Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Cho hàm số
với
là tham số. Gọi
là tập hợp các số nguyên
để hàm số đã cho nghịch biến trên khoảng
. Xác định số phần tử của tập hợp
?
Xét là hàm hằng nên hàm số không nghịch biến. Vậy
không thỏa mãn.
Xét
Tập xác định
Để hàm số nghịch biến trên khoảng khi và chỉ khi
Mà nên
Vậy tập hợp S có tất cả 9 giá trị.
Nghiệm nguyên lớn nhất của bất phương trình là:
x=7 || X=7 || x bằng 7 || 7
Nghiệm nguyên lớn nhất của bất phương trình là:
x=7 || X=7 || x bằng 7 || 7
Điều kiện:
Ta có:
.
Vậy nghiệm nguyên lớn nhất của bất phương trình là: .
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng
. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:

Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Đồ thị hàm số nào dưới đây có dạng như hình vẽ?

Đồ thị hàm số bậc 4 có hệ số và có ba điểm cực trị nên
nên chọn
.
Điều kiện xác định của phương trình
là:
Điều kiện phương trình xác định:
Phương trình
có nghiệm là:
x=2 || 2 || hai
Phương trình có nghiệm là:
x=2 || 2 || hai
PT .
Cho hàm số y = f(x). Đồ thị của hàm số
như hình bên. Đặt
. Mệnh đề nào sau đây đúng?
Xét hàm số
Ta có bảng biến thiên như sau:

Vậy
Cho hàm số
. Hàm số
có đồ thị như hình vẽ dưới đây:

Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi
Cho hàm số . Hàm số
có đồ thị như hình vẽ dưới đây:

Bất phương trình nghiệm đúng với mọi
khi và chỉ khi
Cho khối đa diện đều loại
. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Khối đa diện đều loại là khối bát diện đều.

Mỗi đỉnh là đỉnh chung của 4 mặt.
Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng .
Có bao nhiêu giá trị nguyên của tham số
để đồ thị hàm số
có đúng một tiệm cận đứng?
Đồ thị hàm số có đúng một tiệm cận đứng khi và chỉ khi phương trình
có đúng một nghiệm
Ta có:
Xét hàm số ta có:
Ta có bảng biến thiên như sau:
Từ bảng biến thiên suy ra
Mà nên
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Hình nón có đường sinh
và hợp với đáy góc
. Diện tích toàn phần của hình nón bằng:

Theo giả thiết, ta có
và
.
Suy ra:
.
Vậy diện tích toàn phần của hình nón bằng: (đvdt).
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Tính giá trị của
với ![]()
Ta có:
Gọi
lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Gọi lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số
trên đoạn
. Tổng
bằng bao nhiêu?
Hàm số
đồng biến trên khoảng nào dưới dây?
Tập xác định
Ta có:
Ta có bảng xét dấu
Vậy hàm số đồng biến trên khoảng
Cho hàm số
có bảng biến thiên như sau:

Số điểm cực trị của hàm số
là:
Khi đó bảng biến thiên của hàm số là:
Dựa vào bảng biến thiên ta thấy hàm số có 5 điểm cực trị.
Cho hình chóp
có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?

Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Nếu đặt
thì bất phương trình
trở thành bất phương trình nào?
Điều kiện:
Sau khi đưa về cùng cơ số 4, rồi tiếp tục biến đổi về cùng cơ số 3 ta được bất phương trình
Vậy BPT trở thành: .
Cho hàm số
có đồ thị
, đường thẳng
và điểm
. Biết rằng
cắt nhau tại ba điểm phân biệt
trong đó
còn trọng tâm tam giác
nằm trên đường thẳng
. Tìm giá trị của tham số
thỏa mãn yêu cầu đề bài?
Cho hàm số có đồ thị
, đường thẳng
và điểm
. Biết rằng
cắt nhau tại ba điểm phân biệt
trong đó
còn trọng tâm tam giác
nằm trên đường thẳng
. Tìm giá trị của tham số
thỏa mãn yêu cầu đề bài?
Nghiệm nguyên nhỏ nhất của phương trình
là?
3 || ba || Ba
Nghiệm nguyên nhỏ nhất của phương trình là?
3 || ba || Ba
Điều kiện:
Ta có:
So điều kiện suy ra phương trình có nghiệm .
Tìm tập xác định của hàm số ![]()
Điều kiện xác định
=> Tập xác định của hàm số là
Cho
và khác 1. Các hàm số
có đồ thị như hình vẽ bên. Khẳng định nào dưới đây đúng?

Kẻ đường thẳng cắt đồ thị các hàm số
lần lượt tại các điểm có hoành độ

Từ đồ thị ta có:
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và
. Tính theo a thể tích V khối chóp S.ABCD.

Đường chéo hình vuông
Xét tam giác SAC, ta có .
Chiều cao khối chóp là .
Diện tích hình vuông ABCD là
Vậy thể tích khối chóp .
Điều kiện xác định của bất phương trình
là:
BPT xác định khi: .
Cho các hình sau: 
Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho trùng với trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Cho hàm số
với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Cho hàm số với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Giá trị của biểu thức
bằng:
Ta có:
Trong không gian với hệ tọa độ
, mặt phẳng
cắt mặt cầu
theo thiết diện là đường tròn bán kính
bằng bao nhiêu?
Mặt cầu có tâm
và bán kính
.
Khoảng cách từ tâm đến
bằng
.
Cho hàm số
liên tục trên
và có đạo hàm
với mọi
. Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Cho hàm số liên tục trên
và có đạo hàm
với mọi
. Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Tập xác định của hàm số
là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Gọi
là 2 nghiệm của phương trình
.
Khi đó
bằng:
Ta có:
Suy ra .
Trong không gian với hệ tọa độ
, cho mặt cầu
có tâm
và đi qua điểm
. Phương trình mặt cầu
là:
Phương trình mặt cầu có tâm
và bán kính
là:
Ta có:
Vậy phương trình cần tìm là: .
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Cho hình chóp
có đáy
là hình vuông cạnh
,
và
. Tổng diện tích hai tam giác
và
bằng
. Tính thể tích
của khối chóp
?

Gọi lần lượt là trung điểm của
và
.
Tam giác cân tại
suy ra
với
.
Vì suy ra
và
Kẻ
Ta có
Tam giác vuông tại
nên
Giải hệ:
hoặc
Vậy thể tích khối chóp
Một đường tiệm cận đứng của đồ thị hàm số
là:
Ta có:
Vậy một đường tiệm cận đứng của đồ thị hàm số là .
Cho hàm số
liên tục trên
và có bảng xét dấu của
như sau:

Số điểm cực đại của hàm số
là:
Dựa vào bảng biến thiên ta thấy, hàm số đạt cực đại tại
nên hàm số đã cho có 1 điểm cực đại.
Cho khối chóp
có đáy
là hình vuông cạnh
,
vuông góc với đáy và khoảng cách từ
đến mặt phẳng
bằng
. Tính thể tích
của khối chóp đã cho.

Gọi là hình chiếu của
trên
Ta có
Suy ra
Tam giác vuông tại
, có
Vậy .
Cho a và b là các số thực thỏa mãn
và
. Giá trị biểu thức
là:
Ta có:
Tìm đạo hàm của hàm số
trên khoảng ![]()
Với điều kiện ta có:
. Khi đó:
=>
Tìm đạo hàm của hàm số ![]()
Ta có:
Mặt phẳng đi qua trọng tâm của tứ diện, song song với một mặt phẳng của tứ diện và chia khối tứ diện thành hai phần. Tính tỉ số thể tích (phần bé chia phần lớn) của hai phần đó.

Gọi lần lượt là trung điểm của các cạnh
khi đó
là trọng tâm của tứ diện
. Ta sẽ dựng mặt phẳng qua
song song với
.
Trong mặt phẳng dựng đường thẳng qua
song song với
cắt
lần lượt tại
.
Qua lần lượt kẻ các đường thẳng lần lượt song song với
cắt
lần lượt tại
.
Do là trung điểm của
suy ra
Ta có
Tìm tất cả các giá trị thực của tham số m để bất phương trình
có nghiệm đúng
.
Bất phương trình tương đương
hoặc
: (*) không thỏa
và
: (*)
Trong không gian
, cho điểm A(0; 1; 2), mặt phẳng
và mặt cầu
. Gọi
là mặt phẳng đi qua
, vuông góc với
và đồng thời
cắt mặt cầu
theo giao tuyến là một đường tròn có bán kính nhỏ nhất. Tọa độ giao điểm
của
và trục
là
Gọi (C) là giao tuyến của mặt phẳng và mặt cầu (S) và (C) có tâm H, bán kính r.
Bán kính r của đường tròn là nhỏ nhất khi và chỉ khi IH lớn nhất khi và chỉ khi lớn nhất.
Vì nên gọi M(m; 0; 0).
Suy ra mặt phẳng (P) chứa AM và (P) ⊥ (α).
Khi đó
Mà mặt phẳng (P) đi qua A nên phương trình của mặt phẳng (P) là:
hay
Ta có:
lớn nhất khi và chỉ khi
đạt giá trị nhỏ nhất
Mà
Do đó nhỏ nhất khi và chỉ khi
Vậy .