Cho hình nón đỉnh S có bán kính đáy
, góc ở đỉnh bằng
. Diện tích xung quanh của hình nón bằng:

Theo giả thiết, ta có và
.
Suy ra độ dài đường sinh:
Vậy diện tích xung quanh bằng: (đvdt).
Cho hình nón đỉnh S có bán kính đáy
, góc ở đỉnh bằng
. Diện tích xung quanh của hình nón bằng:

Theo giả thiết, ta có và
.
Suy ra độ dài đường sinh:
Vậy diện tích xung quanh bằng: (đvdt).
Bất phương trình
có tập nghiệm là:
Ta có:
Vậy .
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:

Cho hình chóp
có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.

Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .
Trong không gian với hệ tọa độ
, cho
và điểm
. Xét các điểm
sao cho đường thẳng
luôn tiếp xúc với
. Điểm
luôn thuộc một mặt phẳng cố định có phương trình là
Tọa độ tâm mặt cầu là:
Gọi khi đó:
.
Theo đề bài ra ta có:
Mặt khác phương trình mặt cầu
Lấy (*) trừ (**) ta được: .
Biết đồ thị hàm số
nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:
Điều kiện
Phương trình đường tiệm cận ngang của đồ thị hàm số là
=>
Đặt
Nhận thấy với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0
=> n – 6 = 0 => n = 6
Kết hợp với (*) => m = 3
Vậy m + n = 9
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số có đường tiệm cận đứng là:
Từ bảng biến thiên ta có:
Suy ra đồ thị hàm số có tiệm cận đứng là đường thẳng
Số giao điểm của hai đồ thị hàm số
và
bằng số nghiệm phân biệt của phương trình nào sau đây?
Hoành độ giao điểm là nghiệm của phương trình hay
.
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Điều kiện xác định của bất phương trình
là:
BPT xác định khi: .
Cho hàm số bậc ba
có đồ thị là đường cong như hình vẽ:

Có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số bậc ba có đồ thị là đường cong như hình vẽ:
Có bao nhiêu giá trị nguyên của tham số để hàm số
có đúng ba điểm cực trị?
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình
nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Trong không gian
, tìm tất cả các giá trị của
để phương trình
là phương trình của một mặt cầu?
Phương trình là một mặt cầu
.
Cho hàm số
có bảng xét dấu của đạo hàm
như sau:

Hàm số
có bao nhiêu điểm cực trị?
Dựa vào bảng xét dấu ta thấy hàm số có bốn điểm cực trị.
Nghiệm nguyên lớn nhất của bất phương trình là:
x=7 || X=7 || x bằng 7 || 7
Nghiệm nguyên lớn nhất của bất phương trình là:
x=7 || X=7 || x bằng 7 || 7
Điều kiện:
Ta có:
.
Vậy nghiệm nguyên lớn nhất của bất phương trình là: .
Cho lăng trụ
có đáy
là hình chữ nhật tâm
và
;
vuông góc với đáy
. Cạnh bên
hợp với mặt đáy
một góc
. Tính theo
thể tích
của khối lăng trụ đã cho.

Vì nên
.
Đường chéo hình chữ nhật:
Suy ra tam giác vuông cân tại
nên
Diện tích hình chữ nhật .
Vậy .
Cho các mệnh đề sau:
(i) Cơ số của logarit phải là số dương.
(ii) Chỉ số thực dương mới có logarit.
(iii)
với mọi
.
(iv)
với mọi
.
Số mệnh đề đúng là:
(i) Sai vì cơ số của chỉ cần thỏa mãn
(ii) Đúng vì điều kiện có nghĩa của là
(iii) Sai vì với mọi
(iv) Sai vì nếu thì các biểu thức
không có nghĩa.
Số cạnh của hình đa diện luôn luôn là một số tự nhiên
Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.
Số điểm cực trị của hàm số
là:
Ta có:
Khi đó
Phương trình (*) có ba nghiệm bội lẻ
Vậy hàm số ban đầu có ba điểm cực trị.
Cho hình hộp chữ nhật
có
. Tính theo
thể tích khối hộp đã cho.
Trong tam giác vuông , có
.
Diện tích hình chữ nhật là
.
Vậy
Một sinh viên giỏi
được một công ty trao quỹ học bổng
triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất
mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền
triệu đồng.
a) Quỹ học bổng còn lại sau
tháng là:
triệu đồng. Đúng||Sai
b) Quỹ học bổng còn lại sau 2 tháng là:
triệu đồng. Sai||Đúng
c) Quỹ học bổng còn lại sau n tháng là:
(triệu đồng). Sai||Đúng
d) Tháng cuối cùng sinh viên đó rút được
triệu đồng thì hết quỹ học bổng trên. Sai||Đúng
Một sinh viên giỏi được một công ty trao quỹ học bổng
triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất
mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền
triệu đồng.
a) Quỹ học bổng còn lại sau tháng là:
triệu đồng. Đúng||Sai
b) Quỹ học bổng còn lại sau 2 tháng là: triệu đồng. Sai||Đúng
c) Quỹ học bổng còn lại sau n tháng là: (triệu đồng). Sai||Đúng
d) Tháng cuối cùng sinh viên đó rút được triệu đồng thì hết quỹ học bổng trên. Sai||Đúng
a) Quỹ học bổng còn lại sau tháng là:
triệu đồng.
Suy ra mệnh đề đúng.
b) Quỹ học bổng còn lại sau 2 tháng là:
(triệu đồng)
Suy ra mệnh đề sai.
c) Quỹ học bổng còn lại sau n tháng là:
(triệu đồng).
Suy ra mệnh đề sai.
d) Quỹ học bổng còn lại sau 16 tháng là:
.
Quỹ học bổng còn lại sau 15 tháng là.
triệu đồng.
Suy ra tháng cuối cùng sinh viên đó rút được triệu đồng thì hết quỹ học bổng trên.
Suy ra mệnh đề sai.
Nghiệm nguyên nhỏ nhất của phương trình
là?
3 || ba || Ba
Nghiệm nguyên nhỏ nhất của phương trình là?
3 || ba || Ba
Điều kiện:
Ta có:
So điều kiện suy ra phương trình có nghiệm .
Cho hàm số y = f(x) có đạo hàm
. Hàm số y = -2f(x) đồng biến trên khoảng
Ta có:
=> Hàm số y = -2f(x) đồng biến trên khoảng (0; 2)
Cho hàm số
có bảng biến thiên như sau:

Số nghiệm của phương trình
là:
Ta có:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số với đường thẳng
Phương trình (*) có 1 nghiệm
Phương trình (**) có 2 nghiệm
=> Số nghiệm của phương trình là 3 nghiệm
Tổng các nghiệm của phương trình
là:
Điều kiện . Có
Dó đó, tổng các nghiệm sẽ bằng .
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Tập nghiệm của bất phương trình
là?
BPT
Vậy bất PT có tập nghiệm là .
Cho hàm số y = f(x) có đạo hàm liên tục trên
. Đồ thị hàm số y f’(x) như hình vẽ bên:

Số điểm cực trị của hàm số y = f(x) + 2x là:
Xét hàm số g(x) = f(x) + 2x. Từ đồ thị hàm số f’(x) ta thấy:
Từ đó suy ra hàm số y = f(x) + 2x liên tục và có đạo hàm chỉ đổi dấu khi qua giá trị
Từ đó ta có bảng xét dấu như sau:

Vậy hàm số đã cho có đúng một cực trị
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Cho hình chóp đều
. Gọi
là trung điểm
,
là điểm đối xứng với
qua
. Mặt phẳng
chia khối chóp
thành hai phần có thể tích lần lượt là
với
. Tính tỉ số
.

Gọi lần lượt là chiều cao và diện tích đáy của khối chóp
. Khi đó
. Nối MN cắt SA tại E, MC cắt AD tại F. Tam giác
có A, N lần lượt là trung điểm của BM và SB.
Suy ra E là trọng tâm tam giác SBM.
Vì tứ giác là hình bình hành nên F là trung điểm MC.
Ta có . Xét tỉ số:
Mặt khác, áp dụng công thức tính thể tích khối chóp là:
Do đó
Suy ra .
Cho hàm số
xác định trên
và có đạo hàm
trong đó
. Hàm số
đồng biến trên khoảng nào?
Ta có:
Vì nên
Suy ra hàm số đồng biến trên .
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Phương trình
có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
Phương trình có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
PT
Vậy PT có 2 nghiệm.
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Khi đó ta được:
Tìm giá trị lớn nhất của hàm số ![]()
Dễ thấy nên hàm số xác định trên toàn trục số.
Gọi m là một giá trị tùy ý của hàm số, khi đó phương trình
Ta xét hai trường hợp sau:
TH1: Nếu m = 2 phương trình trở thành
Vậy phương trình có nghiệm khi m = 2
TH2: Nếu khi đó phương trình bậc 2 có nghiệm khi và chỉ khi:
Cho hàm số
có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:

Hàm số
nghịch biến trên khoảng nào trong các khoảng sau?
Quan sát hình vẽ ta thấy:
và
Vậy hàm số nghịch biến trên khoảng
.
Đẳng thức nào sau đây đúng với mọi số dương
?
Ta có:
Trong không gian, cho hình chữ nhật ABCD có
và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:
Khối đa diện đều loại là khối hai mươi mặt đều:

Gồm 20 mặt là các tam giác đều nên tổng các góc bằng:
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Tổng tất cả các giá trị thực của m để hàm số
đồng biến trên R bằng:
Ta có:
Hàm số đã cho đồng biến trên R khi và chỉ khi
Và dấu bằng xảy ra chỉ tại một số hữu hạn điểm.
Điều kiện cần
Ta thấy phương trình y ‘ = 0 có một nghiệm x = -1 nên để thì y’ không đổi dấu qua khi x = -1 khi đó phương trình y’ = 0 có nghiệm kép là x = -1 (x = -1 không thể laf nghiệm bội 4 của phương trình y’ = 0 vì y’ không chứa số hạng x3)
Ta suy ra được y’’(-1) = 0
=>
Điều kiện đủ:
Với m = - 2 ta có:
=> Hàm số đồng biến trên R
=> m = -2 thỏa mãn điều kiện đề bài.
Với ta có:
=> Hàm số đồng biến trên R
=> thỏa mãn điều kiện đề bài
Vậy là các giá trị cần tìm.
=> Tổng các giá trị thực của m cần tìm thỏa mãn yêu cầu bài toán là
Cho hàm số
. Trên đoạn
hàm số có giá trị nhỏ nhất là
. Tìm giá trị của
?
Ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra .
Vậy là giá trị cần tìm.
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Hai phương trình
và
lần lượt có 2 nghiệm duy nhất
là . Tổng
là?
Phương trình 1:
Phương trình
Phương trình 2:
Phương trình
Vậy .
Cho
biết , biểu thức
có giá trị là:
Ta có:
Trong không gian
(đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí
. Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là
.
a) Phương trình mặt cầu
để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
. Sai||Đúng
b) Điểm
nằm ngoài mặt cầu
. Sai||Đúng
c) Nếu người dùng điện thoại ở vị trí có tọa độ
thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
d) Nếu người dùng điện thoại ở vị trí có tọa độ
thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
Trong không gian (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động được đặt ở vị trí
. Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là
.
a) Phương trình mặt cầu để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
. Sai||Đúng
b) Điểm nằm ngoài mặt cầu
. Sai||Đúng
c) Nếu người dùng điện thoại ở vị trí có tọa độ thì có thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
d) Nếu người dùng điện thoại ở vị trí có tọa độ thì không thể sử dụng dịch vụ của trạm thu phát sóng đó. Đúng||Sai
Phương trình mặt cầu tâm
bán kính
mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là
.
Ta có: nên điểm
nằm trong mặt cầu.
Vì điểm nằm trong mặt cầu nên người dùng điện thoại ở vị trí có toạ độ
có thể sử dưng dịch vụ của trạm thu phát sóng đó.
Ta có: nên điểm
nằm ngoài mặt cầu.
Vậy người dùng điện thoại ở vị trí có tọa độ không thể sử dựng dịch vụ của trạm thu phát sóng đó