Nghiệm nguyên nhỏ nhất của bất phương trình là:
x=4 || 4 || X=4 || bốn || Bốn
Nghiệm nguyên nhỏ nhất của bất phương trình là:
x=4 || 4 || X=4 || bốn || Bốn
Điều kiện:
So điều kiện suy ra
Nghiệm nguyên nhỏ nhất của bất phương trình là:
x=4 || 4 || X=4 || bốn || Bốn
Nghiệm nguyên nhỏ nhất của bất phương trình là:
x=4 || 4 || X=4 || bốn || Bốn
Điều kiện:
So điều kiện suy ra
Cho hàm số bậc bốn có đồ thị như hình vẽ dưới đây:
Số điểm cực trị của hàm số là:
Ta có:
Cho a và b là các số thực thỏa mãn và
. Giá trị biểu thức
là:
Ta có:
Tìm số mặt của hình đa diện dưới đây là?
Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Cho hình chóp có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?
Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Trong không gian , cho điểm A(0; 1; 2), mặt phẳng
và mặt cầu
. Gọi
là mặt phẳng đi qua
, vuông góc với
và đồng thời
cắt mặt cầu
theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm
của
và trục
là
Gọi (C) là giao tuyến của mặt phẳng và mặt cầu (S) và (C) có tâm H, bán kính r.
Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi lớn nhất.
Vì nên gọi M(m; 0; 0).
Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).
Khi đó
Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:
hay
Ta có:
lớn nhất khi và chỉ khi
đạt giá trị nhỏ nhất
Mà
Do đó nhỏ nhất khi và chỉ khi
Vậy .
Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:
Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]
Từ đồ thị ta có: f’(x) = 0 =>
Ta có bảng biến thiên như sau:
Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện
Tập nghiệm của bất phương trình là:
Điều kiện: .
Đặt .
Bất phương trình đã cho trở thành
Đặt
Khi đó hoặc
- Với
- Với
Kết hợp điều kiện, ta được nghiệm của bất phương trình đã cho là hoặc
.
Rút gọn biểu thức với x > 0
Ta có:
Mặt phẳng đi qua trọng tâm của tứ diện, song song với một mặt phẳng của tứ diện và chia khối tứ diện thành hai phần. Tính tỉ số thể tích (phần bé chia phần lớn) của hai phần đó.
Gọi lần lượt là trung điểm của các cạnh
khi đó
là trọng tâm của tứ diện
. Ta sẽ dựng mặt phẳng qua
song song với
.
Trong mặt phẳng dựng đường thẳng qua
song song với
cắt
lần lượt tại
.
Qua lần lượt kẻ các đường thẳng lần lượt song song với
cắt
lần lượt tại
.
Do là trung điểm của
suy ra
Ta có
Một người gửi vào ngân hàng 200 triệu đồng vào tài khoản tiết kiệm ngân hàng với lãi suất 0,6%/ tháng, cứ sau mỗi tháng người đó rút ra 500 nghìn đồng. Hỏi sau đúng 36 lần rút tiền thì số tiền còn lại trong tài khoản của người đó gần nhất với phương án nào sau đây? (Biết rằng lãi suất không thay đổi và tiền lại mỗi tháng tính theo số tiền thực tế trong tài khoản của tháng đó?
Số tiền còn lại trong tài khoản sau tháng thứ 1 là: (triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 2 là:
(triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 3 là:
(triệu đồng)
Cứ tiếp tục quá trình thì số tiền còn lại trong tài khoản sau tháng thứ 36 là:
(triệu đồng)
Cho là ba số thực dương,
thỏa mãn:
Khi đó, giá trị của biểu thức gần với giá trị nào nhất sau đây?
Áp dụng bất đẳng thức , ta được:
Do đó với
Dấu “=” xảy ra khi
Khi đó .
Vậy giá trị của T gần 8 nhất.
Gọi là 2 nghiệm của phương trình
. Khi đó
bằng:
Điều kiện: .
Đặt ,điều kiện
. Khi đó phương trình trở thành:
Vậy .
Cho hàm số xác định trên
liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:
Số đường tiệm cận của đồ thị hàm số bằng:
Dựa vào bảng biến thiên ta thấy có 4 nghiệm phân biệt nên đồ thị hàm số
có 4 đường tiệm cận đứng.
Ngoài ra nên đồ thị hàm số
có hai đường tiệm cận ngang.
Vậy số đường tiệm cận của đồ thị hàm số bằng 6.
Cho hàm số f(x) có . Số cực trị của hàm số đã cho là:
Ta có: f’(x) đổi dấu khi qua các giá trị x = 3 và x = -3/2 nên hàm số có hai cực trị.
Nghiệm nguyên nhỏ nhất của phương trình là?
3 || ba || Ba
Nghiệm nguyên nhỏ nhất của phương trình là?
3 || ba || Ba
Điều kiện:
Ta có:
So điều kiện suy ra phương trình có nghiệm .
Cho lăng trụ đứng có đáy
là tam giác vuông tại
và
. Cạnh
tạo với mặt đáy
góc
. Tính thể tích
của khối lăng trụ đã cho.
Vì là lăng trụ đứng nên
, suy ra hình chiếu vuông góc của
trên mặt đáy
là
.
Do đó .
Tam giác vuông , ta có
Diện tích tam giác là
Vậy .
Trong không gian, cho hình chữ nhật ABCD có và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:
Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Cho . Khi đó
có giá trị là:
Ta có:
Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:
Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,
Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.
Theo đề bài, ta có tam giác SAB vuông cân tại S nên ,
Suy ra ,
và
Diện tích toàn phần của hình nón: (đvdt).
Thể tích khối nón là: (đvtt).
Cho hàm số có
. Hàm số đã cho có bao nhiêu điểm cực trị?
Ta có:
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta có hàm số có hai điểm cực trị.
Tìm đạo hàm của hàm số trên khoảng
Với điều kiện ta có:
. Khi đó:
=>
Cho hàm số . Hàm số
có đồ thị như hình vẽ dưới đây:
Bất phương trình nghiệm đúng với mọi
khi và chỉ khi
Cho hàm số . Hàm số
có đồ thị như hình vẽ dưới đây:
Bất phương trình nghiệm đúng với mọi
khi và chỉ khi
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại là:
Khối đa diện đều loại là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:
Gọi là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Gọi là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Điều kiện:
PT
Vậy .
Cho hàm số với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Cho hàm số với
là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số
để hàm số
có đúng ba điểm cực trị?
Viết biểu thức với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Tập hợp tất cả các giá trị thực của tham số để hàm số
đồng biến trên khoảng
là:
Tập xác định
Ta có:
Hàm số đồng biến trên khoảng
Xét hàm số trên khoảng
.
Ta có:
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta có:
Vậy thỏa mãn yêu cầu bài toán.
Số giao điểm của hai đồ thị hàm số và
bằng số nghiệm phân biệt của phương trình nào sau đây?
Hoành độ giao điểm là nghiệm của phương trình hay
.
Cho . Tính giá trị của biểu thức
Ta có:
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên khoảng nào trong các khoảng sau?
Ta có:
Ta có:
Cho g’(x) = 0 =>
Dựa vào f’(x) ta có:
Lập bảng xét dấu như sau:
Quan sát bảng xét dấy ta suy ra hàm số đồng biến trên khoảng (2; 4)
Cho hàm số có đồ thị như hình vẽ bên. Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Từ đồ thị, ta thấy hàm số đồng biến trên các khoảng và
.
Cho hình hộp chữ nhật có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Trong các khẳng định sau, khẳng định nào đúng?
Xét hàm số ta có:
Vậy hàm số đồng biến trên tập số thực.
Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?
Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:
Đ=4; M=4; C=6
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:
Hàm số nào sau đây đồng biến trên ?
Do nên hàm số
đồng biến trên
Đồ thị (C) của hàm số có bảng biến thiên như hình vẽ.
Biết tiếp tuyến (C) tại giao điểm của (C) với trục tung song song với đường thẳng . Giá trị của biểu thức
là:
Do đồ thị hàm số có tiệm cận đứng là x = -1 và tiệm cận ngang y = -3
=> Hàm số có dạng
Do tiếp tuyến song song với đường thẳng
=> 3 – b = 2 => b = 1
Vậy a = -3; b = 1; c = 1 => K = 2
Điều kiện xác định của phương trình là:
Biểu thức xác định
.
Trong không gian với hệ toạ độ , phương trình nào sau đây là phương trình mặt cầu
Phương trình mặt cầu tâm bán kính
có dạng:
Vậy đáp án cần tìm là: .
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có 12 cạnh.
Với a là một số thực dương thì biểu thức được rút gọn là:
Ta có:
Kết luận nào sau đây về tính đơn điệu của hàm số là đúng?
Ta có:
Do đó hàm số nghịch biến trên các khoảng (-∞; 2) và (2; +∞)
Cho hàm số xác định trên
và có đạo hàm
trong đó
. Hàm số
đồng biến trên khoảng nào?
Ta có:
Vì nên
Suy ra hàm số đồng biến trên .
Trong không gian với hệ tọa độ , mặt phẳng
cắt mặt cầu
theo giao tuyến là đường tròn có diện tích là:
Mặt cầu có tâm
và bán kính
Khoảng cách từ đến (P):
Bán kính đường tròn giao tuyến
Diện tích đường tròn giao tuyến .
Cho hàm số . Cho các khẳng định sau:
i) Hàm số xác định với mọi x
ii) Đồ thị hàm số luôn đi qua điểm (1; 1)
iii) Hàm số nghịch biến trên
iv) Đồ thị hàm số có hai đường tiệm cận
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
Ta có khẳng định ii) và iv) là đúng
i) Sai vì hàm số đã cho xác định khi x > 0
iii) Sai vì hàm số nghịch biến trên
Cho lăng trụ có đáy
là hình chữ nhật tâm
và
;
vuông góc với đáy
. Cạnh bên
hợp với mặt đáy
một góc
. Tính theo
thể tích
của khối lăng trụ đã cho.
Vì nên
.
Đường chéo hình chữ nhật:
Suy ra tam giác vuông cân tại
nên
Diện tích hình chữ nhật .
Vậy .
Tìm điều kiện xác định của bất phương trình sau:
BPT xác định khi : .
Cho hàm số xác định và liên tục trên các khoảng
và
có bảng biến thiên như hình vẽ:
Mệnh đề nào sau đây đúng?
Vì nên
là tiệm cận ngang của đồ thị hàm số.
Vì nên
là tiệm cận đứng của đồ thị hàm số.