Bất phương trình
có tập nghiệm là:
TXĐ
BPT
Bất phương trình
có tập nghiệm là:
TXĐ
BPT
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Cho hàm số bậc ba
có đồ thị như hình vẽ dưới đây.

Đồ thị hàm số
có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.
Đặt khi đó
thì
Khi đó
=> y = 0 là tiệm cận ngang của đồ thị hàm số g(x)
Mặt khác
=> Đồ thị hàm số g(x) có ba đường tiệm cận đứng.
Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.
Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Viết biểu thức
với x > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Khối đa diện nào sau đây có số mặt nhỏ nhất?
Khối tứ diện đều có 4 mặt là 4 tam giác đều.
Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.
Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông
Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.
Cho hình lăng trụ tam giác
có đáy
là tam giác vuông cân tại
, cạnh
. Biết
tạo với mặt phẳng
một góc
và
. Tính thể tích
của khối đa diện
.

Gọi H là hình chiếu của C' trên mặt phẳng .
Suy ra AH là hình chiếu của AC' trên mặt phẳng .
Do đó
Tam giác vuông , có
Thể tích khối lăng trụ
Suy ra thể tích cần tính là:
.
Đặt
. Hãy biểu diễn
theo a và b.
Ta có:
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Cho các hình khối sau:

Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), số đa diện lồi là?
2 || Hai || hai
Có hai khối đa diện lồi là: Hình 1 & Hình 4
Cho hàm số
liên tục trên
và có đạo hàm
với mọi
. Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Cho hàm số liên tục trên
và có đạo hàm
với mọi
. Có bao nhiêu số nguyên
để hàm số
nghịch biến trên khoảng
?
Nghiệm nguyên nhỏ nhất của phương trình
là?
3 || ba || Ba
Nghiệm nguyên nhỏ nhất của phương trình là?
3 || ba || Ba
Điều kiện:
Ta có:
So điều kiện suy ra phương trình có nghiệm .
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Bất phương trình
có tập nghiệm là:
Ta có:
Vậy .
Có bao nhiêu giá trị nguyên của tham số m trên đoạn
để hàm số
có tập xác định
?
Hàm số xác định trên khi và chỉ khi
Do
Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.
Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?
Dựa vào dấu của hệ số nên hàm số
có ba điểm cực trị trong đó có hai điểm cực đại và một điểm cực tiểu.
Cho khối chóp tứ giác đều
có cạnh đáy bằng
, góc giữa mặt bên và mặt đáy bằng
. Thể tích
của khối chóp
bằng
Hình vẽ minh họa
Gọi là tâm của đáy, gọi
là trung điểm của
.
Ta có nên
Suy ra .
Có ,
.
Thể tích khối chóp là
.
Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm
với mọi
. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số
nghịch biến trên khoảng
?
Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm với mọi
. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số
nghịch biến trên khoảng
?
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định
Cho
. Tính ![]()
Ta có:
Cho hàm số
. Hàm số
có đồ thị như hình vẽ:

Hàm số
nghịch biến trên khoảng nào?
Ta có:
Vậy hàm số nghịch biến trên khoảng
.
Năng lượng giải tỏa
của một trận động đất tại tâm địa chấn
độ Richter được xác định bởi công thức
. Vào năm 1995, thành phố
xảy ra một trận động đất 8 độ Richter và năng lượng giải tỏa tại tâm địa chấn của nó gấp 14 lần trận động đất ra tại thành phố
vào năm 1997. Hỏi khi đó độ lớn của trận động đất tại thành phố
là bao nhiêu? (kết quả làm tròn đến hàng phần chục)
Theo đề bài ta có: .
Vậy độ lớn của trận động đất tại thành phố là 7,2 độ Richter.
Đồ thị hàm số
có bao nhiêu đường tiệm cận ngang?
Điều kiện xác định
Tập xác định
Vì hàm số không tồn tại khi và
nên đồ thị hàm số không có tiệm cận ngang.
Có bao nhiêu số thực dương
để giá trị lớn nhất của hàm số
trên đoạn
bằng
?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên thì để giá trị lớn nhất của hàm số trên đoạn
bằng
thì
.
Khi đó
Khi đó chỉ có duy nhất một giá trị của tham số m thỏa mãn yêu cầu đề bài.
Cho hình vẽ là đồ thị hàm số có dạng ![]()

Giá trị của biểu thức
có thể nhận giá trị nào trong các giá trị sau?
Đồ thị hàm số đi qua điểm =>
Ta có:
Giá trị của biểu thức
là:
Ta có:
Tâm đối xứng của đồ thị hàm số
là điểm nào trong các điểm cho sau đây?
Đồ thị hàm số nhận giao của hai tiệm cận làm tâm đối xứng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng là
Do đó tâm đối xứng của đồ thị hàm số là điểm .
Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.
Trong các hàm số sau, hàm số nào nghịch biến trên từng khoảng xác định?
Xét hàm số ta có:
Điều kiện xác định
Lại có: nên hàm số
nghịch biến trên từng khoảng xác định của nó.
Cho mặt cầu
và mặt phẳng
. Gọi (C) là đường tròn giao tuyến của (P) và (S). Viết phương trình mặt cầu (S') chứa (C) và điểm M(1,-2,1)
Phương trình của
(S') qua
Phương trình
có tập nghiệm là:
PT
.
Cho hình chóp
có đáy
là hình bình hành tâm O. Mặt phẳng
thay đổi luôn đi qua B, trung điểm
của
và cắt các cạnh
và
lần lượt tại
và
. Tính giá trị lớn nhất M và giá trị nhỏ nhất m của tỷ số
.

Đặt .
Ta có
Nên ta suy ra được: .
Do đó
Từ vì
Xét , tính đạo hàm của hàm số trên, ta được:
Ta có .
Vậy đạt GTLN và GTNN của tỉ số lần lượt là .
Đạo hàm của hàm số ![]()
Ta có:
Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới đây.

Số điểm cực trị của hàm số
là:
Ta có:
Từ đồ thị ta thấy phương trình (*) có đùng 2 nghiệm phân biệt là x = -1; x = 3, x = x1, và f(x) – g(x) đổi dấu khi đi qua các nghiệm này
=> Các nghiệm trên là nghiệm bội lẻ của (*)
Mà f(x) và g(x) đều là đa thức bậc 4 nên bậc của phương trình (*) nhỏ hơn hoặc bằng 4
=> Phương trình (*) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (**) phải có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (*)
=> h’(x) = 0 có 5 nghiệm phân biệt và h’(x) đổi dấu khi đi qua các nghiệm đấy nên hàm số h(x) có 5 điểm cực trị.
Tính đạo hàm của hàm số ![]()
Ta có:
Dựa vào thông tin dưới đây và trả lời các câu hỏi
Số lượng của một loại vi khuẩn X trong một phòng thí nghiệm được biểu diễn theo công thức
, trong đó A là số lượng vi khuẩn tại thời điểm chọn mốc thời gian, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng (tính theo đơn vị là giờ). Lúc 6 giờ sáng, số lượng vi khuẩn X là 150 con. Sau 3 giờ, số lượng vi khuẩn X là 450 con.
Tỉ lệ tăng trưởng của vi khuẩn X gần nhất với kết quả nào sau đây?
Chọn 6 giờ là mốc thời gian. Khi đó .
Sau 3 giờ, số lượng vi khuẩn là 450 con nên .
Từ đó ta có phương trình:
Có bao nhiêu giá trị nguyên của tham số
để hàm số
có hai cực tiểu và một cực đại?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số có hai cực tiểu và một cực đại thì đồ thị hàm số
có dạng
Ta có: . Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số
Khi đó để thỏa mãn yêu cầu bài toán ta có:
Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Trong không gian, cho tam giác ABC vuông tại A, AB =a và
. Độ dài đường sinh
của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là và chiều cao hình nón là
.
Vậy độ dài đường sinh của hình nón là:
Gọi
là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Giá trị của biểu thức
là:
Ta có:
Trong không gian
, tìm tất cả các giá trị của
để phương trình
là phương trình của một mặt cầu?
Phương trình là một mặt cầu
.
Cho hình chóp
có đáy
là tam giác vuông tại A và có
,
. Mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính theo
thể tích
của khối chóp
.

Gọi là trung điểm của
, suy ra
.
Do theo giao tuyến
nên
.
Tam giác là đều cạnh
nên
.
Tam giác vuông , có
.
Diện tích tam giác vuông .
Vậy .
Điều kiện xác định của bất phương trình
là:
BPT xác định khi :
.
Vậy BPT xác định khi .
Tính đạo hàm của hàm số ![]()
Ta có:
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Trong không gian với hệ tọa độ
, cho các điểm
. Bán kính mặt cầu ngoại tiếp tứ diện
là:
Gọi là mặt cầu ngoại tiếp tứ diện
Phương trình mặt cầu có dạng
Vì nên ta có:
Vậy bán kính mặt cầu là:
Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn
, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

Gọi (O) và (O') lần lượt là hai đường tròn đáy; .
Dựng AD, CB lần lượt song song với OO' . Dễ dàng có ABCD là hình chữ nhật.
Do .
Gọi H là trung điểm của DC.
.
Ta có .
Suy ra .
Vậy thể tích của khối trụ là .
Gọi P là tập hợp các giá trị nguyên của tham số m để hàm số
đồng biến trên tập xác định của nó. Tổng các phần tử của tập hợp P là:
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
=>
=> Tổng P bằng 10
Cho hàm số
là hàm đa thức có đạo hàm
. Số điểm cực trị của hàm số là:
Ta có:
Ta có bảng biến thiên như sau:
Vậy hàm số có hai điểm cực trị.