Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm I(1; - 2;3). Viết phương trình mặt cầu tâm I cắt trục Ox tại hai điểm A;B sao cho AB = 2\sqrt{3}?

    Hình vẽ minh họa

    Gọi H là trung điểm AB suy ra H là hình chiếu vuông góc của I lên Ox nên H(1;0;0)

    IH = \sqrt{13} \Rightarrow R = IA =
\sqrt{IH^{2} + AH^{2}} = 4

    Phương trình mặt cầu là: (x - 1)^{2} + (y
+ 2)^{2} + (z - 3)^{2} = 16.

  • Câu 2: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 3: Thông hiểu

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 4: Thông hiểu

    Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:

     Gọi bán kính đáy là R.

    Hình trụ có chu vi đáy bằng 2a nên ta có 2\pi R = 2a \Leftrightarrow R = \frac{a}{\pi }.

    Suy ra hình trụ này có đường cao h=a.

    Vậy thể tích khối trụ V = \pi {R^2}h = \pi {\left( {\frac{a}{\pi }} ight)^2}a = \frac{{{a^3}}}{\pi }(đvtt).

  • Câu 5: Nhận biết

    Vật thể nào trong các vật thể sau không phải là khối đa diện?

    Vì đáp án đã vi phạm tính chất sau: 

    Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác

  • Câu 6: Vận dụng

    Gọi x_1 , x_2 là hai nghiệm của phương trình {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}. Khi đó, tổng hai nghiệm bằng?

    0 || không || Không || Tổng 2 nghiệm bằng 0

    Đáp án là:

    Gọi x_1 , x_2 là hai nghiệm của phương trình {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}. Khi đó, tổng hai nghiệm bằng?

    0 || không || Không || Tổng 2 nghiệm bằng 0

     Ta có: {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}

    \Leftrightarrow {8.2^{{x^2} + 1}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{{4.2}^{2\left( {{x^2} + 1} ight)}} - {{4.2}^{{x^2} + 1}} + 1}

    Đặt t = {2^{{x^2} + 1}}\left( {t \geqslant 2} ight), phương trình trên tương đương với

    8t = {t^2} + \sqrt {4{t^2} - 4t + 1}  \Leftrightarrow {t^2} - 6t - 1 = 0 \Leftrightarrow t = 3 + \sqrt {10} (vì t \geqslant 2).

    Từ đó suy ra {2^{{x^2} + 1}} = 3 + \sqrt {10}  \Leftrightarrow \left[ \begin{gathered}  {x_1} = \sqrt {{{\log }_2}\frac{{3 + \sqrt {10} }}{2}}  \hfill \\  {x_2} =  - \sqrt {{{\log }_2}\frac{{3 + \sqrt {10} }}{2}}  \hfill \\ \end{gathered}  ight.

     

    Vậy tổng hai nghiệm bằng 0.

  • Câu 7: Nhận biết

    Đồ thị hàm số nào có đường tiệm cận đứng đi qua điểm M( - 4;5)?

    Xét hàm số y = \frac{5x + 1}{x +
4}

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ + }} \frac{{5x + 1}}{{x + 4}} =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {{\left( { - 4} ight)}^ - }} \frac{{5x + 1}}{{x + 4}} =  - \infty  \hfill \\ 
\end{gathered}  ight. suy ra x = -
4 là tiệm cận đứng của đồ thị hàm số.

    Tiệm cận đứng đi qua điểm M( -
4;5).

  • Câu 8: Nhận biết

    Cho hàm số y = 2x^{3} - x^{2} - 4x +
2. Hàm số có bao nhiêu điểm cực trị?

    Ta có: y' = 6x^{2} - 2x - 4 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = - \dfrac{2}{3} \\\end{matrix} ight.

    Ta có bảng xét dấu như sau:

    Vậy hàm số có hai điểm cực trị.

  • Câu 9: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 10: Thông hiểu

    Bất phương trình {\log _2}({2^x} + 1) + {\log _3}({4^x} + 2) \leqslant 2 có tập nghiệm là:

     Xét: x > 0 \Rightarrow {2^x} > {2^0} = 1 \Rightarrow {2^x} + 1 > 2

    \Rightarrow {\log _2}\left( {{2^x} + 1} ight) > {\log _2}2 = 1\left( 1 ight)

    Tương tự, ta cũng có: x > 0 \Rightarrow {4^x} > {4^0} = 1 \Rightarrow {4^x} + 2 > 2 + 1 = 3

    \Rightarrow {\log _3}\left( {{4^x} + 2} ight) > {\log _3}3 = 1\left( 2 ight)

    Cộng vế với vế của (1) và (2) ta được: {\log _2}({2^x} + 1) + {\log _3}({4^x} + 2) > 2 

    Mà BPT: {\log _2}({2^x} + 1) + {\log _3}({4^x} + 2) \leqslant 2 nên x > 0 \, (L)

    Xét x \leqslant 0 \Rightarrow {2^x} \leqslant {2^0} = 1 \Rightarrow {2^x} + 1 \leqslant 2

    \Rightarrow {\log _2}\left( {{2^x} + 1} ight) \leqslant {\log _2}2 = 1\left( 3 ight)

    Tương tự, ta cũng có: x \leqslant 0 \Rightarrow {4^x} \leqslant {4^0} = 1 \Rightarrow {4^x} + 2 \leqslant 2 + 1 = 3

    \Rightarrow {\log _3}\left( {{4^x} + 2} ight) \leqslant {\log _3}3 = 1\left( 4 ight)

    Cộng vế với vế của (3) và (4) ta được: {\log _2}({2^x} + 1) + {\log _3}({4^x} + 2) \leqslant 2\left( {TM} ight)

    Vậy x \leq 0 hay x \in \left( { - \infty ;0} ight].

  • Câu 11: Vận dụng

    Cho {9^x} + {9^{ - x}} = 14;\frac{{6 + 3.\left( {{3^x} + {3^{ - x}}} ight)}}{{2 - {3^{x + 1}} - {3^{1 - x}}}} = \frac{a}{b}; (\frac{a}{b} là phân số tối giản). Tính giá trị biểu thức P = ab.

    Ta có:

    \begin{matrix}  {\left( {{3^x} + {3^{ - x}}} ight)^2} = 14 + 2 = 16 \hfill \\   \Rightarrow {3^x} + {3^{ - x}} = 4 \hfill \\   \Rightarrow \dfrac{a}{b} = \dfrac{{6 + 3.4}}{{2 - 3.4}} =  - \dfrac{9}{5} \hfill \\   \Rightarrow P =  - 45 \hfill \\ \end{matrix}

  • Câu 12: Thông hiểu

    Tìm tất cả các giá trị của tham số m để hàm số y
= - \frac{1}{3}x^{3} - 2x^{2} + mx - 1 nghịch biến trên \mathbb{R}?

    Ta có:

    y' = - x^{2} - 4x + m

    Hàm số nghịch biến trên \mathbb{R} \Leftrightarrow - x^{2} - 4x + m \leq 0;\forall
x

    \Rightarrow \left\{ \begin{matrix}
- 1 < 0 \\
\Delta \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow 16 + 4m \leq 0 \Leftrightarrow m
\leq - 4

    Vậy đáp án cần tìm là m \leq -
4

  • Câu 13: Nhận biết

    Biết \frac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} với x > 1 và a + b = 2. Tính giá trị của biểu thức M = a – b.

     Ta có: 

    \begin{matrix}  \dfrac{{{x^{{a^2}}}}}{{{x^{{b^2}}}}} = {x^{16}} \hfill \\   \Leftrightarrow {x^{{a^2} - {b^2}}} = {x^{16}} \hfill \\   \Leftrightarrow {a^2} - {b^2} = 16 \hfill \\   \Leftrightarrow \left( {a + b} ight)\left( {a - b} ight) = 16 \hfill \\   \Rightarrow a - b = 8 \hfill \\ \end{matrix}

  • Câu 14: Vận dụng

    Cho hình đa diện đều loại \left\{ {4;3} ight\} cạnh a. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?

    Đa diện đều loại \left\{ {4;3} ight\} là khối lập phương nên có 6 mặt là các hình vuông cạnh a.

    Vậy hình lập phương có tổng diện tích tất cả các mặt là S=6a^2

  • Câu 15: Nhận biết

    Điều kiện xác định của phương trình {\log _{2x - 3}}16 = 2 là:

     Biểu thức {\log _{2x - 3}}16 = 2 xác định   \Leftrightarrow \left\{ \begin{gathered}  2x - 3 > 0 \hfill \\  2x - 3 e 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{2} \hfill \\  x e 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \frac{3}{2} < x e 2.

  • Câu 16: Vận dụng

    Biết đồ thị hàm số y = f\left( x ight) đối xứng với đồ thị hàm số y = {\log _a}x;{\text{ }}\left( {0 < a e 1} ight) qua điểm I\left( {2;2} ight). Giá trị của f\left( {4 - {a^{2018}}} ight) là:

    Gọi M\left( {x;{{\log }_a}x} ight) là điểm thuộc đồ thị hàm số y = {\log _a}x thì điểm đối xứng với M qua IM'\left( {4 - x;4 - {{\log }_a}x} ight) thuộc đồ thị hàm số y = f\left( x ight)

    => f\left( {4 - x} ight) = 4 - {\log _a}x \Rightarrow f\left( {4 - {a^{2018}}} ight) = 4 - {\log _a}^{2018} =  - 2014

  • Câu 17: Vận dụng

    Hình vẽ nào dưới đây là đồ thị của hàm số y =  - \left( {a - x} ight){\left( {b - x} ight)^2} biết a > b > 0

    Xét hàm số y = f\left( x ight) =  - \left( {a - x} ight){\left( {b - x} ight)^2} = \left( {x - a} ight){\left( {x - b} ight)^2} ta có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to  + \infty } f\left( x ight) =  + \infty } \\   {\mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) =  - \infty } \end{array}} ight. => Đồ thị hàm số có dạng chữ N xuôi

    Đồ thị hàm số cắt trục Oy tại điểm có tung độ y\left( 0 ight) =  - a{b^2} mà a > 0 => y\left( 0 ight) < 0

    Mặt khác f'\left( x ight) = {\left( {x - b} ight)^2} + 2\left( {x - a} ight)\left( {a - b} ight) = \left( {x - b} ight)\left( {3x - 2a - b} ight)

    => \left\{ {\begin{array}{*{20}{c}}  {f\left( b ight) = 0} \\   {f'\left( b ight) = 0} \end{array}} ight.

    => Đồ thị hàm số y = f(x) tiếp xúc với Ox tại điểm M\left( {b;0} ight)

  • Câu 18: Vận dụng cao

    Với giá trị nào của tham số m thì bất phương trình {2^{{{\sin }^2}x}} + {3^{{\text{co}}{{\text{s}}^2}x}} \geqslant m{.3^{{{\sin }^2}x}} có nghiệm?

     Chia hai vế của bất phương trình cho {3^{{{\sin }^2}x}} > 0, ta được:

    {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} \geqslant m

    Xét hàm số y = {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} là hàm số nghịch biến.

    Ta có: 0 \leqslant {\sin ^2}x \leqslant 1 nên 1 \leqslant y \leqslant 4.

    Vậy bất phương trình có nghiệm khi m \leqslant 4.

  • Câu 19: Thông hiểu

    Viết biểu thức P = \frac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}};\left( {a > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}} = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.{a^{\frac{4}{3}}}}}{{{a^{\frac{5}{6}}}}} = {a^5}

  • Câu 20: Thông hiểu

    Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực \mathbb{R}?

     Hàm số y = {\left( {\frac{2}{e}} ight)^x} là hàm số mũ có cơ số bằng \frac{2}{e} \in \left( {0;1} ight) nghịch biến trên \mathbb{R}

    Hàm số y = {\left( {\frac{\pi }{3}} ight)^x} là hàm số mũ có cơ số \frac{\pi }{3} > 1 nên đồng biến trên \mathbb{R}

    Hàm số y = {\log _{\frac{1}{2}}}x chỉ xác định trên \left( {0; + \infty } ight)

    Hàm số y = {\log _{\frac{\pi }{4}}}\left( {2{x^2} + 1} ight)y' = \frac{{4x}}{{\left( {2{x^2} + 1} ight)\ln \frac{\pi }{4}}} nên nghịch biến trên \left( {0; + \infty } ight)

  • Câu 21: Vận dụng

    Tìm đạo hàm của hàm số y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} trên khoảng \left( { - \infty ;\frac{1}{3}} ight)

    Với điều kiện x < \frac{1}{3} ta có: y = \sqrt[3]{{{{\left( {1 - 3x} ight)}^5}}} = {\left( {1 - 3x} ight)^{\frac{5}{3}}}. Khi đó:

    => y' =  - 5{\left( {1 - 3x} ight)^{\frac{2}{3}}}

  • Câu 22: Thông hiểu

    Cho a,b,c > 0. Tính giá trị của biểu thức A = {\log _a}\left( {{b^2}} ight).{\log _b}\left( {\sqrt {bc} } ight) - {\log _a}\left( c ight)

    Ta có:

    \begin{matrix}  A = {\log _a}\left( {{b^2}} ight).{\log _b}\left( {\sqrt {bc} } ight) - {\log _a}\left( c ight) \hfill \\  A = 2{\log _a}\left( b ight).\dfrac{1}{2}.{\log _b}\left( {bc} ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight).{\log _b}\left( {bc} ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight).\left[ {{{\log }_b}\left( b ight) + {{\log }_b}\left( c ight)} ight] - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight).\left[ {1 + {{\log }_b}\left( c ight)} ight] - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight) + {\log _a}\left( b ight).{\log _b}\left( c ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight) + {\log _a}\left( c ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight) \hfill \\ \end{matrix}

  • Câu 23: Thông hiểu

    Viết biểu thức Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có:

    Q = \sqrt x .\sqrt[3]{x}.\sqrt[6]{{{x^5}}} = {x^{\frac{1}{2}}}.{x^{\frac{1}{3}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{1}{3} + \frac{5}{6}}} = {x^{\frac{5}{3}}}

  • Câu 24: Vận dụng cao

    Gọi S là tập tất cả các giá trị thực của tham số m để đường thẳng y = m cắt đồ thị hàm số y = x^{3} - 3x^{2} tại ba điểm phân biệt A;B;C với B nằm giữa A;C sao cho AB = 2BC. Tính tổng các phần tử thuộc tập S?

    Ta có bảng biến thiên

    Suy ra đường thẳng y = m cắt đồ thị hàm số y = x^{3} - 3x^{2} tại ba điểm phân biệt A;B;C \Leftrightarrow - 4 < m < 0

    Khi đó \[\left\{ \begin{gathered}
  {x_A} + {x_B} + {x_C} = 3 \hfill \\
  {x_A}.{x_B} + {x_B}.{x_C} + {x_C}.{x_A} = 0 \hfill \\
  {x_A}.{x_B}.{x_C} = m \hfill \\ 
\end{gathered}  ight.

    Để B nằm giữa A và C và AB = 2BC thì \begin{matrix}
\left\{ \begin{matrix}
x_{A} < x_{B} < x_{C} \\
x_{B} - x_{A} = 2\left( x_{C} - x_{B} ight) \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x_{C} < x_{B} < x_{A} \\
x_{A} - x_{B} = 2\left( x_{B} - x_{C} ight) \\
\end{matrix} ight.\  \\
\end{matrix}

    \Leftrightarrow 3x_{B} = x_{A} + 2x_{C}
\Leftrightarrow 4x_{B} - 3 = x_{C} \Rightarrow x_{A} = 6 -
5x_{B}

    \Rightarrow \left\{ \begin{gathered}
  \left( {6 - 5{x_B}} ight) + {x_B}.\left( {4{x_B} - 3} ight) + \left( {4{x_B} - 3} ight)\left( {6 - 5{x_B}} ight) = 0\left( * ight) \hfill \\
  \left( {4{x_B} - 3} ight).{x_B}.\left( {6 - 5{x_B}} ight) = m \hfill \\ 
\end{gathered}  ight.

    Từ (*) ta được x_{B} = \frac{7 \pm
\sqrt{7}}{7}. Thay (**) được \left\lbrack \begin{matrix}m = \dfrac{- 98 - 20\sqrt{7}}{49} \\m = \dfrac{- 98 + 20\sqrt{7}}{49} \\\end{matrix} ight.

    Suy ra S = \left\{ \frac{- 98 -
20\sqrt{7}}{49};\frac{- 98 + 20\sqrt{7}}{49} ight\}. Vậy tổng các phần tử của S bằng - 4.

  • Câu 25: Nhận biết

    Trong không gian Oxyz, mặt cầu (S):(x + 1)^{2} + (y - 2)^{2} + z^{2} =
9 có bán kính bằng:

    Bán kính của mặt cầu (S)R = \sqrt{9} = 3.

  • Câu 26: Vận dụng cao

    Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất {V_{\min }} của khối tứ diện SAMN.

    Gọi E là trung điểm của BC.

    Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

    Theo định lí Talet, ta có:

    \left\{ \begin{gathered}  \frac{{AB}}{{AM}} = \frac{{AP}}{{AG}} \hfill \\  \frac{{AC}}{{AN}} = \frac{{AQ}}{{AG}} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{AP}}{{AG}} + \frac{{AQ}}{{AG}} = \frac{{AP + AQ}}{{AG}}

    Mặt khác \Delta BPE = \Delta CQE\xrightarrow{{}}PE = QE\,

    \Rightarrow \,\,AP + AQ = \left( {AE - PE} ight) + \left( {AE + QE} ight) = 2AE

    Do đó \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{2AE}}{{AG}} = 2.\frac{3}{2} = 3 \Rightarrow \frac{1}{{AM}} + \frac{1}{{AN}} = 3.

    Đặt \left\{ \begin{gathered}  AM = x \hfill \\  AN = y \hfill \\ \end{gathered}  ight. \Rightarrow \frac{1}{x} + \frac{1}{y} = 3

    SABC là tứ diện đều \Rightarrow \,\,SG \bot \left( {ABC} ight)  và SG = \frac{{\sqrt 2 }}{{\sqrt 3 }}

    Do đó   {V_{SAMN}} = \frac{1}{3}{S_{\Delta AMN}}.SG

    = \frac{1}{3}\left( {\frac{1}{2}AM.AN\sin {{60}^0}} ight).SG

    = \frac{{\sqrt 2 }}{{12}}AM.AN = \frac{{\sqrt 2 }}{{12}}xy

    Ta có 3 = \frac{1}{x} + \frac{1}{y} \geqslant \frac{2}{{\sqrt {xy} }}

    \Leftrightarrow \sqrt {xy}  \geqslant \frac{2}{3} \Leftrightarrow xy \geqslant \frac{4}{9}

    \Rightarrow {V_{\min }} = \frac{{\sqrt 2 }}{{27}}

  • Câu 27: Nhận biết

    Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

    Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - 2x^{4} + 4x^{2} + 1.

  • Câu 28: Vận dụng

    Tìm giá trị của tham số m sao cho đồ thị hàm số y = 2x + \sqrt {m{x^2} - x + 1}  + 1 có tiệm cận ngang.

    Ta có:

    \begin{matrix}  y = \left( {2x + 1} ight) + \sqrt {m{x^2} - x + 1}  \hfill \\   \Rightarrow y = \dfrac{{4{x^2} + 4x + 1 - \left( {m{x^2} - x + 1} ight)}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\   \Rightarrow y = \dfrac{{\left( {4 - m} ight){x^2} + 5x}}{{2x + 1 - \sqrt {m{x^2} - x + 1} }} \hfill \\ \end{matrix}

    Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số

    Đồng thời \mathop {\lim }\limits_{x \to \infty } y = {y_0} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m > 0} \\   {4 - m = 0} \end{array} \Rightarrow m = 4} ight.

  • Câu 29: Thông hiểu

    Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại BBA=BC=1. Cạnh A'B tạo với mặt đáy (ABC) góc 60^0. Tính thể tích V của khối lăng trụ đã cho.

     

    ABC.A'B'C' là lăng trụ đứng nên AA' \bot \left( {ABC} ight), suy ra hình chiếu vuông góc của A'B trên mặt đáy (ABC)AB.

    Do đó {60^0} = \widehat {A'B,\left( {ABC} ight)} = \widehat {A'B,AB} = \widehat {A'BA}.

    Tam giác vuông A'AB, ta có AA' = AB.\tan \widehat {A'BA} = \sqrt 3

    Diện tích tam giác là {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{1}{2}

    Vậy V = {S_{\Delta ABC}}.AA' = \frac{{\sqrt 3 }}{2}.

  • Câu 30: Vận dụng

    Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức C\left( x ight) = 0,0001{x^2} - 0,2x + 11000, C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một tạp chí bán được 25 000 đồng một cuốn. Chi phía xuất bản x cuốn tạp chí (bao gồm: lương cán bộ, công nhân viên, …) được cho bởi công thức C\left( x ight) = 0,0001{x^2} - 0,2x + 11000, C(x) được tính theo đơn vị vạn đồng. Chi phí phát hành cho mỗi cuốn là 6 000 đồng. Các khoản thu khi bán tạp chí bao gồm tiền bán tạp chí và 100 triệu đồng nhận được từ quảng cá. Giả sử số cuốn in ra đều được bán hết. Tính số tiền lãi lớn nhất có thể có khi bán tạp chí.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Vận dụng

    Cho hình lăng trụ tam giác ABC có đáy ABC là tam giác vuông cân tại A, cạnh AC = 2\sqrt 2. Biết AC' tạo với mặt phẳng (ABC) một góc 60^0AC'=4. Tính thể tích V của khối đa diện ABCB'C'

     

    Gọi H là hình chiếu của C' trên mặt phẳng (ABC).

    Suy ra AH là hình chiếu của AC' trên mặt phẳng (ABC).

    Do đó {60^0} = \widehat {AC',\left( {ABC} ight)} = \widehat {\left( {AC',AH} ight)} = \widehat {HAC'}

    Tam giác vuông AHC', có  C'H = AC'.\sin \widehat {HAC'} = 2\sqrt 3

    Thể tích khối lăng trụ {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.C'H = 8\sqrt 3

    Suy ra thể tích cần tính là:

     {V_{ABCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}} = \frac{{16\sqrt 3 }}{3}.

  • Câu 32: Vận dụng

    Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng cạnh đáy bằng a. Khi đó mặt cầu nội tiếp hình chóp S.ABCD có bán kính bằng:

    Tìm bán kính

    Gọi H là tâm của hình vuông ABCD.

    Ta có SH là trục đường tròn ngoại tiếp đáy.

    Gọi M là trung điểm của CD và I là chân đường phân giác trong của góc \widehat {SMH}{m{ (}}I \in SH).

    Suy ra I là tâm của mặt cầu nội tiếp hình chóp, bán kính r = IH.

    Ta có:

    \begin{array}{l}SH = \sqrt {S{A^2} - A{H^2}}  = \dfrac{{a\sqrt 2 }}{2};{m{ }}\\SM = \dfrac{{a\sqrt 3 }}{2};{m{ }}MH = \dfrac{a}{2}.\end{array}

    Dựa vào tính chất của đường phân giác ta có: \frac{{IS}}{{IH}} = \frac{{MS}}{{MH}}

     

       \Rightarrow \frac{{SH}}{{IH}} = \frac{{MS + MH}}{{MH}}

    \Rightarrow IH = \dfrac{{SH.MH}}{{MS + MH}} = \frac{a}{{\sqrt 2  + \sqrt 6 }} = \dfrac{{a\left( {\sqrt 6  - \sqrt 2 } ight)}}{4}

  • Câu 33: Nhận biết

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Đáp án là:

    Cho khối chóp S.ABC có SA vuông góc với đáy, SA = 4,\,\,AB = 6,\,\,BC = 10CA = 8. Tính thể tích V của khối chóp S.ABC .

    32

    Tính thể tích

    Xét tam giác , có: A{B^2} + A{C^2} = {6^2} + {8^2} = {10^2} = B{C^2}

    Suy ra tam giác vuông tại A

    \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AB.AC = 24.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = 32

  • Câu 34: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) = (x -
1)^{2}(x + 2)(3 - x). Mệnh đề nào sau đây đúng?

    Xét f'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
x = 3 \\
\end{matrix} ight. ta có bảng xét dấu f'(x) như sau:

    Dựa vào bảng xét dấu ta thấy hàm số nghịch biến trên các khoảng ( - \infty; - 2);(3; + \infty), hàm số đồng biến trên khoảng ( - 2;3).

  • Câu 35: Nhận biết

    Tính giá trị của {a^{{{\log }_{\sqrt a }}4}} với  a > 0;a e 1

     Ta có: {a^{{{\log }_{\sqrt a }}4}} = {a^{2{{\log }_a}4}} = {a^{{{\log }_a}16}} = 16

  • Câu 36: Thông hiểu

    Phương trình {\log _3}(5x - 3) + {\log _{\frac{1}{3}}}({x^2} + 1) = 0 có 2 nghiệm x_1, \, x_2 trong đó x_1 < x_2. Giá trị của P = 2{x_1} + 3{x_2} là?

     PT \Leftrightarrow \left\{ \begin{gathered}  5x - 3 > 0 \hfill \\  {\log _3}(5x - 3) + {\log _{\frac{1}{3}}}({x^2} + 1) = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {\log _3}(5x - 3) - {\log _3}({x^2} + 1) = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {\log ^{}}_3(5x - 3) = {\log ^{}}_3({x^2} + 1) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  5x - 3 = {x^2} + 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {x^2} - 5x + 4 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  \left[ \begin{gathered}  x = 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight.

    Vậy 2{x_1} + 3{x_2} = 2.1 + 3.4 = 14.

  • Câu 37: Nhận biết

    Tìm tập xác định của hàm số y = {\log _2}\frac{{3 - x}}{{2x}} là:

    Hàm số đã cho xác định khi \frac{{3 - x}}{{2x}} > 0 \Rightarrow x \in \left( {0;3} ight)

  • Câu 38: Nhận biết

    Điều kiện xác định của bất phương trình {\log _{\frac{1}{2}}}(4x + 2) - {\log _{\frac{1}{2}}}(x - 1) > lo{g_{\frac{1}{2}}}x là:

     BPT xác định khi:  \left\{ \begin{gathered}  x > 0 \hfill \\  4x + 2 > 0 \hfill \\  x - 1 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x >  - \frac{1}{2} \hfill \\  x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 1.

  • Câu 39: Thông hiểu

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

    Đáp án là:

    Cho tứ diện ABCD có thể tích bằng 12G là trọng tâm của tam giác BCD. Tính thể tích V của khối chóp .A.GBC

    4 || Bốn || bốn

     Vì G là trọng tâm của tam giác BCD nên S_{\triangle GBC}= \frac{1}{3}S_{\triangle DBC}.

    Suy ra {V_{A.GBC}} = \frac{1}{3}{V_{ABCD}} = \frac{1}{3}.12 = 4.

  • Câu 40: Thông hiểu

    Cho hàm số y = \frac{1}{3}{x^3} - \frac{3}{2}{x^2} + 2x + 1. Giả sử hàm số đạt cứ đại tại x = a và đạt cực tiểu tại x = b thì giá trị biểu thức 2a – 5b là

    Tập xác định D = \mathbb{R}

    Ta có:

    \begin{matrix}  y' = {x^2} - 3x + 2 \hfill \\  y' = 0 \Rightarrow \left[ {\begin{array}{*{20}{c}}  {x = 1} \\   {x = 2} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có bảng xét dấu như sau:

    Tính giá trị biểu thức

    Do y’ thay đổi dấu từ dương sang âm khi đi qua điểm x = 1

    => x = 1 là điểm cực đại của hàm số

    y’ đổi dấu từ âm sang dương khi đi qua điểm x = 2

    => x = 2 là điểm cực tiểu của hàm số

    => 2a – 5b = -8

  • Câu 41: Vận dụng

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) liên tục, có đạo hàm trên \mathbb{R}. Đồ thị hàm số y = f'(x) như sau:

    Hàm số y = f(3 - x) nghịch biến trên khoảng (2;b). Giá trị lớn nhất của b bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 42: Vận dụng cao

    Cho hàm số y = f(x). Biết hàm số y = f’(x) có đồ thị như hình vẽ bên dưới. Số điểm cực trị của hàm số y = {2021^{f\left( x ight)}} + {2020^{f\left( x ight)}} là:

    Tính số điểm cực trị của hàm số

    Ta có:

    \begin{matrix}  y' = f'\left( x ight){.2021^{f\left( x ight)}}.\ln 2021 + f'\left( x ight){.2020^{f\left( x ight)}}.\ln 2020 \hfill \\   = f'\left( x ight)\left[ {{{2021}^{f\left( x ight)}}.\ln 2021 + {{2020}^{f\left( x ight)}}.\ln 2020} ight] \hfill \\ \end{matrix}

    Do {2021^{f\left( x ight)}}.\ln 2021 + {2020^{f\left( x ight)}}.\ln 2020 > 0,\forall x \in \mathbb{R}

     y' = 0 \Leftrightarrow f'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {{x_1} = a} \\   {{x_2} = b} \\   {{x_3} = c} \end{array}} ight.

    Tính số điểm cực trị của hàm số

    Vậy hàm số y = {2021^{f\left( x ight)}} + {2020^{f\left( x ight)}} có ba điểm cực trị.

  • Câu 43: Thông hiểu

    Tổng các nghiệm của phương trình \log_{4}x^{2} - \log_{2}3 = 1 là:

    Điều kiện x eq 0. Có

    \log_{4}x^{2} - \log_{2}3 = 1

    \Leftrightarrow \frac{1}{2}\log_{2}x^{2}= 1 + \log_{2}3

    \Leftrightarrow \frac{1}{2}\log_{2}x^{2}= \log_{2}2 + \log_{2}3

    \Leftrightarrow \log_{2}x^{2} =2.\log_{2}6

    \Leftrightarrow \log_{2}x^{2} =\log_{2}6^{2}

    \Leftrightarrow x^{2} = 6^{2}
\Leftrightarrow x = \pm 6

    Dó đó, tổng các nghiệm sẽ bằng 0.

  • Câu 44: Vận dụng cao

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}f'(x) = (x - 1)(x + 3). Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2021brack để hàm số y =f\left( x^{2} + 3x - m ight) đồng biến trên khoảng (0;2)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}f'(x) = (x - 1)(x + 3). Có bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2021brack để hàm số y =f\left( x^{2} + 3x - m ight) đồng biến trên khoảng (0;2)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 45: Vận dụng

    Nghiệm bé nhất của phương trình {\log _2}^3x - 2{\log ^2}_2x = {\log _2}x - 2 là: 

     TXĐ: x>0

    PT \Leftrightarrow {\log _2}^3x - 2{\log _2}^2x = {\log _2}x - 2 

    \Leftrightarrow {\log _2}^3x - 2{\log _2}^2x - {\log _2}x + 2 = 0

    \Leftrightarrow {\log _2}^3x - {\log _2}x - 2{\log _2}^2x + 2 = 0

    \Leftrightarrow {\log _2}x({\log ^2}_2x - 1) - 2({\log ^2}_2x - 1) = 0

    \Leftrightarrow ({\log ^2}_2x - 1)({\log _2}x - 2) = 0 \Leftrightarrow \left[ \begin{gathered}  {\log ^2}_2x - 1 = 0 \hfill \\  {\log _2}x - 2 = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  {\log _2}x = 1 \hfill \\  {\log _2}x =  - 1 \hfill \\  {\log _2}x = 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 2 \hfill \\  x = \frac{1}{2} \hfill \\  x = 4 \hfill \\ \end{gathered}  ight.

    \Rightarrow x = \frac{1}{2} là nghiệm nhỏ nhất.

  • Câu 46: Nhận biết

    Tập xác định của hàm số y = {\left( {x + 3} ight)^{\frac{3}{2}}} - \sqrt[4]{{5 - x}} là:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {x + 3 > 0} \\   {5 - x \geqslant 0} \end{array}} ight. \Rightarrow  - 3 < x \leqslant 5

    => Tập xác định của hàm số là D = \left( { - 3;5} ight]

  • Câu 47: Vận dụng

    Cho hàm số bậc ba y = f(x) =\frac{1}{3}x^{3} - (m - 2)x^{2} - 9x + 1 với m là tham số. Gọi x_{1};x_{2} là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức \left| 9x_{1} - 25x_{2} ight|?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số bậc ba y = f(x) =\frac{1}{3}x^{3} - (m - 2)x^{2} - 9x + 1 với m là tham số. Gọi x_{1};x_{2} là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức \left| 9x_{1} - 25x_{2} ight|?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 48: Thông hiểu

    Khối lăng trụ ngũ giác có bao nhiêu cạnh?

    Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh

    Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.

  • Câu 49: Thông hiểu

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

    Đáp án là:

    Cho các hình khối sau:

    Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?

    2 || Hai || hai

     Có hai khối đa diện lồi là: Hình 1 & Hình 4

  • Câu 50: Thông hiểu

    Cho hàm số f(x) có đạo hàm trên \mathbb{R}. Đồ thị của hàm số y = f'(x) trên đoạn \lbrack - 2;2brack là đường cong hình bên. Mệnh đề nào dưới đây đúng?

    Dựa vào thị của hàm số y =
f^{'}(x) trên đoạn \lbrack -
2;2brack ta thấy f'(x) = 0\Leftrightarrow x = 1.

    Ta có bảng BBT:

    Do đó \max_{\lbrack - 2;2brack}f(x) =f(1).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo