Trong không gian với hệ trục toạ độ , cho điểm
. Viết phương trình mặt cầu tâm
cắt trục
tại hai điểm
sao cho
?
Hình vẽ minh họa
Gọi H là trung điểm AB suy ra H là hình chiếu vuông góc của I lên Ox nên
Phương trình mặt cầu là: .
Trong không gian với hệ trục toạ độ , cho điểm
. Viết phương trình mặt cầu tâm
cắt trục
tại hai điểm
sao cho
?
Hình vẽ minh họa
Gọi H là trung điểm AB suy ra H là hình chiếu vuông góc của I lên Ox nên
Phương trình mặt cầu là: .
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Tìm tập xác định của hàm số
Vì nên hàm số xác định khi
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Gọi là hai nghiệm của phương trình
. Khi đó, tổng hai nghiệm bằng?
0 || không || Không || Tổng 2 nghiệm bằng 0
Gọi là hai nghiệm của phương trình
. Khi đó, tổng hai nghiệm bằng?
0 || không || Không || Tổng 2 nghiệm bằng 0
Ta có:
Đặt , phương trình trên tương đương với
(vì
).
Từ đó suy ra
Vậy tổng hai nghiệm bằng 0.
Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm ?
Xét hàm số
Ta có: suy ra
là tiệm cận đứng của đồ thị hàm số.
Tiệm cận đứng đi qua điểm .
Cho hàm số . Hàm số có bao nhiêu điểm cực trị?
Ta có:
Ta có bảng xét dấu như sau:
Vậy hàm số có hai điểm cực trị.
Hình nón có đường sinh và hợp với đáy góc
. Diện tích toàn phần của hình nón bằng:
Theo giả thiết, ta có
và
.
Suy ra:
.
Vậy diện tích toàn phần của hình nón bằng: (đvdt).
Bất phương trình có tập nghiệm là:
Xét:
Tương tự, ta cũng có:
Cộng vế với vế của (1) và (2) ta được:
Mà BPT: nên
Xét
Tương tự, ta cũng có:
Cộng vế với vế của (3) và (4) ta được:
Vậy hay
.
Cho ; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Tìm tất cả các giá trị của tham số để hàm số
nghịch biến trên
?
Ta có:
Hàm số nghịch biến trên
Vậy đáp án cần tìm là
Biết với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Cho hình đa diện đều loại cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Đa diện đều loại là khối lập phương nên có 6 mặt là các hình vuông cạnh
.
Vậy hình lập phương có tổng diện tích tất cả các mặt là
Điều kiện xác định của phương trình là:
Biểu thức xác định
.
Biết đồ thị hàm số đối xứng với đồ thị hàm số
qua điểm
. Giá trị của
là:
Gọi là điểm thuộc đồ thị hàm số
thì điểm đối xứng với
qua
là
thuộc đồ thị hàm số
=>
Hình vẽ nào dưới đây là đồ thị của hàm số biết
Xét hàm số ta có:
=> Đồ thị hàm số có dạng chữ N xuôi
Đồ thị hàm số cắt trục Oy tại điểm có tung độ mà a > 0 =>
Mặt khác
=>
=> Đồ thị hàm số y = f(x) tiếp xúc với Ox tại điểm
Với giá trị nào của tham số m thì bất phương trình có nghiệm?
Chia hai vế của bất phương trình cho , ta được:
Xét hàm số là hàm số nghịch biến.
Ta có: nên
.
Vậy bất phương trình có nghiệm khi .
Viết biểu thức dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực ?
Hàm số là hàm số mũ có cơ số bằng
nghịch biến trên
Hàm số là hàm số mũ có cơ số
nên đồng biến trên
Hàm số chỉ xác định trên
Hàm số có
nên nghịch biến trên
Tìm đạo hàm của hàm số trên khoảng
Với điều kiện ta có:
. Khi đó:
=>
Cho . Tính giá trị của biểu thức
Ta có:
Viết biểu thức với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Gọi là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Trong không gian , mặt cầu
có bán kính bằng:
Bán kính của mặt cầu là
.
Cho tứ diện đều có cạnh bằng 1. Mặt phẳng
đi qua điểm S và trọng tâm G của tam giác
cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất
của khối tứ diện
.
Gọi E là trung điểm của BC.
Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.
Theo định lí Talet, ta có:
Mặt khác
Do đó .
Đặt
Vì là tứ diện đều
và
Do đó
Ta có
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?
Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Tìm giá trị của tham số m sao cho đồ thị hàm số có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời
Cho lăng trụ đứng có đáy
là tam giác vuông tại
và
. Cạnh
tạo với mặt đáy
góc
. Tính thể tích
của khối lăng trụ đã cho.
Vì là lăng trụ đứng nên
, suy ra hình chiếu vuông góc của
trên mặt đáy
là
.
Do đó .
Tam giác vuông , ta có
Diện tích tam giác là
Vậy .
Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức , C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.
Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức , C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.
Cho hình lăng trụ tam giác có đáy
là tam giác vuông cân tại
, cạnh
. Biết
tạo với mặt phẳng
một góc
và
. Tính thể tích
của khối đa diện
.
Gọi H là hình chiếu của C' trên mặt phẳng .
Suy ra AH là hình chiếu của AC' trên mặt phẳng .
Do đó
Tam giác vuông , có
Thể tích khối lăng trụ
Suy ra thể tích cần tính là:
.
Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng cạnh đáy bằng a. Khi đó mặt cầu nội tiếp hình chóp S.ABCD có bán kính bằng:
Gọi H là tâm của hình vuông ABCD.
Ta có SH là trục đường tròn ngoại tiếp đáy.
Gọi M là trung điểm của CD và I là chân đường phân giác trong của góc .
Suy ra I là tâm của mặt cầu nội tiếp hình chóp, bán kính .
Ta có:
Dựa vào tính chất của đường phân giác ta có:
Cho khối chóp S.ABC có SA vuông góc với đáy, và
. Tính thể tích V của khối chóp
.
32
Cho khối chóp S.ABC có SA vuông góc với đáy, và
. Tính thể tích V của khối chóp
.
32
Xét tam giác , có:
Suy ra tam giác vuông tại A
Vậy thể tích khối chóp
Cho hàm số có đạo hàm
. Mệnh đề nào sau đây đúng?
Xét ta có bảng xét dấu
như sau:
Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng , hàm số đồng biến trên khoảng
.
Tính giá trị của với
Ta có:
Phương trình có 2 nghiệm
trong đó
. Giá trị của
là?
PT
Vậy .
Tìm tập xác định của hàm số là:
Hàm số đã cho xác định khi
Điều kiện xác định của bất phương trình là:
BPT xác định khi: .
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra
Cho hàm số . Giả sử hàm số đạt cứ đại tại x = a và đạt cực tiểu tại x = b thì giá trị biểu thức 2a – 5b là
Tập xác định
Ta có:
Ta có bảng xét dấu như sau:
Do y’ thay đổi dấu từ dương sang âm khi đi qua điểm x = 1
=> x = 1 là điểm cực đại của hàm số
y’ đổi dấu từ âm sang dương khi đi qua điểm x = 2
=> x = 2 là điểm cực tiểu của hàm số
=> 2a – 5b = -8
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số y = f(x). Biết hàm số y = f’(x) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số là:
Ta có:
Do
Vậy hàm số có ba điểm cực trị.
Tổng các nghiệm của phương trình là:
Điều kiện . Có
Dó đó, tổng các nghiệm sẽ bằng .
Cho hàm số có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Cho hàm số có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Nghiệm bé nhất của phương trình là:
TXĐ:
PT
là nghiệm nhỏ nhất.
Tập xác định của hàm số là:
Điều kiện xác định:
=> Tập xác định của hàm số là
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Cho các hình khối sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Cho hàm số f(x) có đạo hàm trên . Đồ thị của hàm số
trên đoạn
là đường cong hình bên. Mệnh đề nào dưới đây đúng?
Dựa vào thị của hàm số trên đoạn
ta thấy
.
Ta có bảng BBT:
Do đó .