Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?
Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:
Cho hình chóp có đáy
là tam giác vuông tại A và có
,
. Mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng
. Tính theo
thể tích
của khối chóp
.
Gọi là trung điểm của
, suy ra
.
Do theo giao tuyến
nên
.
Tam giác là đều cạnh
nên
.
Tam giác vuông , có
.
Diện tích tam giác vuông .
Vậy .
Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Ta có:
Phương trình tiếp tuyến của đồ thị hàm số tại điểm thuộc đồ thị hàm số có hoành độ bằng 1 là:
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho nghịch biến trên khoảng nào trong các khoảng sau:
Do nên hàm số
nghịch biến trên khoảng
.
Bất phương trình có tập nghiệm là:
Điều kiện
Ta có:
Vậy BPT có tập nghiệm là .
Đồ thị sau đây là của hàm số nào?
Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là và tiệm cận đứng của đồ thị hàm số
.
Đồ thị hàm số cắt trục tung tại điểm
Vậy hàm số cần tìm là .
Cho . Rút gọn biểu thức
Ta có:
Số giá trị nguyên của tham số m để hàm số đồng biến trên
?
Ta có:
Hàm số đồng biến trên khi và chỉ khi
Kết hợp với điều kiện
Vậy có tất cả 5 giá trị của m thỏa mãn điều kiện đề bài.
Trong không gian với hệ tọa độ , mặt cầu
và mặt phẳng
cắt nhau theo một đường tròn có chu vi là:
Hình vẽ minh họa
Mặt cầu (S) có tâm và bán kính
.
Ta có
Vì nên (α) cắt (S) theo giao tuyến là đường tròn (C).
Gọi H là hình chiếu vuông góc của I trên (α) ⇒ H là tâm của (C).
Lấy
Tam giác IHM vuông tại M
Suy ra chu vi của đường tròn (C) bằng .
Cho hàm số có bảng xét dấu
như sau:
Hàm số đồng biến trong khoảng nào dưới đây?
Cho hàm số có bảng xét dấu
như sau:
Hàm số đồng biến trong khoảng nào dưới đây?
Thiết diện qua trục hình nón là một tam giác vuông cân có cạnh góc vuông bằng a. Diện tích toàn phần và thể tích hình nón có giá trị lần lượt là:
Gọi S, O là đỉnh và tâm đường tròn đáy của hình nón,
Khi đó, ta có thiết diện qua đỉnh là tam giác SAB.
Theo đề bài, ta có tam giác SAB vuông cân tại S nên ,
Suy ra ,
và
Diện tích toàn phần của hình nón: (đvdt).
Thể tích khối nón là: (đvtt).
Mệnh đề nào sau đây đúng?
Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:
- Khối lập phương có 6 mặt.
"Mọi khối đa diện đều có số mặt là những số chia hết cho 4"
Sai.
- Khối lập phương và khối bát diện đều có cùng số cạnh là 12. Đúng
- Khối tứ diện đều không có tâm đối xứng.
"Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.
- Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.
"Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai
Cho hình chóp có đáy
là hình bình hành tâm O. Mặt phẳng
thay đổi luôn đi qua B, trung điểm
của
và cắt các cạnh
và
lần lượt tại
và
. Tính giá trị lớn nhất M và giá trị nhỏ nhất m của tỷ số
.
Đặt .
Ta có
Nên ta suy ra được: .
Do đó
Từ vì
Xét , tính đạo hàm của hàm số trên, ta được:
Ta có .
Vậy đạt GTLN và GTNN của tỉ số lần lượt là .
Hàm số nào sau đây đồng biến trên ?
Do nên hàm số
đồng biến trên
Cho . Tính giá trị của biểu thức
Ta có:
Cho hình chóp có đáy
là hình vuông cạnh
,
và
. Tổng diện tích hai tam giác
và
bằng
. Tính thể tích
của khối chóp
?
Gọi lần lượt là trung điểm của
và
.
Tam giác cân tại
suy ra
với
.
Vì suy ra
và
Kẻ
Ta có
Tam giác vuông tại
nên
Giải hệ:
hoặc
Vậy thể tích khối chóp
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Tìm giá trị của tham số để hàm số
nghịch biến trên khoảng
Viết biểu thức với a > 0 dưới dạng lũy thừa với số mũ hữu tỉ?
Ta có:
Cho . Tính
Ta có:
Phương trình có tập nghiệm là?
Điều kiện: x > 0
Vậy PT có tập nghiệm là S={8;2}.
Một hình trụ có bán kính đáy , chiều cao hình trụ
. Một hình vuông có các đỉnh nằm trên hai đường tròn đáy sao cho có ít nhất một cạnh không song song và không vuông góc với trục hình trụ. Khi đó cạnh của hình vuông bằng bao nhiêu?
Xét hình vuông ABCD có AD không song song và không vuông góc với trục OO’ của hình trụ.
Dựng đường sinh AA', ta có .
Suy ra A’C là đường kính đáy nên
Xét tam giác vuông AA’C, ta có
Suy ra cạnh hình vuông bằng 100 cm.
Giá trị của tham số m để đồ thị hàm số có đường tiệm cận ngang
là:
Điều kiện để đồ thị hàm số có tiệm cận là:
luôn đúng với
Phương trình đường tiệm cận ngang là nên ta có
Bất phương trình có tập nghiệm là:
Điều kiện:
Ta có:
Vậy BPT đã cho có tập nghiệm là .
Cho các hình sau:
Mỗi hình trên gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình không phải đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho S0 trùng với S, Sn trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Cho hàm số có bảng biến thiên trên đoạn
như hình vẽ:
Có bao nhiêu giá trị của tham số trên đoạn
sao cho giá trị lớn nhất của hàm số
trên đoạn
bằng
?
Ta có:
Suy ra
Khi đó hay
Theo yêu cầu bài toán
Nhìn vào bảng biến thiên ta thấy có ba nghiệm
Vậy có 3 giá trị của tham số m thỏa mãn yêu cầu bài toán.
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
Ta có: nên hàm số nghịch biến trên tập xác định của nó.
Gọi là tập tất cả các giá trị thực của tham số
để đường thẳng
cắt đồ thị hàm số
tại ba điểm phân biệt
với
nằm giữa
sao cho
. Tính tổng các phần tử thuộc tập S?
Ta có bảng biến thiên
Suy ra đường thẳng cắt đồ thị hàm số
tại ba điểm phân biệt
Khi đó
Để B nằm giữa A và C và thì
Từ (*) ta được . Thay (**) được
Suy ra . Vậy tổng các phần tử của S bằng
.
Có bao nhiêu giá trị nguyên của tham số để hàm số
đồng biến trên khoảng
?
Đặt
Khi đó hàm số đã cho đồng biến trên khoảng khi và chỉ khi hàm số
đồng biến trên khoảng
Hàm số đồng biến trên khoảng
khi và chỉ khi:
Vì
Vậy có tất cả 2020 số nguyên m thỏa mãn yêu cầu bài toán.
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Cho hình chóp có đáy là hình thang vuông tại A và B,
. Cạnh bên
và vuông góc với đáy. Tính thể tích khối chóp
.
1
Diện tích hình thang ABCD là
Chiều cao khối chóp là .
Vậy thể tích khối chóp
Cho hàm số với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Cho hàm số với
là tham số. Có bao nhiêu giá trị nguyên của tham số
để hàm số có điểm cực tiểu nằm hoàn toàn phía trên trục hoành?
Phương trình có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
Phương trình có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
PT
Vậy PT có 2 nghiệm.
Một chất điểm chuyển động với quy luật . Thời điểm
(giây) tại vận tốc
của chuyển động đạt giá trị lớn nhất là:
Vận tốc của chuyển động là:
Vậy vận tốc đạt giá trị lớn nhất bằng khi
.
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Với a, b là các số thực dương tùy ý và a khác 1, đặt . Mệnh đề nào dưới đây đúng?
Ta có:
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Cho hình chóp có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.
Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .
Trong không gian , cho
và mặt phẳng
. Viết phương trình mặt cầu đi qua
và tiếp xúc mặt phẳng
.
Gọi là tâm mặt cầu cần tìm.
Theo bài ra ta có:
Vậy phương trình mặt cầu tâm I(3; 1; −2) bán kính là
.
Cho tập hợp và
là tập hợp các hàm số
có
. Chọn ngẫu nhiên một hàm số
. Tính xác suất để đồ thị hàm số
có hai điểm cực trị nằm khác phía đối với trục
?
Không gian mẫu
Ta có:
Đồ thị của hàm số có hai điểm cực trị nằm khác phía đối với trục
suy ra phương trình (*) có hai nghiệm phân biệt khác
.
Mà
Vậy xác suất cần tìm là .
Tìm tất cả các giá trị thực của tham số m để bất phương trình có nghiệm đúng
.
Bất phương trình tương đương
hoặc
: (*) không thỏa
và
: (*)
Nghiệm nguyên nhỏ nhất của bất phương trình là:
8 || tám || Tám
Nghiệm nguyên nhỏ nhất của bất phương trình là:
8 || tám || Tám
BPT
Vậy giá trị nghiệm nguyên nhỏ nhất của BPT là 8.
Cho hàm số có bảng biến thiên như sau:
Đồ thị của hàm số đã cho có bao nhiêu tiệm cận?
Đồ thị của hàm số đã cho có đường tiệm cận.
Hàm số đạt cực tiểu tại điểm
Ta có: có tập xác định
=> Hàm số đạt cực tiểu tại điểm x = 1
Có bao nhiêu giá trị nguyên âm của để đồ thị hàm số
cắt trục hoành tại đúng một điểm?
Phương trình hoành độ giao điểm của đồ thị và trục hoành là:
Ta thấy không là nghiệm của phương trình nên
Xét hàm số
Ta có:
Bảng biến thiên của hàm số như sau:
Từ bảng biến thiên ta thấy đồ thị hàm số đã cho cắt trục hoành tại đúng một điểm khi (*) có đúng 1 nghiệm
Vì nguyên âm nên
Vậy có 10 giá trị của a thỏa mãn yêu cầu bài toán.
Tìm các giá trị của x để hàm số có nghĩa:
Điều kiện xác định
Nghiệm bé nhất của phương trình là:
TXĐ:
PT
là nghiệm nhỏ nhất.
Cho hình đa diện đều loại cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Đa diện đều loại là khối lập phương nên có 6 mặt là các hình vuông cạnh
.
Vậy hình lập phương có tổng diện tích tất cả các mặt là
Hàm số nào sau đây phù hợp với hình vẽ:
Ta có: và hàm số đồng biến trên
nên chỉ có hàm số
thỏa mãn
Cho mặt cầu và một điểm A, biết
. Qua A kẻ một tiếp tuyến tiếp xúc với (S) tại B. Khi đó độ dài đoạn AB bằng:
Vì AB tiếp xúc với (S) tại B nên .
Suy ra
Dựa vào thông tin dưới đây và trả lời các câu hỏi
Số lượng của một loại vi khuẩn X trong một phòng thí nghiệm được biểu diễn theo công thức , trong đó A là số lượng vi khuẩn tại thời điểm chọn mốc thời gian, r là tỉ lệ tăng trưởng (r > 0), t là thời gian tăng trưởng (tính theo đơn vị là giờ). Lúc 6 giờ sáng, số lượng vi khuẩn X là 150 con. Sau 3 giờ, số lượng vi khuẩn X là 450 con.
Tỉ lệ tăng trưởng của vi khuẩn X gần nhất với kết quả nào sau đây?
Chọn 6 giờ là mốc thời gian. Khi đó .
Sau 3 giờ, số lượng vi khuẩn là 450 con nên .
Từ đó ta có phương trình:
Trong các hàm số sau, hàm số nào có hai điểm cực đại và một điểm cực tiểu?
Dựa vào dấu của hệ số nên hàm số
có ba điểm cực trị trong đó có hai điểm cực đại và một điểm cực tiểu.