Hàm số nào sau đây đồng biến trên ?
Do nên hàm số
đồng biến trên
Hàm số nào sau đây đồng biến trên ?
Do nên hàm số
đồng biến trên
Cho các hàm số có đồ thị như hình vẽ. Đường thẳng
cắt trục hoành, đồ thị hàm số
và
lần lượt tại
. Biết rằng
. Mệnh đề nào sau đây đúng?
Ta có:
Theo bài ra ta có:
Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao m, một phía rộng
m, một phía rộng
m. Một người thợ cần mang một số ống thép cứng các loại có độ dài
m,
m,
m,
m,
m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?
Đáp án: 4
Hành lang trong một tòa nhà có dạng chữ L (hình vẽ) có chiều cao m, một phía rộng
m, một phía rộng
m. Một người thợ cần mang một số ống thép cứng các loại có độ dài
m,
m,
m,
m,
m, từ bên này qua bên kia. Hỏi có thể mang được mấy loại qua lối đi đó?
Đáp án: 4
Ống thép muốn qua được hành lang (bên này qua bên kia) phải qua được góc vuông giữa hành lang.
Vì vậy chiều dài của ống thép phải thỏa mãn
,
Ta có
Trong đó
Xét hàm số
Vì vậy
Hệ thức liên hệ giữa giá trị cực đại và giá trị cực tiểu
của hàm số
là:
Tập xác định
Ta có:
Lại có nên
là điểm cực tiểu của hàm số.
nên
là điểm cực đại của hàm số.
Do đó .
Mỗi khối đa diện đều mà mỗi đỉnh của nó đều là đỉnh chung của ba mặt thì số đỉnh Đ và số cạnh C của các khối đa diện đó luôn thỏa mãn?
Do mỗi đỉnh là đỉnh chung của đúng ba mặt nên suy ra số cạnh của khối đa diện là 3Đ.
Mặt khác, mỗi cạnh là cạnh chung của đúng hai mặt nên ta có hệ thức .
Bất phương trình có tập nghiệm là:
Ta có
Vậy BPT có tập nghiệm là .
Đặt . Khi đó
biểu diễn là:
Ta có:
Bác H cần xây dựng một bể nước mưa có thể tích dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Bác H cần xây dựng một bể nước mưa có thể tích dạng hình hộp chữ nhật với chiều dài gấp
lần chiều rộng, đáy và nắp đổ bê tông, cốt thép; xung quanh xây bằng gạch và xi măng. Biết rằng chi phí trung bình là
đồng trên một mét vuông và ở nắp để hở một khoảng hình vuông có diện tích bằng
diện tích nắp bể. Tính chi phí thấp nhất mà bác H phải chi trả (làm tròn đến hàng triệu đồng).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA vuông góc với đáy (ABCD) và . Tính theo a thể tích V khối chóp S.ABCD.
Đường chéo hình vuông
Xét tam giác SAC, ta có .
Chiều cao khối chóp là .
Diện tích hình vuông ABCD là
Vậy thể tích khối chóp .
Số nghiệm của phương trình là:
0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm
Số nghiệm của phương trình là:
0 || PT không có nghiệm || không có nghiệm || vô nghiệm || PT vô nghiệm
PT
Vậy số nghiệm của PT là 0.
Cho hàm số có bảng biến thiên như sau:
Hàm số đồng biến trên khoảng nào sau đây?
Ta có:
Vậy hàm số đồng biến trên các khoảng
Suy ra hàm số đồng biến trên khoảng
.
Gọi là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Gọi là nghiệm của phương trình
. Khi đó tích
bằng:
1 || x1.x2=1
Điều kiện:
PT
Vậy .
Chọn khẳng định đúng trong các khẳng định sau:
Tâm tất cả các mặt của một hình tứ diện đều là các đỉnh của một hình tứ diện đều:
Trong các hình dưới đây hình nào không phải khối đa diện lồi?
Đường nối đoạn MN không thuộc khối hình 4 nên hình 4 không phải khối đa diện lồi.
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Có bao nhiêu giá trị nguyên của tham số để đồ thị hàm số
có đúng ba đường tiệm cận?
Cho hình chóp tứ giác đều có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc
. Thể tích của khối cầu ngoại tiếp khối chóp
là:
Gọi , suy ra
.
Ta có .
Trong , ta có
.
Ta có SO là trục của hình vuông ABCD.
Trong mặt phẳng SOB, kẻ đường trung trực d của đoạn B.
Gọi
Xét có
đều.
Do đó d cũng là đường trung tuyến của . Suy ra I là trọng tâm
.
Bán kính mặt cầu .
Suy ra
Cho hàm số . Cho các khẳng định sau:
i) Hàm số xác định với mọi x
ii) Đồ thị hàm số luôn đi qua điểm (1; 1)
iii) Hàm số nghịch biến trên
iv) Đồ thị hàm số có hai đường tiệm cận
Trong các khẳng định trên có bao nhiêu khẳng định đúng?
Ta có khẳng định ii) và iv) là đúng
i) Sai vì hàm số đã cho xác định khi x > 0
iii) Sai vì hàm số nghịch biến trên
Cho hàm số liên tục trên tập số thực và có bảng biến thiên như sau:
Hỏi có bao nhiêu giá trị nguyên của tham số để phương trình
có đúng ba nghiệm phân biệt?
Ta có:
Để phương trình có ba nghiệm phân biệt
Vậy có đúng một giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Biết rằng giá trị nhỏ nhất của hàm số trên đoạn
bằng
. mệnh đề nào sau đây đúng?
Ta có:
Suy ra hàm số luôn nghịch biến trên các khoảng và
Vì hàm số có giá trị nhỏ nhất trên đoạn nên
Hàm số có giá trị nhỏ nhất trên đoạn bằng
nên suy ra
Tìm tất cả các giá trị thực của tham số m sao cho khoảng thuộc tập nghiệm của bất phương trình
.
Ta có:
Hệ trên thỏa mãn:
Cho hình chóp có đáy
là hình vuông cạnh
,
và
. Tổng diện tích hai tam giác
và
bằng
. Tính thể tích
của khối chóp
?
Gọi lần lượt là trung điểm của
và
.
Tam giác cân tại
suy ra
với
.
Vì suy ra
và
Kẻ
Ta có
Tam giác vuông tại
nên
Giải hệ:
hoặc
Vậy thể tích khối chóp
Có bao nhiêu giá trị nguyên dương của tham số để đồ thị hàm số
có ba đường tiệm cận?
Ta có: nên suy ra hàm số có 1 đường tiệm cận ngang là
Để đồ thị hàm số có 3 đường tiệm cận thì phải có 2 tiệm cận đứng hay phương trình có hai nghiệm phân biệt khác
Do m nguyên dương nên có 14 giá trị m thỏa mãn.
Cho mặt cầu tâm I bán kính . Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng
. Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là:
Theo đề bài, mặt phẳng cắt mặt cầu theo một đường tròn
.
Vậy .
Nếu đặt thì bất phương trình
trở thành bất phương trình nào?
Điều kiện:
Ta có:
Vậy thay , ta được
.
Cho một số thực tùy ý. Trong các khẳng định sau khẳng định nào đúng?
Theo tính chất đạo hàm của hàm số lũy thừa, hàm số có đạo hàm với mọi x > 0 và
Cho biết . Một học sinh đã thực hiện tính giá trị biểu thức
như sau:
Bước 1:
Bước 2:
Bước 3:
Bước 4:
Hỏi bạn học sinh giải toán sai từ bước nào?
Ta có:
Cho các hình sau:
Mỗi hình sau gồm một số hữu hạn đa giác phẳng (kể cả các điểm trong của nó), hình đa diện là:
Áp dụng định nghĩa hình đa diện, ta có:
“Hình đa diện (còn gọi tắt là đa diện) là hình được tạo bởi một số hữu hạn các đa giác, gọi là các mặt của hình đa diện, thỏa mãn các tính chất sau:
TC1: Hai mặt phân biệt chỉ có thể hoặc không giao nhau hoặc có một đỉnh chung, hoặc có một cạnh chung.
TC2: Mỗi cạnh thuộc một mặt là cạnh cung của đúng hai mặt.
TC3: Cho hai mặt S và S’, luôn tồn tại một dãy các mặt sao cho trùng với trùng với S’ và bất kì hai mặt
nào
cũng đều có một cạnh chung.
Các đỉnh, cạnh của mặt theo thứ tự được gọi là các đỉnh, cạnh của hình đa diện.”
Hàm số nào sau đây nghịch biến trên tập xác định?
Ta có: nghịch biến trên tập xác định.
Cho hàm số . Hàm số
có đồ thị như hình vẽ dưới đây:
Bất phương trình nghiệm đúng với mọi
khi và chỉ khi
Cho hàm số . Hàm số
có đồ thị như hình vẽ dưới đây:
Bất phương trình nghiệm đúng với mọi
khi và chỉ khi
Giá trị của biểu thức bằng:
Ta có:
Tìm giá trị của để bất phương trình
có nghiệm trên khoảng
?
Bất phương trình có nghiệm trên khoảng
Với
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta suy ra .
Đồ thị hàm số có bao nhiêu đường tiệm cận ngang?
Điều kiện xác định
Tập xác định
Vì hàm số không tồn tại khi và
nên đồ thị hàm số không có tiệm cận ngang.
Cho số thực dương a và b. Biểu thức thu gọn của biểu thức
có dạng . Tính
.
Ta có:
Cho hình 20 mặt đều có cạnh bằng 2. Gọi S là tổng diện tích tất cả các mặt của hình đa diện đó. Mệnh đề nào dưới đây đúng?
Hình 20 đều là hình có 20 mặt bằng nhau và mỗi mặt là một tam giác đều.
Gọi là diện tích tam giác đều cạnh 2
Vậy diện tích S cần tính là: .
Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?
Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số nên hàm số cần tìm là
.
Xét các mệnh đề:
(I) Tập hợp các đường thẳng d thay đổi nhưng luôn luôn song song và cách đường thẳng cố định một khoảng không đổi là một mặt trụ.
(II) Hai điểm A, B cố định. Tập hợp các điểm M trong không gian mà diện tích tam giác MAB không đổi là một mặt trụ.
Trong các mệnh đề trên, mệnh đề nào đúng?
Ta xét về khái niệm Mặt trụ suy ra (I) đúng.
Diện tích tam giác MAB không đổi khi và chỉ khi khoảng cách từ M đến đường thẳng AB không đổi (giả sử bằng R ).
Vậy tập hợp các điểm M là mặt trụ bán kính R và trục là AB.
Vì vậy Mệnh đề (II) cũng đúng.
Cho . Tính giá trị của biểu thức
Ta có:
Cho . Tính giá trị của biểu thức
Ta có:
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng . Hai điểm A, B lần lượt nằm trên hai đường tròn đáy sao cho góc giữa AB và trục của hình trụ bằng
. Khoảng cách giữa AB và trục của hình trụ bằng:
Từ hình vẽ kết hợp với giả thiết, ta có .
Gọi AA’ là đường sinh của hình trụ thì và
.
Vì nên
Gọi H là trung điểm A’B, suy ra
nên .
Tam giác ABA’ vuông tại A’ nên
Suy ra tam giác A’BO đều có cạnh bằng R nên
Cho hàm số có đồ thị như hình vẽ:
Hàm số đồng biến trên khoảng nào sau đây?
Từ đồ thị của hàm số ta xác định được hàm số đồng biến trên các khoảng
.
Tìm giá trị của tham số m để hàm số đồng biến trên
Ta có:
Hàm số đồng biến trên
Bất phương trình có tập nghiệm là:
Điều kiện:
Vậy BPT có tập nghiệm là .
Viết biểu thức dưới dạng lũy thừa với số mũ hữu tỉ
Ta có:
Giá trị của biểu thức
Ta có:
Đồ thị hàm số có điểm cực đại là
và một điểm cực tiểu là
. Tính giá trị biểu thức
?
Do đồ thị hàm số có một cực tiểu
nên
.
Cho hình hộp chữ nhật có diện tích ba mặt cùng xuất phát từ cùng một đỉnh là . Tính thể tích
của hình hộp chữ nhật đã cho.
Xét hình hộp chữ nhật có đáy
là hình chữ nhật.
Theo bài ra, ta có
Nhân vế theo vế, ta được
Vậy .
Cho hàm số y = f(x) có đạo hàm. Biết f(x) có đạo hàm f’(x) và hàm số y = f’(x) có đồ thị như hình vẽ:
Hàm số g(x) = f(x - 1) đạt cực đại tại điểm nào dưới đây?
Cách 1: Ta có:
Vậy chọn đáp án B
Cách 2: Đồ thị hàm số g’(x) = f’(x – 1) là phép tịnh tiến đồ thị hàm số y = f’(x) theo phương trục hoành sang bên phải 1 đơn vị. Ta có hình vẽ minh họa:
Đồ thị hàm số g’(x) = f’(x – 1) cắt trục hoành tạo các điểm có hoành độ x = 2, x = 4, x = 6 và giá trị hàm số g’(x) đổi dấu từ dương sang âm khi qua điểm x = 4
Chọn B
Cho lăng trụ có đáy
là hình thoi cạnh
, tâm O và
. Góc giữa cạnh bên
và mặt đáy bằng
. Đỉnh A' cách đều các điểm A, B, D. Tính theo
thể tích
của khối lăng trụ đã cho.
Từ giả thiết suy ra tam giác ABD đều cạnh .
Gọi H là tâm tam giác ABD. Vì A' cách đều các điểm A,B, D nên .
Do đó .
Ta có .
Tam giác vuông , có
.
Diện tích hình thoi .
Vậy .
Cho hàm số bậc bốn y = f(x) có đồ thị (C1) và hàm số y = f’(x) có đồ thị (C2) như hình vẽ bên. Số điểm cực trị của đồ thị hàm số trên khoảng
là:
Ta có:
Xét
Từ đồ thị ta được:
Phương trình có nghiệm đơn
Phương trình có 2 nghiệm đơn và 1 nghiệm bội chẵn (x = 0)
Phương trình có 1 nghiệm đơn.
Vậy g’(x) = 0 có 8 nghiệm đơn nên hàm số g(x) có 8 điểm cực trị.
Khi đặt hệ tọa độ vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu
(tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu
có phương trình
. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.
Đáp án : 18km
Khi đặt hệ tọa độ vào không gian với các đơn vị trục tính theo kilômét, người ta thấy rằng một không gian phủ sóng điện thoại có dạng một hình cầu
(tập hợp những điểm nằm trong và nằm trên mặt cầu tương ứng). Biết mặt cầu
có phương trình
. Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là bao nhiêu kilômét.
Đáp án : 18km
Ta có
.
Khoảng cách xa nhất giữa hai điểm thuộc vùng phủ sóng là đường kính của mặt cầu, tức là 18km.
Đáp số: 18km.