Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian Oxyz, cho mặt cầu (S):(x + 2)^{2} + (y - 1)^{2} + \left( z
+ \sqrt{2} ight)^{2} = 9 và hai điểm A\left( - 2;0; - 2\sqrt{2} ight),B( - 4; -
4;0). Biết tập hợp tất cả các điểm M \in (S) để MA^{2} + \overrightarrow{MO}.\overrightarrow{MB} =
16 là một đường tròn. Bán kính của đường tròn đó là:

    Gọi M(x;y;z) \in (S) khi đó ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = \left( x + 2;y;z + 2\sqrt{2} ight) \\
\overrightarrow{OM} = (x;y;z) \\
\overrightarrow{BM} = (x + 4;y + 4;z) \\
\end{matrix} ight..

    Ta có:

    MA^{2} +
\overrightarrow{MO}.\overrightarrow{MB} = 16

    \Leftrightarrow MA^{2} +
\overrightarrow{OM}.\overrightarrow{BM} = 16

    \Leftrightarrow (x + 2)^{2} + y^{2} +
\left( z + 2\sqrt{2} ight)^{2} + x(x + 4) + y(y + 4) + z^{2} =
16

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
4x + 4y + 2\sqrt{2}z - 2 = 0

    Ta lại có:

    M \in (S) \Leftrightarrow (x + 2)^{2} +
(y - 1)^{2} + \left( z + \sqrt{2} ight)^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
4x - 2y + 2\sqrt{2}z - 2 = 0

    Từ (1) và (2) ta có hệ phương trình:

    \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} + 4x + 4y + 2\sqrt{2}z - 2 = 0 \\
x^{2} + y^{2} + z^{2} + 4x - 2y + 2\sqrt{2}z - 2 = 0 \\
\end{matrix} ight.\  \Rightarrow y = 0

    Vậy tập hợp tất cả các điểm M là đường tròn giao tuyến (C) của (S) và mặt phẳng (P): y = 0.

    Mặt cầu (S) có bán kính R = 3, tâm I\left( - 2;1; - \sqrt{2} ight) nên d [I,(P)] = 1.

    Suy ra đường tròn (C) có bán kính:

    r = \sqrt{R^{2} - \left( d\left( I;(P)
ight) ight)^{2}} = 2\sqrt{2}

  • Câu 2: Vận dụng

    Cho hàm số f(x) = x^{3} + \left( 1 +
m^{2} ight)x + 1. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn \lbrack 0;1brack không vượt quá 7. Hỏi tập S có bao nhiêu phần tử là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) = x^{3} + \left( 1 +
m^{2} ight)x + 1. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để giá trị lớn nhất của hàm số trên đoạn \lbrack 0;1brack không vượt quá 7. Hỏi tập S có bao nhiêu phần tử là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 3: Thông hiểu

    Dân số thế giới được tính theo công thức S = A. e \
^{nr} trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là 1,47\% một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?

    Ta có:

    S = A \cdot e^{nr} \Leftrightarrow
e^{nr} = \frac{S}{A} \Leftrightarrow nr = \ln\frac{S}{A} \Leftrightarrow
n = \frac{1}{r}\ln\frac{S}{A}

    Với S = 93713700 người; A = 80902400 người; r = \frac{1,47}{100} = 0,0147/năm.

    Suy ra n =
\frac{1}{0,0147}\ln\frac{93713000}{80902400} \approx 10.

    Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.

  • Câu 4: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 5: Thông hiểu

    Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua x điện thoại thì giá tiền của mỗi điện thoại là 4000-2x(nghìn đồng), x \in N^{*},x < 2000. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?

    Đáp án: 1000||1 000

    Đáp án là:

    Một hãng điện thoại đưa ra quy luật bán buôn cho từng đại lí, đó là đại lí càng nhập nhiều chiếc điện thoại của hãng thì giá bán buôn một chiếc điện thoại càng giảm. Cụ thể, nếu đại lí mua x điện thoại thì giá tiền của mỗi điện thoại là 4000-2x(nghìn đồng), x \in N^{*},x < 2000. Đại lí nhập cùng một lúc bao nhiêu chiếc điện thoại thì hãng có thể thu về nhiều tiền nhất từ đại lí đó?

    Đáp án: 1000||1 000

    Số tiền hãng thu được khi đại lí nhập x chiếc điện thoại là f(x) = x(4000 - 2x).

    Ta có: f'(x) = - \ 4x +
4000.

    Khi đó, f'(x) = 0 \Leftrightarrow x =
1\ 000 \Rightarrow f(x) = 2000000

    Học sinh tự vẽ bảng biến thiên

    Ta suy ra:

    Đại lí nhập cùng lúc 1\ 000 chiếc điện thoại thì hãng có thể thu nhiều tiền nhất từ đại lí đó với 2 000 000 000(đồng).

    Đáp số: 1000.

  • Câu 6: Nhận biết

    Đồ thị hàm số y = \frac{x - 1}{x^{2} +
1} có bao nhiêu đường tiệm cận ngang và tiệm cận đứng?

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số không có đường tiệm cận đứng.

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}} = 0 \hfill \\ 
\end{gathered}  ight. suy ra y =
0 là tiệm cận ngang của đồ thị hàm số.

  • Câu 7: Nhận biết

    Tìm các giá trị của x để hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}} có nghĩa:

    Điều kiện xác định 

    \begin{matrix}  3x - {x^2} > 0 \hfill \\   \Rightarrow 0 < x < 3 \hfill \\   \Rightarrow x \in \left( {0;3} ight) \hfill \\ \end{matrix}

  • Câu 8: Nhận biết

    Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ đã cho theo a, biết A'B=3a.

     

    Do ABCD.A'B'C'D'là lăng trụ đứng nên AA' \bot AB.

    Xét tam giác vuông A'AB, ta có A'A = \sqrt {A'{B^2} - A{B^2}}  = a\sqrt 5.

    Diện tích hình vuông ABCD{S_{ABCD}} = A{B^2} = 4{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'A = 4\sqrt 5 {a^3}

  • Câu 9: Nhận biết

    Trong không gian Oxyz, hỏi trong các phương trình sau đây phương trình nào là phương trình của mặt cầu?

    Phương trình x^{2} + z^{2} + 3x - 2y + 4z
- 1 = 0 không có y^{2}=> Loại

    Phương trình x^{2} + y^{2} + z^{2} + 2xy
- 4y + 4z - 1 = 0 có số hạng 2xy => Loại

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
2y - 4z + 8 = 0 loại vì

    a^{2} + b^{2} + c^{2} - d = 1 + 1 + 4 -
8 < 0

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
4z - 1 = 0 thỏa mãn vì

    a^{2} +
b^{2} + c^{2} - d = 1 + 0 + 4 + 1 = 6 > 0.

  • Câu 10: Vận dụng cao

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f\left( x ight) = a{x^4} + b{x^3} + c{x^2} + dx + e,\left( {a e 0} ight) có đồ thị của đạo hàm f’(x) như hình vẽ:

    Xác định số điểm cực trị của hàm số

    Biết rằng e > n. Số điểm cực trị của hàm số y = f'\left( {f\left( x ight) - 2x} ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 12: Nhận biết

    Tập nghiệm của bất phương trình {\left( {\frac{1}{2}} ight)^x} > 32 là:

    Ta có: {\left( {\frac{1}{2}} ight)^x} > 32\Leftrightarrow {\left( {\frac{1}{2}} ight)^x} > {\left( {\frac{1}{2}} ight)^{ - 5}} \Leftrightarrow x <  - 5

  • Câu 13: Vận dụng

    Để thiết kế một chiếc bể nuôi cá Koi trong sân vườn hình hộp chữ nhật không nắp có chiều cao 150(cm) và thể tích chứa 900\ \left( m^{3}
ight). Biết giá thành để làm mặt bên là 2,8 triệu đồng/m^{2} và làm mặt đáy là 4 triệu đồng/m^{2}. Tính chi phí thấp nhất để hoàn thành bể cá (Làm tròn theo đơn vị triệu đồng).

    Đáp án: 2812

    Đáp án là:

    Để thiết kế một chiếc bể nuôi cá Koi trong sân vườn hình hộp chữ nhật không nắp có chiều cao 150(cm) và thể tích chứa 900\ \left( m^{3}
ight). Biết giá thành để làm mặt bên là 2,8 triệu đồng/m^{2} và làm mặt đáy là 4 triệu đồng/m^{2}. Tính chi phí thấp nhất để hoàn thành bể cá (Làm tròn theo đơn vị triệu đồng).

    Đáp án: 2812

    Gọi x\ ,\ y lần lượt là chiều rộng và chiều dài của đáy hình hộp.

    Điều kiện: x\  > \ 0\ ;\ y\  > \ 0(m).

    Ta có thể tích của khối hộp:

    V  = 1,5xy  =  900 \Rightarrow \ xy\  = \ 600\  \Rightarrow \ y\  = \frac{600}{x}\left( m^{3} ight).

    Diện tích mặt đáy:

    S_{d}\  = \ xy\  = \
x\ .\ \frac{600}{x}\  = \ 600\ \left( m^{2} ight).

    Giá tiền để làm mặt đáy là:

    600\ .\
4000000\  = \ 24.10^{8}(đồng).

    Diện tích xung quanh của bể cá:

    S_{xq}\  = \ 2.x.1,5\  + \ 2.y.1,5\  = \ 3.(x\  +
\ y)\  = \ 3.\left( x\  + \ \frac{600}{x} ight).

    Giá tiền để làm mặt bên là:

    3.\left(
x\  + \ \frac{600}{x} ight)\ .\ 2800000\  = \ 84.10^{5}.\left( x\  + \
\frac{600}{x} ight).

    Tổng chi phí để xây dựng bể cá là:

    T(x)\  = \ 84.10^{5}.\left( x\  + \frac{600}{x} ight)\  + \ 24.10^{8}\geq 84.10^{5}.2\sqrt{x.\frac{600}{x}}\  + \ 24.10^{8}\  \approx2812 (triệu đồng).

  • Câu 14: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{1}{3}x^{3} - 2mx^{2} + 4x - 5 nghịch biến trên \mathbb{R}?

    Ta có: y' = - x^{2} - 4x +
m

    Hàm số nghịch biến trên \mathbb{R} khi và chỉ khi y' \leq 0;\forall x\mathbb{\in R}

    \Leftrightarrow - x^{2} - 4x + m \leq
0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\in ( - \infty; - 4brack

    Vậy đáp án cần tìm là m \in ( - \infty; -
4brack.

  • Câu 15: Nhận biết

    Cho các hình sau:Tìm hình không phải đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0,S_1,...\;,S_n sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt S_i,\;S_{i+1} nào (0\leq i\leq n-1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 16: Nhận biết

    Tìm giá trị của tham số m để đồ thị hàm số y = x^{4} - (3 - m)x^{2} -
7 đi qua điểm A( -
2;1)?

    Đồ thị hàm số đi qua điểm A( -
2;1) nên ta có:

    1 = ( - 2)^{4} - (3 - m)( - 2)^{2} - 7
\Leftrightarrow m = 1

  • Câu 17: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để bất phương trình {\log _2}\left( {7{x^2} + 7} ight) \geqslant {\log _2}\left( {m{x^2} + 4x + m} ight),{\text{ }}\forall x \in \mathbb{R} \, \, (1)

     Bất phương trình tương đương 7{x^2} + 7 \geqslant m{x^2} + 4x + m > 0,{\text{ }}\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{gathered}  \left( {7 - m} ight){x^2} - 4x + 7 - m \geqslant 0{\text{   }}(2) \hfill \\  m{x^2} + 4x + m > 0{\text{                 }}(3) \hfill \\ \end{gathered}  ight.,{\text{ }}\forall x \in \mathbb{R}.

    m=7: (2) không thỏa \forall x \in \mathbb{R}

    m=0: (3) không thỏa \forall x \in \mathbb{R}

    (1) thỏa mãn \forall x \in \mathbb{R}  \Leftrightarrow \left\{ \begin{gathered}  7 - m > 0 \hfill \\  {{\Delta '}_2} = 4 - {\left( {7 - m} ight)^2} \leqslant 0 \hfill \\  m > 0 \hfill \\  {{\Delta '}_3} = 4 - {m^2} < 0 \hfill \\ \end{gathered}  ight.{\text{   }}

    \Leftrightarrow {\text{  }}\left\{ \begin{gathered}  m < 7 \hfill \\  m \leqslant 5 \hfill \\  m > 0 \hfill \\  m > 2 \hfill \\ \end{gathered}  ight.{\text{  }} \Leftrightarrow {\text{  }}2 < m \leqslant 5.

    Vậy m \in \left( {2;5} ight].

  • Câu 18: Vận dụng

    Tìm đạo hàm của hàm số y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} trên khoảng \left( { - \infty ;\frac{1}{3}} ight)

    Với điều kiện x < \frac{1}{3} ta có: y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} = {\left( {1 - 3x} ight)^{\frac{5}{3}}}. Khi đó:

    => y' =  - 5{\left( {1 - 3x} ight)^{\frac{2}{3}}}

  • Câu 19: Vận dụng cao

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết

    Cho các số thực a và b thỏa mãn 0 < a < 1 < b. Tìm khẳng định đúng?

     Xét tính đúng sai của từng đáp án như sau

    Ta có {\log _a}b < {\log _a}1 = 0 (vì 0 < a < 1;b > 1) => {\log _a}b < 0 => {\log _a}b < 0 đúng

    a < b \Rightarrow \ln a < \ln b

    => \ln a > \ln b B sai

    \left\{ {\begin{array}{*{20}{c}}  {0 < 0,5 < 1} \\   {a < b} \end{array}} ight. \Rightarrow {\left( {0,5} ight)^a} > {\left( {0,5} ight)^b} => {\left( {0,5} ight)^a} < {\left( {0,5} ight)^b} Sai

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {2 > 1} \\   {a < b} \end{array}} ight. \Rightarrow {2^a} < {2^b}=> {2^a} > {2^b} sai

  • Câu 21: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 22: Vận dụng

    Cho hàm số y = \frac{{ax + b}}{{x + 1}}. Biết đồ thị hàm số đã cho đi qua điểm A\left( {0; - 1} ight) và có đường tiệm cận ngang là y = 1. Giá trị a + b bằng:

    Điều kiện để đồ thị hàm số có tiệm cận là a - b e 0

    => Đồ thị hàm số đi qua điểm A\left( {0; - 1} ight) nên b =  - 1

    Đồ thị hàm số có đường tiệm cận ngang là y = a \Rightarrow a = 1 (thỏa mãn)

    Vậy a + b = 0

  • Câu 23: Thông hiểu

    Trong các phát biểu sau đây, phát biểu nào sai?

    Phát biểu sai là: Hàm số mũ y = {a^x}\left( {a > 0,a e 1} ight) có tập xác định là \left( {0, + \infty } ight)

    Sửa lại: Hàm số mũ y = {a^x}\left( {a > 0,a e 1} ight) có tập xác định là \mathbb{R}

  • Câu 24: Vận dụng

    Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)

    Ta có: y' = 2mx - \left( {m + 6} ight). Theo yêu cầu bài toán ta có:

    y' \leqslant 0;\forall x \in \left( { - 1; + \infty } ight)

    => 2mx - \left( {m + 6} ight) \leqslant 0 \Leftrightarrow m \leqslant \frac{6}{{2x - 1}}

    Xét hàm số g\left( x ight) = \frac{6}{{2x - 1}},x \in \left( { - 1; + \infty } ight)

    Ta có bảng biến thiên như sau:

    Tìm m để hàm số nghịch biến trên khoảng

    Vậy - 2 \leqslant m \leqslant 0

  • Câu 25: Vận dụng

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên (SAB)(SAD) cùng vuông góc với mặt phẳng đáy (ABCD). Tính theo a thể tích V của khối chóp S.ABCD.

     

    Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra SA \bot \left( {ABCD} ight). Do đó chiều cao khối chóp là SA = a\sqrt {15}.

    Diện tích hình chữ nhật ABCD là {S_{ABCD}} = AB.BC = 2{a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{2{a^3}\sqrt {15} }}{3}

  • Câu 27: Vận dụng

    Anh T đã làm hợp đồng xin vay vốn ngân hàng để kinh doanh với số tiền 200 triệu đồng với lãi suất a% trên một năm. Điều kiện hợp đồng là số tiền lại tháng trước sẽ được tính làm vốn để sinh lãi cho tháng sau. Sau hai năm kinh doanh, anh T dã thanh toán hợp đồng ngân hàng với số tiền làm tròn là 245512000 đồng. Chọn khẳng định đúng?

    Lãi suất mỗi tháng là \frac{a}{{12}}\%. Theo công thức lãi kép ta có:

    \begin{matrix}  200.{\left( {1 + \dfrac{a}{{12}}\% } ight)^{24}} = 245,512 \hfill \\   \Rightarrow \dfrac{a}{{12}}\%  = \sqrt[{24}]{{\dfrac{{245,512}}{{200}}}} - 1 \hfill \\   \Rightarrow a \approx 10 \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Trong không gian Oxyz, có tất cả bao nhiêu giá trị nguyên của tham số m để x^{2} +
y^{2} + z^{2} + 2(m + 2)x - 2(m - 1)z + 3m^{2} - 5 = 0 là một phương trình mặt cầu

    Phương trình đã cho là phương trình mặt cầu khi và chỉ khi

    (m + 2)^{2} + (m - 1)^{3} - 3m^{2} + 5
> 0

    \Leftrightarrow m^{2} - 2m - 10 <
0

    \Leftrightarrow m \in \left( - 1 -
\sqrt{11};1 + \sqrt{11} ight)

    Theo bài ra m\mathbb{\in Z \Rightarrow}m
\in \left\{ - 2; - 1;0;1;2;3;4 ight\}

    Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 29: Vận dụng

    Khẳng định nào dưới đây đúng?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   { - 2017 >  - 2018} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{ - 2017}} > {\left( {\sqrt 5  + 2} ight)^{ - 2018}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{2018}} < {\left( {\sqrt 5  + 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    Vậy đáp án đúng là: {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

  • Câu 30: Nhận biết

    Trong các hình dưới đây hình nào không phải khối đa diện lồi?

     

    Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.

  • Câu 31: Nhận biết

    Biết rằng \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} = {x^n} với x > 0. Tìm n?

     Ta có:

    \begin{matrix}  \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} \hfill \\   = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^2}.{x^{\frac{1}{2}}}}} = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^{\frac{5}{2}}}}} \hfill \\   = {x^{\frac{1}{2}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{5}{6}}} = {x^{\frac{4}{3}}} \hfill \\ \end{matrix}

    Vậy n = \frac{4}{3}

  • Câu 32: Thông hiểu

    Với các số a, b > 0 thỏa mãn {a^2} + {b^2} = 6ab, biểu thức {\log _2}\left( {a + b} ight) bằng:

    Ta có: 

    \begin{matrix}  {a^2} + {b^2} = 6ab \hfill \\   \Rightarrow {\left( {a + b} ight)^2} = 8ab \hfill \\   \Rightarrow {\log _2}{\left( {a + b} ight)^2} = {\log _2}\left( {8ab} ight) \hfill \\   \Rightarrow 2{\log _2}\left( {a + b} ight) = {\log _2}8 + {\log _2}a + {\log _2}b \hfill \\   \Rightarrow {\log _2}\left( {a + b} ight) = \dfrac{1}{2}\left( {{{\log }_2}8 + {{\log }_2}a + {{\log }_2}b} ight) \hfill \\   \Rightarrow {\log _2}\left( {a + b} ight) = \dfrac{1}{2}\left( {3 + {{\log }_2}a + {{\log }_2}b} ight) \hfill \\ \end{matrix}

  • Câu 33: Thông hiểu

    Tìm giá trị thực của tham số m để hàm số y = \frac{1}{3}x^{3} - mx^{2} +
\left( m^{2} - 4 ight)x + 3 đạt cực tiểu tại x = 3?

    Ta có: \left\{ \begin{matrix}
y' = x^{2} - 2mx + m^{2} - 4 \\
y'' = 2x - 2m \\
\end{matrix} ight.

    Để hàm số đạt cực tiểu tại x = 3 thì

    \left\{ \begin{matrix}
y'(3) = 0 \\
y''(3) > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 6m + 5 = 0 \\
6 - 2m > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m = 1 \\
m = 5 \\
\end{matrix} ight.\  \\
m < 3 \\
\end{matrix} ight.\  \Leftrightarrow m = 1

    Vậy giá trị tham số m cần tìm là m =
1.

  • Câu 34: Nhận biết

    Cho hàm số y = \frac{{x + 1}}{{1 - x}}. Khẳng định nào dưới đây là khẳng định đúng?

    Hàm số y = \frac{{x + 1}}{{1 - x}} có tập xác định D = \mathbb{R}\backslash \left\{ 1 ight\} và có đạo hàm

    y' = \frac{2}{{{{\left( {x - 1} ight)}^2}}} > 0,\forall x \in D

    => A là khẳng định đúng

  • Câu 35: Vận dụng cao

    Cho hình chóp đều S.ABCD. Gọi N là trung điểm SB, M là điểm đối xứng với B qua A. Mặt phẳng (MNC) chia khối chóp S.ABCD thành hai phần có thể tích lần lượt là V_1, V_2 với {V_1} < {V_2}. Tính tỉ số \frac{{{V_1}}}{{{V_2}}}.

     

    Gọi h,\,\,S lần lượt là chiều cao và diện tích đáy của khối chóp S.ABCD. Khi đó {V_{S.ABCD}} = \frac{1}{3}S.h. Nối MN cắt SA tại E, MC cắt AD tại F. Tam giác SBM có A, N lần lượt là trung điểm của BM và SB.

    Suy ra E là trọng tâm tam giác SBM.

    Vì tứ giác ACDM là hình bình hành nên F là trung điểm MC.

    Ta có {V_{BNC.AEF}} = {V_{ABCEN}} + {V_{E.ACF}}. Xét tỉ số:

    \frac{{{V_{S.ENC}}}}{{{V_{S.ABC}}}} = \frac{{SE}}{{SA}}.\frac{{SN}}{{SB}} = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}\xrightarrow{{}}{V_{S.ENC}} = \frac{1}{3}{V_{S.ABC}}

    \xrightarrow[{}]{}{V_{ABCEN}} = \frac{2}{3}{V_{S.ABC}} = \frac{2}{3}\left( {\frac{1}{2}{V_{S.ABCD}}} ight) = \frac{1}{3}{V_{S.ABCD}}

    Mặt khác, áp dụng công thức tính thể tích khối chóp E.ACF là:

    {V_{E.ACF}} = \frac{1}{3}{S_{\Delta ACF}}.d\left[ {E,\left( {ACF} ight)} ight] = \frac{1}{3}.\frac{1}{4}S.\frac{1}{3}h = \frac{1}{{12}}{V_{S.ABCD}}

    Do đó {V_{BNC.AEF}} = {V_{ABCEN}} + {V_{E.ACF}}

    = \frac{1}{3}{V_{S.ABCD}} + \frac{1}{{12}}{V_{S.ABCD}}

    = \frac{5}{{12}}{V_{S.ABCD}} = {V_1}

    Suy ra {V_2} = \frac{7}{{12}}{V_{S.ABCD}}\xrightarrow{{}}\frac{{{V_1}}}{{{V_2}}} = \frac{5}{7}.

  • Câu 36: Vận dụng cao

    Cho hàm số y = f(x). Đồ thị của hàm số y = f'\left( x ight) như hình bên. Đặt g\left( x ight) = f\left( x ight) - x. Mệnh đề nào sau đây đúng?

    Xét hàm số g\left( x ight) = f\left( x ight) - x

    \begin{matrix}g'\left( x ight) = f'\left( x ight) - 1 \hfill \\  g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \\   {x = 2} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Chọn mệnh đề đúng

     

    Vậy g\left( 2 ight) < g\left( 1 ight) < g\left( { - 1} ight)

  • Câu 37: Thông hiểu

    Nghiệm nguyên nhỏ nhất của phương trình - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight) là?

    3 || ba || Ba

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của phương trình - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight) là?

    3 || ba || Ba

    Điều kiện: x>2

    Ta có: - {\log _{\sqrt 3 }}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight)

    \Leftrightarrow  - 2{\log _3}\left( {x - 2} ight).{\log _5}x = 2{\log _3}\left( {x - 2} ight)

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}\left( {x - 2} ight) = 0 \hfill \\  {\log _5}x =  - 1 \hfill \\ \end{gathered}  ight. 

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}\left( {x - 2} ight) = 0 \hfill \\  {\log _5}x =  - 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = \frac{1}{5} \hfill \\ \end{gathered}  ight.

    So điều kiện suy ra phương trình có nghiệm x=3.

  • Câu 38: Vận dụng

    Bất phương trình {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 có tập nghiệm là:

     Điều kiện: {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 \Leftrightarrow {\log _2}\left[ {\left( {{x^2} - x - 2} ight)\left( {x - 1} ight)} ight] \geqslant 1

    \Leftrightarrow \left( {{x^2} - x - 2} ight)\left( {x - 1} ight) - 2 \geqslant 0 \Leftrightarrow {x^3} - 2{x^2} - x \geqslant 0 \Leftrightarrow \left[ \begin{gathered}  1 - \sqrt 2  \leqslant x \leqslant 0 \hfill \\  x \geqslant 1 + \sqrt 2  \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là S = \left[ {1 + \sqrt 2 ; + \infty } ight).

     

  • Câu 39: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 40: Nhận biết

    Điều kiện xác định của phương trình {\log _5}(x - 1) = {\log _5}\frac{x}{{x + 1}} là: 

     Biểu thức {\log _5}(x - 1) = {\log _5}\frac{x}{{x + 1}} và xác định 

    \Leftrightarrow \left\{ \begin{gathered}  \frac{x}{{x + 1}} > 0 \hfill \\  x - 1 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x <  - 1 \vee x > 0 \hfill \\  x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 1

  • Câu 41: Vận dụng

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x,\forall x \in \mathbb{R}. Hỏi hàm số có bao nhiêu điểm cực trị?

    Ta có:

    \begin{matrix}  f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x \hfill \\   \Rightarrow y' = f''\left( x ight) - 2x =  - 3{x^2} + 4x + 3 \hfill \\  y' = 0 \Leftrightarrow x = \dfrac{{2 \pm \sqrt {13} }}{3} \hfill \\  y'' =  - 6x + 4 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( {\dfrac{{2 + \sqrt {13} }}{3}} ight) =  - 2\sqrt {13}  < 0} \\   {y''\left( {\dfrac{{2 - \sqrt {13} }}{3}} ight) = 2\sqrt {13}  > 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Hàm số có 1 cực trị

  • Câu 42: Thông hiểu

    Bất phương trình {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 có tập nghiệm là:

    Điều kiện x > {\log _3}\sqrt {73}

    Ta có:  {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 \Leftrightarrow {\log _3}\left( {{9^x} - 72} ight) \leqslant x

    \Leftrightarrow {9^x} - {3^x} - 72 \leqslant 0 \Leftrightarrow {3^x} \leqslant 9 \Leftrightarrow x \leqslant 2

    Vậy BPT có tập nghiệm là S = \left( {{{\log }_3}\sqrt {73} ;2} ight].

  • Câu 43: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}, đạo hàm y = f'(x) có đồ thị như hình vẽ sau:

    Tìm số điểm cực tiểu của hàm số y =
f(x)?

    Hàm số đạt cực tiểu tại điểm có f'(x) đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.

  • Câu 44: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và SC = a\sqrt 5. Tính theo a thể tích V khối chóp S.ABCD.

     Thể tích khối chóp

    Đường chéo hình vuông AC = a\sqrt 2

    Xét tam giác SAC, ta có SA = \sqrt {S{C^2} - A{C^2}}  = a\sqrt 3.

    Chiều cao khối chóp là SA = a\sqrt 3.

    Diện tích hình vuông ABCD là {S_{ABCD}} = {a^2}

    Vậy thể tích khối chóp {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 3 }}{3}.

  • Câu 45: Thông hiểu

    Với a > 0 hãy rút gọn biểu thức P = \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } } :{x^{\frac{9}{{16}}}}

    Ta có: 

    \begin{matrix}  \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } }  = \sqrt {x\sqrt {x\sqrt {x\sqrt {{x^{\frac{3}{2}}}} } } }  = \sqrt {x\sqrt {x\sqrt {{x^{\frac{7}{4}}}} } }  \hfill \\   = \sqrt {x\sqrt {x.{x^{\frac{7}{8}}}} }  = \sqrt {x\sqrt {{x^{\frac{{15}}{8}}}} }  = \sqrt {x.{x^{\frac{{15}}{{16}}}}}  = \sqrt {{x^{\frac{{31}}{{16}}}}}  = {x^{\frac{{31}}{{32}}}} \hfill \\   \Rightarrow P = {x^{\frac{{31}}{{32}}}}:{x^{\frac{9}{{16}}}} = {x^{\frac{{13}}{{32}}}} \hfill \\ \end{matrix}

  • Câu 46: Vận dụng

    Gọi x_1, x_2 là 2 nghiệm của phương trình {\log _3}\left( {{x^2} - x - 5} ight) = {\log _3}\left( {2x + 5} ight).

    Khi đó \left| {{x_1} - {x_2}} ight| bằng:

     Ta có: {\log _3}\left( {{x^2} - x - 5} ight) = {\log _3}\left( {2x + 5} ight) \Leftrightarrow \left\{ \begin{gathered}  2{\text{x}} + 5 > 0 \hfill \\  {x^2} - x - 5 = 2x + 5 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - \frac{5}{2} \hfill \\  \left[ \begin{gathered}  x = 5 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 5 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight.

    Suy ra \left| {{x_1} - {x_2}} ight| =|5-(-2)|=|5+2|=7

  • Câu 47: Thông hiểu

    Viết biểu thức Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} = {x^{\frac{1}{2}}}.{x^{\frac{1}{3}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{1}{3} + \frac{5}{6}}} = {x^{\frac{5}{3}}}

  • Câu 48: Nhận biết

    Tìm tập xác định của hàm số y = {\log _2}\frac{{3 - x}}{{2x}} là:

    Hàm số đã cho xác định khi \frac{{3 - x}}{{2x}} > 0 \Rightarrow x \in \left( {0;3} ight)

  • Câu 49: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 50: Thông hiểu

    Cho hàm số f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} . Tính f'\left( 2 ight)

    Tập xác định \left( {\frac{2}{3}; + \infty } ight)

    Ta có: f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} \Rightarrow f'\left( x ight) = \frac{5}{3}.{\left( {2x - 3} ight)^{\frac{{ - 1}}{6}}} \Rightarrow f'\left( 2 ight) = \frac{5}{3}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo