Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:
Từ bảng biến thiên ta có:
Mặt khác f(-4) > f(8) => thì
Vậy
Cho hàm số y = f(x) liên tục trên và có bảng biến thiên như hình vẽ.

Biết f(-4) > f(8), khi đó giá trị nhỏ nhất của hàm số đã cho trên bằng:
Từ bảng biến thiên ta có:
Mặt khác f(-4) > f(8) => thì
Vậy
Tìm giá trị của tham số m sao cho đồ thị hàm số
có tiệm cận ngang.
Ta có:
Đồ thị hàm số có tiệm cận ngang khi và chỉ khi bậc của tử số bé hơn hoặc bằng bậc của mẫu số
Đồng thời
Cho hàm số
. Tính tổng
là:
Với ta có:
Nhận thấy
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình
nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

Giả sử bất phương trình nghiệm đúng với mọi
thì tham số
thỏa mãn điều kiện là:
Cho hàm số
có đồ thị như sau:

Xét tính đúng sai của các khẳng định sau:
a)
là đồ thị của hàm số
. Đúng||Sai
b)
là đồ thị của hàm số
. Đúng||Sai
c)
là đồ thị của hàm số
. Sai|| Đúng
d) Đồ thị của hàm số
và
là khác nhau. Sai|| Đúng
Cho hàm số có đồ thị như sau:
Xét tính đúng sai của các khẳng định sau:
a) là đồ thị của hàm số
. Đúng||Sai
b) là đồ thị của hàm số
. Đúng||Sai
c) là đồ thị của hàm số
. Sai|| Đúng
d) Đồ thị của hàm số và
là khác nhau. Sai|| Đúng
a) Đồ thị hàm số
- Giữ nguyên phần trên trục Ox.
- Đối xứng với phần bị bỏ của đồ thị qua trục Ox.
b) Ta có:
Do đó đồ thị hàm số gồm hai phần:
Phần 1: Đồ thị hàm số với
.
Phần 2: Đối xứng với phần còn lại của đồ thị với x < −1 qua trục Ox.
c) Đồ thị gồm hai phần:
Phần 1: Giữ nguyên phần trên Ox
Phần 2: Đối xứng với phần bị bỏ của đồ thị qua trục Ox.
d) Đồ thị của hàm số và
là giống nhau.
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại
là:
Khối đa diện đều loại là khối hai mươi mặt đều:

Gồm 20 mặt là các tam giác đều nên tổng các góc bằng:
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Hàm số
có bao nhiêu điểm cực trị?
Tập xác định
Ta có:
Ta có bảng biến thiên như sau:

Vậy hàm số đã cho có ba điểm cực trị
Cho hàm số
có bảng xét dấu đạo hàm như sau:

Hàm số
nghịch biến trên khoảng nào dưới đây?
Xét hàm số ta có:
Đặt
Xét hàm số có
. Hàm số nghịch biến khi
Vậy hàm số nghịch biến trên khoảng
.
Tính theo
thể tích
của khối hộp chữ nhật
. Biết rằng mặt phẳng
hợp với đáy
một góc
,
hợp với đáy
một góc
và
.

Ta có
Tam giác vuông , có
.
Tam giác vuông , có
.
Tam giác vuông , có
.
Diện tích hình chữ nhật .
Vậy
Nếu đặt
thì phương trình
trở thành phương trình nào?
Đặt
PT
.
Anh T đã làm hợp đồng xin vay vốn ngân hàng để kinh doanh với số tiền 200 triệu đồng với lãi suất a% trên một năm. Điều kiện hợp đồng là số tiền lại tháng trước sẽ được tính làm vốn để sinh lãi cho tháng sau. Sau hai năm kinh doanh, anh T dã thanh toán hợp đồng ngân hàng với số tiền làm tròn là 245512000 đồng. Chọn khẳng định đúng?
Lãi suất mỗi tháng là . Theo công thức lãi kép ta có:
Tập nghiệm của bất phương trình
là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Cho hàm số y = f(x) liên tục trên
và có bảng biến thiên như hình vẽ dưới đây

Hàm số y = f(x) là hàm số nào trong các hàm số sau:
Dựa vào bảng biến thiên ta thấy:
=> Hệ số a > 0
=> Loại đáp án B và C
Mặt khác hàm số đạt cực trị tại x = 0 và x = 2
=> Loại đáp án D
Đồ thị hàm số
có điểm cực đại là
và một điểm cực tiểu là
. Tính giá trị biểu thức
?
Do đồ thị hàm số có một cực tiểu
nên
.
Cho hình chóp
có đáy ABC là tam giác vuông tại B và
. Cạnh bên
và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp
.

Diện tích tam giác vuông
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Cho hàm số
có đồ thị như hình vẽ sau. Hàm số đã cho đồng biến trên khoảng nào dưới đây?

Dựa vào đồ thị ta có hàm số đồng biến trên khoảng
Tổng các nghiệm của phương trình
là:
Điều kiện . Có
Dó đó, tổng các nghiệm sẽ bằng .
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định
Trong không gian
, cho hai điểm
và
. Phương trình mặt cầu có tâm
và đi qua
là:
Ta có:
Vậy phương trình mặt cầu tâm và đi qua điểm
có phương trình là:
.
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Tính thể tích
của khối lăng trụ
biết thể tích khối chóp
bằng ![]()
Ta có thể tích khối chóp:
Suy ra:
Cho hàm số
xác định trên tập số thực và có đạo hàm
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng
. Đúng||Sai
b) Hàm số nghịch biến trên khoảng
. Đúng||Sai
c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng
d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai
Cho hàm số xác định trên tập số thực và có đạo hàm
. Xét tính đúng sai của các khẳng định sau:
a) Hàm số đồng biến trên khoảng . Đúng||Sai
b) Hàm số nghịch biến trên khoảng . Đúng||Sai
c) Đồ thị hàm số có hai điểm cực trị. Sai|| Đúng
d) Đồ thị hàm số có một điểm cực tiểu. Đúng||Sai
Ta có:
Bảng biến thiên:
a) Hàm số đồng biến trên khoảng .
b) Hàm số nghịch biến trên khoảng nên nghịch biến trên
.
c) Hàm số có đúng một điểm cực trị.
d) Hàm số có đúng một điểm cực tiểu .
Cho hình chóp
có đáy ABC là tam giác vuông cân tại B, . Cạnh bên , hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp
là:

Gọi M là trung điểm AC, suy ra
Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S.
Ta có , suy ra tam giác SAC đều.
Gọi G là trọng tâm , suy ra
. (1)
Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.
Lại có nên SM là trục của tam giác ABC.
Mà G thuộc SM nên suy ra .
Từ (1) và (2), suy ra hay G là tâm mặt cầu ngoại tiếp khối chóp
.
Bán kính mặt cầu .
Điều kiện xác định của phương trình
là:
Biểu thức và xác định
Hàm số
đạt cực đại tại
Tập xác định:
Ta có:
Ta có bảng biến thiên
Vậy hàm số đạt cực tiểu tại và
.
Đặt
. Khi đó
biểu diễn là:
Ta có:
Phương trình
có hai nghiệm
trong đó
, hãy chọn phát biểu đúng?
Logarit hóa hai vế của phương trình (theo cơ số 2) ta được:
Trong hệ tọa độ
, cho mặt cầu
có đường kính
, với
. Viết phương trình
tiếp xúc với mặt cầu
tại
?
Hình vẽ minh họa
Vì mặt cầu có đường kính là AB nên tâm I của mặt cầu
là trung điểm của
.
Mặt cầu có tâm I(1; 1; 1).
Vì tiếp xúc với
tại
nên
đi qua
và nhận
làm vectơ pháp tuyến.
Suy ra
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Nghiệm nguyên lớn nhất của bất phương trình
là:
x=1 || X=1 || x bằng 1
Nghiệm nguyên lớn nhất của bất phương trình là:
x=1 || X=1 || x bằng 1
Vậy nghiệm nguyên lớn nhất của BPT là .
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành; điểm I nằm trên SC sao cho
. Mặt phẳng
chứa cạnh
cắt cạnh
lần lượt tại
. Gọi
lần lượt là thể tích khối chóp
và
. Tính giá trị nhỏ nhất của tỉ số thể tích
.

Đặt .
Ta có .
Ta có .
Dấu bằng xảy ra khi .
Vậy giá trị nhỏ nhất cử tỉ số thể tích cần tìm là .
Cho hàm số
có đạo hàm liên tục trên
. Biết đồ thị của hàm số
biểu diễn như hình vẽ:

Khi đó hàm số
nghịch biến trên khoảng nào sau đây?
Ta có:
Vậy đáp án cần tìm là .
Cho hàm số
với
là tham số. Định điều kiện của tham số
để hàm số
có ba điểm cực trị?
Ta có:
Để hàm số có ba điểm cực trị thì đồ thị hàm số
có đúng một cực trị nằm bên phải trục tung => phương trình (*) có 1 nghiệm dương => phương trình (*) có hai nghiệm dương
thỏa mãn
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai
Hình bát diện đều có tất cả bao nhiêu cạnh?
12 || mười hai || Mười hai

Hình bát diện đều có 12 cạnh.
Bất phương trình
có tập nghiệm là:
Ta có
Vậy BPT có tập nghiệm là .
Giá trị của biểu thức
là:
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Hình nón có đường sinh
và hợp với đáy góc
. Diện tích toàn phần của hình nón bằng:

Theo giả thiết, ta có
và
.
Suy ra:
.
Vậy diện tích toàn phần của hình nón bằng: (đvdt).
Hình đa diện trong hình vẽ sau có bao nhiêu cạnh?

Quan sát hình vẽ và đếm các cạnh xung quanh, chú ý cả những cạnh được vẽ bằng nét đứt, không nhìn thấy được.
Rút gọn biểu thức
với x > 0
Ta có:
Tìm tất cả các giá trị thực của tham số m để bất phương trình
có nghiệm đúng
.
Bất phương trình tương đương
hoặc
: (*) không thỏa
và
: (*)
Đồ thị hàm số nào sau đây không có tiệm cận ngang?
Ta có:
Vậy đồ thị hàm số không có tiệm cận ngang.
Để uốn
thanh kim loại thành hình như sau:

Gọi
bán kính của nửa đường tròn. Tìm
để diện tích tạo thành đạt giá trị lớn nhất?
Để uốn thanh kim loại thành hình như sau:
Gọi bán kính của nửa đường tròn. Tìm
để diện tích tạo thành đạt giá trị lớn nhất?
Trong các khẳng định sau, khẳng định nào đúng?
Xét hàm số ta có:
Vậy hàm số đồng biến trên tập số thực.
Tìm giá trị tham số
để đồ thị hàm số
có ba điểm cực trị
sao cho trục
chia tam giác
thành một tam giác và một hình thang biết rằng tỉ lệ diện tích tam giác nhỏ được chia ra và diện tích hình thang bằng
?
Ta có:
Hàm số có ba điểm cực trị khi và chỉ khi có ba nghiệm phân biệt
Khi đồ thị hàm số có ba điểm cực trị là
,
,
Ta có: , B và C đối xứng với nhau qua
suy ra tam giác
cân tại
Hình vẽ minh họa
Trục hoành chia tam giác thành một tam giác và một hình thang
Kết hợp với điều kiện ta được
Khi đó gọi D; E lần lượt là giao điểm của Ox và các cạnh AB; AC. Gọi K là giao điểm của BC và Oy
Ta có:
Mà
Vì
.
Cho hàm số
. Khẳng định nào sau đây đúng?
Đồ thị hàm số có đường tiệm cận đứng x = 1