Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Đường thẳng nào sau đây là tiệm cận ngang của đồ thị hàm số y = \frac{2}{- x + 3}?

    Ta có: \lim_{x ightarrow \pm \infty}y =
\lim_{x ightarrow \pm \infty}\frac{2}{- x + 3} = 0

    Vậy tiệm cận ngang của đồ thị hàm số y =
\frac{2}{- x + 3} là đường thẳng có phương trình y = 0.

  • Câu 2: Vận dụng

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

  • Câu 3: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 4: Vận dụng

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Thông hiểu

    Nếu đặt t = {\log _3}\frac{{x - 1}}{{x + 1}} thì bất phương trình {\log _4}{\log _3}\frac{{x - 1}}{{x + 1}} < {\log _{\frac{1}{4}}}{\log _{\frac{1}{3}}}\frac{{x + 1}}{{x - 1}} trở thành bất phương trình nào?

    Điều kiện: x \in ( - \infty ; - 1) \cup (1; + \infty )

    Sau khi đưa về cùng cơ số 4, rồi tiếp tục biến đổi về cùng cơ số 3 ta được bất phương trình  {\log _3}\frac{{x - 1}}{{x + 1}} - \frac{1}{{{{\log }_3}\frac{{x - 1}}{{x + 1}}}} < 0

    Vậy BPT trở thành: \frac{{{t^2} - 1}}{t} < 0

  • Câu 6: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 7: Vận dụng

    Khẳng định nào dưới đây đúng?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   { - 2017 >  - 2018} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{ - 2017}} > {\left( {\sqrt 5  + 2} ight)^{ - 2018}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{2018}} < {\left( {\sqrt 5  + 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    Vậy đáp án đúng là: {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

  • Câu 8: Nhận biết

    Rút gọn biểu thức P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} với x > 0

    Ta có: P = \frac{{{x^{\frac{1}{6}}}.\sqrt[3]{{{x^4}}}.\sqrt[4]{{{x^5}}}}}{{\sqrt {{x^3}} }} = \frac{{{x^{\frac{1}{6}}}.{x^{\frac{4}{3}}}.{x^{\frac{5}{4}}}}}{{{x^{\frac{3}{2}}}}} = \frac{{{x^{\frac{{11}}{4}}}}}{{{x^{\frac{3}{2}}}}} = {x^{\frac{5}{4}}} 

  • Câu 9: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, mặt cầu có tâm I(1;1;1) và có diện tích bằng 4\pi có phương trình là:

    Ta có: S = 4\pi R^{2} = 4\pi \Rightarrow
R = 1

    Vậy mặt cầu tâm I(1;1;1) có bán kính R = 1 có phương trình:

    (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
1.

  • Câu 10: Thông hiểu

    Giá trị t phải thỏa mãn điều kiện nào để mặt cong (S) sau là mặt cầu: 

    \left( S ight):{x^2} + {y^2} + {z^2} + 2\left( {2 - \ln t} ight)x + 4\ln t.y + 2\left( {\ln t + 1} ight)z + 5{\ln ^2}t + 8 = 0.

    Theo đề bài, ta có:

    a = \ln t - 2;\,\,b =  - 2\ln t;\,\,c =  - \ln t - 1;\,\,d = 5{\ln ^2}t + 8

    (S) là mặt cầu \Leftrightarrow {\left( {\ln t - 2} ight)^2} + 4{\ln ^2}t + {\left( {\ln t + 1} ight)^2} - 5{\ln ^2}t - 8 > 0

    \Leftrightarrow {\ln ^2}t - 2\ln t - 3 > 0

    \Leftrightarrow \ln t <  - 1 \vee \ln t > 3

    \Leftrightarrow 0 < t < \frac{1}{e} \vee t > {e^3}

  • Câu 11: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60^{0}. Thể tích V của khối chóp S.ABCD bằng

    Hình vẽ minh họa

    Gọi O là tâm của đáy, gọi M là trung điểm của BC.

    Ta có \left\{ \begin{matrix}
SO\bot BC \\
OM\bot BC \\
\end{matrix} ight. nên (SOM)\bot BC

    Suy ra \left\lbrack (SCD),(ABCD)
ightbrack = (SM,OM) = \widehat{SMO} = 60^{0}.

    OM = \frac{1}{2}BC =
\frac{a}{2}, SO = OMtan60^{0} =
\frac{a\sqrt{3}}{2}.

    Thể tích khối chóp S.ABCD

    V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^{2} =
\frac{a^{3}\sqrt{3}}{6}.

  • Câu 12: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ dưới đây

    Hàm số y = f(x) là hàm số nào

    Hàm số y = f(x) là hàm số nào trong các hàm số sau:

     Dựa vào bảng biến thiên ta thấy:

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và C

    Mặt khác hàm số đạt cực trị tại x = 0 và x = 2

    => Loại đáp án D

  • Câu 13: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 14: Thông hiểu

    Với a > 0 hãy rút gọn biểu thức P = \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } } :{x^{\frac{9}{{16}}}}

    Ta có: 

    \begin{matrix}  \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } }  = \sqrt {x\sqrt {x\sqrt {x\sqrt {{x^{\frac{3}{2}}}} } } }  = \sqrt {x\sqrt {x\sqrt {{x^{\frac{7}{4}}}} } }  \hfill \\   = \sqrt {x\sqrt {x.{x^{\frac{7}{8}}}} }  = \sqrt {x\sqrt {{x^{\frac{{15}}{8}}}} }  = \sqrt {x.{x^{\frac{{15}}{{16}}}}}  = \sqrt {{x^{\frac{{31}}{{16}}}}}  = {x^{\frac{{31}}{{32}}}} \hfill \\   \Rightarrow P = {x^{\frac{{31}}{{32}}}}:{x^{\frac{9}{{16}}}} = {x^{\frac{{13}}{{32}}}} \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Trong các phát biểu sau đây, phát biểu nào sai?

    Phát biểu sai là: Hàm số mũ y = {a^x}\left( {a > 0,a e 1} ight) có tập xác định là \left( {0, + \infty } ight)

    Sửa lại: Hàm số mũ y = {a^x}\left( {a > 0,a e 1} ight) có tập xác định là \mathbb{R}

  • Câu 16: Vận dụng

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    Ta có: y = {x^{\frac{\pi }{2}}} \Rightarrow y' = \frac{\pi }{2}.{x^{\frac{\pi }{2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = 1} \\   {y'\left( 1 ight) = \dfrac{\pi }{2}} \end{array}} ight.

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    y = y'\left( 1 ight)\left( {x - 1} ight) + y\left( 1 ight) = \frac{\pi }{2}x - \frac{\pi }{2} + 1

  • Câu 17: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 18: Vận dụng

    Cho lăng trụ ABCD.A'B'C'D'có đáy ABCD là hình chữ nhật tâm OAB = a,AD = a\sqrt 3; A'O vuông góc với đáy (ABCD). Cạnh bên AA' hợp với mặt đáy (ABCD) một góc 45^0. Tính theo a thể tích V của khối lăng trụ đã cho.

     

    A'O \bot \left( {ABCD} ight) nên {45^0} = \widehat {AA',\left( {ABCD} ight)} = \widehat {AA',AO} = \widehat {A'AO}.

    Đường chéo hình chữ nhật: 

    AC = \sqrt {A{B^2} + A{D^2}}  = 2a \Rightarrow AO = \frac{{AC}}{2} = a

    Suy ra tam giác A'OA vuông cân tại O nên A'O = AO = a

    Diện tích hình chữ nhật {S_{ABCD}} = AB.AD = {a^2}\sqrt 3.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'O = {a^3}\sqrt 3.

  • Câu 19: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

  • Câu 20: Nhận biết

    Phương trình {\log _3}({x^2} - 6) = {\log _3}(x - 2) + 1 có tập nghiệm là:

     PT \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 6 > 0 \hfill \\  x - 3 > 0 \hfill \\  {x^2} - 6 = 3(x - 3) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x <  - \sqrt 6  \vee x > \sqrt 6  \hfill \\  x > 3 \hfill \\  \left[ \begin{gathered}  x = 0 \hfill \\  x = 3 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow x \in \emptyset.

  • Câu 21: Thông hiểu

    Cho hàm số y = f(x) luôn nghịch biến trên \mathbb{R}. Tập nghiệm của bất phương trình f\left( \frac{1}{x}
ight) > f(1) là:

    Vì hàm số y = f(x) luôn nghịch biến trên \mathbb{R} nên ta có:

    f\left( \frac{1}{x} ight) > f(1)
\Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x < 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x > 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < 0 \\
x > 1 \\
\end{matrix} ight.\  \Rightarrow x \in ( - \infty;0) \cup (1; +
\infty)

    Vậy tập nghiệm của bất phương trình là x
\in ( - \infty;0) \cup (1; + \infty)

  • Câu 22: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x + 1)(x - 2)^{3};\forall
x\mathbb{\in R}. Số điểm cực tiểu của hàm số là:

    Ta có: f'(x) = x(x + 1)(x - 2)^{3} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
\end{matrix} ight.

    Bảng xét dấu:

    Suy ra số điểm cực tiểu của hàm số là 2 điểm.

  • Câu 23: Thông hiểu

    Cho số thực a dương. Rút gọn biểu thức P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}

    Ta có:

    P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{{a^{\frac{3}{2}}}}}}}}} = {\left( {a\sqrt[4]{{a.{a^{\frac{1}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a\sqrt[4]{{{a^{\frac{3}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{5}}} = {\left( {{a^{\frac{{11}}{8}}}} ight)^{\frac{1}{5}}} = {a^{\frac{{11}}{{40}}}}

  • Câu 24: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 25: Vận dụng

    Cho hàm số y = x^{3} + x^{2} - 4 có đồ thị (C). Hỏi có bao nhiêu cặp điểm A;B \in (C) sao cho ba điểm O;A;B thẳng hàng và OA - 2OB = 0 với O là gốc tọa độ?

    Gọi d là đường thẳng đi qua ba điểm O, A, B khi đó d có phương trình y =
k.x

    Khi đó hoành độ của O, A, B là nghiệm của phương trình x^{3} + x^{2} - 4 = kx

    Giả sử A\left( x_{1};kx_{1}
ight),B\left( x_{2};kx_{2} ight) khi đó ta có: \left\{ \begin{matrix}
{x_{1}}^{3} + {x_{1}}^{2} - 4 = kx_{1} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    Do OA - 2OB = 0 nên \overrightarrow{OA} = \pm 2\overrightarrow{OB}
\Rightarrow x_{1} = \pm 2kx_{2}

    TH1: x_{1} = 2kx_{2} \Rightarrow \left\{
\begin{matrix}
8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow 6{x_{2}}^{3} + 2{x_{2}}^{2}
+ 4 = 0 \Rightarrow x_{2} = - 1

    Khi đó A( - 2; - 8),B( - 1; -
4).

    TH2: x_{1} = - 2kx_{2} \Rightarrow
\left\{ \begin{matrix}
- 8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = - 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow - 6{x_{2}}^{3} +
6{x_{2}}^{2} - 12 = 0 \Rightarrow x_{2} = - 1

    Khi đó A(2;8),B( - 1; - 4).

    Vậy có 2 cặp A; B thỏa mãn.

  • Câu 26: Nhận biết

    Tìm điều kiện xác định của bất phương trình sau:

    {\log _2}(x + 1) - 2{\log _4}(5 - x) < 1 - {\log _2}(x - 2)

    BPT xác định khi : \left\{ \begin{gathered}  x + 1 > 0 \hfill \\  5 - x > 0 \hfill \\  x - 2 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  x < 5 \hfill \\  x > 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow 2 < x < 5

  • Câu 27: Vận dụng cao

    Với giá trị nào của tham số m thì bất phương trình {2^{{{\sin }^2}x}} + {3^{{\text{co}}{{\text{s}}^2}x}} \geqslant m{.3^{{{\sin }^2}x}} có nghiệm?

     Chia hai vế của bất phương trình cho {3^{{{\sin }^2}x}} > 0, ta được:

    {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} \geqslant m

    Xét hàm số y = {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} là hàm số nghịch biến.

    Ta có: 0 \leqslant {\sin ^2}x \leqslant 1 nên 1 \leqslant y \leqslant 4.

    Vậy bất phương trình có nghiệm khi m \leqslant 4.

  • Câu 28: Vận dụng cao

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 29: Thông hiểu

    Cho hàm số y = \frac{x^{2} - 4x}{2x +
1}. Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn \lbrack 0;3brack?

    Hàm số y = \frac{x^{2} - 4x}{2x +
1} liên tục trên đoạn \lbrack
0;3brack

    Ta có: y' = \frac{2x^{2} + 2x -
4}{(2x + 1)^{2}} \Rightarrow y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}
f(0) = 0 \\
f(1) = - 1 \\
f(3) = - \frac{3}{7} \\
\end{matrix} ight.\  \Rightarrow f(1) < f(3) < f(0) nên \min_{\lbrack 0;3brack}y = y(1) = -
1.

  • Câu 30: Thông hiểu

    Hàm số y = x^{3} - 2mx^{2} + m^{2}x -
2 đạt cực tiểu tại x = 1 khi:

    Ta có: \left\{ \begin{matrix}
y' = 3x^{2} - 4mx + m^{2} \\
y'' = 6x - 4m \\
\end{matrix} ight..

    Hàm số đạt cực tiểu tại x = 1 suy ra y'(1) = 3 - 4m + m^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 1 \\
m = 3 \\
\end{matrix} ight.

    y''(1) = 6 - 4m

    Với m = 1 \Rightarrow y''(1) = 2
> 0(tm)

    Với m = 3 \Rightarrow y''(1) = -
6 < 0(ktm)

    Vậy với m = 1 thì hàm số y = x^{3} - 2mx^{2} + m^{2}x - 2 đạt cực tiểu tại x = 1.

  • Câu 31: Vận dụng

    Hai phương trình 2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1){\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2) lần lượt có 2 nghiệm duy nhất x_1, x_2là . Tổng x_1 + x_2 là?

     Phương trình 1: 2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1)

    Phương trình \Leftrightarrow \left\{ \begin{gathered}  3x - 1 > 0 \hfill \\  2x + 1 > 0 \hfill \\  2{\log _5}(3x - 1) + 1 = {\log _{\sqrt[3]{5}}}(2x + 1) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  {\log _5}{(3x - 1)^2} + {\log _5}5 = 3{\log _5}(2x + 1) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  {\log _5}5{(3x - 1)^2} = {\log _5}{(2x + 1)^3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  5{(3x - 1)^2} = {(2x + 1)^3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  5(9{x^2} - 6x + 1) = 8{x^3} + 12{x^2} + 6x + 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  8{x^3} - 33{x^2} + 36x - 4 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{1}{3} \hfill \\  \left[ \begin{gathered}  x = \frac{1}{8} \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow {x_1} = 2

    Phương trình 2: {\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2)

    Phương trình \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 2x - 8 > 0 \hfill \\  x + 2 > 0 \hfill \\  {\log _2}({x^2} - 2x - 8) = 1 - {\log _{\frac{1}{2}}}(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x <  - 2 \vee x > 4 \hfill \\  x >  - 2 \hfill \\  {\log _2}({x^2} - 2x - 8) = 1 + {\log _2}(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {\log _2}({x^2} - 2x - 8) = {\log _2}2(x + 2) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {x^2} - 2x - 8 = 2(x + 2) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  {x^2} - 4x - 12 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 4 \hfill \\  \left[ \begin{gathered}  x =  - 2 \hfill \\  x = 6 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow {x_2} = 6

    Vậy {x_1} + {x_2} = 2 + 6 = 8.

  • Câu 32: Nhận biết

    Tập xác định của hàm số y = {\log _2}\left( {4 - {x^2}} ight) là tập hợp nào sau đây?

    Điều kiện xác định 4 - {x^2} > 0 \Rightarrow x \in \left( { - 2;2} ight)

    Vậy tập xác định của hàm số là D = \left( { - 2;2} ight)

  • Câu 33: Thông hiểu

    Phương trình \ln \frac{{x - 1}}{{x + 8}} = \ln x có nghiệm là: 

    Ta có:  \ln \frac{{x - 1}}{{x + 8}} = \ln x \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{x - 1}}{{x + 8}} = x \hfill \\ \end{gathered}  ight.

    \Rightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \left[ \begin{gathered}  x = 4 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 4

  • Câu 34: Nhận biết

    Cho {\log _2}a = x;{\log _2}b = y biết , biểu thức {\log _2}\left( {4{a^2}{b^3}} ight) có giá trị là:

    Ta có: 

    {\log _2}\left( {4{a^2}{b^3}} ight) = {\log _2}4 + {\log _2}{a^2} + {\log _2}{b^3} = 2 + 2{\log _2}a + 3{\log _2}b = 2x + 3y + 2

  • Câu 35: Vận dụng

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _3}\left( {1 - {x^2}} ight) \leqslant {\log _{\frac{1}{3}}}\left( {1 - x} ight) là:

    0 ||không || Không|| x= 0

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _3}\left( {1 - {x^2}} ight) \leqslant {\log _{\frac{1}{3}}}\left( {1 - x} ight) là:

    0 ||không || Không|| x= 0

     

    BPT\Leftrightarrow \left\{ \begin{gathered}  1 - {x^2} > 0 \hfill \\  1 - x > 0 \hfill \\  {\log _3}\left( {1 - {x^2}} ight) \leqslant  - {\log _3}\left( {1 - x} ight) \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  x < 1 \hfill \\  {\log _3}\left( {1 - {x^2}} ight) + {\log _3}\left( {1 - x} ight) \leqslant 0 \hfill \\ \end{gathered}  ight.

     

    \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  {\log _3}\left( {1 - {x^2}} ight)\left( {1 - x} ight) \leqslant 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  {\log _3}\left( {1 - {x^2}} ight)\left( {1 - x} ight) \leqslant 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  \left( {1 - {x^2}} ight)\left( {1 - x} ight) \leqslant 1 \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  x({x^2} - x - 1) \leqslant 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}   - 1 < x < 1 \hfill \\  x \leqslant \frac{{1 - \sqrt 5 }}{2} \vee 0 \leqslant x \leqslant \frac{{1 + \sqrt 5 }}{2} \hfill \\ \end{gathered}  ight. \Leftrightarrow  - 1 < x \leqslant \frac{{1 - \sqrt 5 }}{2} \vee 0 \leqslant x < 1

    Vậy nghiệm nguyên nhỏ nhất của BPT là x=0.

  • Câu 36: Vận dụng cao

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành tâm O. Mặt phẳng \left( \alpha  ight) thay đổi luôn đi qua B, trung điểm I của SO và cắt các cạnh SA, SCSD lần lượt tại M, NP. Tính giá trị lớn nhất M và giá trị nhỏ nhất m của tỷ số \frac{{{V_{S.BMPN}}}}{{{V_{S.ABCD}}}}.

     

    Đặt \frac{{SA}}{{SM}} = x,\frac{{SC}}{{SN}} = y \Rightarrow x,y \geqslant 1.

    Ta có \frac{{SA}}{{SM}} + \frac{{SC}}{{SN}} = \frac{{SB}}{{SB}} + \frac{{SD}}{{SP}} = 2.\frac{{SO}}{{SI}} = 4

    Nên ta suy ra được: \frac{{SD}}{{SP}} = 3;\,\,x + y = 4.

    Do đó \frac{{{V_{S.BMPN}}}}{{{V_{S.ABCD}}}} = \frac{8}{{4.x.y.3.1}} = \frac{2}{{3xy}} = \frac{2}{{3x\left( {4 - x} ight)}}

    Từ x + y = 4 \Leftrightarrow x = 4 - y \leqslant 3\,y \geqslant 1

    Xét f\left( x ight) = \frac{2}{{3x\left( {4 - x} ight)}},\,\,1 \leqslant x \leqslant 3, tính đạo hàm của hàm số trên, ta được: f'\left( x ight) = \frac{{2\left( {4 - 2x} ight)}}{{{{\left[ {3x\left( {4 - x} ight)} ight]}^2}}} = 0 \Leftrightarrow x = 2

    Ta có f\left( 1 ight) = f\left( 3 ight) = \frac{2}{9};\,f\left( 2 ight) = \frac{1}{6}.

    Vậy đạt GTLN và GTNN của tỉ số lần lượt là M=\frac{2}{9} ; \, m=  \frac{1}{6}.

  • Câu 37: Vận dụng

    Cho hàm số f\left( x ight) = {x^2}\left( {x - 1} ight).{e^{3x}} có một nguyên hàm là hàm số F(x). Số điểm cực trị của hàm số F(x) là

    TXĐ: D = \mathbb{R} có một nguyên hàm là hàm số F(x)

    => F’(x) = f(x), \forall x \in \mathbb{R}

    => F'\left( x ight) = 0 \Leftrightarrow f\left( x ight) = 0 \Leftrightarrow {x^2}\left( {x - 1} ight){e^{3x}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \end{array}} ight.

    Ta có bảng xét dấu F’(x) như sau:

    Tìm số cực trị của hàm số

    Dựa vào bảng trên ta thấy hàm số F(x) có một điểm cực trị.

  • Câu 38: Thông hiểu

    Nếu đặt t = {\log _2}x thì phương trình \frac{1}{{5 - {{\log }_2}x}} + \frac{2}{{1 + {{\log }_2}x}} = 1 trở thành phương trình nào?

    Đặt t = {\log _2}x

    PT \Leftrightarrow \frac{1}{{5 - t}} + \frac{2}{{1 + t}} = 1 \Leftrightarrow \frac{{1 + t + 2(5 - t)}}{{(5 - t)(1 + t)}} = 1

    \Leftrightarrow 1 + t + 2(5 - t) = (5 - t)(1 + t)

    \Leftrightarrow 11 - t = 5 + 4t - {t^2} \Leftrightarrow {t^2} - 5t + 6 = 0.

  • Câu 39: Vận dụng

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có đồ thị như hình vẽ:

    Xét hàm số g(x) = f\left( 2x^{3} + x - 1ight) + m. Tìm m để \max_{\lbrack 0;1brack}g(x) = -10.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} và có đồ thị như hình vẽ:

    Xét hàm số g(x) = f\left( 2x^{3} + x - 1ight) + m. Tìm m để \max_{\lbrack 0;1brack}g(x) = -10.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 40: Nhận biết

    Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

    Quan sát hình vẽ, ta thấy:

    Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.

  • Câu 41: Vận dụng cao

    Cho y = f\left( x ight) hàm số có f'\left( x ight) = \left( {x - 2} ight)\left( {x + 5} ight)\left( {x + 1} ight). Hàm số y = f\left( {{x^2}} ight) đồng biến trên khoảng nào dưới đây?

    Xét dấu f’(x) như sau:

    Tìm khoảng đồng biến của hàm số

    Ta có:

    \begin{matrix}  y' = \left( {f\left( {{x^2}} ight)} ight)' = 2xf'\left( {{x^2}} ight) \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {f'\left( {{x^2}} ight) = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \sqrt 2 } \\   {x =  - \sqrt 2 } \end{array}} ight. \hfill \\ \end{matrix}

    Chọn x = 1 \in \left( {0;\sqrt 2 } ight) ta có: y'\left( 1 ight) = 2.1.f'\left( {{1^2}} ight) = 2.f'\left( {{1^2}} ight) < 0

    => \left( {0;\sqrt 2 } ight) là khoảng âm

    Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:

    Tìm khoảng đồng biến của hàm số

    Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)

  • Câu 42: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 43: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho (S):(x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
1 và điểm A(2;2;2). Xét các điểm M \in (S) sao cho đường thẳng AM luôn tiếp xúc với (S). Điểm M luôn thuộc một mặt phẳng cố định có phương trình là

    Tọa độ tâm mặt cầu là:I(1;1;1)

    Gọi M(x;y;z) khi đó: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;y - 2;z - 2) \\
\overrightarrow{IM} = (x - 1;y - 1;z - 1) \\
\end{matrix} ight..

    Theo đề bài ra ta có:

    \overrightarrow{AM}.\overrightarrow{IM}
= 0

    \Leftrightarrow (x - 2)(x - 1) + (y -
2)(y - 1) + (z - 2)(z - 1) = 0

    \Leftrightarrow x^{2} + y^{2} + z^{2} -
3x - 3y - 3z + 6 = 0(*)

    Mặt khác phương trình mặt cầu

    (S):(x - 1)^{2} + (y - 1)^{2} + (z -
1)^{2} = 1

    \Rightarrow x^{2} + y^{2} + z^{2} - 2x -
2y - 2z + 2 = 0(**)

    Lấy (*) trừ (**) ta được: x + y + z - 4 =
0.

  • Câu 44: Vận dụng

    Cho a,b,c > 0 và khác 1. Các hàm số y = {\log _a}x;y = {\log _b}x;y = {\log _c}x có đồ thị như hình vẽ bên. Khẳng định nào dưới đây đúng?

    Khẳng định nào dưới đây đúng

     Kẻ đường thẳng y=1 cắt đồ thị các hàm số y = {\log _a}x;y = {\log _b}x;y = {\log _c}x lần lượt tại các điểm có hoành độ a,b,c

    Khẳng định nào dưới đây đúng

    Từ đồ thị ta có: a > c > b

  • Câu 45: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) = (x -
1)^{2}(x - 1)^{3}(2 - x). Hàm số y
= f(x) đồng biến trên khoảng nào sau đây?

    Ta có bảng xét dấu:

    Từ bảng xét dấu trên ta có hàm số y =
f(x) đồng biến trên (1;2).

  • Câu 46: Vận dụng cao

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

    Tình tổng các giá trị nguyên của tham số m

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = f\left( {{{\left( {x - 1} ight)}^2} + m} ight) có 3 điểm cực trị. Tổng các phần tử của S là:

    Xét hàm số y = f\left( {{{\left( {x - 1} ight)}^2} + m} ight) có đạo hàm

    \begin{matrix}  y' = 2\left( {x - 1} ight)f'\left( {{{\left( {x - 1} ight)}^2} + m} ight) \hfill \\  y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {{{\left( {x - 1} ight)}^2} + m =  - 1} \\   {{{\left( {x - 1} ight)}^2} + m = 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {{{\left( {x - 1} ight)}^2} =  - 1 - m} \\   {{{\left( {x - 1} ight)}^2} = 3 - m} \end{array}} ight. \hfill \\ \end{matrix}

    Để hàm số có 3 điểm cực trị thì

    \begin{matrix}   - 1 - m \leqslant 0 < 3 - m \hfill \\   \Leftrightarrow  - 1 \leqslant m < 3 \hfill \\   \Rightarrow m \in \left\{ { - 1;0;1;2} ight\} \hfill \\ \end{matrix}

    Vậy tổng các phần tử của S là 2

  • Câu 47: Nhận biết

    Tìm tập xác định D của hàm số y = {\left( {{x^2} + x - 2} ight)^{ - 3}}

    Điều kiện xác định {x^2} + x - 2 e 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x e  - 2} \\   {x e 1} \end{array}} ight.

    Vậy tập xác định của hàm số là  D = \mathbb{R}\backslash \left\{ { - 2;1} ight\}

  • Câu 48: Thông hiểu

    Tính đạo hàm của hàm số y = \left( {{x^2} + 2x - 2} ight){.5^x}

     Ta có:

    \begin{matrix}  y' = \left( {{x^2} + 2x - 2} ight)'{.5^x} + \left( {{5^x}} ight)'.\left( {{x^2} + 2x - 2} ight) \hfill \\   \Rightarrow y' = \left( {2x + 2} ight){.5^x} + \left( {{x^2} + 2x - 2} ight){.5^x}.\ln 5 \hfill \\ \end{matrix}

  • Câu 49: Thông hiểu

    Với các số a, b > 0 thỏa mãn {a^2} + {b^2} = 6ab, biểu thức {\log _2}\left( {a + b} ight) bằng:

    Ta có: 

    \begin{matrix}  {a^2} + {b^2} = 6ab \hfill \\   \Rightarrow {\left( {a + b} ight)^2} = 8ab \hfill \\   \Rightarrow {\log _2}{\left( {a + b} ight)^2} = {\log _2}\left( {8ab} ight) \hfill \\   \Rightarrow 2{\log _2}\left( {a + b} ight) = {\log _2}8 + {\log _2}a + {\log _2}b \hfill \\   \Rightarrow {\log _2}\left( {a + b} ight) = \dfrac{1}{2}\left( {{{\log }_2}8 + {{\log }_2}a + {{\log }_2}b} ight) \hfill \\   \Rightarrow {\log _2}\left( {a + b} ight) = \dfrac{1}{2}\left( {3 + {{\log }_2}a + {{\log }_2}b} ight) \hfill \\ \end{matrix}

  • Câu 50: Thông hiểu

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

    Đáp án là:

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

     Vì G là trọng tâm của tam giác BCD nên S_{\triangle GBC}= \frac{1}{3}S_{\triangle DBC}.

    Suy ra {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo