Tìm hàm số đồng biến trên trong các hàm số dưới đây?
Xét hàm số có nên hàm số đồng biến trên ?
Tìm hàm số đồng biến trên trong các hàm số dưới đây?
Xét hàm số có nên hàm số đồng biến trên ?
Khu vực chờ nhận phần thưởng có 6 chiếc ghế được kê thành 1 hàng ngang. Xếp ngẫu nhiên 6 học sinh gồm 3 học sinh lớp 10, 2 học sinh lớp 11 và 1 học sinh lớp 12 ngồi vào chiếc ghế kê thành một hàng ngang sao cho mỗi ghế có đúng 1 học sinh ngồi. Hãy xác định số kết quả thuận lợi cho biến cố W: “Xếp học sinh lớp 12 chỉ ngồi cạnh học sinh lớp 11”?
Xét các trường hợp:
TH1: Học sinh lớp 12 ngồi đầu dãy:
Chọn vị trí cho học sinh lớp 12 có 2 cách
Chọn 1 vị trí cho học sinh lớp 11 ngồi cạnh học sinh lớp 12 có 2 cách
Hoán vị các học sinh còn lại cho nhau có 4! Cách.
Trường hợp này được: 2.2.4! = 96 cách.
TH2: Học sinh lớp 12 ngồi giữa hai học sinh lớp 11, ta gộp thành một nhóm, khi đó:
Hoán vị 4 phần tử gồm 3 học sinh lớp 10 và nhóm gồm học sinh lớp 11 và lớp 12 có 4! Cách.
Hoán vị hai học sinh lớp 11 cho nhau có 2! Cách
Trường hợp này được 4!.2! = 48 cách
Như vậy số cách sắp xếp là 48 + 96 = 144
Trong các mệnh đề sau, mệnh đề nào là đúng?
Mệnh đề đúng: "Nếu hình hộp có ba mặt chung một đỉnh là hình vuông thì nó là hình lập phương"
Trong các mệnh đề sau, mệnh đề nào đúng?
Mệnh đề “Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau” là sai. Hai mặt phẳng phân biệt cùng vuông góc với một mặt phẳng thì song song với nhau hoặc cắt nhau (giao tuyến vuông góc với mặt phẳng thứ ba).
Mệnh đề “Qua một đường thẳng có duy nhất một mặt phẳng vuông góc với một đường thẳng cho trước” là sai. Qua một đường thẳng vô số mặt phẳng vuông góc với một đường thẳng cho trước.
Mệnh đề “Qua một điểm có duy nhất một mặt phẳng vuông góc với một mặt phẳng cho trước” là sai. Qua một điểm có vô số mặt phẳng vuông góc với một mặt phẳng cho trước.
Vậy mệnh đề đúng là: “Hai mặt phẳng phân biệt cùng vuông góc với một đường thẳng thì song song với nhau.”
Cho biết , biểu thức có giá trị là:
Ta có:
Công thức tính thể tích của khối nón có bán kính và chiều cao là:
Công thức tính thể tích là:
Cho hình lăng trụ đứng ABC.A’B’C’ có cạnh bên . Biết đáy ABC là tam giác vuông có BA = BC = a, gọi M là trung điểm của BC. Tính khoảng cách giữa hai đường thẳng AM và B’C.
Hình vẽ minh họa:
Gọi N là trung điểm của BB’ => MN // B’C
=> B’C // (AMN)
=> d(AM, B’C) = d(B’C, (AMN)) = d(B’, (AMN)) = d(B, (AMN))
Kẻ BH ⊥ AM, BK ⊥ HN
=> BK ⊥ (AMN)
=> d(AM, B’C) = d(B, (AMN)) = BK
Ta có:
Ta có:
Do tam giác ABM vuông tại B
Chọn ngẫu nhiên 2 học sinh trong một nhóm học sinh gồm 6 nam và 4 nữ. Gọi X là biến cố “Hai học sinh được chọn đều là nam”. Khẳng định nào sau đây đúng?
Sử dụng định nghĩa biến cố đối ta được:
là biến cố “Hai học sinh được chọn đều là nữ”.
Cho tứ diện ABCD. Gọi H là trực tâm của tam giác BCD và AH vuông góc với mặt phẳng đáy. Khẳng định nào dưới đây là đúng?
Hình vẽ minh họa
Vì AH vuông góc với (BCD) suy ra (1)
Mà H là trực tâm của tam giác BCD (2)
Từ (1), (2) suy ra:
Cho hình lăng trụ tam giác có tất cả các cạnh bằng nhau. Hãy tính số đo góc giữa hai đường thẳng và ?
Hình vẽ minh họa
Ta có: Tam giác là tam giác đều suy ra
Lại có
.
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B , SA vuông góc với mặt phẳng (ABCD), AB = BC = a, AD = 2a. Biết góc giữa SC và mặt phẳng (ABCD) bằng 450. Tính góc giữa mặt phẳng (SAD) và (SCD).
Tam giác ABC vuông cân tại B, suy ra
Vì nên AC là hình chiếu của SC trên mặt phẳng (ABCD).
Khi đó
Gọi M là trung điểm của AD => CM ⊥ AD.
Mà CM ⊥ SA nên CM ⊥ (SAD) => CM ⊥ SD
Hạ CH ⊥ SD . Khi đó SD ⊥ (CMH) => MH ⊥ SD
Ta có:
Ta lại có:
Tam giác MHC vuông tại M
Vậy
Cho hàm số . Với , giá trị của biểu thức bằng:
Ta có:
Cho hình lăng trụ đứng tam giác có đáy vuông tại . Giả sử là góc giữa đường thẳng và mặt phẳng . Biết rằng . Kết luận nào sau đây đúng?
Hình vẽ minh họa
Hạ ta có:
Trong tam giác có:
Rút ngẫu nhiên hai tấm thẻ trong chiếc hộp có 9 tấm thẻ được đánh số thứ tự từ 1 đến 9. Xét các biến cố sau:
A: “Cả hai tấm thẻ đều mang số chẵn”.
B “Chỉ có một tấm thẻ mang số chẵn”.
C: “Tích hai số ghi trên hai tấm thẻ là một số chẵn”
Khẳng định nào sau đây đúng?
Biến cố C xảy ra khi và chỉ khi trong hai tấm thẻ có ít nhất 1 tấm thẻ mang số chẵn.
Nếu cả hai tấm thẻ ghi số chẵn thì biến cố A xảy ra.
Nếu chỉ có một tấm thử ghi số chẵn thì biến cố B xảy ra.
Vậy biến cố C là biến cố hợp của A và B.
Tại điểm , giá trị đạo hàm cấp hai của hàm số bằng bao nhiêu?
Ta có:
Cho hàm số xác định bởi công thức . Tính đạo hàm của hàm số tại ?
Ta có:
Suy ra hàm số không liên tục tại x = 1 nên không tồn tại đạo hàm của hàm số tại x = 1
Một nhóm học sinh gồm 15 người. Cần chọn 3 người lần lượt làm các chức vụ nhóm trưởng, nhóm phó và kiểm soát. Số cách chọn là:
Số cách chọn 3 người đảm nhiệm 3 chức vụ khác nhau từ 15 người là:
(cách)
Vậy có tất cả 2730 cách chọn.
Tìm tập nghiệm của bất phương trình ?
Ta có:
Vậy tập nghiệm của bất phương trình là
Cho hình chóp tứ giác đều . Tính khoảng cách từ đường thẳng và mặt phẳng bằng:
Hình vẽ minh họa
Gọi O là tâm của đáy
Lấy M, N lần lượt là trung điểm AB, CD.
Kẻ
Có
Ta có:
Khi đó
Trong tam giác SON vuông tại O, có:
Cho đồ thị hàm số . Hỏi có bao nhiêu tiếp tuyến của có hệ số góc ?
Ta có:
Hoành độ tiếp điểm là nghiệm của phương trình
Phương trình có 1 nghiệm nên có 1 tiếp tuyến có hệ số góc bằng 7
Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của ?
Đáp án: 12
Một đề thi trắc nghiệm môn Toán lớp 11 gồm 50 câu hỏi trắc nghiệm, mỗi câu hỏi có 4 đáp án và chỉ có đúng 1 đáp án đúng. Nếu trả lời đúng được 0,2 điểm và trả lời sai sẽ không có điểm. Bạn H làm bài bằng cách chọn ngẫu nhiêu đáp án cho tất cả 50 câu hỏi. Biết rằng xác suất làm đúng câu hỏi của H đạt giá trị lớn nhất. Tính giá trị của ?
Đáp án: 12
Gọi A là biến cố làm đúng x câu hỏi của bạn H
Ta có xác suất để làm đúng 1 câu là , xác suất làm sai 1 câu là
Theo quy tắc nhân xác suất ta có:
Xác suất của biến cố A là
Xét hệ bất phương trình sau:
Biết đồ thị hàm số đối xứng với đồ thị hàm số qua điểm . Giá trị của là:
Gọi là điểm thuộc đồ thị hàm số thì điểm đối xứng với qua là thuộc đồ thị hàm số
=>
Cho hàm số xác định trên tập số thực thỏa mãn . Chọn khẳng định đúng?
Hàm số có đạo hàm tại điểm
Nên khẳng định đúng là
Ba xạ thủ cùng bắn vào một bia đỡ một cách độc lập. Xác suất để người thứ nhất, người thứ hai và người thứ ba bắn trúng hồng tâm lần lượt là . Xác suất để có đúng hai người bắn trúng hồng tâm là: 0,46||0,24||0,92||0,96
Ba xạ thủ cùng bắn vào một bia đỡ một cách độc lập. Xác suất để người thứ nhất, người thứ hai và người thứ ba bắn trúng hồng tâm lần lượt là . Xác suất để có đúng hai người bắn trúng hồng tâm là: 0,46||0,24||0,92||0,96
Từ giả thiết suy ra xác suất để người thứ nhất, người thứ hai và người thứ ba không bắn trúng hồng tâm lần lượt là .
Để có đúng 2 người bắn trúng hồng tâm ta có các trường hợp sau:
Trường hợp 1 |
+ Người thứ nhất bắn trúng + Người thứ hai bắn trúng + Người thứ ba không trúng |
Xác suất: |
Trường hợp 2 |
+ Người thứ nhất bắn trúng + Người thứ hai không bắn trúng + Người thứ ba bắn trúng |
Xác suất: |
Trường hợp 3 |
+ Người thứ nhất không bắn trúng + Người thứ hai bắn trúng + Người thứ ba bắn trúng |
Xác suất: |
Vậy xác suất để có đúng 2 người bắn trúng đích là
Cho hình chóp có , đáy là tam giác cân tại . Gọi là trung điểm của , là trung điểm của . Xác định góc giữa hai mặt phẳng và ?
Hình vẽ minh họa
Dễ thấy
Ta có tam giác ABC cân tại A, M là trung điểm của BC suy ra
Theo giả thiết . Khi đó
Ta được
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O và SA = SC, SB = SD. Khẳng định nào sau đây sai?
Hình vẽ minh họa:
Do ABCD là hình thoi tâm O và SA = SC, SB = SD nên => SO ⊥ (ABCD)
Từ => AC ⊥ (SBD)
Từ => BD ⊥ (SAC)
Như vậy, các khẳng định “SO ⊥ (ABCD)”, “AC ⊥ (SBD)”, “BD ⊥ (SAC)” là các khẳng định đúng.
Khẳng định “BC ⊥ (SAB)” là khẳng định sai. Vì nếu BC ⊥ (SAB) suy ra BC ⊥ SB, cùng với BC ⊥ SO ta có BC ⊥ (SBD), nên qua điểm B có hai mặt phẳng phân biệt cùng vuông góc với đường thẳng BC (vô lí).
Tính đạo hàm cấp 5 của hàm số là:
Ta có:
Cho hình chóp tam giác có đáy vuông tại , . Khi đó:
Hình vẽ minh họa
Ta có:
Đơn giản biểu thức với ta được kết quả là:
Ta có:
Phương trình có bao nhiêu nghiệm nguyên?
Điều kiện
Ta có:
(vì nghiệm cần xét là nghiệm nguyên)
Vậy phương trình không có nghiệm nguyên.
Xác định công thức đạo hàm của hàm số trên khoảng ?
Áp dụng công thức
Ta có:
Tính giá trị biểu thức: . Biết hàm số xác định bởi công thức .
Kết quả: 2018/2019
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Tính giá trị biểu thức: . Biết hàm số xác định bởi công thức .
Kết quả: 2018/2019
(Kết quả ghi dưới dạng phân số tối giản dạng a/b)
Ta có:
Khi đó:
VD
1
Sắp xếp 6 học sinh nam; 5 học sinh nữ cùng một giáo viên chủ nhiệm thành một vòng tròn sao cho giáo viên đứng giữa hai học sinh nam. Tính số cách sắp xếp?
Ta có:
Cố định giáo viên tại một vị trí
Chọn 2 học sinh nam để xếp cạnh giáo viên => Có cách.
Xếp hai học sinh nam vừa chọn cạnh giáo viên => Có cách.
Cuối cùng xếp 9 học sinh còn lại vào các vị trí còn trống => Có cách.
Vậy số cách sắp xếp theo yêu cầu bài toán là: .
Gieo một đồng tiền xu liên tiếp 3 lần. Tính xác suất của biến cố A “ít nhất một lần xuất hiện mặt sấp”?
Gieo một đồng tiền liên tiếp 3 lần
=> Số phần tử không gian mẫu là:
Ta có:
Biến cố A “ít nhất một lần xuất hiện mặt sấp”
=> Biến cố "không xuất hiện mặt sấp”
=>
=>
Trong một phép thử có không gian mẫu kí hiệu là và là một biến cố của phép thử đó. Tìm phát biểu sai trong các phát biểu dưới đây?
Khẳng định sai là: “ khi và chỉ khi chắc chắn”.
Vì B là biến cố chắc chắn thì P(B) = 1.
Cho hình chóp S.ABC có đáy ABC là tam giác cân tại C. Cạnh bên SA vuông góc với đáy. Gọi H, K lần lượt là trung điểm của AB và SB. Khẳng định nào dưới đây là sai?
Hình vẽ minh họa
Vì H là trung điểm của AB, tam giác ABC cân =>
Ta có: => mà =>
Mặt khác => CH vuông góc với các đường thẳng
Và chỉ xảy ra khi và chỉ khi tam giác SAB cân tại S.
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy, I là trung điểm của AC, H là hình chiếu của I trên SC. Kí hiệu d(a, b) là khoảng cách giữa hai đường thẳng a và b. Khẳng định nào sau đây là đúng?
Hình vẽ minh họa:
Ta có:
=> d(SA, BC) = AB
Cho khối lăng trụ có , hình chiếu vuông góc của điểm lên mặt phẳng là trung điểm của . Biết . Tính thể tích khối lăng trụ ?
Hình vẽ minh họa:
Gọi lần lượt là hình chiếu của A trên BB’ và CC’
Theo đề bài ta có:
Dễ thấy nên tam giác vuông tại A
Gọi H là trung điểm của
Ta lại có
Suy ra
Vậy
Tính giá trị biết ?
Ta có:
Mặt khác
Một người học bắn cung tên bắn liên tục 4 mũi tên vào mục tiêu. Gọi là biến cố cung thủ bắn trúng lần thứ . Hãy mô tả biến cố lần thứ tư mới bắn trúng mục tiêu qua các biến cố .
Gọi M là biến cố lần thứ tư mới bắn trúng mục tiêu
Khi đó là biến cố lần thứ bắn không trúng mục tiêu.
Khi đó ta có: