Điều kiện xác định của phương trình
là:
Điều kiện phương trình xác định:
Điều kiện xác định của phương trình
là:
Điều kiện phương trình xác định:
Cho hàm số
có đồ thị như hình vẽ dưới đây. Tiệm cận đứng và tiệm cận ngang của đồ thị hàm số theo thứ tự là

Từ đồ thị của hàm số suy ra tiệm cận đứng và tiệm cận ngang là : x = 1 ; y = 1
Đặt
. Khi đó
biểu diễn là:
Ta có:
Tìm tất cả các giá trị thực của tham số m để bất phương trình
có nghiệm đúng
.
Bất phương trình tương đương
hoặc
: (*) không thỏa
và
: (*)
Cho
. Viết biểu thức
và
. Tính ![]()
Ta có:
Tính đạo hàm của hàm số
là:
Áp dụng công thức tính đạo hàm: ta có:
Xác định các giá trị của tham số
để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Có tất cả bao nhiêu cách phân tích số
thành tích của ba số nguyên dương, biết rằng các cách phân tích mà các nhân tử chỉ khác nhau về thứ tự thì chỉ được tính một lần?
Ta có:
Đặt suy ra ta có hệ
Xét ba trường hợp:
Trường hợp 1: Các số bằng nhau
=> chỉ có 1 cách chọn
Trường hợp 2: Trong ba số có hai số bằng nhau, giả sử
=>
=> Có 5 cách chọn và 5 cách chọn
Trường hợp 3: Số cách chọn ba số phân biệt:
Số cách chọn là
=> Số cách chọn ba số phân biệt là
Vậy số cách phân tích thành tích ba số nguyên dương là
Tập nghiệm của bất phương trình
là:
Ta có:
.
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Xét hàm số
. Khẳng định nào sau đây sai?
Ta có:
Ta có bảng xét dấu cho các biểu thức

Từ bảng xét dấu ta thấy
Khi đó hàm số nghịch biến
=> Đáp án B sai
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Cho hình vẽ sau là đồ thị của ba hàm số
với
và
là các số thực cho trước, mệnh đề nào sau đây đúng?

Hàm số nghịch biến trên
Các hàm số đồng biến nên
Tại thì
Cho hàm số f(x) có đạo hàm f’(x). Đồ thị của hàm số y = f’(x) được biểu diễn trong hình vẽ dưới đây.

Biết rằng
. Tìm giá trị nhỏ nhất m và giá trị lớn nhất M của hàm số f(x) trên đoạn [0; 4]?
Ta có bảng xét dấu như sau:

Dựa vào bảng xét dấy ta có M = f(2), GTNN chỉ có thể là f(0) hoặc f(4)
Ta lại có
f(1) và f(3) nhỏ hơn f(2) => f(1) + f(3) < 2f(2)
=> 2f(2) – f(1) – f(3) > 0
Theo bài ra ta có:
f(0) + f(1) + f(3) = f(4) + 2f(2)
=> f(0) – f(4) = 2f(2) – f(1) – f(3) > 0
=> f(0) – f(4) > 0 => f(0) > f(4)
=> GTNN đạt được tại x = 4
Cho
và biểu thức
viết dưới dạng
. Giá trị của n là:
Ta có:
Vậy
Cho hàm số
có đạo hàm
liên tục trên
và có bảng biến thiên như sau:

Bất phương trình
(m là tham số thực) nghiệm đúng với
khi và chỉ khi
Ta có:
Xét hàm số với
Ta có:
=> Hàm số g(x) luôn đồng biến trên
Ta có bảng biến thiên như sau:

=> (*) nghiệm đúng khi
Gia đình bác T muốn xây một bình chứa hình trụ có thể tích
. Đáy làm bằng bê tông giá 100 nghìn đồng/m2, thành làm bằng tôn giá 90 nghìn đồng/m2, nắp bằng nhôm giá 140 nghìn đồng/m2. Vậy đáy của hình trụ có bán kính bằng bao nhiêu để chi phí xây dựng là thấp nhất?
Gọi là bán kính đáy của bình chứa hình trụ
Khi đó tổng số tiền phải trả là
Đặt
Vậy để chi phí xây dựng là thấp nhất thì bán kính đáy bằng .
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,
Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.
Theo đề bài, ta có tam giác SAB vuông cân tại S nên ,
Suy ra ,
và
Diện tích toàn phần của hình nón: (đvdt).
Thể tích khối nón là: (đvtt).
Cho hàm số
. Tìm khẳng định đúng?
Ta có:
. Ta có bảng xét dấu như sau:
Dựa vào bảng xét dấu ta suy ra hàm số nghịch biến trên khoảng .
Trong không gian
, viết phương trình mặt cầu đi qua điểm
và tiếp xúc với các mặt phẳng tọa độ?
Gọi là tâm mặt cầu
. Mặt cầu
tiếp xúc với các mặt phẳng tọa độ nên:
Mặt cầu đi qua điểm
Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ
(với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là
là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?
Đáp án: 0,84 dặm
Một máy bay bắt đầu hạ cánh, biết quỹ đạo đường bay của nó được mô hình hóa toán học trong mặt phẳng với hệ tọa độ (với mỗi đơn vị trên mỗi trục có độ dài bằng 1 dặm) có dạng đồ thị của hàm bậc ba. Vị trí bắt đầu hạ cánh có tọa độ là
là điểm cực đại của đồ thị hàm số và máy bay này tiếp đất tại vị trí gốc tọa độ là điểm cực tiểu của đồ thị hàm số. Khi máy bay cách vị trí hạ cánh theo phương ngang 3 dặm thì máy bay cách mặt đất bao nhiêu dặm (kết quả làm tròn đến hàng phần trăm)?
Đáp án: 0,84 dặm
Gọi hàm số mô phỏng đường bay của máy bay là .
Đồ thị hàm số đi qua điểm nên ta có
.
Đồ thị hàm số đi qua điểm nên ta có phương trình
.
Mặt khác, ta có và
là hai điểm cực trị của đồ thị hàm số nên ta có
tức là
.
Từ và
ta có
.
Suy ra .
Thay ta được
.
Vậy khi máy bay ha cánh theo phương ngang 3 dặm thì máy bay cách mặt đất khoảng dặm.
Cho hình hộp chữ nhật có đường chéo
. Độ dài ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân có công bội
. Thể tích của khối hộp chữ nhật là?

Xét hình hộp chữ nhật có độ dài kích thước ba cạnh lần lượt là
và có đường chéo
.
Theo bài ra, ta có lập thành cấp số nhân có công bội
. Suy ra:
Mặt khác, độ dài đường chéo
Ta có hệ:
Vậy thể tích khối hộp chữ nhật là:
Cho hàm số
. Biết đồ thị hàm số đã cho đi qua điểm
và có đường tiệm cận ngang là
. Giá trị
bằng:
Điều kiện để đồ thị hàm số có tiệm cận là
=> Đồ thị hàm số đi qua điểm nên
Đồ thị hàm số có đường tiệm cận ngang là (thỏa mãn)
Vậy
Với a, b là các số thực dương tùy ý và a khác 1, đặt
. Mệnh đề nào dưới đây đúng?
Ta có:
Cho
, viết
về dạng
và
về dạng
. Tình giá trị biểu thức ![]()
Ta có:
Điều kiện xác định của phương trình
là:
Biểu thức xác định
.
Có bao nhiêu giá trị nguyên dương của tham số
để hàm số
có
điểm cực trị?
Tập xác định
Ta có:
Xét phương trình
Xét hàm số trên
ta có:
và
Ta có bảng biến thiên của như sau:
Hàm số đã cho có 5 điểm cực trị khi và chỉ khi tổng số nghiệm bội lẻ của và số điểm tới hạn của
là 5 điểm. Do đó ta cần có các trường hợp sau:
TH1: Phương trình (*) có hai nghiệm phân biệt khác
trong trường hợp này có 26 số nguyên dương.
TH2: Phương trình (*) có 3 nghiệm trong đó có một nghiệm kép trùng với một trong các nghiệm
trường hợp này có một số nguyên dương.
Vậy có tất cả 27 số nguyên dương thỏa mãn yêu cầu bài toán.
Tìm tập xác định D của hàm số ![]()
Điều kiện xác định
Vậy tập xác định của hàm số là
Gọi
là 2 nghiệm của phương trình
. Khi đó
bằng:
Điều kiện: .
Đặt ,điều kiện
. Khi đó phương trình trở thành:
Vậy .
Tính thể tích
của một khối lăng trụ biết đáy có diện tích
, cạnh bên tạo với mặt phẳng đáy một góc
và độ dài cạnh bên bằng 10 cm.

Xét khối lăng trụ có đáy là tam giác ABC.
Gọi H là hình chiếu của A' trên mặt phẳng
.
Suy ra là hình chiếu của
trên mặt phẳng
.
Do đó
Tam giác vuông tại H, có
.
Vậy .
Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Nghiệm nguyên nhỏ nhất của bất phương trình
là:
8 || tám || Tám
Nghiệm nguyên nhỏ nhất của bất phương trình là:
8 || tám || Tám
BPT
Vậy giá trị nghiệm nguyên nhỏ nhất của BPT là 8.
Hàm số nào sau đây nghịch biến trên tập xác định?
Ta có: nghịch biến trên tập xác định.
Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.
Tìm tất cả các giá trị của tham số
để hàm số
đồng biến trên
?
Ta có:
Hàm số đồng biến trên
Dễ thấy
Vậy hàm số đã cho đồng biến trên khi
.
Tập nghiệm của bất phương trình
là:
Ta có:
Cho hình chóp
có tam giác
là tam giác vuông cân tại S,
và khoảng cách từ A đến mặt phẳng
bằng
. Tính theo a thể tích V của khối chóp
.
Ta chọn (SBC) làm mặt đáy suy ra chiều cao khối chóp là
Tam giác SBC vuông cân tại S nên
Vậy thể tích khối chóp
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Số giao điểm của hai đồ thị hàm số
và
bằng số nghiệm phân biệt của phương trình nào sau đây?
Hoành độ giao điểm là nghiệm của phương trình hay
.
Dựa vào thông tin dưới đây và trả lời các câu hỏi
Số lượng của một loại vi khuẩn X trong một phòng thí nghiệm được biểu diễn theo công thức
, trong đó A là số lượng vi khuẩn tại thời điểm chọn mốc thời gian, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng (tính theo đơn vị là giờ). Lúc 6 giờ sáng, số lượng vi khuẩn X là 150 con. Sau 3 giờ, số lượng vi khuẩn X là 450 con.
Thời điểm số lượng vi khuẩn X gấp 9 lần số lượng vi khuẩn ban đầu là:
Gọi là thời điểm số lượng vi khuẩn gấp 9 lần ban đầu.
Khi đó: con.
Ta có phương trình:
Cho hàm số
có điểm cực tiểu và điểm cực đại lần lượt là
. Tính
?
Cho hàm số có điểm cực tiểu và điểm cực đại lần lượt là
. Tính
?
Cho hàm số
liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:

Hàm số
nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Trong không gian với hệ toạ độ
, cho điểm
. Gọi
là hình chiếu vuông góc của
trên trục
. Phương trình nào dưới đây là phương trình mặt cầu tâm
bán kính
?
Hình chiếu vuông góc của trên
là:
Suy ra phương trình mặt cầu tâm bán kính
là:
.
Trong không gian với hệ trục tọa độ
, phương trình nào sau đây không phải là phương trình của một mặt cầu?
Phương trình là phương trình của một mặt cầu nếu
.
Vậy phương trình không phải phương trình mặt cầu là:
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Cho khối đa diện đều loại
. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Khối đa diện đều loại là khối bát diện đều.

Mỗi đỉnh là đỉnh chung của 4 mặt.
Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng .
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Cho hàm số
. Xác định số điểm cực trị của hàm số?
Ta có:
Vì nên hàm số đã cho có 3 cực trị.