S.ABCD}}

    Mặt khác, áp dụng công thức tính thể tích khối chóp E.ACF là:

    {V_{E.ACF}} = \frac{1}{3}{S_{\Delta ACF}}.d\left[ {E,\left( {ACF} ight)} ight] = \frac{1}{3}.\frac{1}{4}S.\frac{1}{3}h = \frac{1}{{12}}{V_{S.ABCD}}

    Do đó {V_{BNC.AEF}} = {V_{ABCEN}} + {V_{E.ACF}}

    = \frac{1}{3}{V_{S.ABCD}} + \frac{1}{{12}}{V_{S.ABCD}}

    = \frac{5}{{12}}{V_{S.ABCD}} = {V_1}

    Suy ra {V_2} = \frac{7}{{12}}{V_{S.ABCD}}\xrightarrow{{}}\frac{{{V_1}}}{{{V_2}}} = \frac{5}{7}.

  • Câu 34: Vận dụng

    Cho hàm số y =
f(x) xác định trên y =
f(x) và có đạo hàm f'(x) = (2 -
x)(x + 3)g(x) + 2021 trong đó g(x)
< 0;\forall x\mathbb{\in R}. Hàm số y = f(1 - x) + 2021x + 2022 đồng biến trên khoảng nào?

    Ta có:

    y' = - f'(1 - x) +
2021

    y' = - \left\lbrack (1 + x)(4 -
x)g(1 - x) + 2021 ightbrack + 2021

    y' = (x + 1)(x - 4).g(1 - x)
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    g(x) < 0;\forall x\mathbb{\in
R} nên y' > 0;\forall x \in
( - 1;4)

    Suy ra hàm số đồng biến trên ( -
1;4).

  • Câu 35: Thông hiểu

    Cho {\log _a}b = 2;{\log _a}c = 3. Tính giá trị của biểu thức P = {\log _a}\left( {a{b^3}{c^3}} ight)

    Ta có:

    \begin{matrix}  P = {\log _a}\left( {a{b^3}{c^3}} ight) \hfill \\   = {\log _a}a + {\log _a}{b^3} + {\log _a}{c^3} \hfill \\   = 1 + 3{\log _a}b + 5{\log _a}c \hfill \\   = 1 + 3.2 + 5.3 = 22 \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Phương trình \log _2^2(x + 1) - 6{\log _2}\sqrt {x + 1}  + 2 = 0 có số nghiệm là:

    2 || hai || 2 nghiệm || Hai nghiệm

    Đáp án là:

    Phương trình \log _2^2(x + 1) - 6{\log _2}\sqrt {x + 1}  + 2 = 0 có số nghiệm là:

    2 || hai || 2 nghiệm || Hai nghiệm

     PT\Leftrightarrow \left\{ \begin{gathered}  x + 1 > 0 \hfill \\  {\log ^2}_2(x + 1) - 3{\log _2}(x + 1) + 2 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  \left[ \begin{gathered}  {\log _2}(x + 1) = 1 \hfill \\  {\log _2}(x + 1) = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  \left[ \begin{gathered}  x = 1 \hfill \\  x = 3 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 1 \hfill \\  x = 3 \hfill \\ \end{gathered}  ight.

    Vậy PT có 2 nghiệm.

  • Câu 37: Vận dụng

    Cho {4^x} + {4^{ - x}} = 34. Tính giá trị của biểu thức T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}}

    Ta có:

    \begin{matrix}  {4^x} + {4^{ - x}} = 34 \hfill \\   \Rightarrow {2^{2x}} + 2 + {2^{ - 2x}} = 36 \hfill \\   \Rightarrow {\left( {{2^x} + {2^{ - x}}} ight)^2} = 36 \hfill \\   \Rightarrow {2^x} + {2^{ - x}} = 6;\left( {{2^x} + {2^{ - x}} > 0} ight) \hfill \\ \end{matrix}

    Khi đó ta được:

    T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}} = \frac{{6 - 3}}{{1 - 2\left( {{2^x} + {2^{ - x}}} ight)}} = \frac{3}{{1 - 2.6}} = \frac{{ - 3}}{{11}}

  • Câu 38: Vận dụng

    Tìm giá trị lớn nhất của hàm số f\left( x ight) = \frac{{2{x^2} + 7x + 23}}{{{x^2} + 2x + 10}}

    Dễ thấy nên hàm số xác định trên toàn trục số.

    Gọi m là một giá trị tùy ý của hàm số, khi đó phương trình

    \begin{matrix}  \dfrac{{2{x^2} + 7x + 23}}{{{x^2} + 2x + 10}} = m \hfill \\   \Leftrightarrow 2{x^2} + 7x + 23 = m\left( {{x^2} + 2x + 10} ight) \hfill \\   \Leftrightarrow \left( {m - 2} ight){x^2} + \left( {2m - 7} ight)x + 10m - 23 = 0 \hfill \\ \end{matrix}

    Ta xét hai trường hợp sau:

    TH1: Nếu  m = 2 phương trình trở thành

    - 3x - 3 = 0 \Leftrightarrow x =  - 1

    Vậy phương trình có nghiệm khi m = 2

    TH2: Nếu m e 2 khi đó phương trình bậc 2 có nghiệm khi và chỉ khi:

    \begin{matrix}  \Delta  = {\left( {2m - 7} ight)^2} - 4\left( {m - 2} ight)\left( {10m - 23} ight) \geqslant 0 \hfill \\   \Leftrightarrow  - 36m + 144m - 135 \geqslant 0 \hfill \\   \Rightarrow \dfrac{3}{2} \leqslant m \leqslant \dfrac{5}{2} e 2 \hfill \\   \Rightarrow \max f\left( x ight) = \dfrac{5}{2},\min f\left( x ight) = \dfrac{3}{2} \hfill \\ \end{matrix}

     

  • Câu 39: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 40: Thông hiểu

    Đẳng thức nào sau đây đúng với mọi số dương x?

    Ta có: \left( {\log x} ight)' = \frac{1}{{x\ln 10}};\forall x > 0

  • Câu 41: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 42: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {3;5} ight\} là:

    Khối đa diện đều loại \left\{ {3;5} ight\} là khối hai mươi mặt đều:

    Gồm 20 mặt là các tam giác đều nên tổng các góc bằng: 20.\pi  = 20\pi

  • Câu 43: Thông hiểu

    Cho hàm số f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} . Tính f'\left( 2 ight)

    Tập xác định \left( {\frac{2}{3}; + \infty } ight)

    Ta có: f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} \Rightarrow f'\left( x ight) = \frac{5}{3}.{\left( {2x - 3} ight)^{\frac{{ - 1}}{6}}} \Rightarrow f'\left( 2 ight) = \frac{5}{3}

  • Câu 44: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 45: Vận dụng cao

    Tổng tất cả các giá trị thực của m để hàm số y = \frac{1}{5}{m^2}{x^5} - \frac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 đồng biến trên R bằng:

    Ta có:

    \begin{matrix}  y = \dfrac{1}{5}{m^2}{x^5} - \dfrac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 \hfill \\   \Rightarrow y' = {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên R khi và chỉ khi

    \begin{matrix}   \Rightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Rightarrow {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \geqslant 0,\forall x \in \mathbb{R} \hfill \\ \end{matrix}

    Và dấu bằng xảy ra chỉ tại một số hữu hạn điểm.

    Điều kiện cần

    Ta thấy phương trình y ‘ = 0 có một nghiệm x = -1 nên để y' \geqslant 0,\forall x \in \mathbb{R} thì y’ không đổi dấu qua khi x = -1 khi đó phương trình y’ = 0 có nghiệm kép là x = -1 (x = -1 không thể laf nghiệm bội 4 của phương trình y’ = 0 vì y’ không chứa số hạng x3)

    Ta suy ra được y’’(-1) = 0

    => - 4{m^2} + 2m + 20 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 2} \\   {m = \dfrac{5}{2}} \end{array}} ight.

    Điều kiện đủ:

    Với m = - 2 ta có:

    y' = 4{x^4} + 2{x^2} + 20x + 14 = 4{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{5}{2}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = -2 thỏa mãn điều kiện đề bài.

    Với m = \frac{5}{2} ta có:

    y' = \frac{{25}}{4}{x^4} - \frac{5}{2}{x^2} + 20x + \frac{{65}}{4} = \frac{{25}}{4}{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{8}{5}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = \frac{5}{2} thỏa mãn điều kiện đề bài

    Vậy m =  - 2;m = \frac{5}{2} là các giá trị cần tìm.

    => Tổng các giá trị thực của m cần tìm thỏa mãn yêu cầu bài toán là - 2 + \frac{5}{2} = \frac{1}{2}

  • Câu 46: Thông hiểu

    Cho hàm số y = 2x^{3} - 3x^{2} -
m. Trên đoạn \lbrack -
1;1brack hàm số có giá trị nhỏ nhất là - 1. Tìm giá trị của m?

    Ta có: y' = 6x^{2} - 6x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \min_{\lbrack -
1;1brack}y = - 5 - m \Leftrightarrow - 1 = - 5 - m \Leftrightarrow m =
- 4.

    Vậy m = - 4 là giá trị cần tìm.

  • Câu 47: Nhận biết

    Tập xác định của hàm số f\left( x ight) = {\left( {x - 2} ight)^{ - 1}} là:

    Điều kiện xác định của hàm số là:

    x - 2 e 0 \Rightarrow x e 2

    => Tập xác định của hàm số là: D = \mathbb{R}\backslash \left\{ 2 ight\}

  • Câu 48: Vận dụng

    Hai phương trình 2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1){\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2) lần lượt có 2 nghiệm duy nhất x_1, x_2là . Tổng x_1 + x_2 là?

     Phương trình 1: 2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1)

    Phương trình \Leftrightarrow \left\{ \begin{gathered}  3x - 1 > 0 \hfill \\  2x + 1 > 0 \hfill \\  2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  {\log _5}{(3x - 1)^2} + {\log _5}5 = 3{\log _5}(2x + 1) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  {\log _5}5{(3x - 1)^2} = {\log _5}{(2x + 1)^3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  5{(3x - 1)^2} = {(2x + 1)^3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  5(9{x^2} - 6x + 1) = 8{x^3} + 12{x^2} + 6x + 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  8{x^3} - 33{x^2} + 36x - 4 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  \left[ \begin{gathered}  x = \frac{1}{8} \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow {x_1} = 2

    Phương trình 2: {\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2)

    Phương trình \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 2x - 8 > 0 \hfill \\  x + 2 > 0 \hfill \\  {\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x <  - 2 \vee x > 4 \hfill \\  x >  - 2 \hfill \\  {\log _2}({x^2} - 2x - 8) = 1 + {\log _2}(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {\log _2}({x^2} - 2x - 8) = {\log _2}2(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {x^2} - 2x - 8 = 2(x + 2) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {x^2} - 4x - 12 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  \left[ \begin{gathered}  x =  - 2 \hfill \\  x = 6 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow {x_2} = 6

    Vậy {x_1} + {x_2} = 2 + 6 = 8.

  • Câu 49: Nhận biết

    Cho {\log _2}a = x;{\log _2}b = y biết , biểu thức {\log _2}\left( {4{a^2}{b^3}} ight) có giá trị là:

    Ta có: 

    {\log _2}\left( {4{a^2}{b^3}} ight) = {\log _2}4 + {\log _2}{a^2} + {\log _2}{b^3} = 2 + 2{\log _2}a + 3{\log _2}b = 2x + 3y + 2

  • Câu 50: Thông hiểu

    Trong không gian Oxyz (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(1;3;7). Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 3\ km.

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 1)^{2} + (y + 3)^{2} + (z + 7)^{2} =
9. Sai||Đúng

    b) Điểm A(2;2;7) nằm ngoài mặt cầu (S). Sai||Đúng

    c) Nếu người dùng điện thoại ở vị trí có tọa độ (2;2;7) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    d) Nếu người dùng điện thoại ở vị trí có tọa độ (5;6;7) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(1;3;7). Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 3\ km.

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 1)^{2} + (y + 3)^{2} + (z + 7)^{2} =
9. Sai||Đúng

    b) Điểm A(2;2;7) nằm ngoài mặt cầu (S). Sai||Đúng

    c) Nếu người dùng điện thoại ở vị trí có tọa độ (2;2;7) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    d) Nếu người dùng điện thoại ở vị trí có tọa độ (5;6;7) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    Phương trình mặt cầu (S) tâm I(1;3;7) bán kính 3\ km mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x - 1)^{2} +
(y - 3)^{2} + (z - 7)^{2} = 9.

    Ta có: IA = \sqrt{(2 - 1)^{2} + (2 -
3)^{2} + (7 - 7)^{2}} = \sqrt{2} < 3 nên điểm A nằm trong mặt cầu.

    Vì điểm A nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ (2;2;7) có thể sử dưng dịch vụ của trạm thu phát sóng đó.

    Ta có: IB = \sqrt{(5 - 1)^{2} + (6 -
3)^{2} + (7 - 7)^{2}} = 5' > 3 nên điểm B nằm ngoài mặt cầu.

    Vậy người dùng điện thoại ở vị trí có tọa độ (5;6;7) không thể sử dựng dịch vụ của trạm thu phát sóng đó

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo