Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình nào trong các hình sau đây?

     Tâm tất cả các mặt của một hình lập phương là các đỉnh của hình bát diện:

  • Câu 2: Vận dụng

    Gọi x_1, x_2 là 2 nghiệm của phương trình \frac{1}{{4 + {{\log }_2}x}} + \frac{2}{{2 - {{\log }_2}x}} = 1. Khi đó x_1.x_2 bằng:

     Điều kiện: \left\{ \begin{gathered}  x > 0 \hfill \\  x e 4 \hfill \\  x e \frac{1}{{16}} \hfill \\ \end{gathered}  ight..

    Đặt t = {\log _2}x ,điều kiện \left\{ \begin{gathered}  t e  - 4 \hfill \\  t e 2 \hfill \\ \end{gathered}  ight.. Khi đó phương trình trở thành:

    \frac{1}{{4 + t}} + \frac{2}{{2 - t}} = 1 \Leftrightarrow {t^2} + 3t + 2 = 0 \Leftrightarrow \left[ \begin{gathered}  t =  - 1 \hfill \\  t =  - 2 \hfill \\ \end{gathered}  ight. \Rightarrow \left[ \begin{gathered}  x = \frac{1}{2} \hfill \\  x = \frac{1}{4} \hfill \\ \end{gathered}  ight.

    Vậy {x_1}.{x_2} = \frac{1}{8}.

  • Câu 3: Thông hiểu

    Nếu đặt t = \lg x thì phương trình \frac{1}{{4 - \lg x}} + \frac{2}{{2 + \lg x}} = 1 trở thành phương trình nào?

     Đặt t = \lg x

    PT \Leftrightarrow \frac{1}{{4 - t}} + \frac{2}{{2 + t}} = 1 \Leftrightarrow \frac{{2 + t + 2(4 - t)}}{{(4 - t)(2 + t)}} = 1

    \Leftrightarrow 2 + t + 2(4 - t) = (4 - t)(2 + t)

    \Leftrightarrow 10 - t = 8 + 2t - {t^2} \Leftrightarrow {t^2} - 3t + 2 = 0.

  • Câu 4: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có bao nhiêu giá trị nguyên của tham số m để đồ thị hàm số y = \frac{\sqrt{1 - x}}{x^{2} + 4x + m} có đúng ba đường tiệm cận?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Vận dụng

    Cho hàm số y = f(x) có đạo hàm f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x,\forall x \in \mathbb{R}. Hỏi hàm số có bao nhiêu điểm cực trị?

    Ta có:

    \begin{matrix}  f'\left( x ight) = \left( {3 - x} ight)\left( {{x^2} - 1} ight) + 2x \hfill \\   \Rightarrow y' = f''\left( x ight) - 2x =  - 3{x^2} + 4x + 3 \hfill \\  y' = 0 \Leftrightarrow x = \dfrac{{2 \pm \sqrt {13} }}{3} \hfill \\  y'' =  - 6x + 4 \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {y''\left( {\dfrac{{2 + \sqrt {13} }}{3}} ight) =  - 2\sqrt {13}  < 0} \\   {y''\left( {\dfrac{{2 - \sqrt {13} }}{3}} ight) = 2\sqrt {13}  > 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Hàm số có 1 cực trị

  • Câu 6: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để bất phương trình {\log _2}\left( {7{x^2} + 7} ight) \geqslant {\log _2}\left( {m{x^2} + 4x + m} ight),{\text{ }}\forall x \in \mathbb{R} \, \, (1)

     Bất phương trình tương đương 7{x^2} + 7 \geqslant m{x^2} + 4x + m > 0,{\text{ }}\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{gathered}  \left( {7 - m} ight){x^2} - 4x + 7 - m \geqslant 0{\text{   }}(2) \hfill \\  m{x^2} + 4x + m > 0{\text{                 }}(3) \hfill \\ \end{gathered}  ight.,{\text{ }}\forall x \in \mathbb{R}.

    m=7: (2) không thỏa \forall x \in \mathbb{R}

    m=0: (3) không thỏa \forall x \in \mathbb{R}

    (1) thỏa mãn \forall x \in \mathbb{R}  \Leftrightarrow \left\{ \begin{gathered}  7 - m > 0 \hfill \\  {{\Delta '}_2} = 4 - {\left( {7 - m} ight)^2} \leqslant 0 \hfill \\  m > 0 \hfill \\  {{\Delta '}_3} = 4 - {m^2} < 0 \hfill \\ \end{gathered}  ight.{\text{   }}

    \Leftrightarrow {\text{  }}\left\{ \begin{gathered}  m < 7 \hfill \\  m \leqslant 5 \hfill \\  m > 0 \hfill \\  m > 2 \hfill \\ \end{gathered}  ight.{\text{  }} \Leftrightarrow {\text{  }}2 < m \leqslant 5.

    Vậy m \in \left( {2;5} ight].

  • Câu 7: Nhận biết

    Cho a = {\log _3}2;b = {\log _3}5. Khi đó \log 60 có giá trị là:

    Ta có:

    \begin{matrix}  \log 60 = \dfrac{{{{\log }_3}60}}{{{{\log }_3}10}} \hfill \\   = \dfrac{{{{\log }_3}{2^2} + {{\log }_3}3 + {{\log }_3}5}}{{{{\log }_3}2 + {{\log }_3}5}} \hfill \\   = \dfrac{{{{\log }_3}{2^2} + 1 + {{\log }_3}5}}{{{{\log }_3}2 + {{\log }_3}5}} = \dfrac{{2a + b + 1}}{{a + b}} \hfill \\ \end{matrix}

  • Câu 8: Thông hiểu

    Cho {\log _a}b = 2;{\log _a}c = 3. Tính giá trị của biểu thức P = {\log _a}\left( {a{b^3}{c^3}} ight)

    Ta có:

    \begin{matrix}  P = {\log _a}\left( {a{b^3}{c^3}} ight) \hfill \\   = {\log _a}a + {\log _a}{b^3} + {\log _a}{c^3} \hfill \\   = 1 + 3{\log _a}b + 5{\log _a}c \hfill \\   = 1 + 3.2 + 5.3 = 22 \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Hàm số y = \left| x^{3} + 3x^{2}
ight| đạt cực đại tại

    Tập xác định: D\mathbb{= R}

    Ta có: y = \left| x^{3} + 3x^{2} ight|
= \left\{ \begin{matrix}
x^{3} + 3x^{2}\ \ khi\ x \geq - 3 \\
- x^{3} - 3x^{2}\ \ khi\ x < - 3 \\
\end{matrix} ight.

    \Rightarrow y' = \left\{
\begin{matrix}
3x^{2} + 6x\ \ khi\ x \geq - 3 \\
- 3x^{2} - 6x\ khi\ x < - 3 \\
\end{matrix} ight.

    \Rightarrow y' = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy hàm số đạt cực tiểu tại x = -
3x = 0.

  • Câu 10: Vận dụng

    Gọi x_1 , x_2 là hai nghiệm của phương trình {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}. Khi đó, tổng hai nghiệm bằng?

    0 || không || Không || Tổng 2 nghiệm bằng 0

    Đáp án là:

    Gọi x_1 , x_2 là hai nghiệm của phương trình {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}. Khi đó, tổng hai nghiệm bằng?

    0 || không || Không || Tổng 2 nghiệm bằng 0

     Ta có: {2^{{x^2} + 4}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{2^{2\left( {{x^2} + 2} ight)}} - {2^{{x^2} + 3}} + 1}

    \Leftrightarrow {8.2^{{x^2} + 1}} = {2^{2\left( {{x^2} + 1} ight)}} + \sqrt {{{4.2}^{2\left( {{x^2} + 1} ight)}} - {{4.2}^{{x^2} + 1}} + 1}

    Đặt t = {2^{{x^2} + 1}}\left( {t \geqslant 2} ight), phương trình trên tương đương với

    8t = {t^2} + \sqrt {4{t^2} - 4t + 1}  \Leftrightarrow {t^2} - 6t - 1 = 0 \Leftrightarrow t = 3 + \sqrt {10} (vì t \geqslant 2).

    Từ đó suy ra {2^{{x^2} + 1}} = 3 + \sqrt {10}  \Leftrightarrow \left[ \begin{gathered}  {x_1} = \sqrt {{{\log }_2}\frac{{3 + \sqrt {10} }}{2}}  \hfill \\  {x_2} =  - \sqrt {{{\log }_2}\frac{{3 + \sqrt {10} }}{2}}  \hfill \\ \end{gathered}  ight.

     

    Vậy tổng hai nghiệm bằng 0.

  • Câu 11: Thông hiểu

    Trong các khẳng định sau, khẳng định nào đúng?

    Xét hàm số y = {e^{10x + 2017}} ta có:

    y' = 10.{e^{10x + 2017}} > 0;\forall x \in \mathbb{R}

    Vậy hàm số y = {e^{10x + 2017}} đồng biến trên tập số thực.

  • Câu 12: Thông hiểu

    Tính thể tích V của khối lăng trụ tam giác đều có cạnh đáy bằng a và tổng diện tích các mặt bên bằng 3a^2

     

    Xét khối lăng trụ ABC.A'B'C'có đáy ABC là tam giác đều và AA' \bot \left( {ABC} ight).

    Diện tích xung quanh lăng trụ là {S_{xq}} = 3.{S_{ABB'A'}}

    \Leftrightarrow 3{a^2} = 3.\left( {AA'.AB} ight) \Leftrightarrow 3{a^2} = 3.\left( {AA'.a} ight) \Rightarrow AA' = a

    Diện tích tam giác ABC{S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}.

    Vậy thể tích khối lăng trụ là {V_{ABC.A'B'C'}} = {S_{\Delta ABC}}.AA' = \frac{{{a^3}\sqrt 3 }}{4}.

  • Câu 13: Thông hiểu

    Nếu đặt t = {\log _3}\frac{{x - 1}}{{x + 1}} thì bất phương trình {\log _4}{\log _3}\frac{{x - 1}}{{x + 1}} < {\log _{\frac{1}{4}}}{\log _{\frac{1}{3}}}\frac{{x + 1}}{{x - 1}} trở thành bất phương trình nào?

    Điều kiện: x \in ( - \infty ; - 1) \cup (1; + \infty )

    Sau khi đưa về cùng cơ số 4, rồi tiếp tục biến đổi về cùng cơ số 3 ta được bất phương trình  {\log _3}\frac{{x - 1}}{{x + 1}} - \frac{1}{{{{\log }_3}\frac{{x - 1}}{{x + 1}}}} < 0

    Vậy BPT trở thành: \frac{{{t^2} - 1}}{t} < 0

  • Câu 14: Vận dụng cao

    Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

    Bất phương trình chưa tham số m nghiệm đúng

    Bất phương trình f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m (với m là tham số thực) nghiệm đúng với mọi x \in \left( { - 1;3} ight) khi và chỉ khi:

    Đặt u = \sqrt {x + 1}

    x \in \left( { - 1;3} ight) \Rightarrow u \in \left( {0;2} ight)

    => f\left( u ight) < u + m \Rightarrow f\left( u ight) - u < m

    Xét hàm số g\left( u ight) = f\left( u ight) - u;{\text{  }}u \in \left( {0;2} ight)

    Ta có: g'\left( u ight) = f'\left( u ight) - 1

    Dựa vào đồ thị hàm số ta thấy: u \in \left[ {0;2} ight] thì f'\left( u ight) < 1;\forall u \in \left[ {0;2} ight]

    => g(u) nghịch biến trên (0; 2)

    Vậy để f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m nghiệm đúng với mọi x \in \left( { - 1;3} ight) thì

    \begin{matrix}  f\left( u ight) - u < m;\forall u \in \left( {0;2} ight) \hfill \\   \Rightarrow m \geqslant \mathop {\max }\limits_{\left[ {0;2} ight]} g\left( u ight) = g\left( 0 ight) = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 15: Nhận biết

    Hàm số nào dưới dây nghịch biến trên khoảng ( - \infty; + \infty)?

    Xét hàm số y = - 2x + 1y' = - 2 < 0;\forall x\mathbb{\in
R} nên hàm số y = - 2x + 1 nghịch biến trên khoảng ( - \infty; +
\infty).

  • Câu 16: Nhận biết

    Mệnh đề nào sau đây đúng?

     Trong không gian chỉ có 5 loại khối đa diện đều như hình vẽ sau:

    - Khối lập phương có 6 mặt.

    \Rightarrow "Mọi khối đa diện đều có số mặt là những số chia hết cho 4" \Rightarrow Sai.

    - Khối lập phương và khối bát diện đều có cùng số cạnh là 12. \Rightarrow Đúng

    - Khối tứ diện đều không có tâm đối xứng.

    \Rightarrow "Khối tứ diện đều và khối bát diện đều có 1 tâm đối xứng": Sai.

    - Khối 12 mặt đều có 20 đỉnh. Khối 20 mặt đều có 12 đỉnh.

    \Rightarrow "Khối mười hai mặt đều và khối hai mươi mặt đều có cùng số đỉnh": Sai

     

  • Câu 17: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 18: Vận dụng cao

    Cho hàm số bậc bốn y = f(x) có đồ thị (C1) và hàm số y = f’(x) có đồ thị (C2) như hình vẽ bên. Số điểm cực trị của đồ thị hàm số g\left( x ight) = f\left[ {{e^{ - x}}.f\left( x ight)} ight] trên khoảng \left( { - \infty ;3} ight) là:

    Số điểm cực trị của hàm số thuộc khoảng cho trước

    Ta có: g'\left( x ight) = {e^{ - x}}.\left[ {f'\left( x ight) - f\left( x ight)} ight].f'\left[ {{e^{ - x}}.f\left( x ight)} ight]

    Số điểm cực trị của hàm số thuộc khoảng cho trước

    Xét g'\left( x ight) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f'\left( x ight) - f\left( x ight) = 0} \\   {f\left( {{e^{ - x}}.f\left( x ight)} ight) = 0} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {f'\left( x ight) = f\left( x ight)} \\   {f\left( {{e^{ - x}}.f\left( x ight)} ight) = 0} \end{array}} ight.

    \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x = 0} \\   {x = b} \\   \begin{gathered}  {e^{ - x}}.f\left( x ight) =  - 2 \hfill \\  {e^{ - x}}.f\left( x ight) = 0 \hfill \\  {e^{ - x}}.f\left( x ight) = 2 \hfill \\ \end{gathered}  \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x = 0} \\   {x = b} \\   \begin{gathered}  f\left( x ight) =  - 2.{e^x} \hfill \\  f\left( x ight) = 0 \hfill \\  f\left( x ight) = 2.{e^x} \hfill \\ \end{gathered}  \end{array}} ight.

    Từ đồ thị ta được:

    Phương trình f\left( x ight) =  - 2.{e^x} có nghiệm đơn

    Phương trình f\left( x ight) = 0 có 2 nghiệm đơn và 1 nghiệm bội chẵn (x = 0)

    Phương trình f\left( x ight) = 2.{e^x} có 1 nghiệm đơn.

    Vậy g’(x) = 0 có 8 nghiệm đơn nên hàm số g(x) có 8 điểm cực trị.

  • Câu 19: Vận dụng

    Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?

    Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.

    Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức 3Đ =2C.

  • Câu 20: Thông hiểu

    Thu gọn biểu thức T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} biết a và b là hai số thực dương.

    Ta có: T = \frac{{{a^{\frac{7}{6}}}.{b^{ - \frac{2}{3}}}}}{{\sqrt[6]{{a{b^2}}}}} = \left( {{a^{\frac{7}{6}}}:{a^{\frac{1}{6}}}} ight).\left( {{b^{\frac{{ - 2}}{3}}}:{b^{\frac{2}{6}}}} ight) = \frac{a}{b}

  • Câu 21: Vận dụng

    Trong không gian Oxyz, viết phương trình mặt cầu đi qua điểm A(1; -
1;4) và tiếp xúc với các mặt phẳng tọa độ?

    Gọi I(a;b;c) là tâm mặt cầu (S). Mặt cầu (S) tiếp xúc với các mặt phẳng tọa độ nên:

    d\left( I;(Oxy) ight) = d\left(
I;(Oyz) ight) = d\left( I;(Ozx) ight)

    \Leftrightarrow |a| = |b| = |c| =
R(*)

    Mặt cầu đi qua điểm A(1; -
1;4)

    \Rightarrow \left\{ \begin{matrix}
IA = R \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
IA^{2} = R^{2} \\
a > 0;c > 0;b < 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + (b + 1)^{2} + (c - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
(a - 1)^{2} + ( - a + 1)^{2} + (a - 4)^{2} = R^{2} \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a^{2} - 12a + 18 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} - 6a + 9 = 0 \\
a = c = - b = R > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = c = 3 \\
b = - 3 \\
R = 3 \\
\end{matrix} ight.\  \Rightarrow (S):(x - 3)^{2} + (y + 3)^{2} + (z -
3)^{2} = 9

  • Câu 22: Thông hiểu

    Với a > 0 hãy rút gọn biểu thức P = \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } } :{x^{\frac{9}{{16}}}}

    Ta có: 

    \begin{matrix}  \sqrt {x\sqrt {x\sqrt {x\sqrt {x\sqrt x } } } }  = \sqrt {x\sqrt {x\sqrt {x\sqrt {{x^{\frac{3}{2}}}} } } }  = \sqrt {x\sqrt {x\sqrt {{x^{\frac{7}{4}}}} } }  \hfill \\   = \sqrt {x\sqrt {x.{x^{\frac{7}{8}}}} }  = \sqrt {x\sqrt {{x^{\frac{{15}}{8}}}} }  = \sqrt {x.{x^{\frac{{15}}{{16}}}}}  = \sqrt {{x^{\frac{{31}}{{16}}}}}  = {x^{\frac{{31}}{{32}}}} \hfill \\   \Rightarrow P = {x^{\frac{{31}}{{32}}}}:{x^{\frac{9}{{16}}}} = {x^{\frac{{13}}{{32}}}} \hfill \\ \end{matrix}

  • Câu 23: Vận dụng

    Cho hàm số y = f(x) xác định và liên tục trên [-2; 2], có đồ thị của hàm số y f’(x) như hình vẽ sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Tìm giá trị của x0 để hàm số y = f(x) đạt giá trị lớn nhất trên [-2; 2]

     Từ đồ thị ta có: f’(x) = 0 => \left[ {\begin{array}{*{20}{c}}  {x =  - 1} \\   {x = 1} \end{array}} ight.

    Ta có bảng biến thiên như sau:

    Tìm điều kiện để hàm số đạt giá trị lớn nhất trên khoảng

    Từ bảng biến thiên ta có x0 = 1 thỏa mãn điều kiện

  • Câu 24: Thông hiểu

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} có tập xác định là:

    Hàm số y = {x^\alpha } có số mũ nguyên âm xác định khi

    Hàm số y = {\left( {4{x^2} - 1} ight)^{ - 4}} xác định khi 4{x^2} - 1 e 0 \Leftrightarrow x e  \pm \frac{1}{2}

    Vậy tập xác định là: D = \mathbb{R}\backslash \left\{ { - \frac{1}{2};\frac{1}{2}} ight\}

  • Câu 25: Vận dụng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tìm tập hợp tất cả các giá trị của tham số m để phương trình f\left( \cos x ight) = - 2m + 1 có nghiệm thuộc khoảng \left( 0;\frac{\pi}{2}ight)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Nhận biết

    Phương trình {\log _2}(3x - 2) = 2 có nghiệm là: 

    x=2 || 2 || hai

    Đáp án là:

    Phương trình {\log _2}(3x - 2) = 2 có nghiệm là: 

    x=2 || 2 || hai

     PT \Leftrightarrow \left\{ \begin{gathered}  3x - 2 > 0 \hfill \\  3x - 2 = 4 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{2} \hfill \\  x = 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow x = 2.

  • Câu 27: Nhận biết

    Cho hàm số y = ax^{3} + bx^{2} + cx +
d;\left( a;b;c;d\mathbb{\in R} ight) có đồ thị hàm số như hình vẽ:

    Mệnh đề nào sau đây sai?

    Giá trị cực đại của hàm số là 4 suy ra mệnh đề sai là: “Giá trị cực đại của hàm số là - 1.”

  • Câu 28: Vận dụng

    Cho biết {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}, khẳng định nào sau đây đúng?

    Điều kiện: x - 2 > 0 \to x > 2

    Ta có:

    - \frac{1}{3} >  - \frac{1}{6} \Rightarrow {\left( {x - 2} ight)^{ - \frac{1}{3}}} > {\left( {x - 2} ight)^{ - \frac{1}{6}}}

    \Rightarrow x - 2 < 1 \Rightarrow x < 3

    Vậy 2 < x < 3

  • Câu 29: Nhận biết

    Tập xác định của hàm số y = {\log _2}\left( {4 - {x^2}} ight) là tập hợp nào sau đây?

    Điều kiện xác định 4 - {x^2} > 0 \Rightarrow x \in \left( { - 2;2} ight)

    Vậy tập xác định của hàm số là D = \left( { - 2;2} ight)

  • Câu 30: Thông hiểu

    Cho phương trình log_{\frac{1}{2}}(2x -
m) + log_{2}(3 - x) = 0, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?

    Đáp án: 5

    Đáp án là:

    Cho phương trình log_{\frac{1}{2}}(2x -
m) + log_{2}(3 - x) = 0, m là tham số. Hỏi có bao nhiêu giá trị nguyên dương của m để phương trình có nghiệm?

    Đáp án: 5

    ĐKXĐ: \left\{ \begin{matrix}
2x - m > 0 \\
3 - x > 0 \\
\end{matrix} \Leftrightarrow \left\{ \begin{matrix}
2x - m > 0 \\
x < 3 \\
\end{matrix} ight.\  ight.\ .

    Ta có:

    log_{\frac{1}{2}}(2x - m) + log_{2}(3 -x) = 0

    \Leftrightarrow - log_{2}(2x - m) +
log_{2}(3 - x) = 0

    \Leftrightarrow log_{2}(2x - m) =
log_{2}(3 - x)

    \Leftrightarrow 2x - m = 3 - x
\Leftrightarrow 3x = m + 3

    Để phương trình có nghiệm thì m + 3 <
9 \Leftrightarrow m < 6.

    Kết hợp điều kiện m là số nguyên dương ta có m ∈ {1;2;3;4;5}.

    Vậy có 5 giá trị của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 31: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có tâm là điểm A(2; 2; 2), mặt phẳng (P) : 2x + 2y + z + 8 = 0 cắt mặt cầu (S) theo thiết diện là đường tròn có bán kính r = 8. Diện tích của mặt cầu (S) là:

    Ta có:

    d\left( A;(P) ight) = \frac{|4 + 4 + 2
+ 8|}{\sqrt{2^{2} + 2^{2} + 1^{2}}} = 6

    R^{2} = d^{2}\left( A;(P) ight) +
r^{2} = 100

    Vậy diện tích mặt cầu là: S = 4\pi R^{2}
= 400\pi.

  • Câu 32: Thông hiểu

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Đáp án là:

    Cho hình chóp S. ABCD có đáy là hình thang vuông tại A và B, AB=BC=AD=2. Cạnh bên SA=2 và vuông góc với đáy. Tính thể tích khối chóp S.ABCD.

    1

    Diện tích hình thang ABCD là

    {S_{ABCD}} = \left( {\frac{{AD + BC}}{2}} ight).AB = \frac{3}{2}

    Chiều cao khối chóp là SA=2.

    Vậy thể tích khối chóp  {V_{S.ABCD}} = \frac{1}{3}{S_{ABCD}}.SA = 1

  • Câu 33: Nhận biết

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB =a, AD=a \sqrt 2, AB'=a \sqrt 5. Tính theo a thể tích khối hộp đã cho.

     

    Trong tam giác vuông ABB', có BB' = \sqrt {AB{'^2} - A{B^2}}  = 2a.

    Diện tích hình chữ nhật ABCD{S_{ABCD}} = AB.AD = {a^2}\sqrt 2.

    Vậy {V_{ABCD.A'B'C'D'}} = {S_{ABCD}}.BB' = 2{a^3}\sqrt 2

  • Câu 34: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 35: Nhận biết

    Cho hàm số y = f(x) có đồ thị như sau:

    Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:

    Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là x = 1 và đường tiệm cận ngang là y = 1.

  • Câu 36: Vận dụng

    Cho hàm số y =
f(x) xác định trên y =
f(x) và có đạo hàm f'(x) = (2 -
x)(x + 3)g(x) + 2021 trong đó g(x)
< 0;\forall x\mathbb{\in R}. Hàm số y = f(1 - x) + 2021x + 2022 đồng biến trên khoảng nào?

    Ta có:

    y' = - f'(1 - x) +
2021

    y' = - \left\lbrack (1 + x)(4 -
x)g(1 - x) + 2021 ightbrack + 2021

    y' = (x + 1)(x - 4).g(1 - x)
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    g(x) < 0;\forall x\mathbb{\in
R} nên y' > 0;\forall x \in
( - 1;4)

    Suy ra hàm số đồng biến trên ( -
1;4).

  • Câu 37: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, phương trình nào sau đây không phải là phương trình của một mặt cầu?

    Phương trình (S):x^{2} + y^{2} + z^{2} -
2ax - 2by - 2cz + d = 0 là phương trình của một mặt cầu nếu a^{2} + b^{2} + c^{2} - d >
0.

    Vậy phương trình không phải phương trình mặt cầu là:

    x^{2} + y^{2} + z^{2} - 2x + 4y - 4z +
10 = 0

  • Câu 38: Nhận biết

    Nghiệm của bất phương trình (0,2)^{x^{2}}
> 1

    Ta có (0,2)^{x^{2}} > 1
\Leftrightarrow x^{2} < log_{0,2}1 \Leftrightarrow x^{2} <
0 (vô nghiệm).

    Vậy tập nghiệm của bất phương trình đã cho là \varnothing.

  • Câu 39: Thông hiểu

    Cho hàm số y = \frac{x + m}{x +
1} (với m là tham số thực) thỏa mãn \max_{\lbrack 1;2brack}y +
\min_{\lbrack 1;2brack}y = \frac{16}{3}. Mệnh đề nào sau đây đúng?

    Ta có: y' = \frac{1 - m}{(x +
1)^{2}}

    TH1: m = 1 \Rightarrow y = 1 loại

    TH2: m > 1 khi đó \max_{\lbrack 1;2brack}y = \frac{1 +
m}{2};\min_{\lbrack 1;2brack}y = \frac{2 + m}{3}

    \max_{\lbrack 1;2brack}y +
\min_{\lbrack 1;2brack}y = \frac{1 + m}{2} + \frac{2 + m}{3} =
\frac{16}{3} \Leftrightarrow m = 5

    Suy ra đáp án cần tìm là m >
4.

  • Câu 40: Nhận biết

    Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

    Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số a > 0.

    Vậy hàm số cần tìm là y = x^{4} - x^{2} -
1.

  • Câu 41: Vận dụng

    Cho hình lăng trụ ABC.A'B'C'có đáy là tam giác đều cạnh có độ dài bằng 2. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Góc tạo bởi cạnh bên AA' với mặt đáy là 45^0. Tính thể tích khối trụ  ABC.A'B'C'.

    3 || Ba || ba || V=3

    Đáp án là:

    Cho hình lăng trụ ABC.A'B'C'có đáy là tam giác đều cạnh có độ dài bằng 2. Hình chiếu vuông góc của A' lên mặt phẳng (ABC) trùng với trung điểm H của BC. Góc tạo bởi cạnh bên AA' với mặt đáy là 45^0. Tính thể tích khối trụ  ABC.A'B'C'.

    3 || Ba || ba || V=3

     

    Tam giác đều ABC cạnh bằng 2 nên AH = \sqrt 3.

    A'H \bot \left( {ABC} ight) nên hình chiếu vuông góc của AA' trên mặt đáy (ABC) là AH. 

    Do đó {45^0} = \widehat {AA',\left( {ABC} ight)} = \widehat {AA',AH} = \widehat {A'AH}.

    Suy ra tam giác A'HA vuông cân tại H nên A'H = HA = \sqrt 3.

    Diện tích tam giác đều ABC là {S_{\Delta ABC}} = \sqrt 3.

    Vậy V = {S_{\Delta ABC}}.A'H = 3.

  • Câu 42: Thông hiểu

    Trong không gian, cho hình chữ nhật ABCD có AB = 1AD = 2 . Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

    Diện tích toàn phần

    Theo giả thiết ta được hình trụ có chiều cao h=AB=1 , bán kính đáy R = \frac{{AD}}{2} = 1

    Do đó diện tích toàn phần: {S_{tp}} = 2\pi Rh + 2\pi {R^2} = 4\pi

  • Câu 43: Thông hiểu

    Hàm số nào sau đây đồng biến trên \mathbb{R}?

    Ta có hàm số y = \left( \frac{5}{4}
ight)^{x} có cơ số a =
\frac{5}{4} > 1 nên đồng biến trên \mathbb{R}.

    Ngoài ra các hàm số y = \frac{x + 4}{x +
3}; y = x^{4} - 2x^{2} +
1; y = \tan x không thể đồng biến hoặc nghịch biến trên \mathbb{R}.

  • Câu 44: Nhận biết

    Cho hàm số y = {x^{ - \frac{1}{2}}}. Cho các khẳng định sau:

    i) Hàm số xác định với mọi x

    ii) Đồ thị hàm số luôn đi qua điểm (1; 1)

    iii) Hàm số nghịch biến trên \mathbb{R}

    iv) Đồ thị hàm số có hai đường tiệm cận

    Trong các khẳng định trên có bao nhiêu khẳng định đúng?

    Ta có khẳng định ii) và iv) là đúng

    i) Sai vì hàm số đã cho xác định khi x > 0

    iii) Sai vì hàm số nghịch biến trên \left( {0; + \infty } ight)

  • Câu 45: Vận dụng cao

    Tổng tất cả các giá trị thực của m để hàm số y = \frac{1}{5}{m^2}{x^5} - \frac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 đồng biến trên R bằng:

    Ta có:

    \begin{matrix}  y = \dfrac{1}{5}{m^2}{x^5} - \dfrac{1}{3}m{x^3} + 10{x^2} - \left( {{m^2} - m - 20} ight)x + 1 \hfill \\   \Rightarrow y' = {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \hfill \\ \end{matrix}

    Hàm số đã cho đồng biến trên R khi và chỉ khi

    \begin{matrix}   \Rightarrow y' \geqslant 0,\forall x \in \mathbb{R} \hfill \\   \Rightarrow {m^2}{x^4} - m{x^2} + 20x - {m^2} + m + 20 \geqslant 0,\forall x \in \mathbb{R} \hfill \\ \end{matrix}

    Và dấu bằng xảy ra chỉ tại một số hữu hạn điểm.

    Điều kiện cần

    Ta thấy phương trình y ‘ = 0 có một nghiệm x = -1 nên để y' \geqslant 0,\forall x \in \mathbb{R} thì y’ không đổi dấu qua khi x = -1 khi đó phương trình y’ = 0 có nghiệm kép là x = -1 (x = -1 không thể laf nghiệm bội 4 của phương trình y’ = 0 vì y’ không chứa số hạng x3)

    Ta suy ra được y’’(-1) = 0

    => - 4{m^2} + 2m + 20 = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {m =  - 2} \\   {m = \dfrac{5}{2}} \end{array}} ight.

    Điều kiện đủ:

    Với m = - 2 ta có:

    y' = 4{x^4} + 2{x^2} + 20x + 14 = 4{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{5}{2}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = -2 thỏa mãn điều kiện đề bài.

    Với m = \frac{5}{2} ta có:

    y' = \frac{{25}}{4}{x^4} - \frac{5}{2}{x^2} + 20x + \frac{{65}}{4} = \frac{{25}}{4}{\left( {x + 1} ight)^2}\left[ {{{\left( {x - 1} ight)}^2} + \frac{8}{5}} ight] \geqslant 0,\forall x \in \mathbb{R}

    => Hàm số đồng biến trên R

    => m = \frac{5}{2} thỏa mãn điều kiện đề bài

    Vậy m =  - 2;m = \frac{5}{2} là các giá trị cần tìm.

    => Tổng các giá trị thực của m cần tìm thỏa mãn yêu cầu bài toán là - 2 + \frac{5}{2} = \frac{1}{2}

  • Câu 46: Vận dụng

    Đạo hàm của hàm số y = {\left( {{x^2} + x + x} ight)^{\frac{1}{3}}}

    Ta có:

    \begin{matrix}  y' = \dfrac{1}{3}.{\left( {{x^2} + x + 1} ight)^{\frac{1}{3} - 1}}.\left( {{x^2} + x + 1} ight)\prime  \hfill \\   \Rightarrow y' = \dfrac{1}{3}.{\left( {{x^2} + x + 1} ight)^{ - \frac{2}{3}}}.\left( {2x + 1} ight) \hfill \\   \Rightarrow y' = \dfrac{{2x + 1}}{{3\sqrt[3]{{{{\left( {{x^2} + x + 1} ight)}^2}}}}} \hfill \\ \end{matrix}

  • Câu 47: Vận dụng cao

    Cho tứ diện đều SABC có cạnh bằng 1. Mặt phẳng (P) đi qua điểm S và trọng tâm G của tam giác ABC cắt các cạnh AB, AC lần lượt tại M, N. Tính thể tích nhỏ nhất {V_{\min }} của khối tứ diện SAMN.

    Gọi E là trung điểm của BC.

    Qua B, C lần lượt kẻ đường thẳng song song với MN và cắt đường thẳng AE tại P, Q.

    Theo định lí Talet, ta có:

    \left\{ \begin{gathered}  \frac{{AB}}{{AM}} = \frac{{AP}}{{AG}} \hfill \\  \frac{{AC}}{{AN}} = \frac{{AQ}}{{AG}} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{AP}}{{AG}} + \frac{{AQ}}{{AG}} = \frac{{AP + AQ}}{{AG}}

    Mặt khác \Delta BPE = \Delta CQE\xrightarrow{{}}PE = QE\,

    \Rightarrow \,\,AP + AQ = \left( {AE - PE} ight) + \left( {AE + QE} ight) = 2AE

    Do đó \frac{{AB}}{{AM}} + \frac{{AC}}{{AN}} = \frac{{2AE}}{{AG}} = 2.\frac{3}{2} = 3 \Rightarrow \frac{1}{{AM}} + \frac{1}{{AN}} = 3.

    Đặt \left\{ \begin{gathered}  AM = x \hfill \\  AN = y \hfill \\ \end{gathered}  ight. \Rightarrow \frac{1}{x} + \frac{1}{y} = 3

    SABC là tứ diện đều \Rightarrow \,\,SG \bot \left( {ABC} ight)  và SG = \frac{{\sqrt 2 }}{{\sqrt 3 }}

    Do đó   {V_{SAMN}} = \frac{1}{3}{S_{\Delta AMN}}.SG

    = \frac{1}{3}\left( {\frac{1}{2}AM.AN\sin {{60}^0}} ight).SG

    = \frac{{\sqrt 2 }}{{12}}AM.AN = \frac{{\sqrt 2 }}{{12}}xy

    Ta có 3 = \frac{1}{x} + \frac{1}{y} \geqslant \frac{2}{{\sqrt {xy} }}

    \Leftrightarrow \sqrt {xy}  \geqslant \frac{2}{3} \Leftrightarrow xy \geqslant \frac{4}{9}

    \Rightarrow {V_{\min }} = \frac{{\sqrt 2 }}{{27}}

  • Câu 48: Nhận biết

    Biết rằng \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} = {x^n} với x > 0. Tìm n?

     Ta có:

    \begin{matrix}  \sqrt x .\sqrt[3]{{{x^2}.\sqrt x }} \hfill \\   = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^2}.{x^{\frac{1}{2}}}}} = {x^{\frac{1}{2}}}.\sqrt[3]{{{x^{\frac{5}{2}}}}} \hfill \\   = {x^{\frac{1}{2}}}.{x^{\frac{5}{6}}} = {x^{\frac{1}{2} + \frac{5}{6}}} = {x^{\frac{4}{3}}} \hfill \\ \end{matrix}

    Vậy n = \frac{4}{3}

  • Câu 49: Vận dụng

    Một người gửi vào ngân hàng 200 triệu đồng vào tài khoản tiết kiệm ngân hàng với lãi suất 0,6%/ tháng, cứ sau mỗi tháng người đó rút ra 500 nghìn đồng. Hỏi sau đúng 36 lần rút tiền thì số tiền còn lại trong tài khoản của người đó gần nhất với phương án nào sau đây? (Biết rằng lãi suất không thay đổi và tiền lại mỗi tháng tính theo số tiền thực tế trong tài khoản của tháng đó?

    Số tiền còn lại trong tài khoản sau tháng thứ 1 là: 200.1,006 - 0,5 (triệu đồng)

    Số tiền còn lại trong tài khoản sau tháng thứ 2 là:

    \left( {200.1,006 - 0,5} ight).1,006 - 0,5 = 200.{\left( {1,006} ight)^2} - 0,5\left( {1 + 1,006} ight) (triệu đồng)

    Số tiền còn lại trong tài khoản sau tháng thứ 3 là:

    200.{\left( {1,006} ight)^3} - 0,5\left[ {1 + 1,006 + {{\left( {1,006} ight)}^2}} ight] (triệu đồng)

    Cứ tiếp tục quá trình thì số tiền còn lại trong tài khoản sau tháng thứ 36 là:

    200.{\left( {1,006} ight)^3} - 0,5\left[ {1 + 1,006 + {{\left( {1,006} ight)}^2} + ... + {{\left( {1,006} ight)}^{35}}} ight]

    = 200.{\left( {1,006} ight)^{36}} - 0,5.\frac{{1 - {{\left( {1,006} ight)}^{36}}}}{{1 - 1,006}} = 228,035 (triệu đồng) 

  • Câu 50: Nhận biết

    Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng R\sqrt 3. Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:

    Diện tích xung quanh của hình trụ: {S_{xq}} = 2\pi R.R\sqrt 3  = 2\sqrt 3 \pi {R^2}(đvdt).

    Diện tích toàn phần của hình trụ:

    {S_{tp}} = {S_{xq}} + 2.{S_{{m{day}}}} = 2\sqrt 3 \pi {R^2} + 2\left( {\pi {R^2}} ight) = 2\left( {\sqrt 3  + 1} ight)\pi {R^2}(đvdt).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 10 lượt xem
Sắp xếp theo