Với các số a, b, c là các số thực dương tùy ý khác 1 và
. Khi đó giá trị của
bằng:
Với a, b, c là các số thực dương tùy ý khác 1 ta có:
Khi đó ta có:
Với các số a, b, c là các số thực dương tùy ý khác 1 và
. Khi đó giá trị của
bằng:
Với a, b, c là các số thực dương tùy ý khác 1 ta có:
Khi đó ta có:
Phương trình
có nghiệm là:
Ta có:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Giá trị của tham số m sao cho hàm số
nghịch biến trên khoảng (0; 2)?
Ta có:
Hàm số nghịch biến trên khoảng (0; 2)
=>
=>
Xét hàm số
Ta có:
=> g(x) đồng biến trên đoạn [0; 2]
Ta có:
Nghiệm nguyên nhỏ nhất của bất phương trình
là:
17 || x=17 || x bằng 17 || X=17
Nghiệm nguyên nhỏ nhất của bất phương trình là:
17 || x=17 || x bằng 17 || X=17
Điều kiện:
Vậy nghiệm nguyên nhỏ nhất .
Cho hàm số
(với
là tham số thực) thỏa mãn
. Mệnh đề nào sau đây đúng?
Ta có:
TH1: loại
TH2: khi đó
Suy ra đáp án cần tìm là .
Cho các hàm số
có đồ thị như hình vẽ. Đường thẳng
cắt trục hoành, đồ thị hàm số
và
lần lượt tại
. Biết rằng
. Mệnh đề nào sau đây đúng?

Ta có:
Theo bài ra ta có:
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính đường kính
của mặt cầu
đi qua ba điểm trên và có tâm nằm trên mặt phẳng
?
Gọi tâm mặt cầu là
Ta có:
.
Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?
Xét hàm số có:
Suy ra hàm số đồng biến trên tập số thực.
Tìm tập nghiệm của bất phương trình
sau:
Ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AD=2a,
. Cạnh bên SA=2a và vuông góc với đáy. Gọi R là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD. Tỉ số
nhận giá trị nào sau đây?

Ta có hay
Gọi E là trung điểm AD.
Ta có nên ABCE là hình thoi.
Suy ra .
Do đó tam giác ACD vuông tại C. Ta có:
hay
Tương tự, ta cũng có hay
Ta có nên khối chóp S.ABCD nhận trung điểm I của SD làm tâm mặt cầu ngoại tiếp, bán kính
.
Suy ra .
Dân số thế giới được tính theo công thức
. e
trong đó
là dân số của năm lấy làm mốc tính,
là dân số sau
năm,
là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là
một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?
Ta có:
Với người;
người;
năm.
Suy ra .
Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Cho
, viết
về dạng
và
về dạng
. Tình giá trị biểu thức ![]()
Ta có:
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Cho hàm số
có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Cho hàm số có đạo hàm
. Hỏi hàm số
có bao nhiêu cực trị?
Cho lăng trụ đứng
có đáy
là tam giác với
. Tính thể tích
của khối lăng trụ đã cho.

Diện tích tam giác là
.
Vậy thể tích khối lăng trụ
Cho hàm số
có bảng biến thiên như sau:

Số nghiệm thuộc đoạn
của phương trình
bằng:
Dựa vào bảng biến thiến ta suy ra
Các phương trình (1) và (4) vô nghiệm
Ta có bảng sau:
Phương trình có 4 nghiệm thuộc
Phương trình có 3 nghiệm thuộc
Vậy phương trình đã cho có tất cả 7 nghiệm thuộc đoạn .
Cho bất phương trình:
. Tìm tập nghiệm của bất phương trình.
Ta có:
Đặt , BPT
.
Đặt .
Lập bảng xét dấu , ta được nghiệm:
.
Vậy tập nghiệm của BPT là .
Cho hàm số
xác định trên
và có bảng biến thiên như sau:

Xét tính đúng sai của các khẳng định sau.
a) Hàm số không có điểm cực trị. Đúng||Sai
b)
. Sai||Đúng
c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai
d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng
Cho hàm số xác định trên
và có bảng biến thiên như sau:
Xét tính đúng sai của các khẳng định sau.
a) Hàm số không có điểm cực trị. Đúng||Sai
b) . Sai||Đúng
c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai
d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng
Dựa vào bảng biến thiên ta thấy
a) Hàm số không có điểm cực trị.
b) lim .
c) . Suy ra đồ thị có đúng 1 đường tiệm cận ngang là
.
d) và
nên đồ thị hàm số có đúng 2 đường tiệm cận đứng
.
Bất phương trình
có tập nghiệm là:
Ta có
Vậy BPT có tập nghiệm là .
Cho phương trình
. Khẳng định nào sau đây là đúng?
Ta có:
Đặt .
Khi đó
Với .
Đồ thị của hàm số nào có dạng như hình vẽ sau đây?

Ta thấy hình vẽ là đồ thị của hàm bậc ba có hệ số nên hàm số cần tìm là
.
Cho lăng trụ đứng
có đáy
là hình thoi cạnh bằng 1,
. Góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích
của khối lăng trụ.

Hình thoi có
, suy ra
. Do đó tam giác
và
là các tam giác đều. Gọi N là trung điểm A'B' nên
Suy ra .
Tam giác vuông , có
Tam giác vuông , có
.
Diện tích hình thoi .
Vậy .
Cho biết năm 2018, tỉnh A có 2 triệu người và tỉ lệ dân số là 1,4%/năm. Hỏi đến năm 2025 tỉnh A có bao nhiêu người, nếu tỉ lệ tăng dân số hằng năm không đổi?
Ta có: A = 2, n = 7; I = 0,014
Số dân tỉnh A đến năm 2025 là triệu người.
Trong không gian với hệ trục tọa độ
, phương trình nào sau đây không phải là phương trình của một mặt cầu?
Phương trình là phương trình của một mặt cầu nếu
.
Vậy phương trình không phải phương trình mặt cầu là:
Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên tập số thực?
Ta có:
Hàm số đồng biến trên
Vì
Vậy số giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán là .
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số
với
là tham số. Tìm điều kiện của tham số
để hàm số
có
cực trị?
Nhận thấy rằng nếu là điểm cực trị dương của hàm số
thì
là điểm cực trị của hàm số
Lại thấy vì đồ thị hàm số nhận trục tung làm trục đối xứng mà
là hàm đa thức bậc ba nên
luôn là một điểm cực trị của hàm số
.
Khi đó để hàm số có 5 điểm cực trị thì hàm số
có hai cực trị dương phân biệt.
Suy ra phương trình có hai nghiệm dương phân biệt:
Vậy đáp án cần tìm là .
Cho tứ diện có thể tích bằng
. Gọi
là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số
.

Xét khối tứ diện và các điểm được kí hiệu như hình vẽ trên, ta có:
Tương tự .
Do đó
.
Cho hàm số
có bảng xét dấu
như sau:

Hàm số
đồng biến trong khoảng nào dưới đây?
Cho hàm số có bảng xét dấu
như sau:
Hàm số đồng biến trong khoảng nào dưới đây?
Cho khối đa diện đều loại
. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Khối đa diện đều loại là khối bát diện đều.

Mỗi đỉnh là đỉnh chung của 4 mặt.
Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng .
Cho hàm số
. Cho các khẳng định sau:
i) Hàm số xác định với mọi x
ii) Đồ thị hàm số luôn đi qua điểm (1; 1)
iii) Hàm số nghịch biến trên ![]()
iv) Đồ thị hàm số có hai đường tiệm cận
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
Ta có khẳng định ii) và iv) là đúng
i) Sai vì hàm số đã cho xác định khi x > 0
iii) Sai vì hàm số nghịch biến trên
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình
có nghiêm đúng với
khi và chỉ khi :
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình có nghiêm đúng với
khi và chỉ khi :
Thu gọn biểu thức
biết a và b là hai số thực dương.
Ta có:
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Mệnh đề nào sau đây là mệnh đề sai?
Ta thấy:
Do vậy đồ thị của hàm số không có tiệm cận đứng
Cho hàm số
liên tục trên tập số thực và có bảng biến thiên như sau:

Đặt
với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Đặt với
là tham số. Tìm điều kiện của tham số
để hàm số
có đúng ba điểm cực trị?
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Cho hàm số
. Xét các mệnh đề sau, những những mệnh đề nào đúng?
Ta có:
Ta có bảng xét dấu như sau:

Quan sát bảng xét dấu ta thấy:
- Hàm số có 3 điểm cực trị
- Hàm số đồng biến trên khoảng (-1; 0), (1; +∞) và nghịch biến trên khoảng (-∞; -1), (0; 1)
Cho hàm số
có bảng biến thiên trên đoạn
như hình vẽ:

Có bao nhiêu giá trị của tham số
trên đoạn
sao cho giá trị lớn nhất của hàm số
trên đoạn
bằng
?
Ta có:
Suy ra
Khi đó hay
Theo yêu cầu bài toán
Nhìn vào bảng biến thiên ta thấy có ba nghiệm
Vậy có 3 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Tính giá trị của
với ![]()
Ta có:
Phương trình
có nghiệm là:
x=2 || 2 || hai
Phương trình có nghiệm là:
x=2 || 2 || hai
PT .
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1

Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Xét các mệnh đề:
(I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng
cố định một khoảng không đổi là một mặt trụ.
(II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.
Trong các mệnh đề trên, mệnh đề nào đúng?
Ta xét về khái niệm Mặt trụ suy ra (I) đúng.
Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).
Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.
Vì vậy Mệnh đề (II) cũng đúng.