Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Cho hình lăng trụ tam giác
có đáy
là tam giác vuông cân tại
, cạnh
. Biết
tạo với mặt phẳng
một góc
và
. Tính thể tích
của khối đa diện
.

Gọi H là hình chiếu của C' trên mặt phẳng .
Suy ra AH là hình chiếu của AC' trên mặt phẳng .
Do đó
Tam giác vuông , có
Thể tích khối lăng trụ
Suy ra thể tích cần tính là:
.
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Cho lăng trụ
có đáy
là hình thoi cạnh
, tâm O và
. Góc giữa cạnh bên
và mặt đáy bằng
. Đỉnh A' cách đều các điểm A, B, D. Tính theo
thể tích
của khối lăng trụ đã cho.

Từ giả thiết suy ra tam giác ABD đều cạnh .
Gọi H là tâm tam giác ABD. Vì A' cách đều các điểm A,B, D nên .
Do đó .
Ta có .
Tam giác vuông , có
.
Diện tích hình thoi .
Vậy .
Cho hàm số
có bảng xét dấu của
như sau:

Hỏi hàm số có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu đã cho ta thấy đổi dấu 4 lần nên hàm số
có bốn điểm cực trị.
Cho hàm số
có đạo hàm liên tục trên
. Biết đồ thị của hàm số
biểu diễn như hình vẽ:

Khi đó hàm số
nghịch biến trên khoảng nào sau đây?
Ta có:
Vậy đáp án cần tìm là .
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Phương trình tiếp tuyến của đồ thị hàm số
tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Cho hàm số
. Tính ![]()
Ta có:
Nghiệm nguyên lớn nhất của bất phương trình
là:
x=1 || X=1 || x bằng 1
Nghiệm nguyên lớn nhất của bất phương trình là:
x=1 || X=1 || x bằng 1
Vậy nghiệm nguyên lớn nhất của BPT là .
Tính đạo hàm của hàm số
là:
Áp dụng công thức tính đạo hàm: ta có:
Tìm tập nghiệm của bất phương trình
sau:
Ta có:
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ bảng biến thiên ta thấy hàm số nghịch biến trên
Suy ra hàm số nghịch biến trên .
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho
. Độ dài đường sinh
của hình nón bằng:

Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Tìm điều kiện của x để hàm số
có nghĩa?
Ta có điều kiện xác định
Nếu đặt
thì phương trình
trở thành phương trình nào?
Đặt
PT
.
Trong không gian với hệ tọa độ
, xét mặt cầu
có phương trình dạng
. Tập hợp các giá trị thực của tham số
để
có chu vi
?
Đường tròn lớn có chu vi là nên bán kính của
là
Từ phương trình của suy ra bán kính của
là
Do đó
Vậy đáp án cần tìm là:
Cho đồ thị hàm số
như hình vẽ:

Hàm số
đồng biến trên khoảng:
Ta có:
Nên suy ra hàm số cũng đồng biến trên .
Cho bất phương trình:
. Tìm tập nghiệm của bất phương trình.
Ta có:
Đặt , BPT
.
Đặt .
Lập bảng xét dấu , ta được nghiệm:
.
Vậy tập nghiệm của BPT là .
Tìm các giá trị của x để hàm số
có nghĩa:
Điều kiện xác định
Cho hàm số
có đồ thị như hình vẽ:

Tìm số điểm cực trị của hàm số
trên khoảng
?
Đặt
Từ bảng xét dấu của hàm số có
Ta có bảng biến thiên
Từ bảng biến thiên suy ra hàm số có hai cực trị trên khoảng
.
Số nghiệm của phương trình
là:
0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm
Số nghiệm của phương trình là:
0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm
PT
Vậy số nghiệm của PT là 0.
Đường thẳng nào dưới đây là tiệm cận đứng của đồ thị hàm số
?
Xét phương trình x + 1 = 0 => x = -1
Và => x = -1 là tiệm cận đứng của đồ thị hàm số.
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Phương trình
có tất cả bao nhiêu nghiệm không âm ?
Ta có:
Xét hàm số , ta có:
.
. Do đó hàm số
đồng biến trên R.
Vậy nghiệm duy nhất của phương trình là x=1.
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:

Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Nghiệm của bất phương trình
là
Ta có (vô nghiệm).
Vậy tập nghiệm của bất phương trình đã cho là .
Trong không gian với hệ tọa độ
, tìm tọa độ tâm
và bán kính
của mặt cầu ![]()
Tâm của có tọa độ là
Bán kính mặt cầu là:
.
Cho hai số thực dương a và b thỏa mãn
và
. Giá trị của biểu thức
là:
Theo điều kiện ta có:
Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ:

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số
có 3 điểm cực trị. Tổng các phần tử của S là:
Xét hàm số có đạo hàm
Để hàm số có 3 điểm cực trị thì
Vậy tổng các phần tử của S là 2
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Trong không gian với hệ tọa độ
, cho điểm
. Mặt phẳng
đi qua
và cắt các trục
tại
sao cho
là trực tâm tam giác
. Viết phương trình mặt cầu tâm
và tiếp xúc với mặt phẳng
?
Hình vẽ minh họa
Ta có H là trực tâm của tam giác ABC suy ra
Thật vậy
Mà (vì H là trực tâm tam giác ABC) (2)
Từ (1) và (2) suy ra suy ra
Tương tự
Từ (*) và (**) suy ra
Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3
Vây mặt cầu tâm O và tiếp xúc với mặt phẳng là:
.
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
suy ra
là tiệm cận ngang.
suy ra
là tiệm cận ngang.
Vậy không là tiệm cận đứng của đồ thị hàm số đã cho.
suy ra
là tiệm cận đứng của đồ thị hàm số đã cho
Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.
Cho
và khác 1. Các hàm số
có đồ thị như hình vẽ bên. Khẳng định nào dưới đây đúng?

Kẻ đường thẳng cắt đồ thị các hàm số
lần lượt tại các điểm có hoành độ

Từ đồ thị ta có:
Cho hàm số
có bảng biến như sau:

Tìm tất cả các giá trị của tham số m để bất phương trình
có một nghiệm?
Đặt
Khi đó bất phương trình trở thành
Bất phương trình có nghiệm khi bất phương trình
có nghiệm
Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là
đồng một khách cho
khách. Từ khách thứ
, cứ thêm một khách, giá của tour lại được giảm
nghìn (
là số nguyên dương). Số khách thêm của tour không quá
người. Biết rằng nếu nhận thêm từ
đến
khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của
.
Một công ty du lịch tổ chức tour du lịch với giá mỗi tour là đồng một khách cho
khách. Từ khách thứ
, cứ thêm một khách, giá của tour lại được giảm
nghìn (
là số nguyên dương). Số khách thêm của tour không quá
người. Biết rằng nếu nhận thêm từ
đến
khách thì doanh thu tăng dần theo số khách nhận thêm. Tìm giá trị lớn nhất của
.
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Biết giá trị lớn nhất của hàm số
trên đoạn
bằng
. Tìm giá trị của tham số
?
Ta có:
Bảng biến thiên
Dựa vào bảng biến thiên ta có:
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Phương trình
có tập nghiệm là?
Điều kiện: x > 0
Vậy PT có tập nghiệm là S={8;2}.
Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).
Xét tính đúng sai của các khẳng định sau:
a) Tổng diện tích 5 mặt của bể là
. Đúng||Sai
b) Ta có
. Sai|| Đúng
c) Thể tích của bể là
. Sai|| Đúng
d) Bể cá có dung tích lớn nhất bằng
. Đúng||Sai
Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).
Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).
Xét tính đúng sai của các khẳng định sau:
a) Tổng diện tích 5 mặt của bể là . Đúng||Sai
b) Ta có . Sai|| Đúng
c) Thể tích của bể là . Sai|| Đúng
d) Bể cá có dung tích lớn nhất bằng . Đúng||Sai
a) Đúng. Kích thước đáy của bể lần lượt là 2a, a; chiều cao bể là h (a, h > 0). Tổng diện tích 5 mặt của bể là:
b) Sai. Theo đề bài ta có: .
c) Sai. Gọi V là thể tích của bể cá, ta có:
d) Đúng. Ta có:
Bảng biến thiên:
Vậy dung tích lớn nhất của bể cá bằng .
Cho a và b là hai số dương bất kì. Mệnh đề nào dưới đây sai?
Ta có:
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho hàm số
có hai điểm cực trị
. Tính độ dài đoạn thẳng
?
Ta có:
Nhận thấy phương trình có hai nghiệm phân biệt nên đồ thị hàm số có hai điểm cực trị là
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Tâm đối xứng của đồ thị hàm số
là điểm nào trong các điểm cho sau đây?
Đồ thị hàm số nhận giao của hai tiệm cận làm tâm đối xứng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng là
Do đó tâm đối xứng của đồ thị hàm số là điểm .
Cho khối lăng trụ đứng
có
, đáy
là tam giác vuông cân tại
và
. Tính thể tích của khối lăng trụ đã cho.

Tam giác vuông cân tại
,
suy ra
Vậy thể tích khối lăng trụ