Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2}\left( {x - 1} ight)\left( {x - 2} ight)\left( {{3^x} - 1} ight),\forall x \in \mathbb{R}. Số điểm cực trị của hàm số đã cho bằng

     Ta có:

    f'\left( x ight) = 0 \Leftrightarrow {x^2}\left( {x - 1} ight)\left( {x - 2} ight)\left( {{3^x} - 1} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 0} \\   {x = 2} \end{array}} ight.

    => Hàm số có 3 điểm cực trị

  • Câu 2: Vận dụng

    Tập hợp tất cả các giá trị thực của tham số m để đồ thị hàm số y = \frac{1 + \sqrt{x + 1}}{x^{2} - 2x -
m} có đúng hai tiệm cận đứng?

    Điều kiện xác định x \geq -
1

    1 + \sqrt{x + 1} > 0;\forall x \geq
- 1 nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình x^{2} - 2x = m\ \ (*) phải có hai nghiệm phân biệt lớn hơn -
1.

    Xét hàm số f(x) = x^{2} - 2x trên \lbrack - 1; + \infty) có:

    f'(x) = 2x - 2 = 0 \Rightarrow x =
1

    Bảng biến thiên

    Phương trình (*) có hai nghiệm phân biệt lớn hơn - 1 khi - 1
< m \leq 3.

    Vậy đáp án cần tìm là m \in ( -
1;3brack.

  • Câu 3: Thông hiểu

    Giá trị lớn nhất của hàm số y =  - {x^3} + 3x + 1 trên khoảng \left( {0; + \infty } ight)

    Ta có:

    \begin{matrix}  y' =  - 3{x^2} + 3 \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1\left( {tm} ight)} \\   {x =  - 1\left( L ight)} \end{array}} ight. \hfill \\ \end{matrix}

    => Giá trị lớn nhất của hàm số trên khoảng đã cho bằng 3 khi x = 1

  • Câu 4: Thông hiểu

    Tìm điều kiện của tham số m để đồ thị hàm số y = mx^{4} + (2m - 1)x^{2} + m
- 2 chỉ có một điểm cực đại mà không có điểm cực tiểu?

    Xét m = 0 khi đó y = - x^{2} - 2 là hàm số bậc hai có a = -1 < 0 nên đồ thị của hàm số là parabol có bề lõm hướng xuống nên có 1 cực đại mà không có cực tiểu. Suy ra m =
0 thỏa mãn.

    Xét m eq 0 khi đó y = mx^{4} + (2m - 1)x^{2} + m - 2 là hàm số bậc 4 dạng trùng phươn

    Để đồ thị hàm số có một cực đại mà không có cực tiểu thì

    \left\{ \begin{gathered}
  m < 0 \hfill \\
  m\left( {2m - 1} ight) \geqslant 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  m < 0 \hfill \\
  \left[ \begin{gathered}
  m \leqslant 0 \hfill \\
  m \geqslant \frac{1}{2} \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Leftrightarrow m < 0

    Vậy đáp án cần tìm là m \leq
0.

  • Câu 5: Vận dụng cao

    Cho hàm số f\left( x ight) có đạo hàm y = f'\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    Bất phương trình f\left( x ight) >  - {x^3} + {x^2} - x + m (m là tham số thực) nghiệm đúng với \forall x \in \left( { - 1;1} ight) khi và chỉ khi

    Ta có: f\left( x ight) >  - {x^3} + {x^2} - x + m \Rightarrow m < f\left( x ight) + {x^3} - {x^2} + x\left( * ight)

    Xét hàm số g\left( x ight) = f\left( x ight) + {x^3} - {x^2} + x với \forall x \in \left( { - 1;1} ight)

    Ta có: g'\left( x ight) = f'\left( x ight) + 3{x^2} - 2x + 1 > 0;\forall x \in \left( { - 1;1} ight)

    => Hàm số g(x) luôn đồng biến trên \left( { - 1;1} ight)

    Ta có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    => (*) nghiệm đúng \forall x \in \left( { - 1;1} ight) khi m \leqslant g\left( { - 1} ight) = f\left( { - 1} ight) - 3

  • Câu 6: Vận dụng

    Cho hàm số y =
f(x) có đạo hàm f'(x) = x^{2}(x
- 9)(x - 4)^{2}. Khi đó hàm số y =
f\left( x^{2} ight) nghịch biến trên khoảng nào?

    Ta có:

    y' = \left( f\left( x^{2} ight)
ight)' = 2x.f'\left( x^{2} ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{4}\left( x^{2} - 9 ight)\left( x^{2} - 4 ight)^{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 3 \\
x = \pm 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên ta có hàm số nghịch biến trên ( - \infty; - 3)(0;3).

  • Câu 7: Thông hiểu

    Hình đa diện nào dưới đây không có tâm đối xứng?

     Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)

    Hình lăng trụ tam giác cũng không có tâm đối xứng.

    Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng

    Bát diện đều cũng có tâm đối xứng.

  • Câu 8: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 9: Thông hiểu

    Gọi x_1, x_2là nghiệm của phương trình {\log _x}2 - {\log _{16}}x = 0. Khi đó tích x_1.x_2 bằng:

    1 || x1.x2=1

    Đáp án là:

    Gọi x_1, x_2là nghiệm của phương trình {\log _x}2 - {\log _{16}}x = 0. Khi đó tích x_1.x_2 bằng:

    1 || x1.x2=1

    Điều kiện: 0 < x e 1

    PT \Leftrightarrow {\log _x}2 - {\log _{16}}x = 0 \Leftrightarrow {\log _x}2 - {\log _{{2^4}}}x = 0 \Leftrightarrow {\log _x}2 - \frac{1}{4}{\log _2}x = 0

    \Leftrightarrow {\log _x}2 - \frac{1}{{4{{\log }_x}2}} = 0 \Leftrightarrow \frac{{4{{({{\log }_x}2)}^2} - 1}}{{4{{\log }_x}2}} = 0 \Leftrightarrow 4{({\log _x}2)^2} - 1 = 0

    \Leftrightarrow {({\log _x}2)^2} = \frac{1}{4} \Leftrightarrow \left[ \begin{gathered}  {\log _x}2 = \frac{1}{2} \hfill \\  {\log _x}2 =  - \frac{1}{2} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  2 = {x^{\frac{1}{2}}} \hfill \\  2 = {x^{ - \frac{1}{2}}} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  {x_1} = 4 \hfill \\  {x_2} = \frac{1}{4} \hfill \\ \end{gathered}  ight.

    Vậy {x_1}.{x_2} = 4.\frac{1}{4} = 1.

  • Câu 10: Nhận biết

    Tập xác định của hàm số y = {\log _2}\left( {4 - {x^2}} ight) là tập hợp nào sau đây?

    Điều kiện xác định 4 - {x^2} > 0 \Rightarrow x \in \left( { - 2;2} ight)

    Vậy tập xác định của hàm số là D = \left( { - 2;2} ight)

  • Câu 11: Vận dụng

    Cho hàm số y = {x^3} + m{x^2} - \left( {{m^2} + m + 1} ight)x. Gọi S là tập hợp các giá trị thực của tham số m sao cho giá trị nhỏ nhất của hàm số trên đoạn \left[ { - 1;1} ight] bằng -6. Tính tổng các phần tử của S.

    Ta có: f'\left( x ight) =  - 3{x^2} + 2mx - {m^2} - m - 1;\forall x \in \mathbb{R}

    \Delta ' =  - 2{m^2} - 3m - 3 < 0,\forall m \in \mathbb{R}

    => y' < 0;\forall x \in \left[ { - 1;1} ight]

    Do đó hàm số f\left( x ight) nghịch biến trên \left( { - 1;1} ight)

    => \mathop {\min y}\limits_{\left[ { - 1;1} ight]}  = y\left( 1 ight) =  - 6

    Ta lại có:

    \begin{matrix}  y\left( 1 ight) =  - 2 - {m^2} \hfill \\   \Rightarrow  - 2 - {m^2} =  - 6 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 2} \\   {m =  - 2} \end{array}} ight. \Rightarrow \sum m  = 0 \hfill \\ \end{matrix}

  • Câu 12: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân ở B, AC = a\sqrt 2, SA=a và vuông góc với đáy (ABC). Gọi G là trọng tâm tam giác SBC. Mặt phẳng (\alpha) qua AG và song song với BC cắt SB, SC lần lượt tại M, N. Tính theo a thể tích V của khối chóp S.AMN.

     

    Từ giả thiết suy ra AB=BC=a.

    Diện tích tam giác {S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{{a^2}}}{2}. Do đó {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = \frac{{{a^3}}}{6}.

    Gọi I là trung điểm BC.

    Do G là trọng tâm \Delta SBC nên \frac{{SG}}{{SI}} = \frac{2}{3}.

    BC\parallel \left( \alpha  ight)\xrightarrow{{}}BC song song với giao tuyến MN

    ightarrow{{}}\Delta AMN \backsim \Delta ABC theo tỉ số \frac{2}{3}\xrightarrow{{}}{S_{\Delta AMN}} = \frac{4}{9}{S_{\Delta SBC}}

    Vậy thể tích khối chóp {V_{S.AMN}} = \frac{4}{9}.{V_{S.ABC}} = \frac{{2{a^3}}}{{27}}.

  • Câu 13: Thông hiểu

    Cho số thực a dương. Rút gọn biểu thức P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}

    Ta có:

    P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{{a^{\frac{3}{2}}}}}}}}} = {\left( {a\sqrt[4]{{a.{a^{\frac{1}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a\sqrt[4]{{{a^{\frac{3}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{5}}} = {\left( {{a^{\frac{{11}}{8}}}} ight)^{\frac{1}{5}}} = {a^{\frac{{11}}{{40}}}}

  • Câu 14: Nhận biết

    Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

    Quan sát hình vẽ, ta thấy:

    Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.

  • Câu 15: Nhận biết

    Giá trị của biểu thức {\log _2}5.{\log _5}64 là:

    Ta có: {\log _2}5.{\log _5}64 = {\log _2}64 = {\log _2}{2^6} = 6

  • Câu 16: Nhận biết

    Tổng số đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x + 4} bằng:

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số y = \frac{x + 1}{x^{2} - 3x
+ 4} không có tiệm cận đứng.

    Ta có: \lim_{x ightarrow \pm \infty}y =\lim_{x ightarrow \pm \infty}\left( \dfrac{x + 1}{x^{2} - 3x + 4}ight) = \lim_{x ightarrow \pm \infty}\left( \dfrac{\dfrac{1}{x} +\dfrac{1}{x^{2}}}{1 - \dfrac{3}{x} + \dfrac{4}{x^{2}}} ight) = 0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận của đồ thị hàm số đã cho bằng 1.

  • Câu 17: Thông hiểu

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hàm số g(x) = 2f(x) + 2021 đồng biến trên khoảng:

    Ta có: g'(x) = 2f'(x) > 0
\Leftrightarrow f'(x) > 0

    \Leftrightarrow x \in ( - \infty; - 4)
\cup (7; + \infty)

    Nên suy ra hàm số cũng đồng biến trên (8;
+ \infty).

  • Câu 18: Thông hiểu

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

    Đáp án là:

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

     Vì G là trọng tâm của tam giác BCD nên S_{\triangle GBC}= \frac{1}{3}S_{\triangle DBC}.

    Suy ra {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.

  • Câu 19: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 20: Vận dụng

    Khẳng định nào dưới đây đúng?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   { - 2017 >  - 2018} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{ - 2017}} > {\left( {\sqrt 5  + 2} ight)^{ - 2018}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{2018}} < {\left( {\sqrt 5  + 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    Vậy đáp án đúng là: {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

  • Câu 21: Nhận biết

    Chọn hàm số tương ứng với bảng biến thiên sau?

    Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - x^{4} + 2x^{2} + 1.

  • Câu 22: Nhận biết

    Điều kiện để bất phương trình sau có nghĩa là \ln \frac{{{x^2} - 1}}{x} < 0

     Điều kiện: \frac{{{x^2} - 1}}{x} > 0 \Leftrightarrow \left[ \begin{gathered}   - 1 < x < 0 \hfill \\  x > 1 \hfill \\ \end{gathered}  ight.

  • Câu 23: Vận dụng

    Gọi m_{1};m_{2} là giá trị của tham số m để đồ thị hàm số y = 2x^{3} - 3x^{2} + m - 1 có hai điểm cực trị là P;Q sao cho diện tích tam giác OPQ bằng 2 (O là gốc tọa độ). Khi đó giá trị biểu thức m_{1}.m_{2} bằng:

    Tập xác định D\mathbb{= R}.

    Ta có: y' = 6x^{2} - 6x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \Rightarrow y = m - 1 \\
x = 1 \Rightarrow y = m - 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Suy ra P(0;m - 1),Q(1;m - 2)

    \Rightarrow \overrightarrow{PQ} = (1; -
1) \Rightarrow \left| \overrightarrow{PQ} ight| =
\sqrt{2}

    Đường thẳng (PQ) đi qua điểm P(0;m -
1) và nhận \overrightarrow{n} =
(1;1) làm một vecto pháp tuyến nên có phương trình

    1(x - 0) + 1(y - m + 1) = 0
\Leftrightarrow x + y - m + 1 = 0

    d(O;PQ) = \frac{|1 -
m|}{\sqrt{2}}

    Theo bài ra ta có diện tích tam giác OPQ bằng 2 nên ta có phương trình:

    S_{OAB} = \frac{1}{2}.d(O;PQ).PQ =
2

    \Leftrightarrow \frac{1}{2}.\frac{|1 -
m|}{\sqrt{2}}.\sqrt{2} = 2 \Leftrightarrow |1 - m| = 4

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - m = 4 \\
1 - m = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 3 \\
m = 5 \\
\end{matrix} ight.

    Vậy m_{1}.m_{2} = - 15.

  • Câu 24: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 25: Vận dụng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm số nghiệm của phương trình 2f\left(\frac{\sin x + \cos x}{\sqrt{2}} ight) + 3 = 0 trên đoạn \left\lbrack - \frac{3\pi}{4};\frac{7\pi}{4}ightbrack?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm số nghiệm của phương trình 2f\left(\frac{\sin x + \cos x}{\sqrt{2}} ight) + 3 = 0 trên đoạn \left\lbrack - \frac{3\pi}{4};\frac{7\pi}{4}ightbrack?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Vận dụng

    Một người gửi vào ngân hàng 200 triệu đồng vào tài khoản tiết kiệm ngân hàng với lãi suất 0,6%/ tháng, cứ sau mỗi tháng người đó rút ra 500 nghìn đồng. Hỏi sau đúng 36 lần rút tiền thì số tiền còn lại trong tài khoản của người đó gần nhất với phương án nào sau đây? (Biết rằng lãi suất không thay đổi và tiền lại mỗi tháng tính theo số tiền thực tế trong tài khoản của tháng đó?

    Số tiền còn lại trong tài khoản sau tháng thứ 1 là: 200.1,006 - 0,5 (triệu đồng)

    Số tiền còn lại trong tài khoản sau tháng thứ 2 là:

    \left( {200.1,006 - 0,5} ight).1,006 - 0,5 = 200.{\left( {1,006} ight)^2} - 0,5\left( {1 + 1,006} ight) (triệu đồng)

    Số tiền còn lại trong tài khoản sau tháng thứ 3 là:

    200.{\left( {1,006} ight)^3} - 0,5\left[ {1 + 1,006 + {{\left( {1,006} ight)}^2}} ight] (triệu đồng)

    Cứ tiếp tục quá trình thì số tiền còn lại trong tài khoản sau tháng thứ 36 là:

    200.{\left( {1,006} ight)^3} - 0,5\left[ {1 + 1,006 + {{\left( {1,006} ight)}^2} + ... + {{\left( {1,006} ight)}^{35}}} ight]

    = 200.{\left( {1,006} ight)^{36}} - 0,5.\frac{{1 - {{\left( {1,006} ight)}^{36}}}}{{1 - 1,006}} = 228,035 (triệu đồng) 

  • Câu 27: Thông hiểu

    Cho một số thực \alpha tùy ý. Trong các khẳng định sau khẳng định nào đúng?

     Theo tính chất đạo hàm của hàm số lũy thừa, hàm số y = {x^\alpha } có đạo hàm với mọi x > 0 và \left( {{x^\alpha }} ight)' = \alpha {x^{\alpha  - 1}}

  • Câu 28: Nhận biết

    Đạo hàm của hàm số y = \frac{{{e^{4x}}}}{5}

    Ta có: y' = \frac{1}{5}\left( {{e^{4x}}} ight)' = \frac{1}{5}\left( {4x} ight)'.{e^{4x}} = \frac{4}{5}.{e^{4x}}

  • Câu 29: Vận dụng cao

    Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số y = \frac{1}{3}{x^3} - \left( {m + 1} ight){x^2} + \left( {{m^2} + 2m} ight)x - 3 nghịch biến trên khoảng (-1; 1)

     Ta có: y' = {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight)

    Để hàm số nghịch biến trên khoảng (-1; 1) thì

    \begin{matrix}  y' \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\   \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight) \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\ \end{matrix}

    Ta có y’ = 0 => x = m hoặc x = m + 2

    Bảng xét dấu

    Tìm điều kiện để hàm số nghịch biến trên khoảng

    Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì

    \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m + 2 \geqslant 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m \geqslant  - 1} \end{array}} ight. \Leftrightarrow m =  - 1

  • Câu 30: Vận dụng cao

    Cho hình chóp S.ABCD có thể tích bằng V, đáy ABCD là hình vuông; SA \bot \left( {ABCD} ight)SC hợp với đáy một góc bằng 30^0. Mặt phẳng (P) đi qua A và vuông góc với SC, cắt các cạnh SB,SC,SD lần lượt tại E,F,K. Tính thể tích khối chóp S.AEFK

    V/10 || V phần 10

    Đáp án là:

    Cho hình chóp S.ABCD có thể tích bằng V, đáy ABCD là hình vuông; SA \bot \left( {ABCD} ight)SC hợp với đáy một góc bằng 30^0. Mặt phẳng (P) đi qua A và vuông góc với SC, cắt các cạnh SB,SC,SD lần lượt tại E,F,K. Tính thể tích khối chóp S.AEFK

    V/10 || V phần 10

     

    Ta có \frac{{SB}}{{SE}} = \frac{{S{B^2}}}{{S{A^2}}}. Tương tự \frac{{SD}}{{SK}} = \frac{{S{D^2}}}{{S{A^2}}} nên \frac{{SB}}{{SE}} = \frac{{SD}}{{SK}}.

    \frac{{SC}}{{SF}} = \frac{{S{C^2}}}{{S{A^2}}} = 4 (do \Delta SCA vuông tại A, \,\widehat {\,SCA} = {30^0}) nên ta có:

    \frac{{SC}}{{SF}} + 1 = \frac{{SB}}{{SE}} + \frac{{SD}}{{SK}} = 5 \Rightarrow \frac{{SB}}{{SE}} = \frac{{SD}}{{SK}} = \frac{5}{2}

    Xét tỉ số thể tích, ta được:

    \frac{{{V_{S.AEFK}}}}{{{V_{S.ABCD}}}} = \frac{{10}}{{4.1.4.\dfrac{5}{2}.\dfrac{5}{2}}} = \frac{1}{{10}}

    \Rightarrow {V_{S.AEFK}} = \frac{{{V_{S.ABCD}}}}{{10}} = \frac{V}{{10}}

     

  • Câu 31: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

  • Câu 32: Vận dụng cao

    Có tất cả bao nhiêu giá trị nguyên của tham số m \in ( - 2021;2021) để hàm số y = \left| x^{4} - 4x^{2} + m + 2020ight| có 7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có tất cả bao nhiêu giá trị nguyên của tham số m \in ( - 2021;2021) để hàm số y = \left| x^{4} - 4x^{2} + m + 2020ight| có 7 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 34: Vận dụng cao

    Bất phương trình {25^{ - {x^2} + 2x + 1}} + {9^{ - {x^2} + 2x + 1}} \geqslant {34.15^{ - {x^2} + 2x}} có tập nghiệm là:

    Ta có:  {25^{ - {x^2} + 2x + 1}} + {9^{ - {x^2} + 2x + 1}} \geqslant {34.15^{ - {x^2} + 2x}}

    \Leftrightarrow {\left( {\frac{5}{3}} ight)^{2\left( { - {x^2} + 2x + 1} ight)}} + 1 \geqslant \frac{{34}}{{15}}.{\left( {\frac{5}{3}} ight)^{\left( { - {x^2} + 2x + 1} ight)}}

    \Leftrightarrow \left[ \begin{gathered}  0 \leqslant x \leqslant 2 \hfill \\  x \leqslant 1 - \sqrt 3  \hfill \\  x \geqslant 1 + \sqrt 3  \hfill \\ \end{gathered}  ight.

    Vậy S = \left( { - \infty ;1 - \sqrt 3 } ight] \cup \left[ {0;2} ight] \cup \left[ {1 + \sqrt 3 ; + \infty } ight).

  • Câu 35: Thông hiểu

    Với các số a, b > 0 thỏa mãn {a^2} + {b^2} = 6ab, biểu thức {\log _2}\left( {a + b} ight) bằng:

    Ta có: 

    \begin{matrix}  {a^2} + {b^2} = 6ab \hfill \\   \Rightarrow {\left( {a + b} ight)^2} = 8ab \hfill \\   \Rightarrow {\log _2}{\left( {a + b} ight)^2} = {\log _2}\left( {8ab} ight) \hfill \\   \Rightarrow 2{\log _2}\left( {a + b} ight) = {\log _2}8 + {\log _2}a + {\log _2}b \hfill \\   \Rightarrow {\log _2}\left( {a + b} ight) = \dfrac{1}{2}\left( {{{\log }_2}8 + {{\log }_2}a + {{\log }_2}b} ight) \hfill \\   \Rightarrow {\log _2}\left( {a + b} ight) = \dfrac{1}{2}\left( {3 + {{\log }_2}a + {{\log }_2}b} ight) \hfill \\ \end{matrix}

  • Câu 36: Nhận biết

    Nghiệm của phương trình 2^{2x - 1} =
8 là:

    Ta có:

    2^{2x - 1} = 8 \Leftrightarrow 2x - 1 = 3
\Leftrightarrow x = 2.

  • Câu 37: Vận dụng

    Cho phương trình {\left( {7 + 4\sqrt 3 } ight)^x} + {\left( {2 + \sqrt 3 } ight)^x} = 6. Khẳng định nào sau đây là đúng?

     Ta có: {\left( {7 + 4\sqrt 3 } ight)^x} + {\left( {2 + \sqrt 3 } ight)^x} = 6

    \Leftrightarrow {\left[ {{{\left( {2 + \sqrt 3 } ight)}^2}} ight]^x} + {\left( {2 + \sqrt 3 } ight)^x} - 6 = 0

    \Leftrightarrow {\left[ {{{\left( {2 + \sqrt 3 } ight)}^x}} ight]^2} + {\left( {2 + \sqrt 3 } ight)^x} - 6 = 0{\text{   }}\left( {*} ight)

    Đặt t = {\left( {2 + \sqrt 3 } ight)^x} > 0.

    Khi đó \left( {*} ight) \Leftrightarrow {t^2} + t - 6 = 0 \Leftrightarrow \left[ \begin{gathered}  t = 2{\text{      }}\left( TM ight) \hfill \\  t =  - 3{\text{   }}\left( L ight) \hfill \\ \end{gathered}  ight.

    Với t = 2 \Rightarrow {\left( {2 + \sqrt 3 } ight)^x} = 2 \Leftrightarrow \boxed{x = {{\log }_{\left( {2 + \sqrt 3 } ight)}}2}.

  • Câu 38: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 39: Nhận biết

    Cho hình lăng trụ đứng ABCD.A'B'C'D' có đáy là hình vuông cạnh 2a. Tính thể tích V của khối lăng trụ đã cho theo a, biết A'B=3a.

     

    Do ABCD.A'B'C'D'là lăng trụ đứng nên AA' \bot AB.

    Xét tam giác vuông A'AB, ta có A'A = \sqrt {A'{B^2} - A{B^2}}  = a\sqrt 5.

    Diện tích hình vuông ABCD{S_{ABCD}} = A{B^2} = 4{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'A = 4\sqrt 5 {a^3}

  • Câu 40: Thông hiểu

    Nếu đặt t = {\log _2}x thì bất phương trình \log _2^4x - \log _{\frac{1}{2}}^2\left( {\frac{{{x^3}}}{8}} ight) + 9{\log _2}\left( {\frac{{32}}{{{x^2}}}} ight) < 4\log _{{2^{ - 1}}}^2\left( x ight) trở thành bất phương trình nào?

     Điều kiện: x >0

    Ta có:

    \begin{gathered}  \log _2^4x - \log _{\frac{1}{2}}^2\left( {\frac{{{x^3}}}{8}} ight) + 9{\log _2}\left( {\frac{{32}}{{{x^2}}}} ight) < 4\log _{{2^{ - 1}}}^2\left( x ight) \hfill \\   \Leftrightarrow \log _2^4x - {\left( {3{{\log }_2}x - 3} ight)^2} + 9\left( {5 - 2{{\log }_2}x} ight) - 4\log _2^2x < 0 \hfill \\   \Leftrightarrow \log _2^4x - 13\log _2^2x + 36 < 0 \hfill \\ \end{gathered}

    Vậy thay t = {\log _2}x, ta được  {t^4} - 13{t^2} + 36 < 0.

  • Câu 41: Thông hiểu

    PT {\log _4}\left( {{{\log }_2}x} ight) + {\log _2}\left( {{{\log }_4}x} ight) = 2 có nghiệm là?

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  {\log _2}x > 0 \hfill \\  {\log _4}x > 0 \hfill \\  {\log _{{2^2}}}\left( {{{\log }_2}x} ight) + {\log _2}\left( {{{\log }_{{2^2}}}x} ight) = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) + {\log _2}\left( {\frac{1}{2}{{\log }_2}x} ight) = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) + {\log _2}\frac{1}{2} + {\log _2}\left( {{{\log }_2}x} ight) = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{3}{2}{\log _2}\left( {{{\log }_2}x} ight) - 1 = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}\left( {{{\log }_2}x} ight) = 2 \hfill \\ \end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}x = 4 \hfill \\ \end{gathered}  ight.

    \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  x = 16 \hfill \\ \end{gathered}  ight. \Rightarrow x = 16

    Vậy PT có nghiệm là x=16.

  • Câu 42: Nhận biết

    Trong không gian Oxyz, phương trình nào sau đây là phương trình của mặt cầu có tâm I(7;6; - 5) và bán kính 9?

    Mặt cầu tâm I(7;6; - 5), bán kính R = 9 có phương trình lá:

    (x - 7)^{2} + (y - 6)^{2} + (z - 5)^{2} =
81.

  • Câu 43: Vận dụng

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    Ta có: y = {x^{\frac{\pi }{2}}} \Rightarrow y' = \frac{\pi }{2}.{x^{\frac{\pi }{2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = 1} \\   {y'\left( 1 ight) = \dfrac{\pi }{2}} \end{array}} ight.

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    y = y'\left( 1 ight)\left( {x - 1} ight) + y\left( 1 ight) = \frac{\pi }{2}x - \frac{\pi }{2} + 1

  • Câu 44: Vận dụng

    Tập nghiệm của bất phương trình {2^x} + {4.5^x} - 4 < {10^x} là:

     Ta có: {2^x} + {4.5^x} - 4 < {10^x} \Leftrightarrow {2^x} - {10^x} + {4.5^x} - 4 < 0

    \Leftrightarrow {2^x}\left( {1 - {5^x}} ight) - 4\left( {1 - {5^x}} ight) < 0 \Leftrightarrow \left( {1 - {5^x}} ight)\left( {{2^x} - 4} ight) < 0

    {\text{    }} \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  1 - {5^x} < 0 \hfill \\  {2^x} - 4 > 0 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  1 - {5^x} > 0 \hfill \\  {2^x} - 4 < 0 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  {5^x} > 1 \hfill \\  {2^x} > 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  {5^x} < 1 \hfill \\  {2^x} < 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x > 2 \hfill \\  x < 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow x \in \left( { - \infty ;0} ight) \cup \left( {2; + \infty } ight)

  • Câu 45: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 46: Thông hiểu

    Trong các khẳng định sau, khẳng định nào đúng?

    Xét hàm số y = {e^{10x + 2017}} ta có:

    y' = 10.{e^{10x + 2017}} > 0;\forall x \in \mathbb{R}

    Vậy hàm số y = {e^{10x + 2017}} đồng biến trên tập số thực.

  • Câu 47: Nhận biết

    Chọn hàm số đồng biến trên \mathbb{R}?

    Xét hàm số y = 2x^{3} + 3x + 1 ta có:

    y' = 6x^{2} + 3 > 0;\forall
x\mathbb{\in R}

    Vậy hàm số y = 2x^{3} + 3x + 1 đồng biến trên \mathbb{R}.

  • Câu 48: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 49: Thông hiểu

    Trong không gian Oxyz (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(1;3;7). Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 3\ km.

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 1)^{2} + (y + 3)^{2} + (z + 7)^{2} =
9. Sai||Đúng

    b) Điểm A(2;2;7) nằm ngoài mặt cầu (S). Sai||Đúng

    c) Nếu người dùng điện thoại ở vị trí có tọa độ (2;2;7) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    d) Nếu người dùng điện thoại ở vị trí có tọa độ (5;6;7) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    Đáp án là:

    Trong không gian Oxyz (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí I(1;3;7). Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là 3\ km.

    a) Phương trình mặt cầu (S) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x + 1)^{2} + (y + 3)^{2} + (z + 7)^{2} =
9. Sai||Đúng

    b) Điểm A(2;2;7) nằm ngoài mặt cầu (S). Sai||Đúng

    c) Nếu người dùng điện thoại ở vị trí có tọa độ (2;2;7) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    d) Nếu người dùng điện thoại ở vị trí có tọa độ (5;6;7) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai

    Phương trình mặt cầu (S) tâm I(1;3;7) bán kính 3\ km mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là (x - 1)^{2} +
(y - 3)^{2} + (z - 7)^{2} = 9.

    Ta có: IA = \sqrt{(2 - 1)^{2} + (2 -
3)^{2} + (7 - 7)^{2}} = \sqrt{2} < 3 nên điểm A nằm trong mặt cầu.

    Vì điểm A nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ (2;2;7) có thể sử dưng dịch vụ của trạm thu phát sóng đó.

    Ta có: IB = \sqrt{(5 - 1)^{2} + (6 -
3)^{2} + (7 - 7)^{2}} = 5' > 3 nên điểm B nằm ngoài mặt cầu.

    Vậy người dùng điện thoại ở vị trí có tọa độ (5;6;7) không thể sử dựng dịch vụ của trạm thu phát sóng đó

  • Câu 50: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 60^0 . Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là:

    Thể tích của khối cầu ngoại tiếp

    Gọi O = AC \cap BD, suy ra SO \bot \left( {ABCD} ight).

    Ta có {60^0}{m{ = }}\widehat {SB,\left( {ABCD} ight)} = \widehat {SB,OB} = \widehat {SBO}.

    Trong \triangle SOB, ta có SO = OB.\tan \widehat {SBO} = \frac{{a\sqrt 6 }}{2}.

    Ta có SO là trục của hình vuông ABCD.

    Trong mặt phẳng SOB, kẻ đường trung trực d của đoạn B.

    Gọi I = SO \cap d \Rightarrow \left\{ \begin{array}{l}I \in SO\\I \in d\end{array} ight. \Rightarrow \left\{ \begin{array}{l}IA = IB = IC = ID\\IS = IB\end{array} ight.

    \Rightarrow IA = IB = IC = ID = IS = R

    Xét \triangle SBD\left\{ \begin{array}{l}SB = SD\\\widehat {SBD} = \widehat {SBO} = {60^o}\end{array} ight. \Rightarrow    \triangle SBD đều.

    Do đó d cũng là đường trung tuyến của \triangle SBD . Suy ra I là trọng tâm \triangle SBD .

    Bán kính mặt cầu R = SI = \frac{2}{3}SO = \frac{{a\sqrt 6 }}{3}.

    Suy ra V = \frac{4}{3}\pi {R^3} = \frac{{8\pi {a^3}\sqrt 6 }}{{27}}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo