Đề thi học kì 1 Toán 12 Đề 1

Mô tả thêm: Đề thi HK1 Toán 12 được biên soạn gồm 50 câu hỏi trắc nghiệm thuộc 4 chuyên đề trọng tâm giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức Toán 12.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân ở B, AC = a\sqrt 2, SA=a và vuông góc với đáy (ABC). Gọi G là trọng tâm tam giác SBC. Mặt phẳng (\alpha) qua AG và song song với BC cắt SB, SC lần lượt tại M, N. Tính theo a thể tích V của khối chóp S.AMN.

     

    Từ giả thiết suy ra AB=BC=a.

    Diện tích tam giác {S_{\Delta ABC}} = \frac{1}{2}AB.BC = \frac{{{a^2}}}{2}. Do đó {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SA = \frac{{{a^3}}}{6}.

    Gọi I là trung điểm BC.

    Do G là trọng tâm \Delta SBC nên \frac{{SG}}{{SI}} = \frac{2}{3}.

    BC\parallel \left( \alpha  ight)\xrightarrow{{}}BC song song với giao tuyến MN

    ightarrow{{}}\Delta AMN \backsim \Delta ABC theo tỉ số \frac{2}{3}\xrightarrow{{}}{S_{\Delta AMN}} = \frac{4}{9}{S_{\Delta SBC}}

    Vậy thể tích khối chóp {V_{S.AMN}} = \frac{4}{9}.{V_{S.ABC}} = \frac{{2{a^3}}}{{27}}.

  • Câu 2: Thông hiểu

    Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên gấp hai lần cạnh đáy. Tính thể tích V của khối chóp đã cho.

     

    Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Vì S.ABC là khối chóp đều nên suy ra \,SI \bot \left( {ABC} ight).

    Gọi M là trung điểm của BC\,\, \Rightarrow \,\,AI = \frac{2}{3}AM = \frac{{a\sqrt 3 }}{3}

    Tam giác SAI vuông tại I, có:

    SI = \sqrt {S{A^2} - S{I^2}}  = \sqrt {{{\left( {2a} ight)}^2} - {{\left( {\frac{{a\sqrt 3 }}{3}} ight)}^2}}  = \frac{{a\sqrt {33} }}{3}

    Diện tích tam giác ABC là:  {S_{\Delta ABC}} = \frac{{{a^2}\sqrt 3 }}{4}

    Vậy thể tích khối chóp:  {V_{S.ABCD}} = \frac{1}{3}{S_{\Delta ABC}}.SI = \frac{{\sqrt {11} \,{a^3}}}{{12}}

  • Câu 3: Nhận biết

    Hình đa diện trong hình vẽ dưới đây có bao nhiêu mặt ?

    Quan sát hình vẽ và đếm các mặt xung quanh, chú ý cả những mặt được vẽ bằng nét đứt, không nhìn thấy được. 

  • Câu 4: Vận dụng

    Cho biết năm 2018, tỉnh A có 2 triệu người và tỉ lệ dân số là 1,4%/năm. Hỏi đến năm 2025 tỉnh A có bao nhiêu người, nếu tỉ lệ tăng dân số hằng năm không đổi?

    Ta có: A = 2, n = 7; I = 0,014

    Số dân tỉnh A đến năm 2025 là S = 2.{e^{7.0,014}} \approx 2,2059 triệu người.

  • Câu 5: Nhận biết

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

    Đáp án là:

    Hình bát diện đều có tất cả bao nhiêu cạnh?

    12 || mười hai || Mười hai

     

    Hình bát diện đều có 12 cạnh.

  • Câu 6: Vận dụng

    Cho hàm số y =  - {x^3} + 3{x^2} + 3mx - 1. Xác định tất cả các giá trị của tham số m để hàm số đã cho nghịch biến trong khoảng (0; +∞)

    Ta có: y' =  - 3{x^2} + 6x + 3m

    Hàm số đã cho nghịch biến trên khoảng (0; +∞)

    =>  y' \leqslant 0,\forall x \in \left( {0; + \infty } ight)

    => m \leqslant {x^2} - 2x = g\left( x ight),\forall x \in \left( {0; + \infty } ight)

    => m \leqslant \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight)

    Xét  g\left( x ight) = {x^2} - 2x;\forall x \in \left( {0; + \infty } ight) ta có:

    \begin{matrix}  g'\left( x ight) = 2x - 2 \hfill \\  g'\left( x ight) = 0 \Rightarrow x = 1 \hfill \\ \end{matrix}

    Ta lại có:

    \left\{ {\begin{array}{*{20}{c}}  {\mathop {\lim }\limits_{x \to 0} g\left( x ight) = 0} \\   {\mathop {\lim }\limits_{x \to \infty } g\left( x ight) =  + \infty } \\   {g\left( 1 ight) =  - 1} \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left( {0; + \infty } ight)} g\left( x ight) =  - 1 \Rightarrow m \leqslant  - 1

  • Câu 7: Vận dụng

    Gọi x_1, x_2 là 2 nghiệm của phương trình {\log _2}\left[ {x\left( {x + 3} ight)} ight] = 1. Khi đó x_1 + x_2 bằng: 

    -3

    Đáp án là:

    Gọi x_1, x_2 là 2 nghiệm của phương trình {\log _2}\left[ {x\left( {x + 3} ight)} ight] = 1. Khi đó x_1 + x_2 bằng: 

    -3

    Điều kiện: \left[ \begin{gathered}  x <  - 3 \hfill \\  x > 0 \hfill \\ \end{gathered}  ight.

    {\log _2}\left[ {x\left( {x + 3} ight)} ight] = 1 \Leftrightarrow x\left( {x + 3} ight) = 2 \Leftrightarrow {x^2} + 3x - 2 = 0

    Vậy {x_1} + {x_2} =  - 3.

  • Câu 8: Vận dụng

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

    Đáp án là:

    Tổng độ dài \ell của tất cả các cạnh của khối mười hai mặt đều cạnh bằng 2

    60 || sáu mươi || Sáu mươi

     Khối mười hai mặt đều có tất cả 30 cạnh:

     Suy ra ta có tổng độ dài tất cả các cạnh bằng \ell  = 30.2 = 60.

  • Câu 9: Thông hiểu

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight)là:

    17 || x=17 || x bằng 17 || X=17

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight)là:

    17 || x=17 || x bằng 17 || X=17

     Điều kiện:

    {\log _2}\left( {{{\log }_4}x} ight) > {\log _4}\left( {{{\log }_2}x} ight) \Leftrightarrow {\log _2}\left( {{{\log }_2}x} ight) > 2

    \Leftrightarrow {\log _2}x > 4 \Leftrightarrow x > 16

    Vậy nghiệm nguyên nhỏ nhất x=17.

  • Câu 10: Vận dụng

    Cho hàm số bậc ba f\left( x ight) = a{x^3} + b{x^2} + cx + d;\left( {a,b,c,d \in \mathbb{R}} ight) có đồ thị như hình vẽ dưới đây.

    Xác định số TCĐ và TCN của đồ thị hàm số

    Đồ thị hàm số g\left( x ight) = \frac{1}{{f\left( {4 - {x^2}} ight) - 3}} có bao nhiêu đường tiệm cận đứng và tiệm cận ngang.

    Đặt t = 4 - {x^2} khi đó x \to  \pm \infty thì t \to \infty

    Khi đó \mathop {\lim }\limits_{x \to  \pm \infty } g\left( x ight) = \mathop {\lim }\limits_{x \to  \pm \infty } \frac{1}{{f\left( t ight) - 3}} = 0

    => y = 0 là tiệm cận ngang của đồ thị hàm số g(x)

    Mặt khác

    \begin{matrix}  f\left( {4 - {x^2}} ight) - 3 = 0 \hfill \\   \Leftrightarrow f\left( {4 - {x^2}} ight) = 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {4 - {x^2} =  - 2} \\   {4 - {x^2} = 4} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  \pm \sqrt 6 } \\   {x = 0} \end{array}} ight. \hfill \\ \end{matrix}

    => Đồ thị hàm số g(x) có ba đường tiệm cận đứng.

    Vậy đồ thị hàm số g(x) có bốn đường tiệm cận.

  • Câu 11: Vận dụng cao

    Cho hình chóp S.ABCD có thể tích bằng V, đáy ABCD là hình vuông; SA \bot \left( {ABCD} ight)SC hợp với đáy một góc bằng 30^0. Mặt phẳng (P) đi qua A và vuông góc với SC, cắt các cạnh SB,SC,SD lần lượt tại E,F,K. Tính thể tích khối chóp S.AEFK

    V/10 || V phần 10

    Đáp án là:

    Cho hình chóp S.ABCD có thể tích bằng V, đáy ABCD là hình vuông; SA \bot \left( {ABCD} ight)SC hợp với đáy một góc bằng 30^0. Mặt phẳng (P) đi qua A và vuông góc với SC, cắt các cạnh SB,SC,SD lần lượt tại E,F,K. Tính thể tích khối chóp S.AEFK

    V/10 || V phần 10

     

    Ta có \frac{{SB}}{{SE}} = \frac{{S{B^2}}}{{S{A^2}}}. Tương tự \frac{{SD}}{{SK}} = \frac{{S{D^2}}}{{S{A^2}}} nên \frac{{SB}}{{SE}} = \frac{{SD}}{{SK}}.

    \frac{{SC}}{{SF}} = \frac{{S{C^2}}}{{S{A^2}}} = 4 (do \Delta SCA vuông tại A, \,\widehat {\,SCA} = {30^0}) nên ta có:

    \frac{{SC}}{{SF}} + 1 = \frac{{SB}}{{SE}} + \frac{{SD}}{{SK}} = 5 \Rightarrow \frac{{SB}}{{SE}} = \frac{{SD}}{{SK}} = \frac{5}{2}

    Xét tỉ số thể tích, ta được:

    \frac{{{V_{S.AEFK}}}}{{{V_{S.ABCD}}}} = \frac{{10}}{{4.1.4.\dfrac{5}{2}.\dfrac{5}{2}}} = \frac{1}{{10}}

    \Rightarrow {V_{S.AEFK}} = \frac{{{V_{S.ABCD}}}}{{10}} = \frac{V}{{10}}

     

  • Câu 12: Vận dụng

    Cho x > 0;y > 0. Viết biểu thức {x^{\frac{4}{5}}}.\sqrt[6]{{{x^5}\sqrt x }} = {x^m}{y^{\frac{4}{5}}}:\sqrt[6]{{{y^5}\sqrt y }} = {y^n}. Tính T = m - n

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{{\left( {{x^m}} ight)}^6} = {x^{\frac{{24}}{5}}}.{x^5}.{x^{\frac{1}{2}}} = {x^{\frac{{103}}{{10}}}} \Rightarrow m = \dfrac{{103}}{{60}}} \\   {{{\left( {{y^n}} ight)}^6} = {y^{\frac{{24}}{5}}}:\left( {{y^5}.{y^{\frac{1}{2}}}} ight) = {y^{ - \frac{7}{{10}}}} \Rightarrow n =  - \dfrac{7}{{60}}} \end{array}} ight. \Rightarrow T = m - n = \frac{{11}}{6}

  • Câu 13: Thông hiểu

    Cho a,b,c > 0. Tính giá trị của biểu thức A = {\log _a}\left( {{b^2}} ight).{\log _b}\left( {\sqrt {bc} } ight) - {\log _a}\left( c ight)

    Ta có:

    \begin{matrix}  A = {\log _a}\left( {{b^2}} ight).{\log _b}\left( {\sqrt {bc} } ight) - {\log _a}\left( c ight) \hfill \\  A = 2{\log _a}\left( b ight).\dfrac{1}{2}.{\log _b}\left( {bc} ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight).{\log _b}\left( {bc} ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight).\left[ {{{\log }_b}\left( b ight) + {{\log }_b}\left( c ight)} ight] - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight).\left[ {1 + {{\log }_b}\left( c ight)} ight] - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight) + {\log _a}\left( b ight).{\log _b}\left( c ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight) + {\log _a}\left( c ight) - {\log _a}\left( c ight) \hfill \\  A = {\log _a}\left( b ight) \hfill \\ \end{matrix}

  • Câu 14: Nhận biết

    Hình nón có đường sinh l=2a và hợp với đáy góc \alpha  = {60^0}. Diện tích toàn phần của hình nón bằng:

    Diện tích toàn phần

    Theo giả thiết, ta có

    SA = \ell  = 2a\widehat {SAO} = {60^0}.

    Suy ra:

    R = OA = SA.\cos {60^0} = a.

    Vậy diện tích toàn phần của hình nón bằng: S = \pi Rl + \pi {R^2} = 3\pi {a^2} (đvdt). 

  • Câu 15: Vận dụng

    Cho hàm số y = f(x) = \left| x^{2} - 4x +3 ight| + mx với m là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số m để hàm số y= f(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) = \left| x^{2} - 4x +3 ight| + mx với m là tham số. Hỏi có bao nhiêu giá trị nguyên của tham số m để hàm số y= f(x) có đúng ba điểm cực trị?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 16: Thông hiểu

    Viết biểu thức P = \frac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}};\left( {a > 0} ight) dưới dạng lũy thừa với số mũ hữu tỉ

    Ta có: P = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.\sqrt[3]{{{a^4}}}}}{{\sqrt[6]{{{a^5}}}}} = \dfrac{{{a^2}.{a^{\frac{5}{2}}}.{a^{\frac{4}{3}}}}}{{{a^{\frac{5}{6}}}}} = {a^5}

  • Câu 17: Thông hiểu

    Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật s(t) = t^{3} - 4t^{2} +
12(m), trong đó t(s) là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi t bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một chất điểm chuyển động thẳng với quãng đường biến thiên theo thời gian bởi quy luật s(t) = t^{3} - 4t^{2} +
12(m), trong đó t(s) là khoảng thời gian tính từ lúc bắt đầu chuyển động. Vận tốc của chất điểm đó đạt giá trị bé nhất khi t bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Nhận biết

    Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A và có AB=a, BC = a\sqrt 3. Mặt bên (SAB) là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng (ABC). Tính theo a thể tích V của khối chóp S.ABC.

     

    Gọi H là trung điểm của AB, suy ra SH \bot AB.

    Do \left( {SAB} ight) \bot \left( {ABC} ight) theo giao tuyến AB nên SH \bot (ABC).

    Tam giác SAB là đều cạnh AB=a  nên SH = \frac{{a\sqrt 3 }}{2}.

    Tam giác vuông ABC, có AC = \sqrt {B{C^2} - A{B^2}}  = a\sqrt 2.

    Diện tích tam giác vuông {S_{\Delta ABC}} = \frac{1}{2}AB.AC = \frac{{{a^2}\sqrt 2 }}{2}.

    Vậy {V_{S.ABC}} = \frac{1}{3}{S_{\Delta ABC}}.SH = \frac{{{a^3}\sqrt 6 }}{{12}}.

  • Câu 19: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, giá trị dương của tham số m sao cho mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} = m^{2} +
1 là:

    Ta có: (Oxy) có phương trình z = 0

    Mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2}
= m^{2} + 1 có tâm I(3;0;2) và bán kính R = \sqrt{m^{2} + 1}

    Để mặt phẳng (Oxy) tiếp xúc với mặt cầu (x - 3)^{2} + y^{2} + (z - 2)^{2} =
m^{2} + 1 thì

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2|}{\sqrt{1}} = \sqrt{m^{2} + 1}

    \Leftrightarrow m^{2} + 1 = 4
\Leftrightarrow m = \pm \sqrt{3}. Vì m nhận giá trị dương nên m = \sqrt{3}.

    Vậy m = \sqrt{3} thỏa yêu cầu đề bài.

  • Câu 20: Thông hiểu

    Chọn khẳng định đúng trong các khẳng định sau:

    Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:

  • Câu 21: Vận dụng

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \left[ { - 2018;2018} ight] để hàm số y = \ln \left( {{x^2} - 2x - m + 1} ight) có tập xác định \mathbb{R}?

    Hàm số xác định trên \mathbb{R} khi và chỉ khi

    \begin{matrix}  {x^2} - 2x - m + 1 > 0;\forall x \in \mathbb{R} \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a > 0} \\   {\Delta ' < 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {1 > 0} \\   {1 + m - 1 < 0} \end{array}} ight. \Rightarrow m < 0 \hfill \\ \end{matrix}

    Do \left\{ {\begin{array}{*{20}{c}}  {m \in \mathbb{Z}} \\   {m \in \left[ { - 2018;2018} ight]} \end{array}} ight. \Rightarrow m \in \left\{ { - 2018; - 2017;...; - 1} ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 22: Thông hiểu

    Cho khối chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA vuông góc với đáy và khoảng cách từ A đến mặt phẳng (SBC) bằng \frac{{a\sqrt 2 }}{2}. Tính thể tích V của khối chóp đã cho. 

     

    Gọi H là hình chiếu của A trên SB \Rightarrow AH \bot SB

    Ta có \left\{ \begin{gathered}  SA \bot \left( {ABCD} ight) \Rightarrow SA \bot BC \hfill \\  AB \bot BC \hfill \\ \end{gathered}  ight.

    \Rightarrow BC \bot \left( {SAB} ight) \Rightarrow AH \bot BC

    Suy ra AH \bot \left( {SBC} ight) \Rightarrow d\left[ {A,\left( {SBC} ight)} ight] = AH = \frac{{a\sqrt 2 }}{2}

    Tam giác SAB vuông tại A, có \frac{1}{{A{H^2}}} = \frac{1}{{S{A^2}}} + \frac{1}{{A{B^2}}} \Rightarrow SA = a

    Vậy V = \frac{1}{3}.SA.{S_{ABCD}} = \frac{{{a^3}}}{3}.

  • Câu 23: Thông hiểu

    Mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành các khối đa diện nào ?

    Chia khối lăng trụ

    Dựa vào hình vẽ, ta thấy mặt phẳng (AB'C') chia khối lăng trụ ABC.A'B'C' thành khối chóp tam giác A.A'B'C' và khối chóp tứ giác A.BCC'B'.

  • Câu 24: Nhận biết

    Phương trình {\log _3}({x^2} - 6) = {\log _3}(x - 2) + 1 có tập nghiệm là:

     PT \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 6 > 0 \hfill \\  x - 3 > 0 \hfill \\  {x^2} - 6 = 3(x - 3) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x <  - \sqrt 6  \vee x > \sqrt 6  \hfill \\  x > 3 \hfill \\  \left[ \begin{gathered}  x = 0 \hfill \\  x = 3 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Rightarrow x \in \emptyset.

  • Câu 25: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2;7),B( - 3;8; - 1). Mặt cầu đường kính AB có phương trình là:

    Gọi I là trung điểm của AB khi đó I(
- 1;3;3) là tâm mặt cầu (S).

    Bán kính R = IA = \sqrt{(1 + 1)^{2} + ( -
2 - 3)^{2} + (7 - 3)^{2}} = \sqrt{45}

    Vậy phương trình mặt cầu cần tìm là: (x +
1)^{2} + (y - 3)^{2} + (z - 3)^{2} = 45.

  • Câu 26: Vận dụng

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0  là:

    x=4 || X=4|| x bằng 4

    Đáp án là:

    Nghiệm nguyên nhỏ nhất của bất phương trình {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0  là:

    x=4 || X=4|| x bằng 4

    Theo bài toán, ta xét điều kiện của BPT là: x > 0;x e 1;x e 3.

    Ta có: {\log _x}3 - {\log _{\frac{x}{3}}}3 < 0 \Leftrightarrow \frac{{ - 1}}{{{{\log }_3}x.\left( {{{\log }_3}x - 1} ight)}} < 0

    \Leftrightarrow \left[ \begin{gathered}  {\log _3}x < 0 \hfill \\  {\log _3}x > 1 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  0 < x < 1 \hfill \\  x > 3 \hfill \\ \end{gathered}  ight.

  • Câu 27: Thông hiểu

    Cho số thực a dương. Rút gọn biểu thức P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{a\sqrt a }}}}}}

    Ta có:

    P = \sqrt[5]{{a.\sqrt[4]{{a.\sqrt[3]{{{a^{\frac{3}{2}}}}}}}}} = {\left( {a\sqrt[4]{{a.{a^{\frac{1}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a\sqrt[4]{{{a^{\frac{3}{2}}}}}} ight)^{\frac{1}{5}}} = {\left( {a.{a^{\frac{3}{8}}}} ight)^{\frac{1}{5}}} = {\left( {{a^{\frac{{11}}{8}}}} ight)^{\frac{1}{5}}} = {a^{\frac{{11}}{{40}}}}

  • Câu 28: Thông hiểu

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Số điểm cực trị của hàm số y = f\left( |x
+ 2| ight) là:

    Tịnh tiến hàm số y = f(x) sang trái hai đơn vị ta được hàm số y = f(x +
2)

    Đồ thị hàm số y = f\left( |x + 2|
ight) có được gồm hai phần.

    Phần 1 là phần đồ thị y = f(x +
2) nằm phía bên phải Oy.

    Phần 2 là phần đồ thị đối xứng qua Oy.

    Khi đó đồ thị hàm số sẽ có một điểm cực trị.

  • Câu 29: Nhận biết

    Với a và b là hai số thực dương tùy ý thì \log \left( {a{b^2}} ight) bằng:

    Ta có: \log \left( {a{b^2}} ight) = \log a + \log {b^2} = \log a + 2\log b

  • Câu 30: Nhận biết

    Cho hàm số y = f(x) có \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  - \infty\mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) =  - \infty. Khẳng định nào sau đây là khẳng định đúng?

    Ta có: \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) =  - \infty => Đồ thị hàm số đã cho có TCĐ là x = 0

    \mathop {\lim }\limits_{x \to {2^ + }} f\left( x ight) =  - \infty => Đồ thị hàm số đã cho có TCĐ là x = 2

  • Câu 31: Thông hiểu

    Phương trình {\log _3}(5x - 3) + {\log _{\frac{1}{3}}}({x^2} + 1) = 0 có 2 nghiệm x_1, \, x_2 trong đó x_1 < x_2. Giá trị của P = 2{x_1} + 3{x_2} là?

     PT \Leftrightarrow \left\{ \begin{gathered}  5x - 3 > 0 \hfill \\  {\log _3}(5x - 3) + {\log _{\frac{1}{3}}}({x^2} + 1) = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {\log _3}(5x - 3) - {\log _3}({x^2} + 1) = 0 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {\log ^{}}_3(5x - 3) = {\log ^{}}_3({x^2} + 1) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  5x - 3 = {x^2} + 1 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  {x^2} - 5x + 4 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x > \frac{3}{5} \hfill \\  \left[ \begin{gathered}  x = 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  x = 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight.

    Vậy 2{x_1} + 3{x_2} = 2.1 + 3.4 = 14.

  • Câu 32: Thông hiểu

    Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:

     Tính tang của góc

    Nửa góc ở đỉnh của hình nón là góc \widehat {ASO} .

    Hình vuông ABCD cạnh a nên suy ra: OA = \frac{{a\sqrt 2 }}{2}

    Trong tam giác vuông SOA, ta có \tan \widehat {ASO} = \frac{{OA}}{{SO}} = \frac{{a\sqrt 2 }}{{2h}}.

  • Câu 33: Nhận biết

    Bất phương trình {\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} ight) < 0 có tập nghiệm là:

     Ta có {\log _{\frac{2}{3}}}\left( {2{x^2} - x + 1} ight) < 0 

    \Leftrightarrow 2{x^2} - x + 1 > 1 \Leftrightarrow \left[ \begin{gathered}  x < 0 \hfill \\  x > \frac{1}{2} \hfill \\ \end{gathered}  ight.

    Vậy BPT có tập nghiệm là  S = \left( { - \infty ;0} ight) \cup \left( {\frac{1}{2}; + \infty } ight).

  • Câu 34: Thông hiểu

    Trong các khẳng định sau, khẳng định nào đúng?

    Xét hàm số y = {e^{10x + 2017}} ta có:

    y' = 10.{e^{10x + 2017}} > 0;\forall x \in \mathbb{R}

    Vậy hàm số y = {e^{10x + 2017}} đồng biến trên tập số thực.

  • Câu 35: Nhận biết

    Giá trị của biểu thức P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}} bằng:

    Ta có:

    P = {\left( {1 + \sqrt 3 } ight)^{2016}}.{\left( {3 - \sqrt 3 } ight)^{2016}}

    = {\left[ {\left( {1 + \sqrt 3 } ight)\left( {3 - \sqrt 3 } ight)} ight]^{2016}} = {\left( {2\sqrt 3 } ight)^{2016}} = {12^{1008}}

  • Câu 36: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho điểm H(1;2; - 2). Mặt phẳng (\alpha) đi qua H và cắt các trục Ox;Oy;Oz tại A;B;C sao cho H là trực tâm tam giác ABC. Viết phương trình mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha)?

    Hình vẽ minh họa

    Ta có H là trực tâm của tam giác ABC suy ra OH\bot(ABC)

    Thật vậy \left\{ \begin{matrix}
OH\bot OA \\
OH\bot OB \\
\end{matrix} ight.\  \Rightarrow OC\bot AB(1)

    CH\bot AB (vì H là trực tâm tam giác ABC) (2)

    Từ (1) và (2) suy ra AB\bot(OHC) suy ra AB\bot OH(*)

    Tương tự BC\bot(OAH) \Rightarrow BC\bot
OH(**)

    Từ (*) và (**) suy ra OH\bot(ABC)

    Khi đó mặt cầu tâm O tiếp xúc với mặt phẳng (ABC) có bán kính R = OH = 3

    Vây mặt cầu tâm O và tiếp xúc với mặt phẳng (\alpha) là: x^{2} + y^{2} + z^{2} = 9.

  • Câu 37: Thông hiểu

    Nghiệm lớn nhất của phương trình - {\log ^3}x + 2{\log ^2}x = 2 - \log x  là:

    100 || 1 trăm || một trăm || Một trăm || x=100

    Đáp án là:

    Nghiệm lớn nhất của phương trình - {\log ^3}x + 2{\log ^2}x = 2 - \log x  là:

    100 || 1 trăm || một trăm || Một trăm || x=100

     Điều kiện: x>0

    - {\log ^3}x + 2{\log ^2}x = 2 - \log x \Leftrightarrow \left[ \begin{gathered}  \log x =  - 1 \hfill \\  \log x = 2 \hfill \\  \log x = 1 \hfill \\ \end{gathered}  ight.\Leftrightarrow \left[ \begin{gathered}  x = \frac{1}{{10}} \hfill \\  x = 100 \hfill \\  x = 10 \hfill \\ \end{gathered}  ight.

    Vậy nghiệm lớn nhất là x =100.

  • Câu 38: Vận dụng cao

    Tìm tập hợp T tất cả các giá trị của tham số thực m để hàm số y = \frac{1}{3}{x^3} - \left( {m + 1} ight){x^2} + \left( {{m^2} + 2m} ight)x - 3 nghịch biến trên khoảng (-1; 1)

     Ta có: y' = {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight)

    Để hàm số nghịch biến trên khoảng (-1; 1) thì

    \begin{matrix}  y' \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\   \Leftrightarrow {x^2} - 2\left( {m + 1} ight)x + \left( {{m^2} + 2m} ight) \leqslant 0,\forall x \in \left( { - 1;1} ight) \hfill \\ \end{matrix}

    Ta có y’ = 0 => x = m hoặc x = m + 2

    Bảng xét dấu

    Tìm điều kiện để hàm số nghịch biến trên khoảng

    Từ bảng xét dấu ta thấy để hàm số nghịch biến trên khoảng (-1; 1) thì

    \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m + 2 \geqslant 1} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {m \leqslant  - 1} \\   {m \geqslant  - 1} \end{array}} ight. \Leftrightarrow m =  - 1

  • Câu 39: Nhận biết

    Cho hàm số y =
f(x) có đồ thị là đường cong trong hình vẽ:

    Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

    Trên khoảng (0;1) đồ thị hàm số đi xuống nên hàm số đã cho nghịch biến trên (0;1).

  • Câu 40: Vận dụng cao

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

    Bất phương trình có nghiêm đúng với khi và chỉ khi

    Bất phương trình f\left( x ight) < m + {x^2} - 2x có nghiêm đúng với \forall x \in \left( { - 2;2} ight) khi và chỉ khi :

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 41: Vận dụng cao

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \left| x^{3} - (2m +1)x^{2} + mx + m ight| với m là tham số. Giả sử S là tập hợp tất cả các giá trị nguyên của m \in \lbrack -2021;2021brack sao cho đồ thị của hàm số có 5 điểm cực trị. Tính tổng tất cả các phần tử của tập hợp S?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 42: Vận dụng

    Đường thẳng y = m^{2} cắt đồ thị hàm số y = x^{4} - x^{2} - 10 tại hai điểm phân biệt sao cho tam giác OAB vuông (với O là gốc tọa độ). Mệnh đề nào sau đây đúng?

    Xét hàm số y = x^{4} - x^{2} -
10 ta có y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{\sqrt{2}}{2} \\x = - \dfrac{\sqrt{2}}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    m^{2} \geq 0;\forall m nên từ bảng biến thiên ta thấy đường thẳng y =
m^{2} luôn cắt đồ thị hàm số y =
x^{4} - x^{2} - 10 tại những cặp điểm đối xứng nhau qua trục tung.

    Giả sử A\left( x_{1};m^{2}
ight);B\left( - x_{1};m^{2} ight). Tam giác OAB vuông

    \Leftrightarrow
\overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{0}
\Leftrightarrow - {x_{1}}^{2} + m^{4} = 0 \Leftrightarrow x_{1} =
m^{2}

    Suy ra A\left( m^{2};m^{2}
ight)A\left( m^{2};m^{2}
ight) thuộc đồ thị hàm số nên

    m^{8} - m^{4} - 10 = m^{2}
\Leftrightarrow m^{2} = 2 \in (1;3)

  • Câu 43: Vận dụng

    Tìm giá trị thực của tham số m để hàm số f(x) = -x3 – 3x2 + m có giá trị nhỏ nhất trên đoạn [-1; 1] bằng 0.

    Xét hàm số f(x) = -x3 – 3x2 + m trên đoạn [-1; 1] ta có:

    f’(x) = -3x2 – 6x

    f’(x) = 0 => \left\{ {\begin{array}{*{20}{c}}  { - 1 \leqslant x \leqslant 1} \\   { - 3{x^2} - 6x = 0} \end{array}} ight. \Leftrightarrow x = 0

    Ta tính được

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {f\left( { - 1} ight) = 2 + m} \\   \begin{gathered}  f\left( 0 ight) = m \hfill \\  f\left( 1 ight) =  - 4 + m \hfill \\ \end{gathered}  \end{array}} ight. \Rightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = f\left( 1 ight) =  - 4 + m \hfill \\   \Leftrightarrow \mathop {\min }\limits_{\left[ { - 1;1} ight]} f\left( x ight) = 0 \Rightarrow m = 4 \hfill \\ \end{matrix}

  • Câu 44: Nhận biết

    Trong các hàm số sau, hàm số nào nghịch biến trên tập số thực?

     Ta có:

    y = {\log _{\frac{\pi }{4}}}\left( {2{x^2} + 1} ight);y = {\log _{\frac{1}{2}}}x là các hàm số không xác định trên \mathbb{R}

    \frac{2}{e} < 1 \Rightarrow y = {\left( {\frac{2}{e}} ight)^x} nghịch biến trên \mathbb{R}

  • Câu 45: Thông hiểu

    Tìm tập xác định của hàm số y = {\left( {3x - {x^2}} ight)^{\frac{2}{3}}}

     Vì \frac{2}{3} otin \mathbb{Z} nên hàm số xác định khi 3x - {x^2} > 0 \Leftrightarrow 0 < x < 3

  • Câu 46: Nhận biết

    Đồ thị hàm số nào sau đây nhận điểm A(1;3) làm tâm đối xứng?

    Đồ thị hàm số y = \frac{3x + 4}{x -
1} có tiệm cận đứng là đường thẳng x = 1 và tiệm cận ngang là y = 3 suy ra giao điểm của hai đường tiệm cận là (1;3)

    Vậy điểm A(1;3) là tâm đối xứng của đồ thị hàm số y = \frac{3x + 4}{x -
1}.

  • Câu 47: Nhận biết

    Trong các biểu thức sau, biểu thức nào có nghĩa?

    Tập xác định của hàm số y = {x^\alpha } tùy thuộc vào \alpha

    Với \alpha nguyên dương, tập xác định \mathbb{R} 

    Với \alpha nguyên âm hoặc bằng 0, tập xác định \mathbb{R}\backslash \left\{ 0 ight\}

    Với \alpha không nguyên, tập xác định là \left( {0; + \infty } ight)

    Ta có: {\left( { - 3} ight)^{ - 6}}\alpha  =  - 6 là số nguyên âm nên cơ số x e 0

    => {\left( { - 3} ight)^{ - 6}} có nghĩa

  • Câu 48: Vận dụng cao

    Tìm tất cả các giá trị thực của tham số m để bất phương trình 1 + {\log _5}\left( {{x^2} + 1} ight) \geqslant {\log _5}\left( {m{x^2} + 4x + m} ight) có nghiệm đúng \forall x.

    Bất phương trình tương đương 7\left( {{x^2} + 1} ight) \geqslant m{x^2} + 4x + m > 0,{\text{ }}\forall x \in \mathbb{R}

    \Leftrightarrow \left\{ \begin{gathered}  \left( {5 - m} ight){x^2} - 4x + 5 - m \geqslant 0{} \hfill \\  m{x^2} + 4x + m > 0{} \hfill \\ \end{gathered}  ight.(*),{\text{ }}\forall x \in \mathbb{R}.

    m=0 hoặc m=5: (*) không thỏa \forall x \in \mathbb{R}

    m eq 0m eq 5: (*) \Leftrightarrow \left\{ \begin{gathered}  5 - m > 0 \hfill \\  {{\Delta '}_2} = 4 - {\left( {5 - m} ight)^2} \leqslant 0 \hfill \\  m > 0 \hfill \\  {{\Delta '}_3} = 4 - {m^2} < 0 \hfill \\ \end{gathered}  ight.{\text{   }} \Leftrightarrow {\text{  }}2 < m \leqslant 3.

  • Câu 49: Thông hiểu

    Cho hàm số y =f(x) = - \frac{1}{3}x^{3} + ax^{2} + (3a + 2)x - 5. Tập hợp các giá trị của tham số a để hàm số y = f(x) nghịch biến trên \mathbb{R}\lbrack m;nbrack. Tính giá trị biểu thức T=2m-n?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y =f(x) = - \frac{1}{3}x^{3} + ax^{2} + (3a + 2)x - 5. Tập hợp các giá trị của tham số a để hàm số y = f(x) nghịch biến trên \mathbb{R}\lbrack m;nbrack. Tính giá trị biểu thức T=2m-n?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 50: Nhận biết

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R}, đạo hàm y = f'(x) có đồ thị như hình vẽ sau:

    Tìm số điểm cực tiểu của hàm số y =
f(x)?

    Hàm số đạt cực tiểu tại điểm có f'(x) đổi dấu từ âm sang dương. Dựa vào đồ thị hàm số có 1 điểm cực tiểu.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 1 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 8 lượt xem
Sắp xếp theo