Trong không gian , cho tứ diện đều
có
và hình chiếu vuông góc của
trên mặt phẳng
là
. Tìm tọa độ tâm
của mặt cầu ngoại tiếp tứ diện
?
Gọi
là tứ diện đều nên tâm
của mặt cầu ngoại tiếp trùng với trọng tâm tứ diện
Trong không gian , cho tứ diện đều
có
và hình chiếu vuông góc của
trên mặt phẳng
là
. Tìm tọa độ tâm
của mặt cầu ngoại tiếp tứ diện
?
Gọi
là tứ diện đều nên tâm
của mặt cầu ngoại tiếp trùng với trọng tâm tứ diện
Cho hàm số bậc bốn có đồ thị như hình vẽ dưới đây:
Số điểm cực trị của hàm số là:
Ta có:
Cho và khác 1. Các hàm số
có đồ thị như hình vẽ bên. Khẳng định nào dưới đây đúng?
Kẻ đường thẳng cắt đồ thị các hàm số
lần lượt tại các điểm có hoành độ
Từ đồ thị ta có:
Tìm tất cả các giá trị thực của tham số m để bất phương trình
Bất phương trình tương đương
: (2) không thỏa
: (3) không thỏa
(1) thỏa mãn
.
Vậy .
Cho hàm số . Hàm số
có đồ thị như hình vẽ dưới đây:
Bất phương trình nghiệm đúng với mọi
khi và chỉ khi
Cho hàm số . Hàm số
có đồ thị như hình vẽ dưới đây:
Bất phương trình nghiệm đúng với mọi
khi và chỉ khi
Cho hàm số có
. Hàm số
đồng biến trên khoảng nào dưới đây?
Xét dấu f’(x) như sau:
Ta có:
Chọn ta có:
=> là khoảng âm
Khi đó bảng xét dấu của y’ = (f(x2))’ như sau:
Từ trục xét dấu ta thấy. Hàm số y = f(x2) đồng biến trên (-1; 0)
Cho hình chóp có đáy
là hình vuông cạnh
. Gọi
và
lần lượt là trung điểm của các cạnh
và
;
là giao điểm của
và
. Biết
vuông góc với mặt phẳng
và
. Tính thể tích khối chóp
.
Theo giả thiết, ta có .
Diện tích tứ giác:
Vậy .
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:
Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Với các số a, b > 0 thỏa mãn , biểu thức
bằng:
Ta có:
Tập nghiệm của bất phương trình là:
Ta có:
.
Tập xác định của hàm số là:
Điều kiện xác định của hàm số là:
=> Tập xác định của hàm số là:
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Xác định các giá trị của tham số để hàm số
có ba điểm cực trị sao cho giá trị cực đại của hàm số đạt giá trị nhỏ nhất?
Trong các mệnh đề sau, mệnh đề nào saì?
Áp dụng khái niệm đa diện lồi, ta thấy hình hộp, tứ diện, lập phương đều là các đa diện lồi. Xét đáp án còn lại, ta có:
- Hai tứ diện đều ghép vào nhau có thể không tạo thành một hình đa diện lồi.
- Hai tứ diện (đều là các đa diện lồi) nhưng khi ghép với nhau có thể không tạo thành một hình đa diện lồi.
Cho hàm số có đạo hàm trên
và thỏa mãn
. Bất phương trình
nghiệm đúng với mọi
khi và chỉ khi
Ta có:
.
Xét hàm số có
Bảng biến thiên
Vậy bất phương trình nghiệm đúng với mọi
khi và chỉ khi
.
Tìm giá trị của tham số để giá trị nhỏ nhất của hàm số
trên đoạn
bằng
?
Ta có:
Vậy giá trị cần tìm là .
Cho hàm số xác định trên và có bảng biến thiên như hình vẽ:
Số đường tiệm cận đứng của đồ thị hàm số là:
Ta có:
Phương trình có 3 nghiệm phân biệt khác 2.
Phương trình có một nghiệm kép là x = 2 (do vậy mẫu số có dạng
nên x = 2 vẫn là TCĐ của đồ thị hàm số
=> Đồ thị hàm số có 4 đường tiệm cận đứng.
Tính thể tích của khối lăng trụ
biết thể tích khối chóp
bằng
Ta có thể tích khối chóp:
Suy ra:
Cho hàm số xác định trên
và có đạo hàm
trong đó
. Hàm số
đồng biến trên khoảng nào?
Ta có:
Vì nên
Suy ra hàm số đồng biến trên .
Điều kiện để bất phương trình sau có nghĩa là
Điều kiện:
Biết rằng với x > 0. Tìm n?
Ta có:
Vậy
Cho lăng trụ đứng có đáy
là hình thoi cạnh bằng 1,
. Góc giữa đường thẳng
và mặt phẳng
bằng
. Tính thể tích
của khối lăng trụ.
Hình thoi có
, suy ra
. Do đó tam giác
và
là các tam giác đều. Gọi N là trung điểm A'B' nên
Suy ra .
Tam giác vuông , có
Tam giác vuông , có
.
Diện tích hình thoi .
Vậy .
Thu gọn biểu thức biết a và b là hai số thực dương.
Ta có:
Cho hai số thực a và b với . Chọn khẳng định sai?
sai vì chưa biết b > 0 hay b < 0
Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình sau:
Đồ thị của hàm số thỏa mãn bài toán.
Đạo hàm của hàm số
Ta có:
Trong các hình dưới đây, hình nào không phải đa diện lồi?
Áp dụng dấu hiệu nhận biết của khối đa diện lồi : Đoạn thẳng nối hai điểm bất kì của
luôn thuộc
. Ta thấy có hình sau vi phạm tính chất đó:
Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.
Đáp án: 40538432
Người ta xây dựng một chân tháp bằng bê tông có dạng khối chóp cụt tứ giác đều (Hình bên dưới). Cạnh đáy dưới dài 5m, cạnh đáy trên dài 2m, cạnh bên dài 3m. Biết rằng chân tháp được làm bằng bê tông tươi với giá tiền là 1470000 đồng/m3. Tính số tiền để mua bê tông tươi làm chân tháp theo đơn vị đồng.
Đáp án: 40538432
Hình vẽ minh họa:
Mô hình hoá chân tháp bằng cụt chóp tứ giác đều ABCD.A′B′C′D′ với O, O′ là tâm của hai đáy.
Vậy .
ABCD là hình vuông
là hình vuông
Kẻ
là hình chữ nhật
vuông tại
Diện tích đáy lớn là:
Diện tích đáy bé là:
Thể tích hình chóp cụt là:
Số tiền để mua bê tông tươi làm chân tháp là: (đồng).
Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?
Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được.
Cho hàm số có đồ thị
, đường thẳng
và điểm
. Biết rằng
cắt nhau tại ba điểm phân biệt
trong đó
còn trọng tâm tam giác
nằm trên đường thẳng
. Tìm giá trị của tham số
thỏa mãn yêu cầu đề bài?
Cho hàm số có đồ thị
, đường thẳng
và điểm
. Biết rằng
cắt nhau tại ba điểm phân biệt
trong đó
còn trọng tâm tam giác
nằm trên đường thẳng
. Tìm giá trị của tham số
thỏa mãn yêu cầu đề bài?
Đẳng thức nào sau đây đúng với mọi số dương ?
Ta có:
Cho một số thực tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Cho một hình đa diện. Trong các khẳng định sau, khẳng định nào sai?
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho
trùng với
trùng với S’ và bất kì hai mặt nào cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Ta thấy ngoai trừ "Mỗi cạnh là cạnh chung của ít nhất ba mặt" các đáp án còn lại đều đúng dựa vào khái niệm hình đa diện.
Cho khối chóp có đáy
là hình vuông cạnh
, tam giác
cân tại S và nằm trong mặt phẳng vuông góc với mặt đáy,
. Tính theo
thể tích của khối chóp
.
Gọi là trung điểm của
. Tam giác
cân tại
và có
là trung điểm
nên
. Do
theo giao tuyến
nên
.
Tam giác vuông , có:
Phương trình có tập nghiệm là?
Điều kiện: x > 0
Vậy PT có tập nghiệm là S={8;2}.
Phương trình có nghiệm là:
Ta có:
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng . Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Cho hàm số . Gọi
lần lượt là hoành độ tại hai điểm cực đại và cực tiểu của hàm số. Kết luận nào sau đây đúng?
Tập xác định
Ta có:
nên
là điểm cực tiểu của hàm số.
nên
là điểm cực đại của hàm số.
Vậy kết luận đúng là: .
Viết biểu thức dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Cho hàm số có bảng biến thiên như sau:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Từ bảng biến thiên ta thấy hàm số đồng biến trên các khoảng và
.
Vậy đáp án cần tìm là .
Gọi là 2 nghiệm của phương trình
.
Khi đó bằng:
Ta có:
Suy ra .
Tập nghiệm của bất phương trình là:
Điều kiện:
Ta có:
(thỏa mãn điều kiện)
Vậy tập nghiệm của bất phương trình đã cho là .
Trong không gian với hệ tọa độ , cho mặt cầu
Ta có:
Vậy tọa độ bán kính và bán kính mặt cầu lần lượt là:
Phương trình có tập nghiệm là:
PT
.
Tổng các góc ở đỉnh của tất cả các mặt của khối đa diện đều loại là:
Khối đa diện đều loại là khối hai mươi mặt đều:
Gồm 20 mặt là các tam giác đều nên tổng các góc bằng:
Tìm đạo hàm của hàm số
Ta có:
Cho hàm số có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận ngang của đồ thị hàm số đã cho?
Từ đồ thị suy ra đồ thị hàm số đã cho có đường tiệm cận ngang là .
Cho hàm số với
là tham số. Gọi
là tập hợp tất cả các giá trị nguyên của tham số
để hàm số nghịch biến trên khoảng
. Hỏi tập hợp
có tất cả bao nhiêu phần tử?
Ta có:
Theo yêu cầu bài toán
Mà
Vậy tập hợp T có tất cả 3 phần tử.
Trong các khẳng định dưới đây, khẳng định nào sai?
Ta có:
Vậy đáp án sai là:
Cho hình chóp có đáy
là hình vuông cạnh a. Cạnh bên
và vuông góc với đáy (
). Tính theo
diện tích mặt cầu ngoại tiếp hình chóp
ta được:
Gọi , suy ra O là tâm đường tròn ngoại tiếp hình vuông
.
Gọi I là trung điểm SC, suy ra
Do đó IO là trục của hình vuông , suy ra
(1)
Xét tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên . (2)
Từ (1) và (2), ta có:
Vậy diện tích mặt cầu (đvdt).
Cho hàm số y = f(x) có đạo hàm trên là
. Hàm số đã cho có bao nhiêu điểm cực trị?
Tập xác định:
Ta có:
Ta có bảng xét dầu’(x) như sau:
Dựa vào bảng xét dấy của f’(x) ta thấy f’(x) đổi dấu qua hai điểm x = 2018, x = 2019 nên hàm số đã cho có hai điểm cực trị.