Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Biết
với a và b là các số thực dương. Tìm m?
Ta có:
Tính đạo hàm của hàm số ![]()
Ta có:
Tìm đạo hàm của hàm số
trên khoảng ![]()
Với điều kiện ta có:
. Khi đó:
=>
Cho các hàm số
có đồ thị như hình vẽ. Đường thẳng
cắt trục hoành, đồ thị hàm số
và
lần lượt tại
. Biết rằng
. Mệnh đề nào sau đây đúng?

Ta có:
Theo bài ra ta có:
Giá trị của biểu thức ![]()
Ta có:
Viết biểu thức
dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Trung điểm các cạnh của một tứ diện đều tạo thành?
Trung điểm các cạnh của một tứ diện đều tạo thành các đỉnh của một hình bát diện đều:

Cho hàm số
có đạo hàm
. Hàm số
có bao nhiêu điểm cực đại?
Từ giả thiết ta có bảng biến thiên của hàm số f(x)

Ta có:
g(x) = f(3 – x)
=> g’(x) = -f’(3 – x)
Từ bảng biến thiên của hàm số f(x) ta có:
=> Ta có bảng biến thiên của hàm số g(x) là:

Từ bảng biến thiên ta nhận thấy hàm số g(x) có một điểm cực đại.
Cho hàm số
có đồ thị (C). Biết rằng đồ thị (C) có ba điểm cực trị tạo thành ba đỉnh của tam giác ABC. Diện tích tam giác ABC bằng:
Ta có:
Tọa độ các điểm cực trị của đồ thị hàm số là
=> Tam giác ABC vuông cân tại A =>
Cho hàm số
có bảng biến thiên như sau:

Số nghiệm của phương trình
là:
Ta có:
Số nghiệm của phương trình là số giao điểm của đồ thị hàm số với đường thẳng
Phương trình (*) có 1 nghiệm
Phương trình (**) có 2 nghiệm
=> Số nghiệm của phương trình là 3 nghiệm
Trong không gian
, cho mặt cầu
và mặt phẳng
, với
là tham số. Gọi
là tập hợp tất cả các giá trị thực của tham số m để mặt phẳng
cắt mặt cầu
theo một đường tròn có chu vi
. Tổng giá trị của tất cả các phần tử thuộc
bằng:
Mặt cầu có tâm I(2; 1; −1) và bán kính R = 5.
Mặt phẳng (P) cắt mặt cầu (S) theo đường tròn có chu vi bằng 6π nên bán kính đường tròn bằng r = 3.
Do đó khoảng cách từ tâm I của mặt cầu đến mặt phẳng là:
Vậy tổng giá trị của các phần tử thuộc T bằng −16.
Trong các biểu thức sau, biểu thức nào có nghĩa?
Tập xác định của hàm số tùy thuộc vào
Với nguyên dương, tập xác định
Với nguyên âm hoặc bằng 0, tập xác định
Với không nguyên, tập xác định là
Ta có: có
là số nguyên âm nên cơ số
=> có nghĩa
Cho hàm số
có đạo hàm
. Khi đó hàm số
nghịch biến trên khoảng nào?
Ta có:
Ta có bảng biến thiên:
Dựa vào bảng biến thiên ta có hàm số nghịch biến trên và
.
Tập xác định của hàm số
là:
Hàm số xác định nếu
Vậy tập xác định
Phương trình
có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
Phương trình có số nghiệm là:
2 || hai || 2 nghiệm || Hai nghiệm
PT
Vậy PT có 2 nghiệm.
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ
là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Sau khi phát hiện một bệnh dịch, các chuyên gia y tế ước tính số người nhiễm bệnh kể từ ngày xuất hiện bệnh nhân đầu tiên đến ngày thứ là
(người). Nếu xem
là tốc độ truyền bệnh (người/ngày) tại thời điểm
. Tốc độ truyền bệnh sẽ lớn nhất vào ngày thứ mấy?
Đáp án: Ngày thứ 4||tư
Điều kiện .
Ta có ,
,
.
Bảng biến thiên:
Vậy tốc độ truyền bệnh lớn nhất vào ngày thứ .
Đáp số: .
Có tất cả bao nhiêu giá trị nguyên của tham số
để hàm số
có 7 điểm cực trị?
Có tất cả bao nhiêu giá trị nguyên của tham số để hàm số
có 7 điểm cực trị?
Mặt phẳng đi qua trục hình trụ, cắt hình trụ theo thiết diện là hình vuông cạnh bằng a. Thể tích khối trụ bằng:
Do thiết diện đi qua trục hình trụ nên ta có h=a.
Bán kính đáy . Do đó thể tích khối trụ
(đvtt).
Cho hàm số
. Tính ![]()
Tập xác định
Ta có:
Tập hợp tất cả các giá trị thực của tham số
để đồ thị hàm số
có đúng hai tiệm cận đứng?
Điều kiện xác định
Vì nên để đồ thị hàm số có đúng hai tiệm cận đứng thì phương trình
phải có hai nghiệm phân biệt lớn hơn
.
Xét hàm số trên
có:
Bảng biến thiên
Phương trình (*) có hai nghiệm phân biệt lớn hơn khi
.
Vậy đáp án cần tìm là .
Trong không gian với hệ toạ độ
, phương trình nào sau đây là phương trình mặt cầu
Phương trình mặt cầu tâm bán kính
có dạng:
Vậy đáp án cần tìm là: .
Cho hàm số
có đồ thị như hình vẽ:

Tìm đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số đó?
Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là và đường tiệm cận ngang là
Khẳng định nào dưới đây đúng?
Ta có:
Vậy đáp án đúng là:
Giá trị nhỏ nhất của hàm số
là:
Đặt
Khi đó hàm số trở thành:
Xét hàm số trên đoạn
ta có:
=> Hàm số đồng biến trên
=>
Tính thể tích
của khối lăng trụ
có đáy
là tam giác vuông tại B,
; cạnh bên
. Biết hình chiếu vuông góc của
trên mặt đáy
trùng với chân đường cao hạ từ B của tam giác
.

Gọi H là chân đường cao hạ từ B trong .
Theo giả thiết, ta có
Tam giác vuông , có
;
.
Tam giác vuông , có
.
Diện tích tam giác là
Vậy .
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình
có nghiêm đúng với
khi và chỉ khi :
Cho hàm số y = f(x). Hàm số y = f’(x) có bảng biến thiên như sau:

Bất phương trình có nghiêm đúng với
khi và chỉ khi :
Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm
với mọi
. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số
nghịch biến trên khoảng
?
Cho hàm số y = f(x) liên tục trên tập số thực và có đạo hàm với mọi
. Có bao nhiêu số nguyên m thuộc đoạn [-2019; 2019] để hàm số
nghịch biến trên khoảng
?
Tìm tất cả các giá trị thực của tham số
để hàm số
đồng biến trên khoảng
?
Điều kiện xác định
Ta có:
Hàm số đồng biến trên khoảng khi và chỉ khi
Vậy đáp án cần tìm là .
Trong không gian, cho hình chữ nhật ABCD có
và
. Gọi M, N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN , ta được một hình trụ. Diện tích toàn phần của hình trụ bằng:

Theo giả thiết ta được hình trụ có chiều cao , bán kính đáy
Do đó diện tích toàn phần:
Nghiệm nguyên lớn nhất của bất phương trình là:
x=7 || X=7 || x bằng 7 || 7
Nghiệm nguyên lớn nhất của bất phương trình là:
x=7 || X=7 || x bằng 7 || 7
Điều kiện:
Ta có:
.
Vậy nghiệm nguyên lớn nhất của bất phương trình là: .
Cho hình đa diện đều loại
cạnh
. Gọi
là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Đa diện đều loại là khối lập phương nên có 6 mặt là các hình vuông cạnh
.
Vậy hình lập phương có tổng diện tích tất cả các mặt là

Trong các mệnh đề sau, mệnh đề nào sai?
Trong 5 loại khối đa diện đều không tồn tại khối chóp có đáy là tứ giác!
Cho hình chóp
có đáy
là hình vuông cạnh
, cạnh bên SA vuông góc với mặt phẳng đáy và
. Tính thể tích của khối chóp?

Diện tích hình vuông là
.
Chiều cao khối chóp là
Vậy áp dụng công thức, ta có thể tích khối chóp là:
Gọi
là 2 nghiệm của phương trình
.
Khi đó
bằng:
Ta có:
Suy ra .
Cho khối lăng trụ
có thể tích bằng
, các điểm
lần lượt thuộc các cạnh
sao cho
. Thể tích của khối đa diện
là bao nhiêu? (Đơn vị:
)
31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối
Cho khối lăng trụ có thể tích bằng
, các điểm
lần lượt thuộc các cạnh
sao cho
. Thể tích của khối đa diện
là bao nhiêu? (Đơn vị:
)
31 || 31 cm^3 || ba mươi mốt xăng ti mét khối || Ba mươi mốt xăng ti mét khối
Ta có
Nên
Mà
.
Vậy .
Nghiệm lớn nhất của phương trình
là:
100 || 1 trăm || một trăm || Một trăm || x=100
Nghiệm lớn nhất của phương trình là:
100 || 1 trăm || một trăm || Một trăm || x=100
Điều kiện:
Vậy nghiệm lớn nhất là x =100.
Vật thể nào trong các vật thể sau không phải là khối đa diện?
Vì đáp án đã vi phạm tính chất sau:
Mỗi cạnh của miền đa giác nào cũng là cạnh chung của đúng hai miền đa giác
Biết rằng
với x > 0. Tìm n?
Ta có:
Vậy
Bất phương trình
có tập nghiệm là:
Ta có
Vậy BPT có tập nghiệm là .
Tính thể tích
của khối lập phương
, biết
.

Đặt cạnh của khối lập phương là
Suy ra .
Tam giác vuông , có
Vậy thể tích khối lập phương .
Cho
. Tính giá trị của biểu thức ![]()
Ta có:
Trong các hàm số sau đây, hàm số nào không nghịch biến trên
?
Với
y’ > 0 khi x > 0 và y’ < 0 khi x < 0 nên hàm số không nghịch biến trên
Khối lăng trụ ngũ giác có bao nhiêu cạnh?
Khối lăng trụ ngũ giác có số cạnh của một mặt đáy là 5 cạnh, số cạnh bên là 5 cạnh
Số cạnh của khối lăng trụ ngũ giác là: 2.5 + 5 =15 cạnh.
Trong không gian
, cho
và mặt phẳng
. Viết phương trình mặt cầu đi qua
và tiếp xúc mặt phẳng
.
Gọi là tâm mặt cầu cần tìm.
Theo bài ra ta có:
Vậy phương trình mặt cầu tâm I(3; 1; −2) bán kính là
.
Hàm số nào dưới đây có dạng đồ thị như đường cong trong hình vẽ?

Dựa vào hình dáng đồ thị ta suy ra đồ thị của hàm số bậc 4 có hệ số .
Vậy hàm số cần tìm là .
Nếu đặt
thì phương trình
trở thành phương trình nào?
Đặt
PT
.
Tập nghiệm của bất phương trình
là:
Vậy tập nghiệm của BPT là .
Cho bất phương trình:
. Tìm tất cả các giá trị của tham số để bất phương trình (1) nghiệm đúng
.
Đặt .
Vì . Bất phương trình đã cho thành:
nghiệm đúng
nghiệm đúng
.
Xét hàm số: .
Hàm số đồng biến trên và
. Yêu cầu bài toán tương đương
.
Hàm số
đạt cực tiểu tại điểm
Ta có: có tập xác định
=> Hàm số đạt cực tiểu tại điểm x = 1
Cho tứ diện
có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .![]()
4 || Bốn || bốn
Cho tứ diện có thể tích bằng
và
là trọng tâm của tam giác
. Tính thể tích
của khối chóp .
4 || Bốn || bốn
Vì là trọng tâm của tam giác
nên
.
Suy ra