Đề thi học kì 2 Toán 10 Chân trời sáng tạo – Đề 5

Mô tả thêm: Đề thi HK2 Toán lớp 10 được biên soạn gồm 40 câu hỏi trắc nghiệm chia thành 4 mức độ bám sát chương trình sách Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Đường thẳng nào dưới đây là đường chuẩn của Hypebol \frac{x^{2}}{16} - \frac{y^{2}}{12}
= 1?

    Ta có : \left\{ \begin{matrix}
a^{2} = 16 \\
b^{2} = 12 \\
c^{2} = a^{2} + b^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
b = 2\sqrt{3} \\
c = 2 \\
\end{matrix} ight..

    Tâm sai e = \frac{c}{a} = 2. Đường chuẩn : x + 2 = 0x - 2 = 0.

  • Câu 2: Thông hiểu

    Cho các chữ số 0, 1, 2, 3, 4, 5. Từ các chữ số đã cho lập được bao nhiêu số tự nhiên chẵn có 4 chữ số và các chữ số đôi một bất kỳ khác nhau?

    Gọi số cần tìm là: \overline{abcd} (với b,\ c,\ d\  \in \left\{ 0;\ 1;\ 2;\ 3;\ 4;\ 5ight\}, a\  \in \left\{ 1;\ 2;\3;\ 4;\ 5 ight\}).

    Trường hợp 1:

    Chọn d = 0, nên có 1 cách chọn.

    Chọn a \in \left\{ \left. \ 1,\ 2,\ 3,\4,\ 5 ight\} ight. nên có 5 cách chọn.

    Chọn b4 cách chọn.

    Chọn c3 cách chọn.

    Suy ra, có 1.5.4.3 = 60 số.

    Trường hợp 2:

    Chọn d \in \left\{ 2,\ 4ight\}, nên có 2 cách chọn.

    Chọn a eq 0 nên có 4 cách chọn.

    Chọn b4 cách chọn.

    Chọn c3 cách chọn.

    Suy ra, có 2.4.4.3 = 96 số.

    Vậy có tất cả: 60 + 96 = 156 số.

  • Câu 3: Thông hiểu

    Tập nghiệm của phương trình (x^{2} - 5x + 4)\sqrt{x - 2} = 0 là:

    \left( x^{2} - 5x + 4 ight)\sqrt{x -2} = 0 \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\x^{2} - 5x + 4 = 0 \\\end{matrix} ight.\  \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}x = 2 \\\left\{ \begin{matrix}x > 2 \\\left\lbrack \begin{matrix}x = 1 \\x = 4 \\\end{matrix} ight.\  \\\end{matrix} ight.\  \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = 4 \\\end{matrix} ight..

    Vậy S = {2;4}.

  • Câu 4: Thông hiểu

    Cho phương trình x^{2} + y^{2} - 2mx - 4(m - 2)y + 6 - m =
0. Tìm điều kiện của tham số m để phương trình đã cho là phương trình đường tròn?

    Để phương trình đã cho là phương trình đường tròn thì:

    m^{2} + 4(m - 2)^{2} - 6 + m >
0

    \Leftrightarrow 5m^{2} - 15m + 10 > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m > 2 \\
m < 1 \\
\end{matrix} ight.

    Vậy đáp án chính xác là: \left\lbrack
\begin{matrix}
m > 2 \\
m < 1 \\
\end{matrix} ight..

  • Câu 5: Vận dụng

    Viết phương trình tổng quát của đường thẳng (d). Biết rằng (d) đi qua điểm N(2;3) cắt đường thẳng (\Delta):3x - y + 1 = 0 tại điểm Bx_{B}
> 0 sao cho BN =
2\sqrt{2}?

    Gọi B(b;3b + 1);(b > 0) là giao điểm của d\Delta:3x - y + 1 = 0.

    Suy ra \overrightarrow{NB} = (b - 2;3b - 2)

    Theo giả thiết ta có:

    BN = 2\sqrt{2} \Leftrightarrow (b -
2)^{2} + (3b - 2)^{2} = 8

    \Leftrightarrow 10b^{2} - 16b = 0\Leftrightarrow \left\lbrack \begin{matrix}b = 0(ktm) \\b = \dfrac{8}{5}(tm) \\\end{matrix} ight.

    Khi đó \overrightarrow{NB} = \left( -
\frac{2}{5};\frac{14}{5} ight) \Rightarrow \overrightarrow{n_{d}} =
(7;1)

    Phương trình tổng quát của đường thẳng d là: 7(x - 2) + 1(y - 3) = 0 \Leftrightarrow 7x + y -
17 = 0

  • Câu 6: Nhận biết

    Biểu thức A =
32x^{5} - 80x^{4} + 80x^{3} - 40x^{2} + 10x - 1 là khai triển của nhị thức nào dưới đây?

    Ta có:

    A = (2x + 1)^{5} = 32x^{5} - 80x^{4} +
80x^{3} - 40x^{2} + 10x - 1

  • Câu 7: Nhận biết

    Cho phương trình x^{2} + y^{2} - 2ax - 2by + c = 0(1). Điều kiện để (1) là phương trình đường tròn là:

    Điều kiện để x^{2} + y^{2} - 2ax - 2by +
c = 0(1) là phương trình đường tròn là a^{2} + b^{2}\  > \ c.

  • Câu 8: Thông hiểu

    Một hộp có 5 viên bi xanh, 6 viên bi đỏ và 7 viên bi vàng. Chọn ngẫu nhiên 5 viên bi trong hộp. Tính xác suất để 5 viên bi được chọn có đủ màu và số bi đỏ bằng số bi vàng.

    Không gian mẫu là số cách chọn ngẫu nhiên 5 viên bi từ hộp chứa 18 viên bi. Suy ra số phần tử của không gian mẫu là |\Omega| = C_{18}^{5} = 8568.

    Gọi A là biến cố ''5 viên bi được ó đủ màu và số bi đỏ bằng số bi vàng''. Ta có các trường hợp thuận lợi cho biến cố A là:

    TH1: Chọn 1 bi đỏ, 1 bi vàng và 3 bi xanh nên có C_{6}^{1}.C_{7}^{1}.C_{5}^{3} cách.

    TH2: Chọn 2 bi đỏ, 2 bi vàng và 1 bi xanh nên có C_{6}^{2}.C_{7}^{2}.C_{5}^{1} cách.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| =
C_{6}^{1}.C_{7}^{1}.C_{5}^{3} + C_{6}^{2}.C_{7}^{2}.C_{5}^{1} =
1995.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{1995}{8568} =
\frac{95}{408}.

  • Câu 9: Thông hiểu

    Một chiếc hộp chứa 20 quả cầu gồm 8 quả màu xanh, 7 quả màu đỏ và 5 quả màu vàng. Lấy ngẫu nhiên 6 quả cầu từ chiếc hộp. Tính xác suất để 6 quả cầu lấy được ít nhất một quả màu đỏ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{20}^{6}

    Gọi A là biến cố trong 6 quả cầu lấy được ít nhất một quả đỏ.

    Gọi B là biến cố trong 6 quả cầu lấy được không có quả đỏ.

    Số phần tử của biến cố B là: n(B) =
C_{13}^{6}

    Xác suất của biến cố B là: P(B) =
\frac{n(B)}{n(\Omega)} = \frac{143}{3230}

    Vậy xác suất của biến cố A cần tìm là: P(A) = 1 - P(B) = 1 - \frac{143}{3230} =
\frac{3087}{3230}

  • Câu 10: Nhận biết

    Cho hai đường thẳng (\Delta):a_{1}x + b_{1}y + c = 0(\Delta'):a_{2}x + b_{2}y + c = 0 với {a_{1}}^{2} + {b_{1}}^{2} > 0;{a_{2}}^{2}
+ {b_{2}}^{2} > 0. Nếu \left\{
\begin{matrix}
a_{1}x + b_{1}y + c = 0 \\
a_{2}x + b_{2}y + c = 0 \\
\end{matrix} ight. vô nghiệm thì vị trí tương đối của hai đường thẳng là:

    Số giao điểm của hai đường thẳng đã cho là nghiệm của hệ phương trình \left\{ \begin{matrix}
a_{1}x + b_{1}y + c = 0 \\
a_{2}x + b_{2}y + c = 0 \\
\end{matrix} ight..

    Nếu hệ phương trình trên vô nghiệm thì hai đường thẳng không có điểm chung, nghĩa là hai đường thẳng song song với nhau.

  • Câu 11: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, đường thẳng d đi qua điểm P(1; - 3) và có vectơ pháp tuyến \overrightarrow{n}(2; - 1) có phương trình tổng quát là:

    Ta có: đường thẳng d nhận \overrightarrow{n}(2; - 1) làm vectơ pháp tuyến, mặt khác d đi qua điểm P(1; - 3) nên d có phương trình tổng quát là:

    2(x - 1) - 1(y + 3) = 0

    \Leftrightarrow 2x - y - 5 =
0

  • Câu 12: Vận dụng

    Trong mặt phẳng tọa độ, người ta xác định chuyển động của một vật thể trong thời gian 60 giờ. Người ta xác định được vật thể nằm ở vị trí có tọa độ \left( 8
+ 5sint^{0};6 + 5cost^{0} ight) tại thời điểm t;(0 \leq t \leq 360). Tìm tọa độ chất điểm khi ở gần gốc tọa độ nhất?

    Từ cách xác định tọa độ của chất điểm ta có:

    \left\{ \begin{matrix}
x = 8 + 5sint^{0} \\
y = 6 + 5cost^{0} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x - 8 = 5sint^{0} \\
y - 6 = 5cost^{0} \\
\end{matrix} ight.

    \Leftrightarrow (x - 8)^{2} + (y -
6)^{2} = 25\ \ (*)

    Vậy chất điểm luôn thuộc đường tròn (C) tâm I(8;6) và có bán kính R = 5

    Gọi chất điểm là A. Khi đó A gần gốc tọa độ nhất khi A là giao điểm của OI và đường tròn. Tức là:

    \overrightarrow{OA} =
k.\overrightarrow{OI};(0 < k < 1)

    Hay \left\{ \begin{matrix}
x_{A} = 8k \\
y_{A} = 6k \\
\end{matrix} ight. thay vào (*) ta được:

    (8k - 8)^{2} + (6k - 6)^{2} =
25

    \Leftrightarrow (k - 1)^{2} =\dfrac{1}{4} \Leftrightarrow \left\lbrack \begin{matrix}k = \dfrac{3}{2} \\k = \dfrac{1}{2} \\\end{matrix} ight.

    0 < k < 1 nên lấy k = \frac{1}{2}. Khi đó tọa độ điểm A là \left\{ \begin{matrix}
x_{A} = 4 \\
y_{A} = 3 \\
\end{matrix} ight.

  • Câu 13: Nhận biết

    Phương trình \sqrt{4x^{2}-3}=x có nghiệm là:

    Điều kiện: 4{x^2} - 3 \geqslant 0

    Phương trình tương đương:

    \begin{matrix}  \sqrt {4{x^2} - 3}  = x \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {4{x^2} - 3 = {x^2}} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {3{x^2} = 3} \end{array}} ight. \hfill \\   \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {x \geqslant 0} \\   {\left[ {\begin{array}{*{20}{c}}  {x =  - 1\left( {ktm} ight)} \\   {x = 1\left( {tm} ight)} \end{array}} ight.} \end{array}} ight. \hfill \\ \end{matrix}

    Kết hợp với điều kiện ra được: x=1 thỏa mãn điều kiện

    Vậy phương trình có nghiệm x=1

  • Câu 14: Thông hiểu

    Phương tròn đường tròn đi qua ba điểm M( - 2;4),N(5;5),P(6; - 2) là:

    Gọi I(x;y) và R lần lượt là tâm và bán kính đường tròn cần tìm. Ta suy ra:

    IM = IN = IP \Leftrightarrow \left\{
\begin{matrix}
IM^{2} = IN^{2} \\
IM^{2} = IP^{2} \\
\end{matrix} ight. nên ta có hệ phương trình:

    \left\{ \begin{matrix}
(x + 2)^{2} + (y - 4)^{2} = (x - 5)^{2} + (y - 5)^{2} \\
(x + 2)^{2} + (y - 4)^{2} = (x - 6)^{2} + (y + 2)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 1 \\
\end{matrix} ight.\  \Leftrightarrow I(2;1) \Rightarrow R =
5

    Vậy phương trình cầm tìm là: (x - 2)^{2}
+ (y - 1)^{2} = 25

    Hay x^{2} + y^{2} - 4x - 2y - 20 =
0

  • Câu 15: Nhận biết

    Gieo một con xúc xắc cân đối một lần. Biến cố nào là biến cố không?

    Do xúc xắc có 6 mặt có số chấm từ 1 đến 6 nên biến cố không là “Mặt xuất hiện của con xúc xắc có số chấm là 8 chấm.”

  • Câu 16: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình \sqrt{6 - 5x} = 2 - x?

    Ta có:

    \sqrt{6 - 5x} = 2 - x

    \Rightarrow \left\{ \begin{matrix}
2 - x \geq 0 \\
6 - 5x = (2 - x)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
x^{2} + x - 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
\left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 2 \\
\end{matrix} ight.

    Vậy tổng các nghiệm của phương trình bằng 1 + ( - 2) = - 1.

  • Câu 17: Thông hiểu

    Có bao nhiêu số chẵn gồm bốn chữ số được lập từ các số 0; 1; 2; 4; 5; 6; 8.

    Gọi số tự nhiên có 4 chữ số có dạng: \overline {abcd} ;\left( {a e 0} ight)

    Do số tự nhiên được tạo thành là chữ số chẵn nên d \in \left\{ {0;2;4;6;8} ight\}

    Trường hợp 1: d = 0 ta có: d có 1 cách chọn

    a có 6 cách chọn

    b có 7 cách chọn

    c có 7 cách chọn

    => Số các số được tạo thành là: 6.7.7.1 = 294 số

    Trướng hợp 2: d \in \left\{ {2;4;6;8} ight\} => d có 4 cách chọn

    a có 6 cách chọn

    b có 7 cách chọn

    c có 7 cách chọn

    => Số các số tạo thành là: 4.6.7.7=1176 số

    => Có tất cả 294 + 1176 = 1470 số tự nhiên chẵn có 4 chữ số được tạo thành.

  • Câu 18: Thông hiểu

    Biết n là số nguyên dương thỏa mãn C_{n}^{n - 1} +
C_{n}^{n - 2} = 78, số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x} ight)^{n} là:

    Ta có: C_{n}^{n - 1} + C_{n}^{n - 2} = 78
\Leftrightarrow \frac{n!}{(n - 1)!.1!} + \frac{n!}{(n - 2)!.2!} = 78
\Leftrightarrow n + \frac{(n - 1)n}{2} = 78

    \Leftrightarrow n^{2} + n - 156 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 12 \\
n = - 13 \\
\end{matrix} ight.\  \Leftrightarrow n = 12 (vì n là số nguyên dương).

    Số hạng tổng quát trong khai triển \left(
x^{3} - \frac{2}{x} ight)^{12}là: ( - 1)^{k}C_{12}^{k}\left( x^{3} ight)^{12 -
k}\left( \frac{2}{x} ight)^{k} = ( - 1)^{k}C_{12}^{k}.2^{k}.x^{36 -
4k}.

    Cho 36 - 4k = 8 \Leftrightarrow k =
7.

    Vậy số hạng chứa x^{8} trong khai triển \left( x^{3} - \frac{2}{x}
ight)^{12}-
C_{12}^{7}.2^{7}.x^{8} = - 101376x^{8}.

  • Câu 19: Vận dụng

    Hệ số của x^{5} trong khai triển thành đa thức của (2 - 3x)^{2n} bằng bao nhiêu? Cho biết n là số tự nhiên thỏa mãn: C_{2n + 1}^{0} + C_{2n +
1}^{2} + C_{2n + 1}^{4} + ... + C_{2n + 1}^{2n} = 1024.

    Ta có (x + 1)^{2n + 1} = C_{2n +
1}^{0}.x^{2n + 1} + C_{2n + 1}^{1}.x^{2n} + ... + C_{2n + 1}^{2n}.x +
C_{2n + 1}^{2n + 1} (1)

    Thay x = 1 vào (1): 2^{2n +
1} = C_{2n + 1}^{0} + C_{2n + 1}^{1} + ... + C_{2n + 1}^{2n} + C_{2n +
1}^{2n + 1} (2)

    Thay x = - 1 vào (1): 0 = -
C_{2n + 1}^{0} + C_{2n + 1}^{1} - ... - C_{2n + 1}^{2n} + C_{2n + 1}^{2n
+ 1} (3)

    Phương trình (2) trừ (3) theo vế: 2^{2n + 1} = 2\left( C_{2n + 1}^{0} + C_{2n +
1}^{2} + ... + C_{2n + 1}^{2n} ight).

    Theo đề ta có 2^{2n + 1} = 2.1024
\Leftrightarrow n = 5

    Số hạng tổng quát của khai triển (2 -
3x)^{10}:

    T_{k + 1} = C_{10}^{k}.2^{10 - k}.( -
3x)^{k} = C_{10}^{k}.2^{10 - k}.( - 3)^{k}.x^{k}

    Theo giả thiết ta có k = 5.

    Vậy hệ số cần tìm C_{10}^{5}.2^{5}.( -
3)^{5} = - 1959552.

  • Câu 20: Nhận biết

    Cho đường thẳng (\Delta):3x + 4y - 4 = 0 và tọa độ điểm C(1; - 1). Tính d(C;\Delta)?

    Ta có khoảng cách từ điểm C đến đường thẳng (\Delta):3x + 4y - 4 = 0 là:

    d(C;\Delta) = \frac{\left| 3.1 + 4.( -
1) - 4 ight|}{\sqrt{3^{2} + 4^{2}}} = \frac{5}{5} = 1

    Vậy khoảng cách cần tìm bằng 1.

  • Câu 21: Thông hiểu

    Cho hai đường thẳng (\Delta):x + \sqrt{3}y - 6 = 0(\Delta)':\sqrt{3}x - y + 7 = 0. Tính góc hợp bởi hai đường thẳng đã cho?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (\Delta):x + \sqrt{3}y - 6 = 0 là: \overrightarrow{n_{\Delta}} = \left( 1;\sqrt{3}
ight)

    Vectơ pháp tuyến của đường thẳng (\Delta)':\sqrt{3}x - y + 7 = 0 là: \overrightarrow{n_{\Delta}} = \left(
1;\sqrt{3} ight)

    Ta có: \overrightarrow{n_{\Delta}}.\overrightarrow{n_{\Delta}}
= 0 \Rightarrow (\Delta)\bot(\Delta')

    Vậy góc hợp bởi hai đường thẳng bằng 90^{0}.

  • Câu 22: Nhận biết

    Có bao nhiêu cách chọn ngẫu nhiên 3 viên bi từ một hộp có 20 viên bi.

     Chọn 3 viên bi từ 20 viên bi: C_{20}^3 cách.

  • Câu 23: Nhận biết

    Cho tập hợp D gồm x phần tử. Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là:

    Số các tổ hợp chập k của x phần tử từ tập hợp D (với k,x\mathbb{\in N},0 \leq k \leq x) được xác định bởi công thức là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 24: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ các đỉnh A(1; - 2),B(3;4),C( - 1;5). Viết phương trình đường cao AH của tam giác ABC?

    Ta có: AH\bot BC nên đường cao AH là một vectơ pháp tuyến là \overrightarrow{BC} = ( - 4;1)

    Phương trình đường cao AH là:

    - 4(x - 1) + 1(y + 2) = 0

    \Leftrightarrow - 4x + y + 6 =
0.

    Vậy đường thẳng cần tìm có phương trình - 4x + y + 6 =
0.

  • Câu 25: Vận dụng

    Có 7 nam 5 nữ xếp thành một hàng ngang. Hỏi có bao nhiêu cách xếp, biết rằng 2 vị trí đầu và cuối là nam và không có 2 nữ nào đứng cạnh nhau?

    Số cách chọn 2 nam đứng ở đầu và cuối là. A_{7}^{2}. Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là A_{6}^{5}. Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là. 5!.A_{6}^{5}

    Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là. A_{7}^{2}.5!.A_{6}^{5} =
3628800.

  • Câu 26: Nhận biết

    Đường tròn (C): {x^2} + {y^2} + 12x - 14y + 4 = 0 viết được dưới dạng:

    Từ phương trình đường tròn {x^2} + {y^2} + 12x - 14y + 4 = 0 ta suy ra:

    I\left( { - 6;7} ight);R = \sqrt {{6^2} + {7^2} - 4}  = 9

    Vậy phương trình tổng quát {(x + 6)^2} + {(y - 7)^2} = 81

  • Câu 27: Thông hiểu

    Gieo một con xúc xắc hai lần liên tiếp. Tính xác suất của biến cố “Tổng số chấm trong hai lần gieo bằng 6”.

    Số phần tử không gian mẫu là: n(\Omega) =
6^{2} = 36

    Gọi A là biến cố: “Tổng số chấm trong hai lần gieo bằng 6”.

    Tập hợp các kết quả của biến cố A là: A =
\left\{ (2;4),(5;1),(1;5),(4;2),(3;3) ight\}

    Suy ra n(A) = 5

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{5}{36}

  • Câu 28: Nhận biết

    Tìm hệ số của số hạng chứa x^{10} trong khai triển của biểu thức \left( 3x^{3} - \frac{2}{x^{2}}
ight)^{5}.

    Ta có \left( 3x^{3} - \frac{2}{x^{2}}
ight)^{5} = \sum_{k = 0}^{5}{( - 1)^{k}.C_{5}^{k}.\left( 3x^{3}
ight)^{5 - k}.\left( \frac{2}{x^{2}} ight)^{k}} = \sum_{k = 0}^{5}{(
- 1)^{k}.C_{5}^{k}.3^{5 - k}.2^{k}}x^{15 - 5k}.

    Số hạng chứa x^{10} ứng với 15 - 5k = 10 \Leftrightarrow k =
1.

    Hệ số của số hạng chứa x^{10}( - 1)^{1}C_{5}^{1}.3^{4}.2^{1} = -
810.

  • Câu 29: Nhận biết

    Cho parabol (P) có phương trình chính tắc là y^{2}=2px, với p > 0. Khi đó khẳng định nào sau đây sai?

    Đáp án sai: Trục đối xứng của parabol là trục Oy. Đáp án đúng là trục Ox mới là trục đối xứng.

  • Câu 30: Vận dụng

    Gieo một con xúc xắc 2 lần liên tiếp. Gọi số chấm xuất hiện của hai lần gieo lần lượt là bc. Tính xác suất để phương trình bậc hai x^{2} - bx + c = 0 có nghiệm?

    Gieo con xúc xắc hai lần nên ta có: n(\Omega) = 36

    Để phương trình bậc hai có nghiệm thì \Delta \geq 0 \Leftrightarrow b^{2} - 4ac \geq 0
\Leftrightarrow b^{2} \geq 4ac

    c \geq 1 \Rightarrow b^{2} \geq 4\Rightarrow \left\{ \begin{matrix}b \geq 2 \\c \leq \dfrac{b^{2}}{4} \\\end{matrix} ight.

    Lập bảng chọn giá trị của b và c như sau:

    b

    2

    3

    4

    5

    6

    c

    1

    1; 2

    1; 2; 3; 4

    1; 2; 3; 4; 5; 6

    1; 2; 3; 4; 5; 6

    Gọi A là biến cố “phương trình x^{2} - bx
+ c = 0 có nghiệm” ta có:

    n(A) = 1 + 2 + 4 + 6 + 6 =
19

    Vậy P(A) = \frac{n(A)}{n(\Omega)} =
\frac{19}{36}

  • Câu 31: Nhận biết

    Cho hai đường thẳng ∆_1: 11x – 12y + 1 = 0∆_2: 12x + 11y + 9 = 0. Khi đó hai đường thẳng này:

     Ta có:

    \begin{matrix}  \overrightarrow {{n_{{\Delta _1}}}}  = \left( {11; - 12} ight) \hfill \\  \overrightarrow {{n_{{\Delta _2}}}}  = \left( {12;11} ight) \hfill \\  \overrightarrow {{n_{{\Delta _1}}}} .\overrightarrow {{n_{{\Delta _2}}}}  = 0 \Rightarrow \overrightarrow {{n_{{\Delta _1}}}}  \bot \overrightarrow {{n_{{\Delta _2}}}}  \hfill \\   \Rightarrow {\Delta _1} \bot {\Delta _2} \hfill \\ \end{matrix}

  • Câu 32: Nhận biết

    Tam thức f(x) = x2 − 2x − 3 nhận giá trị dương khi và chỉ khi

    Ta có: f(x) = x^{2} - 2x - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, chọn đáp án x ∈ (−∞;−1) ∪ (3;+∞).

  • Câu 33: Thông hiểu

    Từ 6 điểm phân biệt thuộc đường thẳng ∆ và một điểm không thuộc đường thẳng ∆ ta có thể tạo được tất cả bao nhiêu tam giác?

     Một tam giác được lập thành từ 3 điểm.

    Cứ 2 điểm thuộc \Delta + 1 điểm nằm ngoài có sẵn, ta được một tam giác.

    Số cách lấy 2 điểm từ 6 điểm thuộc \Delta là: C_6^2=15 (cách).

  • Câu 34: Nhận biết

    Trong kỳ thi THPT Quốc gia năm 2023 tại một điểm thi có 5 sinh viên tình nguyện được phân công trục hướng dẫn thí sinh ở 5 vị trí khác nhau. Yêu cầu mỗi vị trí có đúng 1 sinh viên. Hỏi có bao nhiêu cách phân công vị trí trực cho 5 người đó?

    Mỗi cách xếp 5 sinh viên vào 5 vị trí thỏa đề là một hoán vị của 5 phần tử.

    Suy ra số cách xếp là 5! = 120 cách.

  • Câu 35: Thông hiểu

    Xác định phương trình chính tắc của Elip, biết rằng elip có một tiêu điểm F_{1}\left(
- \sqrt{3};0 ight) và đi qua điểm D\left( 1;\frac{\sqrt{3}}{2} ight)?

    Gọi phương trình chính tắc của elip là: \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} =
1;\left( a > b > 0,c^{2} = a^{2} - b^{2} ight)

    Ta có:

    c^{2} = a^{2} - b^{2} \Rightarrow c =
\sqrt{a^{2} - b^{2}} = \sqrt{3}

    Khi đó ta có: a^{2} - b^{2} = 3\ \
(*)

    Do elip đi qua điểm D\left(
1;\frac{\sqrt{3}}{2} ight)

    \Rightarrow \frac{1}{a^{2}} +
\frac{3}{4b^{2}} = 1 \Rightarrow 4b^{2} + 3a^{2} = 4a^{2}b^{2}\ \
(**)

    Từ (*) và (**) ta có hệ phương trình:

    \left\{ \begin{matrix}
a^{2} - b^{2} = 3 \\
4b^{2} + 3a^{2} = 4a^{2}b^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 3.\left( 3 + b^{2} ight) = 4.\left( 3 + b^{2} ight).b^{2}
\\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 3 + b^{2} \\
4b^{2} + 5b^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} = 4 \\
b^{2} = 1 \\
\end{matrix} ight.

    Vậy phương trình chính tắc của elip thỏa mãn yêu cầu bài toán là: \frac{x^{2}}{4} + \frac{y^{2}}{1} =
1.

  • Câu 36: Nhận biết

    Một hộp chứa 5 viên bi đỏ và 4 viên bi xanh. Lấy ngẫu nhiên 1 viên bi trong hộp. Số khả năng xảy ra là:

    Áp dụng quy tắc cộng ta có số khả năng xảy ra là: 5 + 4 = 9 khả năng.

  • Câu 37: Nhận biết

    Bất phương trình (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−5 có tập nghiệm là:

     Ta có: (2x−1)(x+3)−3x+1≤(x−1)(x+3)+x^{2}−52x^2+2x-2 \le2x^2+2x-8 \Leftrightarrow -2 \le -8 (vô lí).

    Vậy S = \varnothing.

  • Câu 38: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng đi qua gốc tọa độ O(0; 0) và điểm M(a; b)?

     Vectơ chỉ phương của OM là \overrightarrow {OM}=(a;b).

  • Câu 39: Vận dụng cao

    Phương trình \sqrt{2x + 3} + \sqrt{x + 1} = 3x + 2\sqrt{2x^{2} +
5x + 3} - 16 có mấy nghiệm ?

    Điều kiện: x ≥  − 1

    Đặt t = \sqrt{2x + 3} + \sqrt{x + 1}\ \ \
(t \geq 0)\ \

    \Rightarrow t^{2} = 3x + 4 +
2\sqrt{2x^{2} + 5x + 3}

    Phương trình đã cho trở thành: t^{2} - t -
20 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
t = 5\ \ \ (t/m) \\
t = - 4\ \ \ \ (l) \\
\end{matrix} ight.

    Với t = 5 ta có: \sqrt{2x + 3} + \sqrt{x + 1} = 5 \Leftrightarrow x
= 3

    Vậy phương trình đã cho có 1 nghiệm.

  • Câu 40: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{x^{2} + 2x + 3} + \frac{1}{\sqrt{5 -
2x}}.

    Hàm số xác định khi và chỉ khi \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\ .

    Phương trình x2 + 2x + 3 = 0 ⇔ x ∈ ⌀5 - 2x = 0 \Leftrightarrow x =
\frac{5}{2}.

    Bảng xét dấu

    Dựa vào bảng xét dấu ta thấy \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in \left( \  -
\infty;\frac{5}{2} ight).

    Vậy tập xác định của hàm số là D = \left(
\  - \infty;\frac{5}{2} ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 2 Toán 10 Chân trời sáng tạo – Đề 5 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 1 lượt xem
Sắp xếp theo