Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại \left\{ {4;3} ight\} là:

    Khối đa diện đều loại \left\{ {4;3} ight\} là khối lập phương, gồm 6 mặt là các hình vuông nên tổng các góc bằng:  6.2\pi  = 12\pi

  • Câu 2: Vận dụng

    Hàm số y = \sqrt[3]{{{{\left( {{x^2} - 2x - 3} ight)}^2}}} + 2 có bao nhiêu điểm cực trị?

    Tập xác định D = \mathbb{R}

    Ta có: y' = \frac{2}{3}.\frac{{2x - 2}}{{\sqrt[3]{{{x^2} - 2x - 3}}}};\left( {x e  - 1;x e 3} ight)

    Ta có bảng biến thiên như sau:

    Tìm số cực trị của hàm số lũy thừa

    Vậy hàm số đã cho có ba điểm cực trị

  • Câu 3: Nhận biết

    Đồ thị hàm số nào sau đây không có tiệm cận ngang?

    Ta có:

    \mathop {\lim }\limits_{x \to \infty } y = \mathop {\lim }\limits_{x \to \infty } \dfrac{{{x^2} + 1}}{{x - 1}} = \mathop {\lim }\limits_{x \to \infty } \dfrac{{x + \dfrac{1}{x}}}{{1 - \dfrac{1}{x}}} = \mathop {\lim }\limits_{x \to \infty } x = \infty

    Vậy đồ thị hàm số y = \frac{{{x^2} + 1}}{{x - 1}} không có tiệm cận ngang.

  • Câu 4: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 5: Nhận biết

    Trong không gian Oxyz, hỏi trong các phương trình sau đây phương trình nào là phương trình của mặt cầu?

    Phương trình x^{2} + z^{2} + 3x - 2y + 4z
- 1 = 0 không có y^{2}=> Loại

    Phương trình x^{2} + y^{2} + z^{2} + 2xy
- 4y + 4z - 1 = 0 có số hạng 2xy => Loại

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
2y - 4z + 8 = 0 loại vì

    a^{2} + b^{2} + c^{2} - d = 1 + 1 + 4 -
8 < 0

    Phương trình x^{2} + y^{2} + z^{2} - 2x +
4z - 1 = 0 thỏa mãn vì

    a^{2} +
b^{2} + c^{2} - d = 1 + 0 + 4 + 1 = 6 > 0.

  • Câu 6: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA=BC=a. Cạnh bên SA=2a và vuông góc với mặt phẳng đáy. Tính theo a thể tích V của khối chóp S.ABC.

    Chóp tam giác

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}BA.BC = \frac{{{a^2}}}{2}

    Chiều cao khối chóp là SA=2a.

    Vậy thể tích khối chóp {V_{S.ABC}} = \frac{1}{3}{S_{ABC}}.SA = \frac{{{a^3}}}{3}

  • Câu 7: Thông hiểu

    Điều kiện xác định của phương trình \log ({x^2} - 6x + 7) + x - 5 = \log (x - 3) là:

    Điều kiện phương trình xác định:  

    \left\{ \begin{gathered}  {x^2} - 6{\text{x + 7}} > 0 \hfill \\  x - 3 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x > 3 + \sqrt 2  \hfill \\  x < 3 - \sqrt 2  \hfill \\ \end{gathered}  ight. \hfill \\  x > 3 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 3 + \sqrt 2

  • Câu 8: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 9: Vận dụng

    Hàm số y = \frac{1}{3}x^{3} +
\frac{m}{2}x^{2} + x + 6 đồng biến trên nửa khoảng \lbrack 1; + \infty) khi:

    Ta có: y' = x^{2} + mx +
1

    Để hàm số đã cho đồng biến trên nửa khoảng \lbrack 1; + \infty) khi đó:

    \Leftrightarrow y' \geq 0;\forall x
\in \lbrack 1; + \infty)

    \Leftrightarrow x^{2} + mx + 1 \geq
0;\forall x \in \lbrack 1; + \infty)

    \Leftrightarrow m \geq - x -
\frac{1}{x};\forall x \in \lbrack 1; + \infty)

    Xét hàm số g(x) = - x -
\frac{1}{x} trên nửa khoảng \lbrack
1; + \infty) ta có:

    g'(x) = - 1 + \frac{1}{x^{2}} =
\frac{1 - x^{2}}{x^{2}}

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Bảng biến thiên của hàm số g(x) = - x -
\frac{1}{x} trên nửa khoảng \lbrack
1; + \infty) là:

    Từ bảng biến thiên suy ra \max_{\lbrack
1; + \infty)}g(x) = g(1) = - 2

    Vậy m \geq g(x);\forall x \in \lbrack 1;
+ \infty) khi và chỉ khi m \geq -
2.

  • Câu 10: Vận dụng cao

    Cho hai hàm số bậc bốn y = f(x) và y = g(x) có các đồ thị như hình dưới đây.

    Tìm các điểm cực trị của hàm số

    Số điểm cực trị của hàm số h\left( x ight) = {f^2}\left( x ight) + {g^2}\left( x ight) - 2f\left( x ight).g\left( x ight) là:

    Ta có:

    \begin{matrix}  h\left( x ight) = {\left[ {f\left( x ight) - g\left( x ight)} ight]^2} \hfill \\   \Rightarrow h'\left( x ight) = 2.\left[ {f\left( x ight) - g\left( x ight)} ight]\left[ {f'\left( x ight) - g'\left( x ight)} ight] \hfill \\  h'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f\left( x ight) - g\left( x ight) = 0\left( * ight)} \\   {f'\left( x ight) - g'\left( x ight) = 0\left( {**} ight)} \end{array}} ight. \hfill \\ \end{matrix}

    Từ đồ thị ta thấy phương trình (*) có đùng 2 nghiệm phân biệt là x = -1; x = 3, x = x1, và f(x) – g(x) đổi dấu khi đi qua các nghiệm này

    => Các nghiệm trên là nghiệm bội lẻ của (*)

    Mà f(x) và g(x) đều là đa thức bậc 4 nên bậc của phương trình (*) nhỏ hơn hoặc bằng 4

    => Phương trình (*) là phương trình bậc 3 có 3 nghiệm phân biệt nên phương trình (**) phải có 2 nghiệm phân biệt không trùng với các nghiệm của phương trình (*)

    => h’(x) = 0 có 5 nghiệm phân biệt và h’(x) đổi dấu khi đi qua các nghiệm đấy nên hàm số h(x) có 5 điểm cực trị.

  • Câu 11: Vận dụng cao

    Bất phương trình {25^{ - {x^2} + 2x + 1}} + {9^{ - {x^2} + 2x + 1}} \geqslant {34.15^{ - {x^2} + 2x}} có tập nghiệm là:

    Ta có:  {25^{ - {x^2} + 2x + 1}} + {9^{ - {x^2} + 2x + 1}} \geqslant {34.15^{ - {x^2} + 2x}}

    \Leftrightarrow {\left( {\frac{5}{3}} ight)^{2\left( { - {x^2} + 2x + 1} ight)}} + 1 \geqslant \frac{{34}}{{15}}.{\left( {\frac{5}{3}} ight)^{\left( { - {x^2} + 2x + 1} ight)}}

    \Leftrightarrow \left[ \begin{gathered}  0 \leqslant x \leqslant 2 \hfill \\  x \leqslant 1 - \sqrt 3  \hfill \\  x \geqslant 1 + \sqrt 3  \hfill \\ \end{gathered}  ight.

    Vậy S = \left( { - \infty ;1 - \sqrt 3 } ight] \cup \left[ {0;2} ight] \cup \left[ {1 + \sqrt 3 ; + \infty } ight).

  • Câu 12: Thông hiểu

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = AA' = a, đường chéo AC'hợp với mặt đáy (ABCD) một góc \alpha thỏa mãn \cot \alpha  = \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Ta có AA' \bot \left( {ABCD} ight) nên \widehat {A'C,\left( {ABCD} ight)} = \widehat {A'C,AC} = \widehat {A'CA}.

    Tam giác vuông A'AC, ta có AC = AA'.\cot \alpha  = a\sqrt 5.

    Tam giác vuông ABC, ta có BC = \sqrt {A{C^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.BC = 2{a^2}.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.AA' = 2{a^3}.

  • Câu 13: Thông hiểu

    Với a > 0 hãy rút gọn biểu thức P = \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } } :{x^{\frac{9}{{16}}}}

    Ta có: 

    \begin{matrix}  \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } }  = \sqrt {x\sqrt {x\sqrt {x\sqrt {{x^{\frac{3}{2}}}} } } }  = \sqrt {x\sqrt {x\sqrt {{x^{\frac{7}{4}}}} } }  \hfill \\   = \sqrt {x\sqrt {x.{x^{\frac{7}{8}}}} }  = \sqrt {x\sqrt {{x^{\frac{{15}}{8}}}} }  = \sqrt {x.{x^{\frac{{15}}{{16}}}}}  = \sqrt {{x^{\frac{{31}}{{16}}}}}  = {x^{\frac{{31}}{{32}}}} \hfill \\   \Rightarrow P = {x^{\frac{{31}}{{32}}}}:{x^{\frac{9}{{16}}}} = {x^{\frac{{13}}{{32}}}} \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Đạo hàm của hàm số y = \frac{{{e^{4x}}}}{5}

    Ta có: y' = \frac{1}{5}\left( {{e^{4x}}} ight)' = \frac{1}{5}\left( {4x} ight)'.{e^{4x}} = \frac{4}{5}.{e^{4x}}

  • Câu 15: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 16: Vận dụng

    Có tất cả bao nhiêu cách phân tích số {15^9} thành tích của ba số nguyên dương, biết rằng các cách phân tích mà các nhân tử chỉ khác nhau về thứ tự thì chỉ được tính một lần?

    Ta có:

    \begin{matrix}  {15^9} = {3^9}{.5^9} \hfill \\   \Rightarrow {15^9} = \underbrace {3...3}_9.\underbrace {5...5}_9 \hfill \\   \Rightarrow {15^9} = \underbrace {\underbrace {3...3}_{{a_1}}.\underbrace {5...5}_{{b_1}}}_x.\underbrace {\underbrace {3...3}_{{a_2}}.\underbrace {5...5}_{{b_2}}}_y.\underbrace {\underbrace {3...3}_{{a_3}}.\underbrace {5...5}_{{b_3}}}_z \hfill \\ \end{matrix}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {x = {3^{{a_1}}}{5^{{b_1}}}} \\   {y = {3^{{a_2}}}{5^{{b_2}}}} \\   {z = {3^{{z_1}}}{5^{{z_2}}}} \end{array}} ight. suy ra ta có hệ \left\{ {\begin{array}{*{20}{c}}  {{a_1} + {a_2} + {a_3} = 9} \\   {{b_1} + {b_2} + {b_3} = 9} \end{array}} ight.

    Xét ba trường hợp:

    Trường hợp 1: Các số x,y,z bằng nhau

    => chỉ có 1 cách chọn

    Trường hợp 2: Trong ba số x,y,z có hai số bằng nhau, giả sử x = y

    =>\left\{ {\begin{array}{*{20}{c}}  {{a_1} = {a_2}} \\   {{b_1} = {b_2}} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {2{a_1} + {a_3} = 9} \\   {2{b_a} + {b_3} = 9} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{a_3} = 9 - 2{a_1}} \\   {{b_3} = 9 - 2{a_1}} \end{array}} ight.

    => Có 5 cách chọn {a_1} và 5 cách chọn {b_1}

    Trường hợp 3: Số cách chọn ba số phân biệt:

    Số cách chọn \left\{ {\begin{array}{*{20}{c}}  {{a_1} + {a_2} + {a_3} = 9} \\   {{b_1} + {b_2} + {b_3} = 9} \end{array}} ight.C_{11}^2.C_{11}^2

    => Số cách chọn ba số phân biệt là C_{11}^2.C_{11}^2 - 24.3 - 1

    Vậy số cách phân tích {15^9} thành tích ba số nguyên dương là \frac{{C_{11}^2.C_{11}^2 - 24.3 - 1}}{{3!}} + 25 = 517

  • Câu 17: Vận dụng cao

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm f'\left( x ight) = {x^2}\left( {x - 2} ight)\left( {{x^2} - 6x + m} ight) với mọi x \in \mathbb{R}. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số g\left( x ight) = f\left( {1 - x} ight) nghịch biến trên khoảng \left( { - \infty ; - 1} ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Thông hiểu

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =x^{3} - x^{2} + 3mx - 1 với m là tham số. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m \in \lbrack -10;2brack để hàm số đã cho đồng biến trên \mathbb{R}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Nhận biết

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 20: Nhận biết

    Cho a = {\log _3}2;b = {\log _3}5. Khi đó \log 60 có giá trị là:

    Ta có:

    \begin{matrix}  \log 60 = \dfrac{{{{\log }_3}60}}{{{{\log }_3}10}} \hfill \\   = \dfrac{{{{\log }_3}{2^2} + {{\log }_3}3 + {{\log }_3}5}}{{{{\log }_3}2 + {{\log }_3}5}} \hfill \\   = \dfrac{{{{\log }_3}{2^2} + 1 + {{\log }_3}5}}{{{{\log }_3}2 + {{\log }_3}5}} = \dfrac{{2a + b + 1}}{{a + b}} \hfill \\ \end{matrix}

  • Câu 21: Nhận biết

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:

    Đồ thị của hàm số y = - x^{3} + 3x +
1 thỏa mãn bài toán.

  • Câu 22: Vận dụng

    Cho tứ diện ABCD có thể tích V. Gọi V' là thể tích của khối tứ diện có các đỉnh là trọng tâm của các mặt của khối tứ diện ABCD. Tính tỉ số \frac{{V'}}{V}.

     

    Gọi M là trung điểm AC; E và F lần lượt là trọng tâm của tam giác ABC, ACD.

    Trong tam giác MBD có EF = \frac{1}{3}BD.

    Tương tự ta có các cạnh còn lại của tứ diện mới sinh ra bằng \frac{1}{3} cạnh của tứ diện ban đầu.

    Do đó \frac{{V'}}{V} = {\left( {\frac{1}{3}} ight)^3} = \frac{1}{{27}}.

  • Câu 23: Vận dụng

    Cho {9^x} + {9^{ - x}} = 14;\frac{{6 + 3.\left( {{3^x} + {3^{ - x}}} ight)}}{{2 - {3^{x + 1}} - {3^{1 - x}}}} = \frac{a}{b}; (\frac{a}{b} là phân số tối giản). Tính giá trị biểu thức P = ab.

    Ta có:

    \begin{matrix}  {\left( {{3^x} + {3^{ - x}}} ight)^2} = 14 + 2 = 16 \hfill \\   \Rightarrow {3^x} + {3^{ - x}} = 4 \hfill \\   \Rightarrow \dfrac{a}{b} = \dfrac{{6 + 3.4}}{{2 - 3.4}} =  - \dfrac{9}{5} \hfill \\   \Rightarrow P =  - 45 \hfill \\ \end{matrix}

  • Câu 24: Vận dụng

    Giá trị của tham số m để đồ thị hàm số y = \frac{{\left( {2m - 1} ight)x + 1}}{{x - m}} có đường tiệm cận ngang y = 3 là:

    Điều kiện để đồ thị hàm số có tiệm cận là:

    - m\left( {2m - 1} ight) - 1 e 0 \Rightarrow 2{m^2} - m + 1 e 0 luôn đúng với \forall x \in \mathbb{R}

    Phương trình đường tiệm cận ngang là y = 2m - 1 nên ta có 2x - 1 = 3 \Rightarrow m = 2

  • Câu 25: Thông hiểu

    Cho hàm số y = \frac{1}{3}x^{2} + x^{2} +
(m - 2)x + 2 với m là tham số. Tìm tất cả các giá trị của tham số m để hàm số đã cho có hai điểm cực trị nằm bên trái trục Oy?

    Ta có: y' = x^{2} + 2x + m -
1

    Đồ thị của hàm số đã cho có hai điểm cực trị nằm bên trái trục tung khi và chỉ khi phương trình y' =
0 có hai nghiệm âm phân biệt

    \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
S < 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 - m + 1 > 0 \\
- 2 < 0 \\
m - 1 > 0 \\
\end{matrix} ight.\  \Leftrightarrow 1 < m < 2

    Vậy đáp án cần tìm là m \in
(1;2).

  • Câu 26: Thông hiểu

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng 30^0. Khoảng cách giữa AB và trục của hình trụ bằng:

    Tính khoảng cách

    Từ hình vẽ kết hợp với giả thiết, ta có OA = O'B = R.

    Gọi AA’ là đường sinh của hình trụ thì O'A' = R,{m{ }}AA' = R\sqrt 3\widehat {BAA'} = {30^0}.

    OO'\parallel \left( {ABA'} ight) nên d\left[ {OO',\left( {AB} ight)} ight] = d\left[ {OO',\left( {ABA'} ight)} ight] = d\left[ {O',\left( {ABA'} ight)} ight].

    Gọi H là trung điểm A’B, suy ra \left. \begin{array}{l}O'H \bot A'B\\O'H \bot AA'\end{array} ight\} \Rightarrow O'H \bot \left( {ABA'} ight)

    nên O'H = \frac{{R\sqrt 3 }}{2}h.

    Tam giác ABA’ vuông tại A’ nên BA' = AA'\tan {30^0} = R

    Suy ra tam giác A’BO đều có cạnh bằng R nên O'H = \frac{{R\sqrt 3 }}{2}.h

  • Câu 27: Vận dụng

    Cho hàm số y =
f(x) có đạo hàm f'(x) = x^{2}(x
- 9)(x - 4)^{2}. Khi đó hàm số y =
f\left( x^{2} ight) nghịch biến trên khoảng nào?

    Ta có:

    y' = \left( f\left( x^{2} ight)
ight)' = 2x.f'\left( x^{2} ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{4}\left( x^{2} - 9 ight)\left( x^{2} - 4 ight)^{2} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 3 \\
x = \pm 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên:

    Dựa vào bảng biến thiên ta có hàm số nghịch biến trên ( - \infty; - 3)(0;3).

  • Câu 28: Vận dụng cao

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Tìm m để bất phương trình nghiệm đúng

    Bất phương trình f\left( x ight) <  - \cos x + m nghiệm đúng với mọi x \in \left( {0;\pi } ight) khi và chỉ khi:

    Ta có: f\left( x ight) <  - \cos x + m \Rightarrow m > f\left( x ight) + \cos x\left( * ight)

    Xét hàm số  g\left( x ight) = f\left( x ight) + \cos x;x \in \left( {0;\pi } ight)

    => g'\left( x ight) = f'\left( x ight) - \sin x

    Ta có: \forall x \in \left( {0;\pi } ight):\left\{ {\begin{array}{*{20}{c}}  {f'\left( x ight) < 0} \\   {0 < \sin x \leqslant 1} \end{array}} ight.

    \begin{matrix}   \Rightarrow g'\left( x ight) = f'\left( x ight) - \sin x < 0;\forall x \in \left( {0;\pi } ight) \hfill \\   \Rightarrow f\left( x ight) - \cos x < g\left( 0 ight) = f\left( 0 ight) + 1 \hfill \\   \Rightarrow m \geqslant f\left( 0 ight) + 1 \hfill \\ \end{matrix}

  • Câu 29: Thông hiểu

    Tính thể tích Vcủa khối lăng trụ ABC.A'B'C' biết thể tích khối chóp A.BCB'C' bằng 2a^3

    Ta có thể tích khối chóp: {V_{A.A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}}

    Suy ra:

    {V_{A.BCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}}\xrightarrow{{}}{V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCB'C'}} = \frac{3}{2}.2{a^3} = 3{a^3}.

  • Câu 30: Vận dụng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 31: Nhận biết

    Tính đạo hàm của hàm số y = \sin x + {\log _3}{x^3};\left( {x > 0} ight) là:

     Áp dụng công thức tính đạo hàm: \left\{ {\begin{array}{*{20}{c}}  {\left( {\sin x} ight)' = \cos x} \\   {\left( {{{\log }_a}x} ight)' = \dfrac{1}{{x\ln a}};\left( {0 < a e 1} ight)} \end{array}} ight. ta có:

    y' = \left( {\sin x + {{\log }_3}{x^3}} ight) = \cos x + \frac{3}{{x\ln 3}}

  • Câu 32: Vận dụng

    Tập nghiệm của bất phương trình {\log _{\frac{1}{2}}}\left( {{{\log }_2}\left( {2x - 1} ight)} ight) > 0 là:

     Điều kiện: \left\{ \begin{gathered}  2x - 1 > 0 \hfill \\  {\log _2}(2x - 1) > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 1.

    Ta có: {\log _{\frac{1}{2}}}\left( {{{\log }_2}\left( {2x - 1} ight)} ight) > 0 \Leftrightarrow {\log _{\frac{1}{2}}}\left( {{{\log }_2}\left( {2x - 1} ight)} ight) > {\log _{\frac{1}{2}}}1

    \Leftrightarrow \left\{ \begin{gathered}  {\log _2}(2x - 1) < 1 \hfill \\  {\log _2}(2x - 1) > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  0 < 2x - 1 < 2 \hfill \\  2x - 1 > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow 1 < x < \frac{3}{2} (thỏa mãn điều kiện)

    Vậy tập nghiệm của bất phương trình đã cho là  S = \left( {1;\frac{3}{2}} ight).

  • Câu 33: Nhận biết

    Hình vẽ sau đây mô tả đồ thị của hàm số y
= f(x):

    Chọn mệnh đề đúng?

    Dựa vào đồ thị hàm số y = f(x) ta thấy hàm số đạt cực đại tại x =
0 và đạt cực tiểu tại x =
2.

  • Câu 34: Thông hiểu

    Gọi Đ là số các đỉnh, M là số các mặt, C là số các cạnh của một hình đa diện bất kỳ. Mệnh đề nào sau đây là đúng?

    Xét hình đa diện là một hình bất kì, ví dụ lấy đa diện là hình tứ diện thì ta có số đỉnh, mặt và cạnh lần lượt là:

    Đ=4; M=4; C=6

  • Câu 35: Thông hiểu

    Đẳng thức nào sau đây đúng với mọi số dương x?

    Ta có: \left( {\log x} ight)' = \frac{1}{{x\ln 10}};\forall x > 0

  • Câu 36: Nhận biết

    Khái niệm chính xác nhất về khối đa diện là:

     Áp dụng định nghĩa khối đa diện, ta có:

    “Khối đa diện là phần không gian được giới hạn bởi 1 hình đa diện, kể cả hình đa diện đó.”

  • Câu 37: Thông hiểu

    Bất phương trình {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1 có tập nghiệm là:

     TXĐ \Leftrightarrow \left\{ \begin{gathered}  {x^2} - x - 2 > 0 \hfill \\  x - 1 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x <  - 1 \vee x > 2 \hfill \\  x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow x > 2

    BPT \Leftrightarrow {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{0,5}}\left( {x - 1} ight) + 1

    \Leftrightarrow {\log _2}\left( {{x^2} - x - 2} ight) \geqslant {\log _{{2^{ - 1}}}}\left( {x - 1} ight) + 1

    \Leftrightarrow {\log _2}\left( {{x^2} - x - 2} ight) + {\log _2}\left( {x - 1} ight) - 1 \geqslant 0

    \Leftrightarrow {\log _2}\frac{{\left( {{x^2} - x - 2} ight)\left( {x - 1} ight)}}{2} \geqslant 0

    \Leftrightarrow \frac{{\left( {{x^2} - x - 2} ight)\left( {x - 1} ight)}}{2} \geqslant 1 \Leftrightarrow \left( {{x^2} - x - 2} ight)\left( {x - 1} ight) \geqslant 2

    \Leftrightarrow x\left( {{x^2} - 2x - 1} ight) \geqslant 0

    \Leftrightarrow {x^2} - 2x - 1 \geqslant 0 \Leftrightarrow \left[ \begin{gathered}  x \leqslant 1 - \sqrt 2 \left( {L} ight) \hfill \\  x \geqslant 1 + \sqrt 2 \left( {TM} ight) \hfill \\ \end{gathered}  ight.

    \Rightarrow x \geqslant 1 + \sqrt 2

  • Câu 38: Thông hiểu

    Dân số thế giới được tính theo công thức S = A. e \
^{nr} trong đó A là dân số của năm lấy làm mốc tính, S là dân số sau n năm, r là tỉ lệ tăng dân số hằng năm. Cho biết năm 2005 Việt Nam có khoảng 80902400 người và tỉ lệ tăng dân số là 1,47\% một năm. Như vậy, nếu tỉ lệ tăng dân số hàng năm không đổi thì tối thiểu đến năm bao nhiêu dân của Việt Nam có khoảng 93713000 người?

    Ta có:

    S = A \cdot e^{nr} \Leftrightarrow
e^{nr} = \frac{S}{A} \Leftrightarrow nr = \ln\frac{S}{A} \Leftrightarrow
n = \frac{1}{r}\ln\frac{S}{A}

    Với S = 93713700 người; A = 80902400 người; r = \frac{1,47}{100} = 0,0147/năm.

    Suy ra n =
\frac{1}{0,0147}\ln\frac{93713000}{80902400} \approx 10.

    Vậy tối thiểu đến năm 2015 thì dân số của Việt Nam có khoảng 93713000 người.

  • Câu 39: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt cầu \left( S_{1} ight):x^{2} + y^{2} + z^{2} + 4x +
2y + z = 0\left( S_{2}
ight):x^{2} + y^{2} + z^{2} - 2x - y - z = 0 cắt nhau theo một đường tròn (C) nằm trong mặt phẳng (P). Cho các điểm A (1; 0; 0), B (0; 2; 0), C (0; 0; 3). Có bao nhiêu mặt cầu tâm thuộc (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA?

    Mặt phẳng (P) chứa đường tròn (C) có được bằng cách khử x^{2};y^{2};z^{2} trong phương trình hai mặt cầu ta được 6x + 3y + 2z = 0. Mặt phẳng (ABC) có phương trình là

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} =
1⇔ 6x + 3y + 2z − 6 = 0.

    Do đó (P) // (ABC). Mặt cầu (S) tiếp xúc với cả ba đường thẳng AB, BC, CA sẽ giao với mặt phẳng (ABC) theo một đường tròn tiếp xúc với ba đường thẳng AB, BC, CA.

    Trên mặt phẳng (ABC) có 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA đó là đường tròn nội tiếp tam giác ABC và ba đường tròn bàng tiếp các góc A, B, C.

    Do đó có 4 mặt cầu có tâm nằm trên (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA.

    Tâm của 4 mặt cầu là hình chiếu của tâm 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA lên mặt phẳng (P).

  • Câu 40: Vận dụng cao

    Cho hình chóp S.ABCD có thể tích bằng V, đáy ABCD là hình vuông; SA \bot \left( {ABCD} ight)SC hợp với đáy một góc bằng 30^0. Mặt phẳng (P) đi qua A và vuông góc với SC, cắt các cạnh SB,SC,SD lần lượt tại E,F,K. Tính thể tích khối chóp S.AEFK

    V/10 || V phần 10

    Đáp án là:

    Cho hình chóp S.ABCD có thể tích bằng V, đáy ABCD là hình vuông; SA \bot \left( {ABCD} ight)SC hợp với đáy một góc bằng 30^0. Mặt phẳng (P) đi qua A và vuông góc với SC, cắt các cạnh SB,SC,SD lần lượt tại E,F,K. Tính thể tích khối chóp S.AEFK

    V/10 || V phần 10

     

    Ta có \frac{{SB}}{{SE}} = \frac{{S{B^2}}}{{S{A^2}}}. Tương tự \frac{{SD}}{{SK}} = \frac{{S{D^2}}}{{S{A^2}}} nên \frac{{SB}}{{SE}} = \frac{{SD}}{{SK}}.

    \frac{{SC}}{{SF}} = \frac{{S{C^2}}}{{S{A^2}}} = 4 (do \Delta SCA vuông tại A, \,\widehat {\,SCA} = {30^0}) nên ta có:

    \frac{{SC}}{{SF}} + 1 = \frac{{SB}}{{SE}} + \frac{{SD}}{{SK}} = 5 \Rightarrow \frac{{SB}}{{SE}} = \frac{{SD}}{{SK}} = \frac{5}{2}

    Xét tỉ số thể tích, ta được:

    \frac{{{V_{S.AEFK}}}}{{{V_{S.ABCD}}}} = \frac{{10}}{{4.1.4.\dfrac{5}{2}.\dfrac{5}{2}}} = \frac{1}{{10}}

    \Rightarrow {V_{S.AEFK}} = \frac{{{V_{S.ABCD}}}}{{10}} = \frac{V}{{10}}

     

  • Câu 41: Nhận biết

    Số nghiệm của phương trình {\log _2}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _2}x = 0 là:

    0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm

    Đáp án là:

    Số nghiệm của phương trình {\log _2}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _2}x = 0 là:

    0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm

     PT \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  {x^3} + 1 > 0 \hfill \\  {x^2} - x + 1 > 0 \hfill \\  {\log _{{2^{}}}}({x^3} + 1) - {\log _2}({x^2} - x + 1) - 2{\log _{{2^{}}}}x = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{{x^3} + 1}}{{{x^2}({x^2} - x + 1)}} = 0 \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  \frac{{(x + 1)({x^2} - x + 1)}}{{{x^2}({x^2} - x + 1)}} = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x + 1 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x =  - 1 \hfill \\ \end{gathered}  ight. \Rightarrow x \in \emptyset

    Vậy số nghiệm của PT là 0.

  • Câu 42: Vận dụng

    Cho hàm số y = f(x) = \left| x^{2} - 4x +3 ight| + mx với m là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số m để hàm số y= f(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = \left| x^{2} - 4x +3 ight| + mx với m là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số m để hàm số y= f(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 43: Thông hiểu

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 44: Thông hiểu

    Biết {\log _2}3 = a;{\log _2}5 = b,  khi đó {\log _{15}}8 có giá trị là:

    Ta có:

    {\log _{15}}8 = {\log _{15}}{2^3} = 3{\log _{15}}2 = \frac{3}{{{{\log }_2}15}} = \frac{3}{{{{\log }_2}3 + {{\log }_2}5}} = \frac{3}{{a + b}}

  • Câu 45: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P):x + \sqrt{2}y - z + 3 = 0 cắt mặt cầu (S):x^{2} + y^{2} + z^{2} = 5 theo giao tuyến là đường tròn có diện tích là:

    Mặt cầu (S) có tâm O(0;0;0) và bán kính R = \sqrt{5}

    Khoảng cách từ O đến (P): d\left( O;(P) ight) = \frac{3}{2}

    Bán kính đường tròn giao tuyến

    r = \sqrt{R^{2} - \left\lbrack d\left(
O;(P) ight) ightbrack^{2}} = \sqrt{5 - \frac{9}{4}} =
\sqrt{\frac{11}{4}}

    Diện tích đường tròn giao tuyến S = 2\pi
r^{2} = \frac{11\pi}{4}.

  • Câu 46: Vận dụng

    Phương trình {2^{x - 3}} = {3^{{x^2} - 5x + 6}} có hai nghiệm x_1, x_2 trong đó x_1 < x_2, hãy chọn phát biểu đúng?

     Logarit hóa hai vế của phương trình (theo cơ số 2) ta được:

    {2^{x - 3}} = {3^{{x^2} - 5x + 6}} \Leftrightarrow {\log _2}{2^{x - 3}} = {\log _2}{3^{{x^2} - 5x + 6}}

    \Leftrightarrow \left( {x - 3} ight){\log _2}2 = \left( {{x^2} - 5x + 6} ight){\log _2}3

    \Leftrightarrow \left( {x - 3} ight) - \left( {x - 2} ight)\left( {x - 3} ight){\log _2}3 = 0

    \Leftrightarrow \left( {x - 3} ight).\left[ {1 - \left( {x - 2} ight){{\log }_2}3} ight] = 0 \Leftrightarrow \left[ \begin{gathered}  x - 3 = 0 \hfill \\  1 - \left( {x - 2} ight){\log _2}3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  \left( {x - 2} ight){\log _2}3 = 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x - 2 = \frac{1}{{{{\log }_2}3}} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = {\log _3}2 + 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = {\log _3}2 + {\log _3}9 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 3 \hfill \\  x = {\log _3}18 \hfill \\ \end{gathered}  ight.

  • Câu 47: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 48: Nhận biết

    Điều kiện xác định của Bất phương trình {\log _2}\left[ {3{{\log }_2}\left( {3x - 1} ight) - 1} ight] \leq x là?

     Biểu thức {\log _2}\left[ {3{{\log }_2}\left( {3x - 1} ight) - 1} ight] \leq x xác định khi và chỉ khi:

     

    \left\{ \begin{gathered}  3{\log _2}\left( {3x - 1} ight) - 1 > 0 \hfill \\  3x - 1 > 0 \hfill \\ \end{gathered}  ight.  \Leftrightarrow \left\{ \begin{gathered}  {\log _2}\left( {3x - 1} ight) > \frac{1}{3} \hfill \\  x > \frac{1}{3} \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  3x - 1 > {2^{\frac{1}{3}}} \hfill \\  x > \frac{1}{3} \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{{{2^{\frac{1}{3}}} + 1}}{3} \hfill \\  x > \frac{1}{3} \hfill \\ \end{gathered}  ight. \Leftrightarrow x > \frac{{{2^{\frac{1}{3}}} + 1}}{3}

     

  • Câu 49: Thông hiểu

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 50: Thông hiểu

    Tổng độ dài \ell của tất cả các cạnh của một tứ diện đều cạnh a.

     

    Tứ diện đều có tất cả cạnh nên có tổng độ dài các cạnh là  \ell  = 6a

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo