Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 2: Thông hiểu

    Cho đồ thị hàm số y = {x^{ - \sqrt 2 }}. Khẳng định nào dưới đây đúng?

     Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } y = 0 suy ra đồ thị hàm số có tiệm cận ngang là y = 0

    Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0

  • Câu 3: Nhận biết

    Số nghiệm của phương trình {\log _2}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _2}x = 0 là:

    0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm

    Đáp án là:

    Số nghiệm của phương trình {\log _2}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _2}x = 0 là:

    0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  {x^3} + 1 > 0 \hfill \\  {x^2} - x + 1 > 0 \hfill \\  {\log _{{2^{}}}}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _{{2^{}}}}x = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{{x^3} + 1}}{{{x^2}({x^2} - x + 1)}} = 0 \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{(x + 1)({x^2} - x + 1)}}{{{x^2}({x^2} - x + 1)}} = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x + 1 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x =  - 1 \hfill \\ \end{gathered}  ight. \Rightarrow x \in \emptyset

    Vậy số nghiệm của PT là 0.

  • Câu 4: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 5: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào trong các điểm cho sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} nhận giao của hai tiệm cận làm tâm đối xứng

    Đồ thị hàm số có tiệm cận ngang là y =
3 và tiệm cận đứng là x = -
2

    Do đó tâm đối xứng của đồ thị hàm số là điểm ( - 2;3).

  • Câu 6: Thông hiểu

    Nghiệm lớn nhất của phương trình - {\log ^3}x + 2{\log ^2}x = 2 - \log x  là:

    100 || 1 trăm || một trăm || Một trăm || x=100

    Đáp án là:

    Nghiệm lớn nhất của phương trình - {\log ^3}x + 2{\log ^2}x = 2 - \log x  là:

    100 || 1 trăm || một trăm || Một trăm || x=100

     Điều kiện: x>0

    - {\log ^3}x + 2{\log ^2}x = 2 - \log x \Leftrightarrow \left[ \begin{gathered}  \log x =  - 1 \hfill \\  \log x = 2 \hfill \\  \log x = 1 \hfill \\ \end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{10}} \hfill \\  x = 100 \hfill \\  x = 10 \hfill \\ \end{gathered}  ight.

    Vậy nghiệm lớn nhất là x =100.

  • Câu 7: Nhận biết

    Cho hàm số y = \frac{ax + b}{cx + d};(ad
- bc eq 0;ac eq 0) có đồ thị như hình vẽ:

    Tìm đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đó?

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = 1 và đường tiệm cận ngang là y = 1

  • Câu 8: Thông hiểu

    Chỉ số hay độ pH của một dung dịch được tính theo công thức pH = -
\log\left\lbrack H^{+} ightbrack với \left\lbrack H^{+} ightbrack là nồng độ ion hydrogen. Độ pH của một loại sữa có \left\lbrack H^{+} ightbrack =
10^{- 7,8} là bao nhiêu?

    Độ pH là pH = - log10^{- 6,8} =
6,8.

  • Câu 9: Thông hiểu

    Trong các khẳng định sau, khẳng định nào đúng?

    Xét hàm số y = {e^{10x + 2017}} ta có:

    y' = 10.{e^{10x + 2017}} > 0;\forall x \in \mathbb{R}

    Vậy hàm số y = {e^{10x + 2017}} đồng biến trên tập số thực.

  • Câu 10: Vận dụng cao

    Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.

    Hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến trên khoảng nào trong các đáp án dưới đây?

    Ta có: y = f\left( {x - 1} ight) + {x^2} - 2x

    => y' = f'\left( {x - 1} ight) + 2x - 2

    Hàm số đồng biến khi y' \geqslant 0 \Leftrightarrow f'\left( {x - 1} ight) + 2\left( {x - 1} ight) \geqslant 0\left( * ight)

    Đặt t = x – 1 thì (*) trở thành

    f'\left( t ight) + 2t \geqslant 0 \Leftrightarrow f'\left( t ight) \geqslant  - 2t

    Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

    Xác định khoảng đồng biến của hàm số

    Khi đó ta thấy với t \in \left( {0;1} ight) thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t

    => f'\left( t ight) + 2t > 0,\forall t \in \left( {1;2} ight)

    Do đó với \forall x \in \left( {1;2} ight) thì hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến.

  • Câu 11: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a \sqrt 2. Tính thể tích của khối chóp?

     thể tích chóp

    Diện tích hình vuông ABCD{S_{ABCD}} = {a^2}.

    Chiều cao khối chóp là SA = a \sqrt 2

    Vậy áp dụng công thức, ta có thể tích khối chóp là:

    {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 2 }}{3}

  • Câu 12: Vận dụng

    Trong các khẳng định dưới đây, khẳng định nào sai?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 2  - 1 < 1} \\   {2017 < 2018} \end{array}} ight. \Rightarrow {\left( {\sqrt 2  - 1} ight)^{2017}} > {\left( {\sqrt 2  - 1} ight)^{2018}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 3  - 1 < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {\sqrt 3  - 1} ight)^{2018}} < {\left( {\sqrt 3  - 1} ight)^{2017}}

    \left\{ {\begin{array}{*{20}{c}}  {2 > 1} \\   {\sqrt 2  + 1 > \sqrt 3 } \end{array}} ight. \Rightarrow {2^{\sqrt 2  + 1}} > {2^{\sqrt 3 }}

    \left\{ {\begin{array}{*{20}{c}}  {0 < 1 - \dfrac{{\sqrt 2 }}{2} < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2018}} < {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2017}}

    Vậy đáp án sai là: {\left( {\sqrt 3  - 1} ight)^{2018}} > {\left( {\sqrt 3  - 1} ight)^{2017}}

  • Câu 13: Vận dụng

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 14: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho \left( S_{m} ight):(x - 1)^{2} + (y - 1)^{2} +
(z - m)^{2} = \frac{m^{2}}{4} với m
> 0 là tham số thực) và hai điểm A(2;3;5),B(1;2;4). Tìm giá trị nhỏ nhất của tham số m để trên \left( S_{m} ight) tồn tại điểm M sao cho MA^{2} - MB^{2} = 9?

    Gọi M(x;y;z)

    Theo đề bài ra ta có:

    MA^{2} - MB^{2} = 9

    \Leftrightarrow (x - 2)^{2} + (y -
3)^{2} + (z - 5)^{2} - (x - 1)^{2} - (y - 2)^{2} - (z - 4)^{2} =
9

    \Leftrightarrow x + y + z - 4 =
0

    Mặt cầu (Sm) có tâm I(1; 1; m) và bán kính R = \frac{m}{2}

    Gọi (α): x + y + z − 4 = 0. Khi đó:

    M(1;1;m) \in \left( S_{m} ight)
\Leftrightarrow d\left( I;(\alpha) ight) \leq R

    \Leftrightarrow \frac{|m - 2|}{\sqrt{3}}
\leq \frac{m}{2} \Leftrightarrow m - 2 \geq -
\frac{\sqrt{3}}{2}m

    \Leftrightarrow m \geq 8 -
4\sqrt{3}

    Vậy giá trị nhỏ nhất của tham số m cần tìm là m = 8 - 4\sqrt{3}.

  • Câu 15: Thông hiểu

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +
cx + d có đồ thị cắt trục Ox tại ba điểm phân biệt. Hỏi số cực trị của hàm số y = \left| f(x) ight| bằng bao nhiêu?

    Vì đồ thị hàm số y = f(x) = ax^{3} +
bx^{2} + cx + d cắt trục hoành tại ba điểm phân biệt nên hàm số có 2 điểm cực trị giả sử đồ thị của hàm số đó như sau:

    Số điểm cực trị của hàm số là 2

    Số nghiệm bội lẻ của phương trình là 3

    Khi đó số điểm cực trị của hàm số y =
\left| f(x) ight| là 2 + 3 = 5

  • Câu 16: Vận dụng cao

    Cho hàm số y = f(x) là một hàm đa thức có bảng xét dấu f^{'}(x) như sau:

    Số điểm cực trị của hàm số g(x) = f\left(
- 2x^{2} + |x| ight).

    Ta có g(x) = f\left( - 2x^{2} + |x|
ight) = f\left( - 2|x|^{2} + |x| ight).

    Số điểm cực trị của hàm số h(|x|) bằng hai lần số điểm cực trị dương của hàm số h(x) cộng thêm 1.

    Xét hàm số h(x) = f\left( - 2x^{2} + x
ight)

    \Rightarrow h'(x) = ( - 4x +1)f^{'}\left( - 2x^{2} + x ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{1}{4} \\- 2x^{2} + x = - 1 \\- 2x^{2} + x = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{1}{4} \\x = 1 \\x = \dfrac{- 1}{2} \\\end{matrix} ight.

    Bảng xét dấu hàm số h(x) = f\left( -
2x^{2} + x ight):

    Hàm số h(x) = f\left( - 2x^{2} + x
ight) có 2 điểm cực trị dương.

    Vậy hàm số g(x) = f\left( - 2x^{2} + |x|
ight) = f\left( - 2|x|^{2} + |x| ight) có 5 điểm cực trị.

  • Câu 17: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 18: Vận dụng

    Cho hàm số và có bảng biến thiên như hình vẽ.

    Tính giá trị biểu thức

    Tính T = ab + bc + 2ca

    Ta có: 

    \begin{matrix}  y' = 4a{x^3} + 2bx \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 0 ight) = 3} \\   {y\left( 1 ight) = 2} \\   {y'\left( 1 ight) = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a + b + c = 2} \\   {4a + 2b = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a = 1} \\   {b =  - 2} \end{array}} ight. \Rightarrow T =  - 2 \hfill \\ \end{matrix}

  • Câu 19: Vận dụng cao

    Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất {V_{\min }} của khối tứ diện SAMN.

    Gọi E là trung điểm của BC.

    Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

    Theo định lí Talet, ta có:

    \left\{ \begin{gathered}  \frac{{AB}}{{AM}} = \frac{{AP}}{{AG}} \hfill \\  \frac{{AC}}{{AN}} = \frac{{AQ}}{{AG}} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{AP}}{{AG}} + \frac{{AQ}}{{AG}} = \frac{{AP + AQ}}{{AG}}

    Mặt khác \Delta BPE = \Delta CQE\xrightarrow{{}}PE = QE\,

    \Rightarrow \,\,AP + AQ = \left( {AE - PE} ight) + \left( {AE + QE} ight) = 2AE

    Do đó \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{2AE}}{{AG}} = 2.\frac{3}{2} = 3 \Rightarrow \frac{1}{{AM}} + \frac{1}{{AN}} = 3.

    Đặt \left\{ \begin{gathered}  AM = x \hfill \\  AN = y \hfill \\ \end{gathered}  ight. \Rightarrow \frac{1}{x} + \frac{1}{y} = 3

    SABC là tứ diện đều \Rightarrow \,\,SG \bot \left( {ABC} ight)  và SG = \frac{{\sqrt 2 }}{{\sqrt 3 }}

    Do đó   {V_{SAMN}} = \frac{1}{3}{S_{\Delta AMN}}.SG

    = \frac{1}{3}\left( {\frac{1}{2}AM.AN\sin {{60}^0}} ight).SG

    = \frac{{\sqrt 2 }}{{12}}AM.AN = \frac{{\sqrt 2 }}{{12}}xy

    Ta có 3 = \frac{1}{x} + \frac{1}{y} \geqslant \frac{2}{{\sqrt {xy} }}

    \Leftrightarrow \sqrt {xy}  \geqslant \frac{2}{3} \Leftrightarrow xy \geqslant \frac{4}{9}

    \Rightarrow {V_{\min }} = \frac{{\sqrt 2 }}{{27}}

  • Câu 20: Nhận biết

    Giá trị của biểu thức {\log _2}5.{\log _5}64 là:

    Ta có: {\log _2}5.{\log _5}64 = {\log _2}64 = {\log _2}{2^6} = 6

  • Câu 21: Vận dụng

    Cho hàm số f\left( x ight) = {x^2}\left( {x - 1} ight).{e^{3x}} có một nguyên hàm là hàm số F(x). Số điểm cực trị của hàm số F(x) là

    TXĐ: D = \mathbb{R} có một nguyên hàm là hàm số F(x)

    => F’(x) = f(x), \forall x \in \mathbb{R}

    => F'\left( x ight) = 0 \Leftrightarrow f\left( x ight) = 0 \Leftrightarrow {x^2}\left( {x - 1} ight){e^{3x}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \end{array}} ight.

    Ta có bảng xét dấu F’(x) như sau:

    Tìm số cực trị của hàm số

    Dựa vào bảng trên ta thấy hàm số F(x) có một điểm cực trị.

  • Câu 22: Thông hiểu

    Dân số thế giới được tính theo công thức S = A. e \
^{nr} trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là 1,47\% một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?

    Ta có:

    S = A \cdot e^{nr} \Leftrightarrow
e^{nr} = \frac{S}{A} \Leftrightarrow nr = \ln\frac{S}{A} \Leftrightarrow
n = \frac{1}{r}\ln\frac{S}{A}

    Với S = 93713700 người; A = 80902400 người; r = \frac{1,47}{100} = 0,0147/năm.

    Suy ra n =
\frac{1}{0,0147}\ln\frac{93713000}{80902400} \approx 10.

    Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.

  • Câu 23: Nhận biết

    Trong không gian Oxyz, viết phương trình mặt cầu (S) đường kính AB biết A(2; - 1; - 3),B(0;3; - 1)?

    Gọi I là trung điểm của AB khi đó I(1;1; - 2) là tâm mặt cầu (S).

    Bán kính R = \frac{1}{2}AB =
\frac{1}{2}\sqrt{4 + 16 + 4} = \frac{\sqrt{24}}{2}

    Vậy phương trình mặt cầu cần tìm là: (S):(x + 1)^{2} + (y + 1)^{2} + (z - 2)^{2} =
6.

  • Câu 24: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 25: Vận dụng

    Có tất cả bao nhiêu cách phân tích số {15^9} thành tích của ba số nguyên dương, biết rằng các cách phân tích mà các nhân tử chỉ khác nhau về thứ tự thì chỉ được tính một lần?

    Ta có:

    \begin{matrix}  {15^9} = {3^9}{.5^9} \hfill \\   \Rightarrow {15^9} = \underbrace {3...3}_9.\underbrace {5...5}_9 \hfill \\   \Rightarrow {15^9} = \underbrace {\underbrace {3...3}_{{a_1}}.\underbrace {5...5}_{{b_1}}}_x.\underbrace {\underbrace {3...3}_{{a_2}}.\underbrace {5...5}_{{b_2}}}_y.\underbrace {\underbrace {3...3}_{{a_3}}.\underbrace {5...5}_{{b_3}}}_z \hfill \\ \end{matrix}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {x = {3^{{a_1}}}{5^{{b_1}}}} \\   {y = {3^{{a_2}}}{5^{{b_2}}}} \\   {z = {3^{{z_1}}}{5^{{z_2}}}} \end{array}} ight. suy ra ta có hệ \left\{ {\begin{array}{*{20}{c}}  {{a_1} + {a_2} + {a_3} = 9} \\   {{b_1} + {b_2} + {b_3} = 9} \end{array}} ight.

    Xét ba trường hợp:

    Trường hợp 1: Các số x,y,z bằng nhau

    => chỉ có 1 cách chọn

    Trường hợp 2: Trong ba số x,y,z có hai số bằng nhau, giả sử x = y

    =>\left\{ {\begin{array}{*{20}{c}}  {{a_1} = {a_2}} \\   {{b_1} = {b_2}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {2{a_1} + {a_3} = 9} \\   {2{b_a} + {b_3} = 9} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{a_3} = 9 - 2{a_1}} \\   {{b_3} = 9 - 2{a_1}} \end{array}} ight.

    => Có 5 cách chọn {a_1} và 5 cách chọn {b_1}

    Trường hợp 3: Số cách chọn ba số phân biệt:

    Số cách chọn \left\{ {\begin{array}{*{20}{c}}  {{a_1} + {a_2} + {a_3} = 9} \\   {{b_1} + {b_2} + {b_3} = 9} \end{array}} ight.C_{11}^2.C_{11}^2

    => Số cách chọn ba số phân biệt là C_{11}^2.C_{11}^2 - 24.3 - 1

    Vậy số cách phân tích {15^9} thành tích ba số nguyên dương là \frac{{C_{11}^2.C_{11}^2 - 24.3 - 1}}{{3!}} + 25 = 517

  • Câu 26: Nhận biết

    Điều kiện xác định của bất phương trình {\log _{0,5}}(5{\text{x}} + 15) \leqslant {\log _{0,5}}\left( {{x^2} + 6{\text{x}} + 8} ight) là:

    x>-2|| X>-2 || x lớn hơn -2

    Đáp án là:

    Điều kiện xác định của bất phương trình {\log _{0,5}}(5{\text{x}} + 15) \leqslant {\log _{0,5}}\left( {{x^2} + 6{\text{x}} + 8} ight) là:

    x>-2|| X>-2 || x lớn hơn -2

     Điều kiện: \left\{ \begin{gathered}  5x + 15 > 0 \hfill \\  {x^2} + 6{\text{x}} + 8 > 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - 3 \hfill \\  \left[ \begin{gathered}  x >  - 2 \hfill \\  x <  - 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x >  - 2

    Vậy để BPT xác định khi và chỉ khi x >  - 2.

  • Câu 27: Thông hiểu

    Bất phương trình {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 có tập nghiệm là:

    Điều kiện x > {\log _3}\sqrt {73}

    Ta có:  {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 \Leftrightarrow {\log _3}\left( {{9^x} - 72} ight) \leqslant x

    \Leftrightarrow {9^x} - {3^x} - 72 \leqslant 0 \Leftrightarrow {3^x} \leqslant 9 \Leftrightarrow x \leqslant 2

    Vậy BPT có tập nghiệm là S = \left( {{{\log }_3}\sqrt {73} ;2} ight].

  • Câu 28: Thông hiểu

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}. Đồ thị của hàm số y = f'(x) trên đoạn \lbrack - 2;2brack là đường cong hình bên. Mệnh đề nào dưới đây đúng?

    Dựa vào thị của hàm số y =
f^{'}(x) trên đoạn \lbrack -
2;2brack ta thấy f'(x) = 0\Leftrightarrow x = 1.

    Ta có bảng BBT:

    Do đó \max_{\lbrack - 2;2brack}f(x) =f(1).

  • Câu 29: Vận dụng

    Tập nghiệm của bất phương trình {2^x} + {4.5^x} - 4 < {10^x} là:

     Ta có: {2^x} + {4.5^x} - 4 < {10^x} \Leftrightarrow {2^x} - {10^x} + {4.5^x} - 4 < 0

    \Leftrightarrow {2^x}\left( {1 - {5^x}} ight) - 4\left( {1 - {5^x}} ight) < 0 \Leftrightarrow \left( {1 - {5^x}} ight)\left( {{2^x} - 4} ight) < 0

    {\text{    }} \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  1 - {5^x} < 0 \hfill \\  {2^x} - 4 > 0 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  1 - {5^x} > 0 \hfill \\  {2^x} - 4 < 0 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  {5^x} > 1 \hfill \\  {2^x} > 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  {5^x} < 1 \hfill \\  {2^x} < 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x > 2 \hfill \\  x < 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow x \in \left( { - \infty ;0} ight) \cup \left( {2; + \infty } ight)

  • Câu 30: Nhận biết

    Trong các hàm số sau đây, hàm số nào không nghịch biến trên \mathbb{R}?

    Với y =  - \frac{1}{{{x^2} + 1}} \Rightarrow y' = \frac{{2x}}{{{{\left( {{x^2} + 1} ight)}^2}}}

    y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên \mathbb{R}

  • Câu 31: Vận dụng

    Nghiệm bé nhất của phương trình {\log _2}^3x - 2{\log ^2}_2x = {\log _2}x - 2 là: 

     TXĐ: x>0

    PT \Leftrightarrow {\log _2}^3x - 2{\log _2}^2x = {\log _2}x - 2 

    \Leftrightarrow {\log _2}^3x - 2{\log _2}^2x - {\log _2}x + 2 = 0

    \Leftrightarrow {\log _2}^3x - {\log _2}x - 2{\log _2}^2x + 2 = 0

    \Leftrightarrow {\log _2}x({\log ^2}_2x - 1) - 2({\log ^2}_2x - 1) = 0

    \Leftrightarrow ({\log ^2}_2x - 1)({\log _2}x - 2) = 0 \Leftrightarrow \left[ \begin{gathered}  {\log ^2}_2x - 1 = 0 \hfill \\  {\log _2}x - 2 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  {\log _2}x = 1 \hfill \\  {\log _2}x =  - 1 \hfill \\  {\log _2}x = 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 2 \hfill \\  x = \frac{1}{2} \hfill \\  x = 4 \hfill \\ \end{gathered}  ight.

    \Rightarrow x = \frac{1}{2} là nghiệm nhỏ nhất.

  • Câu 32: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S) qua bốn điểm A(3;3;0),B(3;0;3),C(0;3;3),D(3;3;3). Phương trình mặt cầu (S) là:

    Gọi phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 2ax - 2by - 2cz + d = 0a^{2} + b^{2} + c^{2} - d > 0

    Vì mặt cầu đi qua bốn điểm đã cho nên ta có hệ phương trình

    \left\{ \begin{matrix}18 - 6a - 6b + d = 0 \\18 - 6a - 6c + d = 0 \\18 - 6b - 6c + d = 0 \\27 - 6a - 6b - 6c + d = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = \dfrac{3}{2} \\c = \dfrac{3}{2} \\d = 0 \\\end{matrix} ight.. Suy ra tâm mặt cầu I\left( \frac{3}{2};\frac{3}{2};\frac{3}{2}
ight) và bán kính R = \sqrt{a^{2}
+ b^{2} + c^{2} - d} = \frac{3\sqrt{3}}{2}

    Vậy phương trình mặt cầu cần tìm là: \left( x - \frac{3}{2} ight)^{2} + \left( y -
\frac{3}{2} ight)^{2} + \left( z - \frac{3}{2} ight)^{2} =
\frac{27}{4}

  • Câu 33: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = AA' = a, đường chéo AC'hợp với mặt đáy (ABCD) một góc \alpha thỏa mãn \cot \alpha  = \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Ta có AA' \bot \left( {ABCD} ight) nên \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA}.

    Tam giác vuông A'AC, ta có AC = AA'.\cot \alpha  = a\sqrt 5.

    Tam giác vuông ABC, ta có BC = \sqrt {A{C^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.BC = 2{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}.

  • Câu 34: Vận dụng

    Đạo hàm của hàm số y = {\left( {{x^2} + x + x} ight)^{\frac{1}{3}}}

    Ta có:

    \begin{matrix}  y' = \dfrac{1}{3}.{\left( {{x^2} + x + 1} ight)^{\frac{1}{3} - 1}}.\left( {{x^2} + x + 1} ight)\prime  \hfill \\   \Rightarrow y' = \dfrac{1}{3}.{\left( {{x^2} + x + 1} ight)^{ - \frac{2}{3}}}.\left( {2x + 1} ight) \hfill \\   \Rightarrow y' = \dfrac{{2x + 1}}{{3\sqrt[3]{{{{\left( {{x^2} + x + 1} ight)}^2}}}}} \hfill \\ \end{matrix}

  • Câu 35: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 36: Vận dụng

    Gọi S là tập hợp các giá trị thực của tham số m để hàm số y = \frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + 2mx -
3m + 4 nghịch biến trên một đoạn có độ dài bằng 3. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp S bằng:

    Ta có: y' = x^{2} - mx +
2m

    \Leftrightarrow y' = 0
\Leftrightarrow x^{2} - mx + 2m = 0(*)

    Gọi x_{1};x_{2} là nghiệm của phương trình (*) ta có bảng biến thiên:

    Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x_{1};x_{2} thỏa mãn \left| x_{1} - x_{2} ight| = 3

    (*) có hai nghiệm phân biệt \Leftrightarrow \Delta = m^{2} - 8m > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
m > 8 \\
\end{matrix} ight.\ (**)

    \left| x_{1} - x_{2} ight| = 3
\Leftrightarrow \left( x_{1} - x_{2} ight)^{2} = 9 \Leftrightarrow
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}.x_{2} = 9

    \Leftrightarrow m^{2} - 8m - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 1 \\
\end{matrix} ight.\ \left( tm(**) ight)

    Suy ra S = \left\{ 9; - 1
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng 8.

  • Câu 37: Vận dụng

    Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v = 10(km/h) thì phần thứ hai bằng 30 nghìn đồng/giờ.

    Xét tính đúng sai của các mệnh đề sau:

    a) Khi vận tốc v = 10(km/h) thì chi phí nguyên liệu cho phần thứ nhất trên 1 km đường sông là 48000 đồng. Đúng||Sai

    b) Hàm số xác định tổng chi phí nguyên liệu trên 1 km đường sông với vận tốc x (km/h)f(x) = \frac{480}{x} +
0,03x^{3}. Sai||Đúng

    c) Khi vận tốc v = 30 (km/h) thì tổng chi phí nguyên liệu trên 1 km đường sông là 43000 đồng. Đúng||Sai

    d) Vận tốc của tàu để tổng chi phí nguyên liệu trên 1 km đường sông nhỏ nhất là v=20(km/h). Đúng||Sai

    Đáp án là:

    Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng 480 nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi v = 10(km/h) thì phần thứ hai bằng 30 nghìn đồng/giờ.

    Xét tính đúng sai của các mệnh đề sau:

    a) Khi vận tốc v = 10(km/h) thì chi phí nguyên liệu cho phần thứ nhất trên 1 km đường sông là 48000 đồng. Đúng||Sai

    b) Hàm số xác định tổng chi phí nguyên liệu trên 1 km đường sông với vận tốc x (km/h)f(x) = \frac{480}{x} +
0,03x^{3}. Sai||Đúng

    c) Khi vận tốc v = 30 (km/h) thì tổng chi phí nguyên liệu trên 1 km đường sông là 43000 đồng. Đúng||Sai

    d) Vận tốc của tàu để tổng chi phí nguyên liệu trên 1 km đường sông nhỏ nhất là v=20(km/h). Đúng||Sai

    a) Đúng: Thời gian tàu chạy quãng đường 1 km là: \frac{1}{10} (giờ)

    Chi phí tiền nhiên liệu cho phần thứ nhất là: \frac{1}{10}.480000 = 48000 (đồng).

    b) Sai: Gọi x (km/h) là vận tốc của tàu, x > 0

    Thời gian tàu chạy quãng đường 1 km là: \frac{1}{x} (giờ)

    Chi phí tiền nhiên liệu cho phần thứ nhất là: \frac{1}{x}.480 = \frac{480}{x} (nghìn đồng)

    Hàm chi phí cho phần thứ hai là p =
k.x^{3} (nghìn đồng/ giờ)

    Khi x = 10 \Rightarrow p = 30 \Rightarrow
k = 0,03 \Rightarrow p = 0,03x^{3} (nghìn đồng/ giờ)

    Do đó chi phí phần 2 để chạy 1 km là: \frac{1}{x}.0,03x^{3} = 0,03x^{2} (nghìn đồng)

    Vậy tổng chi phí f(x) = \frac{480}{x} +
0,03x^{3},

    c) Đúng. Tổng chi phí f(x) =
\frac{480}{x} + 0,03x^{3}

    Thay x = v = 30 ta được f(30) = \frac{480}{30} + 0,03(30)^{3} =
43(nghìn đồng).

    d) Đúng f(x) = \frac{480}{x} + 0,03x^{3}
= \frac{240}{x} + \frac{240}{x} + 0,03x^{2} \geq 3\sqrt[3]{1728} =
36

    Dấu ’’=’’ xảy ra khi x = 20.

  • Câu 38: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 39: Vận dụng cao

    Với giá trị nào của tham số m thì bất phương trình {2^{{{\sin }^2}x}} + {3^{{\text{co}}{{\text{s}}^2}x}} \geqslant m{.3^{{{\sin }^2}x}} có nghiệm?

     Chia hai vế của bất phương trình cho {3^{{{\sin }^2}x}} > 0, ta được:

    {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} \geqslant m

    Xét hàm số y = {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} là hàm số nghịch biến.

    Ta có: 0 \leqslant {\sin ^2}x \leqslant 1 nên 1 \leqslant y \leqslant 4.

    Vậy bất phương trình có nghiệm khi m \leqslant 4.

  • Câu 40: Nhận biết

    Cho hàm số f(x) có bảng biến thiên như sau:

    Hàm số đạt cực tiểu tại điểm

    Từ bảng biến thiên, hàm số đạt cực tiểu tại điểm x = 0.

  • Câu 41: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 42: Vận dụng cao

    Đồ thị của hàm số y = x^{4} - 2(m +
1)x^{2} + 2m + 1 (với m là tham số) cắt trục hoành tại bốn điểm phân biệt có hoành độ lập thành một cấp số cộng. Kết luận nào sau đây đúng?

    Phương trình hoành độ giao điểm y = x^{4}
- 2(m + 1)x^{2} + 2m + 1 = 0\ \ (1)

    Đặt t = x^{2};t \geq 0. Phương trình trở thành t^{2} - 2(m + 1)t + 2m + 1 =
0\ \ \ (2)

    Phương trình (1) có 4 nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương phân biệt, nghĩa là \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(m + 1)^{2} - (2m + 1) > 0 \\
m + 1 > 0 \\
2m + 1 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - 1 \\m > - \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - \dfrac{1}{2} \\\end{matrix} ight.

    Gọi x_{1};x_{2};x_{3};x_{4};\left( x_{1} < x_{2} < x_{3} < x_{4}
ight) là nghiệm cỉa phương trình (1) và t_{1};t_{2};\left( t_{1} < t_{2}
ight) là nghiệm của phương trình (2)

    Theo giả thiết ta có:

    x_{4} - x_{3} = x_{3} - x_{2} = x_{2} -
x_{1}

    \Leftrightarrow x_{4} - x_{3} = x_{3} -
x_{2}

    \Leftrightarrow \sqrt{t_{2}} -
\sqrt{t_{1}} = \sqrt{t_{1}} + \sqrt{t_{1}} \Leftrightarrow t_{2} =
9t_{1} > 0

    Ta có hệ:

    \left\{ \begin{matrix}t_{1} + t_{2} = 2(m + 1) \\t_{1}.t_{2} = 2m + 1 \\t_{1} = 9t_{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t_{1} = \dfrac{m}{5} + \dfrac{1}{5} \\t_{2} = \dfrac{9m}{5} + \dfrac{9}{5} \\t_{1}.t_{2} = 2m + 1 \\\end{matrix} ight.

    \Leftrightarrow \left( \dfrac{m}{5} +\dfrac{1}{5} ight)\left( \dfrac{9m}{5} + \dfrac{9}{5} ight) = 2m + 1\Leftrightarrow \left\lbrack \begin{matrix}m = 4 \\m = - \dfrac{4}{9} \\\end{matrix} ight.

    Vậy m \in (2;6)

  • Câu 43: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 44: Thông hiểu

    Cho hàm số y =
f(x) = \frac{mx - 8}{2x - m} (với m là tham số). Tìm tất cả các giá trị của tham số m để hàm số đồng biến trên từng khoảng xác định?

    Tập xác định x eq
\frac{m}{2}

    Ta có: y' = \frac{- m^{2} + 16}{(2x -
m)^{2}}.

    Để hàm số đồng biến trên khoảng xác định thì y' > 0 \Leftrightarrow \frac{- m^{2} +
16}{(2x - m)^{2}} > 0

    \Leftrightarrow - m^{2} + 16 > 0
\Leftrightarrow - 4 < m < 4

    Vậy đáp án cần tìm là: - 4 < m <
4.

  • Câu 45: Thông hiểu

    Với a là một số thực dương thì biểu thức P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} được rút gọn là:

    Ta có: P = \frac{{{a^{\sqrt 7  + 1}}.{a^{2 - \sqrt 7 }}}}{{{{\left( {{a^{\sqrt 2  - 2}}} ight)}^{\sqrt 2  + 2}}}} = \frac{{{a^3}}}{{{a^{ - 2}}}} = {a^5}

  • Câu 46: Nhận biết

    Cho biểu thức P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}} với x > 0. Mệnh đề nào sau đây là đúng?

     Ta có: 

    \begin{matrix}  P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}  \hfill \\  P = \sqrt {x.\sqrt[3]{{{x^{\frac{7}{2}}}}}}  \hfill \\  P = \sqrt {x.{x^{\frac{7}{6}}}}  \hfill \\  P = \sqrt {{x^{\frac{{13}}{6}}}}  = {x^{\frac{{13}}{{12}}}} \hfill \\ \end{matrix}

  • Câu 47: Thông hiểu

    Cho a là một số dương, biểu thức {a^{\frac{2}{3}}}.\sqrt a viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: {a^{\frac{2}{3}}}.\sqrt a  = {a^{\frac{2}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{7}{6}}}

  • Câu 48: Nhận biết

    Đạo hàm của hàm số y = \frac{{{e^{4x}}}}{5}

    Ta có: y' = \frac{1}{5}\left( {{e^{4x}}} ight)' = \frac{1}{5}\left( {4x} ight)'.{e^{4x}} = \frac{4}{5}.{e^{4x}}

  • Câu 49: Nhận biết

    Cho các mệnh đề sau:

    (i) Cơ số của logarit phải là số dương.

    (ii) Chỉ số thực dương mới có logarit.

    (iii) \ln \left( {A + B} ight) = \ln A + \ln B với mọi A > 0;B > 0.

    (iv) {\log _a}b.{\log _b}c.{\log _c}a = 1 với mọi a,b,c \in \mathbb{R}.

    Số mệnh đề đúng là:

    (i) Sai vì cơ số của {\log _a}b chỉ cần thỏa mãn 0 < a e 0

    (ii) Đúng vì điều kiện có nghĩa của {\log _a}bb > 0

    (iii) Sai vì \ln \left( {A + B} ight) = \ln A.\ln B với mọi A > 0;B > 0

    (iv) Sai vì nếu a,b,c < 0 thì các biểu thức {\log _a}b;{\log _b}c;{\log _c}a không có nghĩa.

  • Câu 50: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA=SB, SC=SD\left( {SAB} ight) \bot \left( {SCD} ight). Tổng diện tích hai tam giác SABSCD bằng \frac{{7{a^2}}}{{10}}. Tính thể tích V của khối chóp  S.ABCD?

     

    Gọi M, N lần lượt là trung điểm của ABCD.

    Tam giác SAB cân tại S suy ra SM \bot AB \Rightarrow SM \bot d với d = \left( {SAB} ight) \cap \left( {SCD} ight).

    \left( {SAB} ight) \bot \left( {SCD} ight) suy ra SM \bot \left( {SCD} ight) \Rightarrow SM \bot SN\left( {SMN} ight) \bot \left( {ABCD} ight)

    Kẻ SH \bot MN\xrightarrow{{}}SH \bot \left( {ABCD} ight).

    Ta có {S_{\Delta SAB}} + {S_{\Delta SCD}} = \frac{{7{a^2}}}{{10}}

    \Leftrightarrow \frac{1}{2}AB.SM + \frac{1}{2}CD.SN = \frac{{7{a^2}}}{{10}}\xrightarrow{{}}SM + SN = \frac{{7a}}{5}.

    Tam giác SMN vuông tại S nên S{M^2} + S{N^2} = M{N^2} = {a^2}

    Giải hệ:

    \left\{ \begin{gathered}  SM + SN = \frac{{7a}}{5} \hfill \\  S{M^2} + S{N^2} = {a^2} \hfill \\ \end{gathered}  ight.  \Leftrightarrow SM = \frac{{3a}}{5}{\text{ }} hoặc  SN = \frac{{4a}}{5}

    \xrightarrow{{}}SH = \frac{{SM.SN}}{{MN}} = \frac{{12a}}{{25}}

    Vậy thể tích khối chóp V_{S.ABCD} = \frac{1}{3}.{S_{ABCD}}.SH = \frac{{4{a^3}}}{{25}}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo