Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 3 = 0 và mặt cầu (S) tâm I(5;
- 3;5), bán kính R =
2\sqrt{5}. Từ một điểm A thuộc mặt phẳng (P) kẻ một đường thẳng tiếp xúc với mặt cầu (S) tại B. Tính OA biết AB =
4.

    Hình vẽ minh họa

    Khoảng cách từ điểm I đến mặt phẳng (P) là

    d\left( I;(P) ight) = \frac{\left| 5 -
2.( - 3) + 2.5 - 3 ight|}{3} = 6

    Vì AB tiếp xúc với (S) tại B nên tam giác AIB vuông tại B, do đó ta có:

    IA = \sqrt{IB^{2} + AB^{2}} =
\sqrt{R^{2} + AB^{2}} = 6 = d\left( I;(P) ight)

    Đường thẳng IA đi qua I(5; −3; 5) có vectơ chỉ phương là \overrightarrow{u} = (1; - 2;2) nên có phương trình là: \left\{ \begin{matrix}
x = 5 + t \\
y = - 3 - 2t \\
z = 5 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do A = IA ∩ (P) nên 5 + t − 2(−3 − 2t) + 2(5 + 2t) − 3 = 0 ⇔ t = −2

    Vậy A(3; 1; 1) nên OA =
\sqrt{11}.

  • Câu 2: Vận dụng

    Cho hàm số y = a{x^3} + b{x^2} + cx + d;\left( {a e 0} ight) có bảng biến thiên như hình vẽ dưới đây:

    Số nghiệm của phương trình

    Số nghiệm của phương trình f\left( {f\left( x ight)} ight) = 0 là:

    Ta có: f\left( {f\left( x ight)} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) = a\left( 1 ight)} \\   {f\left( x ight) = b\left( 2 ight)} \\   {f\left( x ight) = c\left( 3 ight)} \end{array}} ight.;\left( {a < b < c} ight)

    Khi đó \left\{ {\begin{array}{*{20}{c}}  {a < 2} \\   {b \in \left( { - 2;2} ight)} \\   {c > 2} \end{array}} ight. suy ra phương trình (1) có 1 nghiệm; phương trình (2) có 3 nghiệm và phương trình (3) có 1 nghiệm.

    => Phương trình f\left( {f\left( x ight)} ight) = 0 có 5 nghiệm

  • Câu 3: Vận dụng

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0  là:

    x=4 || X=4|| x bằng 4

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0  là:

    x=4 || X=4|| x bằng 4

    Theo bài toán, ta xét điều kiện của BPT là: x > 0;x e 1;x e 3.

    Ta có: {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0 \Leftrightarrow \frac{{ - 1}}{{{{\log }_3}x.\left( {{{\log }_3}x - 1} ight)}} < 0

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}x < 0 \hfill \\  {\log _3}x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  0 < x < 1 \hfill \\  x > 3 \hfill \\ \end{gathered}  ight.

  • Câu 4: Nhận biết

    Tập xác định của hàm số y = {\left( {x + 3} ight)^{\frac{3}{2}}} - \sqrt[4]{{5 - x}} là:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {x + 3 > 0} \\   {5 - x \geqslant 0} \end{array}} ight. \Rightarrow  - 3 < x \leqslant 5

    => Tập xác định của hàm số là D = \left( { - 3;5} ight]

  • Câu 5: Vận dụng cao

    Cho f(x) mà đồ thị hàm số y = f’(x) như hình vẽ.

    Hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến trên khoảng nào trong các đáp án dưới đây?

    Ta có: y = f\left( {x - 1} ight) + {x^2} - 2x

    => y' = f'\left( {x - 1} ight) + 2x - 2

    Hàm số đồng biến khi y' \geqslant 0 \Leftrightarrow f'\left( {x - 1} ight) + 2\left( {x - 1} ight) \geqslant 0\left( * ight)

    Đặt t = x – 1 thì (*) trở thành

    f'\left( t ight) + 2t \geqslant 0 \Leftrightarrow f'\left( t ight) \geqslant  - 2t

    Quan sát đồ thị hàm số y = f’(t) và y = -2t trên cùng một hệ tọa độ như hình vẽ

    Xác định khoảng đồng biến của hàm số

    Khi đó ta thấy với t \in \left( {0;1} ight) thì độ thì hàm số y = f’(t) luôn nằm trên đường thẳng y = -2t

    => f'\left( t ight) + 2t > 0,\forall t \in \left( {1;2} ight)

    Do đó với \forall x \in \left( {1;2} ight) thì hàm số y = f\left( {x - 1} ight) + {x^2} - 2x đồng biến.

  • Câu 6: Vận dụng

    Tìm đạo hàm của hàm số y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} trên khoảng \left( { - \infty ;\frac{1}{3}} ight)

    Với điều kiện x < \frac{1}{3} ta có: y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} = {\left( {1 - 3x} ight)^{\frac{5}{3}}}. Khi đó:

    => y' =  - 5{\left( {1 - 3x} ight)^{\frac{2}{3}}}

  • Câu 7: Thông hiểu

    Đặt a = {\log _7}11;b = {\log _2}7. Hãy biểu diễn {\log _{\sqrt[3]{7}}}\frac{{121}}{8} theo a và b.

    Ta có: 

    {\log _{\sqrt[3]{7}}}\frac{{121}}{8} = 3\left( {{{\log }_7}121 - {{\log }_7}8} ight) = 6{\log _7}11 - 9.\frac{1}{{{{\log }_2}7}} = 6a - \frac{9}{b}

  • Câu 8: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để bất phương trình 1 + {\log _5}\left( {{x^2} + 1} ight) \geqslant {\log _5}\left( {m{x^2} + 4x + m} ight) có nghiệm đúng \forall x.

    Bất phương trình tương đương 7\left( {{x^2} + 1} ight) \geqslant m{x^2} + 4x + m > 0,{\text{ }}\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{gathered}  \left( {5 - m} ight){x^2} - 4x + 5 - m \geqslant 0{} \hfill \\  m{x^2} + 4x + m > 0{} \hfill \\ \end{gathered}  ight.(*),{\text{ }}\forall x \in \mathbb{R}.

    m=0 hoặc m=5: (*) không thỏa \forall x \in \mathbb{R}

    m eq 0m eq 5: (*) \Leftrightarrow \left\{ \begin{gathered}  5 - m > 0 \hfill \\  {{\Delta '}_2} = 4 - {\left( {5 - m} ight)^2} \leqslant 0 \hfill \\  m > 0 \hfill \\  {{\Delta '}_3} = 4 - {m^2} < 0 \hfill \\ \end{gathered}  ight.{\text{   }} \Leftrightarrow {\text{  }}2 < m \leqslant 3.

  • Câu 9: Nhận biết

    Phương trình {\log _2}(3x - 2) = 2 có nghiệm là: 

    x=2 || 2 || hai

    Đáp án là:

    Phương trình {\log _2}(3x - 2) = 2 có nghiệm là: 

    x=2 || 2 || hai

     PT \Leftrightarrow \left\{ \begin{gathered}  3x - 2 > 0 \hfill \\  3x - 2 = 4 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{2} \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 2.

  • Câu 10: Nhận biết

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Từ bảng biến thiên ta thấy hàm số nghịch biến trên (3; + \infty)

    Suy ra hàm số nghịch biến trên (4;10).

  • Câu 11: Nhận biết

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Do \frac{{\sqrt 2  + \sqrt 3 }}{3} > 1 nên hàm số y = {\left( {\frac{{\sqrt 2  + \sqrt 3 }}{3}} ight)^x} đồng biến trên \mathbb{R} 

  • Câu 12: Vận dụng

    Hàm số f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} có bao nhiêu điểm cực trị?

    Ta có:

    \begin{matrix}  f\left( x ight) = C_{2019}^0 + C_{2019}^1x + C_{2019}^2{x^2} + C_{2019}^3{x^3} + ... + C_{2019}^{2019}{x^{2019}} = {\left( {1 + x} ight)^{2019}} \hfill \\   \Rightarrow f'\left( x ight) = 2019.{\left( {1 + x} ight)^{2018}} \hfill \\  f'\left( x ight) = 0 \Leftrightarrow x =  - 1 \hfill \\ \end{matrix}

    Vì x = -1 là nghiệm bội chẵn nên x = -1 không phải là điểm cực trị của hàm số.

  • Câu 13: Vận dụng

    Tìm giá trị của tham số m để hàm số y
= \frac{\cot x - 2}{\cot x - m} nghịch biến trên \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Đặt t = \cot x \Rightarrow t' =
\frac{- 1}{sin^{2}x} < 0;\forall x \in \left(
\frac{\pi}{4};\frac{\pi}{2} ight)

    \Rightarrow \cot\frac{\pi}{2} < t <
\cot\frac{\pi}{4} hay 0 < t <
1

    Bài toán trở thành tìm m để hàm số y =
\frac{t - 2}{t - m} đồng biến trên (0;1)

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{2 - m}{(t -
m)^{2}}. Hàm số y = \frac{t - 2}{t
- m} đồng biến trên (0;1)

    \Leftrightarrow y' > 0;\forall t
\in (0;1) \Leftrightarrow \left\{ \begin{matrix}
2 - m > 0 \\
m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 2 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m \leq 0 \\
1 \leq m < 2 \\
\end{matrix} ight..

  • Câu 14: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 15: Thông hiểu

    Nếu đặt t = \lg x thì phương trình \frac{1}{{4 - \lg x}} + \frac{2}{{2 + \lg x}} = 1 trở thành phương trình nào?

     Đặt t = \lg x

    PT \Leftrightarrow \frac{1}{{4 - t}} + \frac{2}{{2 + t}} = 1 \Leftrightarrow \frac{{2 + t + 2(4 - t)}}{{(4 - t)(2 + t)}} = 1

    \Leftrightarrow 2 + t + 2(4 - t) = (4 - t)(2 + t)

    \Leftrightarrow 10 - t = 8 + 2t - {t^2} \Leftrightarrow {t^2} - 3t + 2 = 0.

  • Câu 16: Nhận biết

    Điều kiện để \left( S ight):{x^2} + {y^2} + {z^2} + Ax + By + Cz + D = 0 là một mặt cầu là:

    Theo đề bài, ta có:

    \left( S ight):{x^2} + {y^2} + {z^2} + Ax + By + Cz + D = 0 có dạng:

    \left( S ight):{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0

    \Rightarrow a =  - \frac{A}{2};\,\,b =  - \frac{B}{2};\,\,c =  - \frac{C}{2};\,\,d = D

    Như vậy, (S) là mặt cầu\Leftrightarrow {a^2} + {b^2} + {c^2} - d > 0 \Leftrightarrow {A^2} + {B^2} + {C^2} - 4D > 0

    \Rightarrow {x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0,\,\,{a^2} + {b^2} + {c^2} - d > 0

  • Câu 17: Thông hiểu

    Cho hàm số y = {x^\pi }. Tính y''\left( 1 ight)

    Ta có:

    \begin{matrix}  y' = \pi .{x^{\pi  - 1}} \Rightarrow y'' = \pi \left( {\pi  - 1} ight).{x^{\pi  - 2}} \hfill \\  y''\left( 1 ight) = \pi \left( {\pi  - 1} ight) \hfill \\ \end{matrix}

  • Câu 18: Vận dụng cao

    Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất {V_{\min }} của khối tứ diện SAMN.

    Gọi E là trung điểm của BC.

    Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

    Theo định lí Talet, ta có:

    \left\{ \begin{gathered}  \frac{{AB}}{{AM}} = \frac{{AP}}{{AG}} \hfill \\  \frac{{AC}}{{AN}} = \frac{{AQ}}{{AG}} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{AP}}{{AG}} + \frac{{AQ}}{{AG}} = \frac{{AP + AQ}}{{AG}}

    Mặt khác \Delta BPE = \Delta CQE\xrightarrow{{}}PE = QE\,

    \Rightarrow \,\,AP + AQ = \left( {AE - PE} ight) + \left( {AE + QE} ight) = 2AE

    Do đó \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{2AE}}{{AG}} = 2.\frac{3}{2} = 3 \Rightarrow \frac{1}{{AM}} + \frac{1}{{AN}} = 3.

    Đặt \left\{ \begin{gathered}  AM = x \hfill \\  AN = y \hfill \\ \end{gathered}  ight. \Rightarrow \frac{1}{x} + \frac{1}{y} = 3

    SABC là tứ diện đều \Rightarrow \,\,SG \bot \left( {ABC} ight)  và SG = \frac{{\sqrt 2 }}{{\sqrt 3 }}

    Do đó   {V_{SAMN}} = \frac{1}{3}{S_{\Delta AMN}}.SG

    = \frac{1}{3}\left( {\frac{1}{2}AM.AN\sin {{60}^0}} ight).SG

    = \frac{{\sqrt 2 }}{{12}}AM.AN = \frac{{\sqrt 2 }}{{12}}xy

    Ta có 3 = \frac{1}{x} + \frac{1}{y} \geqslant \frac{2}{{\sqrt {xy} }}

    \Leftrightarrow \sqrt {xy}  \geqslant \frac{2}{3} \Leftrightarrow xy \geqslant \frac{4}{9}

    \Rightarrow {V_{\min }} = \frac{{\sqrt 2 }}{{27}}

  • Câu 19: Vận dụng

    Cho hàm số f\left( x ight) = \ln \frac{{x + 1}}{{x + 4}}. Tính giá trị của biểu thức M = f'\left( 0 ight) + f'\left( 3 ight) + f'\left( 6 ight) + ... + f'\left( {2019} ight)

    Với x \in \left[ {0; + \infty } ight) ta có: \left\{ {\begin{array}{*{20}{c}}  {x + 1 > 0} \\   {x + 4 > 0} \end{array}} ight. \Rightarrow f\left( x ight) = \ln \frac{{x + 1}}{{x + 4}} = \ln \left( {x + 1} ight) - \ln \left( {x + 4} ight)

    Ta có: f'\left( x ight) = \frac{1}{{x + 1}} - \frac{1}{{x + 4}} do đó:

    \begin{matrix}  M = f'\left( 0 ight) + f'\left( 3 ight) + f'\left( 6 ight) + ... + f'\left( {2019} ight) \hfill \\  M = \left( {1 - \dfrac{1}{4}} ight) + \left( {\dfrac{1}{4} - \dfrac{1}{7}} ight) + \left( {\dfrac{1}{7} - \dfrac{1}{{10}}} ight) + ... + \left( {\dfrac{1}{{2020}} - \dfrac{1}{{2023}}} ight) \hfill \\  M = 1 - \dfrac{1}{{2023}} = \dfrac{{2022}}{{2023}} \hfill \\ \end{matrix}

  • Câu 20: Thông hiểu

    Hàm số nào sau đây phù hợp với hình vẽ:

    Tìm hàm số tương ứng với đồ thị hàm số

     Ta có: y\left( 1 ight) = 0 và hàm số đồng biến trên \left( {0; + \infty } ight) nên chỉ có hàm số y = {\log _{\sqrt 6 }}x thỏa mãn

  • Câu 21: Vận dụng

    Cho {4^x} + {4^{ - x}} = 34. Tính giá trị của biểu thức T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}}

    Ta có:

    \begin{matrix}  {4^x} + {4^{ - x}} = 34 \hfill \\   \Rightarrow {2^{2x}} + 2 + {2^{ - 2x}} = 36 \hfill \\   \Rightarrow {\left( {{2^x} + {2^{ - x}}} ight)^2} = 36 \hfill \\   \Rightarrow {2^x} + {2^{ - x}} = 6;\left( {{2^x} + {2^{ - x}} > 0} ight) \hfill \\ \end{matrix}

    Khi đó ta được:

    T = \frac{{{2^x} + {2^{ - x}} - 3}}{{1 + {2^{x + 1}} - {2^{1 - x}}}} = \frac{{6 - 3}}{{1 - 2\left( {{2^x} + {2^{ - x}}} ight)}} = \frac{3}{{1 - 2.6}} = \frac{{ - 3}}{{11}}

  • Câu 22: Nhận biết

    Cho khối lăng trụ đứng ABC.A'B'C'BB'=a, đáy ABC là tam giác vuông cân tại BAC = a\sqrt 2. Tính thể tích của khối lăng trụ đã cho.

     

    Tam giác ABC vuông cân tại B,

    suy ra BA = BC = \frac{{AC}}{{\sqrt 2 }} = a \Rightarrow {S_{\Delta ABC}} = \frac{{{a^2}}}{2}

    Vậy thể tích khối lăng trụ V = {S_{\Delta ABC}}.BB' = \frac{{{a^3}}}{2}

  • Câu 23: Vận dụng

    Cho hàm số y = f\left( x ight) có bảng biến thiên như hình vẽ dưới đây.

    Tìm số đường tiệm cận của hàm số

    Số đường tiệm cận của đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} là:

    Phương trình f\left( x ight) = 2018 có 2 nghiệm phân biệt

    => Đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 2 đường tiệm cận đứng.

    Khi x \to  - \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Khi x \to  + \infty thì y \to 5 \Rightarrow y = \frac{2}{{f\left( x ight) - 2018}} \to \frac{2}{{ - 2013}}

    Vậy đồ thị hàm số y = \frac{2}{{f\left( x ight) - 2018}} có 1 tiệm cận ngang.

     

  • Câu 24: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 25: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 26: Thông hiểu

    Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x\sqrt {1 - {x^2}}. Giá trị của biểu thức M - 2m là:

    Điều kiện xác định: 1 - {x^2} \geqslant 0 \Leftrightarrow  - 1 \leqslant x \leqslant 1

    Xét hàm số y = x\sqrt {1 - {x^2}} trên \left[ { - 1;1} ight] ta có:

    f'\left( x ight) = \sqrt {1 - {x^2}}  - \frac{{{x^2}}}{{\sqrt {1 - {x^2}} }} = \frac{{1 - 2{x^2}}}{{\sqrt {1 - {x^2}} }}

    Phương trình f'\left( x ight) = 0

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  { - 1 < x < 1} \\   {1 - 2{x^2} = 0} \end{array} \Rightarrow x \in \left\{ { - \frac{{\sqrt 2 }}{2};\frac{{\sqrt 2 }}{2}} ight\}} ight.

    Ta lại có: \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = f\left( 1 ight) = 0} \\   {f\left( {\dfrac{{ - \sqrt 2 }}{2}} ight) =  - \dfrac{1}{2}} \\   {f\left( {\dfrac{{\sqrt 2 }}{2}} ight) = \dfrac{1}{2}} \end{array}} ight.

    \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\max f\left( x ight)}\limits_{\left[ { - 1;1} ight]}  = M = \dfrac{1}{2}} \\   {\mathop {\min f\left( x ight)}\limits_{\left[ { - 1;1} ight]}  = m = \dfrac{1}{2}} \end{array}} ight.

    => M - 2m = \frac{1}{2} - 2\left( { - \frac{1}{2}} ight) = \frac{3}{2}

  • Câu 27: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 28: Thông hiểu

    Nếu đặt t = {\log _2}x thì phương trình \frac{1}{{5 - {{\log }_2}x}} + \frac{2}{{1 + {{\log }_2}x}} = 1 trở thành phương trình nào?

    Đặt t = {\log _2}x

    PT \Leftrightarrow \frac{1}{{5 - t}} + \frac{2}{{1 + t}} = 1 \Leftrightarrow \frac{{1 + t + 2(5 - t)}}{{(5 - t)(1 + t)}} = 1

    \Leftrightarrow 1 + t + 2(5 - t) = (5 - t)(1 + t)

    \Leftrightarrow 11 - t = 5 + 4t - {t^2} \Leftrightarrow {t^2} - 5t + 6 = 0.

  • Câu 29: Thông hiểu

    Trong không gian Oxyz, cho tứ diện đều ABCDA(0;1;2) và hình chiếu vuông góc của A trên mặt phẳng (BCD)H(4;
- 3; - 2). Tìm tọa độ tâm I của mặt cầu ngoại tiếp tứ diện ABCD?

    Gọi I(a;b;c) \Rightarrow \left\{
\begin{matrix}
\overrightarrow{IA} = ( - a;1 - b;2 - c) \\
\overrightarrow{IH} = (4 - a; - 3 - b; - 2 - c) \\
\end{matrix} ight.

    ABCD là tứ diện đều nên tâm I của mặt cầu ngoại tiếp trùng với trọng tâm tứ diện

    \Rightarrow \overrightarrow{IA} = -
3\overrightarrow{IH} \Leftrightarrow \left\{ \begin{matrix}
- a = - 3(4 - a) \\
1 - b = - 3(3 - b) \\
2 - c = - 3( - 2 - c) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 3 \\
b = - 2 \\
c = - 1 \\
\end{matrix} ight.\  \Rightarrow I(3; - 2; - 1)

  • Câu 30: Nhận biết

    Điều kiện xác định của bất phương trình {\log _{0,5}}(5{\text{x}} + 15) \leqslant {\log _{0,5}}\left( {{x^2} + 6{\text{x}} + 8} ight) là:

    x>-2|| X>-2 || x lớn hơn -2

    Đáp án là:

    Điều kiện xác định của bất phương trình {\log _{0,5}}(5{\text{x}} + 15) \leqslant {\log _{0,5}}\left( {{x^2} + 6{\text{x}} + 8} ight) là:

    x>-2|| X>-2 || x lớn hơn -2

     Điều kiện: \left\{ \begin{gathered}  5x + 15 > 0 \hfill \\  {x^2} + 6{\text{x}} + 8 > 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - 3 \hfill \\  \left[ \begin{gathered}  x >  - 2 \hfill \\  x <  - 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x >  - 2

    Vậy để BPT xác định khi và chỉ khi x >  - 2.

  • Câu 31: Nhận biết

    Cho hình nón đỉnh S có bán kính đáy R = a\sqrt 2, góc ở đỉnh bằng {60^0}. Diện tích xung quanh của hình nón bằng:

    Diện tích xung quanh

     Theo giả thiết, ta có OA = a\sqrt 2\widehat {OSA} = {30^0}.

    Suy ra độ dài đường sinh:  \ell  = SA = \frac{{OA}}{{\sin {{30}^0}}} = 2a\sqrt 2

    Vậy diện tích xung quanh bằng: {S_{xq}} = \pi R\ell  = 4\pi {a^2} (đvdt). 

  • Câu 32: Thông hiểu

    Viết biểu thức Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} = {x^{\frac{1}{2}}}.{x^{\frac{1}{3}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{1}{3} + \frac{5}{6}}} = {x^{\frac{5}{3}}}

  • Câu 33: Vận dụng

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là f\left( x ight) = \left| {\frac{1}{4}{x^4} - 14{x^2} + 48x + m - 30} ight| trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 34: Nhận biết

    Điểm cực tiểu của đồ thị hàm số y = x^{3}
- 3x + 4 thuộc đường thẳng nào sau đây?

    Ta có: y' = 3x^{2} - 3. Do đó y' = 0 \Leftrightarrow 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    x = 1 là điểm cực tiểu của hàm số nên điểm A(1;2) là điểm cực tiểu của đồ thị hàm số.

    Nhận thấy A(1;2) thuộc đường thẳng y = x + 1.

    Vậy điểm cực tiểu của đồ thị hàm số y =
x^{3} - 3x + 4 thuộc đường thẳng y
= x + 1.

  • Câu 35: Nhận biết

    Đồ thị hàm số y = \frac{\sqrt{x -
7}}{x^{2} + 3x - 4} có bao nhiêu đường tiệm cận đứng?

    Tập xác định D = \lbrack 7; +
\infty)

    Phương trình x^{2} + 3x - 4 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 4 \\
\end{matrix} ight.

    Do đó không tồn tại các giới hạn \lim_{x
ightarrow - 4^{-}}y;\lim_{x ightarrow - 4^{+}}y;\lim_{x ightarrow
1^{-}}y;\lim_{x ightarrow 1^{+}}y. Vì vậy đồ thị hàm số không có đường tiệm cận đứng.

  • Câu 36: Nhận biết

    Vật thể nào trong các vật thể sau không phải là khối đa diện?

    Vì đáp án đã vi phạm tính chất sau: 

    Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác

  • Câu 37: Thông hiểu

    Biết \sqrt[5]{{\frac{b}{a}\sqrt[3]{{\frac{a}{b}}}}} = {\left( {\frac{a}{b}} ight)^m} với a và b là các số thực dương. Tìm m?

    Ta có:

    \begin{matrix}  {\left( {\dfrac{a}{b}} ight)^m} = {\left( {\sqrt[3]{{\dfrac{{{b^3}}}{{{a^3}}}.\dfrac{a}{b}}}} ight)^{\frac{1}{5}}} = {\left( {\dfrac{{{b^2}}}{{{a^2}}}} ight)^{\frac{1}{{15}}}} = {\left( {\dfrac{b}{a}} ight)^{\frac{2}{{15}}}} \hfill \\   \Rightarrow m = \dfrac{{ - 2}}{{15}} \hfill \\ \end{matrix}

  • Câu 38: Thông hiểu

    Tìm điều kiện của tham số m để hàm số y = x^{4} + mx^{2} + c có ba điểm cực trị?

    Hàm số y = ax^{4} + bx^{2} + c có ba điểm cực trị khi và chỉ khi a.b <
0.

    Để hàm số đa cho có ba điểm cực trị khi và chỉ khi b < 0.

  • Câu 39: Nhận biết

    Cơ số x bằng bao nhiêu để {\log _x}\sqrt[{10}]{3} =  - 0,1?

    Điều kiện x > 0;x e 1

    Ta có:

    \begin{matrix}  {\log _x}\sqrt[{10}]{3} =  - 0,1 \hfill \\   \Leftrightarrow {x^{ - 0,1}} = {3^{0,1}} \hfill \\   \Leftrightarrow {x^{ - 1}} = 3 \Leftrightarrow x = \dfrac{1}{3}\left( {tm} ight) \hfill \\ \end{matrix}

  • Câu 40: Nhận biết

    Đường cong trong hình vẽ dưới đây là của hàm số nào?

    Xác định hàm số tương ứng với đồ thị hàm số

    Đường tiệm cận ngang: y = \frac{1}{2}

    Đường tiệm cận đứng: x = 1

     

  • Câu 41: Nhận biết

    Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?

     Hình {3;4} là khối bát diện đều, có 12 cạnh.

    Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.

    Vậy tổng số cạnh của hai hình trên là 12 + 30 =42 cạnh.

  • Câu 42: Vận dụng cao

    Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới đây.

    Tìm các điểm cực trị của hàm số

    Số điểm cực trị của hàm số h\left( x ight) = {f^2}\left( x ight) + {g^2}\left( x ight) - 2f\left( x ight).g\left( x ight) là:

    Ta có:

    \begin{matrix}  h\left( x ight) = {\left[ {f\left( x ight) - g\left( x ight)} ight]^2} \hfill \\   \Rightarrow h'\left( x ight) = 2.\left[ {f\left( x ight) - g\left( x ight)} ight]\left[ {f'\left( x ight) - g'\left( x ight)} ight] \hfill \\  h'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) - g\left( x ight) = 0\left( * ight)} \\   {f'\left( x ight) - g'\left( x ight) = 0\left( {**} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Từ đồ thị ta thấy phương trình (*) có đùng 2 nghiệm phân biệt là x = -1; x = 3, x = x1, và f(x) – g(x) đổi dấu khi đi qua các nghiệm này

    => Các nghiệm trên là nghiệm bội lẻ của (*)

    Mà f(x) và g(x) đều là đa thức bậc 4 nên bậc của phương trình (*) nhỏ hơn hoặc bằng 4

    => Phương trình (*) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (**) phải có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (*)

    => h’(x) = 0 có 5 nghiệm phân biệt và h’(x) đổi dấu khi đi qua các nghiệm đấy nên hàm số h(x) có 5 điểm cực trị.

  • Câu 43: Thông hiểu

    Cho bất phương trình \frac{{1 - {{\log }_9}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2}. Nếu đặt t = {\log _3}x thì bất phương trình trở thành: 

     Ta có: \frac{{1 - {{\log }_9}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2} \Leftrightarrow \frac{{1 - \frac{1}{2}{{\log }_3}x}}{{1 + {{\log }_3}x}} \leqslant \frac{1}{2}

    \Leftrightarrow \frac{{2 - {{\log }_3}x}}{{2\left( {1 + {{\log }_3}x} ight)}} \leqslant \frac{1}{2} \Leftrightarrow 1 - \frac{{2 - {{\log }_3}x}}{{1 + {{\log }_3}x}} \geqslant 0

    \Leftrightarrow \frac{{2{{\log }_3}x - 1}}{{1 + {{\log }_3}x}} \geqslant 0

    Hay  \frac{{2t - 1}}{{1 + t}} \geqslant 0.

  • Câu 44: Thông hiểu

    Cho hình nón đỉnh S có đáy là hình tròn tâm O, bán kính R. Dựng hai đường sinh SA và SB, biết AB chắn trên đường tròn đáy một cung có số đo bằng 60^0, khoảng cách từ tâm O đến mặt phẳng (SAB) bằng \frac{R}{2}. Đường cao h của hình nón bằng:

    Theo giả thiết ta có tam giác OAB đều cạnh R.

    Gọi E là trung điểm AB, suy ra OE \bot ABOE = \frac{{R\sqrt 3 }}{2}.

    Gọi H là hình chiếu của O trên SE, suy ra OH \bot SE.

    Ta có \left\{ \begin{array}{l}AB \bot OE\\AB \bot SO\end{array} ight. \Rightarrow AB \bot \left( {SOE} ight) \Rightarrow AB \bot OH

    Từ đó suy ra OH \bot \left( {SAB} ight) nên d\left[ {O,\left( {SAB} ight)} ight] = OH = \frac{R}{2}.

    Trong tam giác vuông SOE, ta có  \frac{1}{{S{O^2}}} = \frac{1}{{O{H^2}}} - \frac{1}{{O{E^2}}} = \frac{8}{{3{R^2}}} \Rightarrow SO = \frac{{R\sqrt 6 }}{4}

  • Câu 45: Vận dụng

    Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?

    Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.

    Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3Đ =2C.

  • Câu 46: Thông hiểu

    Điều kiện của tham số m để hàm số y = \frac{x + m}{x + 2} nghịch biến trên từng khoảng xác định là:

    Xét hàm số y = \frac{x + m}{x +
2} ta có:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 2 ight\}

    Ta có: y' = \frac{2 - m}{(x +
2)^{2}}

    Hàm số nghịch biến trên từng khoảng xác định \Leftrightarrow y' < 0;\forall x \in
D

    \Leftrightarrow 2 - m < 0
\Leftrightarrow m > 2

    Vậy đáp án cần tìm là m >
2.

  • Câu 47: Vận dụng

    Phương trình {3^{2x}} + 2x\left( {{3^x} + 1} ight) - {4.3^x} - 5 = 0 có tất cả bao nhiêu nghiệm không âm ?

     Ta có: {3^{2x}} + 2x\left( {{3^x} + 1} ight) - {4.3^x} - 5 = 0 \Leftrightarrow \left( {{3^{2x}} - 1} ight) + 2x\left( {{3^x} + 1} ight) - \left( {{{4.3}^x} + 4} ight) = 0

    \Leftrightarrow \left( {{3^x} - 1} ight)\left( {{3^x} + 1} ight) + \left( {2x - 4} ight)\left( {{3^x} + 1} ight) = 0

    \Leftrightarrow \left( {{3^x} + 2x - 5} ight)\left( {{3^x} + 1} ight) = 0 \Leftrightarrow {3^x} + 2x - 5 = 0

    Xét hàm số f\left( x ight) = {3^x} + 2x - 5, ta có:f(1)=0.

    f'\left( x ight) = {3^x}\ln 3 + 2 > 0;\forall x \in \mathbb{R}. Do đó hàm số f(x) đồng biến trên R.

    Vậy nghiệm duy nhất của phương trình là x=1.

  • Câu 48: Vận dụng cao

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f\left( x ight). Hàm số y = f'\left( x ight) có đồ thị như hình vẽ dưới đây:

    Bất phương trình nghiệm đúng khi và chỉ khi

    Bất phương trình \frac{{f\left( x ight)}}{{36}} - \frac{{\sqrt {x + 3}  - 2}}{{x - 1}} > m nghiệm đúng với mọi x \in \left( {0;1} ight) khi và chỉ khi

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 49: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA\ \bot\ (ABCD), biết SC = a\sqrt{3}. Gọi M,N,P,Q lần lượt là trung điểm của SB, SD, CD, BC. Các mệnh đề sau đúng hay sai?

    a) Thể tích của khối chóp S.ABCD bằng \frac{1}{3}SA.S_{ABCD}. Đúng||Sai

    b) Thể tích của khối chóp S.ABC bằng thể tích của khối chóp S.ACD. Đúng||Sai

    c) Thể tích của khối chóp S.ABCD bằng a^{3}. Sai||Đúng

    d) Thể tích của khối chóp A.MNPQ bằng \frac{a^{3}}{8}. Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA\ \bot\ (ABCD), biết SC = a\sqrt{3}. Gọi M,N,P,Q lần lượt là trung điểm của SB, SD, CD, BC. Các mệnh đề sau đúng hay sai?

    a) Thể tích của khối chóp S.ABCD bằng \frac{1}{3}SA.S_{ABCD}. Đúng||Sai

    b) Thể tích của khối chóp S.ABC bằng thể tích của khối chóp S.ACD. Đúng||Sai

    c) Thể tích của khối chóp S.ABCD bằng a^{3}. Sai||Đúng

    d) Thể tích của khối chóp A.MNPQ bằng \frac{a^{3}}{8}. Đúng||Sai

    Hình vẽ minh họa

    a) Ta có: SA\ \bot\ (ABCD) \Rightarrow
V_{S.ABCD} = \frac{1}{3}SA.S_{ABCD}. Suy ra mệnh đề đúng.

    b) Từ giả thiết có S_{ABC} = S_{ACD} =
\frac{a^{2}}{2}; SA\bot(ABCD).

    V_{S.ABC} = \frac{1}{3}SA.S_{\Delta
ABC};\ \ \ V_{S.ACD} = \frac{1}{3}SA.S_{\Delta ACD}

    \Rightarrow V_{S.ABC} =
V_{S.ACD}. Suy ra mệnh đề đúng.

    c) Ta có SA = \sqrt{SC^{2} - AC^{2}} =
a.

    Suy ra V_{S.ABCD} =
\frac{1}{3}SA.S_{ABCD} = \frac{a^{3}}{3}. Vậy mệnh đề sai.

    d) Ta có \left\{ \begin{matrix}
MN//PQ \\
MN = PQ \\
\end{matrix} ight. .

    Suy ra MNPQ là hình bình hành; mặt khác, ta có: \left\{ \begin{matrix}
BD\bot SA \\
BD\bot AC \\
\end{matrix} ight.\  \Rightarrow BD\bot SC

    \left\{ \begin{matrix}
PQ//BD \\
PN//SC \\
\end{matrix} ight.\  \Rightarrow PN\bot PQ nên tứ giác MNPQ là hình chữ nhật.

    SA = \sqrt{SC^{2} - AC^{2}} =
a

    Do SM \cap (APQ) = B nên ta có:

    \frac{d\left( M;(AQP) ight)}{d\left(
S;(AQP) ight)} = \frac{MB}{AB} = \frac{1}{2} \Rightarrow d\left( M;(AQP) ight) =
\frac{1}{2}d\left( S;(AQP) ight) = \frac{1}{2}SA =
\frac{a}{2}.

    S_{\Delta AQP} = \frac{1}{2}AH.QP =
\frac{1}{2}.\frac{3}{4}AC.\frac{1}{2}BD = \frac{3}{16}AC.BD = \frac{3}{16}\left(
a\sqrt{2} ight)^{2} = \frac{3}{8}a^{2}.

    Với H = AC \cap PQ.

    Ta có V_{A.MNPQ} = 2V_{A.MQP} =
2V_{M.AQP}

    V_{M.AQP} =
\frac{1}{3}d\left( M;(AQP) ight).S_{\Delta AQP} =
\frac{1}{3}.\frac{a}{2}.\frac{3}{8}a^{2} =
\frac{a^{3}}{16}.

    Vậy V_{A.MNPQ} = 2V_{M.AQP} =
2.\frac{a^{3}}{16} = \frac{a^{3}}{8}. Suy ra mệnh đề đúng.

  • Câu 50: Nhận biết

    Cho 0 < a e 1. Rút gọn biểu thức P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}}

    Ta có: P = \frac{{{{\left( {{a^3}} ight)}^4}}}{{{a^2}.{a^{\frac{3}{2}}}}} = \frac{{{a^{12}}}}{{{a^{\frac{7}{2}}}}} = {a^{12 - \frac{7}{2}}} = {a^{\frac{{17}}{2}}}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo