Cho hàm số
có đồ thị của hàm số
như hình vẽ:

Xác định khoảng đồng biến của hàm số
?
Ta có:
Với
Kết hợp với điều kiện ta có:
Với
Kết hợp với điều kiện ta có:
Vậy hàm số đồng biến trên mỗi khoảng
Cho hàm số
có đồ thị của hàm số
như hình vẽ:

Xác định khoảng đồng biến của hàm số
?
Ta có:
Với
Kết hợp với điều kiện ta có:
Với
Kết hợp với điều kiện ta có:
Vậy hàm số đồng biến trên mỗi khoảng
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Cho bất phương trình:
. Tìm tập nghiệm của bất phương trình.
Ta có:
Đặt , BPT
.
Đặt .
Lập bảng xét dấu , ta được nghiệm:
.
Vậy tập nghiệm của BPT là .
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:

Khối đa diện đều loại là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Tập hợp tất cả các giá trị của tham số
để đồ thị hàm số
có đúng hai đường tiệm cận?
Ta có:
Suy ra đồ thị hàm số đã cho luôn có đúng một tiệm cận ngang . Nên để đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa.
Tam thức có
Đồ thị hàm số có đúng hai tiệm cận thì phải có thêm đúng một tiệm cận đứng nữa:
Vậy .
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Khẳng định nào dưới đây đúng?
Ta có:
Vậy đáp án đúng là:
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Cơ số x bằng bao nhiêu để
?
Điều kiện
Ta có:
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có:
Ta có:
Cho g’(x) = 0 =>
Dựa vào f’(x) ta có:
Lập bảng xét dấu như sau:

Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Điều kiện xác định của bất phương trình
là:
x>-2|| X>-2 || x lớn hơn -2
Điều kiện xác định của bất phương trình là:
x>-2|| X>-2 || x lớn hơn -2
Điều kiện:
Vậy để BPT xác định khi và chỉ khi .
Cho hàm số
. Tính giá trị của biểu thức ![]()
Với ta có:
Ta có: do đó:
Cho hình chóp
có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp
là:

Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi I là trung điểm SC, suy ra nên
.
Do đó IM là trục của , suy ra
(1)
Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên . (2)
Từ (1) và (2) , ta có
hay I là tâm của mặt cầu ngoại tiếp hình chóp .
Vậy bán kính .
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Cho lăng trụ đứng
có đáy
là hình thoi cạnh bằng 1,
. Góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích
của khối lăng trụ.

Hình thoi có
, suy ra
. Do đó tam giác
và
là các tam giác đều. Gọi N là trung điểm A'B' nên
Suy ra .
Tam giác vuông , có
Tam giác vuông , có
.
Diện tích hình thoi .
Vậy .
Năng lượng giải tỏa
của một trận động đất tại tâm địa chấn
độ Richter được xác định bởi công thức
. Vào năm 1995, thành phố
xảy ra một trận động đất 8 độ Richter và năng lượng giải tỏa tại tâm địa chấn của nó gấp 14 lần trận động đất ra tại thành phố
vào năm 1997. Hỏi khi đó độ lớn của trận động đất tại thành phố
là bao nhiêu? (kết quả làm tròn đến hàng phần chục)
Theo đề bài ta có: .
Vậy độ lớn của trận động đất tại thành phố là 7,2 độ Richter.
Cho hình vẽ:

Đồ thị hình bên là của hàm số nào?
Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hhai hàm số
Đồ thị hàm số đi qua điểm nên hàm số
thảo mãn
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Dân số thế giới được tính theo công thức
. e
trong đó
là dân số của năm lấy làm mốc tính,
là dân số sau
năm,
là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là
một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?
Ta có:
Với người;
người;
năm.
Suy ra .
Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.
Trong các khẳng định sau, khẳng định nào đúng?
Xét hàm số ta có:
Vậy hàm số đồng biến trên tập số thực.
Cho hai số thực dương a và b thỏa mãn
và
. Giá trị của biểu thức
là:
Theo điều kiện ta có:
Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên tập số thực?
Ta có:
Hàm số đồng biến trên
Vì
Vậy số giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán là .
Tập nghiệm của bất phương trình
là:
Ta có:
.
Tiệm cận ngang của đồ thị hàm số
là đường thẳng có phương trình là:
Ta có:
Vậy tiệm cận ngang của đồ thị hàm số là đường thẳng có phương trình
.
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1

Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Cho hàm số
xác định và liên tục trên
có bảng xét dấu như sau:

Số điểm cực trị của hàm số đã cho là:
Dựa vào bảng xét dấu của ta thấy
đổi dấu 4 lần và hàm số
xác định và liên tục trên
Suy ra hàm số có 4 điểm cực trị.
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Mặt phẳng đi qua trọng tâm của tứ diện, song song với một mặt phẳng của tứ diện và chia khối tứ diện thành hai phần. Tính tỉ số thể tích (phần bé chia phần lớn) của hai phần đó.

Gọi lần lượt là trung điểm của các cạnh
khi đó
là trọng tâm của tứ diện
. Ta sẽ dựng mặt phẳng qua
song song với
.
Trong mặt phẳng dựng đường thẳng qua
song song với
cắt
lần lượt tại
.
Qua lần lượt kẻ các đường thẳng lần lượt song song với
cắt
lần lượt tại
.
Do là trung điểm của
suy ra
Ta có
Nếu đặt
thì phương trình
trở thành phương trình nào?
Đặt
PT
.
Cho hàm số
có đồ thị là đường cong như hình vẽ:

Tìm số nghiệm của phương trình
?
Ta có:
Số nghiệm của phương trình bằng số giao điểm của hàm số và đường thẳng
Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.
Trong không gian với hệ tọa độ
, cho mặt phẳng
và mặt cầu
. Khẳng định nào sau đây đúng?
Mặt cầu (S) có tâm , bán kính
Ta có:
Do đó (P) cắt mặt cầu (S).
Khái niệm chính xác nhất về khối đa diện là:
Áp dụng định nghĩa khối đa diện, ta có:
“Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”
Cho hàm số
với
là tham số. Định điều kiện của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì đồ thị hàm số
có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dương
thỏa mãn
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ
là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Điều kiện .
Ta có ,
,
.
Bảng biến thiên:
Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ .
Đáp số: .
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Trong không gian
(đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí
. Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là
.
a) Phương trình mặt cầu
để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
. Sai||Đúng
b) Điểm
nằm ngoài mặt cầu
. Sai||Đúng
c) Nếu người dùng điện thoại ở vị trí có tọa độ
thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
d) Nếu người dùng điện thoại ở vị trí có tọa độ
thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
Trong không gian (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí
. Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là
.
a) Phương trình mặt cầu để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
. Sai||Đúng
b) Điểm nằm ngoài mặt cầu
. Sai||Đúng
c) Nếu người dùng điện thoại ở vị trí có tọa độ thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
d) Nếu người dùng điện thoại ở vị trí có tọa độ thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
Phương trình mặt cầu tâm
bán kính
mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
.
Ta có: nên điểm
nằm trong mặt cầu.
Vì điểm nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ
có thể sử dưng dịch vụ của trạm thu phát sóng đó.
Ta có: nên điểm
nằm ngoài mặt cầu.
Vậy người dùng điện thoại ở vị trí có tọa độ không thể sử dựng dịch vụ của trạm thu phát sóng đó
Hàm số
đạt cực tiểu tại
khi:
Hàm số xác định với mọi
Ta có:
Hàm số đạt cực tiểu tại khi
Vậy thỏa mãn yêu cầu bài toán.
Cho hàm số
có bảng biến thiên như sau:

Hàm số
nghịch biến trên khoảng nào dưới dây?
Dựa vào bảng biến thiên ta thấy hàm số nghịch biến trên .
Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là
. Tính thể tích
của hình hộp chữ nhật đã cho.

Xét hình hộp chữ nhật có đáy
là hình chữ nhật.
Theo bài ra, ta có
Nhân vế theo vế, ta được
Vậy .
Cho đồ thị hàm số
. Khẳng định nào dưới đây đúng?
Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0
Ta có: suy ra đồ thị hàm số có tiệm cận ngang là y = 0
Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Độ giảm huyết áp của một bệnh nhân
trong đó
là số miligam thuộc được tiêm cho bệnh nhân
. Để bệnh nhân đó có huyết áp giảm nhiều nhất thì liều lượng thuốc cần tiêm vào là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy để bệnh nhân đó có huyết áp giảm nhiều nhất thì lượng thuốc cần tiêm vào là .
Gọi
là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Giá trị của tham số m sao cho hàm số
nghịch biến trên khoảng (0; 2)?
Ta có:
Hàm số nghịch biến trên khoảng (0; 2)
=>
=>
Xét hàm số
Ta có:
=> g(x) đồng biến trên đoạn [0; 2]
Ta có:
Phương trình
có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
Phương trình có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
PT
Vậy PT có 2 nghiệm.