Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Hàm số nào sau đây phù hợp với hình vẽ:

    Tìm hàm số tương ứng với đồ thị hàm số

     Ta có: y\left( 1 ight) = 0 và hàm số đồng biến trên \left( {0; + \infty } ight) nên chỉ có hàm số y = {\log _{\sqrt 6 }}x thỏa mãn

  • Câu 2: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} có tiệm cận đứng x = -
2, tiệm cận ngang y =
3

    Suy ra tâm đối xứng là ( -
2;3).

  • Câu 3: Nhận biết

    Tập xác định của hàm số y = \log {\left( {x - 2} ight)^2} là:

    Hàm số y = \log {\left( {x - 2} ight)^2} xác định nếu {\left( {x - 2} ight)^2} > 0 \Leftrightarrow x e 2

    Vậy tập xác định D = \mathbb{R}\backslash \left\{ 2 ight\}

  • Câu 4: Thông hiểu

    Cho hàm số y = {x^{\frac{{ - 3}}{4}}}. Khẳng định nào sau đây sai?

    Hàm số y = {x^{\frac{{ - 3}}{4}}} có các tính chất như sau:

    Đồ thị hàm số nhận trục tung làm tiệm cận đứng

    Đồ thị hàm số nhận trục hoành làm tiệm cận ngang

    Là hàm số nghịch biến trên \left( {0; + \infty } ight)

  • Câu 5: Thông hiểu

    Đặt {\log _5}2 = a. Khi đó {\log _{25}}800 biểu diễn là:

    Ta có:

    {\log _{25}}800 = \frac{{{{\log }_5}800}}{{{{\log }_5}25}} = \frac{{{{\log }_5}{2^5}{{.5}^2}}}{{{{\log }_5}{5^2}}} = \frac{{5{{\log }_5}2 + 2}}{2} = \frac{{5a + 2}}{2}

  • Câu 6: Vận dụng cao

    Cho hàm số y = \left| x^{4} - 4x^{3} +
4x^{2} + m ight| với m là tham số. Khi giá trị của m biến thiên thì số điểm cực trị của hàm số có thể là a hoặc b hoặc c. Tính giá trị biểu thức P = a.b.c?

    Đặt g(x) = x^{4} - 4x^{3} + 4x^{2} +
m

    \Rightarrow g'(x) = 4x^{3} - 12x^{2}
+ 8x \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên của g(x) như sau:

    TH1: m \geq 0

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra a = 3

    TH2: - 1 < m < 0

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra b = 7

    TH3: m \leq - 1

    Hàm số y = \left| x^{4} - 4x^{3} + 4x^{2}
+ m ight| có 3 điểm cực trị suy ra c = 5

    Vậy P = a.b.c = 105

  • Câu 7: Vận dụng

    Tìm tập xác định của hàm số y = {\left( {x - 2} ight)^{\sqrt 5 }} + {\left( {{x^2} - 9} ight)^{\frac{3}{5}}} + {x^2} - 5x - 2

    Hàm số xác định khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {x - 2 > 0} \\   {{x^2} - 9 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x > 2} \\   {\left[ {\begin{array}{*{20}{c}}  {x <  - 3} \\   {x > 3} \end{array}} ight.} \end{array} \Rightarrow x > 3} ight.

    Vậy tập xác định của hàm số là: D = \left( {3; + \infty } ight)

  • Câu 8: Nhận biết

    Điều kiện xác định của bất phương trình {\log _{0,5}}(5{\text{x}} + 15) \leqslant {\log _{0,5}}\left( {{x^2} + 6{\text{x}} + 8} ight) là:

    x>-2|| X>-2 || x lớn hơn -2

    Đáp án là:

    Điều kiện xác định của bất phương trình {\log _{0,5}}(5{\text{x}} + 15) \leqslant {\log _{0,5}}\left( {{x^2} + 6{\text{x}} + 8} ight) là:

    x>-2|| X>-2 || x lớn hơn -2

     Điều kiện: \left\{ \begin{gathered}  5x + 15 > 0 \hfill \\  {x^2} + 6{\text{x}} + 8 > 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - 3 \hfill \\  \left[ \begin{gathered}  x >  - 2 \hfill \\  x <  - 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x >  - 2

    Vậy để BPT xác định khi và chỉ khi x >  - 2.

  • Câu 9: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

  • Câu 10: Vận dụng

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    Đáp án là:

    Độ giảm huyết áp của một bệnh nhân được cho bởi công thức P(x) = \frac{1}{40}x^{2}(30 - x) trong đó x là liều lượng thuốc được tiêm cho bệnh nhân (x được tính bằng miligam, 0 < x < 30).

    a) Độ giảm huyết áp của một bệnh nhân là P(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}. Đúng||Sai

    b) Đạo hàm của P(x)P'(x) = \frac{3}{2}x +
\frac{3}{40}x^{2}. Sai||Đúng

    c) Phương trình P'(x) = 0 có nghiệm duy nhất. Sai||Đúng

    d) Liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20mg. Đúng||Sai

    a) Đúng. Độ giảm huyết áp của một bệnh nhân được viết lại làP(x) = \frac{3}{4}x^{2} -
\frac{1}{40}x^{3}.

    b) Sai. Đạo hàm của P(x)P'(x) = \frac{3}{2}x -
\frac{3}{40}x^{2}.

    c) Sai. Xét phương trình P'(x) = 0
\Leftrightarrow \frac{3}{2}x - \frac{3}{40}x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 20 \\
\end{matrix} ight.

    d) Đúng. Ta có bảng biến thiên:

    Vậy liều lượng thuốc cần tiêm cho bệnh nhân để huyết áp giảm nhiều nhất là 20 mg.

  • Câu 11: Vận dụng

    Anh T đã làm hợp đồng xin vay vốn ngân hàng để kinh doanh với số tiền 200 triệu đồng với lãi suất a% trên một năm. Điều kiện hợp đồng là số tiền lại tháng trước sẽ được tính làm vốn để sinh lãi cho tháng sau. Sau hai năm kinh doanh, anh T dã thanh toán hợp đồng ngân hàng với số tiền làm tròn là 245512000 đồng. Chọn khẳng định đúng?

    Lãi suất mỗi tháng là \frac{a}{{12}}\%. Theo công thức lãi kép ta có:

    \begin{matrix}  200.{\left( {1 + \dfrac{a}{{12}}\% } ight)^{24}} = 245,512 \hfill \\   \Rightarrow \dfrac{a}{{12}}\%  = \sqrt[{24}]{{\dfrac{{245,512}}{{200}}}} - 1 \hfill \\   \Rightarrow a \approx 10 \hfill \\ \end{matrix}

  • Câu 12: Vận dụng cao

    Tập hợp tất cả các giá trị của tham số m để hàm số y
= \frac{\sqrt{x^{2} - 8x} - 4}{\sqrt{x^{2} - 8x} + m} nghịch biến trên ( - 1;0) là:

    Đặt t = \sqrt{x^{2} - 8x}

    Điều kiện xác định x^{2} - 8x \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x \leq 0 \\
x \geq 8 \\
\end{matrix} ight.

    Xét hàm t = \sqrt{x^{2} - 8x};x \in ( -
1;0) ta có:

    t' = \frac{2x - 8}{2\sqrt{x^{2} -
8x}} = \frac{x - 4}{\sqrt{x^{2} - 8x}} < 0;\forall x \in ( -
1;0)

    Ta có bảng biến thiên

    Từ bảng biến thiên ta thấy hàm số t =
\sqrt{x^{2} - 8x} nghịch biến trên khoảng ( - 1;0)t
\in (0;3)

    Khi đó yêu cầu bài toán \Leftrightarrow y
= \frac{t - 4}{t + m} đồng biến trên (0;3)

    Điều kiện xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m + 4}{(t +
m)^{2}};\forall x \in D

    Để hàm số đồng biến trên (0;3) thì

    \left\{ \begin{matrix}
y' > 0 \\
- m otin (0;3) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m + 4 > 0 \\
\left\lbrack \begin{matrix}
- m \leq 0 \\
- m \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > - 4 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 4 < m \leq - 3 \\
m \geq 0 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là m \in ( - 4; -
3brack \cup \lbrack 0; + \infty)

  • Câu 13: Nhận biết

    Phương trình \log _2^2(x + 1) - 6{\log _2}\sqrt {x + 1}  + 2 = 0 có số nghiệm là:

    2 || hai || 2 nghiệm || Hai nghiệm

    Đáp án là:

    Phương trình \log _2^2(x + 1) - 6{\log _2}\sqrt {x + 1}  + 2 = 0 có số nghiệm là:

    2 || hai || 2 nghiệm || Hai nghiệm

     PT\Leftrightarrow \left\{ \begin{gathered}  x + 1 > 0 \hfill \\  {\log ^2}_2(x + 1) - 3{\log _2}(x + 1) + 2 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  \left[ \begin{gathered}  {\log _2}(x + 1) = 1 \hfill \\  {\log _2}(x + 1) = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  \left[ \begin{gathered}  x = 1 \hfill \\  x = 3 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 1 \hfill \\  x = 3 \hfill \\ \end{gathered}  ight.

    Vậy PT có 2 nghiệm.

  • Câu 14: Vận dụng cao

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

    Đáp án: 40538432

    Đáp án là:

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

    Đáp án: 40538432

    Hình vẽ minh họa:

    Mô hình hoá chân tháp bằng cụt chóp tứ giác đều ABCD.A′B′C′D′ với O, O′ là tâm của hai đáy.

    Vậy AB = 5,A'B' = 2,CC' =
3.

    ABCD là hình vuông

    \Rightarrow AC = \sqrt{AB^{2} + BC^{2}}
= 5\sqrt{2} \Rightarrow CO = \frac{1}{2}AC =
\frac{5\sqrt{2}}{2}

    A^{'}B^{'}C^{'}D^{'} là hình vuông

    \Rightarrow A^{'}C^{'} =
\sqrt{A^{'}{B^{'}}^{2} + B^{'}{C^{'}}^{2}} = 2\sqrt{2}
\Rightarrow C^{'}O^{'} = \frac{1}{2}A^{'}C^{'} =
\sqrt{2}

    Kẻ C^{'}H\bot OC\ \ (H \in
OC)

    OHC^{'}O^{'} là hình chữ nhật

    \Rightarrow OH = O^{'}C^{'} =
\sqrt{2},OO^{'} = C^{'}H \Rightarrow CH = OC - OH =
\frac{3\sqrt{2}}{2}

    \Delta CC^{'}H vuông tại H

    \Rightarrow C^{'}H = \sqrt{CC^{'2}- CH^{2}} = \frac{3\sqrt{2}}{2} \Rightarrow OO^{'} = C^{'}H =\frac{3\sqrt{2}}{2}

    Diện tích đáy lớn là:

    S = AB^{2} = 5^{2}
= 25\left( m^{2} ight)

    Diện tích đáy bé là:

    S^{'} =
A^{'}B^{'2} = 2^{2} = 4\left( m^{2} ight)

    Thể tích hình chóp cụt là:

    V = \frac{1}{3}h\left( S +
\sqrt{SS^{'}} + S^{'} ight) =
\frac{1}{3}.\frac{3\sqrt{2}}{2}(25 + \sqrt{25.4} + 4) =
\frac{39\sqrt{2}}{2}\left( m^{3} ight)

    Số tiền để mua bê tông tươi làm chân tháp là: \frac{39\sqrt{2}}{2}.1470000 \approx
40538432 (đồng).

  • Câu 15: Thông hiểu

    Viết biểu thức \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có: 

    \begin{matrix}  A = \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} = {\left( {a\sqrt {{a^{\frac{3}{2}}}} } ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} \hfill \\   = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{4}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{7}{8}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{{23}}{{24}}}} \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Cho hàm số y = f(x) = \frac{2x^{2} + 26x
+ 18}{x + 13} có điểm cực tiểu và điểm cực đại lần lượt là x_{1};x_{2}. Tính P = - 2x_{1} + x_{2}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = \frac{2x^{2} + 26x
+ 18}{x + 13} có điểm cực tiểu và điểm cực đại lần lượt là x_{1};x_{2}. Tính P = - 2x_{1} + x_{2}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 6y - 4z - 2 =
0, mặt phẳng (\alpha):x + 4y + z -
11 = 0. Gọi (P) là mặt phẳng vuông góc với mặt phẳng (\alpha), (P) song song với giá của vectơ \overrightarrow{v} = (1;6;2)(P) tiếp xúc với (S). Lập phương trình mặt phẳng (P).

    Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R\  = \ 4.

    Từ giả thiết suy ra \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{v} ightbrack là một vectơ pháp tuyến của (P).

    Ta có \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{v} ightbrack = (2; -
1;2), suy ra (P) có vectơ pháp tuyến \overrightarrow{n} = (2; -
1;2)

    Vậy (P) có phương trình dạng 2x - y + 2z + m = 0

    Do (P) tiếp xúc với mặt cầu (S) nên:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2.1 + 3 + 2.2 + m|}{\sqrt{2^{2} + 1^{2} + 2^{2}}}
= 4

    \Leftrightarrow |9 + m| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 3 \\
m = - 21 \\
\end{matrix} ight.

    Vậy có hai mặt phẳng thỏa mãn yêu cầu bài toán là \left\lbrack \begin{matrix}
2x - y + 2z + 3 = 0 \\
2x - y + 2z - 21 = 0 \\
\end{matrix} ight..

  • Câu 18: Thông hiểu

    Gọi m,n lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = |x|
+ 2 trên \lbrack - 2; -
1brack. Tính giá trị biểu thức C
= m + n?

    Vì trên đoạn \lbrack - 2; -
1brack thì 0 \leq |x| \leq 2
\Leftrightarrow 2 \leq |x| + 2 \leq 4 \Rightarrow \left\{ \begin{matrix}
m = 4 \\
n = 2 \\
\end{matrix} ight.\  \Rightarrow C = 6

  • Câu 19: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 20: Vận dụng cao

    Cho hàm số y = f\left( x ight) có bảng biến như sau:

    Tìm tất cả các giá trị của tham số m để bất phương trình có một nghiệm

    Tìm tất cả các giá trị của tham số m để bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m có một nghiệm?

    Đặt t = \sqrt {x + 1}  + 1 \Rightarrow t \geqslant 1

    Khi đó bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m trở thành f\left( t ight) \leqslant m{\text{ }}\left( * ight)

    Bất phương trình f\left( {\sqrt {x + 1}  + 1} ight) \leqslant m có nghiệm khi bất phương trình f\left( t ight) \leqslant m có nghiệm t \geqslant 1

    \Leftrightarrow m \geqslant \mathop {\min \left( t ight)}\limits_{t \geqslant 1}  \Leftrightarrow m \geqslant  - 4

  • Câu 21: Vận dụng

    Cho {4^x} + {4^{ - x}} = 34. Tính giá trị của biểu thức T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}}

    Ta có:

    \begin{matrix}  {4^x} + {4^{ - x}} = 34 \hfill \\   \Rightarrow {2^{2x}} + 2 + {2^{ - 2x}} = 36 \hfill \\   \Rightarrow {\left( {{2^x} + {2^{ - x}}} ight)^2} = 36 \hfill \\   \Rightarrow {2^x} + {2^{ - x}} = 6;\left( {{2^x} + {2^{ - x}} > 0} ight) \hfill \\ \end{matrix}

    Khi đó ta được:

    T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}} = \frac{{6 - 3}}{{1 - 2\left( {{2^x} + {2^{ - x}}} ight)}} = \frac{3}{{1 - 2.6}} = \frac{{ - 3}}{{11}}

  • Câu 22: Thông hiểu

    Dựa vào thông tin dưới đây và trả lời các câu hỏi

    Số lượng của một loại vi khuẩn X trong một phòng thí nghiệm được biểu diễn theo công thức S(t) =
A.e^{rt} , trong đó A là số lượng vi khuẩn tại thời điểm chọn mốc thời gian, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng (tính theo đơn vị là giờ). Lúc 6 giờ sáng, số lượng vi khuẩn X là 150 con. Sau 3 giờ, số lượng vi khuẩn X là 450 con.

    Thời điểm số lượng vi khuẩn X gấp 9 lần số lượng vi khuẩn ban đầu là:

    Gọi t_{1} là thời điểm số lượng vi khuẩn gấp 9 lần ban đầu.

    Khi đó: S\left( t_{1} ight) =
1350 con.

    Ta có phương trình:

    150.e^{\frac{ln3}{3}.t_{1}} = 1350
\Leftrightarrow e^{\frac{ln3}{3}.t_{1}} = 9 \Leftrightarrow
\frac{ln3}{3}t_{1} = ln9 \Leftrightarrow t_{1} = 6.

  • Câu 23: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 24: Vận dụng

    Tìm tất cả các giá trị của tham số m để hàm số nghịch biến trên khoảng (-1; +∞)

    Ta có: y' = 2mx - \left( {m + 6} ight). Theo yêu cầu bài toán ta có:

    y' \leqslant 0;\forall x \in \left( { - 1; + \infty } ight)

    => 2mx - \left( {m + 6} ight) \leqslant 0 \Leftrightarrow m \leqslant \frac{6}{{2x - 1}}

    Xét hàm số g\left( x ight) = \frac{6}{{2x - 1}},x \in \left( { - 1; + \infty } ight)

    Ta có bảng biến thiên như sau:

    Tìm m để hàm số nghịch biến trên khoảng

    Vậy - 2 \leqslant m \leqslant 0

  • Câu 25: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 26: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a \sqrt 2. Tính thể tích của khối chóp?

     thể tích chóp

    Diện tích hình vuông ABCD{S_{ABCD}} = {a^2}.

    Chiều cao khối chóp là SA = a \sqrt 2

    Vậy áp dụng công thức, ta có thể tích khối chóp là:

    {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 2 }}{3}

  • Câu 27: Nhận biết

    Với a và b là hai số thực dương tùy ý thì \log \left( {a{b^2}} ight) bằng:

    Ta có: \log \left( {a{b^2}} ight) = \log a + \log {b^2} = \log a + 2\log b

  • Câu 28: Vận dụng

    Cho hình chóp đều S.ABC có tất cả các cạnh bằng a. Mặt phẳng (P) song song với mặt đáy (ABC) và cắt các cạnh bên SA, SB, SC lần lượt tại M, N, P. Tính diện tích tam giác MNP biết mặt phẳng (P) chia khối chóp đã cho thành hai phần có thể tích bằng nhau. 

     

    Mặt phẳng \left( P ight)\parallel \left( {ABC} ight) và cắt các cạnh SA,\,\,SB,\,\,SC lần lượt tại M,\,\,N,\,\,P.

    Theo Talet, ta có \frac{{SM}}{{SA}} = \frac{{SN}}{{SB}} = \frac{{SP}}{{SC}} = x.

    Do đó \frac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \frac{{SM}}{{SA}}.\frac{{SN}}{{SB}}.\frac{{SP}}{{SC}} = {x^3}.

    Theo giả thiết \frac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \frac{1}{2} \to {x^3} = \frac{1}{2} \to x = \frac{1}{{\sqrt[3]{2}}}.

    Suy ra tam giác MNP là tam giác đều cạnh \frac{a}{{\sqrt[3]{2}}}

    Vậy diện tích {S_{\Delta MNP}} = {\left( {\frac{a}{{\sqrt[3]{2}}}} ight)^2}.\frac{{\sqrt 3 }}{4} = \frac{{{a^2}\sqrt 3 }}{{4\sqrt[3]{4}}}.

  • Câu 29: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như đường cong trong hình vẽ:

    Đồ thị hàm số bậc 4 có hệ số a >
0 cắt trục tung tại điểm có tung độ lớn hơn 0 nên hàm số cần tìm là y = x^{4} - 2x^{2} - 1.

  • Câu 30: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 31: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 32: Vận dụng

    Cho hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên \mathbb{R}. Khi đó hàm số y = f\left( {{x^2} - 2x} ight) có bao nhiêu điểm cực trị?

    Ta có hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên \mathbb{R} nên f’(x) = 0 có ba nghiệm x = -2; x = -1, x = 0

    Đặt  g\left( x ight) = f\left( {{x^2} - 2x} ight) \Rightarrow g'\left( x ight) = \left( {2x - 2} ight)f\left( {{x^2} - 2x} ight)

    Vì f’(x) liên tục trên \mathbb{R} nên g’(x) cũng liên tục trên \mathbb{R}. Do đó những điểm g’(x) có thể đổi dấu thuộc tập các điểm thỏa mãn.

    \left[ {\begin{array}{*{20}{c}}  {2x - 2 = 0} \\   {{x^2} - 2x =  - 2} \\   {{x^2} - 2x =  - 1} \\   {{x^2} - 2x = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \\   {x = 2} \end{array}} ight.

    Ba nghiệm trên đều là nghiệm đơn hoặc bội lẻ nên hàm số g(x) có ba điểm cực trị.

     

  • Câu 33: Nhận biết

    Cho các hình sau:Tìm hình không phải đa diện

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0,S_1,...\;,S_n sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt S_i,\;S_{i+1} nào (0\leq i\leq n-1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 34: Thông hiểu

    Biết bất phương trình \log_{2}\left( 3^{x}- 3 ight)\log_{8}\left( 3^{x}2^{- 2} - \frac{3}{4} ight) \leq1 có tập nghiệm là đoạn [a; b]. Giá trị biểu thức a + b bằng:

    Điều kiện \left\{ \begin{matrix}
3^{x} - 3 > 0 \\
3^{x - 2} - \frac{3}{4} > 0 \\
\end{matrix} \Leftrightarrow x > 1 ight..

    log_{2}\left( 3^{x} - 3ight)log_{8}\left( 3^{x}2^{- 2} - \frac{3}{4} ight) \leq1

    \Leftrightarrow log_{2}\left( 3^{x} - 3
ight).\frac{1}{3}\left\lbrack log_{2}\left( 3^{x} - 3 ight) - 2
ightbrack - 1 \leq 0

    Đặt t = log_{2}\left( 3^{x} - 3
ight)

    Ta có:

    \frac{1}{3}t(t - 2) - 1 \leq 0
\Leftrightarrow \frac{1}{3}t^{2} - \frac{2}{3}t - 1 \leq 0

    \Leftrightarrow - 1 \leq t \leq 3
\Leftrightarrow - 1 \leq log_{2}\left( 3^{x} - 3 ight) \leq
3

    \Leftrightarrow \frac{7}{2} \leq 3^{x}
\leq 11 \Leftrightarrow log_{3}\frac{7}{2} \leq x \leq
log_{3}11

    Suy ra tập nghiệm là S = \left\lbrack
log_{3}\frac{7}{2};log_{3}11 ightbrack \Rightarrow a + b =
log_{3}\frac{77}{2}.

  • Câu 35: Nhận biết

    Trong không gian Oxyz, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính R = 2?

    Phương trình mặt cầu (S):x^{2} + y^{2} +
z^{2} - 2ax - 2by - 2cz + d = 0 có bán kính R = \sqrt{a^{2} + b^{2} + c^{2} - d}

    Xét phương trình mặt cầu (S):x^{2} +
y^{2} + z^{2} - 4x + 2y + 2z + 2 = 0 ta có:

    \left\{ \begin{matrix}
a = 2;b = - 1 \\
c = - 1;d = 2 \\
\end{matrix} ight.\  \Rightarrow R = \sqrt{a^{2} + b^{2} + c^{2} - d}
= \sqrt{4} = 2

  • Câu 36: Thông hiểu

    Tổng các nghiệm của phương trình \log_{4}x^{2} - \log_{2}3 = 1 là:

    Điều kiện x eq 0. Có

    \log_{4}x^{2} - \log_{2}3 = 1

    \Leftrightarrow \frac{1}{2}\log_{2}x^{2}= 1 + \log_{2}3

    \Leftrightarrow \frac{1}{2}\log_{2}x^{2}= \log_{2}2 + \log_{2}3

    \Leftrightarrow \log_{2}x^{2} =2.\log_{2}6

    \Leftrightarrow \log_{2}x^{2} =\log_{2}6^{2}

    \Leftrightarrow x^{2} = 6^{2}
\Leftrightarrow x = \pm 6

    Dó đó, tổng các nghiệm sẽ bằng 0.

  • Câu 37: Vận dụng

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

    Đáp án là:

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

     Khối mười hai mặt đều có tất cả 30 cạnh:

     Suy ra ta có tổng độ dài tất cả các cạnh bằng \ell  = 30.2 = 60.

  • Câu 38: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 39: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 40: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để bất phương trình {\log _2}\left( {7{x^2} + 7} ight) \geqslant {\log _2}\left( {m{x^2} + 4x + m} ight),{\text{ }}\forall x \in \mathbb{R} \, \, (1)

     Bất phương trình tương đương 7{x^2} + 7 \geqslant m{x^2} + 4x + m > 0,{\text{ }}\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{gathered}  \left( {7 - m} ight){x^2} - 4x + 7 - m \geqslant 0{\text{   }}(2) \hfill \\  m{x^2} + 4x + m > 0{\text{                 }}(3) \hfill \\ \end{gathered}  ight.,{\text{ }}\forall x \in \mathbb{R}.

    m=7: (2) không thỏa \forall x \in \mathbb{R}

    m=0: (3) không thỏa \forall x \in \mathbb{R}

    (1) thỏa mãn \forall x \in \mathbb{R}  \Leftrightarrow \left\{ \begin{gathered}  7 - m > 0 \hfill \\  {{\Delta '}_2} = 4 - {\left( {7 - m} ight)^2} \leqslant 0 \hfill \\  m > 0 \hfill \\  {{\Delta '}_3} = 4 - {m^2} < 0 \hfill \\ \end{gathered}  ight.{\text{   }}

    \Leftrightarrow {\text{  }}\left\{ \begin{gathered}  m < 7 \hfill \\  m \leqslant 5 \hfill \\  m > 0 \hfill \\  m > 2 \hfill \\ \end{gathered}  ight.{\text{  }} \Leftrightarrow {\text{  }}2 < m \leqslant 5.

    Vậy m \in \left( {2;5} ight].

  • Câu 41: Nhận biết

    Cho hàm số y = {x^{ - \frac{1}{2}}}. Cho các khẳng định sau:

    i) Hàm số xác định với mọi x

    ii) Đồ thị hàm số luôn đi qua điểm (1; 1)

    iii) Hàm số nghịch biến trên \mathbb{R}

    iv) Đồ thị hàm số có hai đường tiệm cận

    Trong các khẳng định trên có bao nhiêu khẳng định đúng?

    Ta có khẳng định ii) và iv) là đúng

    i) Sai vì hàm số đã cho xác định khi x > 0

    iii) Sai vì hàm số nghịch biến trên \left( {0; + \infty } ight)

  • Câu 42: Vận dụng

    Phương trình {2^{x - 3}} = {3^{{x^2} - 5x + 6}} có hai nghiệm x_1, x_2 trong đó x_1 < x_2, hãy chọn phát biểu đúng?

     Logarit hóa hai vế của phương trình (theo cơ số 2) ta được:

    {2^{x - 3}} = {3^{{x^2} - 5x + 6}} \Leftrightarrow {\log _2}{2^{x - 3}} = {\log _2}{3^{{x^2} - 5x + 6}}

    \Leftrightarrow \left( {x - 3} ight){\log _2}2 = \left( {{x^2} - 5x + 6} ight){\log _2}3

    \Leftrightarrow \left( {x - 3} ight) - \left( {x - 2} ight)\left( {x - 3} ight){\log _2}3 = 0

    \Leftrightarrow \left( {x - 3} ight).\left[ {1 - \left( {x - 2} ight){{\log }_2}3} ight] = 0 \Leftrightarrow \left[ \begin{gathered}  x - 3 = 0 \hfill \\  1 - \left( {x - 2} ight){\log _2}3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  \left( {x - 2} ight){\log _2}3 = 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x - 2 = \frac{1}{{{{\log }_2}3}} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = {\log _3}2 + 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = {\log _3}2 + {\log _3}9 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = {\log _3}18 \hfill \\ \end{gathered}  ight.

  • Câu 43: Thông hiểu

    Trong các hàm số sau, hàm số nào vừa có khoảng đồng biến vừa có khoảng nghịch biến trên tập xác định của nó. (I) y = \frac{{2x + 1}}{{x + 1}}; (II) y =  - {x^4} + {x^2} - 2; (III)

     (I) Tập xác định D = \mathbb{R}\backslash \left\{ { - 1} ight\}

    y' = \frac{1}{{{{\left( {x + 1} ight)}^2}}} > 0,\forall x \in \mathbb{R}\backslash \left\{ { - 1} ight\}

    => (I) không thỏa mãn 

    (II) Tập xác định D = \mathbb{R}

    y' =  - 4{x^3} + 2x \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \dfrac{{\sqrt 2 }}{2}} \\   {x =  - \dfrac{{\sqrt 2 }}{2}} \end{array}} ight.

    Bảng xét dấu

    Chọn các khẳng định đúng

    => (II) thỏa mãn

    (III) Tập xác định D = \mathbb{R}

    y' = 3{x^2} + 3 > 0,\forall x \in \mathbb{R}

    => Hàm số nghịch biến trên tập số thực

    => (III) không thỏa mãn

  • Câu 44: Vận dụng

    Giá trị của tham số m để đồ thị hàm số y = \frac{{\left( {2m - 1} ight)x + 1}}{{x - m}} có đường tiệm cận ngang y = 3 là:

    Điều kiện để đồ thị hàm số có tiệm cận là:

    - m\left( {2m - 1} ight) - 1 e 0 \Rightarrow 2{m^2} - m + 1 e 0 luôn đúng với \forall x \in \mathbb{R}

    Phương trình đường tiệm cận ngang là y = 2m - 1 nên ta có 2x - 1 = 3 \Rightarrow m = 2

  • Câu 45: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 46: Vận dụng

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Đáp án là:

    Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)

    A basketball on the groundDescription automatically generated

    Trả lời: 23,9 cm

    Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt (Oxz),(Oyz), và nền là (Oxy)

    Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với 3 mặt phẳng toạ độ và chứa điểm M(17\ ;\ 18\ ;\ 21).

    Ta có thể gọi phương trình mặt cầu là (S):(x - a)^{2} + (y - b)^{2} + (z - c)^{2} =
R^{2}, với a,b,c,R >
0

    Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên a = b = c = R

    \Rightarrow (S):(x - a)^{2} + (y -
a)^{2} + (z - a)^{2} = a^{2}

    Do M(17\ ;\ 18\ ;\ 21) \in (S) nên (17 - a)^{2} + (18 - a)^{2} + (21 -
a)^{2} = a^{2}.

    \Rightarrow 2a^{2} - 112a + 1054 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
a = 28 - \sqrt{257} \\
a = 28 + \sqrt{257} \\
\end{matrix} ight.

    Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên a = 28 - \sqrt{257} thỏa.

    Vậy đường kính quả bóng bằng 2a = 56 -
2\sqrt{257} \approx 23,9\ (cm).

  • Câu 47: Vận dụng

    Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y= \sqrt {1 + x}  + \sqrt {1 - x}. Giá trị của M – 2m2 bằng:

    Điều kiện xác định \left\{ {\begin{array}{*{20}{c}}  {1 + x \geqslant 0} \\   {1 - x \geqslant 0} \end{array}} ight. \Leftrightarrow  - 1 \leqslant x \leqslant 1

    Xét hàm số y = \sqrt {1 + x}  + \sqrt {1 - x} trên [-1; 1] có:

    \begin{matrix}  y' = \dfrac{{ - 1}}{{2\sqrt {1 + x} }} + \dfrac{1}{{2\sqrt {1 - x} }} \hfill \\  y' = 0 \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 1} \\   {\sqrt {1 + x}  = \sqrt {1 - x} } \end{array}} ight. \Leftrightarrow x = 0 \hfill \\ \end{matrix}

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = f\left( 1 ight) = \sqrt 2 } \\   {f\left( 0 ight) = 2} \end{array}} ight.

    Vậy \left\{ {\begin{array}{*{20}{c}}  {m = \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = \sqrt 2 } \\   {M = \mathop {\max }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = 2} \end{array}} ight. \Rightarrow M - 2{m^2} = 2 - 2.2 =  - 2

  • Câu 48: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = (3x - 1)(x + 3) trên \mathbb{R}. Tìm số điểm cực trị của hàm số y = f(x)?

    Ta có: f'(x) = 0 \Leftrightarrow\left\lbrack \begin{matrix}x = - 3 \\x = \dfrac{1}{3} \\\end{matrix} ight.

    f'(x) có hai nghiệm đơn nên hàm số y = f(x) có hai điểm cực trị.

  • Câu 49: Nhận biết

    Cho hàm số f\left( x ight) = \frac{{{x^3}}}{3} - \frac{{{x^2}}}{2} - 6x + \frac{3}{4}

    Ta có: f'\left( x ight) = {x^2} - x - 6 có hai nghiệm phân biệt là -2 và 3

    => f’(x) < 0 => x \in \left( { - 2;3} ight)

    Vậy hàm số nghịch biến trên khoảng (-2; 3)

  • Câu 50: Vận dụng

    Tập nghiệm của bất phương trình {2^x} + {4.5^x} - 4 < {10^x} là:

     Ta có: {2^x} + {4.5^x} - 4 < {10^x} \Leftrightarrow {2^x} - {10^x} + {4.5^x} - 4 < 0

    \Leftrightarrow {2^x}\left( {1 - {5^x}} ight) - 4\left( {1 - {5^x}} ight) < 0 \Leftrightarrow \left( {1 - {5^x}} ight)\left( {{2^x} - 4} ight) < 0

    {\text{    }} \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  1 - {5^x} < 0 \hfill \\  {2^x} - 4 > 0 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  1 - {5^x} > 0 \hfill \\  {2^x} - 4 < 0 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  {5^x} > 1 \hfill \\  {2^x} > 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  {5^x} < 1 \hfill \\  {2^x} < 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x > 2 \hfill \\  x < 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow x \in \left( { - \infty ;0} ight) \cup \left( {2; + \infty } ight)

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo