Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tập nghiệm của phương trình {\log _2}\frac{1}{x} = {\log _{\frac{1}{2}}}\left( {{x^2} - x - 1} ight) là:

     Điều kiện: x > 0 và {x^2} - x - 1 > 0

    Với điều kiện đó thì {\log _2}\frac{1}{x} = {\log _{\frac{1}{2}}}x.

    Khi đó, phương trình đã cho tương đương phương trình:

    {\log _{\frac{1}{2}}}x = {\log _{\frac{1}{2}}}\left( {{x^2} - x - 1} ight) \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x = {x^2} - x - 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \left[ \begin{gathered}  x = 1 + \sqrt 2  \hfill \\  x = 1 - \sqrt 2  \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 1 + \sqrt 2

  • Câu 2: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 3: Thông hiểu

    Cho hàm số y = f(x) luôn nghịch biến trên \mathbb{R}. Tập nghiệm của bất phương trình f\left( \frac{1}{x}
ight) > f(1) là:

    Vì hàm số y = f(x) luôn nghịch biến trên \mathbb{R} nên ta có:

    f\left( \frac{1}{x} ight) > f(1)
\Leftrightarrow \left\{ \begin{matrix}
x eq 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x < 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x > 0 \\
\frac{1}{x} < 1 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < 0 \\
x > 1 \\
\end{matrix} ight.\  \Rightarrow x \in ( - \infty;0) \cup (1; +
\infty)

    Vậy tập nghiệm của bất phương trình là x
\in ( - \infty;0) \cup (1; + \infty)

  • Câu 4: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 5: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}\backslash\left\{ -
1 ight\} có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Từ bảng biến thiên ta có:

    \lim_{x ightarrow + \infty}y = -
2 suy ra đồ thị hàm số có tiệm cận ngang y = - 2

    \lim_{x ightarrow ( - 1)^{+}}y = +
\infty suy ra đồ thị hàm số có tiệm cận đứng x = - 1

    Vậy khẳng định đúng: " Đồ thị hàm số có tiệm cận đứng x = - 1 và tiệm cận ngang y = - 2”.

  • Câu 6: Vận dụng cao

    Cho bất phương trình: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}}. Tìm tập nghiệm của bất phương trình.

     Ta có: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}} \Leftrightarrow \frac{{6\left( {1 - {5^x}} ight)}}{{\left( {{{5.5}^x} - 1} ight)\left( {5 - {5^x}} ight)}} \geqslant 0\,\,(1)

    Đặt t =5^x, BPT (1) \Leftrightarrow \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}} \geqslant 0.

    Đặt f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}.

    Lập bảng xét dấu f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}, ta được nghiệm:

    \left[ \begin{gathered}  5 < t \hfill \\  \frac{1}{5} < t \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  5 < {5^x} \hfill \\  \frac{1}{5} < {5^x} \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  1 < x \hfill \\   - 1 < x \leqslant 0 \hfill \\ \end{gathered}  ight..

    Vậy tập nghiệm của BPT là S = \left( { - 1;0} ight] \cup \left( {1; + \infty } ight).

  • Câu 7: Thông hiểu

    Dân số thế giới được tính theo công thức S = A. e \
^{nr} trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là 1,47\% một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?

    Ta có:

    S = A \cdot e^{nr} \Leftrightarrow
e^{nr} = \frac{S}{A} \Leftrightarrow nr = \ln\frac{S}{A} \Leftrightarrow
n = \frac{1}{r}\ln\frac{S}{A}

    Với S = 93713700 người; A = 80902400 người; r = \frac{1,47}{100} = 0,0147/năm.

    Suy ra n =
\frac{1}{0,0147}\ln\frac{93713000}{80902400} \approx 10.

    Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.

  • Câu 8: Vận dụng

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0  là:

    x=4 || X=4|| x bằng 4

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0  là:

    x=4 || X=4|| x bằng 4

    Theo bài toán, ta xét điều kiện của BPT là: x > 0;x e 1;x e 3.

    Ta có: {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0 \Leftrightarrow \frac{{ - 1}}{{{{\log }_3}x.\left( {{{\log }_3}x - 1} ight)}} < 0

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}x < 0 \hfill \\  {\log _3}x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  0 < x < 1 \hfill \\  x > 3 \hfill \\ \end{gathered}  ight.

  • Câu 9: Nhận biết

    Đạo hàm của hàm số y = \frac{{{e^{4x}}}}{5}

    Ta có: y' = \frac{1}{5}\left( {{e^{4x}}} ight)' = \frac{1}{5}\left( {4x} ight)'.{e^{4x}} = \frac{4}{5}.{e^{4x}}

  • Câu 10: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị hàm số y = f'(x) như sau:

    Xét hàm số g(x) = f\left( x^{2} - 3
ight) và các mệnh đề sau:

    (i) Hàm số g(x) có ba điểm cực trị.

    (ii) Hàm số g(x) đạt cực tiểu tại x = 0.

    (iii) Hàm số g(x) đạt cực đại tại x = 2.

    (iv) Hàm số g(x) đồng biến trên khoảng ( - 2;0).

    (v) Hàm số g(x) nghịch biến trên khoảng ( - 1;1).

    Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 3 ight)

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
f'\left( x^{2} - 3 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 3 = - 2 \\
x^{2} - 3 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 1 \\
x^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Từ đồ thị ta nhận thấy x = \pm 1 là nghiệm kép nên ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có hàm số g(x) ta thấy hàm số có 3 cực trị và đồng biến trên khoảng ( - 2;0).

    Vậy có tất cả 2 mệnh đề đúng.

  • Câu 11: Vận dụng

    Phương trình {\left( {\sqrt 3  - \sqrt 2 } ight)^x} + {\left( {\sqrt 3  + \sqrt 2 } ight)^x} = {\left( {\sqrt {10} } ight)^x} có tất cả bao nhiêu nghiệm thực ?

     Ta có: {\left( {\sqrt 3  - \sqrt 2 } ight)^x} + {\left( {\sqrt 3  + \sqrt 2 } ight)^x} = {\left( {\sqrt {10} } ight)^x}\Leftrightarrow {\left( {\frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }}} ight)^x} + {\left( {\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }}} ight)^x} = 1

    Xét hàm số f\left( x ight) = {\left( {\frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }}} ight)^x} + {\left( {\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }}} ight)^x}

    Ta có: f\left( 2 ight) = 1

    Hàm số f (x) nghịch biến trên R do các cơ số \frac{{\sqrt 3  - \sqrt 2 }}{{\sqrt {10} }} < 1;\frac{{\sqrt 3  + \sqrt 2 }}{{\sqrt {10} }} < 1.

    Vậy phương trình có nghiệm duy nhất là x=2.

  • Câu 12: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + (y - 2)^{2} + (z + 1)^{2} =
6. Đường kính (S) bằng:

    Đường kính của mặt cầu (S) bằng: 2R = 2\sqrt{6}.

  • Câu 13: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = x\left( {x - 1} ight)\left( {x - 2} ight),\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {\frac{{5x}}{{{x^2} + 4}}} ight) đồng biến trên khoảng nào trong các khoảng sau?

    Ta có: f'\left( x ight) = 0 \Leftrightarrow x{\left( {x - 1} ight)^2}\left( {x - 2} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \\   {x = 2} \end{array}} ight.

    Ta có: g'\left( x ight) = \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight)

    Cho g’(x) = 0 => \frac{{ - 5{x^2} + 20}}{{{{\left( {{x^2} + 4} ight)}^2}}}.f'\left( {\frac{{5x}}{{{x^2} + 4}}} ight) = 0

    Dựa vào f’(x) ta có:

    \left[ {\begin{array}{*{20}{c}}  { - 5{x^2} + 20 = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 0} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 1} \\   {\dfrac{{5x}}{{{x^2} + 4}} = 2} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm 2} \\   {x = 0} \\   {x = 1} \\   {x = 4} \end{array}} ight.

    Lập bảng xét dấu như sau:

    Xét khoảng đồng biến của hàm số

    Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)

  • Câu 14: Nhận biết

    Trong không gian, cho tam giác ABC vuông tại A, AB =a và AC = a\sqrt 3. Độ dài đường sinh \ell của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

    Độ dài đường sinh

    Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là AC = a\sqrt 3 và chiều cao hình nón là AB = a.

    Vậy độ dài đường sinh của hình nón là:

    \ell  = BC = \sqrt {A{B^2} + A{C^2}}  = 2a.

  • Câu 15: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x - 4y - 20 =
0 và mặt phẳng (\alpha):x + 2y - 2z
+ 7 = 0 cắt nhau theo một đường tròn có chu vi là:

    Hình vẽ minh họa

    Mặt cầu (S) có tâm I(1; 2; 0) và bán kính R = 5.

    Ta có d\left( I,(\alpha) ight) = \
\frac{|1.1 + 2.2 - 2.0 + 7|}{\sqrt{1^{2} + 2^{2} + ( - 2)^{2}}} =
4

    d(I,(α)) < R nên (α) cắt (S) theo giao tuyến là đường tròn (C).

    Gọi H là hình chiếu vuông góc của I trên (α) ⇒ H là tâm của (C).

    Lấy M ∈ (C) ⇒ M ∈ (S)

    Tam giác IHM vuông tại M \Rightarrow HM =
\sqrt{IM^{2} - IH^{2}} = \sqrt{5^{2} - 4^{2}} = 3

    Suy ra chu vi của đường tròn (C) bằng 2π . HM = 6π.

  • Câu 16: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 17: Vận dụng cao

    Cho hàm số y = f(x) là một hàm đa thức có bảng xét dấu f^{'}(x) như sau:

    Số điểm cực trị của hàm số g(x) = f\left(
- 2x^{2} + |x| ight).

    Ta có g(x) = f\left( - 2x^{2} + |x|
ight) = f\left( - 2|x|^{2} + |x| ight).

    Số điểm cực trị của hàm số h(|x|) bằng hai lần số điểm cực trị dương của hàm số h(x) cộng thêm 1.

    Xét hàm số h(x) = f\left( - 2x^{2} + x
ight)

    \Rightarrow h'(x) = ( - 4x +1)f^{'}\left( - 2x^{2} + x ight) = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x = \dfrac{1}{4} \\- 2x^{2} + x = - 1 \\- 2x^{2} + x = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{1}{4} \\x = 1 \\x = \dfrac{- 1}{2} \\\end{matrix} ight.

    Bảng xét dấu hàm số h(x) = f\left( -
2x^{2} + x ight):

    Hàm số h(x) = f\left( - 2x^{2} + x
ight) có 2 điểm cực trị dương.

    Vậy hàm số g(x) = f\left( - 2x^{2} + |x|
ight) = f\left( - 2|x|^{2} + |x| ight) có 5 điểm cực trị.

  • Câu 18: Nhận biết

    Bất phương trình \log _{0,2}^2x - 5{\log _{0,2}}x <  - 6 có tập nghiệm là:

    Điều kiện: x>0

    Ta có:

    \log _{0,2}^2 - 5{\log _{0,2}}x <  - 6 \Leftrightarrow 2 < {\log _{0,2}}x < 3 \Leftrightarrow \frac{1}{{125}} < x < \frac{1}{{25}}

    Vậy BPT đã cho có tập nghiệm là S = \left( {\frac{1}{{125}};\frac{1}{{25}}} ight).

  • Câu 19: Thông hiểu

    Chỉ số hay độ pH của một dung dịch được tính theo công thức pH = -
\log\left\lbrack H^{+} ightbrack với \left\lbrack H^{+} ightbrack là nồng độ ion hydrogen. Độ pH của một loại sữa có \left\lbrack H^{+} ightbrack =
10^{- 7,8} là bao nhiêu?

    Độ pH là pH = - log10^{- 6,8} =
6,8.

  • Câu 20: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 21: Vận dụng

    Cho hàm số f\left( x ight) = {x^2}\left( {x - 1} ight).{e^{3x}} có một nguyên hàm là hàm số F(x). Số điểm cực trị của hàm số F(x) là

    TXĐ: D = \mathbb{R} có một nguyên hàm là hàm số F(x)

    => F’(x) = f(x), \forall x \in \mathbb{R}

    => F'\left( x ight) = 0 \Leftrightarrow f\left( x ight) = 0 \Leftrightarrow {x^2}\left( {x - 1} ight){e^{3x}} = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 1} \end{array}} ight.

    Ta có bảng xét dấu F’(x) như sau:

    Tìm số cực trị của hàm số

    Dựa vào bảng trên ta thấy hàm số F(x) có một điểm cực trị.

  • Câu 22: Thông hiểu

    Cho bất phương trình \frac{{1 - {{\log }_9}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2}. Nếu đặt t = {\log _3}x thì bất phương trình trở thành: 

     Ta có: \frac{{1 - {{\log }_9}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2} \Leftrightarrow \frac{{1 - \frac{1}{2}{{\log }_3}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2}

    \Leftrightarrow \frac{{2 - {{\log }_3}x}}{{2\left( {1 + {{\log }_3}x} ight)}} \leqslant \frac{1}{2} \Leftrightarrow 1 - \frac{{2 - {{\log }_3}x}}{{1 + {{\log }_3}x}} \geqslant 0

    \Leftrightarrow \frac{{2{{\log }_3}x - 1}}{{1 + {{\log }_3}x}} \geqslant 0

    Hay  \frac{{2t - 1}}{{1 + t}} \geqslant 0.

  • Câu 23: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông tâm O, cạnh 2a. Mặt bên tạo với đáy góc 60^0. Gọi K là hình chiếu vuông góc của O trên SD. Tính theo a thể tích V của khối tứ diện DKAC.

     

    Gọi M là trung điểm CD, suy ra OM \bot CD nên

    {60^0} = \widehat {\left( {SCD} ight),\left( {ABCD} ight)} = \widehat {SM,OM} = \widehat {SMO}.

    Tam giác vuông SOM, có SO = OM.\tan \widehat {SMO} = a\sqrt 3.

    Kẻ KH \bot OD \Rightarrow KH\parallel SO nên KH \bot \left( {ABCD} ight)

    Tam giác vuông SOD, ta có \frac{{KH}}{{SO}} = \frac{{DK}}{{DS}} = \frac{{D{O^2}}}{{D{S^2}}}

    = \frac{{O{D^2}}}{{S{O^2} + O{D^2}}} = \frac{2}{5}\xrightarrow{{}}KH = \frac{2}{5}SO = \frac{{2a\sqrt 3 }}{5}

    Diện tích tam giác {S_{\Delta ADC}} = \frac{1}{2}AD.DC = 2{a^2}.

    Vậy {V_{DKAC}} = \frac{1}{3}{S_{\Delta ADC}}.KH = \frac{{4{a^3}\sqrt 3 }}{{15}}.

  • Câu 24: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 25: Nhận biết

    Hình vẽ sau đây mô tả đồ thị của hàm số y
= f(x):

    Chọn mệnh đề đúng?

    Dựa vào đồ thị hàm số y = f(x) ta thấy hàm số đạt cực đại tại x =
0 và đạt cực tiểu tại x =
2.

  • Câu 26: Vận dụng

    Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ Oxy(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?

    Đáp án: 0,84 dặm

    Đáp án là:

    Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ Oxy(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là ( - 4;1) là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?

    Đáp án: 0,84 dặm

    Gọi hàm số mô phỏng đường bay của máy bay là y = ax^{3} + bx^{2} + cx + d\ (a eq0).

    Đồ thị hàm số đi qua điểm O(0;0) nên ta có d = 0.

    Đồ thị hàm số đi qua điểm ( -4;1) nên ta có phương trình - 64a +16b - 4c = 1\ \ (1).

    Mặt khác, ta có ( - 4;1)O(0;0) là hai điểm cực trị của đồ thị hàm số nên ta có y'( - 4) = 0;\y'(0) = 0 tức là \left\{\begin{matrix}48a - 8b + c = 0 \\c = 0 \\\end{matrix} ight. (2).

    Từ (1)(2) ta có a =\frac{1}{32};\ b = \frac{3}{16};\ c = 0.

    Suy ra y = \frac{1}{32}x^{3} +\frac{3}{16}x^{2}.

    Thay x = - 3 ta được y = \frac{27}{32} \approx 0,84.

    Vậy khi máy bay ha cánh theo phương ngang 3 dặm thì máy bay cách mặt đất khoảng 0,84 dặm.

  • Câu 27: Nhận biết

    Cho hàm số y = f(x) có đồ thị là đường cong như hình vẽ:

    Tìm số nghiệm của phương trình 2f(x) - 3
= 0?

    Ta có: 2f(x) - 3 = 0 \Leftrightarrow f(x)
= \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của hàm số y = f(x) và đường thẳng y = \frac{3}{2}

    Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.

  • Câu 28: Vận dụng cao

    Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất {V_{\min }} của khối tứ diện SAMN.

    Gọi E là trung điểm của BC.

    Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

    Theo định lí Talet, ta có:

    \left\{ \begin{gathered}  \frac{{AB}}{{AM}} = \frac{{AP}}{{AG}} \hfill \\  \frac{{AC}}{{AN}} = \frac{{AQ}}{{AG}} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{AP}}{{AG}} + \frac{{AQ}}{{AG}} = \frac{{AP + AQ}}{{AG}}

    Mặt khác \Delta BPE = \Delta CQE\xrightarrow{{}}PE = QE\,

    \Rightarrow \,\,AP + AQ = \left( {AE - PE} ight) + \left( {AE + QE} ight) = 2AE

    Do đó \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{2AE}}{{AG}} = 2.\frac{3}{2} = 3 \Rightarrow \frac{1}{{AM}} + \frac{1}{{AN}} = 3.

    Đặt \left\{ \begin{gathered}  AM = x \hfill \\  AN = y \hfill \\ \end{gathered}  ight. \Rightarrow \frac{1}{x} + \frac{1}{y} = 3

    SABC là tứ diện đều \Rightarrow \,\,SG \bot \left( {ABC} ight)  và SG = \frac{{\sqrt 2 }}{{\sqrt 3 }}

    Do đó   {V_{SAMN}} = \frac{1}{3}{S_{\Delta AMN}}.SG

    = \frac{1}{3}\left( {\frac{1}{2}AM.AN\sin {{60}^0}} ight).SG

    = \frac{{\sqrt 2 }}{{12}}AM.AN = \frac{{\sqrt 2 }}{{12}}xy

    Ta có 3 = \frac{1}{x} + \frac{1}{y} \geqslant \frac{2}{{\sqrt {xy} }}

    \Leftrightarrow \sqrt {xy}  \geqslant \frac{2}{3} \Leftrightarrow xy \geqslant \frac{4}{9}

    \Rightarrow {V_{\min }} = \frac{{\sqrt 2 }}{{27}}

  • Câu 29: Vận dụng cao

    Cho hàm số f\left( x ight) có đạo hàm y = f'\left( x ight) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    Bất phương trình f\left( x ight) >  - {x^3} + {x^2} - x + m (m là tham số thực) nghiệm đúng với \forall x \in \left( { - 1;1} ight) khi và chỉ khi

    Ta có: f\left( x ight) >  - {x^3} + {x^2} - x + m \Rightarrow m < f\left( x ight) + {x^3} - {x^2} + x\left( * ight)

    Xét hàm số g\left( x ight) = f\left( x ight) + {x^3} - {x^2} + x với \forall x \in \left( { - 1;1} ight)

    Ta có: g'\left( x ight) = f'\left( x ight) + 3{x^2} - 2x + 1 > 0;\forall x \in \left( { - 1;1} ight)

    => Hàm số g(x) luôn đồng biến trên \left( { - 1;1} ight)

    Ta có bảng biến thiên như sau:

    Bất phương trình chưa tham số m nghiệm đúng khi

    => (*) nghiệm đúng \forall x \in \left( { - 1;1} ight) khi m \leqslant g\left( { - 1} ight) = f\left( { - 1} ight) - 3

  • Câu 30: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 31: Nhận biết

    Cho hàm số y = -
\frac{1}{3}x^{3} + \frac{1}{2}x^{2} + 6x - 1. Khẳng định nào sau đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: y' = - x^{2} + x + 6
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu

    Suy ra hàm số đồng biến trên khoảng ( -
2,3).

  • Câu 32: Thông hiểu

    Hàm số nào sau đây nghịch biến trên tập xác định?

    Ta có: 0 < \frac{{\sqrt 2 }}{2} < 1 \Rightarrow y = {\log _{\frac{{\sqrt 2 }}{2}}}x nghịch biến trên tập xác định.

  • Câu 33: Vận dụng

    Ông A dự định sử dụng hết 8\ \
m^{2} kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu m^{3}? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 2,1

    Đáp án là:

    Ông A dự định sử dụng hết 8\ \
m^{2} kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng. Bể cá có dung tích lớn nhất bằng bao nhiêu m^{3}? (Kết quả làm tròn đến chữ số thập phân thứ nhất).

    Đáp án: 2,1

    Gọi x,h (m) lần lượt là chiều rộng và chiều cao của bể cá.

    Ta có thể tích bể cá V =
2x^{2}h.

    Theo đề bài ta có:

    2xh + 2.2xh + 2x^{2} = 8

    \Leftrightarrow 6xh + 2x^{2} =
8

    \Leftrightarrow h = \frac{8 -
2x^{2}}{6x}

    V = 2x^{2}\frac{8 - 2x^{2}}{6x} =
\frac{8x - 2x^{3}}{3}

    \Rightarrow V' = \frac{8 -
6x^{2}}{3}

    \Rightarrow V' = 0

    \Leftrightarrow 8 - 6x^{2} = 0
\Leftrightarrow x^{2} = \frac{4}{3} \Leftrightarrow x =
\frac{2\sqrt{3}}{3}

    Ta có bảng biển thiên

    \Rightarrow V_{\max} =
\frac{32\sqrt{3}}{27} \approx 2,1\ \ m^{3}

  • Câu 34: Nhận biết

    Cho {\log _2}a = x;{\log _2}b = y biết , biểu thức {\log _2}\left( {4{a^2}{b^3}} ight) có giá trị là:

    Ta có: 

    {\log _2}\left( {4{a^2}{b^3}} ight) = {\log _2}4 + {\log _2}{a^2} + {\log _2}{b^3} = 2 + 2{\log _2}a + 3{\log _2}b = 2x + 3y + 2

  • Câu 35: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3; −2; 6), B(0; 1; 0) và mặt cầu (S):(x - 1)^{2} + (y - 2)^{2}
+ (z - 3)^{2} = 25. Mặt phẳng (P): ax + by + cz + d = 0 (với a, b, c là các số nguyên dương và a, b, c, d nguyên tố cùng nhau) đi qua A, B và cắt (S) theo giao tuyến là đường tròn có bán kính nhỏ nhất. Tính tổng T = a + b + c.

    Hình vẽ minh họa

    Ta có \overrightarrow{AB} = ( - 3;3; -
6) cùng phương với \overrightarrow{u} = (1; - 1;2) suy ra phương trình đường thẳng AB:\left\{
\begin{matrix}
x = t \\
y = 1 - t \\
z = 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

    Xét mặt cầu (S):(x - 1)^{2} + (y - 2)^{2}
+ (z - 3)^{2} = 25⇒ I(1; 2; 3), R = 5.

    Gọi H(t; 1 − t; 2t) là điểm trên AB sao cho AB ⊥ IH

    \Rightarrow \overrightarrow{IH} = (t -
1; - t - 1;2t)

    AB ⊥ IH ⇒ t − 1 + t + 1 + 4t − 6 = 0 ⇒ t = 1⇒ H(1; 0; 2), \overrightarrow{IH} = (0; - 2; - 1)

    Gọi r là bán kính đường tròn giao tuyến giữa (P) và (S), K là hình chiếu vuông góc của I lên (P) ⇒ IK ≤ IH.

    Ta có r = \sqrt{R^{2} - IK^{2}} \geq
\sqrt{R^{2} - IH^{2}}

    Dấu bằng chỉ xảy ra khi K ≡ H.

    Khi đó phương trình mặt phẳng (P) nhận \overrightarrow{IH} = (0; - 2; - 1) là vectơ pháp tuyến và đi qua điểm H(1; 0; 2)2y + z − 2 = 0 ⇒ T = 3

  • Câu 36: Vận dụng

    Biết đồ thị hàm số y = f\left( x ight) đối xứng với đồ thị hàm số y = {\log _a}x;{\text{ }}\left( {0 < a e 1} ight) qua điểm I\left( {2;2} ight). Giá trị của f\left( {4 - {a^{2018}}} ight) là:

    Gọi M\left( {x;{{\log }_a}x} ight) là điểm thuộc đồ thị hàm số y = {\log _a}x thì điểm đối xứng với M qua IM'\left( {4 - x;4 - {{\log }_a}x} ight) thuộc đồ thị hàm số y = f\left( x ight)

    => f\left( {4 - x} ight) = 4 - {\log _a}x \Rightarrow f\left( {4 - {a^{2018}}} ight) = 4 - {\log _a}^{2018} =  - 2014

  • Câu 37: Thông hiểu

    Một chất điểm chuyển động theo phương trình S(t) = - t^{3} + 12t^{2} - 30t + 10 trong đó t được tính bằng giây và S được tính bằng mét. Thời gian để vận tốc của chất điểm đạt giá trị lớn nhất là:

    Ta có: v(t) = S'(t) = - 3t^{2} + 24t
- 30 = - 3(t - 4)^{2} + 18 \leq 18

    Khi đó \max v(t) = 18 \Leftrightarrow t =
4(s)

  • Câu 38: Thông hiểu

    Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên gấp hai lần cạnh đáy. Tính thể tích V của khối chóp đã cho.

     

    Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Vì S.ABC là khối chóp đều nên suy ra \,SI \bot \left( {ABC} ight).

    Gọi M là trung điểm của BC\,\, \Rightarrow \,\,AI = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}

    Tam giác SAI vuông tại I, có:

    SI = \sqrt {S{A^2} - S{I^2}}  = \sqrt {{{\left( {2a} ight)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} ight)}^2}}  = \frac{{a\sqrt {33} }}{3}

    Diện tích tam giác ABC là:  {S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy thể tích khối chóp:  {V_{S.ABCD}} = \frac{1}{3}{S_{\Delta ABC}}.SI = \frac{{\sqrt {11} \,{a^3}}}{{12}}

  • Câu 39: Vận dụng

    Cho hình vẽ sau là đồ thị của ba hàm số y = {x^\alpha };y = {x^\beta };y = {x^\gamma } với x > 0\alpha ;\beta ;\gamma là các số thực cho trước, mệnh đề nào sau đây đúng?

    Chọn mệnh đề đúng

    Hàm số {x^\alpha } nghịch biến trên \alpha  < 0

    Các hàm số y = {x^\beta };y = {x^\gamma } đồng biến nên \beta ;\gamma  > 0

    Tại x = 3 thì {3^\beta } > {3^\gamma } \Rightarrow \beta  > \gamma

  • Câu 40: Nhận biết

    Số nghiệm của phương trình {\log _2}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _2}x = 0 là:

    0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm

    Đáp án là:

    Số nghiệm của phương trình {\log _2}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _2}x = 0 là:

    0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  {x^3} + 1 > 0 \hfill \\  {x^2} - x + 1 > 0 \hfill \\  {\log _{{2^{}}}}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _{{2^{}}}}x = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{{x^3} + 1}}{{{x^2}({x^2} - x + 1)}} = 0 \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{(x + 1)({x^2} - x + 1)}}{{{x^2}({x^2} - x + 1)}} = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x + 1 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x =  - 1 \hfill \\ \end{gathered}  ight. \Rightarrow x \in \emptyset

    Vậy số nghiệm của PT là 0.

  • Câu 41: Vận dụng

    Khẳng định nào dưới đây đúng?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   { - 2017 >  - 2018} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{ - 2017}} > {\left( {\sqrt 5  + 2} ight)^{ - 2018}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{2018}} < {\left( {\sqrt 5  + 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    Vậy đáp án đúng là: {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

  • Câu 42: Thông hiểu

    Hình đa diện trong hình vẽ sau có bao nhiêu cạnh? 

    Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 43: Thông hiểu

    Cho a là một số dương, biểu thức {a^{\frac{2}{3}}}.\sqrt a viết dưới dạng lũy thừa với số mũ hữu tỉ là:

    Ta có: {a^{\frac{2}{3}}}.\sqrt a  = {a^{\frac{2}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{7}{6}}}

  • Câu 44: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 45: Thông hiểu

    Cho đồ thị hàm số y = {x^{ - \sqrt 2 }}. Khẳng định nào dưới đây đúng?

     Theo định nghĩa của hàm số lũy thừa, đồ thị hàm số có tiệm cận đứng là x = 0

    Ta có: \mathop {\lim }\limits_{x \to  + \infty } y = 0 suy ra đồ thị hàm số có tiệm cận ngang là y = 0

    Vậy đồ thị hàm số có tiệm cận ngang là y = 0 và tiệm cận đứng là x = 0

  • Câu 46: Thông hiểu

    Thu gọn biểu thức T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} biết a và b là hai số thực dương.

    Ta có: T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} = \left( {{a^{\frac{7}{6}}}:{a^{\frac{1}{6}}}} ight).\left( {{b^{\frac{{ - 2}}{3}}}:{b^{\frac{2}{6}}}} ight) = \frac{a}{b}

  • Câu 47: Vận dụng

    Cho hàm số y = \frac{{ax + 2}}{{cx + b}} có đồ thị (C) như hình vẽ bên. Tính tổng T = a + 2b + 3c

    Tính giá trị biểu thức T

    Từ đồ thị hàm số ta có nhận xét như sau:

    Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)

    => x = \frac{{ - b}}{c} = 2 \Rightarrow b =  - 2c

    Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)

    => y = \frac{a}{c} = 1 \Rightarrow a = c

    Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)

    => y(0) = -1 => \frac{2}{b} =  - 1 \Rightarrow b =  - 2

    => \left\{ {\begin{array}{*{20}{c}}  {b =  - 2} \\   {b =  - 2c} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  a = 1 \hfill \\  b =  - 2 \hfill \\ \end{gathered}  \\   {c = 1} \end{array}} ight. \Rightarrow T = a + 2b + 3c = 0

  • Câu 48: Nhận biết

    Cho biểu thức P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}} với x > 0. Mệnh đề nào sau đây là đúng?

     Ta có: 

    \begin{matrix}  P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}  \hfill \\  P = \sqrt {x.\sqrt[3]{{{x^{\frac{7}{2}}}}}}  \hfill \\  P = \sqrt {x.{x^{\frac{7}{6}}}}  \hfill \\  P = \sqrt {{x^{\frac{{13}}{6}}}}  = {x^{\frac{{13}}{{12}}}} \hfill \\ \end{matrix}

  • Câu 49: Nhận biết

    Cho các mệnh đề sau:

    (i) Cơ số của logarit phải là số dương.

    (ii) Chỉ số thực dương mới có logarit.

    (iii) \ln \left( {A + B} ight) = \ln A + \ln B với mọi A > 0;B > 0.

    (iv) {\log _a}b.{\log _b}c.{\log _c}a = 1 với mọi a,b,c \in \mathbb{R}.

    Số mệnh đề đúng là:

    (i) Sai vì cơ số của {\log _a}b chỉ cần thỏa mãn 0 < a e 0

    (ii) Đúng vì điều kiện có nghĩa của {\log _a}bb > 0

    (iii) Sai vì \ln \left( {A + B} ight) = \ln A.\ln B với mọi A > 0;B > 0

    (iv) Sai vì nếu a,b,c < 0 thì các biểu thức {\log _a}b;{\log _b}c;{\log _c}a không có nghĩa.

  • Câu 50: Vận dụng

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo