Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Với các số a, b, c là các số thực dương tùy ý khác 1 và {\log _a}c = x;{\log _b}c = y. Khi đó giá trị của {\log _a}\left( {ab} ight) bằng:

     Với a, b, c là các số thực dương tùy ý khác 1 ta có: {\log _c}a = \frac{1}{x};{\log _c}b = \frac{1}{y}

    Khi đó ta có: {\log _c}\left( {ab} ight) = {\log _c}a + {\log _c}b = \frac{1}{x} + \frac{1}{y}

  • Câu 2: Thông hiểu

    Phương trình \ln \frac{{x - 1}}{{x + 8}} = \ln x có nghiệm là: 

    Ta có:  \ln \frac{{x - 1}}{{x + 8}} = \ln x \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{x - 1}}{{x + 8}} = x \hfill \\ \end{gathered}  ight.

    \Rightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \left[ \begin{gathered}  x = 4 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 4

  • Câu 3: Vận dụng

    Trong các khẳng định dưới đây, khẳng định nào sai?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 2  - 1 < 1} \\   {2017 < 2018} \end{array}} ight. \Rightarrow {\left( {\sqrt 2  - 1} ight)^{2017}} > {\left( {\sqrt 2  - 1} ight)^{2018}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 3  - 1 < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {\sqrt 3  - 1} ight)^{2018}} < {\left( {\sqrt 3  - 1} ight)^{2017}}

    \left\{ {\begin{array}{*{20}{c}}  {2 > 1} \\   {\sqrt 2  + 1 > \sqrt 3 } \end{array}} ight. \Rightarrow {2^{\sqrt 2  + 1}} > {2^{\sqrt 3 }}

    \left\{ {\begin{array}{*{20}{c}}  {0 < 1 - \dfrac{{\sqrt 2 }}{2} < 1} \\   {2018 > 2017} \end{array}} ight. \Rightarrow {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2018}} < {\left( {1 - \frac{{\sqrt 2 }}{2}} ight)^{2017}}

    Vậy đáp án sai là: {\left( {\sqrt 3  - 1} ight)^{2018}} > {\left( {\sqrt 3  - 1} ight)^{2017}}

  • Câu 4: Vận dụng

    Giá trị của tham số m sao cho hàm số y = {x^3} - 2m{x^2} - \left( {m + 1} ight)x + 1 nghịch biến trên khoảng (0; 2)?

    Ta có: y' = 3{x^2} - 4mx - m - 1

    Hàm số nghịch biến trên khoảng (0; 2)

    => 3{x^2} - 4mx - m - 1 \leqslant 0,x \in \left[ {0;2} ight]

    => 3{x^2} - 1 \leqslant 3\left( {4x + 1} ight) \Leftrightarrow \frac{{3{x^2} - 1}}{{4x + 1}} \leqslant m,\left( {\forall x \in \left[ {0;2} ight]} ight)

    Xét hàm số g\left( x ight) = \frac{{3{x^2} - 1}}{{4x + 1}};\forall x \in \left[ {0;2} ight]

    Ta có: g'\left( x ight) = \frac{{6x\left( {4x + 1} ight) - 4\left( {3{x^2} - 1} ight)}}{{{{\left( {4x + 1} ight)}^2}}} = \frac{{12{x^2} + 6x + 4}}{{{{\left( {4x + 1} ight)}^2}}};\forall x \in \left[ {0;2} ight]

    => g(x) đồng biến trên đoạn [0; 2]

    Ta có:

    \begin{matrix}  g\left( x ight) = \dfrac{{3{x^2} - 1}}{{4x + 1}} \leqslant m;\forall x \in \left[ {0;2} ight] \hfill \\   \Rightarrow m \geqslant g\left( 2 ight) = \dfrac{{11}}{9} \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight)là:

    17 || x=17 || x bằng 17 || X=17

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight)là:

    17 || x=17 || x bằng 17 || X=17

     Điều kiện:

    {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight) \Leftrightarrow {\log _2}\left( {{{\log }_2}x} ight) > 2

    \Leftrightarrow {\log _2}x > 4 \Leftrightarrow x > 16

    Vậy nghiệm nguyên nhỏ nhất x=17.

  • Câu 6: Thông hiểu

    Cho hàm số y = \frac{x + m}{x +
1} (với m là tham số thực) thỏa mãn \max_{\lbrack 1;2brack}y +
\min_{\lbrack 1;2brack}y = \frac{16}{3}. Mệnh đề nào sau đây đúng?

    Ta có: y' = \frac{1 - m}{(x +
1)^{2}}

    TH1: m = 1 \Rightarrow y = 1 loại

    TH2: m > 1 khi đó \max_{\lbrack 1;2brack}y = \frac{1 +
m}{2};\min_{\lbrack 1;2brack}y = \frac{2 + m}{3}

    \max_{\lbrack 1;2brack}y +
\min_{\lbrack 1;2brack}y = \frac{1 + m}{2} + \frac{2 + m}{3} =
\frac{16}{3} \Leftrightarrow m = 5

    Suy ra đáp án cần tìm là m >
4.

  • Câu 7: Vận dụng

    Cho các hàm số y = {\log _a}x;{\text{ }}y = {\log _b}x có đồ thị như hình vẽ. Đường thẳng x = 5 cắt trục hoành, đồ thị hàm số y = {\log _a}xy = {\log _b}x lần lượt tại A,B,C. Biết rằng CB = 2AB. Mệnh đề nào sau đây đúng?

    Mệnh đề nào sau đây đúng

    Ta có: A\left( {5;0} ight),B\left( {5;{{\log }_a}5} ight),C\left( {5;{{\log }_b}5} ight)

    Theo bài ra ta có: CB = 2AB

    \begin{matrix}   \Leftrightarrow {\log _b}5 - {\log _a}5 = 2{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = 3{\log _a}5 \hfill \\   \Leftrightarrow {\log _b}5 = \dfrac{1}{3}{\log _5}a \hfill \\   \Leftrightarrow a = {b^3} \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm A(1;2; - 4),B(1; - 3;1),C(2;2;3). Tính đường kính l của mặt cầu (S) đi qua ba điểm trên và có tâm nằm trên mặt phẳng (Oxy)?

    Gọi tâm mặt cầu là I(x;y;0)

    Ta có:

    \left\{ \begin{matrix}
IA = IB \\
IA = IC \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 1)^{2} + (y +
3)^{2} + 1^{2}} \\
\sqrt{(x - 1)^{2} + (y - 2)^{2} + 4^{2}} = \sqrt{(x - 2)^{2} + (y -
2)^{2} + 3^{2}} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(y - 2)^{2} + 4^{2} = (y + 3)^{2} + 1 \\
x^{2} - 2x + 1 + 16 = x^{2} - 4x + 4 + 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
10y = 10 \\
2x = - 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
y = 1 \\
x = - 2 \\
\end{matrix} ight.

    \Rightarrow l = 2R = 2\sqrt{( - 3)^{2} +
( - 1)^{2} + 4^{2}} = 2\sqrt{26}.

  • Câu 9: Nhận biết

    Trong các hàm số sau, hàm số nào đồng biến trên tập số thực?

    Xét hàm số y = x^{3} + x có: y' = 3x^{2} + 1 > 0;\forall
x\mathbb{\in R}

    Suy ra hàm số y = x^{3} + x đồng biến trên tập số thực.

  • Câu 10: Vận dụng

    Tìm tập nghiệm của bất phương trình {11^{\sqrt {x + 6} }} \geqslant {11^x} sau: 

    Ta có:  {11^{\sqrt {x + 6} }} \geqslant {11^x} \Leftrightarrow \sqrt {x + 6}  \geqslant x

    \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x < 0 \hfill \\  x + 6 \geqslant 0 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x \geqslant 0 \hfill \\  x + 6 \geqslant {x^2} \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}   - 6 \leqslant x < 0 \hfill \\  \left\{ \begin{gathered}  x \geqslant 0 \hfill \\   - 2 \leqslant x \leqslant 3 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow  - 6 \leqslant x \leqslant 3

  • Câu 11: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AD=2a, AB = BC = CD = a. Cạnh bên SA=2a và vuông góc với đáy. Gọi R là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD. Tỉ số \frac{R}{a}nhận giá trị nào sau đây?

     Tính tỉ số

    Ta có SA \bot AD hay \widehat {SAD} = {90^0}

    Gọi E là trung điểm AD.

    Ta có EA = AB = BC nên ABCE là hình thoi.

    Suy ra CE = EA = \frac{1}{2}AD .

    Do đó tam giác ACD vuông tại C. Ta có:

    \left\{ \begin{array}{l}DC \bot AC\\DC \bot SA\end{array} ight. \Rightarrow DC \bot \left( {SAC} ight) \Rightarrow DC \bot SC   hay    \widehat {SCD} = {90^0}

    Tương tự, ta cũng có SB \bot BD hay \widehat {SBD} = {90^0}

    Ta có \widehat {SAD} = \widehat {SBD} = \widehat {SCD} = {90^0} nên khối chóp S.ABCD nhận trung điểm I của SD làm tâm mặt cầu ngoại tiếp, bán kính R = \frac{{SD}}{2} = \frac{{\sqrt {S{A^2} + A{D^2}} }}{2} = a\sqrt 2.

    Suy ra \frac{R}{a} = \sqrt 2.

  • Câu 12: Thông hiểu

    Dân số thế giới được tính theo công thức S = A. e \
^{nr} trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là 1,47\% một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?

    Ta có:

    S = A \cdot e^{nr} \Leftrightarrow
e^{nr} = \frac{S}{A} \Leftrightarrow nr = \ln\frac{S}{A} \Leftrightarrow
n = \frac{1}{r}\ln\frac{S}{A}

    Với S = 93713700 người; A = 80902400 người; r = \frac{1,47}{100} = 0,0147/năm.

    Suy ra n =
\frac{1}{0,0147}\ln\frac{93713000}{80902400} \approx 10.

    Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.

  • Câu 13: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 14: Thông hiểu

    Cho a,b > 0, viết {a^{\frac{2}{3}}}.\sqrt a về dạng {a^x}\sqrt[3]{{b\sqrt {b\sqrt b } }} về dạng {b^y}. Tình giá trị biểu thức T = 6a + 12y

    Ta có:

    \begin{matrix}  {a^{\frac{2}{3}}}.\sqrt a  = {a^{\frac{2}{3}}}.{a^{\frac{1}{2}}} = {a^{\frac{2}{3} + \frac{1}{2}}} = {a^{\frac{7}{6}}} \hfill \\   \Rightarrow {a^x} = {a^{\frac{7}{6}}} \hfill \\   \Rightarrow x = \dfrac{7}{6} \hfill \\  \sqrt[3]{{b\sqrt {b\sqrt b } }} = {\left( {b\sqrt {{b^{\frac{3}{2}}}} } ight)^{\frac{1}{3}}} = {\left( {b.{b^{\frac{3}{4}}}} ight)^{\frac{1}{3}}} = {\left( {{b^{\frac{7}{4}}}} ight)^{\frac{1}{3}}} = {b^{\frac{7}{{12}}}} \hfill \\   \Rightarrow {b^y} = {b^{\frac{7}{{12}}}} \Rightarrow y = \dfrac{7}{{12}} \hfill \\   \Rightarrow T = 14 \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 16: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 2)^{2019}\left( x^{2} - x -2 ight)^{2020}(x + 3)^{3}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x - 2)^{2019}\left( x^{2} - x -2 ight)^{2020}(x + 3)^{3}. Hỏi hàm số y = f\left( |x| ight) có bao nhiêu cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 17: Nhận biết

    Cho lăng trụ đứng ABC.A'B'C'có đáy ABC là tam giác với AB = a,AC = 2a,\widehat {BAC} = {120^0},AA' = 2a\sqrt 5. Tính thể tích Vcủa khối lăng trụ đã cho.

     

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{{{a^2}\sqrt 3 }}{2}.

    Vậy thể tích khối lăng trụ {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = {a^3}\sqrt {15}

  • Câu 18: Vận dụng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Số nghiệm thuộc đoạn \left\lbrack
0;\frac{7}{2} ightbrack của phương trình f\left( \cos x ight) = 1 bằng:

    Dựa vào bảng biến thiến ta suy ra f\left(
\cos x ight) = 1 \Leftrightarrow \left\lbrack \begin{matrix}
\cos x = a < - 1\ \ \ \ (1) \\
\cos x = b \in ( - 1;0)\ \ \ (2) \\
\cos x = c \in (0;1)\ \ (3) \\
\cos x = d > 1\ \ (4) \\
\end{matrix} ight.

    Các phương trình (1) và (4) vô nghiệm

    Ta có bảng sau:

    Phương trình \cos x = b \in ( -
1;0) có 4 nghiệm thuộc \left\lbrack
0;\frac{7}{2} ightbrack

    Phương trình \cos x = c \in
(0;1) có 3 nghiệm thuộc \left\lbrack 0;\frac{7}{2}
ightbrack

    Vậy phương trình đã cho có tất cả 7 nghiệm thuộc đoạn \left\lbrack 0;\frac{7}{2}
ightbrack.

  • Câu 19: Vận dụng cao

    Cho bất phương trình: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}}. Tìm tập nghiệm của bất phương trình.

     Ta có: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}} \Leftrightarrow \frac{{6\left( {1 - {5^x}} ight)}}{{\left( {{{5.5}^x} - 1} ight)\left( {5 - {5^x}} ight)}} \geqslant 0\,\,(1)

    Đặt t =5^x, BPT (1) \Leftrightarrow \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}} \geqslant 0.

    Đặt f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}.

    Lập bảng xét dấu f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}, ta được nghiệm:

    \left[ \begin{gathered}  5 < t \hfill \\  \frac{1}{5} < t \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  5 < {5^x} \hfill \\  \frac{1}{5} < {5^x} \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  1 < x \hfill \\   - 1 < x \leqslant 0 \hfill \\ \end{gathered}  ight..

    Vậy tập nghiệm của BPT là S = \left( { - 1;0} ight] \cup \left( {1; + \infty } ight).

  • Câu 20: Nhận biết

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ \pm 2
ight\} và có bảng biến thiên như sau:

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số không có điểm cực trị. Đúng||Sai

    b) \lim_{x ightarrow ( - 2)^{-}}f(x) =
+ \infty. Sai||Đúng

    c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai

    d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng

    Đáp án là:

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ \pm 2
ight\} và có bảng biến thiên như sau:

    Xét tính đúng sai của các khẳng định sau.

    a) Hàm số không có điểm cực trị. Đúng||Sai

    b) \lim_{x ightarrow ( - 2)^{-}}f(x) =
+ \infty. Sai||Đúng

    c) Đồ thị hàm số có đúng 1 tiệm cận ngang. Đúng||Sai

    d) Đồ thị hàm số có đúng 1 tiệm cận đứng. Sai||Đúng

    Dựa vào bảng biến thiên ta thấy

    a) Hàm số không có điểm cực trị.

    b) lim \lim_{x ightarrow ( -
2)^{-}}f(x) = - 10.

    c) \lim_{x ightarrow \pm \infty}f(x) =
0. Suy ra đồ thị có đúng 1 đường tiệm cận ngang là y = 0.

    d) \lim_{x ightarrow ( - 2)^{+}}f(x) =
+ \infty\lim_{x ightarrow
2^{+}}f(x) = + \infty nên đồ thị hàm số có đúng 2 đường tiệm cận đứng x = \pm 2.

  • Câu 21: Nhận biết

    Bất phương trình {\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} ight) < 0 có tập nghiệm là:

     Ta có {\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} ight) < 0 

    \Leftrightarrow 2{x^2} - x + 1 > 1 \Leftrightarrow \left[ \begin{gathered}  x < 0 \hfill \\  x > \frac{1}{2} \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là  S = \left( { - \infty ;0} ight) \cup \left( {\frac{1}{2}; + \infty } ight).

  • Câu 22: Vận dụng

    Cho phương trình {\left( {7 + 4\sqrt 3 } ight)^x} + {\left( {2 + \sqrt 3 } ight)^x} = 6. Khẳng định nào sau đây là đúng?

     Ta có: {\left( {7 + 4\sqrt 3 } ight)^x} + {\left( {2 + \sqrt 3 } ight)^x} = 6

    \Leftrightarrow {\left[ {{{\left( {2 + \sqrt 3 } ight)}^2}} ight]^x} + {\left( {2 + \sqrt 3 } ight)^x} - 6 = 0

    \Leftrightarrow {\left[ {{{\left( {2 + \sqrt 3 } ight)}^x}} ight]^2} + {\left( {2 + \sqrt 3 } ight)^x} - 6 = 0{\text{   }}\left( {*} ight)

    Đặt t = {\left( {2 + \sqrt 3 } ight)^x} > 0.

    Khi đó \left( {*} ight) \Leftrightarrow {t^2} + t - 6 = 0 \Leftrightarrow \left[ \begin{gathered}  t = 2{\text{      }}\left( TM ight) \hfill \\  t =  - 3{\text{   }}\left( L ight) \hfill \\ \end{gathered}  ight.

    Với t = 2 \Rightarrow {\left( {2 + \sqrt 3 } ight)^x} = 2 \Leftrightarrow \boxed{x = {{\log }_{\left( {2 + \sqrt 3 } ight)}}2}.

  • Câu 23: Nhận biết

    Đồ thị của hàm số nào có dạng như hình vẽ sau đây?

    Ta thấy hình vẽ là đồ thị của hàm bậc ba có hệ số a > 0 nên hàm số cần tìm là y = x^{3} - 3x - 1.

  • Câu 24: Vận dụng

    Cho lăng trụ đứng ABCD.A'B'C'D'có đáy ABCD là hình thoi cạnh bằng 1, \widehat {BAD} = {120^0} . Góc giữa đường thẳng AC' và mặt phẳng \left( {ADD'A'} ight) bằng 30^0. Tính thể tích V của khối lăng trụ.

    Hình thoi ABCD\widehat {BAD} = {120^0}, suy ra \widehat {ADC} = {60^0}. Do đó tam giác ABCADC là các tam giác đều. Gọi N là trung điểm A'B' nên  \left\{ \begin{gathered}  {C'N \bot A'B'} \hfill \\  C'N = \frac{{\sqrt {3} }}{2} \hfill \\ \end{gathered}  ight.

    Suy ra {30^0} = \widehat {AC',\left( {ADD'A'} ight)} = \widehat {AC',AN} = \widehat {C'AN}.

    Tam giác vuông C'NA, có AN = \frac{{C'N}}{{\tan \widehat {C'AN}}} = \frac{3}{2}

    Tam giác vuông AA'N, có AA' = \sqrt {A{N^2} - A'{N^2}}  = \sqrt 2.

    Diện tích hình thoi {S_{ABCD}} = A{B^2}.\sin \widehat {BAD} = \frac{{\sqrt 3 }}{2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = \frac{{\sqrt 6 }}{2}.

  • Câu 25: Vận dụng

    Cho biết năm 2018, tỉnh A có 2 triệu người và tỉ lệ dân số là 1,4%/năm. Hỏi đến năm 2025 tỉnh A có bao nhiêu người, nếu tỉ lệ tăng dân số hằng năm không đổi?

    Ta có: A = 2, n = 7; I = 0,014

    Số dân tỉnh A đến năm 2025 là S = 2.{e^{7.0,014}} \approx 2,2059 triệu người.

  • Câu 26: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 27: Thông hiểu

    Có tất cả bao nhiêu giá trị nguyên của tham số m để hàm số y = \frac{1}{3}x^{3} - 2mx^{2} + 4x - 5 đồng biến trên tập số thực?

    Ta có: y' = x^{2} - 4m +
4

    Hàm số y = \frac{1}{3}x^{3} - 2mx^{2} +
4x - 5 đồng biến trên \mathbb{R}

    y' \geq 0;\forall x \Leftrightarrow
x^{2} - 4m + 4 \geq 0

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 > 0 \\
\Delta' = 4m^{2} - 4 \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow - 1 \leq m \leq 1

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ - 1;0;1 ight\}

    Vậy số giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán là 3.

  • Câu 28: Nhận biết

    Trong các hình dưới đây hình nào không phải khối đa diện lồi?

     

    Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.

  • Câu 29: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m
\in \lbrack - 5;5brack để đồ thị hàm số y = \frac{x + 1}{x^{3} - 3x^{2} - m} có đúng một tiệm cận đứng?

    Đồ thị hàm số y = \frac{x + 1}{x^{3} -
3x^{2} - m} có đúng một tiệm cận đứng khi và chỉ khi phương trình x^{3} - 3x^{2} - m = 0 có đúng một nghiệm x eq - 1

    Ta có: x^{3} - 3x^{2} - m = 0
\Leftrightarrow x^{3} - 3x^{2} = m

    Xét hàm số x^{3} - 3x^{2} = g(x) ta có: g'(x) = 3x^{2} - 6x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Từ bảng biến thiên suy ra \left\lbrack
\begin{matrix}
m > 0 \\
m < - 4 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 5;5brack \\
\end{matrix} ight. nên m \in
\left\{ - 5;1;2;3;4;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 30: Vận dụng cao

    Cho hàm số f(x) = x^{3} - (2m - 1)x^{2} +
(2 - m)x + 2 với m là tham số. Tìm điều kiện của tham số m để hàm số y = f\left( |x| ight)5 cực trị?

    Nhận thấy rằng nếu x_{0} là điểm cực trị dương của hàm số y = f(x) thì x_{0}; - x_{0} là điểm cực trị của hàm số y = f\left( |x|
ight)

    Lại thấy vì đồ thị hàm số y = f\left( |x|
ight) nhận trục tung làm trục đối xứng mà f(x) là hàm đa thức bậc ba nên x = 0 luôn là một điểm cực trị của hàm số y = f\left( |x| ight).

    Khi đó để hàm số y = f\left( |x|
ight) có 5 điểm cực trị thì hàm số f(x) = x^{3} - (2m - 1)x^{2} + (2 - m)x +
2 có hai cực trị dương phân biệt.

    Suy ra phương trình f'(x) = 3x^{2} -
2(2m - 1)x + 2 - m = 0 có hai nghiệm dương phân biệt:

    \Leftrightarrow \left\{ \begin{gathered}
  \Delta ' > 0 \hfill \\
  S > 0 \hfill \\
  P > 0 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}
  {\left( {2m - 1} ight)^2} - 3\left( {2 - m} ight) > 0 \hfill \\
  \frac{{2m - 1}}{3} > 0 \hfill \\
  2 - m > 0 \hfill \\ 
\end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}
  4{m^2} - m - 5 > 0 \hfill \\
  m > \frac{1}{2} \hfill \\
  m < 2 \hfill \\ 
\end{gathered}  ight. \Leftrightarrow \frac{5}{4} < m < 2

    Vậy đáp án cần tìm là \frac{5}{4} < m
< 2.

  • Câu 31: Vận dụng cao

    Cho tứ diện có thể tích bằng V. Gọi V' là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số \frac{{V'}}{V}.

     

    Xét khối  tứ diện và các điểm được kí hiệu như hình vẽ trên, ta có:

    \frac{{{V_{S.A'B'C'}}}}{{{V_{S.ABC}}}} = \frac{{SA'}}{{SA}}.\frac{{SB'}}{{SB}}.\frac{{SC'}}{{SC}} = \frac{1}{8} \Rightarrow {V_{S.A'B'C'}} = \frac{V}{8}

    Tương tự \,{V_{A.A'MP}} = {V_{B.B'MN}} = {V_{C.C'NP}} = \frac{V}{8}.

    Do đó \,\,V' = {V_{S.ABC}} - \left( {{V_{S.A'B'C'}} + {V_{A.A'MP}} + {V_{B.B'MN}} + {V_{C.C'NP}}} ight)

    = \,\,V - \left( {\frac{V}{8} + \frac{V}{8} + \frac{V}{8} + \frac{V}{8}} ight) = \frac{V}{2}\,\, \Rightarrow \,\,\frac{{V'}}{V} = \frac{1}{2}.

  • Câu 32: Vận dụng cao

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) có bảng xét dấu f'(x) như sau:

    Hàm số y = f\left( 2 - e^{x} ight) -\frac{1}{3}e^{3x} + 3e^{2x} - 5e^{x} + 1 đồng biến trong khoảng nào dưới đây?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 33: Vận dụng

    Cho khối đa diện đều loại \{ 3; 4 \}. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?

     Khối đa diện đều loại \{ 3; 4 \} là khối bát diện đều.

    Mỗi đỉnh là đỉnh chung của 4 mặt.

    Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng 60^∘⋅4=240^∘.

  • Câu 34: Nhận biết

    Cho hàm số y = {x^{ - \frac{1}{2}}}. Cho các khẳng định sau:

    i) Hàm số xác định với mọi x

    ii) Đồ thị hàm số luôn đi qua điểm (1; 1)

    iii) Hàm số nghịch biến trên \mathbb{R}

    iv) Đồ thị hàm số có hai đường tiệm cận

    Trong các khẳng định trên có bao nhiêu khẳng định đúng?

    Ta có khẳng định ii) và iv) là đúng

    i) Sai vì hàm số đã cho xác định khi x > 0

    iii) Sai vì hàm số nghịch biến trên \left( {0; + \infty } ight)

  • Câu 35: Vận dụng cao

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 36: Thông hiểu

    Thu gọn biểu thức T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} biết a và b là hai số thực dương.

    Ta có: T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} = \left( {{a^{\frac{7}{6}}}:{a^{\frac{1}{6}}}} ight).\left( {{b^{\frac{{ - 2}}{3}}}:{b^{\frac{2}{6}}}} ight) = \frac{a}{b}

  • Câu 37: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 38: Thông hiểu

    Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:

     Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.

    Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.

    Do đó độ đài đường chéo: \sqrt {{8^2} + {6^2}}  = 10{m{cm}}{m{.}}

  • Câu 39: Thông hiểu

    Mệnh đề nào sau đây là mệnh đề sai?

    Ta thấy: y = {2^{ - x}} = {\left( {\frac{1}{2}} ight)^x}

    Do vậy đồ thị của hàm số y = {2^{ - x}} không có tiệm cận đứng

  • Câu 40: Vận dụng

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Đặt g(x) = \left| f(x + 1) + might| với m là tham số. Tìm điều kiện của tham số m để hàm số y = g(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Đặt g(x) = \left| f(x + 1) + might| với m là tham số. Tìm điều kiện của tham số m để hàm số y = g(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 41: Nhận biết

    Cho 0 < a e 1 và biểu thức \sqrt {a.\sqrt[3]{a}} viết dưới dạng {a^n}. Giá trị của n là:

    Ta có:

    \sqrt {a.\sqrt[3]{a}}  = {\left( {a.{a^{\frac{1}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{2}{3}}}

    Vậy n = \frac{2}{3}

  • Câu 42: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 43: Nhận biết

    Cho hàm số y = {x^4} - 2{x^2} + 1. Xét các mệnh đề sau, những những mệnh đề nào đúng?

    Ta có: y' = 4{x^3} - 4x

    \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0 \Rightarrow y = 1} \\   {x = 1 \Rightarrow y = 0} \\   {x =  - 1 \Rightarrow y = 0} \end{array}} ight.

    Ta có bảng xét dấu như sau:

    Chọn mệnh đề đúng

    Quan sát bảng xét dấu ta thấy:

    - Hàm số có 3 điểm cực trị

    - Hàm số đồng biến trên khoảng (-1; 0), (1; +∞) và nghịch biến trên khoảng (-∞; -1), (0; 1)

  • Câu 44: Vận dụng

    Cho hàm số y = f(x) có bảng biến thiên trên đoạn \lbrack -
4;4brack như hình vẽ:

    Có bao nhiêu giá trị của tham số m trên đoạn \lbrack - 4;4brack sao cho giá trị lớn nhất của hàm số y = f\left( \left| x^{3}
ight| + 3|x| ight) + f(m) trên đoạn \lbrack - 1;1brack bằng 1?

    Ta có: x \in \lbrack - 1;1brack
\Rightarrow |x| \in \lbrack 0;1brack \Rightarrow \left| x^{3} ight|
\in \lbrack 0;1brack

    Suy ra t = \left| x^{3} ight| + 3|x|
\in \lbrack 0;4brack

    Khi đó f\left( \left| x^{3} ight| +
3|x| ight) \in \lbrack - 3;3brack hay f\left( \left| x^{3} ight| + 3|x| ight) + f(m)
\in \left\lbrack - 3 + f(m);3 + f(m) ightbrack

    Theo yêu cầu bài toán \Leftrightarrow 3 +
f(m) = 1 \Leftrightarrow f(m) = - 2

    Nhìn vào bảng biến thiên ta thấy f(m) = -
2 có ba nghiệm

    Vậy có 3 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 45: Nhận biết

    Tính giá trị của {a^{{{\log }_{\sqrt a }}4}} với  a > 0;a e 1

     Ta có: {a^{{{\log }_{\sqrt a }}4}} = {a^{2{{\log }_a}4}} = {a^{{{\log }_a}16}} = 16

  • Câu 46: Nhận biết

    Phương trình {\log _2}(3x - 2) = 2 có nghiệm là: 

    x=2 || 2 || hai

    Đáp án là:

    Phương trình {\log _2}(3x - 2) = 2 có nghiệm là: 

    x=2 || 2 || hai

     PT \Leftrightarrow \left\{ \begin{gathered}  3x - 2 > 0 \hfill \\  3x - 2 = 4 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{2} \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 2.

  • Câu 47: Nhận biết

    Tập xác định của hàm số y = \log {\left( {x - 2} ight)^2} là:

    Hàm số y = \log {\left( {x - 2} ight)^2} xác định nếu {\left( {x - 2} ight)^2} > 0 \Leftrightarrow x e 2

    Vậy tập xác định D = \mathbb{R}\backslash \left\{ 2 ight\}

  • Câu 48: Thông hiểu

    Tính đạo hàm của hàm số y = \left( {{x^2} + 2x - 2} ight){.5^x}

     Ta có:

    \begin{matrix}  y' = \left( {{x^2} + 2x - 2} ight)'{.5^x} + \left( {{5^x}} ight)'.\left( {{x^2} + 2x - 2} ight) \hfill \\   \Rightarrow y' = \left( {2x + 2} ight){.5^x} + \left( {{x^2} + 2x - 2} ight){.5^x}.\ln 5 \hfill \\ \end{matrix}

  • Câu 49: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 50: Nhận biết

    Xét các mệnh đề:

    (I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng \triangle cố định một khoảng không đổi là một mặt trụ.

    (II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.

    Trong các mệnh đề trên, mệnh đề nào đúng?

    Ta xét về khái niệm Mặt trụ suy ra  (I) đúng.

    Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).

    Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.

    Vì vậy Mệnh đề (II) cũng đúng.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo