Cho hàm số
có đồ thị như hình vẽ:

Tìm số điểm cực trị của hàm số
trên khoảng
?
Đặt
Từ bảng xét dấu của hàm số có
Ta có bảng biến thiên
Từ bảng biến thiên suy ra hàm số có hai cực trị trên khoảng
.
Cho hàm số
có đồ thị như hình vẽ:

Tìm số điểm cực trị của hàm số
trên khoảng
?
Đặt
Từ bảng xét dấu của hàm số có
Ta có bảng biến thiên
Từ bảng biến thiên suy ra hàm số có hai cực trị trên khoảng
.
Cho
là ba số thực dương,
thỏa mãn:
![]()
Khi đó, giá trị của biểu thức
gần với giá trị nào nhất sau đây?
Áp dụng bất đẳng thức , ta được:
Do đó với
Dấu “=” xảy ra khi
Khi đó .
Vậy giá trị của T gần 8 nhất.
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1

Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AD=2a,
. Cạnh bên SA=2a và vuông góc với đáy. Gọi R là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD. Tỉ số
nhận giá trị nào sau đây?

Ta có hay
Gọi E là trung điểm AD.
Ta có nên ABCE là hình thoi.
Suy ra .
Do đó tam giác ACD vuông tại C. Ta có:
hay
Tương tự, ta cũng có hay
Ta có nên khối chóp S.ABCD nhận trung điểm I của SD làm tâm mặt cầu ngoại tiếp, bán kính
.
Suy ra .
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Xác định giá trị nhỏ nhất của biểu thức
, biết
với
là tham số và hàm số đồng biến trên
.
Ta có:
Hàm số đã cho đồng biến trên
Ta lại có:
Với a và b là hai số thực dương tùy ý thì
bằng:
Ta có:
Cho hàm số
. Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho hàm số . Tìm
để khoảng cách từ gốc
đến tiệm cận xiên hoặc ngang là nhỏ nhất.
Cho các hình sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số hình đa diện là:
Các hình đa diện là:
;
; 
Tổng các nghiệm của phương trình
là:
Điều kiện . Có
Dó đó, tổng các nghiệm sẽ bằng .
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Cho hàm số
có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Cho hàm số có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Gọi giá trị lớn nhất và giá trị nhỏ nhất của hàm số
trên đoạn
lần lượt là
và
. Tính giá trị của biểu thức
?
Ta có:
Một sinh viên giỏi
được một công ty trao quỹ học bổng
triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất
mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền
triệu đồng.
a) Quỹ học bổng còn lại sau
tháng là:
triệu đồng. Đúng||Sai
b) Quỹ học bổng còn lại sau 2 tháng là:
triệu đồng. Sai||Đúng
c) Quỹ học bổng còn lại sau n tháng là:
(triệu đồng). Sai||Đúng
d) Tháng cuối cùng sinh viên đó rút được
triệu đồng thì hết quỹ học bổng trên. Sai||Đúng
Một sinh viên giỏi được một công ty trao quỹ học bổng
triệu đồng, số tiền đó được công ty gửi vào ngân hàng với lãi suất
mỗi tháng, cuối mỗi tháng sinh viên đó được rút đều đặn số tiền
triệu đồng.
a) Quỹ học bổng còn lại sau tháng là:
triệu đồng. Đúng||Sai
b) Quỹ học bổng còn lại sau 2 tháng là: triệu đồng. Sai||Đúng
c) Quỹ học bổng còn lại sau n tháng là: (triệu đồng). Sai||Đúng
d) Tháng cuối cùng sinh viên đó rút được triệu đồng thì hết quỹ học bổng trên. Sai||Đúng
a) Quỹ học bổng còn lại sau tháng là:
triệu đồng.
Suy ra mệnh đề đúng.
b) Quỹ học bổng còn lại sau 2 tháng là:
(triệu đồng)
Suy ra mệnh đề sai.
c) Quỹ học bổng còn lại sau n tháng là:
(triệu đồng).
Suy ra mệnh đề sai.
d) Quỹ học bổng còn lại sau 16 tháng là:
.
Quỹ học bổng còn lại sau 15 tháng là.
triệu đồng.
Suy ra tháng cuối cùng sinh viên đó rút được triệu đồng thì hết quỹ học bổng trên.
Suy ra mệnh đề sai.
Cho hàm số
. Hàm số
có đồ thị như hình vẽ dưới đây:

Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi
Cho hàm số . Hàm số
có đồ thị như hình vẽ dưới đây:

Bất phương trình nghiệm đúng với mọi
khi và chỉ khi
Trong không gian với hệ tọa độ
, cho mặt phẳng
và mặt cầu
. Tìm tất cả các giá trị của m để
tiếp xúc với mặt cầu
?
Ta có mặt cầu có tâm I(1; −1; 1) và bán kính R = 3.
Mặt phẳng tiếp xúc với
khi và chỉ khi:
.
Cho các mệnh đề sau:
(i) Cơ số của logarit phải là số dương.
(ii) Chỉ số thực dương mới có logarit.
(iii)
với mọi
.
(iv)
với mọi
.
Số mệnh đề đúng là:
(i) Sai vì cơ số của chỉ cần thỏa mãn
(ii) Đúng vì điều kiện có nghĩa của là
(iii) Sai vì với mọi
(iv) Sai vì nếu thì các biểu thức
không có nghĩa.
Phương trình
có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
Phương trình có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
PT
Vậy PT có 2 nghiệm.
Viết biểu thức
với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Hàm số nào dưới dây nghịch biến trên tập số thực?
Ta thấy hàm số có tập xác định
và đạo hàm
nên nghịch biến trên
.
Gọi
là 2 nghiệm của phương trình
. Khi đó
bằng:
-3
Gọi là 2 nghiệm của phương trình
. Khi đó
bằng:
-3
Điều kiện:
Vậy .
Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực
?
Hàm số là hàm số mũ có cơ số bằng
nghịch biến trên
Hàm số là hàm số mũ có cơ số
nên đồng biến trên
Hàm số chỉ xác định trên
Hàm số có
nên nghịch biến trên
Tập nghiệm của bất phương trình
là:
Ta có:
.
Tìm tập xác định của hàm số ![]()
Vì nên hàm số xác định khi
Tập nghiệm của bất phương trình
là:
Ta có:
Vậy BPT có tập nghiệm là .
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Số giá trị nguyên của tham số
để hàm số
đồng biến trên
là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=> Có 20 giá trị của tham số m thỏa mãn điều kiện đề bài.
Đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
có bảng biến thiên như sau:

Tìm giá trị cực đại và giá trị cực tiểu của hàm số đã cho.
Từ bảng biến thiên ta có: .
Cho các số thực dương a, b với
. Khẳng định nào sau đây đúng?
Trường hợp 1:
Trường hợp 2:
Vậy
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Cho hàm số y = f(x) có đạo hàm
. Gọi M là giá trị cực đại của hàm số đã cho. Chọn khẳng định đúng?
Ta có:
Ta có bảng biến thiên như sau:

Dựa vào bảng biến thiên ta có giá trị cực đại của hàm số là M = f(-3)
Đường tiệm cận ngang của đồ thị hàm số
cắt đường thẳng
tại điểm có tung độ bằng:
Do và
nên đồ thị hàm số có đường tiệm cận ngang là
.
Xét phương trình có hoành độ giao điểm
Vậy tung độ giao điểm là .
Cho hàm số
có bảng xét dấu
như sau:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Ta có:
Vậy khoảng nghịch biến của hàm số là:
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao
và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Tổng độ dài
của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Tổng độ dài của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Khối mười hai mặt đều có tất cả 30 cạnh:

Suy ra ta có tổng độ dài tất cả các cạnh bằng .
PT
có nghiệm là?
PT
Vậy PT có nghiệm là .
Trong không gian với hệ tọa độ
, phương trình mặt cầu tâm
bán kính
là:
Phương trình mặt cầu tâm bán kính
là:
Tổng quát .
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Cho hàm số
. Số nghiệm thực phân biệt của phương trình
là:
Ta có:
Đồ thị của hàm số được minh họa bằng hình vẽ sau:

Từ đồ thị ta suy ra
Phương trình (*) có 3 nghiệm thực
Phương trình (**) có 2 nghiệm thực
Cho hàm số f(x) liên tục trên
và có bảng biến thiên của đạo hàm như sau:

Hàm số
có bao nhiêu điểm cực trị?
Xét hàm số , ta có bảng giá trị |t(x)|

Ta có:
Hàm số không có đạo hàm tại điểm
Tại mọi điểm ta có:
=>
Dựa vào bảng giá trị hàm |t| suy ra:
+ Phương trình (1), (2) vô nghiệm
+ Phương trình (3) có 4 nghiệm phân biệt khác 0
+ Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)
=> g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu
Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm
Vậy hàm số g(x) có 9 điểm cực trị.
Tính thể tích
của một khối lăng trụ biết đáy có diện tích
, cạnh bên tạo với mặt phẳng đáy một góc
và độ dài cạnh bên bằng 10 cm.

Xét khối lăng trụ có đáy là tam giác ABC.
Gọi H là hình chiếu của A' trên mặt phẳng
.
Suy ra là hình chiếu của
trên mặt phẳng
.
Do đó
Tam giác vuông tại H, có
.
Vậy .
Xét các mệnh đề:
(I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng
cố định một khoảng không đổi là một mặt trụ.
(II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.
Trong các mệnh đề trên, mệnh đề nào đúng?
Ta xét về khái niệm Mặt trụ suy ra (I) đúng.
Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).
Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.
Vì vậy Mệnh đề (II) cũng đúng.
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Cho tứ diện có thể tích bằng
. Gọi
là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số
.

Xét khối tứ diện và các điểm được kí hiệu như hình vẽ trên, ta có:
Tương tự .
Do đó
.
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Cho khối chóp S.ABC có SA vuông góc với đáy,
và
. Tính thể tích V của khối chóp
.
32
Cho khối chóp S.ABC có SA vuông góc với đáy, và
. Tính thể tích V của khối chóp
.
32

Xét tam giác , có:
Suy ra tam giác vuông tại A
Vậy thể tích khối chóp