Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Hàm số y = \frac{{2x + 5}}{{x + 1}} có bao nhiêu điểm cực trị?

    Tập xác định D = \mathbb{R}\backslash \left\{ { - 1} ight\}

    Ta có:

    y' = \frac{{ - 3}}{{{{\left( {x + 1} ight)}^2}}} < 0,\forall x \in D

    Do y’ không đổi dấu nên hàm số không có cực trị.

  • Câu 2: Nhận biết

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 3: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và hàm số y = f'(x) có đồ thị như hình vẽ:

    Tìm số điểm cực trị của hàm số y =
f(x)?

    Từ đồ thị hàm số y = f'(x) ta có đồ thị hàm số y = f'(x) cắt trục hoành tại 4 điểm phân biệt.

    Do đó phương trình f'(x) = 0 có bốn nghiệm phân biệt. Qua các nghiệm này f'(x) đều đổi dấu nên số cực trị của hàm số y = f(x) là bốn cực trị.

  • Câu 4: Nhận biết

    Cho hàm số f\left( x ight) = \frac{{{x^3}}}{3} - \frac{{{x^2}}}{2} - 6x + \frac{3}{4}

    Ta có: f'\left( x ight) = {x^2} - x - 6 có hai nghiệm phân biệt là -2 và 3

    => f’(x) < 0 => x \in \left( { - 2;3} ight)

    Vậy hàm số nghịch biến trên khoảng (-2; 3)

  • Câu 5: Vận dụng cao

    Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

    Bất phương trình chưa tham số m nghiệm đúng

    Bất phương trình f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m (với m là tham số thực) nghiệm đúng với mọi x \in \left( { - 1;3} ight) khi và chỉ khi:

    Đặt u = \sqrt {x + 1}

    x \in \left( { - 1;3} ight) \Rightarrow u \in \left( {0;2} ight)

    => f\left( u ight) < u + m \Rightarrow f\left( u ight) - u < m

    Xét hàm số g\left( u ight) = f\left( u ight) - u;{\text{  }}u \in \left( {0;2} ight)

    Ta có: g'\left( u ight) = f'\left( u ight) - 1

    Dựa vào đồ thị hàm số ta thấy: u \in \left[ {0;2} ight] thì f'\left( u ight) < 1;\forall u \in \left[ {0;2} ight]

    => g(u) nghịch biến trên (0; 2)

    Vậy để f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m nghiệm đúng với mọi x \in \left( { - 1;3} ight) thì

    \begin{matrix}  f\left( u ight) - u < m;\forall u \in \left( {0;2} ight) \hfill \\   \Rightarrow m \geqslant \mathop {\max }\limits_{\left[ {0;2} ight]} g\left( u ight) = g\left( 0 ight) = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 6: Vận dụng

    Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.

    Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính V_{1} -
V_{2}, trong đó V_{1},V_{2} lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của V_{1} - V_{2} bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?

    Đáp án: 961 dm3

    Đáp án là:

    Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.

    Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính V_{1} -
V_{2}, trong đó V_{1},V_{2} lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của V_{1} - V_{2} bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?

    Đáp án: 961 dm3

    Cả hai lều đều có dạng khối lăng trụ đứng ngũ giác.

    Xét khối lăng trụ ở hình a. Chia mặt đáy thành hai phần bao gồm: hình chữ nhật có chiều rộng 180\ cm, chiều dài 350\ cm; tam giác cân có cạnh đáy dài 350\ cm, chiều cao 40\ cm như hình dưới đây.

    Diện tích mặt đáy của lăng trụ đó là:

    S_{1} = 180 \cdot 350 + \frac{1}{2} \cdot
40 \cdot 350 = 70000\left( \ cm^{2} ight)

    Vậy thể tích của khối lăng trụ ngũ giác đó là:

    V_{1} = S_{1} \cdot h_{1} = 70000.460 =
32200000\left( \ cm^{3} ight).

    Xét khối lăng trụ ở hình b. Chia mặt đáy thành hai phần bao gồm: hình thang cân có đáy lớn đài 370\ cm, đáy nhỏ dài 260\ cm , chiều cao 210\ cm; tam giác cân có cạnh đáy dài 260\ cm, chiều cao 50\ cm như hình vẽ .

    Diện tích mặt đáy của lăng trụ đó là:

    S_{2} = \frac{1}{2}(370 + 260) \cdot 210
+ \frac{1}{2} \cdot 260 \cdot 50 = 72650\left( \ cm^{2}
ight)

    Vậy thể tích của khối lăng trụ ngũ giác đó là:

    V_{2} = S_{2} \cdot h_{2} = 72650.430 =
31239500\left( \ cm^{3} ight)

    Do đó V_{1} - V_{2} = 960500\left( \
cm^{3} ight) \approx 961\left( dm^{3} ight).

  • Câu 7: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số có tiệm cận đứng là:

    Từ bảng biến thiên ta có đồ thị hàm số có đường tiệm cận đứng là x = - 1.

  • Câu 8: Vận dụng

    Cho đồ thị hàm số \left( C_{m} ight):y
= x^{3} - 2x^{2} + (1 - m)x + m. Tìm tất cả các giá trị của tham số m để \left( C_{m} ight) cắt trục hoành tại ba điểm phân biệt cách hoành độ x_{1};x_{2};x_{3} thỏa mãn {x_{1}}^{2} + {x_{2}}^{2} + {x_{3}}^{2} =
4?

    Để hàm số đã cho cắt trục hoành tại 3 điểm phân biệt thì phương trình hoành độ giao điểm phải có ba nghiệm phân biệt:

    x^{3} - 2x^{2} + (1 - m)x + m =
0

    \Leftrightarrow (x - 1)\left( x^{2} - x
- m ight) = 0

    Ta đặt x_{1} = 1. Khi đó để phương trình có 3 nghiệm phân biệt thì phương trình sau phải có 2 nghiệm phân biệt khác 1.

    x^{2} - x + m = 0

    Do có nghiệm khác 1 nên 1 - 1 - m eq
0 hay m eq 0

    Ta có: \Delta = 1 + 4m

    Để có hai nghiệm phân biệt thì \Delta
> 0 hay m > -
\frac{1}{4}

    Theo bài ra ta có:

    {x_{1}}^{2} + {x_{2}}^{2} + {x_{3}}^{2}
= 4

    \Leftrightarrow 1 + \left( x_{2} + x_{3}
ight)^{2} - 2x_{2}x_{3} = 4 \Leftrightarrow \left( x_{2} + x_{3}
ight)^{2} - 2x_{2}x_{3} = 3 với x_{2};x_{3} là nghiệm của phương trình bậc hai trên.

    Áp dụng hệ thức Vi – et ra có:

    1^{2} - 2.( - m) = 3 \Leftrightarrow m =
1

    Kết hợp các điều kiện ta có: m =
1.

    Vậy đáp án đúng là m = 1.

  • Câu 9: Vận dụng

    Tìm tập nghiệm của bất phương trình {11^{\sqrt {x + 6} }} \geqslant {11^x} sau: 

    Ta có:  {11^{\sqrt {x + 6} }} \geqslant {11^x} \Leftrightarrow \sqrt {x + 6}  \geqslant x

    \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x < 0 \hfill \\  x + 6 \geqslant 0 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x \geqslant 0 \hfill \\  x + 6 \geqslant {x^2} \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}   - 6 \leqslant x < 0 \hfill \\  \left\{ \begin{gathered}  x \geqslant 0 \hfill \\   - 2 \leqslant x \leqslant 3 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow  - 6 \leqslant x \leqslant 3

  • Câu 10: Thông hiểu

    Phương trình \ln \frac{{x - 1}}{{x + 8}} = \ln x có nghiệm là: 

    Ta có:  \ln \frac{{x - 1}}{{x + 8}} = \ln x \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{x - 1}}{{x + 8}} = x \hfill \\ \end{gathered}  ight.

    \Rightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \left[ \begin{gathered}  x = 4 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 4

  • Câu 11: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

  • Câu 12: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0 nên chọn y = - x^{4} + 2x^{2} +
1.

  • Câu 13: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm I(2;3;4)A(1;2;3). Phương trình mặt cầu tâm I và đi qua A có phương trình là:

    Bán kính mặt cầu là R = IA =
\sqrt{3}

    Phương trình mặt cầu tâm I(2;3;4)R
= IA = \sqrt{3} là:

    (x - 2)^{2} + (y - 3)^{2} + (z - 4)^{2}
= 3

  • Câu 14: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như hình vẽ.

    Đặt g(x) = f\left( \frac{x^{2} + 1}{x}
ight). Tìm số điểm cực trị của hàm số y = g(x).

    Đáp án: 6

    Đặt g'(x) = \left( \frac{x^{2} -
1}{x^{2}} ight)f'\left( \frac{x^{2} + 1}{x} ight)

    g'\left( x ight) = 0 \Leftrightarrow \left[ \begin{gathered}
  \left( {\frac{{{x^2} - 1}}{{{x^2}}}} ight) = 0 \hfill \\
  f'\left( {\frac{{{x^2} + 1}}{x}} ight) = 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}
  x =  \pm 1 \hfill \\
  \frac{{{x^2} + 1}}{x} = a\,\,\left( {a <  - 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = b\,\,\left( { - 2 < b < 2} ight) \hfill \\
  \frac{{{x^2} + 1}}{x} = c\,\,\left( {c > 2} ight) \hfill \\ 
\end{gathered}  ight.

    Xét hàm số h(x) = \frac{x^{2} +
1}{x},h'(x) = \frac{x^{2} - 1}{x^{2}},h'(x) = 0 \Leftrightarrow
x = \pm 1

    Bảng biến thiên của hàm số h(x) =
\frac{x^{2} + 1}{x}

    Dựa vào bảng biến thiến trên ta thấy phương trình h(x) = a,h(x) = c.

    Mỗi phương trình có hai nghiệm phân biệt khác \pm 1, mà a eq c \Rightarrow f'\left(
\frac{x^{2} + 1}{x} ight) = 0 có 4 nghiệm đơn phân biệt x_{1},x_{2},x_{3},x_{4} khác \pm 1 và phương trình h(x) = b vô nghiệm.

    Do đó phương trình g'(x) = 0 có 6 nghiệm đơn phân biệt lần lượt theo thứ tự từ nhỏ đến lớn là x_{1},- 1,x_{2},x_{3},1,x_{4}.

    Vậy hàm số g(x) = f\left( \frac{x^{2} +
1}{x} ight)có 6 cực trị.

  • Câu 15: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60^{0}. Thể tích V của khối chóp S.ABCD bằng

    Hình vẽ minh họa

    Gọi O là tâm của đáy, gọi M là trung điểm của BC.

    Ta có \left\{ \begin{matrix}
SO\bot BC \\
OM\bot BC \\
\end{matrix} ight. nên (SOM)\bot BC

    Suy ra \left\lbrack (SCD),(ABCD)
ightbrack = (SM,OM) = \widehat{SMO} = 60^{0}.

    OM = \frac{1}{2}BC =
\frac{a}{2}, SO = OMtan60^{0} =
\frac{a\sqrt{3}}{2}.

    Thể tích khối chóp S.ABCD

    V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^{2} =
\frac{a^{3}\sqrt{3}}{6}.

  • Câu 16: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; 1; 2)B(5; 7; 0). Có tất cả bao nhiêu giá trị thực của tham số m để phương trình x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m + 1)z +
m^{2} + 2m + 8 = 0 là phương trình của một mặt cầu (S) sao cho qua hai điểm A, B có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1.

    Ta có:

    x^{2} + y^{2} + z^{2} - 4x + 2my - 2(m +
1)z + m^{2} + 2m + 8 = 0

    \Leftrightarrow (x - 2)^{2} + (y +
m)^{2} + (z - m - 1)^{2} = m^{2} - 3(*)

    Suy ra (*) là phương trình mặt cầu

    \Leftrightarrow m^{2} - 3 > 0
\Leftrightarrow |m| > \sqrt{3}

    Khi đó, mặt cầu (S) có tâm I(2; −m; m + 1) và bán kính R = \sqrt{m^{2} - 3}

    Gọi (P) là mặt phẳng đi qua A, B.

    Theo giả thiết (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính r = 1.

    Mặt khác, khoảng cách từ tâm I đến mặt phẳng (P) là d = \sqrt{R^{2} - r^{2}} = \sqrt{m^{2} - 4};\left(
m^{2} - 4 \geq 0 ight)

    Ta có: \overrightarrow{AB} = (2;6; -
2) suy ra \overrightarrow{u} =
(1;3; - 1) là một vectơ chỉ phương của đường thẳng AB

    Suy ra đường thẳng AB là: \left\{ \begin{matrix}
x = 3 + t \\
y = 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Để có duy nhất mặt phẳng (P) thỏa mãn bài thì

    TH1. Mặt phẳng (P) đi qua điểm I và I
otin AB

    Ta có I ∈ (P) ⇔ d = 0 ⇔ m^2 − 4 = 0 ⇔ m = ±2.

    + Với m = 2 ⇒ I(2; −2; 3) ∈ AB ⇒ m = 2 (loại).

    + Với m = −2 ⇒ I(2;2; - 1) otin
AB⇒ m = −2 (thỏa mãn).

    TH2. Mặt phẳng (P) cách I một khoảng lớn nhất ⇔ d lớn nhất ⇔ d = d(I, AB). (*)

    \overrightarrow{IA} = (1;1 + m;1 -
m)

    \Rightarrow \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack = ( - 4 + 2m;2 -
m;2 - m)

    \Rightarrow \left| \left\lbrack
\overrightarrow{IA};\overrightarrow{u} ightbrack ight| = |2 -
m|\sqrt{6};\left| \overrightarrow{u} ight| = \sqrt{11}

    Khi đó d(I;AB) = \frac{\left|
\left\lbrack \overrightarrow{IA};\overrightarrow{u} ightbrack
ight|}{\left| \overrightarrow{u} ight|} = \frac{|2 -
m|\sqrt{6}}{\sqrt{11}}

    (*) \Leftrightarrow \sqrt{m^{2} - 4} =
\frac{|2 - m|\sqrt{6}}{\sqrt{11}}

    \Leftrightarrow 5m^{2} + 24m - 68 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 2(ktm) \\m = - \dfrac{34}{5}(tm) \\\end{matrix} ight.

    Vậy có 2 giá trị tham số m thỏa mãn yêu cầu.

  • Câu 17: Nhận biết

    Tập xác định của hàm số f\left( x ight) = {\left( {{x^2} - 1} ight)^{ - 2}} là:

    Hàm số f\left( x ight) = {\left( {{x^2} - 1} ight)^{ - 2}} xác định khi {x^2} - 1 e 0 \Rightarrow x e  \pm 1

    Vậy tập xác định của hàm số là D = \mathbb{R}\backslash \left\{ { \pm 1} ight\}

  • Câu 18: Thông hiểu

    Tìm điều kiện của x để hàm số y = {\left( {{x^2} - 3x + 2} ight)^\pi } có nghĩa?

     Ta có điều kiện xác định {x^2} - 3x + 2 > 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > 2} \end{array}} ight.

  • Câu 19: Nhận biết

    Điều kiện xác định của phương trình {\log _{2x - 3}}16 = 2 là:

     Biểu thức {\log _{2x - 3}}16 = 2 xác định   \Leftrightarrow \left\{ \begin{gathered}  2x - 3 > 0 \hfill \\  2x - 3 e 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{2} \hfill \\  x e 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \frac{3}{2} < x e 2.

  • Câu 20: Vận dụng

    Cho f\left( x ight) = \sqrt {1 + 3x}  - \sqrt[3]{{1 + 2x}};g\left( x ight) = \sin x. Tính giá trị của biểu thức \frac{{f'\left( 0 ight)}}{{g'\left( 0 ight)}}

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {f'\left( x ight) = \dfrac{3}{{2\sqrt {1 + 3x} }} - \dfrac{2}{{3\sqrt[3]{{{{\left( {1 + 2x} ight)}^2}}}}} \Rightarrow f'\left( 0 ight) = \dfrac{5}{6}} \\   {g'\left( x ight) = \cos x \Rightarrow g'\left( 0 ight) = 1} \end{array}} ight. \hfill \\   \Rightarrow \frac{{f'\left( 0 ight)}}{{g'\left( 0 ight)}} = \dfrac{5}{6} \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 22: Vận dụng cao

    Bất phương trình {25^{ - {x^2} + 2x + 1}} + {9^{ - {x^2} + 2x + 1}} \geqslant {34.15^{ - {x^2} + 2x}} có tập nghiệm là:

    Ta có:  {25^{ - {x^2} + 2x + 1}} + {9^{ - {x^2} + 2x + 1}} \geqslant {34.15^{ - {x^2} + 2x}}

    \Leftrightarrow {\left( {\frac{5}{3}} ight)^{2\left( { - {x^2} + 2x + 1} ight)}} + 1 \geqslant \frac{{34}}{{15}}.{\left( {\frac{5}{3}} ight)^{\left( { - {x^2} + 2x + 1} ight)}}

    \Leftrightarrow \left[ \begin{gathered}  0 \leqslant x \leqslant 2 \hfill \\  x \leqslant 1 - \sqrt 3  \hfill \\  x \geqslant 1 + \sqrt 3  \hfill \\ \end{gathered}  ight.

    Vậy S = \left( { - \infty ;1 - \sqrt 3 } ight] \cup \left[ {0;2} ight] \cup \left[ {1 + \sqrt 3 ; + \infty } ight).

  • Câu 23: Thông hiểu

    Gọi x_1, x_2là nghiệm của phương trình {\log _x}2 - {\log _{16}}x = 0. Khi đó tích x_1.x_2 bằng:

    1 || x1.x2=1

    Đáp án là:

    Gọi x_1, x_2là nghiệm của phương trình {\log _x}2 - {\log _{16}}x = 0. Khi đó tích x_1.x_2 bằng:

    1 || x1.x2=1

    Điều kiện: 0 < x e 1

    PT \Leftrightarrow {\log _x}2 - {\log _{16}}x = 0 \Leftrightarrow {\log _x}2 - {\log _{{2^4}}}x = 0 \Leftrightarrow {\log _x}2 - \frac{1}{4}{\log _2}x = 0

    \Leftrightarrow {\log _x}2 - \frac{1}{{4{{\log }_x}2}} = 0 \Leftrightarrow \frac{{4{{({{\log }_x}2)}^2} - 1}}{{4{{\log }_x}2}} = 0 \Leftrightarrow 4{({\log _x}2)^2} - 1 = 0

    \Leftrightarrow {({\log _x}2)^2} = \frac{1}{4} \Leftrightarrow \left[ \begin{gathered}  {\log _x}2 = \frac{1}{2} \hfill \\  {\log _x}2 =  - \frac{1}{2} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  2 = {x^{\frac{1}{2}}} \hfill \\  2 = {x^{ - \frac{1}{2}}} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  {x_1} = 4 \hfill \\  {x_2} = \frac{1}{4} \hfill \\ \end{gathered}  ight.

    Vậy {x_1}.{x_2} = 4.\frac{1}{4} = 1.

  • Câu 24: Thông hiểu

    Biết \sqrt[5]{{\frac{b}{a}\sqrt[3]{{\frac{a}{b}}}}} = {\left( {\frac{a}{b}} ight)^m} với a và b là các số thực dương. Tìm m?

    Ta có:

    \begin{matrix}  {\left( {\dfrac{a}{b}} ight)^m} = {\left( {\sqrt[3]{{\dfrac{{{b^3}}}{{{a^3}}}.\dfrac{a}{b}}}} ight)^{\frac{1}{5}}} = {\left( {\dfrac{{{b^2}}}{{{a^2}}}} ight)^{\frac{1}{{15}}}} = {\left( {\dfrac{b}{a}} ight)^{\frac{2}{{15}}}} \hfill \\   \Rightarrow m = \dfrac{{ - 2}}{{15}} \hfill \\ \end{matrix}

  • Câu 25: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= mx^{4} + (m - 3)x^{2} + 2021 có hai cực tiểu và một cực đại?

    Hàm số y = ax^{4} + bx^{2} + c;(a eq
0) có ba điểm cực trị khi và chỉ khi a.b < 0.

    Để hàm số y = f(x) có hai cực tiểu và một cực đại thì đồ thị hàm số y =
f(x) có dạng

    Ta có: \lim_{x ightarrow + \infty}f(x)
= + \infty. Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số a > 0

    Khi đó để thỏa mãn yêu cầu bài toán ta có:

    \left\{ \begin{matrix}
a > 0 \\
ab < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m(m - 3) < 0 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 3

    Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 26: Thông hiểu

    Cho {\log _a}b = 2;{\log _a}c = 3. Tính giá trị của biểu thức P = {\log _a}\left( {a{b^3}{c^3}} ight)

    Ta có:

    \begin{matrix}  P = {\log _a}\left( {a{b^3}{c^3}} ight) \hfill \\   = {\log _a}a + {\log _a}{b^3} + {\log _a}{c^3} \hfill \\   = 1 + 3{\log _a}b + 5{\log _a}c \hfill \\   = 1 + 3.2 + 5.3 = 22 \hfill \\ \end{matrix}

  • Câu 27: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 28: Vận dụng

    Trong các khẳng định dưới đây, khẳng định nào sai?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 2  - 1 < 1} \\   {2017 < 2018} \end{array}} ight. \Rightarrow {\left( {\sqrt 2  - 1} ight)^{2017}} > {\left( {\sqrt 2  - 1} ight)^{2018}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 3  - 1 < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {\sqrt 3  - 1} ight)^{2018}} < {\left( {\sqrt 3  - 1} ight)^{2017}}

    \left\{ {\begin{array}{*{20}{c}}  {2 > 1} \\   {\sqrt 2  + 1 > \sqrt 3 } \end{array}} ight. \Rightarrow {2^{\sqrt 2  + 1}} > {2^{\sqrt 3 }}

    \left\{ {\begin{array}{*{20}{c}}  {0 < 1 - \dfrac{{\sqrt 2 }}{2} < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2018}} < {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2017}}

    Vậy đáp án sai là: {\left( {\sqrt 3  - 1} ight)^{2018}} > {\left( {\sqrt 3  - 1} ight)^{2017}}

  • Câu 29: Thông hiểu

    Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao R\sqrt 3 và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

     Tỉ số diện tích

    Diện tích xung quanh của hình trụ:

    {S_{{m{xq}}\left( {m{T}} ight)}} = 2\pi R.h = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2} (đvdt).

    Kẻ đường sinh O’M của hình nón, suy ra

    \ell  = O'M = \sqrt {OO{'^2} + O{M^2}}  = \sqrt {3{R^2} + {R^2}}  = 2R.

    Diện tích xung quanh của hình nón: {S_{{m{xq}}\left( {m{N}} ight)}} = \pi R\ell  = \pi R.2R = 2\pi {R^2} (đvdt).

    Vậy \frac{{{S_{{m{xq}}\left( {m{T}} ight)}}}}{{{S_{{m{xq}}\left( {m{N}} ight)}}}} = \sqrt 3.

  • Câu 30: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 31: Vận dụng

    Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:

    Số tiệm cận đứng của đồ thị hàm số

    Số đường tiệm cận đứng của đồ thị hàm số y = \frac{{x - 2}}{{{f^2}\left( x ight) - 5f\left( x ight) + 4}} là:

    Ta có: {f^2}\left( x ight) - 5f\left( x ight) + 4 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 4} \\   {f\left( x ight) = 1} \end{array}} ight.

    Phương trình f\left( x ight) = 4 có 3 nghiệm phân biệt khác 2.

    Phương trình f\left( x ight) = 1 có một nghiệm kép là x = 2 (do vậy mẫu số có dạng {\left( {x - 2} ight)^2} nên x = 2 vẫn là TCĐ của đồ thị hàm số

    => Đồ thị hàm số y = \frac{{x - 2}}{{{f^2}\left( x ight) - 5f\left( x ight) + 4}} có 4 đường tiệm cận đứng.

  • Câu 32: Nhận biết

    Cho các mệnh đề sau:

    (i) Cơ số của logarit phải là số dương.

    (ii) Chỉ số thực dương mới có logarit.

    (iii) \ln \left( {A + B} ight) = \ln A + \ln B với mọi A > 0;B > 0.

    (iv) {\log _a}b.{\log _b}c.{\log _c}a = 1 với mọi a,b,c \in \mathbb{R}.

    Số mệnh đề đúng là:

    (i) Sai vì cơ số của {\log _a}b chỉ cần thỏa mãn 0 < a e 0

    (ii) Đúng vì điều kiện có nghĩa của {\log _a}bb > 0

    (iii) Sai vì \ln \left( {A + B} ight) = \ln A.\ln B với mọi A > 0;B > 0

    (iv) Sai vì nếu a,b,c < 0 thì các biểu thức {\log _a}b;{\log _b}c;{\log _c}a không có nghĩa.

  • Câu 33: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 34: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 35: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 36: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 37: Nhận biết

    Cơ số x bằng bao nhiêu để {\log _x}\sqrt[{10}]{3} =  - 0,1?

    Điều kiện x > 0;x e 1

    Ta có:

    \begin{matrix}  {\log _x}\sqrt[{10}]{3} =  - 0,1 \hfill \\   \Leftrightarrow {x^{ - 0,1}} = {3^{0,1}} \hfill \\   \Leftrightarrow {x^{ - 1}} = 3 \Leftrightarrow x = \dfrac{1}{3}\left( {tm} ight) \hfill \\ \end{matrix}

  • Câu 38: Thông hiểu

    Khi đặt hệ tọa độ Oxyz vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu (S) (tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} + 14x + 12y - 10z + 29 =
0. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.

    Đáp án : 18km

    Đáp án là:

    Khi đặt hệ tọa độ Oxyz vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu (S) (tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu (S) có phương trình x^{2} + y^{2} + z^{2} + 14x + 12y - 10z + 29 =
0. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.

    Đáp án : 18km

    Ta có x^{2} + y^{2} + z^{2} + 14x + 12y -
10z + 29 = 0

    \Leftrightarrow (x + 7)^{2} + (y + 6)^{2}
+ (z - 5)^{2} = 9^{2}.

    Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là 18km.

    Đáp số: 18km.

  • Câu 39: Vận dụng

    Số giá trị nguyên của tham số m \in \left[ { - 20;20} ight] để hàm số y = \frac{1}{3}{x^3} + 2{x^2} + \left( {m + 3} ight)x + 2 đồng biến trên \mathbb{R} là:

    Ta có: y' = {x^2} + 4x + m + 3

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 4 - \left( {m + 3} ight) < 0} \end{array}} ight. \Leftrightarrow m \geqslant 1 \hfill \\ \end{matrix}

    Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \left[ { - 20;20} ight]} \\   {m \in \mathbb{Z}} \end{array}} ight.

    => Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 40: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y = (m - 1)x^{3} - 3(m - 1)x^{2} + 3x +
2; (m là tham số) đồng biến trên tập số thực?

    Ta có: y' = 3(m - 1)x^{2} - 6(m - 1)x
+ 3

    Hàm số đã cho đồng biến trên \mathbb{R} khi và chỉ khi y' \geq 0;\forall x\mathbb{\in R}

    \Leftrightarrow \left\lbrack
\begin{matrix}
m - 1 = 0 \\
\left\{ \begin{matrix}
m - 1 > 0 \\
\Delta' \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
\left\{ \begin{matrix}
m > 1 \\
9(m - 1)^{2} - 9(m - 1) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = 1 \\
\left\{ \begin{matrix}
m > 1 \\
1 \leq m \leq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 1 \leq m \leq 2

    Vậy đáp án cần tìm là 1 \leq m \leq
2.

  • Câu 41: Thông hiểu

    Bất phương trình {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 có tập nghiệm là:

    Điều kiện x > {\log _3}\sqrt {73}

    Ta có:  {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 \Leftrightarrow {\log _3}\left( {{9^x} - 72} ight) \leqslant x

    \Leftrightarrow {9^x} - {3^x} - 72 \leqslant 0 \Leftrightarrow {3^x} \leqslant 9 \Leftrightarrow x \leqslant 2

    Vậy BPT có tập nghiệm là S = \left( {{{\log }_3}\sqrt {73} ;2} ight].

  • Câu 42: Vận dụng

    Gọi x_1, x_2 là 2 nghiệm của phương trình {\log _3}\left( {{x^2} - x - 5} ight) = {\log _3}\left( {2x + 5} ight).

    Khi đó \left| {{x_1} - {x_2}} ight| bằng:

     Ta có: {\log _3}\left( {{x^2} - x - 5} ight) = {\log _3}\left( {2x + 5} ight) \Leftrightarrow \left\{ \begin{gathered}  2{\text{x}} + 5 > 0 \hfill \\  {x^2} - x - 5 = 2x + 5 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - \frac{5}{2} \hfill \\  \left[ \begin{gathered}  x = 5 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 5 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight.

    Suy ra \left| {{x_1} - {x_2}} ight| =|5-(-2)|=|5+2|=7

  • Câu 43: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Mặt phẳng \left( \alpha  ight) thay đổi luôn đi qua B, trung điểm I của SO và cắt các cạnh SA, SCSD lần lượt tại M, NP. Tính giá trị lớn nhất M và giá trị nhỏ nhất m của tỷ số \frac{{{V_{S.BMPN}}}}{{{V_{S.ABCD}}}}.

     

    Đặt \frac{{SA}}{{SM}} = x,\frac{{SC}}{{SN}} = y \Rightarrow x,y \geqslant 1.

    Ta có \frac{{SA}}{{SM}} + \frac{{SC}}{{SN}} = \frac{{SB}}{{SB}} + \frac{{SD}}{{SP}} = 2.\frac{{SO}}{{SI}} = 4

    Nên ta suy ra được: \frac{{SD}}{{SP}} = 3;\,\,x + y = 4.

    Do đó \frac{{{V_{S.BMPN}}}}{{{V_{S.ABCD}}}} = \frac{8}{{4.x.y.3.1}} = \frac{2}{{3xy}} = \frac{2}{{3x\left( {4 - x} ight)}}

    Từ x + y = 4 \Leftrightarrow x = 4 - y \leqslant 3\,y \geqslant 1

    Xét f\left( x ight) = \frac{2}{{3x\left( {4 - x} ight)}},\,\,1 \leqslant x \leqslant 3, tính đạo hàm của hàm số trên, ta được: f'\left( x ight) = \frac{{2\left( {4 - 2x} ight)}}{{{{\left[ {3x\left( {4 - x} ight)} ight]}^2}}} = 0 \Leftrightarrow x = 2

    Ta có f\left( 1 ight) = f\left( 3 ight) = \frac{2}{9};\,f\left( 2 ight) = \frac{1}{6}.

    Vậy đạt GTLN và GTNN của tỉ số lần lượt là M=\frac{2}{9} ; \, m=  \frac{1}{6}.

  • Câu 44: Thông hiểu

    Cho một số thực \alpha tùy ý. Trong các khẳng định sau khẳng định nào đúng?

     Theo tính chất đạo hàm của hàm số lũy thừa, hàm số y = {x^\alpha } có đạo hàm với mọi x > 0 và \left( {{x^\alpha }} ight)' = \alpha {x^{\alpha  - 1}}

  • Câu 45: Vận dụng

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 46: Nhận biết

    Bất phương trình {\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} ight) < 0 có tập nghiệm là:

     Ta có {\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} ight) < 0 

    \Leftrightarrow 2{x^2} - x + 1 > 1 \Leftrightarrow \left[ \begin{gathered}  x < 0 \hfill \\  x > \frac{1}{2} \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là  S = \left( { - \infty ;0} ight) \cup \left( {\frac{1}{2}; + \infty } ight).

  • Câu 47: Thông hiểu

    Cho a,b > 0, viết {a^{\frac{2}{3}}}.\sqrt a về dạng {a^x}\sqrt[3]{{b\sqrt {b\sqrt b } }} về dạng {b^y}. Tình giá trị biểu thức T = 6a + 12y

    Ta có:

    \begin{matrix}  {a^{\frac{2}{3}}}.\sqrt a  = {a^{\frac{2}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{2}{3} + \frac{1}{2}}} = {a^{\frac{7}{6}}} \hfill \\   \Rightarrow {a^x} = {a^{\frac{7}{6}}} \hfill \\   \Rightarrow x = \dfrac{7}{6} \hfill \\  \sqrt[3]{{b\sqrt {b\sqrt b } }} = {\left( {b\sqrt {{b^{\frac{3}{2}}}} } ight)^{\frac{1}{3}}} = {\left( {b.{b^{\frac{3}{4}}}} ight)^{\frac{1}{3}}} = {\left( {{b^{\frac{7}{4}}}} ight)^{\frac{1}{3}}} = {b^{\frac{7}{{12}}}} \hfill \\   \Rightarrow {b^y} = {b^{\frac{7}{{12}}}} \Rightarrow y = \dfrac{7}{{12}} \hfill \\   \Rightarrow T = 14 \hfill \\ \end{matrix}

  • Câu 48: Vận dụng cao

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 49: Thông hiểu

    Gọi M và m lần lượt là giá trị lớn nhất và giá tị nhỏ nhất của hàm số y = \frac{{\sqrt {{x^2} - 1} }}{{x - 2}} trên tập D = \left( { - \infty ; - 1} ight] \cup \left[ {1;\frac{3}{2}} ight]. Tính giá trị H của m.M

    Tập xác định của hàm số y là: \left( { - \infty ; - 1} ight] \cup \left( {1; + \infty } ight]\backslash \left\{ 2 ight\}

    Ta có:

    \begin{matrix}  y' = \dfrac{{\dfrac{{x\left( {x - 2} ight)}}{{\sqrt {{x^2} - 1} }} - \sqrt {{x^2} - 1} }}{{{{\left( {x - 2} ight)}^2}}} = \dfrac{{ - 2x + 1}}{{\sqrt {{x^2} - 1} {{\left( {x - 2} ight)}^2}}} \hfill \\  y' = 0 \Rightarrow x = \dfrac{1}{2} \hfill \\ \end{matrix}

    Ta có bảng biến thiên như sau:

    Tìm GTLN, GTNN của hàm số

    Từ bảng biến thiên ta được:

    M = 0,m =  - \sqrt 5  \Rightarrow H = m.M = 0

  • Câu 50: Vận dụng

    Cho a,b,c > 0 và khác 1. Các hàm số y = {\log _a}x;y = {\log _b}x;y = {\log _c}x có đồ thị như hình vẽ bên. Khẳng định nào dưới đây đúng?

    Khẳng định nào dưới đây đúng

     Kẻ đường thẳng y=1 cắt đồ thị các hàm số y = {\log _a}x;y = {\log _b}x;y = {\log _c}x lần lượt tại các điểm có hoành độ a,b,c

    Khẳng định nào dưới đây đúng

    Từ đồ thị ta có: a > c > b

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo