Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tính đạo hàm của hàm số y = {\log _9}\left( {{x^2} + 1} ight)

    Ta có:

    y' = \left[ {{{\log }_9}\left( {{x^2} + 1} ight)} ight]' = \frac{{2x}}{{\left( {{x^2} + 1} ight)\ln {3^2}}} = \frac{{2x}}{{\left( {{x^2} + 1} ight).2.\ln 3}} = \frac{x}{{\left( {{x^2} + 1} ight)\ln 3}}

  • Câu 2: Vận dụng

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 3: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 4: Vận dụng cao

    Cho hàm số f\left( x ight) có đạo hàm y = f'\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    Bất phương trình f\left( x ight) >  - {x^3} + {x^2} - x + m (m là tham số thực) nghiệm đúng với \forall x \in \left( { - 1;1} ight) khi và chỉ khi

    Ta có: f\left( x ight) >  - {x^3} + {x^2} - x + m \Rightarrow m < f\left( x ight) + {x^3} - {x^2} + x\left( * ight)

    Xét hàm số g\left( x ight) = f\left( x ight) + {x^3} - {x^2} + x với \forall x \in \left( { - 1;1} ight)

    Ta có: g'\left( x ight) = f'\left( x ight) + 3{x^2} - 2x + 1 > 0;\forall x \in \left( { - 1;1} ight)

    => Hàm số g(x) luôn đồng biến trên \left( { - 1;1} ight)

    Ta có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    => (*) nghiệm đúng \forall x \in \left( { - 1;1} ight) khi m \leqslant g\left( { - 1} ight) = f\left( { - 1} ight) - 3

  • Câu 5: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

    Đồ thị của hàm số y = - x^{3} + 3x +
1 thỏa mãn bài toán.

  • Câu 6: Vận dụng

    Tính thể tích V của khối lăng trụ ABC.A'B'C' có đáy ABC là tam giác vuông tại A, AB = {\text{ }}AC = a. Biết rằng A'A = A'B = A'C = a.

     

    Gọi I là trung điểm BC. Từ A'A = A'B = A'C = a, suy ra hình chiếu vuông góc của A' trên mặt đáy (ABC) là tâm đường tròn ngoại tiếp tam giác ABC

    Suy ra A'I \bot \left( {ABC} ight).

    Tam giác ABC, có BC = \sqrt {A{B^2} + A{C^2}}  = a\sqrt 2

    Tam giác vuông A'IB, có A'I = \sqrt {A'{B^2} - B{I^2}}  = \frac{{a\sqrt 2 }}{2}.

    Diện tích tam giác ABC là  {S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{{{a^2}}}{2}.

    Vậy {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.A'I = \frac{{{a^3}\sqrt 2 }}{4}.

  • Câu 7: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 8: Thông hiểu

    Phương trình \log _2^2x - 4{\log _2}x + 3 = 0 có tập nghiệm là?

    Điều kiện: x > 0

    \log _2^2x - 4{\log _2}x + 3 = 0 \Leftrightarrow \left[ \begin{gathered}  {\log _2}x = 1 \hfill \\  {\log _2}x = 3 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 2 \hfill \\  x = 8 \hfill \\ \end{gathered}  ight.

    Vậy PT có tập nghiệm là S={8;2}.

  • Câu 9: Nhận biết

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, SA=2a. Tính theo a thể tích của khối chóp S.ABCD.

     

    Gọi I là trung điểm của AB. Tam giác SAB cân tại S và có I là trung điểm AB nên SI \bot AB. Do (SAB) \bot (ABCD) theo giao tuyến AB nên SI \bot (ABCD).

    Tam giác vuông SIA, có:

    SI = \sqrt {S{A^2} - I{A^2}}  = \sqrt {S{A^2} - {{\left( {\frac{{AB}}{2}} ight)}^2}}  = \frac{{a\sqrt {15} }}{2}

  • Câu 10: Vận dụng

    Cho hàm số f(x) có đạo hàm trên \mathbb{R} và thỏa mãn f(x) > f'(x) + 1;\forall x\mathbb{\in
R}. Bất phương trình f(x) <
me^{x} + 1 nghiệm đúng với mọi x
\in (0; + \infty) khi và chỉ khi

    Ta có:

    f(x) < me^{x} + 1 \Leftrightarrow
f(x) - 1 < me^{x}

    \Leftrightarrow \frac{f(x) - 1}{e^{x}}
< m.

    Xét hàm số g(x) = \frac{f(x) -
1}{e^{x}}

    g'(x) = \frac{f'(x) -
\left\lbrack f(x) - 1 ightbrack}{e^{x}} < 0;\forall x \in (0; +
\infty)

    Bảng biến thiên

    Vậy bất phương trình f(x) < me^{x} +
1 nghiệm đúng với mọi x \in (0; +
\infty) khi và chỉ khi m \geq f(0)
- 1.

  • Câu 11: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 12: Vận dụng

    Cho hàm số y =
f(x) xác định trên y =
f(x) và có đạo hàm f'(x) = (2 -
x)(x + 3)g(x) + 2021 trong đó g(x)
< 0;\forall x\mathbb{\in R}. Hàm số y = f(1 - x) + 2021x + 2022 đồng biến trên khoảng nào?

    Ta có:

    y' = - f'(1 - x) +
2021

    y' = - \left\lbrack (1 + x)(4 -
x)g(1 - x) + 2021 ightbrack + 2021

    y' = (x + 1)(x - 4).g(1 - x)
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    g(x) < 0;\forall x\mathbb{\in
R} nên y' > 0;\forall x \in
( - 1;4)

    Suy ra hàm số đồng biến trên ( -
1;4).

  • Câu 13: Nhận biết

    Điều kiện để \left( S ight):{x^2} + {y^2} + {z^2} + Ax + By + Cz + D = 0 là một mặt cầu là:

    Theo đề bài, ta có:

    \left( S ight):{x^2} + {y^2} + {z^2} + Ax + By + Cz + D = 0 có dạng:

    \left( S ight):{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0

    \Rightarrow a =  - \frac{A}{2};\,\,b =  - \frac{B}{2};\,\,c =  - \frac{C}{2};\,\,d = D

    Như vậy, (S) là mặt cầu\Leftrightarrow {a^2} + {b^2} + {c^2} - d > 0 \Leftrightarrow {A^2} + {B^2} + {C^2} - 4D > 0

    \Rightarrow {x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0,\,\,{a^2} + {b^2} + {c^2} - d > 0

  • Câu 14: Vận dụng

    Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?

    Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.

    Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3Đ =2C.

  • Câu 15: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} và có bảng xét dấu đạo hàm f'(x) như sau:

    Hàm số y = f(x) có bao nhiêu điểm cực trị?

    Dựa vào bảng xét dấu đạo hàm ta thấy hàm số y = f(x) có 1 điểm cực trị.

  • Câu 16: Thông hiểu

    Cho các số thực dương a, b với a e 1;{\log _a}b > 0. Khẳng định nào sau đây đúng?

    Trường hợp 1: 0 < a < 1 \Rightarrow {\log _a}b > 0 = {\log _a}1 \Rightarrow 0 < b < 1

    Trường hợp 2: a > 1 \Rightarrow {\log _a}b > 0 = {\log _a}1 \Rightarrow b > 1

    Vậy \left[ {\begin{array}{*{20}{c}}  {0 < a,b < 1} \\   {1 < a;b} \end{array}} ight.

  • Câu 17: Nhận biết

    Phương trình \log _2^2(x + 1) - 6{\log _2}\sqrt {x + 1}  + 2 = 0 có số nghiệm là:

    2 || hai || 2 nghiệm || Hai nghiệm

    Đáp án là:

    Phương trình \log _2^2(x + 1) - 6{\log _2}\sqrt {x + 1}  + 2 = 0 có số nghiệm là:

    2 || hai || 2 nghiệm || Hai nghiệm

     PT\Leftrightarrow \left\{ \begin{gathered}  x + 1 > 0 \hfill \\  {\log ^2}_2(x + 1) - 3{\log _2}(x + 1) + 2 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  \left[ \begin{gathered}  {\log _2}(x + 1) = 1 \hfill \\  {\log _2}(x + 1) = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  \left[ \begin{gathered}  x = 1 \hfill \\  x = 3 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 1 \hfill \\  x = 3 \hfill \\ \end{gathered}  ight.

    Vậy PT có 2 nghiệm.

  • Câu 18: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 19: Nhận biết

    Cho hàm số y = {\left( {x - 1} ight)^{ - \frac{1}{4}}}. Khẳng định nào sau đây đúng?

     Đồ thị hàm số có đường tiệm cận đứng x = 1 

  • Câu 20: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = AA' = a, đường chéo AC'hợp với mặt đáy (ABCD) một góc \alpha thỏa mãn \cot \alpha  = \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Ta có AA' \bot \left( {ABCD} ight) nên \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA}.

    Tam giác vuông A'AC, ta có AC = AA'.\cot \alpha  = a\sqrt 5.

    Tam giác vuông ABC, ta có BC = \sqrt {A{C^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.BC = 2{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}.

  • Câu 21: Thông hiểu

    Trong không gian Oxyz, cho các điểm A(1;0;0),C(0;0;3),B(0;2;0). Tập hợp các điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là:

    Giả sử M(x;y;z)

    Ta có:\left\{ \begin{matrix}
MA^{2} = (x - 1)^{2} + y^{2} + z^{2} \\
MB^{2} = x^{2} + (y - 2)^{2} + z^{2} \\
MC^{2} = x^{2} + y^{2} + (z - 3)^{2} \\
\end{matrix} ight.

    Theo bài ra ta có:

    MA^{2} = MB^{2} + MC^{2}

    \Leftrightarrow (x - 1)^{2} + y^{2} +
z^{2} = x^{2} + (y - 2)^{2} + z^{2} + x^{2} + y^{2} + (z -
3)^{2}

    \Leftrightarrow - 2x + 1 = (y - 2)^{2} +
x^{2} + (z - 3)^{2}

    \Leftrightarrow (x + 1)^{2} + (y -
2)^{2} + (z - 3)^{2} = 2

    Vậy tập hợp điểm M thỏa mãn MA^{2} = MB^{2} + MC^{2} là mặt cầu có bán kính là R = \sqrt{2}.

  • Câu 22: Nhận biết

    Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm M( - 4;5)?

    Xét hàm số y = \frac{5x + 1}{x +
4}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ + }} \frac{{5x + 1}}{{x + 4}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ - }} \frac{{5x + 1}}{{x + 4}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x = -
4 là tiệm cận đứng của đồ thị hàm số.

    Tiệm cận đứng đi qua điểm M( -
4;5).

  • Câu 23: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 24: Vận dụng

    Gọi x_1, x_2 là 2 nghiệm của phương trình \frac{1}{{4 + {{\log }_2}x}} + \frac{2}{{2 - {{\log }_2}x}} = 1. Khi đó x_1.x_2 bằng:

     Điều kiện: \left\{ \begin{gathered}  x > 0 \hfill \\  x e 4 \hfill \\  x e \frac{1}{{16}} \hfill \\ \end{gathered}  ight..

    Đặt t = {\log _2}x ,điều kiện \left\{ \begin{gathered}  t e  - 4 \hfill \\  t e 2 \hfill \\ \end{gathered}  ight.. Khi đó phương trình trở thành:

    \frac{1}{{4 + t}} + \frac{2}{{2 - t}} = 1 \Leftrightarrow {t^2} + 3t + 2 = 0 \Leftrightarrow \left[ \begin{gathered}  t =  - 1 \hfill \\  t =  - 2 \hfill \\ \end{gathered}  ight. \Rightarrow \left[ \begin{gathered}  x = \frac{1}{2} \hfill \\  x = \frac{1}{4} \hfill \\ \end{gathered}  ight.

    Vậy {x_1}.{x_2} = \frac{1}{8}.

  • Câu 25: Nhận biết

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 26: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (S): (x − 3)^2 + (y + 1)^2 + z^ 2 = 9 và ba điểm A(1; 0; 0), B(2; 1; 3), C(0; 2; −3). Biết rằng quỹ tích các điểm M thỏa mãn MA^{2} + 2\overrightarrow{MB}.\overrightarrow{MC}= 8 là đường tròn cố định, tính bán kính r đường tròn này?

    Ta có:\left\{ \begin{matrix}\overrightarrow{MA} = (1 - x; - y; - z) \\\overrightarrow{MB} = (2 - x;1 - y;3 - z) \\\overrightarrow{MC} = ( - x;2 - y; - 3 - z) \\\end{matrix} ight. khi đó:

    MA^{2} +2\overrightarrow{MB}.\overrightarrow{MC} = 8

    \Leftrightarrow (x - 1)^{2} + y^{2} +z^{2} + 2\left\lbrack x(x - 2) + (y - 1)(y - 2) + (z - 3)(z + 3)ightbrack = 8

    \Leftrightarrow 3.\left( x^{2} + y^{2} +z^{2} ight) - 6x - 6y - 21 = 0

    \Leftrightarrow M \in (S'):x^{2} +y^{2} + z^{2} - 2x - 2y - 7 = 0

    M \in (S):(x - 3)^{2} + (y + 1)^{2} +z^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} -6x + 2y + 1 = 0

    Suy ra M ∈ (P): 4x − 4y − 8 = 0.

    Như vậy quỹ tích điểm M là đường tròn giao tuyến của (S) tâm I(3; −1; 0), bán kính R = 3 và (P)

    Ta có: d\left( I;(P) ight) = \sqrt{2}\Leftrightarrow r = \sqrt{R^{2} - d^{2}} = \sqrt{7}

  • Câu 27: Thông hiểu

    Biết \sqrt[5]{{\frac{b}{a}\sqrt[3]{{\frac{a}{b}}}}} = {\left( {\frac{a}{b}} ight)^m} với a và b là các số thực dương. Tìm m?

    Ta có:

    \begin{matrix}  {\left( {\dfrac{a}{b}} ight)^m} = {\left( {\sqrt[3]{{\dfrac{{{b^3}}}{{{a^3}}}.\dfrac{a}{b}}}} ight)^{\frac{1}{5}}} = {\left( {\dfrac{{{b^2}}}{{{a^2}}}} ight)^{\frac{1}{{15}}}} = {\left( {\dfrac{b}{a}} ight)^{\frac{2}{{15}}}} \hfill \\   \Rightarrow m = \dfrac{{ - 2}}{{15}} \hfill \\ \end{matrix}

  • Câu 28: Thông hiểu

    Một chất điểm chuyển động với vận tốc được cho bởi công thức v(t) = - t^{2} + 4t + 2 với t (giây) là khoảng thời gian tính từ khi chất điểm bắt đầu chuyển động. Hỏi tại thời điểm nào thì vận tốc của chất điểm là lớn nhất?

    Ta có: v(t) = - t^{2} + 4t + 2 với t > 0.

    v'(t) = - 2t + 4

    v'(t) = 0 \Leftrightarrow - 2t + 4 =
0 \Leftrightarrow t = 2 (thỏa mãn).

    Bảng biến thiên

    Dựa vào bảng biến thiên, tại thời điểm t
= 2 giây thì vận tốc của chất điểm là lớn nhất.

  • Câu 29: Vận dụng

    Tập nghiệm của bất phương trình {2^x} + {4.5^x} - 4 < {10^x} là:

     Ta có: {2^x} + {4.5^x} - 4 < {10^x} \Leftrightarrow {2^x} - {10^x} + {4.5^x} - 4 < 0

    \Leftrightarrow {2^x}\left( {1 - {5^x}} ight) - 4\left( {1 - {5^x}} ight) < 0 \Leftrightarrow \left( {1 - {5^x}} ight)\left( {{2^x} - 4} ight) < 0

    {\text{    }} \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  1 - {5^x} < 0 \hfill \\  {2^x} - 4 > 0 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  1 - {5^x} > 0 \hfill \\  {2^x} - 4 < 0 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  {5^x} > 1 \hfill \\  {2^x} > 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  {5^x} < 1 \hfill \\  {2^x} < 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x > 2 \hfill \\  x < 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow x \in \left( { - \infty ;0} ight) \cup \left( {2; + \infty } ight)

  • Câu 30: Thông hiểu

    Cho a,b > 0, viết {a^{\frac{2}{3}}}.\sqrt a về dạng {a^x}\sqrt[3]{{b\sqrt {b\sqrt b } }} về dạng {b^y}. Tình giá trị biểu thức T = 6a + 12y

    Ta có:

    \begin{matrix}  {a^{\frac{2}{3}}}.\sqrt a  = {a^{\frac{2}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{2}{3} + \frac{1}{2}}} = {a^{\frac{7}{6}}} \hfill \\   \Rightarrow {a^x} = {a^{\frac{7}{6}}} \hfill \\   \Rightarrow x = \dfrac{7}{6} \hfill \\  \sqrt[3]{{b\sqrt {b\sqrt b } }} = {\left( {b\sqrt {{b^{\frac{3}{2}}}} } ight)^{\frac{1}{3}}} = {\left( {b.{b^{\frac{3}{4}}}} ight)^{\frac{1}{3}}} = {\left( {{b^{\frac{7}{4}}}} ight)^{\frac{1}{3}}} = {b^{\frac{7}{{12}}}} \hfill \\   \Rightarrow {b^y} = {b^{\frac{7}{{12}}}} \Rightarrow y = \dfrac{7}{{12}} \hfill \\   \Rightarrow T = 14 \hfill \\ \end{matrix}

  • Câu 31: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= mx^{4} + (m - 3)x^{2} + 2021 có hai cực tiểu và một cực đại?

    Hàm số y = ax^{4} + bx^{2} + c;(a eq
0) có ba điểm cực trị khi và chỉ khi a.b < 0.

    Để hàm số y = f(x) có hai cực tiểu và một cực đại thì đồ thị hàm số y =
f(x) có dạng

    Ta có: \lim_{x ightarrow + \infty}f(x)
= + \infty. Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số a > 0

    Khi đó để thỏa mãn yêu cầu bài toán ta có:

    \left\{ \begin{matrix}
a > 0 \\
ab < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m(m - 3) < 0 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 3

    Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 32: Thông hiểu

    Tập nghiệm của bất phương trình \frac{{{{2.3}^x} - {2^{x + 2}}}}{{{3^x} - {2^x}}} \leqslant 1 là:

     Ta có: \frac{{{{2.3}^x} - {2^{x + 2}}}}{{{3^x} - {2^x}}} \leqslant 1 \Leftrightarrow \frac{{2.{{\left( {\frac{3}{2}} ight)}^x} - 4}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} \leqslant 1\Leftrightarrow \frac{{2.{{\left( {\frac{3}{2}} ight)}^x} - 4}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} - 1 \leqslant 0

    \Leftrightarrow \frac{{{{\left( {\frac{3}{2}} ight)}^x} - 3}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} \leqslant 0 \Leftrightarrow 1 < {\left( {\frac{3}{2}} ight)^x} \leqslant 3 \Leftrightarrow 0 < x \leqslant {\log _{\frac{3}{2}}}3.

  • Câu 33: Vận dụng cao

    Cho hàm số y = f(x). Biết hàm số y = f’(x) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số y = {2021^{f\left( x ight)}} + {2020^{f\left( x ight)}} là:

    Tính số điểm cực trị của hàm số

    Ta có:

    \begin{matrix}  y' = f'\left( x ight){.2021^{f\left( x ight)}}.\ln 2021 + f'\left( x ight){.2020^{f\left( x ight)}}.\ln 2020 \hfill \\   = f'\left( x ight)\left[ {{{2021}^{f\left( x ight)}}.\ln 2021 + {{2020}^{f\left( x ight)}}.\ln 2020} ight] \hfill \\ \end{matrix}

    Do {2021^{f\left( x ight)}}.\ln 2021 + {2020^{f\left( x ight)}}.\ln 2020 > 0,\forall x \in \mathbb{R}

     y' = 0 \Leftrightarrow f'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x_1} = a} \\   {{x_2} = b} \\   {{x_3} = c} \end{array}} ight.

    Tính số điểm cực trị của hàm số

    Vậy hàm số y = {2021^{f\left( x ight)}} + {2020^{f\left( x ight)}} có ba điểm cực trị.

  • Câu 34: Nhận biết

    Giá trị của biểu thức {\log _2}5.{\log _5}64 là:

    Ta có: {\log _2}5.{\log _5}64 = {\log _2}64 = {\log _2}{2^6} = 6

  • Câu 35: Vận dụng

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    Ta có: y = {x^{\frac{\pi }{2}}} \Rightarrow y' = \frac{\pi }{2}.{x^{\frac{\pi }{2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = 1} \\   {y'\left( 1 ight) = \dfrac{\pi }{2}} \end{array}} ight.

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    y = y'\left( 1 ight)\left( {x - 1} ight) + y\left( 1 ight) = \frac{\pi }{2}x - \frac{\pi }{2} + 1

  • Câu 36: Nhận biết

    Cho hàm số y =
f(x) có đồ thị là đường cong trong hình vẽ:

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Trên khoảng (0;1) đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên (0;1).

  • Câu 37: Vận dụng cao

    Cho tứ diện có thể tích bằng V. Gọi V' là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số \frac{{V'}}{V}.

     

    Xét khối  tứ diện và các điểm được kí hiệu như hình vẽ trên, ta có:

    \frac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}} = \frac{1}{8} \Rightarrow {V_{S.A'B'C'}} = \frac{V}{8}

    Tương tự \,{V_{A.A'MP}} = {V_{B.B'MN}} = {V_{C.C'NP}} = \frac{V}{8}.

    Do đó \,\,V' = {V_{S.ABC}} - \left( {{V_{S.A'B'C'}} + {V_{A.A'MP}} + {V_{B.B'MN}} + {V_{C.C'NP}}} ight)

    = \,\,V - \left( {\frac{V}{8} + \frac{V}{8} + \frac{V}{8} + \frac{V}{8}} ight) = \frac{V}{2}\,\, \Rightarrow \,\,\frac{{V'}}{V} = \frac{1}{2}.

  • Câu 38: Nhận biết

    Hàm số y = {\log _{2019}}\left| x ight|;\forall x e 0 có đạo hàm là:

    Áp dụng công thức đạo hàm ta có: y' = \frac{1}{{x\ln 2019}}

  • Câu 39: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 40: Vận dụng

    Cho hàm số f\left( x ight) = {x^3} - 3x + 1. Số nghiệm thực phân biệt của phương trình f\left( {f\left( x ight)} ight) = f\left( 2 ight) là:

    Ta có: f\left( {f\left( x ight)} ight) = f\left( 2 ight) = 3

    Đồ thị của hàm số f\left( x ight) = {x^3} - 3x + 1 được minh họa bằng hình vẽ sau:

    Số nghiệm thực phân biệt của phương trình

    Từ đồ thị ta suy ra

    f\left( {f\left( x ight)} ight) = 3 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = 2} \\   {f\left( x ight) =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 2} \\   {{x^3} - 3x + 1 =  - 1} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x^3} - 3x + 1 = 0\left( * ight)} \\   {{x^3} - 3x + 2 = 0\left( {**} ight)} \end{array}} ight.

    Phương trình (*) có 3 nghiệm thực

    Phương trình (**) có 2 nghiệm thực

  • Câu 41: Nhận biết

    Tìm điều kiện xác định của bất phương trình sau:

    {\log _2}(x + 1) - 2{\log _4}(5 - x) < 1 - {\log _2}(x - 2)

    BPT xác định khi : \left\{ \begin{gathered}  x + 1 > 0 \hfill \\  5 - x > 0 \hfill \\  x - 2 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x >  - 1 \hfill \\  x < 5 \hfill \\  x > 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow 2 < x < 5

  • Câu 42: Vận dụng

    Bác Thu có 600 triệu đồng mang đi gửi tiết kiện ở hai loại kì hạn khác nhau đều theo thể thức lãi kép. Bác gửi 300 triệu đồng theo kì hạn quý với lãi suất 2,1% một quý, 300 triệu đồng còn lại bác gửi theo kì hạn tháng với lãi suất 0,73%/tháng. Sau khi gửi được đúng một năm, bác rút ra một nửa số tiền ở loại kì hạn quý và gửi vào loại kì hạn theo tháng. Hỏi sau đúng hai năm kể từ khi gửi tiền lần đầu, bác Thu thu về tất cả bao nhiêu tiền lãi (làm tròn đến chữ số hàng nghìn)?

     Số tiền bác Thu thu được ở năm thứ nhất là:

    + Gửi kì hạn theo quý: 300.{\left( {1 + {r_1}} ight)^4} = A (triệu đồng)

    + Gửi kì hạn theo tháng: 300.{\left( {1 + {r_2}} ight)^{12}} = B (triệu đồng)

    Số tiền bác Thu thu được ở sau năm thứ hai là:

    + Gửi kì hạn theo quý: \frac{A}{2}{\left( {1 + {r_1}} ight)^4} (triệu đồng)

    + Gửi kì hạn theo tháng: \left( {\frac{A}{2} + B} ight){\left( {1 + {r_2}} ight)^{12}} (triệu đồng)

    Số tiền lãi bác Thu thu được là

    \frac{A}{2}{\left( {1 + {r_1}} ight)^4} + \left( {\frac{A}{2} + B} ight){\left( {1 + {r_2}} ight)^{12}} - 600 \approx 112,219 (triệu đồng)

  • Câu 43: Thông hiểu

    Cho hàm số y = \frac{1}{3}x^{3} - (m +
2)x^{2} + \left( m^{2} + 4m + 3 ight)x + 6m + 9 với m là tham số. Tìm giá trị của tham số m để đồ thị hàm số (C) có cực đại tại x_{1} và cực tiểu tại x_{2} sao cho {x_{1}}^{2} - 2x_{2} = 0?

    Ta có: y' = x^{2} - 2(m + 2)x + m^{2}
+ 4m + 3

    Hàm số có cực đại tại x_{1} và cực tiểu tại x_{2} khi và chỉ khi

    \Delta' > 0 \Leftrightarrow (m +
2)^{2} - \left( m^{2} + 4m + 3 ight) > 0 \Leftrightarrow 1 >
0\forall m\mathbb{\in R}

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = m + 3 \\
x = m + 1 \\
\end{matrix} ight.

    Theo bài ra ta có:

    {x_{1}}^{2} - 2x_{2} = 0 \Leftrightarrow
(m + 1)^{2} - 2(m + 3) = 0

    \Leftrightarrow m^{2} - 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = - \sqrt{5} \\
m = \sqrt{5} \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m = \sqrt{5} \\
m = - \sqrt{5} \\
\end{matrix} ight..

  • Câu 44: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y = - x^{3} - 3(m + 1)x + 3(2m - 1) +
2020 đồng biến trên ( - \infty; +
\infty)?

    Tập xác định D\mathbb{= R}

    Ta có: y' = - 3x^{2} - 6(m + 1)x +
3(2m - 1)

    Hàm số nghịch biến trên ( - \infty; +
\infty) khi và chỉ khi y' \leq
0;\forall x \in ( - \infty; + \infty)

    \Leftrightarrow \left\{ \begin{matrix}
a = - 3 < 0 \\
\Delta' = 9(m + 1)^{2} + 9(2m - 1) \leq 0 \\
\end{matrix} ight.

    \Leftrightarrow 9m^{2} + 36m \leq 0
\Leftrightarrow - 4 \leq m \leq 0

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 4; - 3; - 2; - 1;0 ight\}

    Vậy có tất cả 5 giá trị của tham số m thỏa mãn yêu cầu đề bài đưa ra.

  • Câu 45: Vận dụng

    Khẳng định nào dưới đây đúng?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   { - 2017 >  - 2018} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{ - 2017}} > {\left( {\sqrt 5  + 2} ight)^{ - 2018}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{2018}} < {\left( {\sqrt 5  + 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    Vậy đáp án đúng là: {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

  • Câu 46: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 47: Vận dụng cao

    Với giá trị nào của tham số m thì bất phương trình {2^{{{\sin }^2}x}} + {3^{{\text{co}}{{\text{s}}^2}x}} \geqslant m{.3^{{{\sin }^2}x}} có nghiệm?

     Chia hai vế của bất phương trình cho {3^{{{\sin }^2}x}} > 0, ta được:

    {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} \geqslant m

    Xét hàm số y = {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} là hàm số nghịch biến.

    Ta có: 0 \leqslant {\sin ^2}x \leqslant 1 nên 1 \leqslant y \leqslant 4.

    Vậy bất phương trình có nghiệm khi m \leqslant 4.

  • Câu 48: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 49: Thông hiểu

    Cho hàm số f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} . Tính f'\left( 2 ight)

    Tập xác định \left( {\frac{2}{3}; + \infty } ight)

    Ta có: f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} \Rightarrow f'\left( x ight) = \frac{5}{3}.{\left( {2x - 3} ight)^{\frac{{ - 1}}{6}}} \Rightarrow f'\left( 2 ight) = \frac{5}{3}

  • Câu 50: Thông hiểu

    Cho phương trình log_{\frac{1}{2}}(2x -
m) + log_{2}(3 - x) = 0, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?

    Đáp án: 5

    Đáp án là:

    Cho phương trình log_{\frac{1}{2}}(2x -
m) + log_{2}(3 - x) = 0, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?

    Đáp án: 5

    ĐKXĐ: \left\{ \begin{matrix}
2x - m > 0 \\
3 - x > 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
2x - m > 0 \\
x < 3 \\
\end{matrix} ight.\  ight.\ .

    Ta có:

    log_{\frac{1}{2}}(2x - m) + log_{2}(3 -x) = 0

    \Leftrightarrow - log_{2}(2x - m) +
log_{2}(3 - x) = 0

    \Leftrightarrow log_{2}(2x - m) =
log_{2}(3 - x)

    \Leftrightarrow 2x - m = 3 - x
\Leftrightarrow 3x = m + 3

    Để phương trình có nghiệm thì m + 3 <
9 \Leftrightarrow m < 6.

    Kết hợp điều kiện m là số nguyên dương ta có m ∈ {1;2;3;4;5}.

    Vậy có 5 giá trị của tham số m thỏa mãn yêu cầu bài toán.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo