Cho hàm số
có bảng biến thiên như sau:

Tìm số nghiệm của phương trình
trên đoạn
?
Cho hàm số có bảng biến thiên như sau:
Tìm số nghiệm của phương trình trên đoạn
?
Cho hàm số
có bảng biến thiên như sau:

Tìm số nghiệm của phương trình
trên đoạn
?
Cho hàm số có bảng biến thiên như sau:
Tìm số nghiệm của phương trình trên đoạn
?
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số
nghịch biến trên khoảng (-1; 1)
Ta có:
Để hàm số nghịch biến trên khoảng (-1; 1) thì
Ta có y’ = 0 => x = m hoặc x = m + 2
Bảng xét dấu

Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
. Giá trị của biểu thức
là:
Điều kiện xác định:
Xét hàm số trên
ta có:
Phương trình
Ta lại có:
=>
Cho khối lăng trụ đứng
có
, đáy
là tam giác vuông cân tại
và
. Tính thể tích của khối lăng trụ đã cho.

Tam giác vuông cân tại
,
suy ra
Vậy thể tích khối lăng trụ
Điểm nào sau đây thuộc đồ thị hàm số
?
Thay vào
ta được:
Vậy thuộc đồ thị hàm số
.
Hàm số
đồng biến trên nửa khoảng
khi:
Ta có:
Để hàm số đã cho đồng biến trên nửa khoảng khi đó:
Xét hàm số trên nửa khoảng
ta có:
Bảng biến thiên của hàm số trên nửa khoảng
là:
Từ bảng biến thiên suy ra
Vậy khi và chỉ khi
.
Tổng các nghiệm của phương trình
là:
Điều kiện . Có
Dó đó, tổng các nghiệm sẽ bằng .
Gọi
là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Để thiết kế một chiếc bể nuôi cá Koi trong sân vườn hình hộp chữ nhật không nắp có chiều cao
và thể tích chứa
. Biết giá thành để làm mặt bên là 2,8 triệu đồng/
và làm mặt đáy là 4 triệu đồng/
. Tính chi phí thấp nhất để hoàn thành bể cá (Làm tròn theo đơn vị triệu đồng).

Đáp án: 2812
Để thiết kế một chiếc bể nuôi cá Koi trong sân vườn hình hộp chữ nhật không nắp có chiều cao và thể tích chứa
. Biết giá thành để làm mặt bên là 2,8 triệu đồng/
và làm mặt đáy là 4 triệu đồng/
. Tính chi phí thấp nhất để hoàn thành bể cá (Làm tròn theo đơn vị triệu đồng).
Đáp án: 2812
Gọi lần lượt là chiều rộng và chiều dài của đáy hình hộp.
Điều kiện: .
Ta có thể tích của khối hộp:
.
Diện tích mặt đáy:
.
Giá tiền để làm mặt đáy là:
(đồng).
Diện tích xung quanh của bể cá:
.
Giá tiền để làm mặt bên là:
.
Tổng chi phí để xây dựng bể cá là:
(triệu đồng).
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Phương trình
có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
Phương trình có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
PT
Vậy PT có 2 nghiệm.
Cho các mệnh đề sau:
(i) Cơ số của logarit phải là số dương.
(ii) Chỉ số thực dương mới có logarit.
(iii)
với mọi
.
(iv)
với mọi
.
Số mệnh đề đúng là:
(i) Sai vì cơ số của chỉ cần thỏa mãn
(ii) Đúng vì điều kiện có nghĩa của là
(iii) Sai vì với mọi
(iv) Sai vì nếu thì các biểu thức
không có nghĩa.
Trong không gian, cho hình chữ nhật ABCD có
và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Cho hàm số
. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.
Ta có:
Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình có hai nghiệm phân biệt thỏa mãn
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho lăng trụ
có đáy
là hình thoi cạnh
, tâm O và
. Góc giữa cạnh bên
và mặt đáy bằng
. Đỉnh A' cách đều các điểm A, B, D. Tính theo
thể tích
của khối lăng trụ đã cho.

Từ giả thiết suy ra tam giác ABD đều cạnh .
Gọi H là tâm tam giác ABD. Vì A' cách đều các điểm A,B, D nên .
Do đó .
Ta có .
Tam giác vuông , có
.
Diện tích hình thoi .
Vậy .
Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho
trùng với
trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại đều đúng dựa vào khái niệm hình đa diện.
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Trong không gian
, cho hai điểm
và
. Phương trình mặt cầu có tâm
và đi qua
là:
Ta có:
Vậy phương trình mặt cầu tâm và đi qua điểm
có phương trình là:
.
Phương trình
có tập nghiệm là?
Điều kiện: x > 0
Vậy PT có tập nghiệm là S={8;2}.
Cho hàm số
. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số đã cho đồng biến trên
?
Ta có:
Hàm số đã cho nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 7 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho khối đa diện đều loại
. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Khối đa diện đều loại là khối bát diện đều.

Mỗi đỉnh là đỉnh chung của 4 mặt.
Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng .
Cho mặt cầu (S):
và điểm
. Gọi M là tiếp điểm của (S) và tiếp tuyến di động qua (d). Tìm tập hợp các điểm M.
(Có thể chọn nhiều đáp án)
Theo đề bài, (S) có tâm
Ta có:
đường tròn
Hay
Bác Thu có 600 triệu đồng mang đi gửi tiết kiện ở hai loại kì hạn khác nhau đều theo thể thức lãi kép. Bác gửi 300 triệu đồng theo kì hạn quý với lãi suất 2,1% một quý, 300 triệu đồng còn lại bác gửi theo kì hạn tháng với lãi suất 0,73%/tháng. Sau khi gửi được đúng một năm, bác rút ra một nửa số tiền ở loại kì hạn quý và gửi vào loại kì hạn theo tháng. Hỏi sau đúng hai năm kể từ khi gửi tiền lần đầu, bác Thu thu về tất cả bao nhiêu tiền lãi (làm tròn đến chữ số hàng nghìn)?
Số tiền bác Thu thu được ở năm thứ nhất là:
+ Gửi kì hạn theo quý: (triệu đồng)
+ Gửi kì hạn theo tháng: (triệu đồng)
Số tiền bác Thu thu được ở sau năm thứ hai là:
+ Gửi kì hạn theo quý: (triệu đồng)
+ Gửi kì hạn theo tháng: (triệu đồng)
Số tiền lãi bác Thu thu được là
(triệu đồng)
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Cho hàm số
có đạo hàm
. Hàm số
có bao nhiêu điểm cực đại?
Từ giả thiết ta có bảng biến thiên của hàm số f(x)

Ta có:
g(x) = f(3 – x)
=> g’(x) = -f’(3 – x)
Từ bảng biến thiên của hàm số f(x) ta có:
=> Ta có bảng biến thiên của hàm số g(x) là:

Từ bảng biến thiên ta nhận thấy hàm số g(x) có một điểm cực đại.
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Gọi
là 2 nghiệm của phương trình
. Khi đó
bằng:
Điều kiện: .
Đặt ,điều kiện
. Khi đó phương trình trở thành:
Vậy .
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Cho hàm số
. Giả sử
là tổng bình phương các giá trị của tham số
để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng
. Tính giá trị
? (Kết quả làm tròn đến chữ số thập phân thứ ba).
Cho hàm số . Giả sử
là tổng bình phương các giá trị của tham số
để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng
. Tính giá trị
? (Kết quả làm tròn đến chữ số thập phân thứ ba).
Bất phương trình
có tập nghiệm là:
TXĐ
BPT
Cho
; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)
Ta có: . Theo yêu cầu bài toán ta có:
=>
Xét hàm số
Ta có bảng biến thiên như sau:

Vậy
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số đã cho có hai tiệm cận đứng là
và
.
nên đồ thị hàm số đã cho có một tiệm cận ngang là
Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.
Cho hàm số y = f(x) có đạo hàm f’(x) = x2 + 1,
. Mệnh đề nào dưới đây đúng?
Ta có:
f’(x) = x2 + 1 > 0,
=> Hàm số đống biến trên khoảng (-∞; +∞)
Điều kiện xác định của Bất phương trình
là?
Biểu thức xác định khi và chỉ khi:
Hàm số nào sau đây phù hợp với hình vẽ:

Ta có: và hàm số đồng biến trên
nên chỉ có hàm số
thỏa mãn
Cơ số x bằng bao nhiêu để
?
Điều kiện
Ta có:
Cho hàm số
(với
là tham số) đạt cực tiểu tại
. Tìm giá trị tham số
?
Tập xác định
Ta có:
Hàm số đạt cực tiểu tại suy ra
Với
. Khi đó
suy ra
là điểm cực tiểu của hàm số.
Vậy là giá trị cần tìm.
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Trong không gian
, cho mặt phẳng
và mặt cầu
tâm
bán kính
. Bán kính đường tròn giao của mặt phẳng
và mặt cầu
là:
Hình vẽ minh họa
Gọi bán kính đường tròn giao của mặt phẳng và mặt cầu
là
Ta có:
Suy ra
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Cho hàm số
liên tục trên
và có bảng xét dấu của
như sau:

Số điểm cực tiểu của hàm số đã cho là
Đạo hàm đổi dấu từ âm sang dương hai lần qua các điểm
và
nên hàm số đã cho có hai điểm cực tiểu.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và
. Tính theo a thể tích V khối chóp S.ABCD.

Đường chéo hình vuông
Xét tam giác SAC, ta có .
Chiều cao khối chóp là .
Diện tích hình vuông ABCD là
Vậy thể tích khối chóp .
Cho
là ba số thực dương,
thỏa mãn:
![]()
Khi đó, giá trị của biểu thức
gần với giá trị nào nhất sau đây?
Áp dụng bất đẳng thức , ta được:
Do đó với
Dấu “=” xảy ra khi
Khi đó .
Vậy giá trị của T gần 8 nhất.