Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông tâm O, cạnh 2a. Mặt bên tạo với đáy góc 60^0. Gọi K là hình chiếu vuông góc của O trên SD. Tính theo a thể tích V của khối tứ diện DKAC.

     

    Gọi M là trung điểm CD, suy ra OM \bot CD nên

    {60^0} = \widehat {\left( {SCD} ight),\left( {ABCD} ight)} = \widehat {SM,OM} = \widehat {SMO}.

    Tam giác vuông SOM, có SO = OM.\tan \widehat {SMO} = a\sqrt 3.

    Kẻ KH \bot OD \Rightarrow KH\parallel SO nên KH \bot \left( {ABCD} ight)

    Tam giác vuông SOD, ta có \frac{{KH}}{{SO}} = \frac{{DK}}{{DS}} = \frac{{D{O^2}}}{{D{S^2}}}

    = \frac{{O{D^2}}}{{S{O^2} + O{D^2}}} = \frac{2}{5}\xrightarrow{{}}KH = \frac{2}{5}SO = \frac{{2a\sqrt 3 }}{5}

    Diện tích tam giác {S_{\Delta ADC}} = \frac{1}{2}AD.DC = 2{a^2}.

    Vậy {V_{DKAC}} = \frac{1}{3}{S_{\Delta ADC}}.KH = \frac{{4{a^3}\sqrt 3 }}{{15}}.

  • Câu 2: Vận dụng cao

    Cho bất phương trình: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}}. Tìm tập nghiệm của bất phương trình.

     Ta có: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}} \Leftrightarrow \frac{{6\left( {1 - {5^x}} ight)}}{{\left( {{{5.5}^x} - 1} ight)\left( {5 - {5^x}} ight)}} \geqslant 0\,\,(1)

    Đặt t =5^x, BPT (1) \Leftrightarrow \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}} \geqslant 0.

    Đặt f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}.

    Lập bảng xét dấu f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}, ta được nghiệm:

    \left[ \begin{gathered}  5 < t \hfill \\  \frac{1}{5} < t \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  5 < {5^x} \hfill \\  \frac{1}{5} < {5^x} \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  1 < x \hfill \\   - 1 < x \leqslant 0 \hfill \\ \end{gathered}  ight..

    Vậy tập nghiệm của BPT là S = \left( { - 1;0} ight] \cup \left( {1; + \infty } ight).

  • Câu 3: Nhận biết

    Tìm số mặt của hình đa diện dưới đây là?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 4: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 5: Vận dụng cao

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của m \in\lbrack - 10;10brack để hàm số y= \left| x^{4} + 2mx^{3} + (3 - 3m)x^{2} - 2mx + 3m - 4 ight|7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 7: Thông hiểu

    Trong các khẳng định sau, khẳng định nào đúng?

    Xét hàm số y = {e^{10x + 2017}} ta có:

    y' = 10.{e^{10x + 2017}} > 0;\forall x \in \mathbb{R}

    Vậy hàm số y = {e^{10x + 2017}} đồng biến trên tập số thực.

  • Câu 8: Vận dụng

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0  là:

    x=4 || X=4|| x bằng 4

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0  là:

    x=4 || X=4|| x bằng 4

    Theo bài toán, ta xét điều kiện của BPT là: x > 0;x e 1;x e 3.

    Ta có: {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0 \Leftrightarrow \frac{{ - 1}}{{{{\log }_3}x.\left( {{{\log }_3}x - 1} ight)}} < 0

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}x < 0 \hfill \\  {\log _3}x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  0 < x < 1 \hfill \\  x > 3 \hfill \\ \end{gathered}  ight.

  • Câu 9: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

  • Câu 10: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Từ bảng biến thiên ta thấy hàm số nghịch biến trên (3; + \infty)

    Suy ra hàm số nghịch biến trên (4;10).

  • Câu 11: Vận dụng

    Cho hàm số và có bảng biến thiên như hình vẽ.

    Tính giá trị biểu thức

    Tính T = ab + bc + 2ca

    Ta có: 

    \begin{matrix}  y' = 4a{x^3} + 2bx \hfill \\  \left\{ {\begin{array}{*{20}{c}}  {y\left( 0 ight) = 3} \\   {y\left( 1 ight) = 2} \\   {y'\left( 1 ight) = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a + b + c = 2} \\   {4a + 2b = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {c = 3} \\   {a = 1} \\   {b =  - 2} \end{array}} ight. \Rightarrow T =  - 2 \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 13: Nhận biết

    Trong các hình dưới đây hình nào không phải khối đa diện lồi?

     

    Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.

  • Câu 14: Nhận biết

    Điều kiện xác định của Bất phương trình {\log _2}\left[ {3{{\log }_2}\left( {3x - 1} ight) - 1} ight] \leq x là?

     Biểu thức {\log _2}\left[ {3{{\log }_2}\left( {3x - 1} ight) - 1} ight] \leq x xác định khi và chỉ khi:

     

    \left\{ \begin{gathered}  3{\log _2}\left( {3x - 1} ight) - 1 > 0 \hfill \\  3x - 1 > 0 \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}  {\log _2}\left( {3x - 1} ight) > \frac{1}{3} \hfill \\  x > \frac{1}{3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  3x - 1 > {2^{\frac{1}{3}}} \hfill \\  x > \frac{1}{3} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{{{2^{\frac{1}{3}}} + 1}}{3} \hfill \\  x > \frac{1}{3} \hfill \\ \end{gathered}  ight. \Leftrightarrow x > \frac{{{2^{\frac{1}{3}}} + 1}}{3}

     

  • Câu 15: Nhận biết

    Điều kiện xác định của phương trình {\log _x}(2{x^2} - 7x - 12) = 2 là:

     Biểu thức {\log _x}(2{x^2} - 7x - 12) = 2 xác định 

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x e 1 \hfill \\  2{x^2} - 7x + 12 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x e 1 \hfill \\  2\left[ {{{(x - \frac{7}{4})}^2} + \frac{{47}}{{16}}} ight] > 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow x \in (0;1) \cup (1; + \infty )

  • Câu 16: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 17: Thông hiểu

    Giá trị lớn nhất của hàm số y =  - {x^3} + 3x + 1 trên khoảng \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {tm} ight)} \\   {x =  - 1\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => Giá trị lớn nhất của hàm số trên khoảng đã cho bằng 3 khi x = 1

  • Câu 18: Vận dụng

    Gọi x_1, x_2 là 2 nghiệm của phương trình {\log _2}\left[ {x\left( {x + 3} ight)} ight] = 1. Khi đó x_1 + x_2 bằng: 

    -3

    Đáp án là:

    Gọi x_1, x_2 là 2 nghiệm của phương trình {\log _2}\left[ {x\left( {x + 3} ight)} ight] = 1. Khi đó x_1 + x_2 bằng: 

    -3

    Điều kiện: \left[ \begin{gathered}  x <  - 3 \hfill \\  x > 0 \hfill \\ \end{gathered}  ight.

    {\log _2}\left[ {x\left( {x + 3} ight)} ight] = 1 \Leftrightarrow x\left( {x + 3} ight) = 2 \Leftrightarrow {x^2} + 3x - 2 = 0

    Vậy {x_1} + {x_2} =  - 3.

  • Câu 19: Vận dụng cao

    Cho hàm số f\left( x ight) có đạo hàm y = f'\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    Bất phương trình f\left( x ight) >  - {x^3} + {x^2} - x + m (m là tham số thực) nghiệm đúng với \forall x \in \left( { - 1;1} ight) khi và chỉ khi

    Ta có: f\left( x ight) >  - {x^3} + {x^2} - x + m \Rightarrow m < f\left( x ight) + {x^3} - {x^2} + x\left( * ight)

    Xét hàm số g\left( x ight) = f\left( x ight) + {x^3} - {x^2} + x với \forall x \in \left( { - 1;1} ight)

    Ta có: g'\left( x ight) = f'\left( x ight) + 3{x^2} - 2x + 1 > 0;\forall x \in \left( { - 1;1} ight)

    => Hàm số g(x) luôn đồng biến trên \left( { - 1;1} ight)

    Ta có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    => (*) nghiệm đúng \forall x \in \left( { - 1;1} ight) khi m \leqslant g\left( { - 1} ight) = f\left( { - 1} ight) - 3

  • Câu 20: Thông hiểu

    Cho hàm số y = {x^{\frac{{ - 3}}{4}}}. Khẳng định nào sau đây sai?

    Hàm số y = {x^{\frac{{ - 3}}{4}}} có các tính chất như sau:

    Đồ thị hàm số nhận trục tung làm tiệm cận đứng

    Đồ thị hàm số nhận trục hoành làm tiệm cận ngang

    Là hàm số nghịch biến trên \left( {0; + \infty } ight)

  • Câu 21: Thông hiểu

    Với các số a, b, c là các số thực dương tùy ý khác 1 và {\log _a}c = x;{\log _b}c = y. Khi đó giá trị của {\log _a}\left( {ab} ight) bằng:

     Với a, b, c là các số thực dương tùy ý khác 1 ta có: {\log _c}a = \frac{1}{x};{\log _c}b = \frac{1}{y}

    Khi đó ta có: {\log _c}\left( {ab} ight) = {\log _c}a + {\log _c}b = \frac{1}{x} + \frac{1}{y}

  • Câu 22: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 4y - 6z + 5 =
0 và mặt phẳng (\alpha):2x + y + 2z
- 15 = 0. Mặt phẳng (P) song song với (\alpha) và tiếp xúc với (S)

    Ta có:

    (S) có tâm I (1; −2; 3), bán kính R = 3. (P) song song với (α)

    (P):2x + y + 2z + m = 0, với m eq - 15

    Do mặt phẳng (P) tiếp xúc với (S) nên d\left( I;(P) ight) = R \Leftrightarrow
\left\lbrack \begin{matrix}
m = - 15 \\
m = 3 \\
\end{matrix} ight., so với điều kiện ta nhận m = 3.

    Vậy (P):2x + y + 2z + 3 = 0.

  • Câu 23: Nhận biết

    Cho mặt cầu S(O; R) và một điểm A, biết OA = 2R. Qua A kẻ một cát tuyến cắt (S) tại B và C sao cho BC = R\sqrt 3. Khi đó khoảng cách từ O đến BC bằng:

     Gọi H là hình chiếu của O lên BC.

    Ta có OB=OC=R , suy ra H là trung điểm của BC nên HC = \frac{{CD}}{2} = \frac{{R\sqrt 3 }}{2}

    Suy ra OH = \sqrt {O{C^2} - H{C^2}}  = \frac{R}{2}.

  • Câu 24: Thông hiểu

    Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.

     Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M.  Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.

  • Câu 25: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) = x\left( x^{2} - x ight)(x -
2). Số điểm cực trị của hàm số đã cho là:

    Ta có: f'(x) = x\left( x^{2} - x
ight)(x - 2) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    x = 1;x = 2 là nghiệm bội lẻ và x = 0 là nghiệm bội chẵn nên hàm số có hai điểm cực trị.

  • Câu 26: Vận dụng

    Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m - 2} ight){x^2} + 12x + 1 đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:

    Ta có: y' = 3{x^2} - 6\left( {m - 2} ight)x + 12

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 3 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 9{{\left( {m - 2} ight)}^2} - 36 \leqslant 0} \end{array}} ight. \Leftrightarrow 0 \leqslant m \leqslant 4 \hfill \\ \end{matrix}

    Kết hợp với điều kiện m \in \mathbb{Z}

    => m \in \left\{ {0;1;2;3;4} ight\}

    => Tổng P bằng 10

  • Câu 27: Thông hiểu

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

    Đáp án là:

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

     Vì G là trọng tâm của tam giác BCD nên S_{\triangle GBC}= \frac{1}{3}S_{\triangle DBC}.

    Suy ra {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.

  • Câu 28: Nhận biết

    Giá trị của biểu thức {\log _2}5.{\log _5}64 là:

    Ta có: {\log _2}5.{\log _5}64 = {\log _2}64 = {\log _2}{2^6} = 6

  • Câu 29: Thông hiểu

    Phương trình \ln \frac{{x - 1}}{{x + 8}} = \ln x có nghiệm là: 

    Ta có:  \ln \frac{{x - 1}}{{x + 8}} = \ln x \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{x - 1}}{{x + 8}} = x \hfill \\ \end{gathered}  ight.

    \Rightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \left[ \begin{gathered}  x = 4 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 4

  • Câu 30: Nhận biết

    Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số y = \frac{{2x + 1}}{{x + 1}}?

    Xét phương trình x + 1 = 0 => x = -1

    \mathop {\lim }\limits_{x \to  - {1^ + }} f\left( x ight) =  + \infty => x = -1 là tiệm cận đứng của đồ thị hàm số.

  • Câu 31: Nhận biết

    Cho các mệnh đề sau:

    (i) Cơ số của logarit phải là số dương.

    (ii) Chỉ số thực dương mới có logarit.

    (iii) \ln \left( {A + B} ight) = \ln A + \ln B với mọi A > 0;B > 0.

    (iv) {\log _a}b.{\log _b}c.{\log _c}a = 1 với mọi a,b,c \in \mathbb{R}.

    Số mệnh đề đúng là:

    (i) Sai vì cơ số của {\log _a}b chỉ cần thỏa mãn 0 < a e 0

    (ii) Đúng vì điều kiện có nghĩa của {\log _a}bb > 0

    (iii) Sai vì \ln \left( {A + B} ight) = \ln A.\ln B với mọi A > 0;B > 0

    (iv) Sai vì nếu a,b,c < 0 thì các biểu thức {\log _a}b;{\log _b}c;{\log _c}a không có nghĩa.

  • Câu 32: Vận dụng

    Cho biết {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}, khẳng định nào sau đây đúng?

    Điều kiện: x - 2 > 0 \to x > 2

    Ta có:

    - \frac{1}{3} >  - \frac{1}{6} \Rightarrow {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}

    \Rightarrow x - 2 < 1 \Rightarrow x < 3

    Vậy 2 < x < 3

  • Câu 33: Nhận biết

    Cho biểu thức P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}} với x > 0. Mệnh đề nào sau đây là đúng?

     Ta có: 

    \begin{matrix}  P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}  \hfill \\  P = \sqrt {x.\sqrt[3]{{{x^{\frac{7}{2}}}}}}  \hfill \\  P = \sqrt {x.{x^{\frac{7}{6}}}}  \hfill \\  P = \sqrt {{x^{\frac{{13}}{6}}}}  = {x^{\frac{{13}}{{12}}}} \hfill \\ \end{matrix}

  • Câu 34: Thông hiểu

    Cho hàm số y = \sqrt {{x^2} - 6x + 5}. Mệnh đề nào sau đây đúng?

    Tập xác định của hàm số là: D = \left( { - \infty ;1} ight] \cup \left[ {5; + \infty } ight)

    Ta có: y' = \frac{{x - 3}}{{\sqrt {{x^2} - 6x + 5} }} > 0,\forall x \in \left( {5; + \infty } ight)

    Vậy hàm số đồng biến trên khoảng (5; +∞)

  • Câu 35: Vận dụng

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 36: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 37: Thông hiểu

    Bất phương trình {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 có tập nghiệm là:

    Điều kiện x > {\log _3}\sqrt {73}

    Ta có:  {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 \Leftrightarrow {\log _3}\left( {{9^x} - 72} ight) \leqslant x

    \Leftrightarrow {9^x} - {3^x} - 72 \leqslant 0 \Leftrightarrow {3^x} \leqslant 9 \Leftrightarrow x \leqslant 2

    Vậy BPT có tập nghiệm là S = \left( {{{\log }_3}\sqrt {73} ;2} ight].

  • Câu 38: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Biết đồ thị của hàm số y = f'(x) biểu diễn như hình vẽ:

    Khi đó hàm số y = f\left( x^{2} - 1
ight) nghịch biến trên khoảng nào sau đây?

    Ta có: y' = 2x.f'\left( x^{2} - 1
ight) \leq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
f'\left( x^{2} - 1 ight) \geq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
f'\left( x^{2} - 1 ight) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
x^{2} - 1 \leq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
x^{2} - 1 \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
- 2 \leq x \leq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
\left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 2 \leq x \leq 0 \\
x \geq 2 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là ( -
2;0).

  • Câu 39: Vận dụng cao

    Cho khối lăng trụ ABC.A'B'C'có thể tích bằng 60 \,\text{cm}^3, các điểm M, N, P lần lượt thuộc các cạnh AA',BB',CC' sao cho AM = 2MA',BN = 3NB',CP = 4PC'. Thể tích của khối đa diện BC.MNP là bao nhiêu? (Đơn vị: cm^3)

    31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối

    Đáp án là:

    Cho khối lăng trụ ABC.A'B'C'có thể tích bằng 60 \,\text{cm}^3, các điểm M, N, P lần lượt thuộc các cạnh AA',BB',CC' sao cho AM = 2MA',BN = 3NB',CP = 4PC'. Thể tích của khối đa diện BC.MNP là bao nhiêu? (Đơn vị: cm^3)

    31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối

     

    Ta có   MA = 2MA' \Rightarrow \frac{{AM}}{{AA'}} = \frac{2}{3};

               BN = 3NB' \Rightarrow \frac{{BN}}{{BB'}} = \frac{3}{4};

               CP = 4PC' \Rightarrow \frac{{CP}}{{CC'}} = \frac{4}{5}

    Nên \dfrac{{{V_{ABCMNP}}}}{{{V_{ABCA'B'C'}}}} = \frac{{\dfrac{2}{3} + \dfrac{3}{4} + \dfrac{4}{5}}}{3} = \dfrac{{133}}{{180}} \Rightarrow {V_{ABCMNP}} = \dfrac{{133}}{{180}}.60 = \dfrac{{133}}{3}

    Mà  {V_{M.ABC}} = \frac{1}{3}d\left( {M;\left( {ABC} ight)} ight).{S_{ABC}}

         = \frac{1}{3}.\frac{2}{3}d\left( {A';\left( {ABC} ight)} ight).{S_{ABC}} = \frac{2}{9}.{V_{ABC.A'B'C'}} = \frac{{40}}{3}.

    Vậy {V_{BCMNP}} = \frac{{133}}{3} - \frac{{40}}{3} = 31\left( {c{m^3}} ight).

  • Câu 40: Vận dụng

    Gọi M là giá trị lớn nhất của hàm số y = f\left( x ight) = 4\sqrt {{x^2} - 2x + 3}  + 2x - {x^2}. Tính tích các nghiệm của phương trình f(x) = M.

    Đặt t = \sqrt {{x^2} - 2x + 3}  = \sqrt {{{\left( {x - 1} ight)}^2} + 2}

    \begin{matrix}   \Rightarrow t \in \left[ {\sqrt 2 ;\infty } ight) \hfill \\   \Rightarrow {x^2} - 2x = {t^2} - 3 \hfill \\ \end{matrix}

    Xét hàm số f\left( t ight) = 4t - {t^2} + 3,t \in \left[ {\sqrt 2 ;\infty } ight) ta có:

    \begin{matrix}  f\left( t ight) =  - {\left( {t - 2} ight)^2} + 7 \leqslant 7;t \in \left[ {\sqrt 2 ;\infty } ight) \hfill \\   \Rightarrow f\left( t ight) = M \Rightarrow f\left( t ight) = 7 \Rightarrow t = 2 \hfill \\   \Rightarrow {x^2} - 2x - 1 = 0 \Rightarrow {x_1}.{x_2} =  - 1 \hfill \\ \end{matrix}

  • Câu 41: Nhận biết

    Cho hàm số y = {\left( {x - 1} ight)^{ - \frac{1}{4}}}. Khẳng định nào sau đây đúng?

     Đồ thị hàm số có đường tiệm cận đứng x = 1 

  • Câu 42: Vận dụng

    Cho a,b,c > 0 và khác 1. Các hàm số y = {\log _a}x;y = {\log _b}x;y = {\log _c}x có đồ thị như hình vẽ bên. Khẳng định nào dưới đây đúng?

    Khẳng định nào dưới đây đúng

     Kẻ đường thẳng y=1 cắt đồ thị các hàm số y = {\log _a}x;y = {\log _b}x;y = {\log _c}x lần lượt tại các điểm có hoành độ a,b,c

    Khẳng định nào dưới đây đúng

    Từ đồ thị ta có: a > c > b

  • Câu 43: Vận dụng

    Tìm tập xác định của hàm số y = \sqrt {4 - {x^2}}  + \sqrt[3]{{\frac{{x + 1}}{{x - 1}}}} + x + 1

    Hàm số xác định khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {4 - {x^2} \geqslant 0} \\   {x e 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 2 \leqslant x \leqslant 2} \\   {x e 1} \end{array}} ight.

    Vậy tập xác định của hàm số là D = \left[ { - 2;2} ight]\backslash \left\{ 1 ight\}

  • Câu 44: Thông hiểu

    Cho hàm số y = f(x) = x^{3} - 2x^{2} + mx
+ 3 (với m là tham số) đạt cực tiểu tại x = 1. Tìm giá trị tham số m?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 4x +
m

    Hàm số đạt cực tiểu tại x = 1 suy ra y'(1) = 0 \Rightarrow - 1 + m = 0
\Leftrightarrow m = 1

    Với m = 1 \Rightarrow y = x^{3} - 2x^{2}
+ x + 3

    \Rightarrow \left\{ \begin{matrix}
y' = 3x^{2} - 4x + 1 \\
y'' = 6x - 4 \\
\end{matrix} ight.. Khi đó \left\{ \begin{matrix}
y'(1) = 0 \\
y''(1) > 0 \\
\end{matrix} ight. suy ra x =
1 là điểm cực tiểu của hàm số.

    Vậy m = 1 là giá trị cần tìm.

  • Câu 45: Thông hiểu

    Tính thể tích Vcủa khối lăng trụ ABC.A'B'C' biết thể tích khối chóp A.BCB'C' bằng 2a^3

    Ta có thể tích khối chóp: {V_{A.A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}}

    Suy ra:

    {V_{A.BCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}}\xrightarrow{{}}{V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCB'C'}} = \frac{3}{2}.2{a^3} = 3{a^3}.

  • Câu 46: Nhận biết

    Cho hàm số y = f(x) có đồ thị là đường cong như hình vẽ:

    Tìm số nghiệm của phương trình 2f(x) - 3
= 0?

    Ta có: 2f(x) - 3 = 0 \Leftrightarrow f(x)
= \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của hàm số y = f(x) và đường thẳng y = \frac{3}{2}

    Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.

  • Câu 47: Vận dụng

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Đặt g(x) = \left| f(x + 1) + might| với m là tham số. Tìm điều kiện của tham số m để hàm số y = g(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Đặt g(x) = \left| f(x + 1) + might| với m là tham số. Tìm điều kiện của tham số m để hàm số y = g(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 48: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox;Oy;Oz tại A;B;C sao cho H là trực tâm tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha)?

    Hình vẽ minh họa

    Ta có H là trực tâm của tam giác ABC suy ra OH\bot(ABC)

    Thật vậy \left\{ \begin{matrix}
OH\bot OA \\
OH\bot OB \\
\end{matrix} ight.\  \Rightarrow OC\bot AB(1)

    CH\bot AB (vì H là trực tâm tam giác ABC) (2)

    Từ (1) và (2) suy ra AB\bot(OHC) suy ra AB\bot OH(*)

    Tương tự BC\bot(OAH) \Rightarrow BC\bot
OH(**)

    Từ (*) và (**) suy ra OH\bot(ABC)

    Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3

    Vây mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha) là: x^{2} + y^{2} + z^{2} = 9.

  • Câu 49: Thông hiểu

    Dựa vào thông tin dưới đây và trả lời các câu hỏi

    Số lượng của một loại vi khuẩn X trong một phòng thí nghiệm được biểu diễn theo công thức S(t) =
A.e^{rt} , trong đó A là số lượng vi khuẩn tại thời điểm chọn mốc thời gian, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng (tính theo đơn vị là giờ). Lúc 6 giờ sáng, số lượng vi khuẩn X là 150 con. Sau 3 giờ, số lượng vi khuẩn X là 450 con.

    Tỉ lệ tăng trưởng của vi khuẩn X gần nhất với kết quả nào sau đây?

    Chọn 6 giờ là mốc thời gian. Khi đó A =
150.

    Sau 3 giờ, số lượng vi khuẩn là 450 con nên t = 3;S(3) = 450.

    Từ đó ta có phương trình:

    150.e^{3r} = 450 \Leftrightarrow e^{3r}
= 3 \Leftrightarrow r = \frac{ln3}{3} \approx 0,37.

  • Câu 50: Nhận biết

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy, SA=2a. Tính theo a thể tích của khối chóp S.ABCD.

     

    Gọi I là trung điểm của AB. Tam giác SAB cân tại S và có I là trung điểm AB nên SI \bot AB. Do (SAB) \bot (ABCD) theo giao tuyến AB nên SI \bot (ABCD).

    Tam giác vuông SIA, có:

    SI = \sqrt {S{A^2} - I{A^2}}  = \sqrt {S{A^2} - {{\left( {\frac{{AB}}{2}} ight)}^2}}  = \frac{{a\sqrt {15} }}{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo