Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Số các giá trị nguyên của tham số m \in
\lbrack - 20;20brack để hàm số y
= \frac{mx - 16}{x - m} nghịch biến trên khoảng ( - \infty;8) là:

    Ta có: y' = \frac{- m^{2} + 16}{(x -
m)^{2}}. Hàm số nghịch biến trên khoảng ( - \infty;8) khi

    \left\{ \begin{matrix}
y' < 0;\forall x < 8 \\
x eq m \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- m^{2} + 16 < 0 \\
m otin ( - \infty;8) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m < - 4 \\
m > 4 \\
\end{matrix} ight.\  \\
m \geq 8 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 8

    \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 20;20brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 8;9;10;...;20
ight\}

    Vậy có tất cả 13 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 2: Nhận biết

    Hàm số y = {\log _{2019}}\left| x ight|;\forall x e 0 có đạo hàm là:

    Áp dụng công thức đạo hàm ta có: y' = \frac{1}{{x\ln 2019}}

  • Câu 3: Nhận biết

    Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng 120^0. Diện tích toàn phần của hình nón là:

     Diện tích toàn phần

    Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.

    Theo giả thiết, ta có SA = 2a\widehat {ASO} = 60^\circ.

    Trong tam giác SAO vuông tại O, ta có

    OA = SA.\sin 60^\circ  = a\sqrt 3

    Vậy diện tích toàn phần:

    {S_{tp}} = \pi R\ell  + \pi {R^2} = \pi .OA.SA + \pi {\left( {OA} ight)^2} = \pi {a^2}\left( {3 + 2\sqrt 3 } ight) (đvdt).

  • Câu 4: Nhận biết

    Cho biểu thức P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}} với x > 0. Mệnh đề nào sau đây là đúng?

     Ta có: 

    \begin{matrix}  P = \sqrt {x.\sqrt[3]{{{x^2}.\sqrt {{x^3}} }}}  \hfill \\  P = \sqrt {x.\sqrt[3]{{{x^{\frac{7}{2}}}}}}  \hfill \\  P = \sqrt {x.{x^{\frac{7}{6}}}}  \hfill \\  P = \sqrt {{x^{\frac{{13}}{6}}}}  = {x^{\frac{{13}}{{12}}}} \hfill \\ \end{matrix}

  • Câu 5: Nhận biết

    Cho các số thực a và b thỏa mãn 0 < a < 1 < b. Tìm khẳng định đúng?

     Xét tính đúng sai của từng đáp án như sau

    Ta có {\log _a}b < {\log _a}1 = 0 (vì 0 < a < 1;b > 1) => {\log _a}b < 0 => {\log _a}b < 0 đúng

    a < b \Rightarrow \ln a < \ln b

    => \ln a > \ln b B sai

    \left\{ {\begin{array}{*{20}{c}}  {0 < 0,5 < 1} \\   {a < b} \end{array}} ight. \Rightarrow {\left( {0,5} ight)^a} > {\left( {0,5} ight)^b} => {\left( {0,5} ight)^a} < {\left( {0,5} ight)^b} Sai

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {2 > 1} \\   {a < b} \end{array}} ight. \Rightarrow {2^a} < {2^b}=> {2^a} > {2^b} sai

  • Câu 6: Nhận biết

    Cho hàm số y = -
\frac{1}{3}x^{3} + \frac{1}{2}x^{2} + 6x - 1. Khẳng định nào sau đây đúng?

    Tập xác định D\mathbb{= R}

    Ta có: y' = - x^{2} + x + 6
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu

    Suy ra hàm số đồng biến trên khoảng ( -
2,3).

  • Câu 7: Thông hiểu

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 8: Nhận biết

    Cho mặt cầu tâm I bán kính R = 2,6{m{cm}} . Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng 2,4 cm . Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:

     Theo đề bài, mặt phẳng cắt mặt cầu S(I;2,6 cm) theo một đường tròn (H;r) .

    Vậy r = \sqrt {{R^2} - I{H^2}}  = \sqrt {{{\left( {2,6} ight)}^2} - {{\left( {2,4} ight)}^2}}  = 1{m{cm}}.

  • Câu 9: Vận dụng

    Cho hàm số y = \frac{x + m}{x -
1} thỏa mãn \min_{\lbrack
2;4brack}y = 3. Chọn mệnh đề đúng?

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y' = \frac{- 1 - m}{(x -
1)^{2}}. Vì hàm số đơn điệu trên \lbrack 2;4brack nên

    \left[ \begin{gathered}
  \mathop {\min }\limits_{\left[ {2;4} ight]} y = y\left( 2 ight); - 1 - m > 0 \hfill \\
  \mathop {\min }\limits_{\left[ {2;4} ight]} y = y\left( 4 ight); - 1 - m < 0 \hfill \\ 
\end{gathered}  ight.\mathop  \to \limits^{\mathop {\min }\limits_{\left[ {2;4} ight]} y = 3} \left[ \begin{gathered}
  3 = 2 + m;m <  - 1 \hfill \\
  3 = \dfrac{{4 + m}}{3};m >  - 1 \hfill \\ 
\end{gathered}  ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m = 1;m < - 1 \\
m = 5;m > - 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 5

    Nếu m = - 1 ightarrow y = 1 Hàm số không có giá trị lớn nhất

    Vậy m > 4

  • Câu 10: Vận dụng

    Tìm đạo hàm của hàm số y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} trên khoảng \left( { - \infty ;\frac{1}{3}} ight)

    Với điều kiện x < \frac{1}{3} ta có: y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} = {\left( {1 - 3x} ight)^{\frac{5}{3}}}. Khi đó:

    => y' =  - 5{\left( {1 - 3x} ight)^{\frac{2}{3}}}

  • Câu 11: Thông hiểu

    Biết \sqrt[5]{{\frac{b}{a}\sqrt[3]{{\frac{a}{b}}}}} = {\left( {\frac{a}{b}} ight)^m} với a và b là các số thực dương. Tìm m?

    Ta có:

    \begin{matrix}  {\left( {\dfrac{a}{b}} ight)^m} = {\left( {\sqrt[3]{{\dfrac{{{b^3}}}{{{a^3}}}.\dfrac{a}{b}}}} ight)^{\frac{1}{5}}} = {\left( {\dfrac{{{b^2}}}{{{a^2}}}} ight)^{\frac{1}{{15}}}} = {\left( {\dfrac{b}{a}} ight)^{\frac{2}{{15}}}} \hfill \\   \Rightarrow m = \dfrac{{ - 2}}{{15}} \hfill \\ \end{matrix}

  • Câu 12: Nhận biết

    Cho lăng trụ đứng ABC.A'B'C'có đáy ABC là tam giác với AB = a,AC = 2a,\widehat {BAC} = {120^0},AA' = 2a\sqrt 5. Tính thể tích Vcủa khối lăng trụ đã cho.

     

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{{{a^2}\sqrt 3 }}{2}.

    Vậy thể tích khối lăng trụ {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = {a^3}\sqrt {15}

  • Câu 13: Thông hiểu

    Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt S_0, S_1,... , S_n sao cho S_0 trùng với S, S_n trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

    Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại  đều đúng dựa vào khái niệm hình đa diện.

  • Câu 14: Vận dụng

    Cho hàm số y = f(x) = x^{3} - (2m +
1)x^{2} + (3 - m)x + 2 với m là tham số. Định điều kiện của tham số m để hàm số y = f\left( |x| ight) có ba điểm cực trị?

    Ta có:

    y' = f'(x) = 3x^{2} - 2(2m + 1)x
+ 3 - m

    y' = 0 \Leftrightarrow 3x^{2} - 2(2m
+ 1)x + 3 - m = 0(*)

    Để hàm số y = f\left( |x|
ight) có ba điểm cực trị thì đồ thị hàm số y = f(x) có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dươngx_{1};x_{2} thỏa mãn \left\lbrack \begin{matrix}
0 = x_{1} < x_{2} \\
x_{1} < 0 < x_{2} \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
3 - m = 0 \\
2m + 1 > 0 \\
\end{matrix} ight.\  \\
3 - m < 0 \\
\end{matrix} ight.\  \Leftrightarrow m \geq 3

  • Câu 15: Thông hiểu

    Gọi M,N lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số y = -
x^{3} - 3x^{2} + 9x - 1. Chọn biểu thức đúng?

    Ta có: y' = - 3x^{2} - 6x + 9
\Rightarrow y'' = - 6x - 6

    y' = 0 \Leftrightarrow x^{2} + 2x -
3 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 3 \\
\end{matrix} ight.

    \left\{ \begin{matrix}
y''(1) = - 12 \Rightarrow x_{CD} = 1;y_{CD} = 4 = M \\
y''( - 3) = 12 \Rightarrow x_{CD} = - 3;y_{CD} = - 28 = N \\
\end{matrix} ight.

    Vậy 7M + N = 7.4 - 28 = 0

  • Câu 16: Vận dụng cao

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Tìm m để bất phương trình nghiệm đúng

    Bất phương trình f\left( x ight) <  - \cos x + m nghiệm đúng với mọi x \in \left( {0;\pi } ight) khi và chỉ khi:

    Ta có: f\left( x ight) <  - \cos x + m \Rightarrow m > f\left( x ight) + \cos x\left( * ight)

    Xét hàm số  g\left( x ight) = f\left( x ight) + \cos x;x \in \left( {0;\pi } ight)

    => g'\left( x ight) = f'\left( x ight) - \sin x

    Ta có: \forall x \in \left( {0;\pi } ight):\left\{ {\begin{array}{*{20}{c}}  {f'\left( x ight) < 0} \\   {0 < \sin x \leqslant 1} \end{array}} ight.

    \begin{matrix}   \Rightarrow g'\left( x ight) = f'\left( x ight) - \sin x < 0;\forall x \in \left( {0;\pi } ight) \hfill \\   \Rightarrow f\left( x ight) - \cos x < g\left( 0 ight) = f\left( 0 ight) + 1 \hfill \\   \Rightarrow m \geqslant f\left( 0 ight) + 1 \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Tập nghiệm của phương trình {\log _2}\frac{1}{x} = {\log _{\frac{1}{2}}}\left( {{x^2} - x - 1} ight) là:

     Điều kiện: x > 0 và {x^2} - x - 1 > 0

    Với điều kiện đó thì {\log _2}\frac{1}{x} = {\log _{\frac{1}{2}}}x.

    Khi đó, phương trình đã cho tương đương phương trình:

    {\log _{\frac{1}{2}}}x = {\log _{\frac{1}{2}}}\left( {{x^2} - x - 1} ight) \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x = {x^2} - x - 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \left[ \begin{gathered}  x = 1 + \sqrt 2  \hfill \\  x = 1 - \sqrt 2  \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 1 + \sqrt 2

  • Câu 18: Nhận biết

    Tập xác định của hàm số f\left( x ight) = {\left( {{x^2} - 1} ight)^{ - 2}} là:

    Hàm số f\left( x ight) = {\left( {{x^2} - 1} ight)^{ - 2}} xác định khi {x^2} - 1 e 0 \Rightarrow x e  \pm 1

    Vậy tập xác định của hàm số là D = \mathbb{R}\backslash \left\{ { \pm 1} ight\}

  • Câu 19: Vận dụng cao

    Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:

    Xét hàm số g\left( x ight) = f\left( {\frac{{x - 1}}{2}} ight) - \frac{{{x^3}}}{3} + \frac{{3{x^2}}}{2} - 2x + 3. Khẳng định nào sau đây sai?

    Ta có:

    g'\left( x ight) = \frac{1}{2}f'\left( {\frac{{x - 1}}{2}} ight) - \left( {{x^2} - 3x + 2} ight)

    f'\left( {\frac{{x - 1}}{2}} ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} = \dfrac{{ - 5}}{2}} \\   {\dfrac{{x - 1}}{2} =  - 1} \\   {\dfrac{{x - 1}}{2} = \frac{1}{2}} \\   {\dfrac{{x - 1}}{2} = 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - 4} \\   {x =  - 1} \\   {x = 2} \\   {x = 7} \end{array}} ight.

    f'\left( {\frac{{x - 1}}{2}} ight) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\dfrac{{x - 1}}{2} <  - \dfrac{5}{2}} \\   {\dfrac{1}{2} < \dfrac{{x - 1}}{2} < 3} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x <  - 4} \\   {2 < x < 7} \end{array}} ight.

    Ta có bảng xét dấu cho các biểu thức

    Tìm khẳng định sai

    Từ bảng xét dấu ta thấy

    x \in \left( {0;1} ight) \subset \left( {0;2} ight) \Rightarrow g'\left( x ight) < 0

    Khi đó hàm số nghịch biến

    => Đáp án B sai

  • Câu 20: Thông hiểu

    Viết biểu thức \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có: 

    \begin{matrix}  A = \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} = {\left( {a\sqrt {{a^{\frac{3}{2}}}} } ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} \hfill \\   = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{4}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{7}{8}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{{23}}{{24}}}} \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 22: Nhận biết

    Đồ thị hàm số y = f(x) được biểu diễn bởi hình vẽ:

    Điểm cực tiểu của hàm số đã cho là:

    Quan sát đồ thị của hàm số ta thấy hàm số có điểm cực tiểu là x = 2.

  • Câu 23: Nhận biết

    Số nghiệm của phương trình {\log _2}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _2}x = 0 là:

    0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm

    Đáp án là:

    Số nghiệm của phương trình {\log _2}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _2}x = 0 là:

    0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  {x^3} + 1 > 0 \hfill \\  {x^2} - x + 1 > 0 \hfill \\  {\log _{{2^{}}}}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _{{2^{}}}}x = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{{x^3} + 1}}{{{x^2}({x^2} - x + 1)}} = 0 \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{(x + 1)({x^2} - x + 1)}}{{{x^2}({x^2} - x + 1)}} = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x + 1 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x =  - 1 \hfill \\ \end{gathered}  ight. \Rightarrow x \in \emptyset

    Vậy số nghiệm của PT là 0.

  • Câu 24: Thông hiểu

    Tính thể tích Vcủa khối lăng trụ ABC.A'B'C' biết thể tích khối chóp A.BCB'C' bằng 2a^3

    Ta có thể tích khối chóp: {V_{A.A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}}

    Suy ra:

    {V_{A.BCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}}\xrightarrow{{}}{V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCB'C'}} = \frac{3}{2}.2{a^3} = 3{a^3}.

  • Câu 25: Vận dụng

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Vận dụng

    Gọi x_1, x_2 là 2 nghiệm của phương trình {\log _3}\left( {{x^2} - x - 5} ight) = {\log _3}\left( {2x + 5} ight).

    Khi đó \left| {{x_1} - {x_2}} ight| bằng:

     Ta có: {\log _3}\left( {{x^2} - x - 5} ight) = {\log _3}\left( {2x + 5} ight) \Leftrightarrow \left\{ \begin{gathered}  2{\text{x}} + 5 > 0 \hfill \\  {x^2} - x - 5 = 2x + 5 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x >  - \frac{5}{2} \hfill \\  \left[ \begin{gathered}  x = 5 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 5 \hfill \\  x =  - 2 \hfill \\ \end{gathered}  ight.

    Suy ra \left| {{x_1} - {x_2}} ight| =|5-(-2)|=|5+2|=7

  • Câu 27: Vận dụng cao

    Cho hình chóp đều S.ABCD. Gọi N là trung điểm SB, M là điểm đối xứng với B qua A. Mặt phẳng (MNC) chia khối chóp S.ABCD thành hai phần có thể tích lần lượt là V_1, V_2 với {V_1} < {V_2}. Tính tỉ số \frac{{{V_1}}}{{{V_2}}}.

     

    Gọi h,\,\,S lần lượt là chiều cao và diện tích đáy của khối chóp S.ABCD. Khi đó {V_{S.ABCD}} = \frac{1}{3}S.h. Nối MN cắt SA tại E, MC cắt AD tại F. Tam giác SBM có A, N lần lượt là trung điểm của BM và SB.

    Suy ra E là trọng tâm tam giác SBM.

    Vì tứ giác ACDM là hình bình hành nên F là trung điểm MC.

    Ta có {V_{BNC.AEF}} = {V_{ABCEN}} + {V_{E.ACF}}. Xét tỉ số:

    \frac{{{V_{S.ENC}}}}{{{V_{S.ABC}}}} = \frac{{SE}}{{SA}}.\frac{{SN}}{{SB}} = \frac{2}{3} \times \frac{1}{2} = \frac{1}{3}\xrightarrow{{}}{V_{S.ENC}} = \frac{1}{3}{V_{S.ABC}}

    \xrightarrow[{}]{}{V_{ABCEN}} = \frac{2}{3}{V_{S.ABC}} = \frac{2}{3}\left( {\frac{1}{2}{V_{S.ABCD}}} ight) = \frac{1}{3}{V_{S.ABCD}}

    Mặt khác, áp dụng công thức tính thể tích khối chóp E.ACF là:

    {V_{E.ACF}} = \frac{1}{3}{S_{\Delta ACF}}.d\left[ {E,\left( {ACF} ight)} ight] = \frac{1}{3}.\frac{1}{4}S.\frac{1}{3}h = \frac{1}{{12}}{V_{S.ABCD}}

    Do đó {V_{BNC.AEF}} = {V_{ABCEN}} + {V_{E.ACF}}

    = \frac{1}{3}{V_{S.ABCD}} + \frac{1}{{12}}{V_{S.ABCD}}

    = \frac{5}{{12}}{V_{S.ABCD}} = {V_1}

    Suy ra {V_2} = \frac{7}{{12}}{V_{S.ABCD}}\xrightarrow{{}}\frac{{{V_1}}}{{{V_2}}} = \frac{5}{7}.

  • Câu 28: Thông hiểu

    Cho hàm số y = \frac{2mx + m^{2} + m -
2}{x + m}với m là tham số. Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số có giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng 1. Tổng các phần tử của tập hợp S bằng:

    Điều kiện x eq - m

    Ta có: y' = \frac{m^{2} - m + 2}{(x +
m)^{2}}. Vì \left\{ \begin{matrix}
a = 1 \\
\Delta_{m} = ( - 1)^{2} - 4.1.2 < 0 \\
\end{matrix} ight. nên m^{2} -
m + 2 > 0;\forall \in m

    \Rightarrow y' > 0;\forall x \in
\lbrack 1;4brack

    Suy ra giá trị nhỏ nhất trên đoạn \lbrack
1;4brack bằng y(1) = 1
\Leftrightarrow \frac{m^{2} + 3m - 2}{1 + m} = 1

    \Leftrightarrow \left\{ \begin{matrix}
m eq - 1 \\
m^{2} + 2m - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow m \in \left\{ 1; - 3
ight\}

    Kết hợp điều kiện \left\{ \begin{matrix}
x eq - m \\
x \in \lbrack 1;4brack \\
\end{matrix} ight.\  \Rightarrow m = - 3(ktm)

    Vậy S = \left\{ 1 ight\} nên tổng các phần tử thuộc tập S bằng 1.

  • Câu 29: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 30: Vận dụng cao

    Cho hàm số y = x^{4} - 2mx^{2} +2. Giả sử S là tổng bình phương các giá trị của tham số m để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng 4. Tính giá trị S? (Kết quả làm tròn đến chữ số thập phân thứ ba).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = x^{4} - 2mx^{2} +2. Giả sử S là tổng bình phương các giá trị của tham số m để hàm số có ba cực trị và đường tròn đi qua ba cực trị đó có bán kính bằng 4. Tính giá trị S? (Kết quả làm tròn đến chữ số thập phân thứ ba).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Nhận biết

    Điều kiện xác định của bất phương trình {\log _{\frac{1}{2}}}\left[ {{{\log }_2}(2 - {x^2})} ight] > 0 là:

     BPT xác định khi : \left\{ \begin{gathered}  2 - {x^2} > 0 \hfill \\  {\log _2}(2 - {x^2}) > 0 \hfill \\ \end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}   - \sqrt 2  < x < \sqrt 2  \hfill \\  2 - {x^2} > 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}   - \sqrt 2  < x < \sqrt 2  \hfill \\  1 - {x^2} > 0 \hfill \\ \end{gathered}  ight.\Leftrightarrow \left\{ \begin{gathered}   - \sqrt 2  < x < \sqrt 2  \hfill \\   - 1 < x < 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow  - 1 < x < 1.

    Vậy BPT xác định khi x \in \left( { - 1;1} ight).

  • Câu 32: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 33: Vận dụng

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

    Đáp án là:

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

     Khối mười hai mặt đều có tất cả 30 cạnh:

     Suy ra ta có tổng độ dài tất cả các cạnh bằng \ell  = 30.2 = 60.

  • Câu 34: Vận dụng

    Bất phương trình {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 có tập nghiệm là:

     Điều kiện: {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 \Leftrightarrow {\log _2}\left[ {\left( {{x^2} - x - 2} ight)\left( {x - 1} ight)} ight] \geqslant 1

    \Leftrightarrow \left( {{x^2} - x - 2} ight)\left( {x - 1} ight) - 2 \geqslant 0 \Leftrightarrow {x^3} - 2{x^2} - x \geqslant 0 \Leftrightarrow \left[ \begin{gathered}  1 - \sqrt 2  \leqslant x \leqslant 0 \hfill \\  x \geqslant 1 + \sqrt 2  \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là S = \left[ {1 + \sqrt 2 ; + \infty } ight).

     

  • Câu 35: Thông hiểu

    Gọi (S) là mặt cầu đi qua bốn điểm A(2;0;0),B(1;3;0),C( -
1;0;3),D(1;2;3). Tính bán kính R của (S)?

    Gọi I(a;b;c) là tâm mặt cầu đi qua bốn điểm A;B;C;D

    Khi đó ta có phương trình:

    \left\{ \begin{matrix}
AI^{2} = BI^{2} \\
AI^{2} = CI^{2} \\
AI^{2} = DI^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 2)^{2} + b^{2} + c^{2} = (a - 1)^{2} + (b - 3)^{2} + c^{2} \\
(a - 2)^{2} + b^{2} + c^{2} = (a + 1)^{2} + b^{2} + (c - 3)^{2} \\
(a - 2)^{2} + b^{2} + c^{2} = (a - 1)^{2} + (b - 2)^{2} + (c - 3)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a - 3b = - 3 \\
a - c = - 1 \\
a - 2b - 3c = - 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 0 \\
b = 1 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow I(0;1;1)

    Vậy bán kính cần tìm là: R = IA =
\sqrt{2^{2} + 1^{2} + 1^{2}} = \sqrt{6}

  • Câu 36: Thông hiểu

    Phương trình \log _2^2x - 4{\log _2}x + 3 = 0 có tập nghiệm là?

    Điều kiện: x > 0

    \log _2^2x - 4{\log _2}x + 3 = 0 \Leftrightarrow \left[ \begin{gathered}  {\log _2}x = 1 \hfill \\  {\log _2}x = 3 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 2 \hfill \\  x = 8 \hfill \\ \end{gathered}  ight.

    Vậy PT có tập nghiệm là S={8;2}.

  • Câu 37: Thông hiểu

    Biết {\log _2}3 = a;{\log _2}5 = b,  khi đó {\log _{15}}8 có giá trị là:

    Ta có:

    {\log _{15}}8 = {\log _{15}}{2^3} = 3{\log _{15}}2 = \frac{3}{{{{\log }_2}15}} = \frac{3}{{{{\log }_2}3 + {{\log }_2}5}} = \frac{3}{{a + b}}

  • Câu 38: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 39: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để bất phương trình 1 + {\log _5}\left( {{x^2} + 1} ight) \geqslant {\log _5}\left( {m{x^2} + 4x + m} ight) có nghiệm đúng \forall x.

    Bất phương trình tương đương 7\left( {{x^2} + 1} ight) \geqslant m{x^2} + 4x + m > 0,{\text{ }}\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{gathered}  \left( {5 - m} ight){x^2} - 4x + 5 - m \geqslant 0{} \hfill \\  m{x^2} + 4x + m > 0{} \hfill \\ \end{gathered}  ight.(*),{\text{ }}\forall x \in \mathbb{R}.

    m=0 hoặc m=5: (*) không thỏa \forall x \in \mathbb{R}

    m eq 0m eq 5: (*) \Leftrightarrow \left\{ \begin{gathered}  5 - m > 0 \hfill \\  {{\Delta '}_2} = 4 - {\left( {5 - m} ight)^2} \leqslant 0 \hfill \\  m > 0 \hfill \\  {{\Delta '}_3} = 4 - {m^2} < 0 \hfill \\ \end{gathered}  ight.{\text{   }} \Leftrightarrow {\text{  }}2 < m \leqslant 3.

  • Câu 40: Nhận biết

    Cho các hình sau: Tìm hình đa diện

    Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:

    Áp dụng định nghĩa hình đa diện, ta có:

    “Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:

    TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.

    TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.

    TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt {S_0},{S_1},...\,\,,{S_n} sao cho trùng với trùng với S’ và bất kì hai mặt {S_i},{S_{i + 1}} nào (0 \le i \le n - 1) cũng đều có một cạnh chung.

    Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”

  • Câu 41: Vận dụng

    Cho hình lăng trụ đứng ABC.A'B'C'có đáy là tam giác cân, AB =AC= a và \widehat {BAC} = {120^0}, góc giữa mặt phẳng \left( {AB'C'} ight) và mặt đáy \left( {ABC} ight) bằng 60^0. Tính theo a thể tích khối lăng trụ.

     

    Gọi M là trung điểm của đoạn thẳng B'C'. Tam giác ABC cân tại A  nên ta suy ra tam giác A'B'C' cân tại A'\xrightarrow{{}}A'M \bot B'C'.

    Lại có B'C' \bot AA'. Từ đó suy ra B'C' \bot \left( {AA'M} ight)\xrightarrow{{}}B'C' \bot AM.

    Do đó {60^0} = \widehat {\left( {AB'C'} ight),\left( {A'B'C'} ight)} = \widehat {\left( {AM;A'M} ight)} = \widehat {AMA'}

    Tam giác vuông A'B'M, có

    A'M = A'B'.\cos \widehat {MA'B'} = a.\cos {60^0} = \frac{a}{2}

    Tam giác vuông AA'M, có

    AA' = A'M.\tan \widehat {AMA'} = \frac{a}{2}.\tan {60^0} = \frac{{a\sqrt 3 }}{2}

    Diện tích tam giác {S_{\Delta ABC}} = \frac{1}{2}AB.AC.\sin \widehat {BAC} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{3{a^3}}}{8}.

  • Câu 42: Thông hiểu

    Bất phương trình {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 có tập nghiệm là:

    Điều kiện x > {\log _3}\sqrt {73}

    Ta có:  {\log _x}\left( {{{\log }_3}\left( {{9^x} - 72} ight)} ight) \leqslant 1 \Leftrightarrow {\log _3}\left( {{9^x} - 72} ight) \leqslant x

    \Leftrightarrow {9^x} - {3^x} - 72 \leqslant 0 \Leftrightarrow {3^x} \leqslant 9 \Leftrightarrow x \leqslant 2

    Vậy BPT có tập nghiệm là S = \left( {{{\log }_3}\sqrt {73} ;2} ight].

  • Câu 43: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \left[ { - 2018;2018} ight] để hàm số y = \ln \left( {{x^2} - 2x - m + 1} ight) có tập xác định \mathbb{R}?

    Hàm số xác định trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  {x^2} - 2x - m + 1 > 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {1 + m - 1 < 0} \end{array}} ight. \Rightarrow m < 0 \hfill \\ \end{matrix}

    Do \left\{ {\begin{array}{*{20}{c}}  {m \in \mathbb{Z}} \\   {m \in \left[ { - 2018;2018} ight]} \end{array}} ight. \Rightarrow m \in \left\{ { - 2018; - 2017;...; - 1} ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 44: Nhận biết

    Hai đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{2x - 5}{4 - x} cắt nhau tại điểm M. Xác định tọa độ điểm M?

    Đồ thị hàm số y = \frac{2x - 5}{4 -
x} có đường tiệm cận đứng x =
4 và đường tiệm cận ngang y = -
2. Do đó giao điểm của hai đường tiệm cận là M(4; - 2).

  • Câu 45: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho điểm M thuộc mặt cầu (S): (x − 3)^2 + (y + 1)^2 + z^ 2 = 9 và ba điểm A(1; 0; 0), B(2; 1; 3), C(0; 2; −3). Biết rằng quỹ tích các điểm M thỏa mãn MA^{2} + 2\overrightarrow{MB}.\overrightarrow{MC}= 8 là đường tròn cố định, tính bán kính r đường tròn này?

    Ta có:\left\{ \begin{matrix}\overrightarrow{MA} = (1 - x; - y; - z) \\\overrightarrow{MB} = (2 - x;1 - y;3 - z) \\\overrightarrow{MC} = ( - x;2 - y; - 3 - z) \\\end{matrix} ight. khi đó:

    MA^{2} +2\overrightarrow{MB}.\overrightarrow{MC} = 8

    \Leftrightarrow (x - 1)^{2} + y^{2} +z^{2} + 2\left\lbrack x(x - 2) + (y - 1)(y - 2) + (z - 3)(z + 3)ightbrack = 8

    \Leftrightarrow 3.\left( x^{2} + y^{2} +z^{2} ight) - 6x - 6y - 21 = 0

    \Leftrightarrow M \in (S'):x^{2} +y^{2} + z^{2} - 2x - 2y - 7 = 0

    M \in (S):(x - 3)^{2} + (y + 1)^{2} +z^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} -6x + 2y + 1 = 0

    Suy ra M ∈ (P): 4x − 4y − 8 = 0.

    Như vậy quỹ tích điểm M là đường tròn giao tuyến của (S) tâm I(3; −1; 0), bán kính R = 3 và (P)

    Ta có: d\left( I;(P) ight) = \sqrt{2}\Leftrightarrow r = \sqrt{R^{2} - d^{2}} = \sqrt{7}

  • Câu 46: Thông hiểu

    Hàm số nào sau đây phù hợp với hình vẽ:

    Tìm hàm số tương ứng với đồ thị hàm số

     Ta có: y\left( 1 ight) = 0 và hàm số đồng biến trên \left( {0; + \infty } ight) nên chỉ có hàm số y = {\log _{\sqrt 6 }}x thỏa mãn

  • Câu 47: Vận dụng

    Cho hàm số y = \frac{mx^{2} + \left(
m^{2} + m + 2 ight)x + m^{2} + 3}{x + 1}. Tìm m \in \mathbb{R} để khoảng cách từ gốc O đến tiệm cận xiên hoặc ngang là nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{mx^{2} + \left(
m^{2} + m + 2 ight)x + m^{2} + 3}{x + 1}. Tìm m \in \mathbb{R} để khoảng cách từ gốc O đến tiệm cận xiên hoặc ngang là nhỏ nhất.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 48: Vận dụng

    Cho biết {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}, khẳng định nào sau đây đúng?

    Điều kiện: x - 2 > 0 \to x > 2

    Ta có:

    - \frac{1}{3} >  - \frac{1}{6} \Rightarrow {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}

    \Rightarrow x - 2 < 1 \Rightarrow x < 3

    Vậy 2 < x < 3

  • Câu 49: Vận dụng

    Đồ thị (C) của hàm số y = \frac{{ax + 2}}{{cx + b}} có bảng biến thiên như hình vẽ.

    Giá trị của biểu thức K

    Biết tiếp tuyến (C) tại giao điểm của (C) với trục tung song song với đường thẳng y = 2x + 2018. Giá trị của biểu thức K = a + 2b + 3c là:

    Do đồ thị hàm số có tiệm cận đứng là x = -1 và tiệm cận ngang y = -3

    => Hàm số có dạng y = \frac{{ - 3x + b}}{{x - 1}} \Rightarrow y' = \frac{{3 - b}}{{{{\left( {x - 1} ight)}^2}}} \Rightarrow y'\left( 0 ight) = 3 - b

    Do tiếp tuyến song song với đường thẳng

    => 3 – b = 2 => b = 1

    Vậy a = -3; b = 1; c = 1 => K = 2

  • Câu 50: Nhận biết

    Cho hình vẽ:

    Hàm số nào sau đây có đồ thị như hình vẽ bên?

    Nhận thấy dạng đồ thị của hàm số bậc ba y
= ax^{3} + bx^{2} + cx + d;(a eq 0)

    Mặt khác đồ thị cắt trục tung tại điểm có tung độ âm nên hàm số tương ứng với đồ thị là y = - x^{3} + 2x -
2.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 12 lượt xem
Sắp xếp theo