Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Xác định các giá trị của tham số m để hàm số y= - x^{4} + 2\left( m^{2} + 3 ight)x^{2} + 2 có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Vận dụng

    Đồ thị (C) của hàm số y = \frac{{ax + 2}}{{cx + b}} có bảng biến thiên như hình vẽ.

    Giá trị của biểu thức K

    Biết tiếp tuyến (C) tại giao điểm của (C) với trục tung song song với đường thẳng y = 2x + 2018. Giá trị của biểu thức K = a + 2b + 3c là:

    Do đồ thị hàm số có tiệm cận đứng là x = -1 và tiệm cận ngang y = -3

    => Hàm số có dạng y = \frac{{ - 3x + b}}{{x - 1}} \Rightarrow y' = \frac{{3 - b}}{{{{\left( {x - 1} ight)}^2}}} \Rightarrow y'\left( 0 ight) = 3 - b

    Do tiếp tuyến song song với đường thẳng

    => 3 – b = 2 => b = 1

    Vậy a = -3; b = 1; c = 1 => K = 2

  • Câu 3: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 4: Vận dụng cao

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

    Đáp án: 40538432

    Đáp án là:

    Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.

    Đáp án: 40538432

    Hình vẽ minh họa:

    Mô hình hoá chân tháp bằng cụt chóp tứ giác đều ABCD.A′B′C′D′ với O, O′ là tâm của hai đáy.

    Vậy AB = 5,A'B' = 2,CC' =
3.

    ABCD là hình vuông

    \Rightarrow AC = \sqrt{AB^{2} + BC^{2}}
= 5\sqrt{2} \Rightarrow CO = \frac{1}{2}AC =
\frac{5\sqrt{2}}{2}

    A^{'}B^{'}C^{'}D^{'} là hình vuông

    \Rightarrow A^{'}C^{'} =
\sqrt{A^{'}{B^{'}}^{2} + B^{'}{C^{'}}^{2}} = 2\sqrt{2}
\Rightarrow C^{'}O^{'} = \frac{1}{2}A^{'}C^{'} =
\sqrt{2}

    Kẻ C^{'}H\bot OC\ \ (H \in
OC)

    OHC^{'}O^{'} là hình chữ nhật

    \Rightarrow OH = O^{'}C^{'} =
\sqrt{2},OO^{'} = C^{'}H \Rightarrow CH = OC - OH =
\frac{3\sqrt{2}}{2}

    \Delta CC^{'}H vuông tại H

    \Rightarrow C^{'}H = \sqrt{CC^{'2}- CH^{2}} = \frac{3\sqrt{2}}{2} \Rightarrow OO^{'} = C^{'}H =\frac{3\sqrt{2}}{2}

    Diện tích đáy lớn là:

    S = AB^{2} = 5^{2}
= 25\left( m^{2} ight)

    Diện tích đáy bé là:

    S^{'} =
A^{'}B^{'2} = 2^{2} = 4\left( m^{2} ight)

    Thể tích hình chóp cụt là:

    V = \frac{1}{3}h\left( S +
\sqrt{SS^{'}} + S^{'} ight) =
\frac{1}{3}.\frac{3\sqrt{2}}{2}(25 + \sqrt{25.4} + 4) =
\frac{39\sqrt{2}}{2}\left( m^{3} ight)

    Số tiền để mua bê tông tươi làm chân tháp là: \frac{39\sqrt{2}}{2}.1470000 \approx
40538432 (đồng).

  • Câu 5: Thông hiểu

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} có tập xác định là:

    Hàm số y = {x^\alpha } có số mũ nguyên âm xác định khi

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} xác định khi 4{x^2} - 1 e 0 \Leftrightarrow x e  \pm \frac{1}{2}

    Vậy tập xác định là: D = \mathbb{R}\backslash \left\{ { - \frac{1}{2};\frac{1}{2}} ight\}

  • Câu 6: Nhận biết

    Cho a và b là hai số dương bất kì. Mệnh đề nào dưới đây sai?

    Ta có:

    \begin{matrix}  {\log _2}{\left( {3ab} ight)^3} = 3.\left( {{{\log }_3}3 + {{\log }_3}a + {{\log }_3}b} ight) \hfill \\   = 3.\left( {1 + {{\log }_3}a + {{\log }_3}b} ight) \hfill \\   = 3 + 3{\log _3}ab \hfill \\   = 3 + {\log _3}{\left( {ab} ight)^3} \hfill \\ \end{matrix}

  • Câu 7: Nhận biết

    Tập xác định của hàm số y = \log {\left( {x - 2} ight)^2} là:

    Hàm số y = \log {\left( {x - 2} ight)^2} xác định nếu {\left( {x - 2} ight)^2} > 0 \Leftrightarrow x e 2

    Vậy tập xác định D = \mathbb{R}\backslash \left\{ 2 ight\}

  • Câu 8: Nhận biết

    Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

    Quan sát hình vẽ, ta thấy:

    Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.

  • Câu 9: Vận dụng

    Đạo hàm của hàm số y = {\left( {{x^2} + x + x} ight)^{\frac{1}{3}}}

    Ta có:

    \begin{matrix}  y' = \dfrac{1}{3}.{\left( {{x^2} + x + 1} ight)^{\frac{1}{3} - 1}}.\left( {{x^2} + x + 1} ight)\prime  \hfill \\   \Rightarrow y' = \dfrac{1}{3}.{\left( {{x^2} + x + 1} ight)^{ - \frac{2}{3}}}.\left( {2x + 1} ight) \hfill \\   \Rightarrow y' = \dfrac{{2x + 1}}{{3\sqrt[3]{{{{\left( {{x^2} + x + 1} ight)}^2}}}}} \hfill \\ \end{matrix}

  • Câu 10: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m \in \left[ { - 2019;2019} ight] để hàm số y = \frac{{\ln x - 6}}{{\ln x - 3m}} đồng biến trên khoảng \left( {1;{e^6}} ight)?

    Đặt t = \ln x

    Khi đó hàm số đã cho đồng biến trên khoảng \left( {1;{e^6}} ight) khi và chỉ khi hàm số y = \frac{{t - 6}}{{t - 3m}} đồng biến trên khoảng \left( {0;6} ight)

    Hàm số f(t) đồng biến trên khoảng \left( {0;6} ight) khi và chỉ khi:

    \left\{ {\begin{array}{*{20}{c}}  { - 3m + 6 > 0} \\   {3m otin \left( {0;6} ight)} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 2} \\   {\left[ {\begin{array}{*{20}{c}}  {m \leqslant 0} \\   {m \geqslant 2} \end{array}} ight.} \end{array}} ight. \Rightarrow m \leqslant 0

    m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 2019; - 2018;...;0} ight\}

    Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.

  • Câu 11: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA = BC = a. Cạnh bên SA = 2a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC  là:

     Tìm bán kính

    Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.

    Gọi I là trung điểm SC, suy ra IM ||SA nên IM \bot \left( {ABC} ight) .

    Do đó IM là trục của \triangle ABC, suy ra IA=IB=IC     (1)

    Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên IS=IC=IA.  (2)

    Từ (1) và (2) , ta có IS=IA=IB=IC

    hay I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.

    Vậy bán kính R = IS = \frac{{SC}}{2} = \frac{{\sqrt {S{A^2} + A{C^2}} }}{2} = \frac{{a\sqrt 6 }}{2} .

  • Câu 12: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để giá trị lớn nhất của hàm số y = \frac{m\sin x + 1}{\cos x + 2} nhỏ hơn 2?

    Ta có: y = \frac{m\sin x + 1}{\cos x + 2}\Leftrightarrow m\sin x + 1 = y\cos x + 2y

    \Leftrightarrow m\sin x - y\cos x = 2y -
1

    Phương trình có nghiệm khi

    m^{2} + y^{2} \geq (2y - 1)^{2}
\Leftrightarrow m^{2} + y^{2} \geq 4y^{2} - 4y + 1

    \Leftrightarrow 3y^{2} - 4y + 1 - m^{2}
\leq 0

    Xét phương trình 3y^{2} - 4y + 1 - m^{2}
= 0\Delta' = ( - 2)^{2} -
3\left( 1 - m^{2} ight) = 3m^{2} + 1 > 0;\forall m

    Suy ra phương trình 3y^{2} - 4y + 1 -
m^{2} = 0 luôn có hai nghiệm phân biệt. Do đó:

    \Leftrightarrow \frac{2 - \sqrt{3m^{2} +
1}}{3} \leq \frac{2 + \sqrt{3m^{2} + 1}}{3}

    Suy ra \max y = \frac{2 + \sqrt{3m^{2} +
1}}{3}. Theo yêu cầu bài toán ta có:

    \max y < 2 \Leftrightarrow \frac{2 +
\sqrt{3m^{2} + 1}}{3} < 2

    \Leftrightarrow \sqrt{3m^{2} + 1} < 4
\Leftrightarrow 3m^{2} + 1 < 16 \Leftrightarrow - \sqrt{5} < m
< \sqrt{5}

    m\mathbb{\in Z} suy ra m \in \left\{ - 2; - 1;0;1;2 ight\}

    Vậy có tất cả 5 giá trị nguyên của tham số m thỏa mãn.

  • Câu 13: Thông hiểu

    Viết biểu thức \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?

    Ta có: 

    \begin{matrix}  A = \sqrt {a\sqrt {a\sqrt a } } :{a^{\frac{{11}}{6}}} = {\left( {a\sqrt {{a^{\frac{3}{2}}}} } ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} \hfill \\   = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {\left( {{a^{\frac{7}{4}}}} ight)^{\frac{1}{2}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{7}{8}}}:{a^{\frac{{11}}{6}}} = {a^{\frac{{23}}{{24}}}} \hfill \\ \end{matrix}

  • Câu 14: Thông hiểu

    Phương trình \log _2^2x - 4{\log _2}x + 3 = 0 có tập nghiệm là?

    Điều kiện: x > 0

    \log _2^2x - 4{\log _2}x + 3 = 0 \Leftrightarrow \left[ \begin{gathered}  {\log _2}x = 1 \hfill \\  {\log _2}x = 3 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 2 \hfill \\  x = 8 \hfill \\ \end{gathered}  ight.

    Vậy PT có tập nghiệm là S={8;2}.

  • Câu 15: Nhận biết

    Điều kiện xác định của bất phương trình {\log _{\frac{1}{2}}}(4x + 2) - {\log _{\frac{1}{2}}}(x - 1) > lo{g_{\frac{1}{2}}}x là:

     BPT xác định khi:  \left\{ \begin{gathered}  x > 0 \hfill \\  4x + 2 > 0 \hfill \\  x - 1 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x >  - \frac{1}{2} \hfill \\  x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 1.

  • Câu 16: Nhận biết

    Chọn hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây:

    Chọn hàm số tương ứng với đồ thị hàm số

    Quan sát đồ thị hàm số ta thấy:

    Hàm số có dạng hàm số bậc bốn trùng phương: y = a{x^4} + b{x^2} + c

    => Loại đáp án B

    Đồ thị có nhánh cuối của đồ thị đi lên

    => Hệ số a > 0

    => Loại đáp án A

    Đồ thị hàm số cắt trục tung tại điểm O

    => c = 0

    => Loại đáp án C

  • Câu 17: Vận dụng

    Năng lượng giải tỏa E của một trận động đất tại tâm địa chấn M độ Richter được xác định bởi công thức \log E =
11,4 + 1,5M. Vào năm 1995, thành phố X xảy ra một trận động đất 8 độ Richter và năng lượng giải tỏa tại tâm địa chấn của nó gấp 14 lần trận động đất ra tại thành phố Y vào năm 1997. Hỏi khi đó độ lớn của trận động đất tại thành phố Y là bao nhiêu? (kết quả làm tròn đến hàng phần chục)

    Theo đề bài ta có: \frac{E_{X}}{E_{Y}} =
14.

    \Rightarrow \log\left(
\frac{E_{X}}{E_{Y}} ight) = \log E_{X} - \log E_{Y} = 1,5\left( M_{X}
- M_{Y} ight) = log14

    \Leftrightarrow M_{X} - M_{Y} =
\frac{log14}{1,5}

    \Rightarrow M_{Y} = 8 -
\frac{log14}{1,5} \approx 7,2

    Vậy độ lớn của trận động đất tại thành phố Y là 7,2 độ Richter.

  • Câu 18: Vận dụng cao

    Với giá trị nào của tham số m thì bất phương trình {2^{{{\sin }^2}x}} + {3^{{\text{co}}{{\text{s}}^2}x}} \geqslant m{.3^{{{\sin }^2}x}} có nghiệm?

     Chia hai vế của bất phương trình cho {3^{{{\sin }^2}x}} > 0, ta được:

    {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} \geqslant m

    Xét hàm số y = {\left( {\frac{2}{3}} ight)^{{{\sin }^2}x}} + 3.{\left( {\frac{1}{9}} ight)^{{{\sin }^2}x}} là hàm số nghịch biến.

    Ta có: 0 \leqslant {\sin ^2}x \leqslant 1 nên 1 \leqslant y \leqslant 4.

    Vậy bất phương trình có nghiệm khi m \leqslant 4.

  • Câu 19: Nhận biết

    Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a.  Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

     Diện tích toàn phần

    Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,

    Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.

    Theo đề bài, ta có tam giác SAB vuông cân tại S nên AB = SB\sqrt 2  = a\sqrt 2, SO = \frac{{SB\sqrt 2 }}{2} = \frac{{a\sqrt 2 }}{2}.

    Suy ra h = SO = \frac{{a\sqrt 2 }}{2},  l = SA = a  và SB\sqrt 2  = 2R \Rightarrow R = \frac{{SB\sqrt 2 }}{2} = \frac{{\sqrt 2 a}}{2}.

     

    Diện tích toàn phần của hình nón: {S_{tp}} = \pi R\ell  + \pi {R^2} = \frac{{\left( {1 + \sqrt 2 } ight)\pi {a^2}}}{2}(đvdt).

    Thể tích khối nón là: V = \frac{1}{3}\pi {R^2}h = \frac{{\sqrt 2 \pi {a^3}}}{{12}} (đvtt). 

  • Câu 20: Thông hiểu

    Tính thể tích V của khối lập phương ABCD.A'B'C'D', biết AC' = a\sqrt 3.

     

    Đặt cạnh của khối lập phương là x  ( x > 0)

    Suy ra CC' = x;\,{\text{ }}AC = x\sqrt 2.

    Tam giác vuông ACC', có

    AC' = \sqrt {A{C^2} + CC{'^2}}  \Leftrightarrow x\sqrt 3  = a\sqrt 3  \Rightarrow x = a

    Vậy thể tích khối lập phương V = a^3.

  • Câu 21: Thông hiểu

    Cho hàm số f(x) có đồ thị như hình vẽ:

    Hàm số y = - 3f(x - 2) nghịch biến trên khoảng nào?

    Ta có: y' = - 3f'(x - 2) < 0
\Leftrightarrow f'(x - 2) > 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x - 2 > 2 \\
x - 2 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x > 4 \\
x < 2 \\
\end{matrix} ight.

    Vậy hàm số y = - 3f(x - 2) nghịch biến trên khoảng ( -
\infty;1).

  • Câu 22: Thông hiểu

    Hàm số nào sau đây phù hợp với hình vẽ:

    Tìm hàm số tương ứng với đồ thị hàm số

     Ta có: y\left( 1 ight) = 0 và hàm số đồng biến trên \left( {0; + \infty } ight) nên chỉ có hàm số y = {\log _{\sqrt 6 }}x thỏa mãn

  • Câu 23: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

     Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!

  • Câu 24: Nhận biết

    Phương trình {\log _2}(x + 3) + {\log _2}(x - 1) = {\log _2}5 có nghiệm là:

    2 || hai || x=2 || Hai

    Đáp án là:

    Phương trình {\log _2}(x + 3) + {\log _2}(x - 1) = {\log _2}5 có nghiệm là:

    2 || hai || x=2 || Hai

     PT \Leftrightarrow \left\{ \begin{gathered}  x - 1 > 0 \hfill \\  (x + 3)(x - 1) = 5 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {x^2} + 2x - 8 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \left[ \begin{gathered}  x =  - 8 \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow x = 2

  • Câu 25: Thông hiểu

    Trong các hình dưới đây, hình nào không phải đa diện lồi?

     Áp dụng dấu hiệu nhận biết của khối đa diện lồi (H): Đoạn thẳng nối hai điểm bất kì của (H) luôn thuộc (H). Ta thấy có hình sau vi phạm tính chất đó:

     

  • Câu 26: Vận dụng

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) \geqslant {\log _4}\left( {{{\log }_2}x} ight) là:

    8 || tám || Tám

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) \geqslant {\log _4}\left( {{{\log }_2}x} ight) là:

    8 || tám || Tám

     BPT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  {\log _2}x > 0 \hfill \\  {\log _4}x > 0 \hfill \\   + {\log _2}\left( {{{\log }_{{2^2}}}x} ight) \geqslant {\log _{{2^2}}}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\   + {\log _2}\left( {\frac{1}{2}{{\log }_2}x} ight) \geqslant \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\   + {\log _2}\left( {\frac{1}{2}{{\log }_2}x} ight) \geqslant \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}\left( {{{\log }_2}x} ight) - 1 \geqslant \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  \frac{1}{2}{\log _2}\left( {{{\log }_2}x} ight) \geqslant 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}\left( {{{\log }_2}x} ight) \geqslant 2 \hfill \\ \end{gathered}  ight.

    \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  {\log _2}x \geqslant 4 \hfill \\ \end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}  x > 1 \hfill \\  x \geqslant 8 \hfill \\ \end{gathered}  ight. \Rightarrow x \geqslant 8

    Vậy giá trị nghiệm nguyên nhỏ nhất của BPT là 8.

     

  • Câu 27: Thông hiểu

    Cho hình trụ có chiều cao bằng 8a . Biết hai điểm A và C lần lượt nằm trên hai đáy thỏa mãn AC=10a, khoảng cách giữa AC và trục của hình trụ bằng 4a. Thể tích của khối trụ đã cho là:

      Thể tích của khối trụ

    Gọi (O) và (O') lần lượt là hai đường tròn đáy; A\in (O), C \in (O') .

    Dựng AD, CB lần lượt song song với OO' (D \in (O'), B \in (O). Dễ dàng có ABCD là hình chữ nhật.

    Do AC=10a,AD=8a\Rightarrow DC=6a..

    Gọi H là trung điểm của DC.

    \left\{\begin{matrix}O^\prime H\bot D C\\O^\prime H\bot A D\\\end{matrix}\Rightarrow O^\prime H\bot(ABCD)ight..

    Ta có O^\prime//(ABCD)\Rightarrow d\left(OO^\prime,ACight)=d\left(OO^\prime,(ABCD)ight)=O^\prime H=4a..

    Suy ra O^\prime H=4a,CH=3a\Rightarrow R=O^\prime C=5a..

    Vậy thể tích của khối trụ là V=\pi R^2h=\pi(5a)^28a=200\pi a^3.

  • Câu 28: Thông hiểu

    Biết \sqrt[5]{{\frac{b}{a}\sqrt[3]{{\frac{a}{b}}}}} = {\left( {\frac{a}{b}} ight)^m} với a và b là các số thực dương. Tìm m?

    Ta có:

    \begin{matrix}  {\left( {\dfrac{a}{b}} ight)^m} = {\left( {\sqrt[3]{{\dfrac{{{b^3}}}{{{a^3}}}.\dfrac{a}{b}}}} ight)^{\frac{1}{5}}} = {\left( {\dfrac{{{b^2}}}{{{a^2}}}} ight)^{\frac{1}{{15}}}} = {\left( {\dfrac{b}{a}} ight)^{\frac{2}{{15}}}} \hfill \\   \Rightarrow m = \dfrac{{ - 2}}{{15}} \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Tổng các nghiệm của phương trình \log_{4}x^{2} - \log_{2}3 = 1 là:

    Điều kiện x eq 0. Có

    \log_{4}x^{2} - \log_{2}3 = 1

    \Leftrightarrow \frac{1}{2}\log_{2}x^{2}= 1 + \log_{2}3

    \Leftrightarrow \frac{1}{2}\log_{2}x^{2}= \log_{2}2 + \log_{2}3

    \Leftrightarrow \log_{2}x^{2} =2.\log_{2}6

    \Leftrightarrow \log_{2}x^{2} =\log_{2}6^{2}

    \Leftrightarrow x^{2} = 6^{2}
\Leftrightarrow x = \pm 6

    Dó đó, tổng các nghiệm sẽ bằng 0.

  • Câu 30: Vận dụng

    Cho hàm số y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}}. Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có hai tiệm cận đứng.

    Ta có: y = \frac{{{x^2} + x - 2}}{{{x^2} - 2x + m}} = \frac{{\left( {x - 1} ight)\left( {x + 2} ight)}}{{{x^2} - 2x + m}}

    Đồ thị hàm số có hai tiệm cận đứng khi và chỉ khi phương trình f\left( x ight) = {x^3} - 2x + m = 0 có hai nghiệm phân biệt thỏa mãn

    \left\{ {\begin{array}{*{20}{c}}  {x e 1} \\   {x e  - 2} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  \Delta ' > 0 \hfill \\  f\left( 1 ight) e 0 \hfill \\ \end{gathered}  \\   {f\left( { - 2} ight) e 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  \begin{gathered}  1 - m > 0 \hfill \\  m - 1 e 0 \hfill \\ \end{gathered}  \\   {m + 8 e 0} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {m < 1} \\   {m e  - 8} \end{array}} ight.

  • Câu 31: Nhận biết

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào sau đây?

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} có tiệm cận đứng x = -
2, tiệm cận ngang y =
3

    Suy ra tâm đối xứng là ( -
2;3).

  • Câu 32: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a \sqrt 2. Tính thể tích của khối chóp?

     thể tích chóp

    Diện tích hình vuông ABCD{S_{ABCD}} = {a^2}.

    Chiều cao khối chóp là SA = a \sqrt 2

    Vậy áp dụng công thức, ta có thể tích khối chóp là:

    {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 2 }}{3}

  • Câu 33: Vận dụng cao

    Cho hàm số y = f(x) như hình vẽ. Hỏi có tất cả bao nhiêu giá trị thực của tham số m để hàm số f\left( {{x^3} - m{x^2} - 2x + m} ight) có đúng 6 điểm cực trị?

    Điều kiện của m để hàm số có 6 cực trị

    Xét hàm số g\left( x ight) = f\left( {{x^3} - m{x^2} - 2x + m} ight)

    g'\left( x ight) = \left( {3{x^2} - 2mx - 2} ight).f'\left( {{x^3} - m{x^2} - 2x + m} ight)

    Yêu cầu bài toán xảy ra khi phương trình đạo hàm phải có 6 nghiệm bội lẻ:

    Ta có:

    g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3{x^2} - 2mx - 2 = 0} \\   {f'\left( {{x^3} - m{x^2} - 2x + m} ight) = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {3{x^2} - 2mx - 2 = 0\left( * ight)} \\   \begin{gathered}  {x^3} - m{x^2} - 2x + m =  - 1{\text{  }} \hfill \\  {x^3} - m{x^2} - 2x + m = 1{\text{    }} \hfill \\ \end{gathered}  \end{array}} ight.

    Phương trình (*) luôn có hai nghiệm phân biệt => Hai phương trình còn lại phải cho đúng 4 nghiệm nghiệm bội lẻ.

    \left[ {\begin{array}{*{20}{c}}  {{x^3} - m{x^2} - 2x + m =  - 1{\text{ }}} \\   {{x^3} - m{x^2} - 2x + m = 1{\text{ }}} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\left( {x - 1} ight)\left[ {{x^2} - \left( {m - 1} ight)x - m - 1} ight] = 0{\text{   }}\left( 1 ight)} \\   {\left( {x - 1} ight)\left[ {{x^2} - \left( {m + 1} ight)x + m - 1} ight] = 0{\text{    }}\left( 2 ight)} \end{array}} ight.

    Nhận thấy hai phương trình (1), (2) luôn cho hai nghiệm phân biệt vafcacs nghiệm của hai phương trình này không trùng nhau.

    Để hai phương trình có đúng 4 nghiệm bội lẻ thì:

    TH1: x = 1 là nghiệm của (x – 1)[x2 – (m – 1)x – m – 1] = 0 và x = -1 không phải là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0

    TH2: x = -1 là nghiệm của (x – 1)[x2 – (m + 1)x + m – 1] = 0 và x = 1 không phải là nghiệm của (x – 1)[x2 – (m – 1)x - m – 1] = 0

    => \left[ {\begin{array}{*{20}{c}}  {\left\{ {\begin{array}{*{20}{c}}  {1 - \left( {m - 1} ight) - m - 1 = 0} \\   {1 + \left( {m + 1} ight) + m - 1 e 0} \end{array}} ight.} \\   {\left\{ {\begin{array}{*{20}{c}}  {1 - \left( {m - 1} ight) - m - 1 e 0} \\   {1 + \left( {m + 1} ight) + m - 1 = 0} \end{array}} ight.} \end{array}} ight.\left[ {\begin{array}{*{20}{c}}  {\left\{ {\begin{array}{*{20}{c}}  {m = \dfrac{1}{2}} \\   {m e  - \dfrac{1}{2}} \end{array}} ight.} \\   {\left\{ {\begin{array}{*{20}{c}}  {m e \dfrac{1}{2}} \\   {m =  - \dfrac{1}{2}} \end{array}} ight.} \end{array}} ight. \Rightarrow m \pm \frac{1}{2}

    Vậy có hai giá thực của m thỏa mãn

  • Câu 34: Thông hiểu

    Giá trị nhỏ nhất của hàm số f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 là:

    Tập xác định D = \mathbb{R}

    Biến đổi f(x) như sau:

    \begin{matrix}  f\left( x ight) = \left( {x + 1} ight)\left( {x + 2} ight)\left( {x + 3} ight)\left( {x + 4} ight) + 2019 \hfill \\  f\left( x ight) = \left( {{x^2} + 5x + 4} ight)\left( {{x^2} + 5x + 6} ight) + 2019 \hfill \\ \end{matrix}

    Đặt t = {x^2} + 5x + 4 \Rightarrow t = {\left( {x + \frac{5}{2}} ight)^2} - \frac{9}{4} \geqslant  - \frac{9}{4};\forall x \in \mathbb{R}

    Hàm số đã cho trở thành

    f\left( y ight) = {t^2} + 2t + 2019 = {\left( {t + 1} ight)^2} + 2018 \geqslant 2018,\forall t \geqslant  - \frac{9}{4}

    Vậy giá trị nhỏ nhất của hàm số đã cho bằng 2018 tại t =  - 1

  • Câu 35: Nhận biết

    Biết rằng \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} = {x^n} với x > 0. Tìm n?

     Ta có:

    \begin{matrix}  \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} \hfill \\   = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^2}.{x^{\frac{1}{2}}}}} = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^{\frac{5}{2}}}}} \hfill \\   = {x^{\frac{1}{2}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{5}{6}}} = {x^{\frac{4}{3}}} \hfill \\ \end{matrix}

    Vậy n = \frac{4}{3}

  • Câu 36: Vận dụng

    Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.

    Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính V_{1} -
V_{2}, trong đó V_{1},V_{2} lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của V_{1} - V_{2} bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?

    Đáp án: 961 dm3

    Đáp án là:

    Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.

    Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính V_{1} -
V_{2}, trong đó V_{1},V_{2} lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của V_{1} - V_{2} bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?

    Đáp án: 961 dm3

    Cả hai lều đều có dạng khối lăng trụ đứng ngũ giác.

    Xét khối lăng trụ ở hình a. Chia mặt đáy thành hai phần bao gồm: hình chữ nhật có chiều rộng 180\ cm, chiều dài 350\ cm; tam giác cân có cạnh đáy dài 350\ cm, chiều cao 40\ cm như hình dưới đây.

    Diện tích mặt đáy của lăng trụ đó là:

    S_{1} = 180 \cdot 350 + \frac{1}{2} \cdot
40 \cdot 350 = 70000\left( \ cm^{2} ight)

    Vậy thể tích của khối lăng trụ ngũ giác đó là:

    V_{1} = S_{1} \cdot h_{1} = 70000.460 =
32200000\left( \ cm^{3} ight).

    Xét khối lăng trụ ở hình b. Chia mặt đáy thành hai phần bao gồm: hình thang cân có đáy lớn đài 370\ cm, đáy nhỏ dài 260\ cm , chiều cao 210\ cm; tam giác cân có cạnh đáy dài 260\ cm, chiều cao 50\ cm như hình vẽ .

    Diện tích mặt đáy của lăng trụ đó là:

    S_{2} = \frac{1}{2}(370 + 260) \cdot 210
+ \frac{1}{2} \cdot 260 \cdot 50 = 72650\left( \ cm^{2}
ight)

    Vậy thể tích của khối lăng trụ ngũ giác đó là:

    V_{2} = S_{2} \cdot h_{2} = 72650.430 =
31239500\left( \ cm^{3} ight)

    Do đó V_{1} - V_{2} = 960500\left( \
cm^{3} ight) \approx 961\left( dm^{3} ight).

  • Câu 37: Nhận biết

    Cho hàm số y = {\left( {x - 1} ight)^{ - \frac{1}{4}}}. Khẳng định nào sau đây đúng?

     Đồ thị hàm số có đường tiệm cận đứng x = 1 

  • Câu 38: Thông hiểu

    Biết bất phương trình \log_{2}\left( 3^{x}- 3 ight)\log_{8}\left( 3^{x}2^{- 2} - \frac{3}{4} ight) \leq1 có tập nghiệm là đoạn [a; b]. Giá trị biểu thức a + b bằng:

    Điều kiện \left\{ \begin{matrix}
3^{x} - 3 > 0 \\
3^{x - 2} - \frac{3}{4} > 0 \\
\end{matrix} \Leftrightarrow x > 1 ight..

    log_{2}\left( 3^{x} - 3ight)log_{8}\left( 3^{x}2^{- 2} - \frac{3}{4} ight) \leq1

    \Leftrightarrow log_{2}\left( 3^{x} - 3
ight).\frac{1}{3}\left\lbrack log_{2}\left( 3^{x} - 3 ight) - 2
ightbrack - 1 \leq 0

    Đặt t = log_{2}\left( 3^{x} - 3
ight)

    Ta có:

    \frac{1}{3}t(t - 2) - 1 \leq 0
\Leftrightarrow \frac{1}{3}t^{2} - \frac{2}{3}t - 1 \leq 0

    \Leftrightarrow - 1 \leq t \leq 3
\Leftrightarrow - 1 \leq log_{2}\left( 3^{x} - 3 ight) \leq
3

    \Leftrightarrow \frac{7}{2} \leq 3^{x}
\leq 11 \Leftrightarrow log_{3}\frac{7}{2} \leq x \leq
log_{3}11

    Suy ra tập nghiệm là S = \left\lbrack
log_{3}\frac{7}{2};log_{3}11 ightbrack \Rightarrow a + b =
log_{3}\frac{77}{2}.

  • Câu 39: Thông hiểu

    Đặt {\log _5}2 = a. Khi đó {\log _{25}}800 biểu diễn là:

    Ta có:

    {\log _{25}}800 = \frac{{{{\log }_5}800}}{{{{\log }_5}25}} = \frac{{{{\log }_5}{2^5}{{.5}^2}}}{{{{\log }_5}{5^2}}} = \frac{{5{{\log }_5}2 + 2}}{2} = \frac{{5a + 2}}{2}

  • Câu 40: Nhận biết

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + (y - 2)^{2} + (z + 1)^{2} =
6. Đường kính của (S) bằng

    Ta có bán kính của (S)\sqrt{6} nên đường kính của (S) bằng 2\sqrt{6}.

  • Câu 41: Thông hiểu

    Hai điểm cực trị của đồ thị hàm số y = (x
- 2)^{2}(x + 1)

    Ta có:

    f^{'}(x) = 2(x - 2)(x + 1) + (x -
2)^{2}

    = 2x^{2} - 2x - 4 + x^{2} - 4x + 4 =
3x^{2} - 6x

    f^{'}(x) = 0 = > x = 1;x =
2

    Vậy hai điểm cực trị cần tìm là: A(0;4),B(2;0)

  • Câu 42: Thông hiểu

    Khối đa diện nào sau đây có số mặt nhỏ nhất?

    Khối tứ diện đều có 4 mặt là 4 tam giác đều.

    Khối chóp tứ giác có 5 mặt: 4 mặt xung quanh là các tam giác cân, mặt đáy là hình vuông.

    Khối lập phương có 6 mặt tất cả, mỗi mặt đều là các hình vuông

    Khối 12 mặt đều có 12 mặt tất cả, mỗi mặt là 1 hình ngũ giác đều.

     

  • Câu 43: Nhận biết

    Cho hàm số y = f(x) xác định, liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Khẳng định nào sau đây đúng?

    Dựa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = 2.

  • Câu 44: Vận dụng

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

    Đáp án là:

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

     Khối mười hai mặt đều có tất cả 30 cạnh:

     Suy ra ta có tổng độ dài tất cả các cạnh bằng \ell  = 30.2 = 60.

  • Câu 45: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R}. Biết đồ thị của hàm số y = f'(x) biểu diễn như hình vẽ:

    Khi đó hàm số y = f\left( x^{2} - 1
ight) nghịch biến trên khoảng nào sau đây?

    Ta có: y' = 2x.f'\left( x^{2} - 1
ight) \leq 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
f'\left( x^{2} - 1 ight) \geq 0 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
f'\left( x^{2} - 1 ight) \leq 0 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
x^{2} - 1 \leq 3 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
x^{2} - 1 \geq 3 \\
\end{matrix} ight.\  \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
\left\{ \begin{matrix}
x \leq 0 \\
- 2 \leq x \leq 2 \\
\end{matrix} ight.\  \\
\left\{ \begin{matrix}
x \geq 0 \\
\left\lbrack \begin{matrix}
x \leq - 2 \\
x \geq 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
- 2 \leq x \leq 0 \\
x \geq 2 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là ( -
2;0).

  • Câu 46: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho điểm M(1; - 2;3). Gọi I là hình chiếu vuông góc của M trên trục Ox. Phương trình nào dưới đây là phương trình mặt cầu tâm I bán kính IM?

    Hình chiếu vuông góc của M trên Ox là: I(1;0;0)

    \Rightarrow IM = \sqrt{13}

    Suy ra phương trình mặt cầu tâm I bán kính IM là: (x -
1)^{2} + y^{2} + z^{2} = 13.

  • Câu 47: Nhận biết

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{x^{3}}{3} + 2x^{2} - mx + 2020 đồng biến trên \mathbb{R}?

    Ta có:

    Hàm số y = \frac{x^{3}}{3} + 2x^{2} - mx
+ 2020 đồng biến trên \mathbb{R}

    \Leftrightarrow y' = x^{2} + 4x - m
\geq 0;\forall x\mathbb{\in R}

    Dễ thấy x^{2} + 4x - m \geq 0;\forall
x\mathbb{\in R \Leftrightarrow}\left\{ \begin{matrix}
1 > 0 \\
\Delta' = 4 + m \leq 0 \\
\end{matrix} ight.\  \Leftrightarrow m \leq - 4

    Vậy hàm số đã cho đồng biến trên \mathbb{R} khi m \leq - 4.

  • Câu 48: Vận dụng

    Cho hàm số f\left( x ight) = \frac{{{2^x}}}{{{x^x} + 2}}. Tính tổng f\left( 0 ight) + f\left( {\frac{1}{{10}}} ight) + ... + f\left( {\frac{{18}}{{10}}} ight) + f\left( {\frac{{19}}{{10}}} ight) là:

    Với a + b = 2 ta có:

    f\left( a ight) + f\left( b ight) = \frac{{{2^a}}}{{{2^a} + 2}} + \frac{{{2^b}}}{{{2^b} + 2}} = \frac{{{{2.2}^{a + b}} + {{2.2}^a} + {{2.2}^b}}}{{{2^{a + b}} + {{2.2}^a} + {{2.2}^b} + 4}} = 1

    Nhận thấy \frac{1}{{10}} + \frac{{19}}{{10}} = 2... \Rightarrow P = f\left( 0 ight) + f\left( 1 ight) + 9.1 = \frac{{59}}{6}

  • Câu 49: Vận dụng cao

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) mà đồ thị hàm số y = f’(x) được biểu diễn như hình vẽ:

    Bất phương trình nghiệm đúng với mọi x thuộc khoảng

    Giả sử bất phương trình f\left( x ight) > \sin \frac{{\pi x}}{2} + m nghiệm đúng với mọi x \in \left[ { - 1;3} ight] thì tham số m thỏa mãn điều kiện là:

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 50: Vận dụng

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Gọi S là tập hợp tất cả các giá trị nguyên dương của tham số m sao cho hàm số y = f(x - m) đồng biến trên khoảng (2020; + \infty). Hỏi tập hợp S có tất cả bao nhiêu phần tử?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo