Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Nghiệm lớn nhất của phương trình - {\log ^3}x + 2{\log ^2}x = 2 - \log x  là:

    100 || 1 trăm || một trăm || Một trăm || x=100

    Đáp án là:

    Nghiệm lớn nhất của phương trình - {\log ^3}x + 2{\log ^2}x = 2 - \log x  là:

    100 || 1 trăm || một trăm || Một trăm || x=100

     Điều kiện: x>0

    - {\log ^3}x + 2{\log ^2}x = 2 - \log x \Leftrightarrow \left[ \begin{gathered}  \log x =  - 1 \hfill \\  \log x = 2 \hfill \\  \log x = 1 \hfill \\ \end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{10}} \hfill \\  x = 100 \hfill \\  x = 10 \hfill \\ \end{gathered}  ight.

    Vậy nghiệm lớn nhất là x =100.

  • Câu 2: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA=BC=a. Cạnh bên SA=2a và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp S.ABC.

    Chóp tam giác

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{{{a^2}}}{2}

    Chiều cao khối chóp là SA=2a.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{ABC}}.SA = \frac{{{a^3}}}{3}

  • Câu 3: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, phương trình đường thẳng tiếp xúc với mặt cầu (S):(x - 1)^{2} + (y - 2)^{2} +
(z - 3)^{2} = 81 tại điểm P( - 5; -
4;6) là:

    Mặt cầu (S) có tâm I(1; 2; 3).

    Gọi (α) là mặt phẳng cần tìm.

    Do (α) tiếp xúc với (S) tại P nên mặt phẳng (α) đi qua P và có vectơ pháp tuyến \overrightarrow{n} =
\overrightarrow{IP} = ( - 6; - 6;3)

    Phương trình mặt phẳng (α) là

    - 6(x + 5) - 6(y + 4) + 3(z - 6) =
0

    \Leftrightarrow 2x + 2y - z + 24 =
0

  • Câu 4: Thông hiểu

    Cho hàm số f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f(2x + 1) nghịch biến trên khoảng nào dưới đây?

    Ta có:

    y' = \left\lbrack f(2x + 1)
ightbrack' = 2f'(2x + 1) < 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
2x + 1 < - 3 \\
- 1 < 2x + 1 < 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 1 < x < 0 \\
\end{matrix} ight.

    Vậy khoảng nghịch biến của hàm số y =
f(2x + 1) là: ( - 1;0)

  • Câu 5: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Vận dụng

    Tính thể tích V của khối lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = {\text{ }}AC = a. Biết rằng A'A = A'B = A'C = a.

     

    Gọi I là trung điểm BC. Từ A'A = A'B = A'C = a, suy ra hình chiếu vuông góc của A' trên mặt đáy (ABC) là tâm đường tròn ngoại tiếp tam giác ABC

    Suy ra A'I \bot \left( {ABC} ight).

    Tam giác ABC, có BC = \sqrt {A{B^2} + A{C^2}}  = a\sqrt 2

    Tam giác vuông A'IB, có A'I = \sqrt {A'{B^2} - B{I^2}}  = \frac{{a\sqrt 2 }}{2}.

    Diện tích tam giác ABC là  {S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{{{a^2}}}{2}.

    Vậy {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.A'I = \frac{{{a^3}\sqrt 2 }}{4}.

  • Câu 7: Vận dụng

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _3}\left( {1 - {x^2}} ight) \leqslant {\log _{\frac{1}{3}}}\left( {1 - x} ight) là:

    0 ||không || Không|| x= 0

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _3}\left( {1 - {x^2}} ight) \leqslant {\log _{\frac{1}{3}}}\left( {1 - x} ight) là:

    0 ||không || Không|| x= 0

     

    BPT\Leftrightarrow \left\{ \begin{gathered}  1 - {x^2} > 0 \hfill \\  1 - x > 0 \hfill \\  {\log _3}\left( {1 - {x^2}} ight) \leqslant  - {\log _3}\left( {1 - x} ight) \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  x < 1 \hfill \\  {\log _3}\left( {1 - {x^2}} ight) + {\log _3}\left( {1 - x} ight) \leqslant 0 \hfill \\ \end{gathered}  ight.

     

    \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  {\log _3}\left( {1 - {x^2}} ight)\left( {1 - x} ight) \leqslant 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  {\log _3}\left( {1 - {x^2}} ight)\left( {1 - x} ight) \leqslant 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  \left( {1 - {x^2}} ight)\left( {1 - x} ight) \leqslant 1 \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  x({x^2} - x - 1) \leqslant 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  x \leqslant \frac{{1 - \sqrt 5 }}{2} \vee 0 \leqslant x \leqslant \frac{{1 + \sqrt 5 }}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow  - 1 < x \leqslant \frac{{1 - \sqrt 5 }}{2} \vee 0 \leqslant x < 1

    Vậy nghiệm nguyên nhỏ nhất của BPT là x=0.

  • Câu 8: Nhận biết

    Điều kiện xác định của phương trình {\log _{2x - 3}}16 = 2 là:

     Biểu thức {\log _{2x - 3}}16 = 2 xác định   \Leftrightarrow \left\{ \begin{gathered}  2x - 3 > 0 \hfill \\  2x - 3 e 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{2} \hfill \\  x e 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \frac{3}{2} < x e 2.

  • Câu 9: Nhận biết

    Cho hai số thực a và b với a > 0;a e 1;b e 0. Chọn khẳng định sai?

    \frac{1}{2}{\log _a}{b^2} = {\log _a}b sai vì chưa biết b > 0 hay b < 0

  • Câu 10: Thông hiểu

    Bất phương trình {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 có tập nghiệm là:

    Điều kiện x > {\log _3}\sqrt {73}

    Ta có:  {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 \Leftrightarrow {\log _3}\left( {{9^x} - 72} ight) \leqslant x

    \Leftrightarrow {9^x} - {3^x} - 72 \leqslant 0 \Leftrightarrow {3^x} \leqslant 9 \Leftrightarrow x \leqslant 2

    Vậy BPT có tập nghiệm là S = \left( {{{\log }_3}\sqrt {73} ;2} ight].

  • Câu 11: Nhận biết

    Biết rằng \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} = {x^n} với x > 0. Tìm n?

     Ta có:

    \begin{matrix}  \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} \hfill \\   = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^2}.{x^{\frac{1}{2}}}}} = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^{\frac{5}{2}}}}} \hfill \\   = {x^{\frac{1}{2}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{5}{6}}} = {x^{\frac{4}{3}}} \hfill \\ \end{matrix}

    Vậy n = \frac{4}{3}

  • Câu 12: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 13: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 14: Thông hiểu

    Cho hàm số f(x) = x^{3} - 3x +
e^{m} với m là tham số. Biết rằng giá trị nhỏ nhất của hàm số đã cho trên \lbrack 0;2brack bằng 0. Khi đó giá trị lớn nhất của hàm số đó là:

    Ta có: f'(x) = 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 1 \\
\end{matrix} ight. do xét trên \lbrack 0;2brack nên nhận x = 1

    \left\{ \begin{matrix}
f(1) = e^{m} - 2 \\
f(0) = e^{m} \\
f(2) = e^{m} + 2 \\
\end{matrix} ight.\  \Rightarrow \min_{\lbrack 0;2brack}f(x) = e^{m}
- 2 = 0 \Leftrightarrow e^{m} = 2

    Từ đó \max_{\lbrack 0;2brack}f(x) =
e^{m} + 2 = 4.

  • Câu 15: Thông hiểu

    Viết biểu thức Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} = {x^{\frac{1}{2}}}.{x^{\frac{1}{3}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{1}{3} + \frac{5}{6}}} = {x^{\frac{5}{3}}}

  • Câu 16: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Đồ thị hàm số bậc 4 có hệ số a >
0 cắt trục tung tại điểm có tung độ lớn hơn 0 nên hàm số cần tìm là y = x^{4} - 2x^{2} - 1.

  • Câu 17: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 18: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 19: Thông hiểu

    Với các số a, b, c là các số thực dương tùy ý khác 1 và {\log _a}c = x;{\log _b}c = y. Khi đó giá trị của {\log _a}\left( {ab} ight) bằng:

     Với a, b, c là các số thực dương tùy ý khác 1 ta có: {\log _c}a = \frac{1}{x};{\log _c}b = \frac{1}{y}

    Khi đó ta có: {\log _c}\left( {ab} ight) = {\log _c}a + {\log _c}b = \frac{1}{x} + \frac{1}{y}

  • Câu 20: Vận dụng

    Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]

     Từ đồ thị ta có: f’(x) = 0 => \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện

  • Câu 21: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):(x - 1)^{2} + (y - 1)^{2} + z^{2} =
4. Một mặt cầu (S') có tâm I'(9;1;6) và tiếp xúc ngoài với mặt cầu (S). Kết luận nào sau đây đúng về phương trình mặt cầu (S')?

    Ta có tâm và bán kính mặt cầu (S) lần lượt là I(1;1;0);R = 2.

    Suy ra II' = 10

    Gọi R' là bán kính mặt cầu (S'). Theo giả thiết ta có:

    R + R' = II' \Leftrightarrow
R' = II' - R = 8

    Khi đó phương trình mặt cầu cần tìm là: (S'):(x - 9)^{2} + (y - 1)^{2} + (z - 6)^{2} =
64.

  • Câu 22: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 23: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= mx^{4} + (m - 3)x^{2} + 2021 có hai cực tiểu và một cực đại?

    Hàm số y = ax^{4} + bx^{2} + c;(a eq
0) có ba điểm cực trị khi và chỉ khi a.b < 0.

    Để hàm số y = f(x) có hai cực tiểu và một cực đại thì đồ thị hàm số y =
f(x) có dạng

    Ta có: \lim_{x ightarrow + \infty}f(x)
= + \infty. Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số a > 0

    Khi đó để thỏa mãn yêu cầu bài toán ta có:

    \left\{ \begin{matrix}
a > 0 \\
ab < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m(m - 3) < 0 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 3

    Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 24: Nhận biết

    Điều kiện để bất phương trình sau có nghĩa là \ln \frac{{{x^2} - 1}}{x} < 0

     Điều kiện: \frac{{{x^2} - 1}}{x} > 0 \Leftrightarrow \left[ \begin{gathered}   - 1 < x < 0 \hfill \\  x > 1 \hfill \\ \end{gathered}  ight.

  • Câu 25: Thông hiểu

    Trong các phát biểu sau đây, phát biểu nào sai?

    Phát biểu sai là: Hàm số mũ y = {a^x}\left( {a > 0,a e 1} ight) có tập xác định là \left( {0, + \infty } ight)

    Sửa lại: Hàm số mũ y = {a^x}\left( {a > 0,a e 1} ight) có tập xác định là \mathbb{R}

  • Câu 26: Thông hiểu

    PT {\log _4}\left( {{{\log }_2}x} ight) + {\log _2}\left( {{{\log }_4}x} ight) = 2 có nghiệm là?

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  {\log _2}x > 0 \hfill \\  {\log _4}x > 0 \hfill \\  {\log _{{2^2}}}\left( {{{\log }_2}x} ight) + {\log _2}\left( {{{\log }_{{2^2}}}x} ight) = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) + {\log _2}\left( {\frac{1}{2}{{\log }_2}x} ight) = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) + {\log _2}\frac{1}{2} + {\log _2}\left( {{{\log }_2}x} ight) = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{3}{2}{\log _2}\left( {{{\log }_2}x} ight) - 1 = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}\left( {{{\log }_2}x} ight) = 2 \hfill \\ \end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}x = 4 \hfill \\ \end{gathered}  ight.

    \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  x = 16 \hfill \\ \end{gathered}  ight. \Rightarrow x = 16

    Vậy PT có nghiệm là x=16.

  • Câu 27: Nhận biết

    Hàm số y = \frac{{2x + 5}}{{x + 1}} có bao nhiêu điểm cực trị?

    Tập xác định D = \mathbb{R}\backslash \left\{ { - 1} ight\}

    Ta có:

    y' = \frac{{ - 3}}{{{{\left( {x + 1} ight)}^2}}} < 0,\forall x \in D

    Do y’ không đổi dấu nên hàm số không có cực trị.

  • Câu 28: Vận dụng

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 29: Nhận biết

    Tập xác định của hàm số y = \log {\left( {x - 2} ight)^2} là:

    Hàm số y = \log {\left( {x - 2} ight)^2} xác định nếu {\left( {x - 2} ight)^2} > 0 \Leftrightarrow x e 2

    Vậy tập xác định D = \mathbb{R}\backslash \left\{ 2 ight\}

  • Câu 30: Thông hiểu

    Khoảng cách giữa hai điểm cực trị của đồ thị hàm số y = (x - 2)^{2}(x + 1)

    Ta có:

    f'(x) = 2(x - 2)(x + 1) + (x -
2)^{2}

    = 2x^{2} - 2x - 4 + x^{2} - 4x + 4 =
3x^{2} - 6x

    \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \Rightarrow y = 4 \\
x = 2 \Rightarrow y = 0 \\
\end{matrix} ight.

    ⇒ Khoảng cách giữa hai điểm cực trị là \sqrt{(0 - 2)^{2} + (4 - 0)^{2}} =
2\sqrt{5}.

  • Câu 31: Nhận biết

    Cho hàm số y = {\left( {x - 1} ight)^{ - \frac{1}{4}}}. Khẳng định nào sau đây đúng?

     Đồ thị hàm số có đường tiệm cận đứng x = 1 

  • Câu 32: Vận dụng

    Giá trị của biểu thức M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {3\sqrt 2  - 4} ight)^{2018}} là:

    Ta có:

    \begin{matrix}  3\sqrt 2  - 4 = \sqrt 2 .\left( {3 - 2\sqrt 2 } ight) \hfill \\   \Rightarrow M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {\sqrt 2 } ight)^{2018}}.{\left( {3 - 2\sqrt 2 } ight)^{2018}} \hfill \\  \left( {3 + 2\sqrt 2 } ight)\left( {3 - 2\sqrt 2 } ight) = {3^2} - {\left( {2\sqrt 2 } ight)^2} = 9 - 8 = 1 \hfill \\   \Rightarrow {\left( {3 + 2\sqrt 2 } ight)^{2018}}{\left( {3 - 2\sqrt 2 } ight)^{2018}} = 1 \hfill \\   \Rightarrow M = {\left( {3 - 2\sqrt 2 } ight)^{2018}}{.2^{2019}} \hfill \\ \end{matrix}

  • Câu 33: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây. Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số theo thứ tự là

    Từ đồ thị của hàm số suy ra tiệm cận đứng và tiệm cận ngang là : x = 1 ; y = 1

  • Câu 34: Vận dụng

    Đạo hàm của hàm số y = {\left( {{x^2} + x + x} ight)^{\frac{1}{3}}}

    Ta có:

    \begin{matrix}  y' = \dfrac{1}{3}.{\left( {{x^2} + x + 1} ight)^{\frac{1}{3} - 1}}.\left( {{x^2} + x + 1} ight)\prime  \hfill \\   \Rightarrow y' = \dfrac{1}{3}.{\left( {{x^2} + x + 1} ight)^{ - \frac{2}{3}}}.\left( {2x + 1} ight) \hfill \\   \Rightarrow y' = \dfrac{{2x + 1}}{{3\sqrt[3]{{{{\left( {{x^2} + x + 1} ight)}^2}}}}} \hfill \\ \end{matrix}

  • Câu 35: Vận dụng cao

    Cho bất phương trình: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}}. Tìm tập nghiệm của bất phương trình.

     Ta có: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}} \Leftrightarrow \frac{{6\left( {1 - {5^x}} ight)}}{{\left( {{{5.5}^x} - 1} ight)\left( {5 - {5^x}} ight)}} \geqslant 0\,\,(1)

    Đặt t =5^x, BPT (1) \Leftrightarrow \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}} \geqslant 0.

    Đặt f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}.

    Lập bảng xét dấu f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}, ta được nghiệm:

    \left[ \begin{gathered}  5 < t \hfill \\  \frac{1}{5} < t \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  5 < {5^x} \hfill \\  \frac{1}{5} < {5^x} \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  1 < x \hfill \\   - 1 < x \leqslant 0 \hfill \\ \end{gathered}  ight..

    Vậy tập nghiệm của BPT là S = \left( { - 1;0} ight] \cup \left( {1; + \infty } ight).

  • Câu 36: Vận dụng

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{3} - 2x^{2} -1 có đồ thị (C), đường thẳng (d):y = mx - 1 và điểm K(4;11). Biết rằng (C);(d) cắt nhau tại ba điểm phân biệt A;B;C trong đó A(0; - 1) còn trọng tâm tam giác KBC nằm trên đường thẳng y = 2x + 1. Tìm giá trị của tham số m thỏa mãn yêu cầu đề bài?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 37: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 38: Vận dụng

    Phương trình {\left( {\sqrt 3  - \sqrt 2 } ight)^x} + {\left( {\sqrt 3  + \sqrt 2 } ight)^x} = {\left( {\sqrt {10} } ight)^x} có tất cả bao nhiêu nghiệm thực ?

     Ta có: {\left( {\sqrt 3  - \sqrt 2 } ight)^x} + {\left( {\sqrt 3  + \sqrt 2 } ight)^x} = {\left( {\sqrt {10} } ight)^x}\Leftrightarrow {\left( {\frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }}} ight)^x} + {\left( {\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }}} ight)^x} = 1

    Xét hàm số f\left( x ight) = {\left( {\frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }}} ight)^x} + {\left( {\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }}} ight)^x}

    Ta có: f\left( 2 ight) = 1

    Hàm số f (x) nghịch biến trên R do các cơ số \frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }} < 1;\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }} < 1.

    Vậy phương trình có nghiệm duy nhất là x=2.

  • Câu 39: Nhận biết

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Hàm số đã cho đồng biến trên khoảng nào dưới đây?

    Hàm số đã cho đồng biến trên ( -
1;2).

  • Câu 40: Vận dụng

    Biết đồ thị hàm số y = f\left( x ight) đối xứng với đồ thị hàm số y = {\log _a}x;{\text{ }}\left( {0 < a e 1} ight) qua điểm I\left( {2;2} ight). Giá trị của f\left( {4 - {a^{2018}}} ight) là:

    Gọi M\left( {x;{{\log }_a}x} ight) là điểm thuộc đồ thị hàm số y = {\log _a}x thì điểm đối xứng với M qua IM'\left( {4 - x;4 - {{\log }_a}x} ight) thuộc đồ thị hàm số y = f\left( x ight)

    => f\left( {4 - x} ight) = 4 - {\log _a}x \Rightarrow f\left( {4 - {a^{2018}}} ight) = 4 - {\log _a}^{2018} =  - 2014

  • Câu 41: Vận dụng cao

    Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

    Bất phương trình chưa tham số m nghiệm đúng

    Bất phương trình f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m (với m là tham số thực) nghiệm đúng với mọi x \in \left( { - 1;3} ight) khi và chỉ khi:

    Đặt u = \sqrt {x + 1}

    x \in \left( { - 1;3} ight) \Rightarrow u \in \left( {0;2} ight)

    => f\left( u ight) < u + m \Rightarrow f\left( u ight) - u < m

    Xét hàm số g\left( u ight) = f\left( u ight) - u;{\text{  }}u \in \left( {0;2} ight)

    Ta có: g'\left( u ight) = f'\left( u ight) - 1

    Dựa vào đồ thị hàm số ta thấy: u \in \left[ {0;2} ight] thì f'\left( u ight) < 1;\forall u \in \left[ {0;2} ight]

    => g(u) nghịch biến trên (0; 2)

    Vậy để f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m nghiệm đúng với mọi x \in \left( { - 1;3} ight) thì

    \begin{matrix}  f\left( u ight) - u < m;\forall u \in \left( {0;2} ight) \hfill \\   \Rightarrow m \geqslant \mathop {\max }\limits_{\left[ {0;2} ight]} g\left( u ight) = g\left( 0 ight) = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 42: Vận dụng

    Cho hàm số y =
f(x) xác định trên y =
f(x) và có đạo hàm f'(x) = (2 -
x)(x + 3)g(x) + 2021 trong đó g(x)
< 0;\forall x\mathbb{\in R}. Hàm số y = f(1 - x) + 2021x + 2022 đồng biến trên khoảng nào?

    Ta có:

    y' = - f'(1 - x) +
2021

    y' = - \left\lbrack (1 + x)(4 -
x)g(1 - x) + 2021 ightbrack + 2021

    y' = (x + 1)(x - 4).g(1 - x)
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    g(x) < 0;\forall x\mathbb{\in
R} nên y' > 0;\forall x \in
( - 1;4)

    Suy ra hàm số đồng biến trên ( -
1;4).

  • Câu 43: Vận dụng

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

    Đáp án là:

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

     Khối mười hai mặt đều có tất cả 30 cạnh:

     Suy ra ta có tổng độ dài tất cả các cạnh bằng \ell  = 30.2 = 60.

  • Câu 44: Vận dụng cao

    Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất {V_{\min }} của khối tứ diện SAMN.

    Gọi E là trung điểm của BC.

    Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

    Theo định lí Talet, ta có:

    \left\{ \begin{gathered}  \frac{{AB}}{{AM}} = \frac{{AP}}{{AG}} \hfill \\  \frac{{AC}}{{AN}} = \frac{{AQ}}{{AG}} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{AP}}{{AG}} + \frac{{AQ}}{{AG}} = \frac{{AP + AQ}}{{AG}}

    Mặt khác \Delta BPE = \Delta CQE\xrightarrow{{}}PE = QE\,

    \Rightarrow \,\,AP + AQ = \left( {AE - PE} ight) + \left( {AE + QE} ight) = 2AE

    Do đó \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{2AE}}{{AG}} = 2.\frac{3}{2} = 3 \Rightarrow \frac{1}{{AM}} + \frac{1}{{AN}} = 3.

    Đặt \left\{ \begin{gathered}  AM = x \hfill \\  AN = y \hfill \\ \end{gathered}  ight. \Rightarrow \frac{1}{x} + \frac{1}{y} = 3

    SABC là tứ diện đều \Rightarrow \,\,SG \bot \left( {ABC} ight)  và SG = \frac{{\sqrt 2 }}{{\sqrt 3 }}

    Do đó   {V_{SAMN}} = \frac{1}{3}{S_{\Delta AMN}}.SG

    = \frac{1}{3}\left( {\frac{1}{2}AM.AN\sin {{60}^0}} ight).SG

    = \frac{{\sqrt 2 }}{{12}}AM.AN = \frac{{\sqrt 2 }}{{12}}xy

    Ta có 3 = \frac{1}{x} + \frac{1}{y} \geqslant \frac{2}{{\sqrt {xy} }}

    \Leftrightarrow \sqrt {xy}  \geqslant \frac{2}{3} \Leftrightarrow xy \geqslant \frac{4}{9}

    \Rightarrow {V_{\min }} = \frac{{\sqrt 2 }}{{27}}

  • Câu 45: Vận dụng cao

    Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y
= \left| 3x^{4} - 4x^{3} - 12x^{2} + m ight|5 điểm cực trị?

    Tập xác định D\mathbb{= R}

    Ta có: \left( \left| f(x) ight|
ight)' = \left( \sqrt{f^{2}(x)} ight)' =
\frac{2f(x).f'(x)}{2\sqrt{f^{2}(x)}} =
\frac{f(x).f'(x)}{\sqrt{f^{2}(x)}}

    \Rightarrow y' = \frac{\left(
12x^{3} - 12x^{2} - 24x ight)\left( 3x^{4} - 4x^{3} - 12x^{2} + m
ight)}{\left| 3x^{4} - 4x^{3} - 12x^{2} + m ight|}

    Xét phương trình

    \left( 12x^{3} - 12x^{2} - 24x
ight)\left( 3x^{4} - 4x^{3} - 12x^{2} + m ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
12x^{3} - 12x^{2} - 24x = 0 \\
3x^{4} - 4x^{3} - 12x^{2} + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
3x^{4} - 4x^{3} - 12x^{2} = - m\ \ (*) \\
\end{matrix} ight.

    Xét hàm số 3x^{4} - 4x^{3} - 12x^{2} =
g(x) trên \mathbb{R} ta có: g'(x) = 12x^{3} - 12x^{2} -
24xg'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên của g(x) như sau:

    Hàm số đã cho có 5 điểm cực trị khi và chỉ khi tổng số nghiệm bội lẻ của y' = 0 và số điểm tới hạn của y' là 5 điểm. Do đó ta cần có các trường hợp sau:

    TH1: Phương trình (*) có hai nghiệm phân biệt khác \left\{ - 1;0;2 ight\}

    \Leftrightarrow \left\lbrack
\begin{matrix}
- m > 0 \\
- 32 < - m < - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
5 < m < 32 \\
\end{matrix} ight. trong trường hợp này có 26 số nguyên dương.

    TH2: Phương trình (*) có 3 nghiệm trong đó có một nghiệm kép trùng với một trong các nghiệm \left\{ - 1;0;2
ight\}

    \Leftrightarrow \left\lbrack
\begin{matrix}
- m = 0 \\
- m = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 5 \\
\end{matrix} ight. trường hợp này có một số nguyên dương.

    Vậy có tất cả 27 số nguyên dương thỏa mãn yêu cầu bài toán.

  • Câu 46: Nhận biết

    Cho hình chóp tam giác đều S.ABC. Mặt bên SBC là tam giác gì?

    Hình chóp tam giác đều có các mặt bên là các tam giác cân.

  • Câu 47: Vận dụng

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} = 9 và mặt phẳng (P):x + y + z - 3 = 0. Gọi (S') là mặt cầu chứa đường tròn giao tuyến của (S)(P) đồng thời (S') tiếp xúc với mặt phẳng (Q):x - y + z - 5 = 0. Gọi I(a;b;c) là tâm của (S'). Tính giá trị biểu thức T = abc.

    Phương trình mặt cầu (S’) có dạng:

    x^{2} + y^{2} + z^{2} - 9 + m(x + y + z
- 3) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
mx + my + mz - 9 - 3m = 0

    Mặt cầu (S') có tâm I\left( - \frac{m}{2}; - \frac{m}{2}; -
\frac{m}{2} ight), bán kính R =
\sqrt{\frac{3m^{2}}{4} + 3m + 9}.

    Mặt cầu (S') tiếp xúc với (Q) nên

    d\left( I;(Q) ight) = R\Leftrightarrow \dfrac{\left| - \dfrac{m}{2} - 5 ight|}{\sqrt{2}} =\sqrt{\frac{3m^{2}}{4} + 3m + 9}

    \Leftrightarrow |m + 10| = \sqrt{9m^{2}
+ 36m + 108}

    \Leftrightarrow m = - 1 \Rightarrow
I\left( \frac{1}{2};\frac{1}{2};\frac{1}{2} ight)

    Vậy T = abc = \frac{1}{8}.

  • Câu 48: Thông hiểu

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 49: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60^{0}. Thể tích V của khối chóp S.ABCD bằng

    Hình vẽ minh họa

    Gọi O là tâm của đáy, gọi M là trung điểm của BC.

    Ta có \left\{ \begin{matrix}
SO\bot BC \\
OM\bot BC \\
\end{matrix} ight. nên (SOM)\bot BC

    Suy ra \left\lbrack (SCD),(ABCD)
ightbrack = (SM,OM) = \widehat{SMO} = 60^{0}.

    OM = \frac{1}{2}BC =
\frac{a}{2}, SO = OMtan60^{0} =
\frac{a\sqrt{3}}{2}.

    Thể tích khối chóp S.ABCD

    V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^{2} =
\frac{a^{3}\sqrt{3}}{6}.

  • Câu 50: Thông hiểu

    Viết biểu thức \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có: 

    \begin{matrix}  A = \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} = {\left( {a\sqrt {{a^{\frac{3}{2}}}} } ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} \hfill \\   = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{4}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{7}{8}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{{23}}{{24}}}} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo