Tập nghiệm của bất phương trình
là:
Điều kiện: .
Đặt .
Bất phương trình đã cho trở thành
Đặt
Khi đó hoặc
- Với
- Với
Kết hợp điều kiện, ta được nghiệm của bất phương trình đã cho là hoặc
.
Tập nghiệm của bất phương trình
là:
Điều kiện: .
Đặt .
Bất phương trình đã cho trở thành
Đặt
Khi đó hoặc
- Với
- Với
Kết hợp điều kiện, ta được nghiệm của bất phương trình đã cho là hoặc
.
Tìm tất cả các giá trị thực của tham số m để bất phương trình
có nghiệm đúng
.
Bất phương trình tương đương
hoặc
: (*) không thỏa
và
: (*)
Tìm các giá trị của x để hàm số
có nghĩa:
Điều kiện xác định
Cho hình nón đỉnh S có bán kính đáy
, góc ở đỉnh bằng
. Diện tích xung quanh của hình nón bằng:

Theo giả thiết, ta có và
.
Suy ra độ dài đường sinh:
Vậy diện tích xung quanh bằng: (đvdt).
Cơ số x bằng bao nhiêu để
?
Điều kiện
Ta có:
Cho hàm số
có đồ thị như hình vẽ:

Xác định khoảng đồng biến của hàm số
?
Từ đồ thị hàm số ta có:
và
Ta có:
Khi đó:
Vậy hàm số đồng biến trên khoảng
.
Cho khối lăng trụ
có thể tích bằng
, các điểm
lần lượt thuộc các cạnh
sao cho
. Thể tích của khối đa diện
là bao nhiêu? (Đơn vị:
)
31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối
Cho khối lăng trụ có thể tích bằng
, các điểm
lần lượt thuộc các cạnh
sao cho
. Thể tích của khối đa diện
là bao nhiêu? (Đơn vị:
)
31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối
Ta có
Nên
Mà
.
Vậy .
Hàm số
có bao nhiêu điểm cực trị?
Ta có:
Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.
Cho biết năm 2018, tỉnh A có 2 triệu người và tỉ lệ dân số là 1,4%/năm. Hỏi đến năm 2025 tỉnh A có bao nhiêu người, nếu tỉ lệ tăng dân số hằng năm không đổi?
Ta có: A = 2, n = 7; I = 0,014
Số dân tỉnh A đến năm 2025 là triệu người.
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:

Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là
. Tính thể tích
của hình hộp chữ nhật đã cho.

Xét hình hộp chữ nhật có đáy
là hình chữ nhật.
Theo bài ra, ta có
Nhân vế theo vế, ta được
Vậy .
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm
và đi qua điểm
. Phương trình mặt cầu
là:
Phương trình mặt cầu có tâm
và bán kính
là:
Ta có:
Vậy phương trình cần tìm là: .
Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?
Ta có:
là các hàm số không xác định trên
Vì nghịch biến trên
Để thiết kế một chiếc bể nuôi cá Koi trong sân vườn hình hộp chữ nhật không nắp có chiều cao
và thể tích chứa
. Biết giá thành để làm mặt bên là 2,8 triệu đồng/
và làm mặt đáy là 4 triệu đồng/
. Tính chi phí thấp nhất để hoàn thành bể cá (Làm tròn theo đơn vị triệu đồng).

Đáp án: 2812
Để thiết kế một chiếc bể nuôi cá Koi trong sân vườn hình hộp chữ nhật không nắp có chiều cao và thể tích chứa
. Biết giá thành để làm mặt bên là 2,8 triệu đồng/
và làm mặt đáy là 4 triệu đồng/
. Tính chi phí thấp nhất để hoàn thành bể cá (Làm tròn theo đơn vị triệu đồng).
Đáp án: 2812
Gọi lần lượt là chiều rộng và chiều dài của đáy hình hộp.
Điều kiện: .
Ta có thể tích của khối hộp:
.
Diện tích mặt đáy:
.
Giá tiền để làm mặt đáy là:
(đồng).
Diện tích xung quanh của bể cá:
.
Giá tiền để làm mặt bên là:
.
Tổng chi phí để xây dựng bể cá là:
(triệu đồng).
Cho hàm số
liên tục và có đạo hàm trên
. Biết
. Đồ thị hàm số
như hình vẽ:

Hàm số
có bao nhiêu điểm cực trị?
Xét .
Từ đồ thị ta thấy:
Vì hệ số cao nhất của nhỏ hơn 0 nên hệ số cao nhất của
cùng nhỏ hơn 0. Ta có bảng biến thiên:
luôn có đúng 2 nghiệm bội lé.
Số điểm cực trị của hàm số là 5.
Cho các hàm số
có đồ thị như hình vẽ. Đường thẳng
cắt trục hoành, đồ thị hàm số
và
lần lượt tại
. Biết rằng
. Mệnh đề nào sau đây đúng?

Ta có:
Theo bài ra ta có:
Tổng độ dài
của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Tổng độ dài của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Khối mười hai mặt đều có tất cả 30 cạnh:

Suy ra ta có tổng độ dài tất cả các cạnh bằng .
Tìm điều kiện xác định của bất phương trình sau:
![]()
BPT xác định khi : .
Đồ thị hàm số
có đường tiệm cận ngang là
Ta có:
Suy ra tiệm cận ngang là .
Đồ thị của hàm số
(với
là tham số) cắt trục hoành tại bốn điểm phân biệt có hoành độ lập thành một cấp số cộng. Kết luận nào sau đây đúng?
Phương trình hoành độ giao điểm
Đặt . Phương trình trở thành
Phương trình (1) có 4 nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương phân biệt, nghĩa là
Gọi ;
là nghiệm cỉa phương trình (1) và
là nghiệm của phương trình (2)
Theo giả thiết ta có:
Ta có hệ:
Vậy
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có:
Ta có:
Cho g’(x) = 0 =>
Dựa vào f’(x) ta có:
Lập bảng xét dấu như sau:

Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)
Thu gọn biểu thức
biết a và b là hai số thực dương.
Ta có:
Dựa vào thông tin dưới đây và trả lời các câu hỏi
Số lượng của một loại vi khuẩn X trong một phòng thí nghiệm được biểu diễn theo công thức
, trong đó A là số lượng vi khuẩn tại thời điểm chọn mốc thời gian, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng (tính theo đơn vị là giờ). Lúc 6 giờ sáng, số lượng vi khuẩn X là 150 con. Sau 3 giờ, số lượng vi khuẩn X là 450 con.
Tỉ lệ tăng trưởng của vi khuẩn X gần nhất với kết quả nào sau đây?
Chọn 6 giờ là mốc thời gian. Khi đó .
Sau 3 giờ, số lượng vi khuẩn là 450 con nên .
Từ đó ta có phương trình:
Cho các số thực dương a, b với
. Khẳng định nào sau đây đúng?
Trường hợp 1:
Trường hợp 2:
Vậy
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Gọi
là 2 nghiệm của phương trình
. Khi đó
bằng:
-3
Gọi là 2 nghiệm của phương trình
. Khi đó
bằng:
-3
Điều kiện:
Vậy .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và
. Tính theo a thể tích V khối chóp S.ABCD.

Đường chéo hình vuông
Xét tam giác SAC, ta có .
Chiều cao khối chóp là .
Diện tích hình vuông ABCD là
Vậy thể tích khối chóp .
Một chất điểm chuyển động theo phương trình
trong đó
được tính bằng giây và
được tính bằng mét. Thời gian để vận tốc của chất điểm đạt giá trị lớn nhất là:
Ta có:
Khi đó
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Cho hàm số f(x) có
. Số cực trị của hàm số đã cho là:
Ta có: f’(x) đổi dấu khi qua các giá trị x = 3 và x = -3/2 nên hàm số có hai cực trị.
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Cho hàm số
. Tìm
để hàm số đã cho đạt cực đại tại
?
Tập xác định
Ta có:
Để là điểm cực đại của hàm số thì
Với thì
. Vậy
không thỏa mãn.
Với thì
Xét dấu ta được
có điểm cực đại.
Vậy là giá trị cần tìm.
Tìm điều kiện của x để hàm số
có nghĩa?
Ta có điều kiện xác định
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Tập nghiệm của bất phương trình
là:
Vậy tập nghiệm của BPT là .
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Cho hàm số
có bảng biến thiên như hình vẽ:

Biết (C) cắt các trục tọa độ tại các điểm A, B thỏa mãn
. Tính giá trị của biểu thức
?
Do đồ thi hàm số có tiệm cận đứng x = -1 và tiệm cận ngang là y = 2
=> Hàm số có dạng
=>
Ta có:
Trong không gian với hệ tọa độ
, cho điểm M thuộc mặt cầu
và ba điểm
. Biết rằng quỹ tích các điểm M thỏa mãn
là đường tròn cố định, tính bán kính r đường tròn này?
Ta có: khi đó:
Mà
Suy ra .
Như vậy quỹ tích điểm M là đường tròn giao tuyến của (S) tâm I(3; −1; 0), bán kính R = 3 và (P)
Ta có:
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Với a là một số thực dương thì biểu thức
được rút gọn là:
Ta có:
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
suy ra
là tiệm cận ngang.
suy ra
là tiệm cận ngang.
Vậy không là tiệm cận đứng của đồ thị hàm số đã cho.
suy ra
là tiệm cận đứng của đồ thị hàm số đã cho
Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Cho phương trình
, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?
Đáp án: 5
Cho phương trình , m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?
Đáp án: 5
ĐKXĐ:
Ta có:
Để phương trình có nghiệm thì .
Kết hợp điều kiện m là số nguyên dương ta có m ∈ {1;2;3;4;5}.
Vậy có 5 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Số giá trị nguyên của tham số
để hàm số
đồng biến trên
là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=> Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.
Xác định hàm số nghịch biến trên
?
Xét hàm số ta có:
Nên hàm số nghịch biến trên
.
Cho hàm số
có đồ thị kí hiệu là
. Tìm điểm thuộc
?
Ta thấy
Điều kiện xác định của phương trình
là:
Biểu thức và xác định
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Trong không gian với hệ tọa độ
, giá trị dương của tham số
sao cho mặt phẳng
tiếp xúc với mặt cầu
là:
Ta có: có phương trình
Mặt cầu có tâm
và bán kính
Để mặt phẳng tiếp xúc với mặt cầu
thì
. Vì m nhận giá trị dương nên
.
Vậy thỏa yêu cầu đề bài.
Cho hình chóp
có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.

Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .