Tìm tập xác định D của hàm số ![]()
Điều kiện xác định
Vậy tập xác định của hàm số là
Tìm tập xác định D của hàm số ![]()
Điều kiện xác định
Vậy tập xác định của hàm số là
Cho bất phương trình
. Nếu đặt
thì bất phương trình trở thành:
Ta có:
Hay .
Cho hàm số
có bảng biến thiên như sau:

Hàm số
đồng biến trên khoảng nào sau đây?
Ta có:
Vậy hàm số đồng biến trên các khoảng
Suy ra hàm số đồng biến trên khoảng
.
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Cho hàm số
có đồ thị như hình vẽ:

Tìm số điểm cực trị của hàm số
trên khoảng
?
Đặt
Từ bảng xét dấu của hàm số có
Ta có bảng biến thiên
Từ bảng biến thiên suy ra hàm số có hai cực trị trên khoảng
.
Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?
Xét hàm số có:
Suy ra hàm số đồng biến trên tập số thực.
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Tìm tập xác định của hàm số ![]()
Điều kiện xác định
=> Tập xác định của hàm số là
Cho hình chóp
có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp
.

Diện tích tam giác vuông
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Cho phương trình
. Khẳng định nào sau đây là đúng?
Ta có:
Đặt .
Khi đó
Với .
Cho hàm số
với
là tham số. Tìm điều kiện của tham số
để hàm số
có
cực trị?
Nhận thấy rằng nếu là điểm cực trị dương của hàm số
thì
là điểm cực trị của hàm số
Lại thấy vì đồ thị hàm số nhận trục tung làm trục đối xứng mà
là hàm đa thức bậc ba nên
luôn là một điểm cực trị của hàm số
.
Khi đó để hàm số có 5 điểm cực trị thì hàm số
có hai cực trị dương phân biệt.
Suy ra phương trình có hai nghiệm dương phân biệt:
Vậy đáp án cần tìm là .
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Trong không gian
, cho mặt phẳng
và mặt cầu
cắt nhau theo giao tuyến đường tròn
. Gọi
là thể tích khối cầu
,
là thể tích khối nón
có đỉnh là giao điểm của đường thẳng đi qua tâm mặt cầu
và vuông góc với mặt phẳng
, đáy là đường tròn
. Biết độ dài đường cao khối nón
lớn hơn bán kính của khối cầu
. Tính tỉ số
?
Hình vẽ minh họa
Mặt cầu (S) có tâm I(2; 1; 3) và bán kính R = 5, khoảng cách từ tâm I đến mặt phẳng (P) là:
Bán kính đường tròn là:
Thể tích khối cầu (S) là:
Chiều cao hình nón là .
Thể tích khối nón là
Vậy .
Tìm điều kiện xác định của bất phương trình sau:
![]()
BPT xác định khi : .
PT
có nghiệm là?
PT
Vậy PT có nghiệm là .
Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

Đáp án: 2400 m2
Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?
Đáp án: 2400 m2
Xét hình chữ nhật ABCD như hình vẽ, và đặtv AB = x (x > 0)
Khi đó BC = 240 – 3x > 0 ⇒ x < 80.
Diện tích của hình chữ nhật ABCD là S = x.(240 – 3x ) = 240x – 3x2
Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x) với 0 < x < 80.
Xét f(x) = 240x – 3x2 ⇒ f’(x) = 240 – 6x , f’(x) = 0 ⟺ x = 40.
Do f’’(x) = - 6 < 0, ∀ x∈ (0; 80)
Do đó
Vậy diện tích lớn nhất có thể bao quanh là 4800m2 .
Phương trình
có tập nghiệm là?
Điều kiện: x > 0
Vậy PT có tập nghiệm là S={8;2}.
Cho hình lăng trụ đứng
có đáy là tam giác cân,
và
, góc giữa mặt phẳng
và mặt đáy
bằng
. Tính theo
thể tích khối lăng trụ.

Gọi là trung điểm của đoạn thẳng
. Tam giác
cân tại
nên ta suy ra tam giác
cân tại
Lại có . Từ đó suy ra
Do đó
Tam giác vuông , có
Tam giác vuông , có
Diện tích tam giác
Vậy .
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Tìm tập hợp tất cả các giá trị của tham số
để phương trình
có nghiệm thuộc khoảng
?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình
có nghiệm thuộc khoảng
?
Độ giảm huyết áp của một bệnh nhân
trong đó
là số miligam thuộc được tiêm cho bệnh nhân
. Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là .
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Mặt cầu (S) có tâm A(1; -2; 2) và bán kính R = 8. Tìm phương trình mặt cầu (S).
Phương trình mặt cầu tâm bán kính R có dạng:
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Nghiệm của phương trình
là:
Ta có:
.
Cho hình vẽ:

Đồ thị hình bên là của hàm số nào?
Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hhai hàm số
Đồ thị hàm số đi qua điểm nên hàm số
thảo mãn
Cho các số thực dương a, b với
. Khẳng định nào sau đây đúng?
Trường hợp 1:
Trường hợp 2:
Vậy
Biết đồ thị hàm số
đối xứng với đồ thị hàm số
qua điểm
. Giá trị của
là:
Gọi là điểm thuộc đồ thị hàm số
thì điểm đối xứng với
qua
là
thuộc đồ thị hàm số
=>
Thu gọn biểu thức
biết a và b là hai số thực dương.
Ta có:
Trong không gian
, cho tứ diện đều
có
và hình chiếu vuông góc của
trên mặt phẳng
là
. Tìm tọa độ tâm
của mặt cầu ngoại tiếp tứ diện
?
Gọi
là tứ diện đều nên tâm
của mặt cầu ngoại tiếp trùng với trọng tâm tứ diện
Giá trị của tham số m sao cho hàm số
nghịch biến trên khoảng (0; 2)?
Ta có:
Hàm số nghịch biến trên khoảng (0; 2)
=>
=>
Xét hàm số
Ta có:
=> g(x) đồng biến trên đoạn [0; 2]
Ta có:
Cho hàm số
liên tục trên đoạn
và có đồ thị là đường cong trong hình bên dưới.

Hàm số
đạt cực tiểu tại điểm
Theo hình vẽ thì hàm số đạt cực tiểu tại điểm
.
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng
. Diện tích toàn phần của hình nón là:

Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn
, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

Gọi (O) và (O') lần lượt là hai đường tròn đáy; .
Dựng AD, CB lần lượt song song với OO' . Dễ dàng có ABCD là hình chữ nhật.
Do .
Gọi H là trung điểm của DC.
.
Ta có .
Suy ra .
Vậy thể tích của khối trụ là .
Giá trị của biểu thức
bằng:
Ta có:
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Cho
là ba số thực dương,
thỏa mãn:
![]()
Khi đó, giá trị của biểu thức
gần với giá trị nào nhất sau đây?
Áp dụng bất đẳng thức , ta được:
Do đó với
Dấu “=” xảy ra khi
Khi đó .
Vậy giá trị của T gần 8 nhất.
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm
?
Xét hàm số
Ta có: suy ra
là tiệm cận đứng của đồ thị hàm số.
Tiệm cận đứng đi qua điểm .
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Cho hàm số
có đạo hàm liên tục trên
. Biết đồ thị của hàm số
biểu diễn như hình vẽ:

Khi đó hàm số
nghịch biến trên khoảng nào sau đây?
Ta có:
Vậy đáp án cần tìm là .
Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.
Ta có:
Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình có hai nghiệm phân biệt thỏa mãn
Giá trị của biểu thức ![]()
Ta có:
Hàm số nào sau đây có cực trị?
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
và
đổi dấu đi qua
suy ra hàm số có cực trị tại điểm
.
Hàm số có
suy ra hàm số không có cực trị.
Hàm số có
với
suy ra hàm số không có cực trị.
Cho hàm số
có bảng biến như sau:

Tìm tất cả các giá trị của tham số m để bất phương trình
có một nghiệm?
Đặt
Khi đó bất phương trình trở thành
Bất phương trình có nghiệm khi bất phương trình
có nghiệm
Đồ thị sau đây là của hàm số nào?

Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là và tiệm cận đứng của đồ thị hàm số
.
Đồ thị hàm số cắt trục tung tại điểm
Vậy hàm số cần tìm là .
Cho tứ diện có thể tích bằng
. Gọi
là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số
.

Xét khối tứ diện và các điểm được kí hiệu như hình vẽ trên, ta có:
Tương tự .
Do đó
.