Số các giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có: . Hàm số nghịch biến trên khoảng
khi
Vì
Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Số các giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có: . Hàm số nghịch biến trên khoảng
khi
Vì
Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Điều kiện xác định của bất phương trình
là:
x > 5 || X>5 || x>5 || x lớn hơn 5
Điều kiện xác định của bất phương trình là:
x > 5 || X>5 || x>5 || x lớn hơn 5
BPT xác định khi và chỉ khi:
Cho hình chóp
có đáy
là tam giác vuông tại A và có
,
. Mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính theo
thể tích
của khối chóp
.

Gọi là trung điểm của
, suy ra
.
Do theo giao tuyến
nên
.
Tam giác là đều cạnh
nên
.
Tam giác vuông , có
.
Diện tích tam giác vuông .
Vậy .
Cho hàm số
với
là tham số. Tìm điều kiện của tham số
để hàm số
có
cực trị?
Nhận thấy rằng nếu là điểm cực trị dương của hàm số
thì
là điểm cực trị của hàm số
Lại thấy vì đồ thị hàm số nhận trục tung làm trục đối xứng mà
là hàm đa thức bậc ba nên
luôn là một điểm cực trị của hàm số
.
Khi đó để hàm số có 5 điểm cực trị thì hàm số
có hai cực trị dương phân biệt.
Suy ra phương trình có hai nghiệm dương phân biệt:
Vậy đáp án cần tìm là .
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và
. Tính theo a thể tích V khối chóp S.ABCD.

Đường chéo hình vuông
Xét tam giác SAC, ta có .
Chiều cao khối chóp là .
Diện tích hình vuông ABCD là
Vậy thể tích khối chóp .
Hàm số nào sau đây đồng biến trên
?
Do nên hàm số
đồng biến trên
Trong các hình dưới đây hình nào không phải khối đa diện lồi?

Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Cho hàm số
với
là tham số. Gọi
là tập hợp tất cả các giá trị của tham số
để hàm số nghịch biến trên một khoảng có độ dài bằng
. Tính tổng các phần tử của tập hợp
?
Ta có:
Dễ thấy nếu suy ra hàm số đồng biến trên
nên trường hợp này không thỏa mãn
Theo yêu cầu bài toán
Vậy tổng tất cả các phần tử của tập S bằng -2.
Có bao nhiêu giá trị thực của tham số
để hàm số
đạt cực tiểu tại điểm
?
Ta có:
Hàm số đạt cực tiểu tại
Với ta được
. Hàm số đạt cực tiểu tại
(thỏa mãn yêu cầu)
Với ta được
. Hàm số đạt cực đại tại
và đạt cực tiểu tại
(không thỏa mãn)
Vậy có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.
Cho
. Tính ![]()
Ta có:
Hàm số
có tập xác định là:
Hàm số có số mũ nguyên âm xác định khi
Hàm số xác định khi
Vậy tập xác định là:
Tập hợp tất cả các giá trị thực của tham số
để hàm số
đồng biến trên khoảng
là:
Tập xác định
Ta có:
Hàm số đồng biến trên khoảng
Xét hàm số trên khoảng
.
Ta có:
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta có:
Vậy thỏa mãn yêu cầu bài toán.
Phương trình
có tập nghiệm là?
Điều kiện: x > 0
Vậy PT có tập nghiệm là S={8;2}.
Trong không gian
, mặt cầu
có bán kính bằng:
Bán kính của mặt cầu là
.
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Tính đạo hàm của hàm số ![]()
Ta có:
Các dân tộc ít người phân bố chủ yếu ở khu vực nào của Trung Quốc?
Cho
và khác 1. Các hàm số
có đồ thị như hình vẽ bên. Khẳng định nào dưới đây đúng?

Kẻ đường thẳng cắt đồ thị các hàm số
lần lượt tại các điểm có hoành độ

Từ đồ thị ta có:
Trong không gian với hệ tọa độ
, cho điểm
. Mặt phẳng
đi qua
và cắt các trục
tại
sao cho
là trực tâm tam giác
. Viết phương trình mặt cầu tâm
và tiếp xúc với mặt phẳng
?
Hình vẽ minh họa
Ta có H là trực tâm của tam giác ABC suy ra
Thật vậy
Mà (vì H là trực tâm tam giác ABC) (2)
Từ (1) và (2) suy ra suy ra
Tương tự
Từ (*) và (**) suy ra
Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3
Vây mặt cầu tâm O và tiếp xúc với mặt phẳng là:
.
Cho bảng biến thiên như hình vẽ:

Bảng biến thiên trên là của hàm số nào?
Đồ thị hàm số đạt cực trị tại điểm x = 0 và x = 2
=> Loại đáp án C và D
Quan sát bảng biến thiên
=> Loại đáp án B
Cho hình chóp
có thể tích bằng
, đáy
là hình vuông;
và
hợp với đáy một góc bằng
. Mặt phẳng
đi qua A và vuông góc với
, cắt các cạnh
lần lượt tại
. Tính thể tích khối chóp
.
V/10 || V phần 10
Cho hình chóp có thể tích bằng
, đáy
là hình vuông;
và
hợp với đáy một góc bằng
. Mặt phẳng
đi qua A và vuông góc với
, cắt các cạnh
lần lượt tại
. Tính thể tích khối chóp
.
V/10 || V phần 10

Ta có . Tương tự
nên
.
Mà (do
vuông tại A,
) nên ta có:
Xét tỉ số thể tích, ta được:
Cho hàm số
có đạo hàm
. Tìm số điểm cực đại của hàm số đã cho.
Ta có:
Ta có bảng xét dấu:
Suy ra hàm số có một điểm cực đại.
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có:
Ta có:
Cho g’(x) = 0 =>
Dựa vào f’(x) ta có:
Lập bảng xét dấu như sau:

Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)
Đặt
. Hãy biểu diễn
theo a và b.
Ta có:
Cho hàm số
. Khẳng định nào sau đây đúng?
Đồ thị hàm số có đường tiệm cận đứng x = 1
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Cho hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên
. Khi đó hàm số
có bao nhiêu điểm cực trị?
Ta có hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên nên f’(x) = 0 có ba nghiệm x = -2; x = -1, x = 0
Đặt
Vì f’(x) liên tục trên nên g’(x) cũng liên tục trên
. Do đó những điểm g’(x) có thể đổi dấu thuộc tập các điểm thỏa mãn.
Ba nghiệm trên đều là nghiệm đơn hoặc bội lẻ nên hàm số g(x) có ba điểm cực trị.
Tìm tất cả các giá trị thực của tham số m để bất phương trình ![]()
Bất phương trình tương đương
: (2) không thỏa
: (3) không thỏa
(1) thỏa mãn
.
Vậy .
Nghiệm nguyên lớn nhất của bất phương trình
là:
x=1 || X=1 || x bằng 1
Nghiệm nguyên lớn nhất của bất phương trình là:
x=1 || X=1 || x bằng 1
Vậy nghiệm nguyên lớn nhất của BPT là .
Nghiệm nguyên nhỏ nhất của bất phương trình
là:
8 || tám || Tám
Nghiệm nguyên nhỏ nhất của bất phương trình là:
8 || tám || Tám
BPT
Vậy giá trị nghiệm nguyên nhỏ nhất của BPT là 8.
Giá trị của biểu thức
là:
Ta có:
Gọi
là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Dựa vào thông tin dưới đây và trả lời các câu hỏi
Số lượng của một loại vi khuẩn X trong một phòng thí nghiệm được biểu diễn theo công thức
, trong đó A là số lượng vi khuẩn tại thời điểm chọn mốc thời gian, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng (tính theo đơn vị là giờ). Lúc 6 giờ sáng, số lượng vi khuẩn X là 150 con. Sau 3 giờ, số lượng vi khuẩn X là 450 con.
Thời điểm số lượng vi khuẩn X gấp 9 lần số lượng vi khuẩn ban đầu là:
Gọi là thời điểm số lượng vi khuẩn gấp 9 lần ban đầu.
Khi đó: con.
Ta có phương trình:
Trong không gian với hệ tọa độ
, cho điểm
. Mặt cầu
có tâm
và đi qua hai điểm
có phương trình là:
Ta có:
Vì đi qua hai điểm
nên
Vậy phương trình mặt cầu cần tìm là: .
Cho hàm số
có bảng biến thiên:

Số đường tiệm cận ngang của đồ thị hàm số
là:
Ta có: nên đồ thị hàm số đã cho có 2 đường tiệm cận ngang
.
Cho biểu thức
với a và b là các số thực dương. Khẳng định nào sau đây là đúng?
Thực hiện thu gọn biểu thức như sau:
Trong hệ trục toạ độ
, cho đồ thị hàm số
với
mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm
, biết hoành độ điểm
thuộc đồ thị
mà tại đó thuyền thu được sóng tốt nhất là
(loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức
?
Trong hệ trục toạ độ , cho đồ thị hàm số
với
mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm
, biết hoành độ điểm
thuộc đồ thị
mà tại đó thuyền thu được sóng tốt nhất là
(loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức
?
Tổng độ dài
của tất cả các cạnh của một tứ diện đều cạnh
.

Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Điều kiện xác định của phương trình
là:
Biểu thức và xác định
Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,
Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.
Theo đề bài, ta có tam giác SAB vuông cân tại S nên ,
Suy ra ,
và
Diện tích toàn phần của hình nón: (đvdt).
Thể tích khối nón là: (đvtt).
Cho hình chóp đều
có tất cả các cạnh bằng
. Mặt phẳng
song song với mặt đáy
và cắt các cạnh bên
lần lượt tại
. Tính diện tích tam giác
biết mặt phẳng
chia khối chóp đã cho thành hai phần có thể tích bằng nhau.

Mặt phẳng và cắt các cạnh
lần lượt tại
.
Theo Talet, ta có .
Do đó .
Theo giả thiết .
Suy ra tam giác MNP là tam giác đều cạnh .
Vậy diện tích .
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho hàm số
có bảng biến thiên trên đoạn
như hình vẽ:

Có bao nhiêu giá trị của tham số
trên đoạn
sao cho giá trị lớn nhất của hàm số
trên đoạn
bằng
?
Ta có:
Suy ra
Khi đó hay
Theo yêu cầu bài toán
Nhìn vào bảng biến thiên ta thấy có ba nghiệm
Vậy có 3 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Tìm giá trị của tham số m sao cho đồ thị hàm số
có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời
Nghiệm bé nhất của phương trình
là:
TXĐ:
PT
là nghiệm nhỏ nhất.
Cho hình đa diện đều loại
cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Đa diện đều loại là khối lập phương nên có 6 mặt là các hình vuông cạnh
.
Vậy hình lập phương có tổng diện tích tất cả các mặt là

Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 