Nghiệm nguyên nhỏ nhất của bất phương trình
là:
8 || tám || Tám
Nghiệm nguyên nhỏ nhất của bất phương trình là:
8 || tám || Tám
BPT
Vậy giá trị nghiệm nguyên nhỏ nhất của BPT là 8.
Nghiệm nguyên nhỏ nhất của bất phương trình
là:
8 || tám || Tám
Nghiệm nguyên nhỏ nhất của bất phương trình là:
8 || tám || Tám
BPT
Vậy giá trị nghiệm nguyên nhỏ nhất của BPT là 8.
Phương trình
có tập nghiệm là:
{2} || T={2}
Phương trình có tập nghiệm là:
{2} || T={2}
PT
.
Tính thể tích
của khối lăng trụ tam giác đều có cạnh đáy bằng
và tổng diện tích các mặt bên bằng ![]()

Xét khối lăng trụ có đáy
là tam giác đều và
.
Diện tích xung quanh lăng trụ là
Diện tích tam giác là
.
Vậy thể tích khối lăng trụ là .
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành; điểm I nằm trên SC sao cho
. Mặt phẳng
chứa cạnh
cắt cạnh
lần lượt tại
. Gọi
lần lượt là thể tích khối chóp
và
. Tính giá trị nhỏ nhất của tỉ số thể tích
.

Đặt .
Ta có .
Ta có .
Dấu bằng xảy ra khi .
Vậy giá trị nhỏ nhất cử tỉ số thể tích cần tìm là .
Cho hàm số
có bảng biến thiên như sau:

Số điểm cực trị của hàm số
là:
Số điểm cực trị của hàm số
Với m là số điểm cực trị của hàm số
n là số nghiệm bội lẻ của phương trình
Suy ra số điểm cực trị của hàm số
Cho số thực a dương. Rút gọn biểu thức ![P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}](https://i.khoahoc.vn/data/image/holder.png)
Ta có:
Trong các hàm số sau đây, hàm số nào nghịch biến trên tập số thực
?
Hàm số là hàm số mũ có cơ số bằng
nghịch biến trên
Hàm số là hàm số mũ có cơ số
nên đồng biến trên
Hàm số chỉ xác định trên
Hàm số có
nên nghịch biến trên
Cho hình đa diện đều loại
cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Đa diện đều loại là khối lập phương nên có 6 mặt là các hình vuông cạnh
.
Vậy hình lập phương có tổng diện tích tất cả các mặt là

Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Nếu đặt
thì bất phương trình
trở thành bất phương trình nào?
Điều kiện:
Sau khi đưa về cùng cơ số 4, rồi tiếp tục biến đổi về cùng cơ số 3 ta được bất phương trình
Vậy BPT trở thành: .
Trong không gian
, cho mặt phẳng
và mặt cầu
cắt nhau theo giao tuyến đường tròn
. Gọi
là thể tích khối cầu
,
là thể tích khối nón
có đỉnh là giao điểm của đường thẳng đi qua tâm mặt cầu
và vuông góc với mặt phẳng
, đáy là đường tròn
. Biết độ dài đường cao khối nón
lớn hơn bán kính của khối cầu
. Tính tỉ số
?
Hình vẽ minh họa
Mặt cầu (S) có tâm I(2; 1; 3) và bán kính R = 5, khoảng cách từ tâm I đến mặt phẳng (P) là:
Bán kính đường tròn là:
Thể tích khối cầu (S) là:
Chiều cao hình nón là .
Thể tích khối nón là
Vậy .
Cho hàm số bậc ba
với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho hàm số bậc ba với
là tham số. Gọi
là các điểm cực trị của hàm số đã cho. Xác định giá trị nhỏ nhất của biểu thức
?
Cho mặt cầu
và mặt phẳng
. Gọi (C) là đường tròn giao tuyến của (P) và (S). Tính tọa độ tâm H của (C).
Theo đề bài, mặt cầu (S) có tâm và vecto pháp tuyến của
Điều kiện xác định của phương trình
là:
Điều kiện phương trình xác định:
Cho hàm số
. Khẳng định nào sau đây đúng?
Tập xác định
Ta có:
Suy ra hàm số nghịch biến trên tập xác định
Hay hàm số nghịch biến trên các khoảng .
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình
có nghiêm đúng với
khi và chỉ khi :
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình có nghiêm đúng với
khi và chỉ khi :
Trong không gian, cho tam giác ABC vuông tại A, AB =a và
. Độ dài đường sinh
của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là và chiều cao hình nón là
.
Vậy độ dài đường sinh của hình nón là:
Tìm tập xác định của hàm số ![]()
Hàm số xác định khi và chỉ khi
Vậy tập xác định của hàm số là:
Cho phương trình
, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?
Đáp án: 5
Cho phương trình , m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?
Đáp án: 5
ĐKXĐ:
Ta có:
Để phương trình có nghiệm thì .
Kết hợp điều kiện m là số nguyên dương ta có m ∈ {1;2;3;4;5}.
Vậy có 5 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số
có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Cho hàm số có đạo hàm trên
là
. Có bao nhiêu giá trị nguyên của tham số
để hàm số
đồng biến trên khoảng
?
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số
. Giá trị của M – 2m2 bằng:
Điều kiện xác định
Xét hàm số trên [-1; 1] có:
Ta có:
Vậy
Quan sát hình và chọn khẳng định đúng trong các khẳng định sau:

Quan sát hình vẽ, ta thấy:
Khối chóp tứ giác S.ABCD được phân chia thành 2 khối tứ diện C.SAB và C.SAD.
Cho biết
, khẳng định nào sau đây đúng?
Điều kiện:
Ta có:
Vậy
Rút gọn biểu thức
với x > 0
Ta có:
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của
sao cho đồ thị của hàm số có
điểm cực trị. Tính tổng tất cả các phần tử của tập hợp
?
Phương trình
có họ nghiệm là ?
Ta có:
Đặt .
Khi đó: .
Với
.
Hàm số
có bao nhiêu điểm cực trị?
Hàm số là hàm trùng phương có
nên hàm số có ba điểm cực trị.
Cho khối chóp
có đáy
là hình vuông cạnh
, tam giác
cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy,
. Tính theo
thể tích của khối chóp
.

Gọi là trung điểm của
. Tam giác
cân tại
và có
là trung điểm
nên
. Do
theo giao tuyến
nên
.
Tam giác vuông , có:
Một hình đa diện có các mặt là những tam giác. Gọi M là tổng số mặt và C là tổng số cạnh của đa diện đó. Mệnh đề nào sau đây đúng.
Vì mỗi mặt là những tam giác nên có tổng số cạnh là 3M. Mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3M = 2C.
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

Cho hàm số
. Tập xác định của hàm số đã cho là:
Điều kiện xác đinh:
=> Tập xác định của hàm số là:
Giá trị của tham số m để đồ thị hàm số
có đường tiệm cận ngang
là:
Điều kiện để đồ thị hàm số có tiệm cận là:
luôn đúng với
Phương trình đường tiệm cận ngang là nên ta có
Cho hình chóp
có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1

Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao
và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:

Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Cho hàm số
có đạo hàm liên tục trên
và có đồ thị của hàm số
như hình vẽ sau:

Xét hàm
. Mệnh đề nào dưới đây sai?
Ta có:
Dựa vào đồ thị ta thấy
Vậy hàm số nghịch biến trên
là sai.
Cho hàm số
. Tính giá trị nhỏ nhất của hàm số đã cho trên đoạn
?
Hàm số liên tục trên đoạn
Ta có:
Khi đó nên
.
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Tính giá trị của
với ![]()
Ta có:
Cho hàm số
có đồ thị
. Hỏi có bao nhiêu cặp điểm
sao cho ba điểm
thẳng hàng và
với
là gốc tọa độ?
Gọi là đường thẳng đi qua ba điểm O, A, B khi đó d có phương trình
Khi đó hoành độ của O, A, B là nghiệm của phương trình
Giả sử khi đó ta có:
Do nên
TH1:
Khi đó .
TH2:
Khi đó .
Vậy có 2 cặp A; B thỏa mãn.
Có bao nhiêu giá trị nguyên của tham số m trên đoạn
để hàm số
có tập xác định
?
Hàm số xác định trên khi và chỉ khi
Do
Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.
Trong không gian tọa độ
, mặt cầu tâm
bán kính
có phương trình là
Mặt cầu tâm và bán kính
có phương trình là:
Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào?

Đồ thị trong hình vẽ là hàm số có dạng
Đồ thị hàm số có tiệm cận ngang là và tiệm cận đứng
nên hàm số cần tìm là
.
Cho hình lăng trụ đứng
có đáy là tam giác cân,
và
, góc giữa mặt phẳng
và mặt đáy
bằng
. Tính theo
thể tích khối lăng trụ.

Gọi là trung điểm của đoạn thẳng
. Tam giác
cân tại
nên ta suy ra tam giác
cân tại
Lại có . Từ đó suy ra
Do đó
Tam giác vuông , có
Tam giác vuông , có
Diện tích tam giác
Vậy .
Tập hợp tất cả các giá trị của tham số
để hàm số
đồng biến trên khoảng
là:
Hàm số đồng biến trên khi và chỉ khi
Vậy là giá trị cần tìm.
Cho các mệnh đề sau:
(i) Cơ số của logarit phải là số dương.
(ii) Chỉ số thực dương mới có logarit.
(iii)
với mọi
.
(iv)
với mọi
.
Số mệnh đề đúng là:
(i) Sai vì cơ số của chỉ cần thỏa mãn
(ii) Đúng vì điều kiện có nghĩa của là
(iii) Sai vì với mọi
(iv) Sai vì nếu thì các biểu thức
không có nghĩa.
Cho hàm số
có đồ thị như sau:

Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:
Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là và đường tiệm cận ngang là
.
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Điều kiện xác định của bất phương trình
là:
x>-2|| X>-2 || x lớn hơn -2
Điều kiện xác định của bất phương trình là:
x>-2|| X>-2 || x lớn hơn -2
Điều kiện:
Vậy để BPT xác định khi và chỉ khi .
Tìm tất cả các giá trị thực của tham số m để bất phương trình ![]()
Bất phương trình tương đương
: (2) không thỏa
: (3) không thỏa
(1) thỏa mãn
.
Vậy .