Điều kiện xác định của bất phương trình
là:
BPT xác định khi: .
Điều kiện xác định của bất phương trình
là:
BPT xác định khi: .
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Biết
, khi đó
có giá trị là:
Ta có:
Hàm số
có đạo hàm là:
Áp dụng công thức đạo hàm ta có:
Cho biết
với
. Chọn khẳng định đúng?
Ta có:
Vậy
Cho hàm số
và đồ thị của hàm số
như hình vẽ sau:

Hàm số
có bao nhiêu điểm cực trị?
Cho hàm số và đồ thị của hàm số
như hình vẽ sau:
Hàm số có bao nhiêu điểm cực trị?
Cho
là các số thực thỏa mãn
. Các khẳng định sau đúng hay sai?
a) Điều kiện xác định của hàm số
là
. Đúng||Sai
b) Với cặp số
thỏa mãn điều kiện xác định của hàm số
, ta có:
. Sai||Đúng
c) Cặp số
thỏa mãn
. Sai||Đúng
d) Với
thì
. Đúng||Sai
Cho là các số thực thỏa mãn
. Các khẳng định sau đúng hay sai?
a) Điều kiện xác định của hàm số là
. Đúng||Sai
b) Với cặp số thỏa mãn điều kiện xác định của hàm số
, ta có:
. Sai||Đúng
c) Cặp số thỏa mãn
. Sai||Đúng
d) Với thì
. Đúng||Sai
a) Điều kiện để bất phương trình có nghĩa là , suy ra mệnh đề đúng.
b) Ta có , suy ra mệnh đề sai.
c) Ta thấy , suy ra mệnh đề sai.
d) Ta có:
Do đó
Khi đó
Suy ra suy ra mệnh đề đúng.
Cho hàm số
có bảng biến thiên như sau:

Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng cho dưới đây?
Dựa vào bảng biến thiên ta thấy hàm số đã cho nghịch biến trên khoảng .
Cho một số thực
tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Cho hàm số
có bảng biến thiên như sau:

Giá trị cực tiểu của hàm số đã cho là:
Quan sát bảng biến thiên nhận thấy giá trị cực tiểu của hàm số đã cho là .
Cho hình chóp
có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.

Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .
Cho hàm số
thỏa mãn
. Mệnh đề nào sau đây đúng?
Tập xác định
Hàm số đơn điệu trên đoạn nên
Vậy đáp án cần tìm là .
Tính đạo hàm của hàm số ![]()
Ta có:
Cho hàm số
. Tập xác định của hàm số đã cho là:
Điều kiện xác đinh:
=> Tập xác định của hàm số là:
Tìm tất cả các giá trị thực của tham số m để bất phương trình ![]()
Bất phương trình tương đương
: (2) không thỏa
: (3) không thỏa
(1) thỏa mãn
.
Vậy .
Tìm tất cả các giá trị của tham số
để hàm số
nghịch biến trên
?
Ta có:
Hàm số nghịch biến trên
Vậy đáp án cần tìm là
Dựa vào thông tin dưới đây và trả lời các câu hỏi
Số lượng của một loại vi khuẩn X trong một phòng thí nghiệm được biểu diễn theo công thức
, trong đó A là số lượng vi khuẩn tại thời điểm chọn mốc thời gian, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng (tính theo đơn vị là giờ). Lúc 6 giờ sáng, số lượng vi khuẩn X là 150 con. Sau 3 giờ, số lượng vi khuẩn X là 450 con.
Thời điểm số lượng vi khuẩn X gấp 9 lần số lượng vi khuẩn ban đầu là:
Gọi là thời điểm số lượng vi khuẩn gấp 9 lần ban đầu.
Khi đó: con.
Ta có phương trình:
Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AD=2a,
. Cạnh bên SA=2a và vuông góc với đáy. Gọi R là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD. Tỉ số
nhận giá trị nào sau đây?

Ta có hay
Gọi E là trung điểm AD.
Ta có nên ABCE là hình thoi.
Suy ra .
Do đó tam giác ACD vuông tại C. Ta có:
hay
Tương tự, ta cũng có hay
Ta có nên khối chóp S.ABCD nhận trung điểm I của SD làm tâm mặt cầu ngoại tiếp, bán kính
.
Suy ra .
Điều kiện xác định của phương trình
là:
Biểu thức xác định
.
Với giá trị nào của m thì mặt phẳng
cắt mặt cầu
?
Theo đề bài, ta xác định các hệ số của (S):
Suy ra tâm I có tọa độ là
(P) cắt (S) khi:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành; điểm I nằm trên SC sao cho
. Mặt phẳng
chứa cạnh
cắt cạnh
lần lượt tại
. Gọi
lần lượt là thể tích khối chóp
và
. Tính giá trị nhỏ nhất của tỉ số thể tích
.

Đặt .
Ta có .
Ta có .
Dấu bằng xảy ra khi .
Vậy giá trị nhỏ nhất cử tỉ số thể tích cần tìm là .
Trong không gian, cho tam giác ABC vuông tại A, AB =a và
. Độ dài đường sinh
của hình nón nhận được khi quay tam giác ABC xung quanh trục AB bằng:

Từ giả thiết suy ra hình nón có đỉnh là B , tâm đường tròn đáy là A , bán kính đáy là và chiều cao hình nón là
.
Vậy độ dài đường sinh của hình nón là:
Cho hàm số f(x) có bảng xét dấu của đạo hàm như sau:
Xét hàm số
. Khẳng định nào sau đây sai?
Ta có:
Ta có bảng xét dấu cho các biểu thức

Từ bảng xét dấu ta thấy
Khi đó hàm số nghịch biến
=> Đáp án B sai
Cho hàm số
xác định trên
liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?
Từ bảng biến thiên ta thấy:
suy ra
là tiệm cận đứng.
suy ra
là tiệm cận ngang
suy ra
là tiệm cận ngang
Vậy đồ thị hàm số đã cho có tất cả ba đường tiệm cận.
Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.
Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính
, trong đó
lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của
bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?
Đáp án: 961 dm3
Để chuẩn bị cho hoạt động cắm trại, bạn An tìm hiểu các mẫu lều cắm trại có kích thước như trong hình vẽ.
Bạn An muốn biết thể tích chênh lệch của hai lều nên thực hiện tính
, trong đó
lần lượt là thể tích của mẫu lều cắm trại ở hình a, hình b. Giá trị của
bằng bao nhiêu decimét khối (làm tròn kết quả đến hàng đơn vị)?
Đáp án: 961 dm3
Cả hai lều đều có dạng khối lăng trụ đứng ngũ giác.
Xét khối lăng trụ ở hình a. Chia mặt đáy thành hai phần bao gồm: hình chữ nhật có chiều rộng , chiều dài
; tam giác cân có cạnh đáy dài
, chiều cao
như hình dưới đây.
Diện tích mặt đáy của lăng trụ đó là:
Vậy thể tích của khối lăng trụ ngũ giác đó là:
.
Xét khối lăng trụ ở hình . Chia mặt đáy thành hai phần bao gồm: hình thang cân có đáy lớn đài
, đáy nhỏ dài
, chiều cao
tam giác cân có cạnh đáy dài
, chiều cao
như hình vẽ .
Diện tích mặt đáy của lăng trụ đó là:
Vậy thể tích của khối lăng trụ ngũ giác đó là:
Do đó .
Đường thẳng
cắt đồ thị hàm số
tại hai điểm phân biệt sao cho tam giác
vuông (với
là gốc tọa độ). Mệnh đề nào sau đây đúng?
Xét hàm số ta có
Ta có bảng biến thiên như sau:
Vì nên từ bảng biến thiên ta thấy đường thẳng
luôn cắt đồ thị hàm số
tại những cặp điểm đối xứng nhau qua trục tung.
Giả sử . Tam giác OAB vuông
Suy ra vì
thuộc đồ thị hàm số nên
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Nghiệm nguyên nhỏ nhất của bất phương trình
là:
8 || tám || Tám
Nghiệm nguyên nhỏ nhất của bất phương trình là:
8 || tám || Tám
BPT
Vậy giá trị nghiệm nguyên nhỏ nhất của BPT là 8.
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Cho hàm số
với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để ham số đã cho đạt cực trị tại hai điểm
thỏa mãn
. Tìm số phần tử của tập hợp
?
Cho hàm số với
là tham số. Giả sử
là tập hợp tất cả các giá trị nguyên của tham số
để ham số đã cho đạt cực trị tại hai điểm
thỏa mãn
. Tìm số phần tử của tập hợp
?
Trong không gian
, tìm tất cả các giá trị của tham số
để
là phương trình mặt cầu
Phương trình đã cho là phương trình mặt cầu khi và chỉ khi
Vậy đáp án cần tìm là:
Bác Thu có 600 triệu đồng mang đi gửi tiết kiện ở hai loại kì hạn khác nhau đều theo thể thức lãi kép. Bác gửi 300 triệu đồng theo kì hạn quý với lãi suất 2,1% một quý, 300 triệu đồng còn lại bác gửi theo kì hạn tháng với lãi suất 0,73%/tháng. Sau khi gửi được đúng một năm, bác rút ra một nửa số tiền ở loại kì hạn quý và gửi vào loại kì hạn theo tháng. Hỏi sau đúng hai năm kể từ khi gửi tiền lần đầu, bác Thu thu về tất cả bao nhiêu tiền lãi (làm tròn đến chữ số hàng nghìn)?
Số tiền bác Thu thu được ở năm thứ nhất là:
+ Gửi kì hạn theo quý: (triệu đồng)
+ Gửi kì hạn theo tháng: (triệu đồng)
Số tiền bác Thu thu được ở sau năm thứ hai là:
+ Gửi kì hạn theo quý: (triệu đồng)
+ Gửi kì hạn theo tháng: (triệu đồng)
Số tiền lãi bác Thu thu được là
(triệu đồng)
Điều kiện xác định của phương trình
là:
Điều kiện phương trình xác định:
Cho khối chóp
có đáy
là hình vuông cạnh
, tam giác
cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy,
. Tính theo
thể tích của khối chóp
.

Gọi là trung điểm của
. Tam giác
cân tại
và có
là trung điểm
nên
. Do
theo giao tuyến
nên
.
Tam giác vuông , có:
Cho hàm số
có bảng biến như sau:

Tìm tất cả các giá trị của tham số m để bất phương trình
có một nghiệm?
Đặt
Khi đó bất phương trình trở thành
Bất phương trình có nghiệm khi bất phương trình
có nghiệm
Tìm số mặt của hình đa diện dưới đây là?

Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho biểu thức
với a và b là các số thực dương. Khẳng định nào sau đây là đúng?
Thực hiện thu gọn biểu thức như sau:
Cho hàm số y = f(x) có đạo hàm
. Hàm số
đồng biến trên các khoảng nào?
Cho hàm số y = f(x) có đạo hàm . Hàm số
đồng biến trên các khoảng nào?
Cho
; (
là phân số tối giản). Tính giá trị biểu thức
.
Ta có:
Người ta khảo sát gia tốc a(t) của một vật thể chuyển động (t là khoảng thời gian tính bằng giâu từ lúc vật thể chuyển động) từ giây thứ nhất đến giây thứ ba ghi nhận được a(t) là một hàm số liên tục có đồ thị như hình bên:

Hỏi trong thời gian từ giây thứ nhất đến giây thứ ba được khảo sát đó, thời điểm nào vận tốc lớn nhất?
Từ đồ thị ta có: a(t) = 0 => v’(t) = 0 = > t = 2
Ta có bảng biến thiên:

=> Vận tốc lớn nhất đạt được khi t = 2
Với a > 0 hãy rút gọn biểu thức 
Ta có:
Hai phương trình
và
lần lượt có 2 nghiệm duy nhất
là . Tổng
là?
Phương trình 1:
Phương trình
Phương trình 2:
Phương trình
Vậy .
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Cho hàm số
với
là tham số. Khi giá trị của
biến thiên thì số điểm cực trị của hàm số có thể là
hoặc
hoặc
. Tính giá trị biểu thức
?
Đặt
Ta có bảng biến thiên của như sau:
TH1:
Hàm số có 3 điểm cực trị suy ra
TH2:
Hàm số có 3 điểm cực trị suy ra
TH3:
Hàm số có 3 điểm cực trị suy ra
Vậy
Đồ thị của hàm số nào tương ứng với đồ thị trong hình vẽ sau:

Dựa vào đồ thị hàm số ta thấy
Đồ thị hàm số cắt trục tung tại điểm
=> => Loại đáp án
Mặt khác => Hệ số a > 0 => Loại đáp án
Hàm số đạt cực trị tại hai điểm , dựa vào hình vẽ ta thấy
trái dấu
=> Loại đáp án
Vậy đáp án là
Cho hàm số | ![]() |
Từ đồ thị hàm số ta có nhận xét như sau:
Đường thẳng x = 2 là tiệm cận đứng của đồ thị (C)
=>
Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số (C)
=>
Điểm có tọa độ (0; -1) thuộc đồ thị hàm số (C)
=> y(0) = -1 =>
=>
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và
. Tính theo a thể tích V khối chóp S.ABCD.

Đường chéo hình vuông
Xét tam giác SAC, ta có .
Chiều cao khối chóp là .
Diện tích hình vuông ABCD là
Vậy thể tích khối chóp .
Với a, b là các số thực dương tùy ý và a khác 1, đặt
. Mệnh đề nào dưới đây đúng?
Ta có: