Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Gọi
là 2 nghiệm của phương trình
. Khi đó
bằng:
Điều kiện: .
Đặt ,điều kiện
. Khi đó phương trình trở thành:
Vậy .
Nếu đặt
thì phương trình
trở thành phương trình nào?
Đặt
PT
.
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Cho hàm số y = f(x) có đạo hàm
. Hỏi hàm số có bao nhiêu điểm cực trị?
Ta có:
=> Hàm số có 1 cực trị
Tìm tất cả các giá trị thực của tham số m để bất phương trình ![]()
Bất phương trình tương đương
: (2) không thỏa
: (3) không thỏa
(1) thỏa mãn
.
Vậy .
Cho
. Khi đó
có giá trị là:
Ta có:
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Hàm số
đạt cực đại tại
Tập xác định:
Ta có:
Ta có bảng biến thiên
Vậy hàm số đạt cực tiểu tại và
.
Gọi
là hai nghiệm của phương trình
. Khi đó, tổng hai nghiệm bằng?
0 || không || Không || Tổng 2 nghiệm bằng 0
Gọi là hai nghiệm của phương trình
. Khi đó, tổng hai nghiệm bằng?
0 || không || Không || Tổng 2 nghiệm bằng 0
Ta có:
Đặt , phương trình trên tương đương với
(vì
).
Từ đó suy ra
Vậy tổng hai nghiệm bằng 0.
Trong các khẳng định sau, khẳng định nào đúng?
Xét hàm số ta có:
Vậy hàm số đồng biến trên tập số thực.
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Nếu đặt
thì bất phương trình
trở thành bất phương trình nào?
Điều kiện:
Sau khi đưa về cùng cơ số 4, rồi tiếp tục biến đổi về cùng cơ số 3 ta được bất phương trình
Vậy BPT trở thành: .
Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

Bất phương trình
(với m là tham số thực) nghiệm đúng với mọi
khi và chỉ khi:
Đặt
Vì
=>
Xét hàm số
Ta có:
Dựa vào đồ thị hàm số ta thấy: thì
=> g(u) nghịch biến trên (0; 2)
Vậy để nghiệm đúng với mọi
thì
Hàm số nào dưới dây nghịch biến trên khoảng
?
Xét hàm số có
nên hàm số
nghịch biến trên khoảng
.
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.
Cho hàm số bậc bốn y = f(x) có đồ thị (C1) và hàm số y = f’(x) có đồ thị (C2) như hình vẽ bên. Số điểm cực trị của đồ thị hàm số
trên khoảng
là:

Ta có:

Xét
Từ đồ thị ta được:
Phương trình có nghiệm đơn
Phương trình có 2 nghiệm đơn và 1 nghiệm bội chẵn (x = 0)
Phương trình có 1 nghiệm đơn.
Vậy g’(x) = 0 có 8 nghiệm đơn nên hàm số g(x) có 8 điểm cực trị.
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Thu gọn biểu thức
biết a và b là hai số thực dương.
Ta có:
Trong không gian
, viết phương trình mặt cầu đi qua điểm
và tiếp xúc với các mặt phẳng tọa độ?
Gọi là tâm mặt cầu
. Mặt cầu
tiếp xúc với các mặt phẳng tọa độ nên:
Mặt cầu đi qua điểm
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]
Từ đồ thị ta có: f’(x) = 0 =>
Ta có bảng biến thiên như sau:

Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Cho hàm số
liên tục trên
và có đồ thị như hình vẽ:

Tìm tập hợp tất cả các giá trị của tham số
để phương trình
có nghiệm thuộc khoảng
?
Cho hàm số liên tục trên
và có đồ thị như hình vẽ:
Tìm tập hợp tất cả các giá trị của tham số để phương trình
có nghiệm thuộc khoảng
?
Phương trình
có nghiệm là:
x=2 || 2 || hai
Phương trình có nghiệm là:
x=2 || 2 || hai
PT .
Cho hàm số
có đồ thị hàm số như hình vẽ:

Mệnh đề nào sau đây sai?
Giá trị cực đại của hàm số là suy ra mệnh đề sai là: “Giá trị cực đại của hàm số là
.”
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Tập xác định của hàm số
là tập hợp nào sau đây?
Điều kiện xác định
Vậy tập xác định của hàm số là
Cho phương trình
, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?
Đáp án: 5
Cho phương trình , m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?
Đáp án: 5
ĐKXĐ:
Ta có:
Để phương trình có nghiệm thì .
Kết hợp điều kiện m là số nguyên dương ta có m ∈ {1;2;3;4;5}.
Vậy có 5 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm là điểm
, mặt phẳng
cắt mặt cầu
theo thiết diện là đường tròn có bán kính
. Diện tích của mặt cầu
là:
Ta có:
Vậy diện tích mặt cầu là: .
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1

Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số
có đồ thị như sau:

Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:
Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là và đường tiệm cận ngang là
.
Cho hàm số
xác định trên
và có đạo hàm
trong đó
. Hàm số
đồng biến trên khoảng nào?
Ta có:
Vì nên
Suy ra hàm số đồng biến trên .
Trong không gian với hệ trục tọa độ
, phương trình nào sau đây không phải là phương trình của một mặt cầu?
Phương trình là phương trình của một mặt cầu nếu
.
Vậy phương trình không phải phương trình mặt cầu là:
Nghiệm của bất phương trình
là
Ta có (vô nghiệm).
Vậy tập nghiệm của bất phương trình đã cho là .
Cho hàm số
(với
là tham số thực) thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
TH1: loại
TH2: khi đó
Suy ra đáp án cần tìm là .
Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số .
Vậy hàm số cần tìm là .
Cho hình lăng trụ
có đáy là tam giác đều cạnh có độ dài bằng 2. Hình chiếu vuông góc của
lên mặt phẳng
trùng với trung điểm
của
. Góc tạo bởi cạnh bên
với mặt đáy là
. Tính thể tích khối trụ
.
3 || Ba || ba || V=3
Cho hình lăng trụ có đáy là tam giác đều cạnh có độ dài bằng 2. Hình chiếu vuông góc của
lên mặt phẳng
trùng với trung điểm
của
. Góc tạo bởi cạnh bên
với mặt đáy là
. Tính thể tích khối trụ
.
3 || Ba || ba || V=3

Tam giác đều ABC cạnh bằng 2 nên .
Vì nên hình chiếu vuông góc của
trên mặt đáy
là AH.
Do đó .
Suy ra tam giác vuông cân tại H nên
.
Diện tích tam giác đều ABC là .
Vậy .
Trong không gian, cho hình chữ nhật ABCD có
và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Hàm số nào sau đây đồng biến trên
?
Ta có hàm số có cơ số
nên đồng biến trên
.
Ngoài ra các hàm số ;
;
không thể đồng biến hoặc nghịch biến trên
.
Cho hàm số
. Cho các khẳng định sau:
i) Hàm số xác định với mọi x
ii) Đồ thị hàm số luôn đi qua điểm (1; 1)
iii) Hàm số nghịch biến trên ![]()
iv) Đồ thị hàm số có hai đường tiệm cận
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
Ta có khẳng định ii) và iv) là đúng
i) Sai vì hàm số đã cho xác định khi x > 0
iii) Sai vì hàm số nghịch biến trên
Tổng tất cả các giá trị thực của m để hàm số
đồng biến trên R bằng:
Ta có:
Hàm số đã cho đồng biến trên R khi và chỉ khi
Và dấu bằng xảy ra chỉ tại một số hữu hạn điểm.
Điều kiện cần
Ta thấy phương trình y ‘ = 0 có một nghiệm x = -1 nên để thì y’ không đổi dấu qua khi x = -1 khi đó phương trình y’ = 0 có nghiệm kép là x = -1 (x = -1 không thể laf nghiệm bội 4 của phương trình y’ = 0 vì y’ không chứa số hạng x3)
Ta suy ra được y’’(-1) = 0
=>
Điều kiện đủ:
Với m = - 2 ta có:
=> Hàm số đồng biến trên R
=> m = -2 thỏa mãn điều kiện đề bài.
Với ta có:
=> Hàm số đồng biến trên R
=> thỏa mãn điều kiện đề bài
Vậy là các giá trị cần tìm.
=> Tổng các giá trị thực của m cần tìm thỏa mãn yêu cầu bài toán là
Đạo hàm của hàm số ![]()
Ta có:
Cho tứ diện đều
có cạnh bằng 1. Mặt phẳng
đi qua điểm S và trọng tâm G của tam giác
cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất
của khối tứ diện
.

Gọi E là trung điểm của BC.
Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

Theo định lí Talet, ta có:
Mặt khác
Do đó .
Đặt
Vì là tứ diện đều
và
Do đó
Ta có
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Một người gửi vào ngân hàng 200 triệu đồng vào tài khoản tiết kiệm ngân hàng với lãi suất 0,6%/ tháng, cứ sau mỗi tháng người đó rút ra 500 nghìn đồng. Hỏi sau đúng 36 lần rút tiền thì số tiền còn lại trong tài khoản của người đó gần nhất với phương án nào sau đây? (Biết rằng lãi suất không thay đổi và tiền lại mỗi tháng tính theo số tiền thực tế trong tài khoản của tháng đó?
Số tiền còn lại trong tài khoản sau tháng thứ 1 là: (triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 2 là:
(triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 3 là:
(triệu đồng)
Cứ tiếp tục quá trình thì số tiền còn lại trong tài khoản sau tháng thứ 36 là:
(triệu đồng)
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).