Hàm số nào sau đây không có điểm cực trị?
Các hàm số ;
;
đều có một điểm cực trị.
Xét hàm số ta có:
nên hàm số không có cực trị.
Hàm số nào sau đây không có điểm cực trị?
Các hàm số ;
;
đều có một điểm cực trị.
Xét hàm số ta có:
nên hàm số không có cực trị.
Cho hàm số
có bảng xét dấu
như sau:

Hàm số
đồng biến trong khoảng nào dưới đây?
Cho hàm số có bảng xét dấu
như sau:
Hàm số đồng biến trong khoảng nào dưới đây?
Cho hình vẽ là đồ thị hàm số
. Hỏi hàm số
đồng biến trên khoảng nào dưới đây?

Từ đồ thị ta có bảng xét dấu
như sau:
Vậy hàm số đồng biến trên khoảng
Cho hàm số
với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Cho hàm số với
là tham số. Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba cực trị?
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Cho hình chóp
có đáy
là tam giác vuông cân ở
,
,
và vuông góc với đáy
. Gọi
là trọng tâm tam giác
. Mặt phẳng
qua
và song song với
cắt
lần lượt tại
. Tính theo
thể tích
của khối chóp
.

Từ giả thiết suy ra .
Diện tích tam giác . Do đó
.
Gọi là trung điểm
.
Do là trọng tâm
nên
.
Vì song song với giao tuyến
theo tỉ số
Vậy thể tích khối chóp .
Trong không gian, cho tam giác ABC vuông tại A, AB =a và
. Độ dài đường sinh
của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là và chiều cao hình nón là
.
Vậy độ dài đường sinh của hình nón là:
Cho khối đa diện đều loại
. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Khối đa diện đều loại là khối bát diện đều.

Mỗi đỉnh là đỉnh chung của 4 mặt.
Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng .
Trong các hàm số sau, hàm số nào đồng biến trên khoảng
?
Ta có:
sai vì
nhưng
sai vì
nhưng
sai vì
nhưng
đúng vì
nên hàm số
đồng biến trên khoảng
.
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Nếu đặt
thì bất phương trình
trở thành bất phương trình nào?
Điều kiện:
Sau khi đưa về cùng cơ số 4, rồi tiếp tục biến đổi về cùng cơ số 3 ta được bất phương trình
Vậy BPT trở thành: .
Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực
?
Hàm số là hàm số mũ có cơ số bằng
nghịch biến trên
Hàm số là hàm số mũ có cơ số
nên đồng biến trên
Hàm số chỉ xác định trên
Hàm số có
nên nghịch biến trên
Nghiệm nguyên nhỏ nhất của bất phương trình
là:
x=4 || X=4|| x bằng 4
Nghiệm nguyên nhỏ nhất của bất phương trình là:
x=4 || X=4|| x bằng 4
Theo bài toán, ta xét điều kiện của BPT là: .
Ta có:
Cho
. Khi đó
có giá trị là:
Ta có:
Phương trình
có tập nghiệm là?
Điều kiện: x > 0
Vậy PT có tập nghiệm là S={8;2}.
Bác Thu có 600 triệu đồng mang đi gửi tiết kiện ở hai loại kì hạn khác nhau đều theo thể thức lãi kép. Bác gửi 300 triệu đồng theo kì hạn quý với lãi suất 2,1% một quý, 300 triệu đồng còn lại bác gửi theo kì hạn tháng với lãi suất 0,73%/tháng. Sau khi gửi được đúng một năm, bác rút ra một nửa số tiền ở loại kì hạn quý và gửi vào loại kì hạn theo tháng. Hỏi sau đúng hai năm kể từ khi gửi tiền lần đầu, bác Thu thu về tất cả bao nhiêu tiền lãi (làm tròn đến chữ số hàng nghìn)?
Số tiền bác Thu thu được ở năm thứ nhất là:
+ Gửi kì hạn theo quý: (triệu đồng)
+ Gửi kì hạn theo tháng: (triệu đồng)
Số tiền bác Thu thu được ở sau năm thứ hai là:
+ Gửi kì hạn theo quý: (triệu đồng)
+ Gửi kì hạn theo tháng: (triệu đồng)
Số tiền lãi bác Thu thu được là
(triệu đồng)
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Đồ thị của hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Dựa vào đồ thị hàm số ta thấy
Đồ thị hàm số cắt trục tung tại điểm
=> => Loại đáp án
Mặt khác => Hệ số a > 0 => Loại đáp án
Hàm số đạt cực trị tại hai điểm , dựa vào hình vẽ ta thấy
trái dấu
=> Loại đáp án
Vậy đáp án là
Tổng các nghiệm của phương trình
là:
Điều kiện . Có
Dó đó, tổng các nghiệm sẽ bằng .
Điều kiện xác định của bất phương trình
là:
BPT xác định khi :
.
Vậy BPT xác định khi .
Cho hàm số
có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:
Ta có:
Tọa độ các điểm cực trị của đồ thị hàm số là
=> Tam giác ABC vuông cân tại A =>
Tìm giá trị của tham số m để hàm số
đồng biến trên ![]()
Ta có:
Hàm số đồng biến trên
Số nghiệm của phương trình
là:
0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm
Số nghiệm của phương trình là:
0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm
PT
Vậy số nghiệm của PT là 0.
Cho hàm số
với
là tham số. Định điều kiện của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì đồ thị hàm số
có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dương
thỏa mãn
Cho
là ba số thực dương,
thỏa mãn:
![]()
Khi đó, giá trị của biểu thức
gần với giá trị nào nhất sau đây?
Áp dụng bất đẳng thức , ta được:
Do đó với
Dấu “=” xảy ra khi
Khi đó .
Vậy giá trị của T gần 8 nhất.
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Trong không gian với hệ tọa độ
, cho hai điểm
và
. Có tất cả bao nhiêu giá trị thực của tham số m để phương trình
là phương trình của một mặt cầu (S) sao cho qua hai điểm
có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1.
Ta có:
Suy ra (*) là phương trình mặt cầu
Khi đó, mặt cầu (S) có tâm và bán kính
Gọi (P) là mặt phẳng đi qua A, B.
Theo giả thiết (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính r = 1.
Mặt khác, khoảng cách từ tâm I đến mặt phẳng (P) là
Ta có: suy ra
là một vectơ chỉ phương của đường thẳng
Suy ra đường thẳng là:
Để có duy nhất mặt phẳng (P) thỏa mãn bài thì
TH1. Mặt phẳng (P) đi qua điểm I và
Ta có
+ Với (loại).
+ Với m = −2 ⇒ ⇒ m = −2 (thỏa mãn).
TH2. Mặt phẳng (P) cách I một khoảng lớn nhất ⇔ d lớn nhất ⇔ d = d(I, AB). (*)
Khi đó
Vậy có 2 giá trị tham số m thỏa mãn yêu cầu.
Tìm tập xác định của hàm số
là:
Hàm số đã cho xác định khi
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Giá trị của biểu thức
bằng:
Ta có:
Chỉ số hay độ
của một dung dịch được tính theo công thức
với
là nồng độ ion hydrogen. Độ
của một loại sữa có
là bao nhiêu?
Độ pH là
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành; điểm I nằm trên SC sao cho
. Mặt phẳng
chứa cạnh
cắt cạnh
lần lượt tại
. Gọi
lần lượt là thể tích khối chóp
và
. Tính giá trị nhỏ nhất của tỉ số thể tích
.

Đặt .
Ta có .
Ta có .
Dấu bằng xảy ra khi .
Vậy giá trị nhỏ nhất cử tỉ số thể tích cần tìm là .
Cho đồ thị hàm số
. Giả sử
có khoảng cách đến đường thẳng
nhỏ nhất. Chọn khẳng định đúng?
Ta có:
Khoảng cách từ M đến đường thẳng (d) bằng:
Xét hàm số
Ta có bảng biến thiên
Vậy giá trị nhỏ nhất của hàm số tại
Vậy
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Tìm tập xác định D của hàm số ![]()
Điều kiện xác định
Vậy tập xác định của hàm số là
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Trong không gian
, mặt cầu
có bán kính bằng:
Bán kính của mặt cầu là
.
Với giá trị nào của m thì mặt phẳng
cắt mặt cầu
?
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là
(P) cắt (S) khi:
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:

Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Một sợi dây kim loại dài 120cm được cắt thành hai đoạn. Đoạn dây thứ nhất được uốn thành hình vuông, đoạn dây thứ hai được uốn thành vòng tròn như hình vẽ:
Tổng diện tích của hình vuông và hình tròn đạt giá trị nhỏ nhất bằng bao nhiêu? (Kết quả làm tròn đến hàng đơn vị).
Gọi
là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Cho hình chóp
có đáy
là tam giác vuông tại A và có
,
. Mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính theo
thể tích
của khối chóp
.

Gọi là trung điểm của
, suy ra
.
Do theo giao tuyến
nên
.
Tam giác là đều cạnh
nên
.
Tam giác vuông , có
.
Diện tích tam giác vuông .
Vậy .
Cho hàm số
. Biết đồ thị hàm số đã cho đi qua điểm
và có đường tiệm cận ngang là
. Giá trị
bằng:
Điều kiện để đồ thị hàm số có tiệm cận là
=> Đồ thị hàm số đi qua điểm nên
Đồ thị hàm số có đường tiệm cận ngang là (thỏa mãn)
Vậy
Cho hình vẽ sau là đồ thị của ba hàm số
với
và
là các số thực cho trước, mệnh đề nào sau đây đúng?

Hàm số nghịch biến trên
Các hàm số đồng biến nên
Tại thì
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Đồ thị hàm số
có các đường tiệm cận đứng và tiệm cận ngang lần lượt là:
Ta có: => Đồ thị hàm số có tiệm cận đứng là x = -2
Ta có: => y = -3 là tiệm cận ngang của đồ thị hàm số.
Sau khi phát hiện một dịch bệnh, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ
là
(kết quả khào sát trong 12 tháng liên tục). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
thì tốc độ truyền bệnh lớn nhất vào ngày thứ mấy?
Trả lời: Ngày thứ 7
Sau khi phát hiện một dịch bệnh, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ là
(kết quả khào sát trong 12 tháng liên tục). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
thì tốc độ truyền bệnh lớn nhất vào ngày thứ mấy?
Trả lời: Ngày thứ 7
Ta có
Vì có đồ thị là một parabol có bề lõm quay xuống nên đạt giá trị cực đại tại
.
Vậy vào ngày thứ 7 tốc độ truyền bệnh là nhanh nhất.
Gọi
là 2 nghiệm của phương trình
.
Khi đó
bằng:
Ta có:
Suy ra .
Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.