Hàm số
nghịch biến trên khoảng nào?
Ta có:
=> Hàm số nghịch biến trên khoảng (2; 3)
Hàm số
nghịch biến trên khoảng nào?
Ta có:
=> Hàm số nghịch biến trên khoảng (2; 3)
Trong không gian với hệ tọa độ
, giá trị dương của tham số
sao cho mặt phẳng
tiếp xúc với mặt cầu
là:
Ta có: có phương trình
Mặt cầu có tâm
và bán kính
Để mặt phẳng tiếp xúc với mặt cầu
thì
. Vì m nhận giá trị dương nên
.
Vậy thỏa yêu cầu đề bài.
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Trong không gian
, cho mặt cầu
và hai điểm
. Biết tập hợp tất cả các điểm
để
là một đường tròn. Bán kính của đường tròn đó là:
Gọi khi đó ta có:
.
Ta có:
Ta lại có:
Từ (1) và (2) ta có hệ phương trình:
Vậy tập hợp tất cả các điểm M là đường tròn giao tuyến (C) của (S) và mặt phẳng (P): y = 0.
Mặt cầu (S) có bán kính R = 3, tâm nên d [I,(P)] = 1.
Suy ra đường tròn (C) có bán kính:
Hình đa diện nào dưới đây không có tâm đối xứng?
Mọi hình chóp đều không có tâm đối xứng (tứ diện đều, hình chóp tứ giác đều,….)
Hình lăng trụ tam giác cũng không có tâm đối xứng.
Mọi hình hộp chữ nhật, hình lập phương đều có tâm đối xứng
Bát diện đều cũng có tâm đối xứng.
Khái niệm chính xác nhất về khối đa diện là:
Áp dụng định nghĩa khối đa diện, ta có:
“Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”
Tập nghiệm của bất phương trình
là:
Ta có:
Vậy BPT có tập nghiệm là .
Cho tứ diện có thể tích bằng
. Gọi
là thể tích của khối đa diện có các đỉnh là các trung điểm của các cạnh của khối tứ diện đã cho, tính tỉ số
.

Xét khối tứ diện và các điểm được kí hiệu như hình vẽ trên, ta có:
Tương tự .
Do đó
.
Cho a và b là hai số dương bất kì. Mệnh đề nào dưới đây sai?
Ta có:
Biết
, khi đó
có giá trị là:
Ta có:
Cho hình chóp đều
có tất cả các cạnh bằng
. Mặt phẳng
song song với mặt đáy
và cắt các cạnh bên
lần lượt tại
. Tính diện tích tam giác
biết mặt phẳng
chia khối chóp đã cho thành hai phần có thể tích bằng nhau.

Mặt phẳng và cắt các cạnh
lần lượt tại
.
Theo Talet, ta có .
Do đó .
Theo giả thiết .
Suy ra tam giác MNP là tam giác đều cạnh .
Vậy diện tích .
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Có tất cả bao nhiêu cách phân tích số
thành tích của ba số nguyên dương, biết rằng các cách phân tích mà các nhân tử chỉ khác nhau về thứ tự thì chỉ được tính một lần?
Ta có:
Đặt suy ra ta có hệ
Xét ba trường hợp:
Trường hợp 1: Các số bằng nhau
=> chỉ có 1 cách chọn
Trường hợp 2: Trong ba số có hai số bằng nhau, giả sử
=>
=> Có 5 cách chọn và 5 cách chọn
Trường hợp 3: Số cách chọn ba số phân biệt:
Số cách chọn là
=> Số cách chọn ba số phân biệt là
Vậy số cách phân tích thành tích ba số nguyên dương là
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Xét hàm số
. Khẳng định nào sau đây sai?
Ta có:
Ta có bảng xét dấu cho các biểu thức

Từ bảng xét dấu ta thấy
Khi đó hàm số nghịch biến
=> Đáp án B sai
Cho hàm số
có bảng biến thiên như sau:

Đồ thị hàm số có đường tiệm cận ngang là:
Dựa vào bảng biến thiên ta có: nên đồ thị hàm số có đường tiệm cận ngang là
.
Dựa vào thông tin dưới đây và trả lời các câu hỏi
Số lượng của một loại vi khuẩn X trong một phòng thí nghiệm được biểu diễn theo công thức
, trong đó A là số lượng vi khuẩn tại thời điểm chọn mốc thời gian, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng (tính theo đơn vị là giờ). Lúc 6 giờ sáng, số lượng vi khuẩn X là 150 con. Sau 3 giờ, số lượng vi khuẩn X là 450 con.
Tỉ lệ tăng trưởng của vi khuẩn X gần nhất với kết quả nào sau đây?
Chọn 6 giờ là mốc thời gian. Khi đó .
Sau 3 giờ, số lượng vi khuẩn là 450 con nên .
Từ đó ta có phương trình:
Xét các mệnh đề:
(I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng
cố định một khoảng không đổi là một mặt trụ.
(II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.
Trong các mệnh đề trên, mệnh đề nào đúng?
Ta xét về khái niệm Mặt trụ suy ra (I) đúng.
Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).
Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.
Vì vậy Mệnh đề (II) cũng đúng.
Tìm tập xác định của hàm số ![]()
Điều kiện xác định
=> Tập xác định của hàm số là
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Cho hàm số
(với
là tham số) có đồ thị
. Giả sử các điểm
là các điểm cực trị của
. Để tam giác
đều thì giá trị của tham số
nằm trong khoảng nào sau đây?
Tập xác định
Ta có:
Hàm số có ba điểm cực trị khi và chỉ khi phương trình có ba nghiệm phân biệt hay
có hai nghiệm khác 0
Khi đó
Đồ thị có ba điểm cực trị là
;
;
.
Ta có:
Do đó tam giác đều
Kết hợp với điều kiện .
Vậy đáp án cần tìm là .
Cho hàm số
có bảng biến thiên như sau:

Tìm số nghiệm của phương trình
trên đoạn
?
Cho hàm số có bảng biến thiên như sau:
Tìm số nghiệm của phương trình trên đoạn
?
Năng lượng giải tỏa
của một trận động đất tại tâm địa chấn
độ Richter được xác định bởi công thức
. Vào năm 1995, thành phố
xảy ra một trận động đất 8 độ Richter và năng lượng giải tỏa tại tâm địa chấn của nó gấp 14 lần trận động đất ra tại thành phố
vào năm 1997. Hỏi khi đó độ lớn của trận động đất tại thành phố
là bao nhiêu? (kết quả làm tròn đến hàng phần chục)
Theo đề bài ta có: .
Vậy độ lớn của trận động đất tại thành phố là 7,2 độ Richter.
Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới đây.

Số điểm cực trị của hàm số
là:
Ta có:
Từ đồ thị ta thấy phương trình (*) có đùng 2 nghiệm phân biệt là x = -1; x = 3, x = x1, và f(x) – g(x) đổi dấu khi đi qua các nghiệm này
=> Các nghiệm trên là nghiệm bội lẻ của (*)
Mà f(x) và g(x) đều là đa thức bậc 4 nên bậc của phương trình (*) nhỏ hơn hoặc bằng 4
=> Phương trình (*) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (**) phải có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (*)
=> h’(x) = 0 có 5 nghiệm phân biệt và h’(x) đổi dấu khi đi qua các nghiệm đấy nên hàm số h(x) có 5 điểm cực trị.
Biết
là giá trị của tham số
để hàm số
có hai điểm cực trị
thỏa mãn
. Tính giá trị biểu thức
?
Xét hàm số
Ta có:
Hàm số có hai điểm cực trị khi và chỉ khi phương trình (*) có hai nghiệm phân biệt:
Khi đó theo định lí Vi – et ta có:
Theo giả thiết:
Số đường tiệm cận của đồ thị hàm số
là:
Tập xác định
suy ra
là tiệm cận ngang.
suy ra
là tiệm cận ngang.
Vậy không là tiệm cận đứng của đồ thị hàm số đã cho.
suy ra
là tiệm cận đứng của đồ thị hàm số đã cho
Vậy đồ thị hàm số đã cho có 2 tiệm cận ngang và 1 tiệm cận đứng.
Giá trị của biểu thức
bằng:
Ta có:
Cho các mệnh đề sau:
(i) Cơ số của logarit phải là số dương.
(ii) Chỉ số thực dương mới có logarit.
(iii)
với mọi
.
(iv)
với mọi
.
Số mệnh đề đúng là:
(i) Sai vì cơ số của chỉ cần thỏa mãn
(ii) Đúng vì điều kiện có nghĩa của là
(iii) Sai vì với mọi
(iv) Sai vì nếu thì các biểu thức
không có nghĩa.
Giá trị của biểu thức
là:
Ta có:
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Cho khối đa diện đều loại
. Tổng các góc phẳng tại một đỉnh của khối đa điện đó bằng?
Khối đa diện đều loại là khối bát diện đều.

Mỗi đỉnh là đỉnh chung của 4 mặt.
Vậy tổng các góc phẳng tại một đỉnh của khối đa diện đó bằng .
Cho hàm số
với
là tham số. Gọi
là tập hợp các số nguyên
để hàm số đã cho nghịch biến trên khoảng
. Xác định số phần tử của tập hợp
?
Xét là hàm hằng nên hàm số không nghịch biến. Vậy
không thỏa mãn.
Xét
Tập xác định
Để hàm số nghịch biến trên khoảng khi và chỉ khi
Mà nên
Vậy tập hợp S có tất cả 9 giá trị.
Cho hàm số
liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:

Hàm số
nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số liên tục, có đạo hàm trên
. Đồ thị hàm số
như sau:
Hàm số nghịch biến trên khoảng
. Giá trị lớn nhất của
bằng bao nhiêu?
Nếu đặt
thì bất phương trình
trở thành bất phương trình nào?
Điều kiện:
Ta có:
Vậy thay , ta được
.
Tìm giá trị của tham số
để đồ thị hàm số
đi qua điểm
?
Đồ thị hàm số đi qua điểm nên ta có:
Phương trình
có nghiệm là:
x=2 || 2 || hai
Phương trình có nghiệm là:
x=2 || 2 || hai
PT .
Cho khối chóp S.ABC có SA vuông góc với đáy,
và
. Tính thể tích V của khối chóp
.
32
Cho khối chóp S.ABC có SA vuông góc với đáy, và
. Tính thể tích V của khối chóp
.
32

Xét tam giác , có:
Suy ra tam giác vuông tại A
Vậy thể tích khối chóp
Cho hàm số
. Tập xác định của hàm số đã cho là:
Điều kiện xác đinh:
=> Tập xác định của hàm số là:
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Bất phương trình
có tập nghiệm là:
Ta có:
Vậy .
Tập hợp tất cả các giá trị thực của tham số
để hàm số
đồng biến trên khoảng
là:
Tập xác định
Ta có:
Hàm số đồng biến trên khoảng
Xét hàm số trên khoảng
.
Ta có:
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta có:
Vậy thỏa mãn yêu cầu bài toán.
Trong không gian
, cho các mặt cầu dưới đây. Hỏi mặt cầu nào có bán kính
?
Phương trình mặt cầu có bán kính
Xét phương trình mặt cầu ta có:
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình
nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Cho hàm số y = f(x) có đạo hàm trên
là
. Hàm số đã cho có bao nhiêu điểm cực trị?
Tập xác định:
Ta có:
Ta có bảng xét dầu’(x) như sau:

Dựa vào bảng xét dấy của f’(x) ta thấy f’(x) đổi dấu qua hai điểm x = 2018, x = 2019 nên hàm số đã cho có hai điểm cực trị.
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng
nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi
thì phần thứ hai bằng
nghìn đồng/giờ.
Xét tính đúng sai của các mệnh đề sau:
a) Khi vận tốc
thì chi phí nguyên liệu cho phần thứ nhất trên
đường sông là
đồng. Đúng||Sai
b) Hàm số xác định tổng chi phí nguyên liệu trên
đường sông với vận tốc
là
. Sai||Đúng
c) Khi vận tốc
thì tổng chi phí nguyên liệu trên
đường sông là
đồng. Đúng||Sai
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên
đường sông nhỏ nhất là
. Đúng||Sai
Chi phí nhiên liệu của một chiếc thuyền chạy trên sông được chia làm hai phần. Phần thứ nhất không phụ thuộc vào vận tốc và bằng nghìn đồng trên một giờ. Phần thứ hai tỉ lệ thuận với lập phương của vận tốc, khi
thì phần thứ hai bằng
nghìn đồng/giờ.
Xét tính đúng sai của các mệnh đề sau:
a) Khi vận tốc thì chi phí nguyên liệu cho phần thứ nhất trên
đường sông là
đồng. Đúng||Sai
b) Hàm số xác định tổng chi phí nguyên liệu trên đường sông với vận tốc
là
. Sai||Đúng
c) Khi vận tốc thì tổng chi phí nguyên liệu trên
đường sông là
đồng. Đúng||Sai
d) Vận tốc của tàu để tổng chi phí nguyên liệu trên đường sông nhỏ nhất là
. Đúng||Sai
a) Đúng: Thời gian tàu chạy quãng đường 1 km là: (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: (đồng).
b) Sai: Gọi x (km/h) là vận tốc của tàu, x > 0
Thời gian tàu chạy quãng đường 1 km là: (giờ)
Chi phí tiền nhiên liệu cho phần thứ nhất là: (nghìn đồng)
Hàm chi phí cho phần thứ hai là (nghìn đồng/ giờ)
Khi (nghìn đồng/ giờ)
Do đó chi phí phần 2 để chạy 1 km là: (nghìn đồng)
Vậy tổng chi phí ,
c) Đúng. Tổng chi phí
Thay ta được
(nghìn đồng).
d) Đúng
Dấu ’’=’’ xảy ra khi x = 20.
Tổng số cạnh của các loại hình {3;4} và {5;3} là bao nhiêu?
Hình {3;4} là khối bát diện đều, có 12 cạnh.
Hình {5;3} là khối mười hai mặt đều, có 30 cạnh.
Vậy tổng số cạnh của hai hình trên là cạnh.
Điều kiện xác định của phương trình
là:
Điều kiện phương trình xác định: