Nếu đặt
thì phương trình
trở thành phương trình nào?
Đặt
PT
.
Nếu đặt
thì phương trình
trở thành phương trình nào?
Đặt
PT
.
Cho hàm số
có
. Có bao nhiêu giá trị nguyên của
để
?
Ta có: suy ra hàm số
đồng biến trên
Suy ra
Vậy có tất cả 21 giá trị nguyên của .
Trong không gian
, cho mặt cầu
và mặt phẳng
. Gọi
là mặt cầu chứa đường tròn giao tuyến của
và
đồng thời
tiếp xúc với mặt phẳng
. Gọi
là tâm của
. Tính giá trị biểu thức ![]()
Phương trình mặt cầu (S’) có dạng:
Mặt cầu có tâm
, bán kính
.
Mặt cầu tiếp xúc với
nên
Vậy .
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Tập nghiệm của bất phương trình
là?
BPT
Vậy bất PT có tập nghiệm là .
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:

Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Cho hình lăng trụ đứng
có đáy là tam giác cân,
và
, góc giữa mặt phẳng
và mặt đáy
bằng
. Tính theo
thể tích khối lăng trụ.

Gọi là trung điểm của đoạn thẳng
. Tam giác
cân tại
nên ta suy ra tam giác
cân tại
Lại có . Từ đó suy ra
Do đó
Tam giác vuông , có
Tam giác vuông , có
Diện tích tam giác
Vậy .
Nghiệm của bất phương trình
là
Ta có (vô nghiệm).
Vậy tập nghiệm của bất phương trình đã cho là .
Trong không gian, cho tam giác ABC vuông tại A, AB =a và
. Độ dài đường sinh
của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là và chiều cao hình nón là
.
Vậy độ dài đường sinh của hình nón là:
Tìm tập xác định của hàm số
là:
Hàm số đã cho xác định khi
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Cho
. Rút gọn biểu thức 
Ta có:
Gọi
là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Tìm tất cả các giá trị thực của tham số m để bất phương trình ![]()
Bất phương trình tương đương
: (2) không thỏa
: (3) không thỏa
(1) thỏa mãn
.
Vậy .
Cho lăng trụ
có đáy
là hình thoi cạnh
, tâm O và
. Góc giữa cạnh bên
và mặt đáy bằng
. Đỉnh A' cách đều các điểm A, B, D. Tính theo
thể tích
của khối lăng trụ đã cho.

Từ giả thiết suy ra tam giác ABD đều cạnh .
Gọi H là tâm tam giác ABD. Vì A' cách đều các điểm A,B, D nên .
Do đó .
Ta có .
Tam giác vuông , có
.
Diện tích hình thoi .
Vậy .
Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.
Hàm số
đồng biến trên khoảng nào trong các đáp án dưới đây?
Ta có:
=>
Hàm số đồng biến khi
Đặt t = x – 1 thì (*) trở thành
Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

Khi đó ta thấy với thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t
=>
Do đó với thì hàm số
đồng biến.
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Đạo hàm của hàm số ![]()
Ta có:
Định tất cả các giá trị thực của
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì có ba nghiệm phân biệt suy ra phương trình
có hai nghiệm phân biệt khác
Vậy đáp án cần tìm là .
Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số
đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Cho đồ thị hàm số sau:

Xác định hàm số tương ứng với đồ thị đã cho?
Dựa vào đồ thị hàm số đã cho, ta thấy đồ thị này là đồ thị hàm số bậc có hệ số
nên hàm số tương ứng là
.
Với các số a, b, c là các số thực dương tùy ý khác 1 và
. Khi đó giá trị của
bằng:
Với a, b, c là các số thực dương tùy ý khác 1 ta có:
Khi đó ta có:
Phương trình
có tập nghiệm là?
Điều kiện: x > 0
Vậy PT có tập nghiệm là S={8;2}.
Cho hàm số
có đồ thị của hàm số
như sau:

Trên khoảng
có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng một cực trị?
Cho hàm số có đồ thị của hàm số
như sau:
Trên khoảng có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng một cực trị?
Năng lượng giải tỏa
của một trận động đất tại tâm địa chấn
độ Richter được xác định bởi công thức
. Vào năm 1995, thành phố
xảy ra một trận động đất 8 độ Richter và năng lượng giải tỏa tại tâm địa chấn của nó gấp 14 lần trận động đất ra tại thành phố
vào năm 1997. Hỏi khi đó độ lớn của trận động đất tại thành phố
là bao nhiêu? (kết quả làm tròn đến hàng phần chục)
Theo đề bài ta có: .
Vậy độ lớn của trận động đất tại thành phố là 7,2 độ Richter.
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu:
.
Theo đề bài, ta có:
là mặt cầu
Cho hàm số
xác định, liên tục trên
và có bảng biến thiên như sau:

Khẳng định nào sau đây đúng?
Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại .
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Cho hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Tập xác định
Ta có: . Vì hàm số đơn điệu trên
nên
Nếu Hàm số không có giá trị lớn nhất
Vậy
Cho hàm số
. Tính giá trị của biểu thức ![]()
Với ta có:
Ta có: do đó:
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Giá trị của biểu thức
là:
Ta có:
Cho hàm số y = f(x) có
và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có: => Đồ thị hàm số đã cho có TCĐ là x = 0
=> Đồ thị hàm số đã cho có TCĐ là x = 2
Trong không gian với hệ trục tọa độ
, cho mặt cầu
. Bán kính của mặt cầu
là:
Ta có:
suy ra tâm mặt cầu là:
Bán kính mặt cầu là:
Tập xác định của hàm số
là:
Điều kiện xác định:
=> Tập xác định của hàm số là
Nghiệm nguyên lớn nhất của bất phương trình là:
x=7 || X=7 || x bằng 7 || 7
Nghiệm nguyên lớn nhất của bất phương trình là:
x=7 || X=7 || x bằng 7 || 7
Điều kiện:
Ta có:
.
Vậy nghiệm nguyên lớn nhất của bất phương trình là: .
Điều kiện xác định của phương trình
là:
Biểu thức xác định
Cho hàm số
. Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là
. Sai||Đúng
b) Đạo hàm của hàm số là
. Đúng||Sai
c) Giá trị lớn nhất của hàm số trên
là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên
là
. Đúng||Sai
Cho hàm số . Xét tính đúng sai của các khẳng định sau:
a) Tập xác định của hàm số là . Sai||Đúng
b) Đạo hàm của hàm số là . Đúng||Sai
c) Giá trị lớn nhất của hàm số trên là 2. Sai||Đúng
d) Giá trị nhỏ nhất của hàm số trên là
. Đúng||Sai
Tập xác định của hàm số là .
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số.
Ta có:
Khi đó
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số
có 3 điểm cực trị. Tổng các phần tử của S là:
Xét hàm số có đạo hàm
Để hàm số có 3 điểm cực trị thì
Vậy tổng các phần tử của S là 2
Cho hàm số
có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:

Hàm số
nghịch biến trên khoảng nào trong các khoảng sau?
Quan sát hình vẽ ta thấy:
và
Vậy hàm số nghịch biến trên khoảng
.
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).
Xét tính đúng sai của các khẳng định sau:
a) Tổng diện tích 5 mặt của bể là
. Đúng||Sai
b) Ta có
. Sai|| Đúng
c) Thể tích của bể là
. Sai|| Đúng
d) Bể cá có dung tích lớn nhất bằng
. Đúng||Sai
Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).
Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).
Xét tính đúng sai của các khẳng định sau:
a) Tổng diện tích 5 mặt của bể là . Đúng||Sai
b) Ta có . Sai|| Đúng
c) Thể tích của bể là . Sai|| Đúng
d) Bể cá có dung tích lớn nhất bằng . Đúng||Sai
a) Đúng. Kích thước đáy của bể lần lượt là 2a, a; chiều cao bể là h (a, h > 0). Tổng diện tích 5 mặt của bể là:
b) Sai. Theo đề bài ta có: .
c) Sai. Gọi V là thể tích của bể cá, ta có:
d) Đúng. Ta có:
Bảng biến thiên:
Vậy dung tích lớn nhất của bể cá bằng .