Số các giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có: . Hàm số nghịch biến trên khoảng
khi
Vì
Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Số các giá trị nguyên của tham số
để hàm số
nghịch biến trên khoảng
là:
Ta có: . Hàm số nghịch biến trên khoảng
khi
Vì
Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Tổng độ dài
của tất cả các cạnh của một tứ diện đều cạnh
.

Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là
Tìm tất cả các giá trị thực của tham số m để bất phương trình
có nghiệm đúng
.
Bất phương trình tương đương
hoặc
: (*) không thỏa
và
: (*)
Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số
nghịch biến trên khoảng (-1; 1)
Ta có:
Để hàm số nghịch biến trên khoảng (-1; 1) thì
Ta có y’ = 0 => x = m hoặc x = m + 2
Bảng xét dấu

Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì
Cho hàm số y = f(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị thực của tham số m để hàm số
có đúng 6 điểm cực trị?

Xét hàm số
Yêu cầu bài toán xảy ra khi phương trình đạo hàm phải có 6 nghiệm bội lẻ:
Ta có:
Phương trình (*) luôn có hai nghiệm phân biệt => Hai phương trình còn lại phải cho đúng 4 nghiệm nghiệm bội lẻ.
Nhận thấy hai phương trình (1), (2) luôn cho hai nghiệm phân biệt vafcacs nghiệm của hai phương trình này không trùng nhau.
Để hai phương trình có đúng 4 nghiệm bội lẻ thì:
TH1: x = 1 là nghiệm của (x – 1)[x2 – (m – 1)x – m – 1] = 0 và x = -1 không phải là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0
TH2: x = -1 là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0 và x = 1 không phải là nghiệm của (x – 1)[x2 – (m – 1)x - m – 1] = 0
=>
Vậy có hai giá thực của m thỏa mãn
Giá trị nhỏ nhất của hàm số
là:
Tập xác định
Biến đổi f(x) như sau:
Đặt
Hàm số đã cho trở thành
Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Nghiệm nguyên nhỏ nhất của bất phương trình
là:
8 || tám || Tám
Nghiệm nguyên nhỏ nhất của bất phương trình là:
8 || tám || Tám
BPT
Vậy giá trị nghiệm nguyên nhỏ nhất của BPT là 8.
Cho hình vẽ:

Đồ thị trong hình đã cho là đồ thị của hàm số nào?
Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng với
và đồ thị hàm số đi qua điểm
nên hàm số tương ứng với đồ thị trong hình vẽ đã cho là
.
Cho hình chóp đều
có cạnh đáy bằng
, cạnh bên gấp hai lần cạnh đáy. Tính thể tích
của khối chóp đã cho.

Gọi là tâm đường tròn ngoại tiếp tam giác
. Vì
là khối chóp đều nên suy ra
.
Gọi là trung điểm của
Tam giác vuông tại
, có:
Diện tích tam giác là:
Vậy thể tích khối chóp:
Gọi
là 2 nghiệm của phương trình
. Khi đó
bằng:
-3
Gọi là 2 nghiệm của phương trình
. Khi đó
bằng:
-3
Điều kiện:
Vậy .
Cho hàm số
có đạo hàm trên
và hàm số
là hàm số bậc ba có đồ thị là đường cong trong hình vẽ. Xét tính đúng sai của các khẳng định sau:

a) Hàm số
đồng biến trên khoảng (−∞; -2). Sai||Đúng
b) Hàm số
có hai điểm cực trị. Sai||Đúng
c)
. Sai||Đúng
d) Hàm số
đồng biến trên khoảng
. Đúng||Sai
Cho hàm số có đạo hàm trên
và hàm số
là hàm số bậc ba có đồ thị là đường cong trong hình vẽ. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng (−∞; -2). Sai||Đúng
b) Hàm số có hai điểm cực trị. Sai||Đúng
c) . Sai||Đúng
d) Hàm số đồng biến trên khoảng
. Đúng||Sai
a) Sai: Vì từ đồ thị của hàm số ta thấy
nên hàm số đồng biến trên khoảng (1; +∞).
b) Sai: Vì từ đồ thị của hàm số ta thấy
chỉ đổi dấu một lần qua x = 1 nên hàm số có một điểm cực trị.
c) Sai: Từ đồ thị ta có hàm số có dạng
Đồ thị hàm số đi qua
nên
Vậy
d) Đúng: Ta có:
Vẽ đường thẳng y = x − 1 trên cùng hệ trục tọa độ với đồ thị hàm số
Khi đó
Bảng biến thiên của hàm số g(x) như sau:
Hàm số g(x) đồng biến trên khoảng (−3; -1) nên g(x) đồng biến trên khoảng
Số điểm cực trị của hàm số
là?
Xét hàm số
Ta có:
Ta có bảng biến thiên:

Dựa vào bảng biến thiên, ta thấy hàm số có hai điểm cực trị và đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác x1; x2
=> Hàm số có 5 điểm cực trị
Đạo hàm của hàm số ![]()
Ta có:
Cho hình chóp đều
. Gọi
là trung điểm
,
là điểm đối xứng với
qua
. Mặt phẳng
chia khối chóp
thành hai phần có thể tích lần lượt là
với
. Tính tỉ số
.

Gọi lần lượt là chiều cao và diện tích đáy của khối chóp
. Khi đó
. Nối MN cắt SA tại E, MC cắt AD tại F. Tam giác
có A, N lần lượt là trung điểm của BM và SB.
Suy ra E là trọng tâm tam giác SBM.
Vì tứ giác là hình bình hành nên F là trung điểm MC.
Ta có . Xét tỉ số:
Mặt khác, áp dụng công thức tính thể tích khối chóp là:
Do đó
Suy ra .
Cho hình lăng trụ đứng
có đáy là hình vuông cạnh
. Tính thể tích
của khối lăng trụ đã cho theo
, biết
.

Do là lăng trụ đứng nên
.
Xét tam giác vuông , ta có
.
Diện tích hình vuông là
.
Vậy
Tính giá trị của
với ![]()
Ta có:
Đặt
. Hãy biểu diễn
theo a và b.
Ta có:
Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn
, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

Gọi (O) và (O') lần lượt là hai đường tròn đáy; .
Dựng AD, CB lần lượt song song với OO' . Dễ dàng có ABCD là hình chữ nhật.
Do .
Gọi H là trung điểm của DC.
.
Ta có .
Suy ra .
Vậy thể tích của khối trụ là .
Tính đạo hàm của hàm số ![]()
Ta có:
Cho
và khác 1. Các hàm số
có đồ thị như hình vẽ bên. Khẳng định nào dưới đây đúng?

Kẻ đường thẳng cắt đồ thị các hàm số
lần lượt tại các điểm có hoành độ

Từ đồ thị ta có:
Tìm tập xác định của hàm số
là:
Hàm số đã cho xác định khi
Hàm số nào sau đây phù hợp với hình vẽ:

Ta có: và hàm số đồng biến trên
nên chỉ có hàm số
thỏa mãn
Trong không gian với hệ trục tọa độ
, cho điểm
và
. Phương trình mặt cầu tâm
và đi qua
có phương trình là:
Bán kính mặt cầu là
Phương trình mặt cầu tâm và
là:
Cho hàm số
có bảng biến thiên như hình vẽ dưới đây.

Số đường tiệm cận của đồ thị hàm số
là:
Phương trình có 2 nghiệm phân biệt
=> Đồ thị hàm số có 2 đường tiệm cận đứng.
Khi thì
Khi thì
Vậy đồ thị hàm số có 1 tiệm cận ngang.
Gọi
là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Gọi là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Điều kiện:
PT
Vậy .
Cho hàm số
có bảng biến thiên như sau:

Số điểm cực trị của hàm số
là:
Khi đó bảng biến thiên của hàm số là:
Dựa vào bảng biến thiên ta thấy hàm số có 5 điểm cực trị.
Tổng độ dài
của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Tổng độ dài của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Khối mười hai mặt đều có tất cả 30 cạnh:

Suy ra ta có tổng độ dài tất cả các cạnh bằng .
Biết
với x > 1 và a + b = 2. Tính giá trị của biểu thức
.
Ta có:
Với a > 0 hãy rút gọn biểu thức 
Ta có:
PT
có nghiệm là?
PT
Vậy PT có nghiệm là .
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm
?
Xét hàm số
Ta có: suy ra
là tiệm cận đứng của đồ thị hàm số.
Tiệm cận đứng đi qua điểm .
Bất phương trình
có tập nghiệm là:
TXĐ
BPT
Điều kiện xác định của phương trình
là:
Biểu thức xác định
Cho hàm số
. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)
Ta có:
Hàm số đã cho nghịch biến trên khoảng (0; +∞)
=>
=>
=>
Xét ta có:
Ta lại có:
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là
trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Gọi S là tập các giá trị nguyên của tham số m sao cho giá trị lớn nhất của hàm số là trên đoạn [0; 2] không vượt quá 30. Tổng các phần tử của S bằng bao nhiêu?
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho
. Độ dài đường sinh
của hình nón bằng:

Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.
Tam giác SAS’ vuông tại A và có đường cao AH nên
Trong không gian với hệ tọa độ
, cho
và điểm
. Xét các điểm
sao cho đường thẳng
luôn tiếp xúc với
. Điểm
luôn thuộc một mặt phẳng cố định có phương trình là
Tọa độ tâm mặt cầu là:
Gọi khi đó:
.
Theo đề bài ra ta có:
Mặt khác phương trình mặt cầu
Lấy (*) trừ (**) ta được: .
Điều kiện để bất phương trình sau có nghĩa là ![]()
Điều kiện:
Để thiết kế một chiếc bể nuôi cá Koi trong sân vườn hình hộp chữ nhật không nắp có chiều cao
và thể tích chứa
. Biết giá thành để làm mặt bên là 2,8 triệu đồng/
và làm mặt đáy là 4 triệu đồng/
. Tính chi phí thấp nhất để hoàn thành bể cá (Làm tròn theo đơn vị triệu đồng).

Đáp án: 2812
Để thiết kế một chiếc bể nuôi cá Koi trong sân vườn hình hộp chữ nhật không nắp có chiều cao và thể tích chứa
. Biết giá thành để làm mặt bên là 2,8 triệu đồng/
và làm mặt đáy là 4 triệu đồng/
. Tính chi phí thấp nhất để hoàn thành bể cá (Làm tròn theo đơn vị triệu đồng).
Đáp án: 2812
Gọi lần lượt là chiều rộng và chiều dài của đáy hình hộp.
Điều kiện: .
Ta có thể tích của khối hộp:
.
Diện tích mặt đáy:
.
Giá tiền để làm mặt đáy là:
(đồng).
Diện tích xung quanh của bể cá:
.
Giá tiền để làm mặt bên là:
.
Tổng chi phí để xây dựng bể cá là:
(triệu đồng).
Cho hàm số
có đạo hàm
liên tục trên
và có bảng biến thiên như sau:

Bất phương trình
(m là tham số thực) nghiệm đúng với
khi và chỉ khi
Ta có:
Xét hàm số với
Ta có:
=> Hàm số g(x) luôn đồng biến trên
Ta có bảng biến thiên như sau:

=> (*) nghiệm đúng khi
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Cho hàm số
có đồ thị như hình 1. Điểm cực tiểu của hàm số đã cho là:

Điểm cực tiểu của hàm số là 2.
Khi đặt hệ tọa độ
vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu
(tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu
có phương trình
. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.
Đáp án : 18km
Khi đặt hệ tọa độ vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu
(tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu
có phương trình
. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.
Đáp án : 18km
Ta có
.
Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là 18km.
Đáp số: 18km.
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Tìm các khoảng nghịch biến của hàm số
?
Tập xác định
Ta có:
Do đó hàm số luôn nghịch biến trên từng khoảng xác định.
Cho biểu thức
với a và b là các số thực dương. Khẳng định nào sau đây là đúng?
Thực hiện thu gọn biểu thức như sau: