Gọi
là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Gọi là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Điều kiện:
PT
Vậy .
Gọi
là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Gọi là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Điều kiện:
PT
Vậy .
Trong không gian
, cho các điểm
. Tập hợp các điểm
thỏa mãn
là mặt cầu có bán kính là:
Giả sử
Ta có:
Theo bài ra ta có:
Vậy tập hợp điểm thỏa mãn
là mặt cầu có bán kính là
.
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Với các số a, b, c là các số thực dương tùy ý khác 1 và
. Khi đó giá trị của
bằng:
Với a, b, c là các số thực dương tùy ý khác 1 ta có:
Khi đó ta có:
Đồ thị của hàm số nào dưới đây có dạng đường cong trong hình vẽ dưới đây?

Quan sát đồ thị hàm số ta suy ra hàm số có dạng hàm số phân thức
=> Loại đáp án B và D
Ta có: => Loại đáp án B
Bất phương trình
có tập nghiệm là:
Ta có:
Vậy .
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Bất phương trình
có tập nghiệm là:
Xét:
Tương tự, ta cũng có:
Cộng vế với vế của (1) và (2) ta được:
Mà BPT: nên
Xét
Tương tự, ta cũng có:
Cộng vế với vế của (3) và (4) ta được:
Vậy hay
.
Giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
thuộc khoảng nào sau đây?
Tập xác định
Ta có:
Để hàm số đạt cực tiểu tại thì
Vậy .
Cho hàm số
có đạo hàm
xác định và liên tục trên
. Hình vẽ sau đây là đồ thị của hàm số
:

Hàm số
nghịch biến trên khoảng:
Ta có:
Với ta có:
ta có bảng xét dấu của
như sau:
Suy ra hàm số nghịch biến trên khoảng
.
Một hình trụ có bán kính đáy
, chiều cao hình trụ
. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.
Dựng đường sinh AA', ta có .
Suy ra A’C là đường kính đáy nên
Xét tam giác vuông AA’C, ta có
Suy ra cạnh hình vuông bằng 100 cm.
Cho hình chóp
có đáy ABC là tam giác vuông cân tại B, . Cạnh bên , hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp
là:

Gọi M là trung điểm AC, suy ra
Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S.
Ta có , suy ra tam giác SAC đều.
Gọi G là trọng tâm , suy ra
. (1)
Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.
Lại có nên SM là trục của tam giác ABC.
Mà G thuộc SM nên suy ra .
Từ (1) và (2), suy ra hay G là tâm mặt cầu ngoại tiếp khối chóp
.
Bán kính mặt cầu .
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng
. Diện tích toàn phần của hình nón là:

Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).
Tập nghiệm của bất phương trình
là:
Ta có:
Phương trình
có tập nghiệm là:
{2} || T={2}
Phương trình có tập nghiệm là:
{2} || T={2}
PT
.
Cho
, viết
về dạng
và
về dạng
. Tình giá trị biểu thức ![]()
Ta có:
Gọi
là 2 nghiệm của phương trình
. Khi đó
bằng:
Điều kiện: .
Đặt ,điều kiện
. Khi đó phương trình trở thành:
Vậy .
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Xét hàm số
. Khẳng định nào sau đây sai?
Ta có:
Ta có bảng xét dấu cho các biểu thức

Từ bảng xét dấu ta thấy
Khi đó hàm số nghịch biến
=> Đáp án B sai
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng cho dưới đây?
Dựa vào bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng .
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:
Khối đa diện đều loại là khối hai mươi mặt đều:

Gồm 20 mặt là các tam giác đều nên tổng các góc bằng:
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Tính thể tích
của khối lăng trụ tam giác đều có tất cả các cạnh bằng
?
Xét khối lăng trụ tam giác đều có tất cả các cạnh bằng
.
Tìm tiệm cận ngang của đồ thị hàm số
?
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng
.
Cho hàm số f(x) liên tục trên
và có bảng biến thiên của đạo hàm như sau:

Hàm số
có bao nhiêu điểm cực trị?
Xét hàm số , ta có bảng giá trị |t(x)|

Ta có:
Hàm số không có đạo hàm tại điểm
Tại mọi điểm ta có:
=>
Dựa vào bảng giá trị hàm |t| suy ra:
+ Phương trình (1), (2) vô nghiệm
+ Phương trình (3) có 4 nghiệm phân biệt khác 0
+ Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)
=> g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu
Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm
Vậy hàm số g(x) có 9 điểm cực trị.
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định
Cho hàm số
. Cho các khẳng định sau:
i) Hàm số xác định với mọi x
ii) Đồ thị hàm số luôn đi qua điểm (1; 1)
iii) Hàm số nghịch biến trên ![]()
iv) Đồ thị hàm số có hai đường tiệm cận
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
Ta có khẳng định ii) và iv) là đúng
i) Sai vì hàm số đã cho xác định khi x > 0
iii) Sai vì hàm số nghịch biến trên
Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.
Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính
, trong đó
lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của
bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?
Đáp án: 961 dm3
Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.
Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính
, trong đó
lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của
bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?
Đáp án: 961 dm3
Cả hai lều đều có dạng khối lăng trụ đứng ngũ giác.
Xét khối lăng trụ ở hình a. Chia mặt đáy thành hai phần bao gồm: hình chữ nhật có chiều rộng , chiều dài
; tam giác cân có cạnh đáy dài
, chiều cao
như hình dưới đây.
Diện tích mặt đáy của lăng trụ đó là:
Vậy thể tích của khối lăng trụ ngũ giác đó là:
.
Xét khối lăng trụ ở hình . Chia mặt đáy thành hai phần bao gồm: hình thang cân có đáy lớn đài
, đáy nhỏ dài
, chiều cao
tam giác cân có cạnh đáy dài
, chiều cao
như hình vẽ .
Diện tích mặt đáy của lăng trụ đó là:
Vậy thể tích của khối lăng trụ ngũ giác đó là:
Do đó .
Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Đặt
Khi đó hàm số đã cho đồng biến trên khoảng khi và chỉ khi hàm số
đồng biến trên khoảng
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vì
Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.
Cho hàm số
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Cho hàm số với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Cho hàm số
có đạo hàm trên
và có đồ thị như hình vẽ:

Xét hàm số
. Tìm
để
.
Cho hàm số có đạo hàm trên
và có đồ thị như hình vẽ:
Xét hàm số . Tìm
để
.
Tính giá trị của
với ![]()
Ta có:
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm
có bán kính bằng
. Phương trình của
là:
Mặt cầu có tâm
và bán kính bằng
có phương trình là:
Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

Đáp án: 40538432
Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.
Đáp án: 40538432
Hình vẽ minh họa:
Mô hình hoá chân tháp bằng cụt chóp tứ giác đều ABCD.A′B′C′D′ với O, O′ là tâm của hai đáy.
Vậy .
ABCD là hình vuông
là hình vuông
Kẻ
là hình chữ nhật
vuông tại
Diện tích đáy lớn là:
Diện tích đáy bé là:
Thể tích hình chóp cụt là:
Số tiền để mua bê tông tươi làm chân tháp là: (đồng).
Cho hàm số
liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:

Hàm số
nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số
có bảng biến thiên như hình vẽ:

Biết (C) cắt các trục tọa độ tại các điểm A, B thỏa mãn
. Tính giá trị của biểu thức
?
Do đồ thi hàm số có tiệm cận đứng x = -1 và tiệm cận ngang là y = 2
=> Hàm số có dạng
=>
Ta có:
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên đoạn
?
Theo yêu cầu bài toán ta có:
Để hàm số đồng biến trên đoạn
Đặt
Vậy là đáp án cần tìm.
Cho biết năm 2018, tỉnh A có 2 triệu người và tỉ lệ dân số là 1,4%/năm. Hỏi đến năm 2025 tỉnh A có bao nhiêu người, nếu tỉ lệ tăng dân số hằng năm không đổi?
Ta có: A = 2, n = 7; I = 0,014
Số dân tỉnh A đến năm 2025 là triệu người.
Cho hàm số
có đồ thị như hình vẽ. Toạ độ điểm cực đại của đồ thị hàm số đã cho là:

Dựa vào đồ thị hàm số đã cho, tọa độ điểm cực đại của đồ thị hàm số có tọa độ .
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Tìm tập hợp các giá trị thực của m để đồ thị hàm số
có tiệm cận đứng là:
Điều kiện để đồ thị hàm số có tiệm cận là
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Cho
. Viết biểu thức
và
. Tính ![]()
Ta có:
Tìm điều kiện của x để hàm số
có nghĩa?
Ta có điều kiện xác định
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình
có nghiêm đúng với
khi và chỉ khi :
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình có nghiêm đúng với
khi và chỉ khi :
Dân số thế giới được tính theo công thức
. e
trong đó
là dân số của năm lấy làm mốc tính,
là dân số sau
năm,
là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là
một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?
Ta có:
Với người;
người;
năm.
Suy ra .
Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy