Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 2: Vận dụng cao

    Cho bất phương trình: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}}. Tìm tập nghiệm của bất phương trình.

     Ta có: \frac{1}{{{5^{x + 1}} - 1}} \geqslant \frac{1}{{5 - {5^x}}} \Leftrightarrow \frac{{6\left( {1 - {5^x}} ight)}}{{\left( {{{5.5}^x} - 1} ight)\left( {5 - {5^x}} ight)}} \geqslant 0\,\,(1)

    Đặt t =5^x, BPT (1) \Leftrightarrow \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}} \geqslant 0.

    Đặt f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}.

    Lập bảng xét dấu f(t) = \frac{{6\left( {1 - t} ight)}}{{\left( {5t - 1} ight)\left( {5 - t} ight)}}, ta được nghiệm:

    \left[ \begin{gathered}  5 < t \hfill \\  \frac{1}{5} < t \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  5 < {5^x} \hfill \\  \frac{1}{5} < {5^x} \leqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  1 < x \hfill \\   - 1 < x \leqslant 0 \hfill \\ \end{gathered}  ight..

    Vậy tập nghiệm của BPT là S = \left( { - 1;0} ight] \cup \left( {1; + \infty } ight).

  • Câu 3: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 4: Thông hiểu

    Cho hai số thực dương a và b thỏa mãn {\log _9}{a^4} + {\log _3}b = 8{\log _3}a + {\log _{\sqrt[3]{3}}}b = 9. Giá trị của biểu thức P = ab + 1 là:

    Theo điều kiện ta có:

     \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {{{\log }_9}{a^4} + {{\log }_3}b = 8} \\   {{{\log }_3}a + {{\log }_{\sqrt[3]{3}}}b = 9} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {2{{\log }_9}a + {{\log }_3}b = 8} \\   {{{\log }_3}a + 3{{\log }_3}b = 9} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{{\log }_9}a = 3} \\   {{{\log }_3}b = 2} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 27} \\   {b = 9} \end{array}} ight. \hfill \\   \Rightarrow P = ab + 1 = 244 \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Điều kiện xác định của bất phương trình {\log _{\frac{1}{2}}}\left[ {{{\log }_2}(2 - {x^2})} ight] > 0 là:

     BPT xác định khi : \left\{ \begin{gathered}  2 - {x^2} > 0 \hfill \\  {\log _2}(2 - {x^2}) > 0 \hfill \\ \end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}   - \sqrt 2  < x < \sqrt 2  \hfill \\  2 - {x^2} > 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}   - \sqrt 2  < x < \sqrt 2  \hfill \\  1 - {x^2} > 0 \hfill \\ \end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}   - \sqrt 2  < x < \sqrt 2  \hfill \\   - 1 < x < 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow  - 1 < x < 1.

    Vậy BPT xác định khi x \in \left( { - 1;1} ight).

  • Câu 6: Vận dụng

    Bất phương trình {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 có tập nghiệm là:

     Điều kiện: {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 \Leftrightarrow {\log _2}\left[ {\left( {{x^2} - x - 2} ight)\left( {x - 1} ight)} ight] \geqslant 1

    \Leftrightarrow \left( {{x^2} - x - 2} ight)\left( {x - 1} ight) - 2 \geqslant 0 \Leftrightarrow {x^3} - 2{x^2} - x \geqslant 0 \Leftrightarrow \left[ \begin{gathered}  1 - \sqrt 2  \leqslant x \leqslant 0 \hfill \\  x \geqslant 1 + \sqrt 2  \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là S = \left[ {1 + \sqrt 2 ; + \infty } ight).

     

  • Câu 7: Thông hiểu

    Tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = \frac{1}{3}x^{3} - 3x^{2} + 5x -
1

    Ta có: y' = x^{2} - 6x + 5 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 5 \\
\end{matrix} ight.

    y'' = 2x - 6 \Rightarrow \left\{
\begin{matrix}
y''(1) = - 4 < 0 \\
y''(5) = 4 > 0 \\
\end{matrix} ight. nên hàm số đạt cực đại tại điểm x = 1 và đạt cực tiểu tại x = 5;y_{CT} = - \frac{28}{3}
    y'(5) = 0 suy ra tiếp tuyến tại điểm cực tiểu của đồ thị hàm số y = -
\frac{28}{3}

    Vậy tiếp tuyến song song với trục hoành.

  • Câu 8: Nhận biết

    Đường cong ở hình dưới đây là đồ thị của hàm số nào?

    Đồ thị của hàm số

    Dựa vào hình vẽ ta thấy đây là hàm số bậc ba có dạng y = a{x^3} + b{x^2} + cx + d;\left( {a > 0} ight)

  • Câu 9: Vận dụng

    Một sinh viên giỏi X được một công ty trao quỹ học bổng 60 triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất 0,5\% mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền 4 triệu đồng.

    a) Quỹ học bổng còn lại sau 1 tháng là: 56,3 triệu đồng. Đúng||Sai

    b) Quỹ học bổng còn lại sau 2 tháng là:53,2 triệu đồng. Sai||Đúng

    c) Quỹ học bổng còn lại sau n tháng là:60.(1,005)^{n + 1} - 4.\frac{1 - 1,005^{n + 1}}{1
- 1,005} (triệu đồng). Sai||Đúng

    d) Tháng cuối cùng sinh viên đó rút được 2,527348056 triệu đồng thì hết quỹ học bổng trên. Sai||Đúng

    Đáp án là:

    Một sinh viên giỏi X được một công ty trao quỹ học bổng 60 triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất 0,5\% mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền 4 triệu đồng.

    a) Quỹ học bổng còn lại sau 1 tháng là: 56,3 triệu đồng. Đúng||Sai

    b) Quỹ học bổng còn lại sau 2 tháng là:53,2 triệu đồng. Sai||Đúng

    c) Quỹ học bổng còn lại sau n tháng là:60.(1,005)^{n + 1} - 4.\frac{1 - 1,005^{n + 1}}{1
- 1,005} (triệu đồng). Sai||Đúng

    d) Tháng cuối cùng sinh viên đó rút được 2,527348056 triệu đồng thì hết quỹ học bổng trên. Sai||Đúng

    a) Quỹ học bổng còn lại sau 1 tháng là:

    P_{1} = 60(1 + 0.5\%) - 4 = 60.1,005 - 4
= 56,3 triệu đồng.

    Suy ra mệnh đề đúng.

    b) Quỹ học bổng còn lại sau 2 tháng là:

    P_{2} = P_{1}.1,005 - 4 = (60.1,005 -
4).1,005 - 4

    = 60.(1,005)^{2} - 4.1,005 - 4 =
52,5815 (triệu đồng)

    Suy ra mệnh đề sai.

    c) Quỹ học bổng còn lại sau n tháng là:

    P_{n} = 60.(1,005)^{n} - 4.\left(
1,005^{n - 1} + 1,005^{n - 2} + ... + 1 ight)

    = 60.(1,005)^{n} - 4.\frac{1 - 1,005^{n}}{1 -
1,005} (triệu đồng).

    Suy ra mệnh đề sai.

    d) Quỹ học bổng còn lại sau 16 tháng là:

    P_{16} = 60.(1,005)^{16} - 4.\frac{1 -
1,005^{16}}{1 - 1,005} = - 1,472651944 < 0.

    Quỹ học bổng còn lại sau 15 tháng là.

    P_{15} = 60.(1,005)^{15} - 4.\frac{1 -
1,005^{15}}{1 - 1,005} = 2,514774185 triệu đồng.

    Suy ra tháng cuối cùng sinh viên đó rút được 2,527348056 triệu đồng thì hết quỹ học bổng trên.

    Suy ra mệnh đề sai.

  • Câu 10: Nhận biết

    Xác định hàm số đồng biến trên ( - \infty; + \infty)?

    Xét hàm số y = x^{3} + 3x ta có:

    y' = 3x^{2} + 3 > 0;\forall x \in
( - \infty; + \infty)

    Suy ra hàm số y = x^{3} + 3x đồng biến trên ( - \infty; +
\infty).

  • Câu 11: Thông hiểu

    Xác định giá trị thực của tham số m để hàm số y
= \frac{x + 5}{x + m} đồng biến trên khoảng ( - \infty; - 8)?

    Tập xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Hàm số y = \frac{x + 5}{x + m} đồng biến trên khoảng ( - \infty; -
8)

    \Leftrightarrow \left\{ \begin{matrix}
y' > 0;\forall x \in ( - \infty; - 8) \\
x eq - m \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}\dfrac{m - 5}{(x + m)^{2}} > 0;\forall x \in ( - \infty; - 8) \\- m otin ( - \infty; - 8) \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
m > 5 \\
- m \geq - 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 5 \\
m \leq 8 \\
\end{matrix} ight.\  \Leftrightarrow 5 < m \leq 8

    Vậy đáp án cần tìm là (5;8brack.

  • Câu 12: Thông hiểu

    Tính đạo hàm của hàm số y = {\log _9}\left( {{x^2} + 1} ight)

    Ta có:

    y' = \left[ {{{\log }_9}\left( {{x^2} + 1} ight)} ight]' = \frac{{2x}}{{\left( {{x^2} + 1} ight)\ln {3^2}}} = \frac{{2x}}{{\left( {{x^2} + 1} ight).2.\ln 3}} = \frac{x}{{\left( {{x^2} + 1} ight)\ln 3}}

  • Câu 13: Vận dụng cao

    Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

    Bất phương trình chưa tham số m nghiệm đúng

    Bất phương trình f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m (với m là tham số thực) nghiệm đúng với mọi x \in \left( { - 1;3} ight) khi và chỉ khi:

    Đặt u = \sqrt {x + 1}

    x \in \left( { - 1;3} ight) \Rightarrow u \in \left( {0;2} ight)

    => f\left( u ight) < u + m \Rightarrow f\left( u ight) - u < m

    Xét hàm số g\left( u ight) = f\left( u ight) - u;{\text{  }}u \in \left( {0;2} ight)

    Ta có: g'\left( u ight) = f'\left( u ight) - 1

    Dựa vào đồ thị hàm số ta thấy: u \in \left[ {0;2} ight] thì f'\left( u ight) < 1;\forall u \in \left[ {0;2} ight]

    => g(u) nghịch biến trên (0; 2)

    Vậy để f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m nghiệm đúng với mọi x \in \left( { - 1;3} ight) thì

    \begin{matrix}  f\left( u ight) - u < m;\forall u \in \left( {0;2} ight) \hfill \\   \Rightarrow m \geqslant \mathop {\max }\limits_{\left[ {0;2} ight]} g\left( u ight) = g\left( 0 ight) = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Trong không gian tọa độ Oxyz, cho tọa độ hai điểm A(1;2;3),B(5;4; -
1). Phương trình mặt cầu đường kính AB là:

    Gọi I là trung điểm của AB suy ra I(3;3;1)

    \overrightarrow{AB} = (4;2; - 4)
\Rightarrow AB = \sqrt{16 + 4 + 16} = 6

    Mặt cầu đường kính AB có tâm I(3;3;1) và bán kính R = \frac{AB}{2} = 3 có phương trình là: (x - 3)^{2} + (y - 3)^{2} + (z - 1)^{2} =
9

  • Câu 15: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Biết đồ thị của hàm số y = f'(x) biểu diễn như hình vẽ:

    Khi đó hàm số y = f\left( x^{2} - 1
ight) nghịch biến trên khoảng nào sau đây?

    Ta có: y' = 2x.f'\left( x^{2} - 1
ight) \leq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
f'\left( x^{2} - 1 ight) \geq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
f'\left( x^{2} - 1 ight) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
x^{2} - 1 \leq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
x^{2} - 1 \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
- 2 \leq x \leq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
\left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 2 \leq x \leq 0 \\
x \geq 2 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là ( -
2;0).

  • Câu 16: Thông hiểu

    Số cạnh của hình đa diện luôn luôn là một số tự nhiên

     Có thể lấy tứ diện làm đại diện để xét với số đỉnh là 4, số cạnh là 6 và số mặt là 4.

  • Câu 17: Vận dụng cao

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

    Đáp án: 40538432

    Đáp án là:

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

    Đáp án: 40538432

    Hình vẽ minh họa:

    Mô hình hoá chân tháp bằng cụt chóp tứ giác đều ABCD.A′B′C′D′ với O, O′ là tâm của hai đáy.

    Vậy AB = 5,A'B' = 2,CC' =
3.

    ABCD là hình vuông

    \Rightarrow AC = \sqrt{AB^{2} + BC^{2}}
= 5\sqrt{2} \Rightarrow CO = \frac{1}{2}AC =
\frac{5\sqrt{2}}{2}

    A^{'}B^{'}C^{'}D^{'} là hình vuông

    \Rightarrow A^{'}C^{'} =
\sqrt{A^{'}{B^{'}}^{2} + B^{'}{C^{'}}^{2}} = 2\sqrt{2}
\Rightarrow C^{'}O^{'} = \frac{1}{2}A^{'}C^{'} =
\sqrt{2}

    Kẻ C^{'}H\bot OC\ \ (H \in
OC)

    OHC^{'}O^{'} là hình chữ nhật

    \Rightarrow OH = O^{'}C^{'} =
\sqrt{2},OO^{'} = C^{'}H \Rightarrow CH = OC - OH =
\frac{3\sqrt{2}}{2}

    \Delta CC^{'}H vuông tại H

    \Rightarrow C^{'}H = \sqrt{CC^{'2}- CH^{2}} = \frac{3\sqrt{2}}{2} \Rightarrow OO^{'} = C^{'}H =\frac{3\sqrt{2}}{2}

    Diện tích đáy lớn là:

    S = AB^{2} = 5^{2}
= 25\left( m^{2} ight)

    Diện tích đáy bé là:

    S^{'} =
A^{'}B^{'2} = 2^{2} = 4\left( m^{2} ight)

    Thể tích hình chóp cụt là:

    V = \frac{1}{3}h\left( S +
\sqrt{SS^{'}} + S^{'} ight) =
\frac{1}{3}.\frac{3\sqrt{2}}{2}(25 + \sqrt{25.4} + 4) =
\frac{39\sqrt{2}}{2}\left( m^{3} ight)

    Số tiền để mua bê tông tươi làm chân tháp là: \frac{39\sqrt{2}}{2}.1470000 \approx
40538432 (đồng).

  • Câu 18: Nhận biết

    Cho a và b là hai số dương bất kì. Mệnh đề nào dưới đây sai?

    Ta có:

    \begin{matrix}  {\log _2}{\left( {3ab} ight)^3} = 3.\left( {{{\log }_3}3 + {{\log }_3}a + {{\log }_3}b} ight) \hfill \\   = 3.\left( {1 + {{\log }_3}a + {{\log }_3}b} ight) \hfill \\   = 3 + 3{\log _3}ab \hfill \\   = 3 + {\log _3}{\left( {ab} ight)^3} \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Dân số thế giới được tính theo công thức S = A. e \
^{nr} trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là 1,47\% một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?

    Ta có:

    S = A \cdot e^{nr} \Leftrightarrow
e^{nr} = \frac{S}{A} \Leftrightarrow nr = \ln\frac{S}{A} \Leftrightarrow
n = \frac{1}{r}\ln\frac{S}{A}

    Với S = 93713700 người; A = 80902400 người; r = \frac{1,47}{100} = 0,0147/năm.

    Suy ra n =
\frac{1}{0,0147}\ln\frac{93713000}{80902400} \approx 10.

    Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.

  • Câu 20: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 21: Nhận biết

    Tập xác định của hàm số y = \log {\left( {x - 2} ight)^2} là:

    Hàm số y = \log {\left( {x - 2} ight)^2} xác định nếu {\left( {x - 2} ight)^2} > 0 \Leftrightarrow x e 2

    Vậy tập xác định D = \mathbb{R}\backslash \left\{ 2 ight\}

  • Câu 22: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

  • Câu 23: Thông hiểu

    Nếu đặt t = {\log _3}\frac{{x - 1}}{{x + 1}} thì bất phương trình {\log _4}{\log _3}\frac{{x - 1}}{{x + 1}} < {\log _{\frac{1}{4}}}{\log _{\frac{1}{3}}}\frac{{x + 1}}{{x - 1}} trở thành bất phương trình nào?

    Điều kiện: x \in ( - \infty ; - 1) \cup (1; + \infty )

    Sau khi đưa về cùng cơ số 4, rồi tiếp tục biến đổi về cùng cơ số 3 ta được bất phương trình  {\log _3}\frac{{x - 1}}{{x + 1}} - \frac{1}{{{{\log }_3}\frac{{x - 1}}{{x + 1}}}} < 0

    Vậy BPT trở thành: \frac{{{t^2} - 1}}{t} < 0

  • Câu 24: Thông hiểu

    Tính đạo hàm của hàm số y = {\left( {{x^2} - 3x + 2} ight)^{\sqrt 3 }}

    Ta có:

    \begin{matrix}  y' = \sqrt 3 .{\left( {{x^2} - 3x + 2} ight)^{\sqrt 3  - 1}}.\left( {{x^2} - 3x + 1} ight)\prime \hfill \\   \Rightarrow y' = \sqrt 3 .\left( {2x - 3} ight).{\left( {{x^2} - 3x + 2} ight)^{\sqrt 3  - 1}} \hfill \\ \end{matrix}

  • Câu 25: Vận dụng

    Cho hàm số y =
f(x) xác định trên y =
f(x) và có đạo hàm f'(x) = (2 -
x)(x + 3)g(x) + 2021 trong đó g(x)
< 0;\forall x\mathbb{\in R}. Hàm số y = f(1 - x) + 2021x + 2022 đồng biến trên khoảng nào?

    Ta có:

    y' = - f'(1 - x) +
2021

    y' = - \left\lbrack (1 + x)(4 -
x)g(1 - x) + 2021 ightbrack + 2021

    y' = (x + 1)(x - 4).g(1 - x)
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    g(x) < 0;\forall x\mathbb{\in
R} nên y' > 0;\forall x \in
( - 1;4)

    Suy ra hàm số đồng biến trên ( -
1;4).

  • Câu 26: Vận dụng

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Đáp án là:

    Một bể bơi chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng đồ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.

    a) Sau t phút khối lượng muối trong bể là 750t (gam). Đúng||Sai

    b) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t) = \frac{30t}{200 - t} . Sai||Đúng

    c) Xem y = f(t) là một hàm số xác định trên nửa khoảng \lbrack 0; +
\infty) , tiệm cận ngang của đồ thị hàm số đó có phương trình là y = 30 . Đúng||Sai

    d) Khi t ngày càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). Đúng||Sai

    Sau t phút, khối lượng muối trong bể là 25.30.t = 750t (gam)

    Thể tích của lượng nước trong bể là 5000
+ 25t (lít).

    Vậy nồng độ muối sau t phút là: f(t) = \frac{750t}{5000 + 25t} =
\frac{30t}{200 + t} (gam/lít).

    Ta có \lim_{t ightarrow + \infty}f(t) =
\lim_{t ightarrow + \infty}\frac{30t}{200 + t} = \lim_{x ightarrow +
\infty}\left( 30 - \frac{6000}{200 + t} ight) = 30

    Vậy đường thẳng y = 30 là tiệm cận ngang của đồ thị hàm số f(t):

    Ta có đồ thị hàm số y = f(t) nhận đường thẳng y = 30 làm đường tiệm cận ngang, tức là khi t càng lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít).

    Lúc đó, nồng độ muối trong bể sẽ gần như bằng nồng độ nước muối bơm vào bể.

    a) Đúng. b) Sai. c) Đúng. d) Đúng.

  • Câu 27: Vận dụng

    Giá trị của biểu thức M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {3\sqrt 2  - 4} ight)^{2018}} là:

    Ta có:

    \begin{matrix}  3\sqrt 2  - 4 = \sqrt 2 .\left( {3 - 2\sqrt 2 } ight) \hfill \\   \Rightarrow M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {\sqrt 2 } ight)^{2018}}.{\left( {3 - 2\sqrt 2 } ight)^{2018}} \hfill \\  \left( {3 + 2\sqrt 2 } ight)\left( {3 - 2\sqrt 2 } ight) = {3^2} - {\left( {2\sqrt 2 } ight)^2} = 9 - 8 = 1 \hfill \\   \Rightarrow {\left( {3 + 2\sqrt 2 } ight)^{2018}}{\left( {3 - 2\sqrt 2 } ight)^{2018}} = 1 \hfill \\   \Rightarrow M = {\left( {3 - 2\sqrt 2 } ight)^{2018}}{.2^{2019}} \hfill \\ \end{matrix}

  • Câu 28: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu \left( S_{1} ight):x^{2} + y^{2} + z^{2} + 4x +
2y + z = 0\left( S_{2}
ight):x^{2} + y^{2} + z^{2} - 2x - y - z = 0 cắt nhau theo một đường tròn (C) nằm trong mặt phẳng (P). Cho các điểm A (1; 0; 0), B (0; 2; 0), C (0; 0; 3). Có bao nhiêu mặt cầu tâm thuộc (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA?

    Mặt phẳng (P) chứa đường tròn (C) có được bằng cách khử x^{2};y^{2};z^{2} trong phương trình hai mặt cầu ta được 6x + 3y + 2z = 0. Mặt phẳng (ABC) có phương trình là

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} =
1⇔ 6x + 3y + 2z − 6 = 0.

    Do đó (P) // (ABC). Mặt cầu (S) tiếp xúc với cả ba đường thẳng AB, BC, CA sẽ giao với mặt phẳng (ABC) theo một đường tròn tiếp xúc với ba đường thẳng AB, BC, CA.

    Trên mặt phẳng (ABC) có 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA đó là đường tròn nội tiếp tam giác ABC và ba đường tròn bàng tiếp các góc A, B, C.

    Do đó có 4 mặt cầu có tâm nằm trên (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA.

    Tâm của 4 mặt cầu là hình chiếu của tâm 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA lên mặt phẳng (P).

  • Câu 29: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

    Dựa vào bảng biến thiên ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - {2^ + }} f\left( x ight) =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  + \infty  \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có hai tiệm cận đứng là x = - 2x = 0.

    \lim_{x ightarrow + \infty}y =
0 nên đồ thị hàm số đã cho có một tiệm cận ngang là y = 0

    Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.

  • Câu 30: Vận dụng

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x không có cực trị. Số phần tử của S là:

    Xét hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x ta có:

    \begin{matrix}  y' = 3{x^2} - 6\left( {m + 1} ight)x + 3\left( {7m - 3} ight) \hfill \\  y' = 0 \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + 7m - 3 = 0 \hfill \\ \end{matrix}

    Hàm số đã cho không có cực trị

    => Phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép

    => \Delta ' \leqslant 0 \Rightarrow {\left( {m + 1} ight)^2} - 1\left( {7m - 3} ight) \leqslant 0 \Rightarrow 1 \leqslant m \leqslant 4

    Do m là số nguyên nên m \in \left\{ {1;2;3;4} ight\}

    Vậy tập S có 4 phần tử.

  • Câu 31: Nhận biết

    Tập xác định của hàm số y = {\left( {x + 3} ight)^{\frac{3}{2}}} - \sqrt[4]{{5 - x}} là:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {x + 3 > 0} \\   {5 - x \geqslant 0} \end{array}} ight. \Rightarrow  - 3 < x \leqslant 5

    => Tập xác định của hàm số là D = \left( { - 3;5} ight]

  • Câu 32: Nhận biết

    Phương trình {\log _2}(x + 3) + {\log _2}(x - 1) = {\log _2}5 có nghiệm là:

    2 || hai || x=2 || Hai

    Đáp án là:

    Phương trình {\log _2}(x + 3) + {\log _2}(x - 1) = {\log _2}5 có nghiệm là:

    2 || hai || x=2 || Hai

     PT \Leftrightarrow \left\{ \begin{gathered}  x - 1 > 0 \hfill \\  (x + 3)(x - 1) = 5 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {x^2} + 2x - 8 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \left[ \begin{gathered}  x =  - 8 \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow x = 2

  • Câu 33: Thông hiểu

    Cho phương trình log_{\frac{1}{2}}(2x -
m) + log_{2}(3 - x) = 0, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?

    Đáp án: 5

    Đáp án là:

    Cho phương trình log_{\frac{1}{2}}(2x -
m) + log_{2}(3 - x) = 0, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?

    Đáp án: 5

    ĐKXĐ: \left\{ \begin{matrix}
2x - m > 0 \\
3 - x > 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
2x - m > 0 \\
x < 3 \\
\end{matrix} ight.\  ight.\ .

    Ta có:

    log_{\frac{1}{2}}(2x - m) + log_{2}(3 -x) = 0

    \Leftrightarrow - log_{2}(2x - m) +
log_{2}(3 - x) = 0

    \Leftrightarrow log_{2}(2x - m) =
log_{2}(3 - x)

    \Leftrightarrow 2x - m = 3 - x
\Leftrightarrow 3x = m + 3

    Để phương trình có nghiệm thì m + 3 <
9 \Leftrightarrow m < 6.

    Kết hợp điều kiện m là số nguyên dương ta có m ∈ {1;2;3;4;5}.

    Vậy có 5 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 34: Nhận biết

    Cho biết Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}} với a > 0,a e 1. Chọn khẳng định đúng?

    Ta có: Q = \sqrt {{a^2}.\sqrt[3]{{{a^4}}}}  = {\left( {{a^2}.{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{{10}}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{5}{3}}}

    Vậy Q = {a^{\frac{5}{3}}}

  • Câu 35: Vận dụng

    Cho hình lăng trụ tam giác ABC có đáy ABC là tam giác vuông cân tại A, cạnh AC = 2\sqrt 2. Biết AC' tạo với mặt phẳng (ABC) một góc 60^0AC'=4. Tính thể tích V của khối đa diện ABCB'C'

     

    Gọi H là hình chiếu của C' trên mặt phẳng (ABC).

    Suy ra AH là hình chiếu của AC' trên mặt phẳng (ABC).

    Do đó {60^0} = \widehat {AC',\left( {ABC} ight)} = \widehat {\left( {AC',AH} ight)} = \widehat {HAC'}

    Tam giác vuông AHC', có  C'H = AC'.\sin \widehat {HAC'} = 2\sqrt 3

    Thể tích khối lăng trụ {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.C'H = 8\sqrt 3

    Suy ra thể tích cần tính là:

     {V_{ABCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}} = \frac{{16\sqrt 3 }}{3}.

  • Câu 36: Vận dụng

    Có bao nhiêu giá trị của tham số m để giá trị lớn nhất của hàm số y = \frac{{{x^2} - {m^2} - 2}}{{x - m}} trên đoạn [0; 4] bằng -1?

    Ta có: f'\left( x ight) = \frac{{{m^2} - m + 2}}{{{{\left( {x - m} ight)}^2}}} > 0;\forall m e 0

    Với x = m e \left[ {0;4} ight] \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m > 4} \\   {m < 0} \end{array}} ight. ta được hàm số f(x) đồng biến trên khoảng (0; 4)

    => \mathop {\max }\limits_{\left[ {0;4} ight]} f\left( x ight) = f\left( 4 ight) = \frac{{2 - {m^2}}}{{4 - m}}

    Theo bài ra ta có: \frac{{2 - {m^2}}}{{4 - m}} =  - 1 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m = 2} \\   {m =  - 3} \end{array}} ight.

    Kết hợp với điều kiện \left[ {\begin{array}{*{20}{c}}  {m > 4} \\   {m < 0} \end{array}} ight. => m = -3 là giá trị cần tìm

    Vậy có 1 giá trị của tham số m thỏa mãn yêu bài toán đề bài.

  • Câu 37: Vận dụng

    Phương trình {9^{{{\sin }^2}x}} + {9^{{{\cos }^2}x}} = 6 có họ nghiệm là ?

     Ta có: {9^{{{\sin }^2}x}} + {9^{{{\cos }^2}x}} = 6

    \Leftrightarrow {9^{1 - {{\cos }^2}x}} + {9^{{{\cos }^2}x}} = 6 \Leftrightarrow \frac{9}{{{9^{{{\cos }^2}x}}}} + {9^{{{\cos }^2}x}} - 6 = 0{\text{   }}\left( * ight)

    Đặt t = {9^{{{\cos }^2}x}},{\text{ }}\left( {1 \leqslant t \leqslant 9} ight).

    Khi đó: \left( * ight) \Leftrightarrow \frac{9}{t} + t - 6 = 0 \Leftrightarrow {t^2} - 6t + 9 = 0 \Leftrightarrow t = 3.

    Với t = 3 \Rightarrow {9^{{{\cos }^2}x}} = 3 \Leftrightarrow {3^{2{{\cos }^2}x}} = {3^1} \Leftrightarrow 2{\cos ^2}x - 1 = 0

    \Leftrightarrow \cos 2x = 0 \Leftrightarrow \boxed{x = \frac{\pi }{4} + \frac{{k\pi }}{2}},{\text{ }}\left( {k \in \mathbb{Z}} ight).

  • Câu 38: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 39: Thông hiểu

    Cho hai điểm A;B cố định trong không gian có độ dài AB = 4. Biết rằng tập hợp các điểm M trong không gian sao cho MA = 3MB là một mặt cầu. Bán kính mặt cầu đó bằng bao nhiêu?

    Ta có: MA = 3MB \Leftrightarrow
\overrightarrow{MA} = 3\overrightarrow{MB}

    \Leftrightarrow \left(
\overrightarrow{MI} + \overrightarrow{IA} ight)^{2} = 9\left(
\overrightarrow{MI} + \overrightarrow{IB} ight)^{2}

    \Leftrightarrow IA^{2} - 9IB^{2} +
2\overrightarrow{MI}\left( \overrightarrow{IA} - 9\overrightarrow{IB}
ight) = 8MI^{2}(*)

    Gọi I thỏa mãn \overrightarrow{IA} - 9\overrightarrow{IB} =
\overrightarrow{0} \Leftrightarrow \overrightarrow{BI} =
\frac{1}{8}\overrightarrow{AB} nên IB = \frac{1}{2};IA = \frac{9}{2}

    Từ (*) suy ra 8MI^{2} = 18
\Leftrightarrow MI = \frac{3}{2} \Rightarrow M \in S\left( I;\frac{3}{2}
ight).

  • Câu 40: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

     Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 41: Thông hiểu

    Biết rằng giá trị nhỏ nhất của hàm số f(x) = \frac{mx + 5}{x - m} trên đoạn \lbrack 0;1brack bằng - 7. mệnh đề nào sau đây đúng?

    Ta có: y' = - \frac{m^{2} + 5}{(x -m)^{2}} < 0;\forall x eq m \Rightarrow \Delta' = m^{2} + 2m -3

    Suy ra hàm số luôn nghịch biến trên các khoảng ( - \infty;m)(m; + \infty)

    Vì hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack nên m otin \lbrack 0;1brack

    Hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 7 nên suy ra

    \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {TM} ight) \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {KTM} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow m = 2 \in(0;2brack

  • Câu 42: Vận dụng

    Hàm số y = \sqrt[3]{{{{\left( {{x^2} - 2x - 3} ight)}^2}}} + 2 có bao nhiêu điểm cực trị?

    Tập xác định D = \mathbb{R}

    Ta có: y' = \frac{2}{3}.\frac{{2x - 2}}{{\sqrt[3]{{{x^2} - 2x - 3}}}};\left( {x e  - 1;x e 3} ight)

    Ta có bảng biến thiên như sau:

    Tìm số cực trị của hàm số lũy thừa

    Vậy hàm số đã cho có ba điểm cực trị

  • Câu 43: Thông hiểu

    Thu gọn biểu thức T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} biết a và b là hai số thực dương.

    Ta có: T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} = \left( {{a^{\frac{7}{6}}}:{a^{\frac{1}{6}}}} ight).\left( {{b^{\frac{{ - 2}}{3}}}:{b^{\frac{2}{6}}}} ight) = \frac{a}{b}

  • Câu 44: Vận dụng

    Tìm giá trị của tham số m sao cho đồ thị hàm số y = 2x + \sqrt {m{x^2} - x + 1}  + 1 có tiệm cận ngang.

    Ta có:

    \begin{matrix}  y = \left( {2x + 1} ight) + \sqrt {m{x^2} - x + 1}  \hfill \\   \Rightarrow y = \dfrac{{4{x^2} + 4x + 1 - \left( {m{x^2} - x + 1} ight)}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\   \Rightarrow y = \dfrac{{\left( {4 - m} ight){x^2} + 5x}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\ \end{matrix}

    Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số

    Đồng thời \mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4 - m = 0} \end{array} \Rightarrow m = 4} ight.

  • Câu 45: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 46: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 47: Vận dụng cao

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như sau:

    Số cực trị của hàm số

    Hàm số g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) có bao nhiêu điểm cực trị?

    Xét hàm số t\left( x ight) = \frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}, ta có bảng giá trị |t(x)|

    Số cực trị của hàm số

    Ta có: g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) = f\left( {\left| {t\left( x ight)} ight|} ight)

    Hàm số không có đạo hàm tại điểm x =  \pm \sqrt {{e^2} - 1}

    Tại mọi điểm x =  \pm \sqrt {{e^2} - 1} ta có:

    g'\left( x ight) = f'\left( {\left| {t\left( x ight)} ight|} ight).\left( {\left| {t\left( x ight)} ight|} ight)'

    = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \infty ; - \sqrt {{e^2} - 1} } ight) \cup \left( {\sqrt {{e^2} - 1} ; + \infty } ight)} \\   { - \dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \sqrt {{e^2} - 1} ;\sqrt {{e^2} - 1} } ight)} \end{array}} ight.\left( * ight)

    => g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {\left| {t\left( x ight)} ight| = {t_1};\left( {{t_1} < 1} ight){\text{   }}\left( 1 ight)} \\   {\left| {t\left( x ight)} ight| = {t_2};\left( { - 1 < {t_2} < 0} ight){\text{   }}\left( 2 ight)} \\   {\left| {t\left( x ight)} ight| = {t_3};\left( {0 < {t_3} < 1} ight){\text{   }}\left( 3 ight)} \\   {\left| {t\left( x ight)} ight| = {t_4};\left( {{t_4} > 1} ight){\text{   }}\left( 4 ight)} \end{array}} ight.

    Dựa vào bảng giá trị hàm |t| suy ra:

    + Phương trình (1), (2) vô nghiệm

    + Phương trình (3) có 4 nghiệm phân biệt khác 0

    + Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)

    => g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu

    Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm x =  \pm \sqrt {{e^2} - 1}

    Vậy hàm số g(x) có 9 điểm cực trị.

  • Câu 48: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = AA' = a, đường chéo AC'hợp với mặt đáy (ABCD) một góc \alpha thỏa mãn \cot \alpha  = \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Ta có AA' \bot \left( {ABCD} ight) nên \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA}.

    Tam giác vuông A'AC, ta có AC = AA'.\cot \alpha  = a\sqrt 5.

    Tam giác vuông ABC, ta có BC = \sqrt {A{C^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.BC = 2{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}.

  • Câu 49: Nhận biết

    Cho hàm số y = f(x) có đạo hàm f'(x) = x(x + 1)(x - 2)^{3};\forall
x\mathbb{\in R}. Số điểm cực tiểu của hàm số là:

    Ta có: f'(x) = x(x + 1)(x - 2)^{3} =
0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 2 \\
\end{matrix} ight.

    Bảng xét dấu:

    Suy ra số điểm cực tiểu của hàm số là 2 điểm.

  • Câu 50: Thông hiểu

    Viết biểu thức \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có: 

    \begin{matrix}  A = \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} = {\left( {a\sqrt {{a^{\frac{3}{2}}}} } ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} \hfill \\   = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{4}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{7}{8}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{{23}}{{24}}}} \hfill \\ \end{matrix}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo