Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Thu gọn biểu thức T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} biết a và b là hai số thực dương.

    Ta có: T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} = \left( {{a^{\frac{7}{6}}}:{a^{\frac{1}{6}}}} ight).\left( {{b^{\frac{{ - 2}}{3}}}:{b^{\frac{2}{6}}}} ight) = \frac{a}{b}

  • Câu 2: Vận dụng

    Bác Thu có 600 triệu đồng mang đi gửi tiết kiện ở hai loại kì hạn khác nhau đều theo thể thức lãi kép. Bác gửi 300 triệu đồng theo kì hạn quý với lãi suất 2,1% một quý, 300 triệu đồng còn lại bác gửi theo kì hạn tháng với lãi suất 0,73%/tháng. Sau khi gửi được đúng một năm, bác rút ra một nửa số tiền ở loại kì hạn quý và gửi vào loại kì hạn theo tháng. Hỏi sau đúng hai năm kể từ khi gửi tiền lần đầu, bác Thu thu về tất cả bao nhiêu tiền lãi (làm tròn đến chữ số hàng nghìn)?

     Số tiền bác Thu thu được ở năm thứ nhất là:

    + Gửi kì hạn theo quý: 300.{\left( {1 + {r_1}} ight)^4} = A (triệu đồng)

    + Gửi kì hạn theo tháng: 300.{\left( {1 + {r_2}} ight)^{12}} = B (triệu đồng)

    Số tiền bác Thu thu được ở sau năm thứ hai là:

    + Gửi kì hạn theo quý: \frac{A}{2}{\left( {1 + {r_1}} ight)^4} (triệu đồng)

    + Gửi kì hạn theo tháng: \left( {\frac{A}{2} + B} ight){\left( {1 + {r_2}} ight)^{12}} (triệu đồng)

    Số tiền lãi bác Thu thu được là

    \frac{A}{2}{\left( {1 + {r_1}} ight)^4} + \left( {\frac{A}{2} + B} ight){\left( {1 + {r_2}} ight)^{12}} - 600 \approx 112,219 (triệu đồng)

  • Câu 3: Thông hiểu

    Tính thể tích Vcủa khối lăng trụ ABC.A'B'C' biết thể tích khối chóp A.BCB'C' bằng 2a^3

    Ta có thể tích khối chóp: {V_{A.A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}}

    Suy ra:

    {V_{A.BCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}}\xrightarrow{{}}{V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCB'C'}} = \frac{3}{2}.2{a^3} = 3{a^3}.

  • Câu 4: Vận dụng cao

    Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

    Bất phương trình chưa tham số m nghiệm đúng

    Bất phương trình f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m (với m là tham số thực) nghiệm đúng với mọi x \in \left( { - 1;3} ight) khi và chỉ khi:

    Đặt u = \sqrt {x + 1}

    x \in \left( { - 1;3} ight) \Rightarrow u \in \left( {0;2} ight)

    => f\left( u ight) < u + m \Rightarrow f\left( u ight) - u < m

    Xét hàm số g\left( u ight) = f\left( u ight) - u;{\text{  }}u \in \left( {0;2} ight)

    Ta có: g'\left( u ight) = f'\left( u ight) - 1

    Dựa vào đồ thị hàm số ta thấy: u \in \left[ {0;2} ight] thì f'\left( u ight) < 1;\forall u \in \left[ {0;2} ight]

    => g(u) nghịch biến trên (0; 2)

    Vậy để f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m nghiệm đúng với mọi x \in \left( { - 1;3} ight) thì

    \begin{matrix}  f\left( u ight) - u < m;\forall u \in \left( {0;2} ight) \hfill \\   \Rightarrow m \geqslant \mathop {\max }\limits_{\left[ {0;2} ight]} g\left( u ight) = g\left( 0 ight) = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 5: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox;Oy;Oz tại A;B;C sao cho H là trực tâm tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha)?

    Hình vẽ minh họa

    Ta có H là trực tâm của tam giác ABC suy ra OH\bot(ABC)

    Thật vậy \left\{ \begin{matrix}
OH\bot OA \\
OH\bot OB \\
\end{matrix} ight.\  \Rightarrow OC\bot AB(1)

    CH\bot AB (vì H là trực tâm tam giác ABC) (2)

    Từ (1) và (2) suy ra AB\bot(OHC) suy ra AB\bot OH(*)

    Tương tự BC\bot(OAH) \Rightarrow BC\bot
OH(**)

    Từ (*) và (**) suy ra OH\bot(ABC)

    Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3

    Vây mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha) là: x^{2} + y^{2} + z^{2} = 9.

  • Câu 6: Vận dụng

    Cho hàm số y = f\left( x ight) liên tục trên \mathbb{R} và có đồ thị như hình vẽ. Tập hợp tất cả các giá trị của tham số m để phương trình \left| {f\left( {\cos x} ight)} ight| =  - 2m + 3 có bốn nghiệm thuộc đoạn \left[ {0;2\pi } ight] là:

    Tìm m để phương trình có 4 nghiệm

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Ta có: \left| {f\left( t ight)} ight| =  - 2m + 3\left( * ight);t \in \left[ { - 1;1} ight]

    Ta có đồ thị hình vẽ như sau:

    Tìm m để phương trình có 4 nghiệm

    Dựa vào đồ thị hàm số, phương trình đã cho có 4 nghiệm thuộc đoạn \left[ {0;2\pi } ight] khi phương trình (*) có hai nghiệm t \in \left[ { - 1;1} ight]

    \Leftrightarrow 0 < 2m + 3 \leqslant 1 \Leftrightarrow 1 \leqslant m < \frac{3}{2}

  • Câu 7: Vận dụng cao

    Với giá trị nào của tham số m thì bất phương trình {2^{{{\sin }^2}x}} + {3^{{\text{co}}{{\text{s}}^2}x}} \geqslant m{.3^{{{\sin }^2}x}} có nghiệm?

     Chia hai vế của bất phương trình cho {3^{{{\sin }^2}x}} > 0, ta được:

    {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} \geqslant m

    Xét hàm số y = {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} là hàm số nghịch biến.

    Ta có: 0 \leqslant {\sin ^2}x \leqslant 1 nên 1 \leqslant y \leqslant 4.

    Vậy bất phương trình có nghiệm khi m \leqslant 4.

  • Câu 8: Vận dụng

    Số giá trị nguyên của tham số m \in \left[ { - 20;20} ight] để hàm số y = \frac{1}{3}{x^3} + 2{x^2} + \left( {m + 3} ight)x + 2 đồng biến trên \mathbb{R} là:

    Ta có: y' = {x^2} + 4x + m + 3

    Hàm số đồng biến trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 1 > 0} \\   {\left( {{\Delta _{y'}}} ight)' = 4 - \left( {m + 3} ight) < 0} \end{array}} ight. \Leftrightarrow m \geqslant 1 \hfill \\ \end{matrix}

    Kết hợp với điều kiện \left\{ {\begin{array}{*{20}{c}}  {m \in \left[ { - 20;20} ight]} \\   {m \in \mathbb{Z}} \end{array}} ight.

    => Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 9: Vận dụng

    Giá trị của tham số m để đồ thị hàm số y = \frac{{\left( {2m - 1} ight)x + 1}}{{x - m}} có đường tiệm cận ngang y = 3 là:

    Điều kiện để đồ thị hàm số có tiệm cận là:

    - m\left( {2m - 1} ight) - 1 e 0 \Rightarrow 2{m^2} - m + 1 e 0 luôn đúng với \forall x \in \mathbb{R}

    Phương trình đường tiệm cận ngang là y = 2m - 1 nên ta có 2x - 1 = 3 \Rightarrow m = 2

  • Câu 10: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    Ta có:

    x^{2} + y^{2} + z^{2} - 8x + 2y + 1 =
0

    \Leftrightarrow (x - 4)^{2} + (y +
1)^{2} + z^{2} = 16

    Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là: I(4; - 1;0),R = 4

  • Câu 11: Vận dụng

    Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

    Đáp án: 2400 m2

    Đáp án là:

    Một chủ trang trại nuôi gia cầm muốn rào thành 2 chuồng hình chữ nhật sát nhau và sát một con sông, một chuồng nuôi gà và một chuồng nuôi vịt. Biết rằng đã có sẵn 240 m hàng rào. Hỏi diện tích lớn nhất có thể bao quanh chuồng là bao nhiêu?

    Đáp án: 2400 m2

    Xét hình chữ nhật ABCD như hình vẽ, và đặtv AB = x (x > 0)

    Khi đó BC = 240 – 3x > 0 ⇒ x < 80.

    Diện tích của hình chữ nhật ABCD là S = x.(240 – 3x ) = 240x – 3x2

    Bài toán trở thành tìm giá trị lớn nhất của hàm số f(x) với 0 < x < 80.

    Xét f(x) = 240x – 3x2 ⇒ f’(x) = 240 – 6x , f’(x) = 0 ⟺ x = 40.

    Do f’’(x) = - 6 < 0, ∀ x∈ (0; 80)

    Do đó maxS = \max_{x \in (0;80)}f(x) =
f(40) = 4800 \Leftrightarrow x = 40

    Vậy diện tích lớn nhất có thể bao quanh là 4800m2 .

  • Câu 12: Thông hiểu

    Tính đạo hàm của hàm số y = {\log _9}\left( {{x^2} + 1} ight)

    Ta có:

    y' = \left[ {{{\log }_9}\left( {{x^2} + 1} ight)} ight]' = \frac{{2x}}{{\left( {{x^2} + 1} ight)\ln {3^2}}} = \frac{{2x}}{{\left( {{x^2} + 1} ight).2.\ln 3}} = \frac{x}{{\left( {{x^2} + 1} ight)\ln 3}}

  • Câu 13: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 14: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 15: Vận dụng

    Gọi x_1 , x_2 là hai nghiệm của phương trình {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}. Khi đó, tổng hai nghiệm bằng?

    0 || không || Không || Tổng 2 nghiệm bằng 0

    Đáp án là:

    Gọi x_1 , x_2 là hai nghiệm của phương trình {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}. Khi đó, tổng hai nghiệm bằng?

    0 || không || Không || Tổng 2 nghiệm bằng 0

     Ta có: {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}

    \Leftrightarrow {8.2^{{x^2} + 1}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{{4.2}^{2\left( {{x^2} + 1} ight)}} - {{4.2}^{{x^2} + 1}} + 1}

    Đặt t = {2^{{x^2} + 1}}\left( {t \geqslant 2} ight), phương trình trên tương đương với

    8t = {t^2} + \sqrt {4{t^2} - 4t + 1}  \Leftrightarrow {t^2} - 6t - 1 = 0 \Leftrightarrow t = 3 + \sqrt {10} (vì t \geqslant 2).

    Từ đó suy ra {2^{{x^2} + 1}} = 3 + \sqrt {10}  \Leftrightarrow \left[ \begin{gathered}  {x_1} = \sqrt {{{\log }_2}\frac{{3 + \sqrt {10} }}{2}}  \hfill \\  {x_2} =  - \sqrt {{{\log }_2}\frac{{3 + \sqrt {10} }}{2}}  \hfill \\ \end{gathered}  ight.

     

    Vậy tổng hai nghiệm bằng 0.

  • Câu 16: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 17: Vận dụng

    Cho {4^x} + {4^{ - x}} = 34. Tính giá trị của biểu thức T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}}

    Ta có:

    \begin{matrix}  {4^x} + {4^{ - x}} = 34 \hfill \\   \Rightarrow {2^{2x}} + 2 + {2^{ - 2x}} = 36 \hfill \\   \Rightarrow {\left( {{2^x} + {2^{ - x}}} ight)^2} = 36 \hfill \\   \Rightarrow {2^x} + {2^{ - x}} = 6;\left( {{2^x} + {2^{ - x}} > 0} ight) \hfill \\ \end{matrix}

    Khi đó ta được:

    T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}} = \frac{{6 - 3}}{{1 - 2\left( {{2^x} + {2^{ - x}}} ight)}} = \frac{3}{{1 - 2.6}} = \frac{{ - 3}}{{11}}

  • Câu 18: Thông hiểu

    Khối đa diện nào sau đây có số mặt nhỏ nhất?

    Khối tứ diện đều có 4 mặt là 4 tam giác đều.

    Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.

    Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông

    Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.

     

  • Câu 19: Nhận biết

    Cho hàm số y = f(x) có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận ngang của đồ thị hàm số đã cho?

    Từ đồ thị suy ra đồ thị hàm số đã cho có đường tiệm cận ngang là y = 1.

  • Câu 20: Vận dụng cao

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 21: Nhận biết

    Với giá trị nào của tham số m để đồ thị hàm số y = \frac{2x^{2} + 6mx + 4}{mx
+ 2} đi qua điểm A( -
1;4)?

    Thay tọa độ điểm A( - 1;4) vào y = \frac{2x^{2} + 6mx + 4}{mx + 2} ta được:

    4 = \frac{2.( - 1)^{2} + 6m.( - 1) +
4}{m.( - 1) + 2} \Leftrightarrow 2m = - 2 \Leftrightarrow m = -
1

    Vậy giá trị m cần tìm là m = -
1.

  • Câu 22: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 23: Thông hiểu

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

    Đáp án là:

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

     Vì G là trọng tâm của tam giác BCD nên S_{\triangle GBC}= \frac{1}{3}S_{\triangle DBC}.

    Suy ra {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.

  • Câu 24: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) = x\left( x^{2} - x ight)(x -
2). Số điểm cực trị của hàm số đã cho là:

    Ta có: f'(x) = x\left( x^{2} - x
ight)(x - 2) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    x = 1;x = 2 là nghiệm bội lẻ và x = 0 là nghiệm bội chẵn nên hàm số có hai điểm cực trị.

  • Câu 25: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 26: Thông hiểu

    Tập nghiệm của bất phương trình {\log _{\frac{1}{3}}}\left( {{x^2} - 6x + 5} ight) + {\log _3}\left( {x - 1} ight) \geqslant 0 là:

    {\log _{\frac{1}{3}}}\left( {{x^2} - 6x + 5} ight) + {\log _3}\left( {x - 1} ight) \geqslant 0 \Leftrightarrow {\log _3}\left( {x - 1} ight) \geqslant {\log _3}\left( {{x^2} - 6x + 5} ight)

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 6x + 5 > 0 \hfill \\  x - 1 \geqslant {x^2} - 6x + 5 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x < 1 \vee x > 5 \hfill \\  1 \leqslant x \leqslant 6 \hfill \\ \end{gathered}  ight. \Leftrightarrow 5 < x \leqslant 6

     Vậy tập nghiệm của BPT là  S = \left( {5;6} ight].

  • Câu 27: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 28: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a \sqrt 2. Tính thể tích của khối chóp?

     thể tích chóp

    Diện tích hình vuông ABCD{S_{ABCD}} = {a^2}.

    Chiều cao khối chóp là SA = a \sqrt 2

    Vậy áp dụng công thức, ta có thể tích khối chóp là:

    {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 2 }}{3}

  • Câu 29: Nhận biết

    Cho a = {\log _3}2;b = {\log _3}5. Khi đó \log 60 có giá trị là:

    Ta có:

    \begin{matrix}  \log 60 = \dfrac{{{{\log }_3}60}}{{{{\log }_3}10}} \hfill \\   = \dfrac{{{{\log }_3}{2^2} + {{\log }_3}3 + {{\log }_3}5}}{{{{\log }_3}2 + {{\log }_3}5}} \hfill \\   = \dfrac{{{{\log }_3}{2^2} + 1 + {{\log }_3}5}}{{{{\log }_3}2 + {{\log }_3}5}} = \dfrac{{2a + b + 1}}{{a + b}} \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Cho a là một số dương, biểu thức {a^{\frac{2}{3}}}.\sqrt a viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: {a^{\frac{2}{3}}}.\sqrt a  = {a^{\frac{2}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{7}{6}}}

  • Câu 31: Nhận biết

    Bất phương trình {\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} ight) < 0 có tập nghiệm là:

     Ta có {\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} ight) < 0 

    \Leftrightarrow 2{x^2} - x + 1 > 1 \Leftrightarrow \left[ \begin{gathered}  x < 0 \hfill \\  x > \frac{1}{2} \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là  S = \left( { - \infty ;0} ight) \cup \left( {\frac{1}{2}; + \infty } ight).

  • Câu 32: Thông hiểu

    Tập nghiệm của phương trình {\log _2}\frac{1}{x} = {\log _{\frac{1}{2}}}\left( {{x^2} - x - 1} ight) là:

     Điều kiện: x > 0 và {x^2} - x - 1 > 0

    Với điều kiện đó thì {\log _2}\frac{1}{x} = {\log _{\frac{1}{2}}}x.

    Khi đó, phương trình đã cho tương đương phương trình:

    {\log _{\frac{1}{2}}}x = {\log _{\frac{1}{2}}}\left( {{x^2} - x - 1} ight) \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x = {x^2} - x - 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \left[ \begin{gathered}  x = 1 + \sqrt 2  \hfill \\  x = 1 - \sqrt 2  \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 1 + \sqrt 2

  • Câu 33: Thông hiểu

    Tính giá trị của tham số m biết rằng giá trị lớn nhất của hàm số y = x + \sqrt{4 - x^{2}} + m3\sqrt{2}?

    Ta có: y = x + \sqrt{4 - x^{2}} +
m có tập xác định D = \lbrack -
2;2brack

    y' = 1 + \frac{- x}{\sqrt{4 -
x^{2}}};\forall x \in ( - 2;2)

    y' = 0 \Leftrightarrow 1 + \frac{-
x}{\sqrt{4 - x^{2}}} = 0 \Leftrightarrow \sqrt{4 - x^{2}} =
x

    \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
4 - x^{2} = x^{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \geq 0 \\
x = \pm \sqrt{2} \\
\end{matrix} ight.\  \Leftrightarrow x = \sqrt{2}

    Ta có: \left\{ \begin{matrix}
y(2) = 2 + m \\
y( - 2) = 2 + m \\
y\left( \sqrt{2} ight) = 2\sqrt{2} + m \\
\end{matrix} ight. . Theo bài ra ta có: 2\sqrt{2} + m = 3\sqrt{2} \Leftrightarrow m =
\sqrt{2}

    Vậy đáp án cần tìm là m =
\sqrt{2}

  • Câu 34: Thông hiểu

    Dân số thế giới được tính theo công thức S = A. e \
^{nr} trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là 1,47\% một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?

    Ta có:

    S = A \cdot e^{nr} \Leftrightarrow
e^{nr} = \frac{S}{A} \Leftrightarrow nr = \ln\frac{S}{A} \Leftrightarrow
n = \frac{1}{r}\ln\frac{S}{A}

    Với S = 93713700 người; A = 80902400 người; r = \frac{1,47}{100} = 0,0147/năm.

    Suy ra n =
\frac{1}{0,0147}\ln\frac{93713000}{80902400} \approx 10.

    Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.

  • Câu 35: Thông hiểu

    Chỉ số hay độ pH của một dung dịch được tính theo công thức pH = -
\log\left\lbrack H^{+} ightbrack với \left\lbrack H^{+} ightbrack là nồng độ ion hydrogen. Độ pH của một loại sữa có \left\lbrack H^{+} ightbrack =
10^{- 7,8} là bao nhiêu?

    Độ pH là pH = - log10^{- 6,8} =
6,8.

  • Câu 36: Vận dụng cao

    Có bao nhiêu giá trị nguyên dương của tham số m để hàm số y
= \left| 3x^{4} - 4x^{3} - 12x^{2} + m ight|5 điểm cực trị?

    Tập xác định D\mathbb{= R}

    Ta có: \left( \left| f(x) ight|
ight)' = \left( \sqrt{f^{2}(x)} ight)' =
\frac{2f(x).f'(x)}{2\sqrt{f^{2}(x)}} =
\frac{f(x).f'(x)}{\sqrt{f^{2}(x)}}

    \Rightarrow y' = \frac{\left(
12x^{3} - 12x^{2} - 24x ight)\left( 3x^{4} - 4x^{3} - 12x^{2} + m
ight)}{\left| 3x^{4} - 4x^{3} - 12x^{2} + m ight|}

    Xét phương trình

    \left( 12x^{3} - 12x^{2} - 24x
ight)\left( 3x^{4} - 4x^{3} - 12x^{2} + m ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
12x^{3} - 12x^{2} - 24x = 0 \\
3x^{4} - 4x^{3} - 12x^{2} + m = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
3x^{4} - 4x^{3} - 12x^{2} = - m\ \ (*) \\
\end{matrix} ight.

    Xét hàm số 3x^{4} - 4x^{3} - 12x^{2} =
g(x) trên \mathbb{R} ta có: g'(x) = 12x^{3} - 12x^{2} -
24xg'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên của g(x) như sau:

    Hàm số đã cho có 5 điểm cực trị khi và chỉ khi tổng số nghiệm bội lẻ của y' = 0 và số điểm tới hạn của y' là 5 điểm. Do đó ta cần có các trường hợp sau:

    TH1: Phương trình (*) có hai nghiệm phân biệt khác \left\{ - 1;0;2 ight\}

    \Leftrightarrow \left\lbrack
\begin{matrix}
- m > 0 \\
- 32 < - m < - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
5 < m < 32 \\
\end{matrix} ight. trong trường hợp này có 26 số nguyên dương.

    TH2: Phương trình (*) có 3 nghiệm trong đó có một nghiệm kép trùng với một trong các nghiệm \left\{ - 1;0;2
ight\}

    \Leftrightarrow \left\lbrack
\begin{matrix}
- m = 0 \\
- m = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 5 \\
\end{matrix} ight. trường hợp này có một số nguyên dương.

    Vậy có tất cả 27 số nguyên dương thỏa mãn yêu cầu bài toán.

  • Câu 37: Thông hiểu

    Cho hàm số y = \frac{m^{2}x + 5}{2mx +
1} với m là tham số. Gọi S là tập hợp các số nguyên m \in \lbrack - 2020;2020brack để hàm số đã cho nghịch biến trên khoảng (3; +
\infty). Xác định số phần tử của tập hợp S?

    Xét m = 0 \Rightarrow y = 5 là hàm hằng nên hàm số không nghịch biến. Vậy m
= 0 không thỏa mãn.

    Xét m eq 0

    Tập xác định D = \left( - \infty; -
\frac{1}{2m} ight) \cup \left( - \frac{1}{2m}; + \infty
ight)

    Để hàm số nghịch biến trên khoảng (3; +
\infty) khi và chỉ khi

    \left\{ \begin{matrix}
y' = \frac{m^{2} - 10m}{(2mx + 1)^{2}} < 0 \\
- \frac{1}{2m} \leq 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m^{2} - 10m < 0 \\
\frac{6m + 1}{2m} \geq 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
0 < m < 10 \\
\left\lbrack \begin{matrix}
m \leq - \frac{1}{6} \\
m > 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 10

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2020;2020brack \\
\end{matrix} ight. nên m \in
\left\{ 1;2;3;...;9 ight\}

    Vậy tập hợp S có tất cả 9 giá trị.

  • Câu 38: Vận dụng

    Cho hình lăng trụ ABC.A'B'C'có đáy là tam giác đều cạnh có độ dài bằng 2. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Góc tạo bởi cạnh bên AA' với mặt đáy là 45^0. Tính thể tích khối trụ  ABC.A'B'C'.

    3 || Ba || ba || V=3

    Đáp án là:

    Cho hình lăng trụ ABC.A'B'C'có đáy là tam giác đều cạnh có độ dài bằng 2. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Góc tạo bởi cạnh bên AA' với mặt đáy là 45^0. Tính thể tích khối trụ  ABC.A'B'C'.

    3 || Ba || ba || V=3

     

    Tam giác đều ABC cạnh bằng 2 nên AH = \sqrt 3.

    A'H \bot \left( {ABC} ight) nên hình chiếu vuông góc của AA' trên mặt đáy (ABC) là AH. 

    Do đó {45^0} = \widehat {AA',\left( {ABC} ight)} = \widehat {AA',AH} = \widehat {A'AH}.

    Suy ra tam giác A'HA vuông cân tại H nên A'H = HA = \sqrt 3.

    Diện tích tam giác đều ABC là {S_{\Delta ABC}} = \sqrt 3.

    Vậy V = {S_{\Delta ABC}}.A'H = 3.

  • Câu 39: Vận dụng

    Tìm tập xác định của hàm số y = {\left( {x - 2} ight)^{\sqrt 5 }} + {\left( {{x^2} - 9} ight)^{\frac{3}{5}}} + {x^2} - 5x - 2

    Hàm số xác định khi và chỉ khi \left\{ {\begin{array}{*{20}{c}}  {x - 2 > 0} \\   {{x^2} - 9 > 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x > 2} \\   {\left[ {\begin{array}{*{20}{c}}  {x <  - 3} \\   {x > 3} \end{array}} ight.} \end{array} \Rightarrow x > 3} ight.

    Vậy tập xác định của hàm số là: D = \left( {3; + \infty } ight)

  • Câu 40: Vận dụng

    Có bao nhiêu giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - \frac{1}{2}(3m + 2)x^{2} + \left( 2m^{2} + 3m + 1
ight)x - 2 có điểm cực đại x_{CÐ} và điểm cực tiểu x_{CT} thỏa mãn biểu thức 3{x_{CÐ}}^{2} - 4x_{CT} = 0?

    Ta có: y' = x^{2} - (3m + 2)x +
\left( 2m^{2} + 3m + 1 ight)\Delta = m^{2} \geq 0;\forall m\mathbb{\in
R} nên y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 2m + 1 \\
x = m + 1 \\
\end{matrix} ight..

    Hàm số có cực đại và cực tiểu khi và chỉ khi m eq 0.

    Trường hợp 1: \left\{ \begin{matrix}
x_{CÐ} = 2m + 1 \\
x_{CT} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow 2m + 1 < m + 1 \Leftrightarrow m
< 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(2m + 1)^{2} - 4(m + 1) = 0

    \Leftrightarrow 12m^{2} + 8m - 1 = 0
\Leftrightarrow m = \frac{- 2 \pm \sqrt{7}}{6}

    Với điều kiện m < 0 \Rightarrow m =
\frac{- 2 - \sqrt{7}}{6} thỏa mãn.

    Trường hợp 2: \left\{ \begin{matrix}
x_{CT} = 2m + 1 \\
x_{CÐ} = m + 1 \\
\end{matrix} ight.

    Do a = \frac{1}{3} > 0 \Rightarrow
x_{CÐ} < x_{CT} \Leftrightarrow m + 1 < 2m + 1 \Leftrightarrow m
> 0

    Lại có 3{x_{CÐ}}^{2} - 4x_{CT} = 0
\Leftrightarrow 3(m + 1)^{2} - 4(2m + 1) = 0

    \Leftrightarrow 3m^{2} - 2m - 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = 1 \\m = - \dfrac{1}{3} \\\end{matrix} ight.

    Với điều kiện m > 0 \Rightarrow m =
1 thỏa mãn.

    Vậy có 2 giá trị thực của tham số m thỏa mãn.

  • Câu 41: Nhận biết

    Cho hình vẽ:

    Đồ thị hình bên là của hàm số nào?

    Đồ thị hình bên là của hàm số nào?

     Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hhai hàm số y = {\left( {\sqrt 2 } ight)^x};y = {\left( {\sqrt 3 } ight)^x}

    Đồ thị hàm số đi qua điểm \left( { - 1;3} ight) nên hàm số y = {\left( {\frac{1}{3}} ight)^x} thảo mãn

  • Câu 42: Thông hiểu

    Cho hàm số y = 2x^{3} - 5x^{2} + 4x -
2021. Gọi x_{1};x_{2} lần lượt là hoành độ tại hai điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 6x^{2} - 10x + 4 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = \dfrac{2}{3} \\\end{matrix} ight.

    y'' = 12x - 10

    \Rightarrow y''(1) = 1 >
0 nên x_{2} = 1 là điểm cực tiểu của hàm số.

    y''\left( \frac{2}{3} ight) = -
2 < 0 nên x_{1} =
\frac{2}{3} là điểm cực đại của hàm số.

    Vậy kết luận đúng là: 2x_{1} - x_{2} =
\frac{1}{3}.

  • Câu 43: Vận dụng cao

    Cho hình chóp S.ABCD có thể tích bằng V, đáy ABCD là hình vuông; SA \bot \left( {ABCD} ight)SC hợp với đáy một góc bằng 30^0. Mặt phẳng (P) đi qua A và vuông góc với SC, cắt các cạnh SB,SC,SD lần lượt tại E,F,K. Tính thể tích khối chóp S.AEFK

    V/10 || V phần 10

    Đáp án là:

    Cho hình chóp S.ABCD có thể tích bằng V, đáy ABCD là hình vuông; SA \bot \left( {ABCD} ight)SC hợp với đáy một góc bằng 30^0. Mặt phẳng (P) đi qua A và vuông góc với SC, cắt các cạnh SB,SC,SD lần lượt tại E,F,K. Tính thể tích khối chóp S.AEFK

    V/10 || V phần 10

     

    Ta có \frac{{SB}}{{SE}} = \frac{{S{B^2}}}{{S{A^2}}}. Tương tự \frac{{SD}}{{SK}} = \frac{{S{D^2}}}{{S{A^2}}} nên \frac{{SB}}{{SE}} = \frac{{SD}}{{SK}}.

    \frac{{SC}}{{SF}} = \frac{{S{C^2}}}{{S{A^2}}} = 4 (do \Delta SCA vuông tại A, \,\widehat {\,SCA} = {30^0}) nên ta có:

    \frac{{SC}}{{SF}} + 1 = \frac{{SB}}{{SE}} + \frac{{SD}}{{SK}} = 5 \Rightarrow \frac{{SB}}{{SE}} = \frac{{SD}}{{SK}} = \frac{5}{2}

    Xét tỉ số thể tích, ta được:

    \frac{{{V_{S.AEFK}}}}{{{V_{S.ABCD}}}} = \frac{{10}}{{4.1.4.\dfrac{5}{2}.\dfrac{5}{2}}} = \frac{1}{{10}}

    \Rightarrow {V_{S.AEFK}} = \frac{{{V_{S.ABCD}}}}{{10}} = \frac{V}{{10}}

     

  • Câu 44: Thông hiểu

    Trong hệ tọa độ Oxyz, cho mặt cầu (S) có đường kính AB, với A(6;2; - 5),B( - 4;0;7). Viết phương trình (P) tiếp xúc với mặt cầu (S) tại A?

    Hình vẽ minh họa

    Vì mặt cầu (S) có đường kính là AB nên tâm I của mặt cầu (S) là trung điểm của AB.

    Mặt cầu (S) có tâm I(1; 1; 1).

    (P) tiếp xúc với (S) tại A nên (P) đi qua A và nhận \overrightarrow{IA} = (5;1; - 6) làm vectơ pháp tuyến.

    Suy ra (P):5(x - 6) + (y - 2) - 6(z + 5)
= 0

    \Rightarrow (P):5x + y - 6z - 62 =
0

  • Câu 45: Nhận biết

    Cho hàm số y = {\left( {{x^2} - 2x + 1} ight)^{\frac{1}{3}}}. Tập xác định của hàm số đã cho là:

    Điều kiện xác đinh: {x^2} - 2x + 1 > 0 \Rightarrow x e 1

    => Tập xác định của hàm số là: D = \mathbb{R}\backslash \left\{ 1 ight\}

  • Câu 46: Vận dụng

    Gọi x_1, x_2 là 2 nghiệm của phương trình \frac{1}{{4 + {{\log }_2}x}} + \frac{2}{{2 - {{\log }_2}x}} = 1. Khi đó x_1.x_2 bằng:

     Điều kiện: \left\{ \begin{gathered}  x > 0 \hfill \\  x e 4 \hfill \\  x e \frac{1}{{16}} \hfill \\ \end{gathered}  ight..

    Đặt t = {\log _2}x ,điều kiện \left\{ \begin{gathered}  t e  - 4 \hfill \\  t e 2 \hfill \\ \end{gathered}  ight.. Khi đó phương trình trở thành:

    \frac{1}{{4 + t}} + \frac{2}{{2 - t}} = 1 \Leftrightarrow {t^2} + 3t + 2 = 0 \Leftrightarrow \left[ \begin{gathered}  t =  - 1 \hfill \\  t =  - 2 \hfill \\ \end{gathered}  ight. \Rightarrow \left[ \begin{gathered}  x = \frac{1}{2} \hfill \\  x = \frac{1}{4} \hfill \\ \end{gathered}  ight.

    Vậy {x_1}.{x_2} = \frac{1}{8}.

  • Câu 47: Nhận biết

    Số nghiệm của phương trình {\log _2}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _2}x = 0 là:

    0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm

    Đáp án là:

    Số nghiệm của phương trình {\log _2}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _2}x = 0 là:

    0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  {x^3} + 1 > 0 \hfill \\  {x^2} - x + 1 > 0 \hfill \\  {\log _{{2^{}}}}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _{{2^{}}}}x = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{{x^3} + 1}}{{{x^2}({x^2} - x + 1)}} = 0 \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{(x + 1)({x^2} - x + 1)}}{{{x^2}({x^2} - x + 1)}} = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x + 1 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x =  - 1 \hfill \\ \end{gathered}  ight. \Rightarrow x \in \emptyset

    Vậy số nghiệm của PT là 0.

  • Câu 48: Nhận biết

    Cho hàm số y =
\frac{2x - 1}{x + 3}. Khẳng định nào sau đây đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 3 ight\}

    Ta có: y' = \frac{7}{(x + 3)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên mỗi khoảng (
- \infty;3)(3; +
\infty).

  • Câu 49: Thông hiểu

    Tính đạo hàm của hàm số y = {\left( {{x^2} - 3x + 2} ight)^{\sqrt 3 }}

    Ta có:

    \begin{matrix}  y' = \sqrt 3 .{\left( {{x^2} - 3x + 2} ight)^{\sqrt 3  - 1}}.\left( {{x^2} - 3x + 1} ight)\prime \hfill \\   \Rightarrow y' = \sqrt 3 .\left( {2x - 3} ight).{\left( {{x^2} - 3x + 2} ight)^{\sqrt 3  - 1}} \hfill \\ \end{matrix}

  • Câu 50: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo