Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng

    Gọi M là giá trị lớn nhất của hàm số y = f\left( x ight) = 4\sqrt {{x^2} - 2x + 3}  + 2x - {x^2}. Tính tích các nghiệm của phương trình f(x) = M.

    Đặt t = \sqrt {{x^2} - 2x + 3}  = \sqrt {{{\left( {x - 1} ight)}^2} + 2}

    \begin{matrix}   \Rightarrow t \in \left[ {\sqrt 2 ;\infty } ight) \hfill \\   \Rightarrow {x^2} - 2x = {t^2} - 3 \hfill \\ \end{matrix}

    Xét hàm số f\left( t ight) = 4t - {t^2} + 3,t \in \left[ {\sqrt 2 ;\infty } ight) ta có:

    \begin{matrix}  f\left( t ight) =  - {\left( {t - 2} ight)^2} + 7 \leqslant 7;t \in \left[ {\sqrt 2 ;\infty } ight) \hfill \\   \Rightarrow f\left( t ight) = M \Rightarrow f\left( t ight) = 7 \Rightarrow t = 2 \hfill \\   \Rightarrow {x^2} - 2x - 1 = 0 \Rightarrow {x_1}.{x_2} =  - 1 \hfill \\ \end{matrix}

  • Câu 3: Thông hiểu

    Viết biểu thức Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} = {x^{\frac{1}{2}}}.{x^{\frac{1}{3}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{1}{3} + \frac{5}{6}}} = {x^{\frac{5}{3}}}

  • Câu 4: Vận dụng

    Cho lăng trụ ABCD.A'B'C'D'có đáy ABCD là hình chữ nhật tâm OAB = a,AD = a\sqrt 3; A'O vuông góc với đáy (ABCD). Cạnh bên AA' hợp với mặt đáy (ABCD) một góc 45^0. Tính theo a thể tích V của khối lăng trụ đã cho.

     

    A'O \bot \left( {ABCD} ight) nên {45^0} = \widehat {AA',\left( {ABCD} ight)} = \widehat {AA',AO} = \widehat {A'AO}.

    Đường chéo hình chữ nhật: 

    AC = \sqrt {A{B^2} + A{D^2}}  = 2a \Rightarrow AO = \frac{{AC}}{2} = a

    Suy ra tam giác A'OA vuông cân tại O nên A'O = AO = a

    Diện tích hình chữ nhật {S_{ABCD}} = AB.AD = {a^2}\sqrt 3.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.A'O = {a^3}\sqrt 3.

  • Câu 5: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để bất phương trình {\log _2}\left( {7{x^2} + 7} ight) \geqslant {\log _2}\left( {m{x^2} + 4x + m} ight),{\text{ }}\forall x \in \mathbb{R} \, \, (1)

     Bất phương trình tương đương 7{x^2} + 7 \geqslant m{x^2} + 4x + m > 0,{\text{ }}\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{gathered}  \left( {7 - m} ight){x^2} - 4x + 7 - m \geqslant 0{\text{   }}(2) \hfill \\  m{x^2} + 4x + m > 0{\text{                 }}(3) \hfill \\ \end{gathered}  ight.,{\text{ }}\forall x \in \mathbb{R}.

    m=7: (2) không thỏa \forall x \in \mathbb{R}

    m=0: (3) không thỏa \forall x \in \mathbb{R}

    (1) thỏa mãn \forall x \in \mathbb{R}  \Leftrightarrow \left\{ \begin{gathered}  7 - m > 0 \hfill \\  {{\Delta '}_2} = 4 - {\left( {7 - m} ight)^2} \leqslant 0 \hfill \\  m > 0 \hfill \\  {{\Delta '}_3} = 4 - {m^2} < 0 \hfill \\ \end{gathered}  ight.{\text{   }}

    \Leftrightarrow {\text{  }}\left\{ \begin{gathered}  m < 7 \hfill \\  m \leqslant 5 \hfill \\  m > 0 \hfill \\  m > 2 \hfill \\ \end{gathered}  ight.{\text{  }} \Leftrightarrow {\text{  }}2 < m \leqslant 5.

    Vậy m \in \left( {2;5} ight].

  • Câu 6: Thông hiểu

    Cho hàm số f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} . Tính f'\left( 2 ight)

    Tập xác định \left( {\frac{2}{3}; + \infty } ight)

    Ta có: f\left( x ight) = {\left( {2x - 3} ight)^{\frac{5}{6}}} \Rightarrow f'\left( x ight) = \frac{5}{3}.{\left( {2x - 3} ight)^{\frac{{ - 1}}{6}}} \Rightarrow f'\left( 2 ight) = \frac{5}{3}

  • Câu 7: Thông hiểu

    Trung điểm các cạnh của một tứ diện đều tạo thành?

     Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

  • Câu 8: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho các mặt phẳng (P): x−y + 2z + 1 = 0, (Q): 2x+y +z −1 = 0. Gọi (S) là mặt cầu có tâm thuộc trục hoành, đồng thời (S) cắt mặt phẳng (P) theo giao tuyến là một đường tròn có bán kính bằng 2 và (S) cắt mặt phẳng (Q) theo giao tuyến là một đường tròn có bán kính bằng r. Xác định r sao cho chỉ có đúng một mặt cầu (S) thỏa mãn yêu cầu.

    Gọi R, I(m; 0; 0) lần lượt là bán kính, tâm của mặt cầu; d_1, d_2 lần lượt là khoảng cách từ I đến mặt phẳng (P), (Q).

    Từ đó ta có: R^{2} = {d_{1}}^{2} + 4 =
{d_{2}}^{2} + r^{2} suy ra

    \frac{(m + 1)^{2}}{1^{2} + ( - 1)^{2} +
2^{2}} + 4 = \frac{(2m - 1)^{2}}{2^{2} + 1^{2} + 1^{2}} +
r^{2}

    \Leftrightarrow m^{2} + 2m + 1 + 16 =
4m^{2} - 4m + 1 + 6r^{2}

    \Leftrightarrow m^{2} - 2m + \left(
2r^{2} - 8 ight) = 0\ \ (*)

    Để tồn tại đúng một mặt cầu tương đương phương trình (∗) có đúng một nghiệm m hay \Delta' = 1^{2} - \left(
2r^{2} - 8 ight) = 0 \Leftrightarrow r =
\frac{3\sqrt{2}}{2}

    Vậy đáp án cần tìm là: r =
\frac{3\sqrt{2}}{2}.

  • Câu 9: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 10: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 11: Thông hiểu

    Một loại thuốc được dùng cho bệnh nhân và nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi công thức c(t) = \frac{t}{t^{2} + 1}(mg/L). Sau khi tiêm thuốc bao lâu thì nồng độ thuốc trong máu của bệnh nhân cao nhất?

    Ta có: c'(t) = \frac{- t^{2} +
1}{\left( t^{2} + 1 ight)^{2}};\forall t \in (0; + \infty). Cho c'(t) = 0 \Leftrightarrow \frac{-
t^{2} + 1}{\left( t^{2} + 1 ight)^{2}} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 1 \\
t = - 1 \\
\end{matrix} ight.

    Bảng biến thiên:

    Vậy sau khi tiêm 1 giờ, nồng độ thuốc trong máu bệnh nhân cao nhất.

  • Câu 12: Nhận biết

    Cho mặt cầu tâm O, bán kính R = a. Một hình nón có đỉnh S là ở trên mặt cầu và đáy là đường tròn tương giao của mặt cầu đó với mặt phẳng vuông góc với đường thẳng SO tại H sao cho SH = \frac{{3a}}{2}. Độ dài đường sinh \ell của hình nón bằng:

    Độ dài đường sinh

    Gọi S' là điểm đối xứng của S qua tâm O và A là một điểm trên đường tròn đáy của hình nón.

    Tam giác SAS’ vuông tại A và có đường cao AH nên S{A^2} = SH.SS' \Rightarrow SA = a\sqrt 3 .

  • Câu 13: Nhận biết

    Hàm số y = 2{x^3} - {x^2} + 5 có cực đại là:

    Ta có:

    \begin{matrix}  y' = 6{x^2} - 2x \Rightarrow y' = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = \dfrac{1}{3}} \end{array}} ight. \hfill \\  y'' = 12x - 2 \Rightarrow y''\left( 0 ight) =  - 2 < 0 \hfill \\ \end{matrix}

    => x = 0 là điểm cực đại của hàm số

  • Câu 14: Vận dụng cao

    Cho hàm số f(x) liên tục trên \mathbb{R} và có bảng biến thiên của đạo hàm như sau:

    Số cực trị của hàm số

    Hàm số g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) có bao nhiêu điểm cực trị?

    Xét hàm số t\left( x ight) = \frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}, ta có bảng giá trị |t(x)|

    Số cực trị của hàm số

    Ta có: g\left( x ight) = f\left( {\left| {\frac{{\ln \left( {{x^2} + 1} ight) - 2}}{2}} ight|} ight) = f\left( {\left| {t\left( x ight)} ight|} ight)

    Hàm số không có đạo hàm tại điểm x =  \pm \sqrt {{e^2} - 1}

    Tại mọi điểm x =  \pm \sqrt {{e^2} - 1} ta có:

    g'\left( x ight) = f'\left( {\left| {t\left( x ight)} ight|} ight).\left( {\left| {t\left( x ight)} ight|} ight)'

    = \left\{ {\begin{array}{*{20}{c}}  {\dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \infty ; - \sqrt {{e^2} - 1} } ight) \cup \left( {\sqrt {{e^2} - 1} ; + \infty } ight)} \\   { - \dfrac{{f'\left( {\left| {t\left( x ight)} ight|} ight).x}}{{{x^2} + 1}}{\text{    khi x}} \in \left( { - \sqrt {{e^2} - 1} ;\sqrt {{e^2} - 1} } ight)} \end{array}} ight.\left( * ight)

    => g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {\left| {t\left( x ight)} ight| = {t_1};\left( {{t_1} < 1} ight){\text{   }}\left( 1 ight)} \\   {\left| {t\left( x ight)} ight| = {t_2};\left( { - 1 < {t_2} < 0} ight){\text{   }}\left( 2 ight)} \\   {\left| {t\left( x ight)} ight| = {t_3};\left( {0 < {t_3} < 1} ight){\text{   }}\left( 3 ight)} \\   {\left| {t\left( x ight)} ight| = {t_4};\left( {{t_4} > 1} ight){\text{   }}\left( 4 ight)} \end{array}} ight.

    Dựa vào bảng giá trị hàm |t| suy ra:

    + Phương trình (1), (2) vô nghiệm

    + Phương trình (3) có 4 nghiệm phân biệt khác 0

    + Phương trình (4) có hai nghiệm phân biệt khác 0 và khác các nghiệm của phương trình (3)

    => g’(x) = 0 có 7 nghiệm và qua các nghiệm này g’(x) đều đổi dấu

    Từ (*) ta thấy g’(x) cũng đổi dấu khi x đi qua 2 điểm x =  \pm \sqrt {{e^2} - 1}

    Vậy hàm số g(x) có 9 điểm cực trị.

  • Câu 15: Vận dụng

    Số đường tiệm cận của đồ thị hàm số y =
\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3} là:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1;3 ight\}

    \lim_{x ightarrow +\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow +\infty}\dfrac{x^{2}\left( \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow +\infty}\dfrac{\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 -\dfrac{2}{x} - \dfrac{3}{x^{2}}} = 2 suy ra y = 2 là tiệm cận ngang.

    \lim_{x ightarrow -\infty}\left\lbrack \dfrac{x\left( \sqrt{x^{2} + 3} + x - 1ight)}{x^{2} - 2x - 3} ightbrack= \lim_{x ightarrow -\infty}\dfrac{x^{2}\left( - \sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}ight)}{x^{2}\left( 1 - \dfrac{2}{x} - \dfrac{3}{x^{2}}ight)}

    = \lim_{x ightarrow - \infty}\dfrac{-\sqrt{1 + \dfrac{3}{x^{2}}} + 1 - \dfrac{1}{x}}{1 - \dfrac{2}{x} -\dfrac{3}{x^{2}}} = 0 suy ra y =
0 là tiệm cận ngang.

    \lim_{x ightarrow - 1}\left\lbrack\frac{x\left( \sqrt{x^{2} + 3} + x - 1 ight)}{x^{2} - 2x - 3}ightbrack= \lim_{x ightarrow - 1}\frac{x\left( \sqrt{x^{2} + 3} +x - 1 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}{\left( x^{2} - 2x- 3 ight)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x(x +
1)}{(x - 3)(x + 1)\left( \sqrt{x^{2} + 3} - x + 1 ight)}

    = \lim_{x ightarrow - 1}\frac{2x}{(x -
3)\left( \sqrt{x^{2} + 3} - x + 1 ight)} = \frac{- 2}{16} =
\frac{1}{8}

    Vậy x = - 1 không là tiệm cận đứng của đồ thị hàm số đã cho.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {3^ + }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} \left[ {\frac{{x\left( {\sqrt {{x^2} + 3}  + x - 1} ight)}}{{{x^2} - 2x - 3}}} ight] =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x =
3 là tiệm cận đứng của đồ thị hàm số đã cho

    Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.

  • Câu 16: Nhận biết

    Đồ thị hàm số nào dưới đây có dạng như hình vẽ?

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0nên chọn y = - x^{4} +
4x^{2}.

  • Câu 17: Vận dụng

    Phương trình {3^{2x}} + 2x\left( {{3^x} + 1} ight) - {4.3^x} - 5 = 0 có tất cả bao nhiêu nghiệm không âm ?

     Ta có: {3^{2x}} + 2x\left( {{3^x} + 1} ight) - {4.3^x} - 5 = 0 \Leftrightarrow \left( {{3^{2x}} - 1} ight) + 2x\left( {{3^x} + 1} ight) - \left( {{{4.3}^x} + 4} ight) = 0

    \Leftrightarrow \left( {{3^x} - 1} ight)\left( {{3^x} + 1} ight) + \left( {2x - 4} ight)\left( {{3^x} + 1} ight) = 0

    \Leftrightarrow \left( {{3^x} + 2x - 5} ight)\left( {{3^x} + 1} ight) = 0 \Leftrightarrow {3^x} + 2x - 5 = 0

    Xét hàm số f\left( x ight) = {3^x} + 2x - 5, ta có:f(1)=0.

    f'\left( x ight) = {3^x}\ln 3 + 2 > 0;\forall x \in \mathbb{R}. Do đó hàm số f(x) đồng biến trên R.

    Vậy nghiệm duy nhất của phương trình là x=1.

  • Câu 18: Thông hiểu

    Với a > 0 hãy rút gọn biểu thức P = \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } } :{x^{\frac{9}{{16}}}}

    Ta có: 

    \begin{matrix}  \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } }  = \sqrt {x\sqrt {x\sqrt {x\sqrt {{x^{\frac{3}{2}}}} } } }  = \sqrt {x\sqrt {x\sqrt {{x^{\frac{7}{4}}}} } }  \hfill \\   = \sqrt {x\sqrt {x.{x^{\frac{7}{8}}}} }  = \sqrt {x\sqrt {{x^{\frac{{15}}{8}}}} }  = \sqrt {x.{x^{\frac{{15}}{{16}}}}}  = \sqrt {{x^{\frac{{31}}{{16}}}}}  = {x^{\frac{{31}}{{32}}}} \hfill \\   \Rightarrow P = {x^{\frac{{31}}{{32}}}}:{x^{\frac{9}{{16}}}} = {x^{\frac{{13}}{{32}}}} \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Tập nghiệm của bất phương trình {\left( {\frac{1}{2}} ight)^x} > 32 là:

    Ta có: {\left( {\frac{1}{2}} ight)^x} > 32\Leftrightarrow {\left( {\frac{1}{2}} ight)^x} > {\left( {\frac{1}{2}} ight)^{ - 5}} \Leftrightarrow x <  - 5

  • Câu 20: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 21: Nhận biết

    Với a, b là các số thực dương tùy ý và a khác 1, đặt P = {\log _a}{b^3} + {\log _{{a^2}}}{b^6}. Mệnh đề nào dưới đây đúng?

    Ta có:

    \begin{matrix}  P = {\log _a}{b^3} + {\log _{{a^2}}}{b^6} \hfill \\  P = 3{\log _a}b + \dfrac{6}{2}{\log _a}b \hfill \\  P = 3{\log _a}b + 3{\log _a} \hfill \\  P = 6{\log _a}b \hfill \\ \end{matrix}

  • Câu 22: Vận dụng

    Tập nghiệm của bất phương trình {2^x} + {4.5^x} - 4 < {10^x} là:

     Ta có: {2^x} + {4.5^x} - 4 < {10^x} \Leftrightarrow {2^x} - {10^x} + {4.5^x} - 4 < 0

    \Leftrightarrow {2^x}\left( {1 - {5^x}} ight) - 4\left( {1 - {5^x}} ight) < 0 \Leftrightarrow \left( {1 - {5^x}} ight)\left( {{2^x} - 4} ight) < 0

    {\text{    }} \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  1 - {5^x} < 0 \hfill \\  {2^x} - 4 > 0 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  1 - {5^x} > 0 \hfill \\  {2^x} - 4 < 0 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  {5^x} > 1 \hfill \\  {2^x} > 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  {5^x} < 1 \hfill \\  {2^x} < 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x > 2 \hfill \\  x < 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow x \in \left( { - \infty ;0} ight) \cup \left( {2; + \infty } ight)

  • Câu 23: Vận dụng

    Khẳng định nào dưới đây đúng?

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   { - 2017 >  - 2018} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{ - 2017}} > {\left( {\sqrt 5  + 2} ight)^{ - 2018}}

    \left\{ {\begin{array}{*{20}{c}}  {\sqrt 5  + 2 > 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {2 + \sqrt 5 } ight)^{2018}} < {\left( {\sqrt 5  + 2} ight)^{2019}}

    \left\{ {\begin{array}{*{20}{c}}  {0 < \sqrt 5  - 2 < 1} \\   {2018 < 2019} \end{array}} ight. \Rightarrow {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

    Vậy đáp án đúng là: {\left( {\sqrt 5  - 2} ight)^{2018}} > {\left( {\sqrt 5  - 2} ight)^{2019}}

  • Câu 24: Thông hiểu

    Cho {\log _a}b = 2;{\log _a}c = 3. Tính giá trị của biểu thức P = {\log _a}\left( {a{b^3}{c^3}} ight)

    Ta có:

    \begin{matrix}  P = {\log _a}\left( {a{b^3}{c^3}} ight) \hfill \\   = {\log _a}a + {\log _a}{b^3} + {\log _a}{c^3} \hfill \\   = 1 + 3{\log _a}b + 5{\log _a}c \hfill \\   = 1 + 3.2 + 5.3 = 22 \hfill \\ \end{matrix}

  • Câu 25: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 26: Vận dụng

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong hệ trục toạ độ (Oxy), cho đồ thị hàm số (C):y = \frac{x^{2} + x + 1}{x
+ 1} với x > - 1 mô tả chuyển động của một chiếc thuyền trên biển. Một trạm phát sóng đặt tại điểm I( - 1; - 1), biết hoành độ điểm M thuộc đồ thị (C) mà tại đó thuyền thu được sóng tốt nhất là x_{0} = \frac{1}{\sqrt[n]{a}} -
b (loại trừ các điều kiện ảnh hưởng đến việc thu phát sóng). Tính giá trị biểu thức P = a.n + b ?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Nhận biết

    Cho các hình sau: Tìm hình đa diện

    Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt {S_0},{S_1},...\,\,,{S_n} sao cho trùng với trùng với S’ và bất kì hai mặt {S_i},{S_{i + 1}} nào (0 \le i \le n - 1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 28: Vận dụng cao

    Mặt phẳng đi qua trọng tâm của tứ diện, song song với một mặt phẳng của tứ diện và chia khối tứ diện thành hai phần. Tính tỉ số thể tích (phần bé chia phần lớn) của hai phần đó. 

     

    Gọi E,{\text{ }}F,{\text{ }}I lần lượt là trung điểm của các cạnh AC,{\text{ }}BD,{\text{ }}EF khi đó I là trọng tâm của tứ diện ABCD. Ta sẽ dựng mặt phẳng qua I song song với (BCD).

    Trong mặt phẳng (EBD) dựng đường thẳng qua I song song với BD cắt FB,{\text{ }}FD lần lượt tại M, N.

    Qua M, N lần lượt kẻ các đường thẳng lần lượt song song với BC,{\text{ }}CD cắt AB,{\text{ }}AC,{\text{ }}AD lần lượt tại P,{\text{ }}Q,{\text{ }}J.

    Do Q là trung điểm của EC \Rightarrow \frac{{AQ}}{{AC}} = \frac{3}{4}, suy ra \frac{{AP}}{{AB}} = \frac{{AJ}}{{AD}} = \frac{{AQ}}{{AC}} = \frac{3}{4}.

    Ta có \frac{{{V_{A.PQJ}}}}{{{V_{A.BCD}}}} = \frac{{AP}}{{AB}}.\frac{{AQ}}{{AC}}.\frac{{AJ}}{{AD}} = \frac{3}{4}.\frac{3}{4}.\frac{3}{4} = \frac{{27}}{{64}}

    \Rightarrow \frac{{{V_{A.PQJ}}}}{{{V_{PQJBCD}}}} = \frac{{27}}{{37}}

  • Câu 29: Nhận biết

    Số đường tiệm cận ngang của đồ thị hàm số y = \frac{x}{\sqrt{x^{2} + 1}} bằng:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\left( \frac{x}{\sqrt{x^{2} + 1}} ight) =
1 suy ra y = 1 là một tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\left( \frac{x}{\sqrt{x^{2} + 1}} ight) = -
1 suy ra y = - 1 là một tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận ngang của đồ thị hàm số đã cho bằng 2.

  • Câu 30: Thông hiểu

    PT {\log _4}\left( {{{\log }_2}x} ight) + {\log _2}\left( {{{\log }_4}x} ight) = 2 có nghiệm là?

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  {\log _2}x > 0 \hfill \\  {\log _4}x > 0 \hfill \\  {\log _{{2^2}}}\left( {{{\log }_2}x} ight) + {\log _2}\left( {{{\log }_{{2^2}}}x} ight) = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) + {\log _2}\left( {\frac{1}{2}{{\log }_2}x} ight) = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) + {\log _2}\frac{1}{2} + {\log _2}\left( {{{\log }_2}x} ight) = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{3}{2}{\log _2}\left( {{{\log }_2}x} ight) - 1 = 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}\left( {{{\log }_2}x} ight) = 2 \hfill \\ \end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}x = 4 \hfill \\ \end{gathered}  ight.

    \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  x = 16 \hfill \\ \end{gathered}  ight. \Rightarrow x = 16

    Vậy PT có nghiệm là x=16.

  • Câu 31: Nhận biết

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    A picture containing tableDescription automatically generated

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Dựa vào bảng biến thiên, hàm số đã cho nghịch biến trên các khoảng ( - \infty; - 1)(0;1).

  • Câu 32: Nhận biết

    Tìm đạo hàm của hàm số y = \ln \left( {1 + {e^{2x}}} ight)

    Ta có: y' = \left( {\ln \left( {1 + {e^{2x}}} ight)} ight)' = \frac{{\left( {1 + {e^{2x}}} ight)'}}{{1 + {e^{2x}}}} = \frac{{2{e^{2x}}}}{{{{\left( {{e^{2x}} + 1} ight)}^2}}}

  • Câu 33: Nhận biết

    Điều kiện xác định của phương trình {\log _5}(x - 1) = {\log _5}\frac{x}{{x + 1}} là: 

     Biểu thức {\log _5}(x - 1) = {\log _5}\frac{x}{{x + 1}} và xác định 

    \Leftrightarrow \left\{ \begin{gathered}  \frac{x}{{x + 1}} > 0 \hfill \\  x - 1 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x <  - 1 \vee x > 0 \hfill \\  x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 1

  • Câu 34: Vận dụng

    Cho f\left( x ight) = \sqrt {1 + 3x}  - \sqrt[3]{{1 + 2x}};g\left( x ight) = \sin x. Tính giá trị của biểu thức \frac{{f'\left( 0 ight)}}{{g'\left( 0 ight)}}

    Ta có: 

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {f'\left( x ight) = \dfrac{3}{{2\sqrt {1 + 3x} }} - \dfrac{2}{{3\sqrt[3]{{{{\left( {1 + 2x} ight)}^2}}}}} \Rightarrow f'\left( 0 ight) = \dfrac{5}{6}} \\   {g'\left( x ight) = \cos x \Rightarrow g'\left( 0 ight) = 1} \end{array}} ight. \hfill \\   \Rightarrow \frac{{f'\left( 0 ight)}}{{g'\left( 0 ight)}} = \dfrac{5}{6} \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Tập nghiệm của bất phương trình \frac{{{{2.3}^x} - {2^{x + 2}}}}{{{3^x} - {2^x}}} \leqslant 1 là:

     Ta có: \frac{{{{2.3}^x} - {2^{x + 2}}}}{{{3^x} - {2^x}}} \leqslant 1 \Leftrightarrow \frac{{2.{{\left( {\frac{3}{2}} ight)}^x} - 4}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} \leqslant 1\Leftrightarrow \frac{{2.{{\left( {\frac{3}{2}} ight)}^x} - 4}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} - 1 \leqslant 0

    \Leftrightarrow \frac{{{{\left( {\frac{3}{2}} ight)}^x} - 3}}{{{{\left( {\frac{3}{2}} ight)}^x} - 1}} \leqslant 0 \Leftrightarrow 1 < {\left( {\frac{3}{2}} ight)^x} \leqslant 3 \Leftrightarrow 0 < x \leqslant {\log _{\frac{3}{2}}}3.

  • Câu 36: Nhận biết

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Đáp án là:

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Tính thể tích

    Xét tam giác , có: A{B^2} + A{C^2} = {6^2} + {8^2} = {10^2} = B{C^2}

    Suy ra tam giác vuông tại A

    \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AB.AC = 24.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = 32

  • Câu 37: Thông hiểu

    Cho khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a, góc giữa mặt bên và mặt đáy bằng 60^{0}. Thể tích V của khối chóp S.ABCD bằng

    Hình vẽ minh họa

    Gọi O là tâm của đáy, gọi M là trung điểm của BC.

    Ta có \left\{ \begin{matrix}
SO\bot BC \\
OM\bot BC \\
\end{matrix} ight. nên (SOM)\bot BC

    Suy ra \left\lbrack (SCD),(ABCD)
ightbrack = (SM,OM) = \widehat{SMO} = 60^{0}.

    OM = \frac{1}{2}BC =
\frac{a}{2}, SO = OMtan60^{0} =
\frac{a\sqrt{3}}{2}.

    Thể tích khối chóp S.ABCD

    V_{S.ABCD} = \frac{1}{3}SO.S_{ABCD} =
\frac{1}{3}.\frac{a\sqrt{3}}{2}.a^{2} =
\frac{a^{3}\sqrt{3}}{6}.

  • Câu 38: Vận dụng

    Cho hàm số f\left( x ight) = \ln \frac{{x + 1}}{{x + 4}}. Tính giá trị của biểu thức M = f'\left( 0 ight) + f'\left( 3 ight) + f'\left( 6 ight) + ... + f'\left( {2019} ight)

    Với x \in \left[ {0; + \infty } ight) ta có: \left\{ {\begin{array}{*{20}{c}}  {x + 1 > 0} \\   {x + 4 > 0} \end{array}} ight. \Rightarrow f\left( x ight) = \ln \frac{{x + 1}}{{x + 4}} = \ln \left( {x + 1} ight) - \ln \left( {x + 4} ight)

    Ta có: f'\left( x ight) = \frac{1}{{x + 1}} - \frac{1}{{x + 4}} do đó:

    \begin{matrix}  M = f'\left( 0 ight) + f'\left( 3 ight) + f'\left( 6 ight) + ... + f'\left( {2019} ight) \hfill \\  M = \left( {1 - \dfrac{1}{4}} ight) + \left( {\dfrac{1}{4} - \dfrac{1}{7}} ight) + \left( {\dfrac{1}{7} - \dfrac{1}{{10}}} ight) + ... + \left( {\dfrac{1}{{2020}} - \dfrac{1}{{2023}}} ight) \hfill \\  M = 1 - \dfrac{1}{{2023}} = \dfrac{{2022}}{{2023}} \hfill \\ \end{matrix}

  • Câu 39: Nhận biết

    Trong các biểu thức sau, biểu thức nào có nghĩa?

    Tập xác định của hàm số y = {x^\alpha } tùy thuộc vào \alpha

    Với \alpha nguyên dương, tập xác định \mathbb{R} 

    Với \alpha nguyên âm hoặc bằng 0, tập xác định \mathbb{R}\backslash \left\{ 0 ight\}

    Với \alpha không nguyên, tập xác định là \left( {0; + \infty } ight)

    Ta có: {\left( { - 3} ight)^{ - 6}}\alpha  =  - 6 là số nguyên âm nên cơ số x e 0

    => {\left( { - 3} ight)^{ - 6}} có nghĩa

  • Câu 40: Nhận biết

    Trong không gian Oxyz, hỏi trong các phương trình sau đây phương trình nào là phương trình của mặt cầu?

    Phương trình x^{2} + z^{2} + 3x - 2y + 4z
- 1 = 0 không có y^{2}=> Loại

    Phương trình x^{2} + y^{2} + z^{2} + 2xy
- 4y + 4z - 1 = 0 có số hạng 2xy => Loại

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
2y - 4z + 8 = 0 loại vì

    a^{2} + b^{2} + c^{2} - d = 1 + 1 + 4 -
8 < 0

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
4z - 1 = 0 thỏa mãn vì

    a^{2} +
b^{2} + c^{2} - d = 1 + 0 + 4 + 1 = 6 > 0.

  • Câu 41: Thông hiểu

    Tìm tập xác định của hàm số {\log _{\frac{1}{2}}}\left( {{x^2} - 3x + 2} ight)

    Điều kiện xác định {x^2} - 3x + 2 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x < 1} \\   {x > 2} \end{array}} ight.

    => Tập xác định của hàm số là D = \left( { - \infty ;1} ight) \cup \left( {2; + \infty } ight)

  • Câu 42: Thông hiểu

    Gọi A;B;C là ba điểm cực trị của đồ thị hàm số y = \frac{1}{2}x^{4} - x^{2} -
1. Tính diện tích tam giác ABC?

    Ta có: y' = 2x^{3} - 2x;y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ba điểm cực trị của hàm số là A(0; -
1),B\left( 1; - \frac{3}{2} ight),C\left( - 1; - \frac{3}{2}
ight)

    Tam giác ABC có điểm A \in Oy, hai điểm B;C đối xứng nhau qua trục tung nên tam giác ABC cân tại A. Trung điểm H\left( 0; - \frac{3}{2} ight) của BC thuộc trục Oy và là chân đường cao hạ từ A của tam giác, suy ra:

    S_{ABC} = \frac{1}{2}AH.BC =
\frac{1}{2}\left| y_{A} - y_{B} ight|.\left| x_{B} - x_{C}
ight|

    = \frac{1}{2}.\left| - 1 + \frac{3}{2}
ight|.2 = \frac{1}{2}

    Vậy diện tích tam giác ABC bằng \frac{1}{2}.

  • Câu 43: Vận dụng

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x không có cực trị. Số phần tử của S là:

    Xét hàm số y = {x^3} - 3\left( {m + 1} ight){x^2} + 3\left( {7m - 3} ight)x ta có:

    \begin{matrix}  y' = 3{x^2} - 6\left( {m + 1} ight)x + 3\left( {7m - 3} ight) \hfill \\  y' = 0 \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + 7m - 3 = 0 \hfill \\ \end{matrix}

    Hàm số đã cho không có cực trị

    => Phương trình y’ = 0 vô nghiệm hoặc có nghiệm kép

    => \Delta ' \leqslant 0 \Rightarrow {\left( {m + 1} ight)^2} - 1\left( {7m - 3} ight) \leqslant 0 \Rightarrow 1 \leqslant m \leqslant 4

    Do m là số nguyên nên m \in \left\{ {1;2;3;4} ight\}

    Vậy tập S có 4 phần tử.

  • Câu 44: Vận dụng

    Tìm giá trị của tham số m để hàm số y
= \frac{\cot x - 2}{\cot x - m} nghịch biến trên \left( \frac{\pi}{4};\frac{\pi}{2}
ight)?

    Đặt t = \cot x \Rightarrow t' =
\frac{- 1}{sin^{2}x} < 0;\forall x \in \left(
\frac{\pi}{4};\frac{\pi}{2} ight)

    \Rightarrow \cot\frac{\pi}{2} < t <
\cot\frac{\pi}{4} hay 0 < t <
1

    Bài toán trở thành tìm m để hàm số y =
\frac{t - 2}{t - m} đồng biến trên (0;1)

    Tập xác định D\mathbb{=
R}\backslash\left\{ m ight\}

    Ta có: y' = \frac{2 - m}{(t -
m)^{2}}. Hàm số y = \frac{t - 2}{t
- m} đồng biến trên (0;1)

    \Leftrightarrow y' > 0;\forall t
\in (0;1) \Leftrightarrow \left\{ \begin{matrix}
2 - m > 0 \\
m otin (0;1) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m < 2 \\
\left\lbrack \begin{matrix}
m \geq 1 \\
m \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m \leq 0 \\
1 \leq m < 2 \\
\end{matrix} ight..

  • Câu 45: Thông hiểu

    Phương trình {\log _3}(5x - 3) + {\log _{\frac{1}{3}}}({x^2} + 1) = 0 có 2 nghiệm x_1, \, x_2 trong đó x_1 < x_2. Giá trị của P = 2{x_1} + 3{x_2} là?

     PT \Leftrightarrow \left\{ \begin{gathered}  5x - 3 > 0 \hfill \\  {\log _3}(5x - 3) + {\log _{\frac{1}{3}}}({x^2} + 1) = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {\log _3}(5x - 3) - {\log _3}({x^2} + 1) = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {\log ^{}}_3(5x - 3) = {\log ^{}}_3({x^2} + 1) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  5x - 3 = {x^2} + 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {x^2} - 5x + 4 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  \left[ \begin{gathered}  x = 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight.

    Vậy 2{x_1} + 3{x_2} = 2.1 + 3.4 = 14.

  • Câu 46: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 47: Vận dụng

    Cho khối đa diện đều loại \{ 3; 4 \}. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?

     Khối đa diện đều loại \{ 3; 4 \} là khối bát diện đều.

    Mỗi đỉnh là đỉnh chung của 4 mặt.

    Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng 60^∘⋅4=240^∘.

  • Câu 48: Thông hiểu

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Hàm số g(x) = \frac{1}{f(x)} đồng biến trên khoảng nào sau đây?

    Ta có: g'(x) = -
\frac{f'(x)}{\left\lbrack f(x) ightbrack^{2}} >
0

    \Leftrightarrow \left\{ \begin{matrix}
f'(x) < 0 \\
f(x) eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 1 \\
1 < x < 3 \\
x eq \left\{ - 2;0;3 ight\} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x < - 2 \\
- 2 < x < - 1 \\
1 < x < 3 \\
\end{matrix} ight.

    Vậy hàm số g(x) = \frac{1}{f(x)} đồng biến trên các khoảng ( - \infty; - 2),(
- 2; - 1),(1;3)

    Suy ra hàm số g(x) =
\frac{1}{f(x)} đồng biến trên khoảng (1;2).

  • Câu 49: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 6y - 4z - 2 =
0, mặt phẳng (\alpha):x + 4y + z -
11 = 0. Gọi (P) là mặt phẳng vuông góc với mặt phẳng (\alpha), (P) song song với giá của vectơ \overrightarrow{v} = (1;6;2)(P) tiếp xúc với (S). Lập phương trình mặt phẳng (P).

    Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R\  = \ 4.

    Từ giả thiết suy ra \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{v} ightbrack là một vectơ pháp tuyến của (P).

    Ta có \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{v} ightbrack = (2; -
1;2), suy ra (P) có vectơ pháp tuyến \overrightarrow{n} = (2; -
1;2)

    Vậy (P) có phương trình dạng 2x - y + 2z + m = 0

    Do (P) tiếp xúc với mặt cầu (S) nên:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2.1 + 3 + 2.2 + m|}{\sqrt{2^{2} + 1^{2} + 2^{2}}}
= 4

    \Leftrightarrow |9 + m| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
m = 3 \\
m = - 21 \\
\end{matrix} ight.

    Vậy có hai mặt phẳng thỏa mãn yêu cầu bài toán là \left\lbrack \begin{matrix}
2x - y + 2z + 3 = 0 \\
2x - y + 2z - 21 = 0 \\
\end{matrix} ight..

  • Câu 50: Vận dụng cao

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Xét hàm số g\left( x ight) = f\left( {\frac{{x - 1}}{2}} ight) - \frac{{{x^3}}}{3} + \frac{{3{x^2}}}{2} - 2x + 3. Khẳng định nào sau đây sai?

    Ta có:

    g'\left( x ight) = \frac{1}{2}f'\left( {\frac{{x - 1}}{2}} ight) - \left( {{x^2} - 3x + 2} ight)

    f'\left( {\frac{{x - 1}}{2}} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} = \dfrac{{ - 5}}{2}} \\   {\dfrac{{x - 1}}{2} =  - 1} \\   {\dfrac{{x - 1}}{2} = \frac{1}{2}} \\   {\dfrac{{x - 1}}{2} = 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 4} \\   {x =  - 1} \\   {x = 2} \\   {x = 7} \end{array}} ight.

    f'\left( {\frac{{x - 1}}{2}} ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} <  - \dfrac{5}{2}} \\   {\dfrac{1}{2} < \dfrac{{x - 1}}{2} < 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x <  - 4} \\   {2 < x < 7} \end{array}} ight.

    Ta có bảng xét dấu cho các biểu thức

    Tìm khẳng định sai

    Từ bảng xét dấu ta thấy

    x \in \left( {0;1} ight) \subset \left( {0;2} ight) \Rightarrow g'\left( x ight) < 0

    Khi đó hàm số nghịch biến

    => Đáp án B sai

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo