Tập xác định của hàm số
là tập hợp nào sau đây?
Điều kiện xác định
Vậy tập xác định của hàm số là
Tập xác định của hàm số
là tập hợp nào sau đây?
Điều kiện xác định
Vậy tập xác định của hàm số là
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Tập nghiệm của bất phương trình
là?
BPT
Vậy bất PT có tập nghiệm là .
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên
?
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Vậy đáp án cần tìm là .
Cho mặt cầu S(O;R) , A là một điểm ở trên mặt cầu (S) và (P) là mặt phẳng qua A sao cho góc giữa OA và (P) bằng
. Diện tích của đường tròn giao tuyến bằng:

Gọi H là hình chiếu vuông góc của (O) trên (P) thì
● H là tâm của đường tròn giao tuyến của (P) và (S).
●
Bán kính của đường tròn giao tuyến: .
Suy ra diện tích đường tròn giao tuyến: .
Cho hàm số
có đạo hàm trên
và thỏa mãn
. Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi
Ta có:
.
Xét hàm số có
Bảng biến thiên
Vậy bất phương trình nghiệm đúng với mọi
khi và chỉ khi
.
Gọi
là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Gọi là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Điều kiện:
PT
Vậy .
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chiều dài đường sinh bằng 2a thì bán kính đáy bằng:
Gọi bán kính đáy là R.
Từ giả thiết suy ra và chu vi đáy bằng a .
Do đó .
Cho hàm số
có bảng biến thiên như sau:

Khẳng định nào sau đây đúng?
Điểm cực tiểu của hàm số là
Điểm cực tiểu của đồ thị hàm số là
Điểm cực đại của hàm số là .
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Cho
. Khi đó
có giá trị là:
Ta có:
Tổng các nghiệm của phương trình
là:
Điều kiện . Có
Dó đó, tổng các nghiệm sẽ bằng .
Phương trình
có tất cả bao nhiêu nghiệm thực ?
Ta có:
Xét hàm số
Ta có:
Hàm số nghịch biến trên R do các cơ số
.
Vậy phương trình có nghiệm duy nhất là x=2.
Cho hàm số
có bảng biến thiên như hình vẽ dưới đây:

Số nghiệm của phương trình
là:
Ta có:
Khi đó suy ra phương trình (1) có 1 nghiệm; phương trình (2) có 3 nghiệm và phương trình (3) có 1 nghiệm.
=> Phương trình có 5 nghiệm
Cho hình chóp
có đáy
là tam giác vuông cân ở
,
,
và vuông góc với đáy
. Gọi
là trọng tâm tam giác
. Mặt phẳng
qua
và song song với
cắt
lần lượt tại
. Tính theo
thể tích
của khối chóp
.

Từ giả thiết suy ra .
Diện tích tam giác . Do đó
.
Gọi là trung điểm
.
Do là trọng tâm
nên
.
Vì song song với giao tuyến
theo tỉ số
Vậy thể tích khối chóp .
Cho hàm số đa thức bậc bốn
. Đồ thị hàm số
được biểu thị trong hình vẽ sau:

Hàm số
nghịch biến trong khoảng nào?
Đặt . Ta có bảng xét dấu của
được mô tả lại như sau:
Từ đó suy ra bảng xét dấu của
Vậy hàm số nghịch biến trên các khoảng
.
Trong không gian với hệ tọa độ
, cho
và điểm
. Xét các điểm
sao cho đường thẳng
luôn tiếp xúc với
. Điểm
luôn thuộc một mặt phẳng cố định có phương trình là
Tọa độ tâm mặt cầu là:
Gọi khi đó:
.
Theo đề bài ra ta có:
Mặt khác phương trình mặt cầu
Lấy (*) trừ (**) ta được: .
Tính thể tích
của khối lăng trụ tam giác đều có tất cả các cạnh bằng
?
Xét khối lăng trụ tam giác đều có tất cả các cạnh bằng
.
Hàm số nào dưới dây nghịch biến trên khoảng
?
Xét hàm số có
nên hàm số
nghịch biến trên khoảng
.
Đồ thị của hàm số nào có dạng như hình vẽ sau đây?

Ta thấy hình vẽ là đồ thị của hàm bậc ba có hệ số nên hàm số cần tìm là
.
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Xét hàm số
. Khẳng định nào sau đây sai?
Ta có:
Ta có bảng xét dấu cho các biểu thức

Từ bảng xét dấu ta thấy
Khi đó hàm số nghịch biến
=> Đáp án B sai
Điều kiện xác định của phương trình
là:
Biểu thức xác định
.
Cho hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên
. Khi đó hàm số
có bao nhiêu điểm cực trị?
Ta có hàm số y = f(x) có đúng ba điểm cực trị -2; -1; 0 và có đạo hàm liên tục trên nên f’(x) = 0 có ba nghiệm x = -2; x = -1, x = 0
Đặt
Vì f’(x) liên tục trên nên g’(x) cũng liên tục trên
. Do đó những điểm g’(x) có thể đổi dấu thuộc tập các điểm thỏa mãn.
Ba nghiệm trên đều là nghiệm đơn hoặc bội lẻ nên hàm số g(x) có ba điểm cực trị.
Cho
; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Đồ thị của hàm số
(với
là tham số) cắt trục hoành tại bốn điểm phân biệt có hoành độ lập thành một cấp số cộng. Kết luận nào sau đây đúng?
Phương trình hoành độ giao điểm
Đặt . Phương trình trở thành
Phương trình (1) có 4 nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương phân biệt, nghĩa là
Gọi ;
là nghiệm cỉa phương trình (1) và
là nghiệm của phương trình (2)
Theo giả thiết ta có:
Ta có hệ:
Vậy
Cho hình chóp
có đáy
là hình chữ nhật có cạnh AB=a, BC =2a. Hai mặt bên
và
cùng vuông góc với mặt phẳng đáy
. Tính theo a thể tích V của khối chóp ![]()

Vì hai mặt bên (SAB) và (SAD) cùng vuông góc với (ABCD), suy ra . Do đó chiều cao khối chóp là
.
Diện tích hình chữ nhật ABCD là
Vậy thể tích khối chóp
Trong các mệnh đề sau, mệnh đề nào đúng?
Xét các đáp án, ta có:
- A Đúng: Ta chứng minh như sau:
Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.
M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)
Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)
Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.
- B Sai.
- C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.
- D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh
Tập nghiệm của bất phương trình
là:
Ta có:
Cho tứ diện đều
có cạnh bằng 1. Mặt phẳng
đi qua điểm S và trọng tâm G của tam giác
cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất
của khối tứ diện
.

Gọi E là trung điểm của BC.
Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

Theo định lí Talet, ta có:
Mặt khác
Do đó .
Đặt
Vì là tứ diện đều
và
Do đó
Ta có
Cho a là một số dương, biểu thức
viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Tập hợp tất cả các giá trị thực của tham số
để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là
Trong không gian với hệ tọa độ
, mặt cầu
và mặt phẳng
cắt nhau theo một đường tròn có chu vi là:
Hình vẽ minh họa
Mặt cầu (S) có tâm và bán kính
.
Ta có
Vì nên (α) cắt (S) theo giao tuyến là đường tròn (C).
Gọi H là hình chiếu vuông góc của I trên (α) ⇒ H là tâm của (C).
Lấy
Tam giác IHM vuông tại M
Suy ra chu vi của đường tròn (C) bằng .
Một người gửi vào ngân hàng 200 triệu đồng vào tài khoản tiết kiệm ngân hàng với lãi suất 0,6%/ tháng, cứ sau mỗi tháng người đó rút ra 500 nghìn đồng. Hỏi sau đúng 36 lần rút tiền thì số tiền còn lại trong tài khoản của người đó gần nhất với phương án nào sau đây? (Biết rằng lãi suất không thay đổi và tiền lại mỗi tháng tính theo số tiền thực tế trong tài khoản của tháng đó?
Số tiền còn lại trong tài khoản sau tháng thứ 1 là: (triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 2 là:
(triệu đồng)
Số tiền còn lại trong tài khoản sau tháng thứ 3 là:
(triệu đồng)
Cứ tiếp tục quá trình thì số tiền còn lại trong tài khoản sau tháng thứ 36 là:
(triệu đồng)
Tổng độ dài
của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Tổng độ dài của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2
60 || sáu mươi || Sáu mươi
Khối mười hai mặt đều có tất cả 30 cạnh:

Suy ra ta có tổng độ dài tất cả các cạnh bằng .
Cho biểu thức
với x > 0. Mệnh đề nào sau đây là đúng?
Ta có:
Tiệm cận đứng của đồ thị hàm số
là đường thẳng có phương trình
Ta có:
là tiệm cận đứng của đồ thị hàm số.
là tiệm cận đứng của đồ thị hàm số.
Bất phương trình
có tập nghiệm là:
Ta có:
Vậy .
Tìm tất cả các giá trị thực của tham số
để hàm số
có hai cực trị?
Ta có:
Để hàm số đã cho có hai cực trị thì có hai nghiệm phân biệt
Vậy với thì hàm số
có hai cực trị.
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Cho hàm số
có đồ thị của đạo hàm f’(x) như hình vẽ:

Biết rằng e > n. Số điểm cực trị của hàm số
bằng bao nhiêu?
Cho hàm số có đồ thị của đạo hàm f’(x) như hình vẽ:

Biết rằng e > n. Số điểm cực trị của hàm số bằng bao nhiêu?
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Hàm số nào sau đây phù hợp với hình vẽ:

Ta có: và hàm số đồng biến trên
nên chỉ có hàm số
thỏa mãn
Giả sử m là giá trị nhỏ nhất của hàm số
trên khoảng
. Tính giá trị của m.
Ta có:
Ta có bảng biến thiên như sau:

=> Giá trị nhỏ nhất của hàm số bằng 4
=> y(2) = 4
=> m = 4
Cho hình hộp chữ nhật
có
, đường chéo
hợp với mặt đáy
một góc
thỏa mãn
. Tính theo
thể tích khối hộp đã cho.
Ta có nên
.
Tam giác vuông , ta có
.
Tam giác vuông , ta có
.
Diện tích hình chữ nhật là
.
Vậy .
Nghiệm nguyên lớn nhất của bất phương trình là:
x=7 || X=7 || x bằng 7 || 7
Nghiệm nguyên lớn nhất của bất phương trình là:
x=7 || X=7 || x bằng 7 || 7
Điều kiện:
Ta có:
.
Vậy nghiệm nguyên lớn nhất của bất phương trình là: .
Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:

Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,
Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.
Theo đề bài, ta có tam giác SAB vuông cân tại S nên ,
Suy ra ,
và
Diện tích toàn phần của hình nón: (đvdt).
Thể tích khối nón là: (đvtt).
Tập xác định của hàm số
là:
Điều kiện xác định:
=> Tập xác định của hàm số là