Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1; 2; −2). Gọi (P) là mặt phẳng đi qua H và cắt các trục Ox, Oy, Oz lần lượt tại các điểm A, B, C sao cho H là trực tâm của tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với (P).

    Hình vẽ minh họa

    Vì H là trực tâm tam giác ABC nên AH ⊥ BC, CH ⊥ AB

    \Rightarrow \left\{ \begin{matrix}
AB\bot(OHC) \\
BC\bot(AHO) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
(ABC)\bot(OHC) \\
(ABC)\bot(AHO) \\
\end{matrix} ight.\  \Rightarrow OH\bot(ABC)

    Do vậy mặt cầu tâm O tiếp xúc với (P) nhận OH làm bán kính

    ⇒ Phương trình mặt cầu là x^{2} + y^{2} + z^{2} =
9.

  • Câu 2: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào saì?

    Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có: 

    - Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.

    - Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.

  • Câu 3: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 4: Nhận biết

    Tập nghiệm của bất phương trình {\left( {\frac{1}{2}} ight)^x} > 32 là:

    Ta có: {\left( {\frac{1}{2}} ight)^x} > 32\Leftrightarrow {\left( {\frac{1}{2}} ight)^x} > {\left( {\frac{1}{2}} ight)^{ - 5}} \Leftrightarrow x <  - 5

  • Câu 5: Vận dụng

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Vận dụng

    Giá trị của biểu thức M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {3\sqrt 2  - 4} ight)^{2018}} là:

    Ta có:

    \begin{matrix}  3\sqrt 2  - 4 = \sqrt 2 .\left( {3 - 2\sqrt 2 } ight) \hfill \\   \Rightarrow M = {\left( {3 + 2\sqrt 2 } ight)^{2019}}.{\left( {\sqrt 2 } ight)^{2018}}.{\left( {3 - 2\sqrt 2 } ight)^{2018}} \hfill \\  \left( {3 + 2\sqrt 2 } ight)\left( {3 - 2\sqrt 2 } ight) = {3^2} - {\left( {2\sqrt 2 } ight)^2} = 9 - 8 = 1 \hfill \\   \Rightarrow {\left( {3 + 2\sqrt 2 } ight)^{2018}}{\left( {3 - 2\sqrt 2 } ight)^{2018}} = 1 \hfill \\   \Rightarrow M = {\left( {3 - 2\sqrt 2 } ight)^{2018}}{.2^{2019}} \hfill \\ \end{matrix}

  • Câu 7: Thông hiểu

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Người ta muốn xây một cái bể hình hộp đứng có thể tích 18m^{3}, biết đáy bể là hình chữ nhật có chiều dài gấp ba lần chiều rộng và bể không có nắp. Hỏi cần xây bể có chiều cao h bằng bao nhiêu mét để nguyên vật liệu xây dựng là ít nhất (biết nguyên vật liệu xây dựng các mặt là như nhau)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Thông hiểu

    Tính thể tích Vcủa khối lăng trụ ABC.A'B'C' biết thể tích khối chóp A.BCB'C' bằng 2a^3

    Ta có thể tích khối chóp: {V_{A.A'B'C'}} = \frac{1}{3}{V_{ABC.A'B'C'}}

    Suy ra:

    {V_{A.BCB'C'}} = \frac{2}{3}{V_{ABC.A'B'C'}}\xrightarrow{{}}{V_{ABC.A'B'C'}} = \frac{3}{2}{V_{A.BCB'C'}} = \frac{3}{2}.2{a^3} = 3{a^3}.

  • Câu 9: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'(x) = x^{2}(x - 1)\left( x^{2} + 2mx +m + 1 ight) với \forallx\mathbb{\in R}m là tham số. Có bao nhiêu giá trị nguyên của m\in (10; + \infty) để hàm số g(x) =f\left( |x| ight) có 5 điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng

    Biết đồ thị hàm số y = \frac{{\left( {2m - n} ight){x^2} + mx + 1}}{{{x^2} + mx + n - 6}} nhận trục hoành và trục tung làm hai tiệm cận. Giá trị m + n là:

    Điều kiện {x^2} + mx + n - 6 e 0

    Phương trình đường tiệm cận ngang của đồ thị hàm số là y = 2m - n

    => 2m - n = 0\left( * ight)

    Đặt \left\{ {\begin{array}{*{20}{c}}  {f\left( x ight) = \left( {2m - n} ight){x^2} + mx + 1} \\   {g\left( x ight) = {x^2} + mx + n - 6} \end{array}} ight.

    Nhận thấy f\left( x ight) e 0 với mọi m, n nên đồ thị nhận trục tung x = 0 làm tiệm cận đứng thì g(0) = 0

    => n – 6 = 0 => n = 6

    Kết hợp với (*) => m = 3

    Vậy m + n = 9

  • Câu 11: Nhận biết

    Đường cong trong hình vẽ dưới đây là đồ thị của hàm số nào dưới đây?

    Xác định hàm số y = f(x)

    Dựa vào đồ thị hàm số ta thấy

    \mathop {\lim }\limits_{x \to \infty } y =  + \infty => Hệ số a > 0

    => Loại đáp án B và đáp án D

    Mặt khác hàm số có ba điểm cực trị

    => Loại đáp án C

  • Câu 12: Thông hiểu

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight)là:

    17 || x=17 || x bằng 17 || X=17

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight)là:

    17 || x=17 || x bằng 17 || X=17

     Điều kiện:

    {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight) \Leftrightarrow {\log _2}\left( {{{\log }_2}x} ight) > 2

    \Leftrightarrow {\log _2}x > 4 \Leftrightarrow x > 16

    Vậy nghiệm nguyên nhỏ nhất x=17.

  • Câu 13: Thông hiểu

    Nghiệm lớn nhất của phương trình - {\log ^3}x + 2{\log ^2}x = 2 - \log x  là:

    100 || 1 trăm || một trăm || Một trăm || x=100

    Đáp án là:

    Nghiệm lớn nhất của phương trình - {\log ^3}x + 2{\log ^2}x = 2 - \log x  là:

    100 || 1 trăm || một trăm || Một trăm || x=100

     Điều kiện: x>0

    - {\log ^3}x + 2{\log ^2}x = 2 - \log x \Leftrightarrow \left[ \begin{gathered}  \log x =  - 1 \hfill \\  \log x = 2 \hfill \\  \log x = 1 \hfill \\ \end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{10}} \hfill \\  x = 100 \hfill \\  x = 10 \hfill \\ \end{gathered}  ight.

    Vậy nghiệm lớn nhất là x =100.

  • Câu 14: Nhận biết

    Cho 0 < a e 1 và biểu thức \sqrt {a.\sqrt[3]{a}} viết dưới dạng {a^n}. Giá trị của n là:

    Ta có:

    \sqrt {a.\sqrt[3]{a}}  = {\left( {a.{a^{\frac{1}{3}}}} ight)^{\frac{1}{2}}} = {\left( {{a^{\frac{4}{3}}}} ight)^{\frac{1}{2}}} = {a^{\frac{2}{3}}}

    Vậy n = \frac{2}{3}

  • Câu 15: Nhận biết

    Trong không gian Oxyz, cho hai điểm I(1;1;1)A(1;2;3). Phương trình mặt cầu có tâm I và đi qua A là:

    Ta có: R = IA = \sqrt{(1 - 1)^{2} + (2 -
1)^{2} + (3 - 1)^{2}} = \sqrt{5}

    Vậy phương trình mặt cầu tâm I và đi qua điểm A có phương trình là:

    (x - 1)^{2} + (y - 1)^{2} + (z - 1)^{2} =
5.

  • Câu 16: Thông hiểu

    Cho hàm số y = f(x) = x^{3} - 2x^{2} + mx
+ 3 (với m là tham số) đạt cực tiểu tại x = 1. Tìm giá trị tham số m?

    Tập xác định D\mathbb{= R}

    Ta có: y' = 3x^{2} - 4x +
m

    Hàm số đạt cực tiểu tại x = 1 suy ra y'(1) = 0 \Rightarrow - 1 + m = 0
\Leftrightarrow m = 1

    Với m = 1 \Rightarrow y = x^{3} - 2x^{2}
+ x + 3

    \Rightarrow \left\{ \begin{matrix}
y' = 3x^{2} - 4x + 1 \\
y'' = 6x - 4 \\
\end{matrix} ight.. Khi đó \left\{ \begin{matrix}
y'(1) = 0 \\
y''(1) > 0 \\
\end{matrix} ight. suy ra x =
1 là điểm cực tiểu của hàm số.

    Vậy m = 1 là giá trị cần tìm.

  • Câu 17: Thông hiểu

    Một hình trụ có bán kính đáy R = 70{m{cm}} , chiều cao hình trụ h = 20{m{cm}}. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?

    Tính độ dài cạnh

    Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.

    Dựng đường sinh AA', ta có \left\{ \begin{array}{l}CD \bot AA'\\CD \bot AD\end{array} ight. \Rightarrow CD \bot \left( {AA'D} ight) \Rightarrow CD \bot A'D.

    Suy ra A’C là đường kính đáy nên A'C = 2R = 140{m{cm}}{m{.}}

    Xét tam giác vuông AA’C, ta có AC = \sqrt {AA{'^2} + A'{C^2}}  = 100\sqrt 2 {m{cm}}{m{.}}

    Suy ra cạnh hình vuông bằng 100 cm.

  • Câu 18: Vận dụng

    Nghiệm nguyên lớn nhất của bất phương trình là:

    x=7 || X=7 || x bằng 7 || 7

    Đáp án là:

    Nghiệm nguyên lớn nhất của bất phương trình là:

    x=7 || X=7 || x bằng 7 || 7

     Điều kiện: x>0

    Ta có: \log _2^4x - \log _{\frac{1}{2}}^2\left( {\frac{{{x^3}}}{8}} ight) + 9{\log _2}\left( {\frac{{32}}{{{x^2}}}} ight) < 4\log _{{2^{ - 1}}}^2\left( x ight)

    \Leftrightarrow \log _2^4x - {\left( {3{{\log }_2}x - 3} ight)^2} + 9\left( {5 - 2{{\log }_2}x} ight) - 4\log _2^2x < 0

    \Leftrightarrow \log _2^4x - 13\log _2^2x + 36 < 0

    \Leftrightarrow 4 < \log _2^2x < 9 \Leftrightarrow \left[ \begin{gathered}  2 < {\log _2}x < 3 \hfill \\   - 3 < {\log _2}x <  - 2 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left[ \begin{gathered}  4 < x < 8 \hfill \\  \frac{1}{8} < x < \frac{1}{4} \hfill \\ \end{gathered}  ight..

    Vậy nghiệm nguyên lớn nhất của bất phương trình là: x=7.

  • Câu 19: Vận dụng

    Năng lượng giải tỏa E của một trận động đất tại tâm địa chấn M độ Richter được xác định bởi công thức \log E =
11,4 + 1,5M. Vào năm 1995, thành phố X xảy ra một trận động đất 8 độ Richter và năng lượng giải tỏa tại tâm địa chấn của nó gấp 14 lần trận động đất ra tại thành phố Y vào năm 1997. Hỏi khi đó độ lớn của trận động đất tại thành phố Y là bao nhiêu? (kết quả làm tròn đến hàng phần chục)

    Theo đề bài ta có: \frac{E_{X}}{E_{Y}} =
14.

    \Rightarrow \log\left(
\frac{E_{X}}{E_{Y}} ight) = \log E_{X} - \log E_{Y} = 1,5\left( M_{X}
- M_{Y} ight) = log14

    \Leftrightarrow M_{X} - M_{Y} =
\frac{log14}{1,5}

    \Rightarrow M_{Y} = 8 -
\frac{log14}{1,5} \approx 7,2

    Vậy độ lớn của trận động đất tại thành phố Y là 7,2 độ Richter.

  • Câu 20: Nhận biết

    Cho các số thực a và b thỏa mãn 0 < a < 1 < b. Tìm khẳng định đúng?

     Xét tính đúng sai của từng đáp án như sau

    Ta có {\log _a}b < {\log _a}1 = 0 (vì 0 < a < 1;b > 1) => {\log _a}b < 0 => {\log _a}b < 0 đúng

    a < b \Rightarrow \ln a < \ln b

    => \ln a > \ln b B sai

    \left\{ {\begin{array}{*{20}{c}}  {0 < 0,5 < 1} \\   {a < b} \end{array}} ight. \Rightarrow {\left( {0,5} ight)^a} > {\left( {0,5} ight)^b} => {\left( {0,5} ight)^a} < {\left( {0,5} ight)^b} Sai

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {2 > 1} \\   {a < b} \end{array}} ight. \Rightarrow {2^a} < {2^b}=> {2^a} > {2^b} sai

  • Câu 21: Nhận biết

    Đồ thị hàm số y = \frac{x - 1}{x^{2} +
1} có bao nhiêu đường tiệm cận ngang và tiệm cận đứng?

    Tập xác định D\mathbb{= R}

    Đồ thị hàm số không có đường tiệm cận đứng.

    Ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x - 1}}{{{x^2} + 1}} = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{\dfrac{1}{x} - \dfrac{1}{{{x^2}}}}}{{1 + \dfrac{1}{{{x^2}}}}} = 0 \hfill \\ 
\end{gathered}  ight. suy ra y =
0 là tiệm cận ngang của đồ thị hàm số.

  • Câu 22: Thông hiểu

    Đẳng thức nào sau đây đúng với mọi số dương x?

    Ta có: \left( {\log x} ight)' = \frac{1}{{x\ln 10}};\forall x > 0

  • Câu 23: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 24: Vận dụng cao

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Tìm m để bất phương trình nghiệm đúng

    Bất phương trình f\left( x ight) <  - \cos x + m nghiệm đúng với mọi x \in \left( {0;\pi } ight) khi và chỉ khi:

    Ta có: f\left( x ight) <  - \cos x + m \Rightarrow m > f\left( x ight) + \cos x\left( * ight)

    Xét hàm số  g\left( x ight) = f\left( x ight) + \cos x;x \in \left( {0;\pi } ight)

    => g'\left( x ight) = f'\left( x ight) - \sin x

    Ta có: \forall x \in \left( {0;\pi } ight):\left\{ {\begin{array}{*{20}{c}}  {f'\left( x ight) < 0} \\   {0 < \sin x \leqslant 1} \end{array}} ight.

    \begin{matrix}   \Rightarrow g'\left( x ight) = f'\left( x ight) - \sin x < 0;\forall x \in \left( {0;\pi } ight) \hfill \\   \Rightarrow f\left( x ight) - \cos x < g\left( 0 ight) = f\left( 0 ight) + 1 \hfill \\   \Rightarrow m \geqslant f\left( 0 ight) + 1 \hfill \\ \end{matrix}

  • Câu 25: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để bất phương trình {\log _2}\left( {7{x^2} + 7} ight) \geqslant {\log _2}\left( {m{x^2} + 4x + m} ight),{\text{ }}\forall x \in \mathbb{R} \, \, (1)

     Bất phương trình tương đương 7{x^2} + 7 \geqslant m{x^2} + 4x + m > 0,{\text{ }}\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{gathered}  \left( {7 - m} ight){x^2} - 4x + 7 - m \geqslant 0{\text{   }}(2) \hfill \\  m{x^2} + 4x + m > 0{\text{                 }}(3) \hfill \\ \end{gathered}  ight.,{\text{ }}\forall x \in \mathbb{R}.

    m=7: (2) không thỏa \forall x \in \mathbb{R}

    m=0: (3) không thỏa \forall x \in \mathbb{R}

    (1) thỏa mãn \forall x \in \mathbb{R}  \Leftrightarrow \left\{ \begin{gathered}  7 - m > 0 \hfill \\  {{\Delta '}_2} = 4 - {\left( {7 - m} ight)^2} \leqslant 0 \hfill \\  m > 0 \hfill \\  {{\Delta '}_3} = 4 - {m^2} < 0 \hfill \\ \end{gathered}  ight.{\text{   }}

    \Leftrightarrow {\text{  }}\left\{ \begin{gathered}  m < 7 \hfill \\  m \leqslant 5 \hfill \\  m > 0 \hfill \\  m > 2 \hfill \\ \end{gathered}  ight.{\text{  }} \Leftrightarrow {\text{  }}2 < m \leqslant 5.

    Vậy m \in \left( {2;5} ight].

  • Câu 26: Vận dụng cao

    Tổng tất cả các giá trị thực của m để hàm số y = \frac{1}{5}{m^2}{x^5} - \frac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 đồng biến trên R bằng:

    Ta có:

    \begin{matrix}  y = \dfrac{1}{5}{m^2}{x^5} - \dfrac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 \hfill \\   \Rightarrow y' = {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên R khi và chỉ khi

    \begin{matrix}   \Rightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Rightarrow {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \geqslant 0,\forall x \in \mathbb{R} \hfill \\ \end{matrix}

    Và dấu bằng xảy ra chỉ tại một số hữu hạn điểm.

    Điều kiện cần

    Ta thấy phương trình y ‘ = 0 có một nghiệm x = -1 nên để y' \geqslant 0,\forall x \in \mathbb{R} thì y’ không đổi dấu qua khi x = -1 khi đó phương trình y’ = 0 có nghiệm kép là x = -1 (x = -1 không thể laf nghiệm bội 4 của phương trình y’ = 0 vì y’ không chứa số hạng x3)

    Ta suy ra được y’’(-1) = 0

    => - 4{m^2} + 2m + 20 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 2} \\   {m = \dfrac{5}{2}} \end{array}} ight.

    Điều kiện đủ:

    Với m = - 2 ta có:

    y' = 4{x^4} + 2{x^2} + 20x + 14 = 4{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{5}{2}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = -2 thỏa mãn điều kiện đề bài.

    Với m = \frac{5}{2} ta có:

    y' = \frac{{25}}{4}{x^4} - \frac{5}{2}{x^2} + 20x + \frac{{65}}{4} = \frac{{25}}{4}{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{8}{5}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = \frac{5}{2} thỏa mãn điều kiện đề bài

    Vậy m =  - 2;m = \frac{5}{2} là các giá trị cần tìm.

    => Tổng các giá trị thực của m cần tìm thỏa mãn yêu cầu bài toán là - 2 + \frac{5}{2} = \frac{1}{2}

  • Câu 27: Thông hiểu

    Cho hàm số y =
f(x). Hàm số y = f'(x) có đồ thị như hình vẽ:

    Cho hàm số bậc ba y = f(x) có đồ thị như hình vẽ. Tìm tất cả các giá trị của m...

    Hàm số y = f(3 - 2x) + 2020 nghịch biến trên khoảng nào?

    Ta có: y' = - 2f'(3 -
2x)

    y' < 0 \Leftrightarrow -
2f'(3 - 2x) < 0 \Leftrightarrow f'(3 - 2x) >
0

    \Leftrightarrow \left\lbrack
\begin{matrix}
- 1 < 3 - 2x < 1 \\
3 - 2x > 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
1 < x < 2 \\
x < - \frac{1}{2} \\
\end{matrix} ight.

    Vậy hàm số y = f(3 - 2x) + 2020 nghịch biến trên khoảng (1;2).

  • Câu 28: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, cạnh bên SA vuông góc với mặt phẳng đáy và SA = a \sqrt 2. Tính thể tích của khối chóp?

     thể tích chóp

    Diện tích hình vuông ABCD{S_{ABCD}} = {a^2}.

    Chiều cao khối chóp là SA = a \sqrt 2

    Vậy áp dụng công thức, ta có thể tích khối chóp là:

    {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = \frac{{{a^3}\sqrt 2 }}{3}

  • Câu 29: Thông hiểu

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} có tập xác định là:

    Hàm số y = {x^\alpha } có số mũ nguyên âm xác định khi

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} xác định khi 4{x^2} - 1 e 0 \Leftrightarrow x e  \pm \frac{1}{2}

    Vậy tập xác định là: D = \mathbb{R}\backslash \left\{ { - \frac{1}{2};\frac{1}{2}} ight\}

  • Câu 30: Nhận biết

    Điều kiện xác định của phương trình {\log _x}(2{x^2} - 7x - 12) = 2 là:

     Biểu thức {\log _x}(2{x^2} - 7x - 12) = 2 xác định 

    \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x e 1 \hfill \\  2{x^2} - 7x + 12 > 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > 0 \hfill \\  x e 1 \hfill \\  2\left[ {{{(x - \frac{7}{4})}^2} + \frac{{47}}{{16}}} ight] > 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow x \in (0;1) \cup (1; + \infty )

  • Câu 31: Vận dụng

    Trong không gian Oxyz, cho mặt cầu (S):(x + 2)^{2} + (y - 1)^{2} + \left( z
+ \sqrt{2} ight)^{2} = 9 và hai điểm A\left( - 2;0; - 2\sqrt{2} ight),B( - 4; -
4;0). Biết tập hợp tất cả các điểm M \in (S) để MA^{2} + \overrightarrow{MO}.\overrightarrow{MB} =
16 là một đường tròn. Bán kính của đường tròn đó là:

    Gọi M(x;y;z) \in (S) khi đó ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = \left( x + 2;y;z + 2\sqrt{2} ight) \\
\overrightarrow{OM} = (x;y;z) \\
\overrightarrow{BM} = (x + 4;y + 4;z) \\
\end{matrix} ight..

    Ta có:

    MA^{2} +
\overrightarrow{MO}.\overrightarrow{MB} = 16

    \Leftrightarrow MA^{2} +
\overrightarrow{OM}.\overrightarrow{BM} = 16

    \Leftrightarrow (x + 2)^{2} + y^{2} +
\left( z + 2\sqrt{2} ight)^{2} + x(x + 4) + y(y + 4) + z^{2} =
16

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
4x + 4y + 2\sqrt{2}z - 2 = 0

    Ta lại có:

    M \in (S) \Leftrightarrow (x + 2)^{2} +
(y - 1)^{2} + \left( z + \sqrt{2} ight)^{2} = 9

    \Leftrightarrow x^{2} + y^{2} + z^{2} +
4x - 2y + 2\sqrt{2}z - 2 = 0

    Từ (1) và (2) ta có hệ phương trình:

    \left\{ \begin{matrix}
x^{2} + y^{2} + z^{2} + 4x + 4y + 2\sqrt{2}z - 2 = 0 \\
x^{2} + y^{2} + z^{2} + 4x - 2y + 2\sqrt{2}z - 2 = 0 \\
\end{matrix} ight.\  \Rightarrow y = 0

    Vậy tập hợp tất cả các điểm M là đường tròn giao tuyến (C) của (S) và mặt phẳng (P): y = 0.

    Mặt cầu (S) có bán kính R = 3, tâm I\left( - 2;1; - \sqrt{2} ight) nên d [I,(P)] = 1.

    Suy ra đường tròn (C) có bán kính:

    r = \sqrt{R^{2} - \left( d\left( I;(P)
ight) ight)^{2}} = 2\sqrt{2}

  • Câu 32: Vận dụng cao

    Cho hình hộp chữ nhật có đường chéo d = \sqrt {21}. Độ dài ba kích thước của hình hộp chữ nhật lập thành một cấp số nhân có công bội q=2. Thể tích của khối hộp chữ nhật là?

    Xét hình hộp chữ nhật ABCD.A'B'C'D'có độ dài kích thước ba cạnh lần lượt là AA' = a,\,\,AB = b,\,\,AD = c và có đường chéo AC'.

    Theo bài ra, ta có a, b, c lập thành cấp số nhân có công bội q=2. Suy ra:

    \left\{ \begin{gathered}  b = 2a \hfill \\  c = 4a \hfill \\ \end{gathered}  ight.

    Mặt khác, độ dài đường chéo AC' = \sqrt {21}

    \Rightarrow A{A'^2} + A{B^2} + A{D^2} = 21\Leftrightarrow {a^2} + {b^2} + {c^2} = 21

    Ta có hệ:

    \left\{ \begin{gathered}  c = 2b = 4a \hfill \\  {a^2} + {b^2} + {c^2} = 21 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  c = 2b = 4a \hfill \\  {a^2} + {\left( {2a} ight)^2} + {\left( {4a} ight)^2} = 21 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  c = 2b = 4a \hfill \\  21{a^2} = 21 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = 1 \hfill \\  b = 2 \hfill \\  c = 4 \hfill \\ \end{gathered}  ight.

    Vậy thể tích khối hộp chữ nhật ABCD.A'B'C'D'là:

    {V_{ABCD.A'B'C'D'}} = AA'.AB.AD = abc = 8

  • Câu 33: Vận dụng

    Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?

    Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.

    Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3Đ =2C.

  • Câu 34: Thông hiểu

    Trong các mệnh đề sau, mệnh đề nào đúng?

     Xét các đáp án, ta có: 

    - A Đúng: Ta chứng minh như sau:

    Gọi M1 là môt mặt khối đa diện, M1 là đa giác nên có ít nhất 3 cạnh c1; c2; c3.

    M2 chung cạnh c1 với M1(M2≠M1) , M3 chung cạnh c2 với M1(M3≠M1)

    Vì c1∈M3⇒M2≠M3. Gọi M4 là mặt có chung cạnh c3 với M1(M4≠M1)

    Vì M4 không chứa c1, c2 nên M4 khác M2 và M3. Do đó khối đa diện có ít nhất 4 mặt ⇒ mỗi hình đa giác có ít nhất 4 đỉnh.

    - B Sai.

    - C Sai: Ví dụ như hình chóp tam giác có 4 đỉnh nhưng có 6 cạnh.

    - D Sai: Lấy ví dụ là hình chóp tam giác có 4 mặt nhưng có 6 cạnh

  • Câu 35: Vận dụng

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA\ \bot\ (ABCD), biết SC = a\sqrt{3}. Gọi M,N,P,Q lần lượt là trung điểm của SB, SD, CD, BC. Các mệnh đề sau đúng hay sai?

    a) Thể tích của khối chóp S.ABCD bằng \frac{1}{3}SA.S_{ABCD}. Đúng||Sai

    b) Thể tích của khối chóp S.ABC bằng thể tích của khối chóp S.ACD. Đúng||Sai

    c) Thể tích của khối chóp S.ABCD bằng a^{3}. Sai||Đúng

    d) Thể tích của khối chóp A.MNPQ bằng \frac{a^{3}}{8}. Đúng||Sai

    Đáp án là:

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA\ \bot\ (ABCD), biết SC = a\sqrt{3}. Gọi M,N,P,Q lần lượt là trung điểm của SB, SD, CD, BC. Các mệnh đề sau đúng hay sai?

    a) Thể tích của khối chóp S.ABCD bằng \frac{1}{3}SA.S_{ABCD}. Đúng||Sai

    b) Thể tích của khối chóp S.ABC bằng thể tích của khối chóp S.ACD. Đúng||Sai

    c) Thể tích của khối chóp S.ABCD bằng a^{3}. Sai||Đúng

    d) Thể tích của khối chóp A.MNPQ bằng \frac{a^{3}}{8}. Đúng||Sai

    Hình vẽ minh họa

    a) Ta có: SA\ \bot\ (ABCD) \Rightarrow
V_{S.ABCD} = \frac{1}{3}SA.S_{ABCD}. Suy ra mệnh đề đúng.

    b) Từ giả thiết có S_{ABC} = S_{ACD} =
\frac{a^{2}}{2}; SA\bot(ABCD).

    V_{S.ABC} = \frac{1}{3}SA.S_{\Delta
ABC};\ \ \ V_{S.ACD} = \frac{1}{3}SA.S_{\Delta ACD}

    \Rightarrow V_{S.ABC} =
V_{S.ACD}. Suy ra mệnh đề đúng.

    c) Ta có SA = \sqrt{SC^{2} - AC^{2}} =
a.

    Suy ra V_{S.ABCD} =
\frac{1}{3}SA.S_{ABCD} = \frac{a^{3}}{3}. Vậy mệnh đề sai.

    d) Ta có \left\{ \begin{matrix}
MN//PQ \\
MN = PQ \\
\end{matrix} ight. .

    Suy ra MNPQ là hình bình hành; mặt khác, ta có: \left\{ \begin{matrix}
BD\bot SA \\
BD\bot AC \\
\end{matrix} ight.\  \Rightarrow BD\bot SC

    \left\{ \begin{matrix}
PQ//BD \\
PN//SC \\
\end{matrix} ight.\  \Rightarrow PN\bot PQ nên tứ giác MNPQ là hình chữ nhật.

    SA = \sqrt{SC^{2} - AC^{2}} =
a

    Do SM \cap (APQ) = B nên ta có:

    \frac{d\left( M;(AQP) ight)}{d\left(
S;(AQP) ight)} = \frac{MB}{AB} = \frac{1}{2} \Rightarrow d\left( M;(AQP) ight) =
\frac{1}{2}d\left( S;(AQP) ight) = \frac{1}{2}SA =
\frac{a}{2}.

    S_{\Delta AQP} = \frac{1}{2}AH.QP =
\frac{1}{2}.\frac{3}{4}AC.\frac{1}{2}BD = \frac{3}{16}AC.BD = \frac{3}{16}\left(
a\sqrt{2} ight)^{2} = \frac{3}{8}a^{2}.

    Với H = AC \cap PQ.

    Ta có V_{A.MNPQ} = 2V_{A.MQP} =
2V_{M.AQP}

    V_{M.AQP} =
\frac{1}{3}d\left( M;(AQP) ight).S_{\Delta AQP} =
\frac{1}{3}.\frac{a}{2}.\frac{3}{8}a^{2} =
\frac{a^{3}}{16}.

    Vậy V_{A.MNPQ} = 2V_{M.AQP} =
2.\frac{a^{3}}{16} = \frac{a^{3}}{8}. Suy ra mệnh đề đúng.

  • Câu 36: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 37: Nhận biết

    Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:

     Do thiết diện đi qua trục hình trụ nên ta có h=a.

    Bán kính đáy R = \frac{a}{2}. Do đó thể tích khối trụ V = {R^2}\pi .h = \frac{{\pi {a^3}}}{4}(đvtt).

  • Câu 38: Nhận biết

    Cho hình vẽ:

    Đồ thị hình bên là của hàm số nào?

    Đồ thị hình bên là của hàm số nào?

     Đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến nên loại hhai hàm số y = {\left( {\sqrt 2 } ight)^x};y = {\left( {\sqrt 3 } ight)^x}

    Đồ thị hàm số đi qua điểm \left( { - 1;3} ight) nên hàm số y = {\left( {\frac{1}{3}} ight)^x} thảo mãn

  • Câu 39: Thông hiểu

    Với các số a, b, c là các số thực dương tùy ý khác 1 và {\log _a}c = x;{\log _b}c = y. Khi đó giá trị của {\log _a}\left( {ab} ight) bằng:

     Với a, b, c là các số thực dương tùy ý khác 1 ta có: {\log _c}a = \frac{1}{x};{\log _c}b = \frac{1}{y}

    Khi đó ta có: {\log _c}\left( {ab} ight) = {\log _c}a + {\log _c}b = \frac{1}{x} + \frac{1}{y}

  • Câu 40: Vận dụng

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    Ta có: y = {x^{\frac{\pi }{2}}} \Rightarrow y' = \frac{\pi }{2}.{x^{\frac{\pi }{2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y\left( 1 ight) = 1} \\   {y'\left( 1 ight) = \dfrac{\pi }{2}} \end{array}} ight.

    Phương trình tiếp tuyến của đồ thị hàm số y = {x^{\frac{\pi }{2}}} tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:

    y = y'\left( 1 ight)\left( {x - 1} ight) + y\left( 1 ight) = \frac{\pi }{2}x - \frac{\pi }{2} + 1

  • Câu 41: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= mx^{4} + (m - 3)x^{2} + 2021 có hai cực tiểu và một cực đại?

    Hàm số y = ax^{4} + bx^{2} + c;(a eq
0) có ba điểm cực trị khi và chỉ khi a.b < 0.

    Để hàm số y = f(x) có hai cực tiểu và một cực đại thì đồ thị hàm số y =
f(x) có dạng

    Ta có: \lim_{x ightarrow + \infty}f(x)
= + \infty. Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số a > 0

    Khi đó để thỏa mãn yêu cầu bài toán ta có:

    \left\{ \begin{matrix}
a > 0 \\
ab < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m(m - 3) < 0 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 3

    Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 42: Vận dụng

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {2 - \sqrt {{x^2} + 1} } ight) - \sqrt {{x^2} + 1}  - 3 đồng biến trên các khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = {x^2} - 2x,\forall x \in \mathbb{R}. Hàm số g\left( x ight) = f\left( {2 - \sqrt {{x^2} + 1} } ight) - \sqrt {{x^2} + 1}  - 3 đồng biến trên các khoảng nào?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 43: Thông hiểu

    Cho {5^x} = 2. Tính A = {25^x} + {5^{2 - x}}

    Ta có: A = {25^x} + {5^{2 - x}} = {\left( {{5^x}} ight)^2} + \frac{{25}}{{{5^x}}} = \frac{{33}}{2}

  • Câu 44: Nhận biết

    Cho hàm số f(x) có đạo hàm f'(x) = x\left( x^{2} - x ight)(x -
2). Số điểm cực trị của hàm số đã cho là:

    Ta có: f'(x) = x\left( x^{2} - x
ight)(x - 2) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.

    x = 1;x = 2 là nghiệm bội lẻ và x = 0 là nghiệm bội chẵn nên hàm số có hai điểm cực trị.

  • Câu 45: Nhận biết

    Tập xác định của hàm số f\left( x ight) = {\left( {{x^2} - 1} ight)^{ - 2}} là:

    Hàm số f\left( x ight) = {\left( {{x^2} - 1} ight)^{ - 2}} xác định khi {x^2} - 1 e 0 \Rightarrow x e  \pm 1

    Vậy tập xác định của hàm số là D = \mathbb{R}\backslash \left\{ { \pm 1} ight\}

  • Câu 46: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \left[ { - 2018;2018} ight] để hàm số y = \ln \left( {{x^2} - 2x - m + 1} ight) có tập xác định \mathbb{R}?

    Hàm số xác định trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  {x^2} - 2x - m + 1 > 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {1 + m - 1 < 0} \end{array}} ight. \Rightarrow m < 0 \hfill \\ \end{matrix}

    Do \left\{ {\begin{array}{*{20}{c}}  {m \in \mathbb{Z}} \\   {m \in \left[ { - 2018;2018} ight]} \end{array}} ight. \Rightarrow m \in \left\{ { - 2018; - 2017;...; - 1} ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 47: Thông hiểu

    Viết biểu thức P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}};\left( {x > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \sqrt {{x^5}} .\sqrt[3]{{{x^2}}}.\sqrt[5]{{{x^3}}} = {x^{\frac{1}{5}}}.{x^{\frac{2}{3}}}.{x^{\frac{3}{5}}} = {x^{\frac{{113}}{{30}}}}

  • Câu 48: Thông hiểu

    Phương trình {\log _3}(5x - 3) + {\log _{\frac{1}{3}}}({x^2} + 1) = 0 có 2 nghiệm x_1, \, x_2 trong đó x_1 < x_2. Giá trị của P = 2{x_1} + 3{x_2} là?

     PT \Leftrightarrow \left\{ \begin{gathered}  5x - 3 > 0 \hfill \\  {\log _3}(5x - 3) + {\log _{\frac{1}{3}}}({x^2} + 1) = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {\log _3}(5x - 3) - {\log _3}({x^2} + 1) = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {\log ^{}}_3(5x - 3) = {\log ^{}}_3({x^2} + 1) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  5x - 3 = {x^2} + 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {x^2} - 5x + 4 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  \left[ \begin{gathered}  x = 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight.

    Vậy 2{x_1} + 3{x_2} = 2.1 + 3.4 = 14.

  • Câu 49: Vận dụng

    Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

    Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).

    Xét tính đúng sai của các khẳng định sau:

    a) Tổng diện tích 5 mặt của bể là S =
2a^{2} + 6ah . Đúng||Sai

    b) Ta có h = \frac{5,5 +
2a^{2}}{6a} . Sai|| Đúng

    c) Thể tích của bể là V = \frac{5,5a}{3}
+ \frac{2a^{3}}{3} . Sai|| Đúng

    d) Bể cá có dung tích lớn nhất bằng \frac{11\sqrt{33}}{54} . Đúng||Sai

    Đáp án là:

    Anh H dự định sử dụng hết 5,5m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép nối không đáng kể).

    Gọi a và h lần lượt là kích thước chiều rộng và chiều cao (theo đơn vị mét).

    Xét tính đúng sai của các khẳng định sau:

    a) Tổng diện tích 5 mặt của bể là S =
2a^{2} + 6ah . Đúng||Sai

    b) Ta có h = \frac{5,5 +
2a^{2}}{6a} . Sai|| Đúng

    c) Thể tích của bể là V = \frac{5,5a}{3}
+ \frac{2a^{3}}{3} . Sai|| Đúng

    d) Bể cá có dung tích lớn nhất bằng \frac{11\sqrt{33}}{54} . Đúng||Sai

    a) Đúng. Kích thước đáy của bể lần lượt là 2a, a; chiều cao bể là h (a, h > 0). Tổng diện tích 5 mặt của bể là:

    S = 2a^{2} + 2ah + 4ah = 2a^{2} +
6ah

    b) Sai. Theo đề bài ta có: 2a^{2} + 6ah =
5,5 \Rightarrow h = \frac{5,5 - 2a^{2}}{6a};\left( 0 < a <
\frac{5\sqrt{5}}{2} ight).

    c) Sai. Gọi V là thể tích của bể cá, ta có:

    V = 2a^{2}h = \frac{2a^{2}\left( 5,5 -
2a^{2} ight)}{6a} = \frac{5,5a}{3} - \frac{2a^{3}}{3}

    d) Đúng. Ta có: V' = \frac{5,5}{3} -
\frac{6a^{2}}{3}

    V' = 0 \Leftrightarrow \dfrac{5,5}{3}- \dfrac{6a^{2}}{3} = 0 \Leftrightarrow \left\lbrack \begin{matrix}a = \dfrac{\sqrt{33}}{6}(tm) \\a = - \dfrac{\sqrt{33}}{6}(ktm) \\\end{matrix} ight.

    Bảng biến thiên:

    Vậy dung tích lớn nhất của bể cá bằng \frac{11\sqrt{33}}{54}.

  • Câu 50: Nhận biết

    Cho hàm số y = \frac{{x + 1}}{{1 - x}}. Khẳng định nào dưới đây là khẳng định đúng?

    Hàm số y = \frac{{x + 1}}{{1 - x}} có tập xác định D = \mathbb{R}\backslash \left\{ 1 ight\} và có đạo hàm

    y' = \frac{2}{{{{\left( {x - 1} ight)}^2}}} > 0,\forall x \in D

    => A là khẳng định đúng

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 6 lượt xem
Sắp xếp theo