Đề thi học kì 2 Toán 11 Kết nối tri thức Đề 3

Mô tả thêm: Đề thi cuối HK2 Toán lớp 11 Kết nối tri thức được biên soạn gồm các câu hỏi trắc nghiệm chia thành 4 mức độ bám sát chương trình mới, giúp bạn học củng cố kiến thức chuẩn bị cho kì thi sắp tới
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Giả sử mặt phẳng (\alpha) đi qua điểm C vuông góc với BD. Thiết diện tạo bởi (\alpha) và hình lập phương là:

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
CA\bot BD \\
CC'\bot BD \\
\end{matrix} ight.\  \Rightarrow (ACC'A')\bot BD

    Vậy (\alpha) chính là mặt phẳng (ACC'A'). Thiết diện là một hình chữ nhật.

  • Câu 2: Nhận biết

    Cho bất phương trình \left( \frac{1}{3} ight)^{x} > 9. Xác định nghiệm của bất phương trình đã cho?

    Ta có:

    \left( \frac{1}{3} ight)^{x} > 9\Leftrightarrow \left( 3^{- 1} ight)^{x} > 3^{2}

    \Leftrightarrow 3^{- x} > 3^{2}\Leftrightarrow x < - 2

    Vậy tập nghiệm của bất phương trình là x\in ( - \infty; - 2)

  • Câu 3: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 2a. Biết góc giữa hai mặt phẳng (SAB) và mặt phẳng (ABCD) bằng 90^{0}, SA =
SB. Tính tan góc giữa SC và mặt phẳng (ABCD), biết thể tích khối chóp S.ABCD bằng \frac{4a^{3}}{3}?

    Hình vẽ minh họa

    Kẻ SH\bot AB , gọi \alpha = \left( SC;(ABCD) ight)

    Ta có: \left\{ \begin{matrix}
(SAB)\bot(ABCD) \\
(SAB) \cap (ABCD) = AB \\
SH \subset (SAB) \\
\end{matrix} ight.\  \Rightarrow SH\bot(ABCD)

    \Rightarrow \alpha =
\widehat{SCH}

    Lại có: V_{S.ABCD} =
\frac{1}{3}SH.S_{ABCD} = \frac{4a^{3}}{3} \Rightarrow SH =
a

    Do tam giác SAB cân tại S nên H là trung điểm của AB

    \Rightarrow HC = \sqrt{BH^{2} + BC^{2}}
= a\sqrt{5}

    \Rightarrow \tan\alpha =
\tan\widehat{SCH} = \frac{SH}{HC} = \frac{a}{a\sqrt{5}} =
\frac{\sqrt{5}}{5}

  • Câu 4: Nhận biết

    Đạo hàm của hàm số f(x) = e^{2 - x} là:

    Ta có: f(x) = e^{2 - x}

    \Rightarrow f'(x) = (2 -
x)'.e^{2 - x} = - e^{2 - x}

  • Câu 5: Nhận biết

    Đặt a =\log_{7}11;b = \log_{2}7. Hãy biểu diễn \log_{\sqrt[3]{7}}\frac{121}{8} theo a và b.

    Ta có:

    \log_{\sqrt[3]{7}}\frac{121}{8} = 3\left(\log_{7}121 - \log_{7}8 ight)

    = 6\log_{7}11 - 9.\frac{1}{\log_{2}7} = 6a- \frac{9}{b}

  • Câu 6: Nhận biết

    Biết hai biến cố A;B độc lập với nhau và P(A) = 0,4;P(B) = 0,3. Tính giá trị P(A.B)?

    Do A và B là hai biến cố độc lập với nhau nên P(AB) = P(A).P(B) = 0,4.0,3 = 0,12

  • Câu 7: Thông hiểu

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Đáp án là:

    Có bao nhiêu giá trị nguyên của dương của tham số m để hàm số y = (6 - m)^{x} đồng biến trên tập số thực?

    Đáp án: 4

    Hàm số y = (6 - m)^{x} đồng biến trên \mathbb{R} khi và chỉ khi 6 - m > 1 \Leftrightarrow m <
5

    m \in \mathbb{Z}^{+} \Rightarrow m \in
\left\{ 1;2;3;4 ight\}

    Vậy có 4 giá trị của tham số m thỏa mãn điều kiện đề bài.

  • Câu 8: Thông hiểu

    Cấu trúc đề thi cuối học kì I môn Vật lí gồm 50 câu trắc nghiệm, mỗi câu có 4 đáp án trắc nghiệm và chỉ có duy nhất 1 đáp án đúng. Mỗi câu trả lời đúng được 0,2 điểm. Học sinh A chọn ngẫu nhiên đáp án cho các câu hỏi. Xác suất để học sinh A thi được 6 điểm môn Vật lí là:

    Để đạt được điểm 6 học sinh đó cần trả lời đúng 30 câu và trả lời sai 20 câu.

    Theo đó xác suất trả lời đúng 1 câu là 0,25, xác suất trả lời sai mỗi câu là 0,75

    Vậy xác suất để học sinh đạt 6 điểm là: C_{50}^{20}.0,25^{30}.0,75^{20}.

  • Câu 9: Vận dụng cao

    Cho các số thực a và b thỏa mãn \sqrt[3]{a^{14}} >\sqrt[3]{a^{7}};log_{b}\left( 2\sqrt{a + 1} ight) < log_{b}\left(\sqrt{a} + \sqrt{a + 2} ight). Khẳng định nào sau đây là đúng?

    Điều kiện để các căn thức có nghĩa là a> 1

    Ta có: \sqrt[3]{a^{14}} >\sqrt[3]{a^{7}} \Leftrightarrow a^{\frac{14}{3}} > a^{\frac{7}{4}}\Rightarrow a > 1(*)

    Xét hiệu

    \left( 2\sqrt{a + 1} ight)^{2} -\left( \sqrt{a} + \sqrt{a + 2} ight)^{2}

    = 4a + 4 - \left( 2a + 2 + 2\sqrt{a(a +2)} ight)

    = 2a + 2 - 2\sqrt{a(a + 2)}

    a > 1 nên 2a + 2 = a + a + 2 \geq 2\sqrt{a(a +2)}

    \Leftrightarrow \left( 2\sqrt{a + 1}ight)^{2} - \left( \sqrt{a} + \sqrt{a + 2} ight)^{2} >0

    \Leftrightarrow \left( 2\sqrt{a + 1}ight)^{2} > \left( \sqrt{a} + \sqrt{a + 2} ight)^{2}

    \Leftrightarrow 2\sqrt{a + 1} >\sqrt{a} + \sqrt{a + 2}

    Từ đó ta có: log_{b}\left( 2\sqrt{a + 1}ight) < log_{b}\left( \sqrt{a} + \sqrt{a + 2} ight) \Rightarrow 0< b < 1(**)

    Từ (*) và (**) suy ra 0 < b < 1< a

  • Câu 10: Thông hiểu

    Ba bạn A, B, C độc lập với nhau thi ném phi tiêu vào cùng một bia. Biết xác xuất ném trúng của A, B, C lần lượt là 0,2;0,50,8. Tính xác suất để có ít nhất một người ném trúng bia?

    Gọi A, B, C tương ứng là biến cố A ném trúng bia, B ném trúng bia và C ném trúng bia

    A, B, C là các biến cố độc lập. Do đó A, B, C là các biến cố đôi một độc lập

    Xác suất để cả ba người đều không ném trúng là:

    P\left( \overline{ABC} ight) = P\left(
\overline{A} ight).P\left( \overline{B} ight).P\left( \overline{C}
ight)

    = (1 - 0,2)(1 - 0,5)(1 - 0,8) =
0,08

  • Câu 11: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC là tam giác cân, AB = AC = a,\widehat{BAC} = 120^{0} và cạnh bên AA' = a\sqrt{2}. Tính góc giữa hai đường thẳng AB'BC?

    Hình vẽ minh họa

    Ta có: BC//B'C' \Rightarrow
(AB',BC) = (AB',B'C')

    Xét tam giác AB'C' ta có: AB' = AC' = \sqrt{AB^{2} +
BB'^{2}} = a\sqrt{3}

    Áp dụng định lí cosin cho tam giác ABC ta có:

    BC^{2} = AB^{2} + AC^{2} -
2AB.AC.cos\widehat{BAC}

    = a^{2} + a^{2} - 2a.a.cos120^{0} =
3a^{2}

    \Rightarrow BC = B'C' =
a\sqrt{3}

    Vậy tam giác AB'C' đều

    \Rightarrow (AB',BC) =
(AB',B'C') = \widehat{AB'C'} = 60^{0}

  • Câu 12: Nhận biết

    Kết quả khi thu gọn biểu thức A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} khi x > 0 là:

    Ta có:

    A =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.\sqrt[6]{x} =
x^{\frac{1}{2}}.x^{\frac{1}{3}}.x^{\frac{1}{6}} = x^{\frac{1}{2} +
\frac{1}{3} + \frac{1}{6}} = x

  • Câu 13: Nhận biết

    Tính thể tích khối lập phương có cạnh bằng 4a?

    Ta có: V = (4a)^{3} =
64a^{3}

  • Câu 14: Nhận biết

    Một hộp đựng 8 viên bi màu xanh, 5 viên bi đỏ, 3 viên bi màu vàng. Có bao nhiêu cách chọn từ hộp đó ra 4 viên bi trong đó có đúng 2 viên bi xanh?

    Trong 4 viên bi có đúng 2 viên bi màu xanh

    => 2 viên bi còn lại nằm trong 8 viên bi (màu đỏ và màu vàng)

    => Số cách chọn 4 viên bi trong đó có đúng 2 viên bi xanh là: C_8^2.C_8^2 = 784 cách

  • Câu 15: Vận dụng

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Đáp án là:

    Tính giá trị biểu thức: S = f'(1) + f'(2) + f'(3) + ... +
f'(2017) . Biết hàm số y =
f(x) xác định bởi công thức y =
f(x) = \ln\left( \frac{x}{x + 1} ight) + ln2018 .

    Kết quả: S = 2017/2018

    (Kết quả ghi dưới dạng phân số tối giản dạng a/b)

    Ta có:

    y = f(x) = \ln\left( \frac{x}{x + 1}
ight) + ln2018

    \Rightarrow f'(x) = \frac{1}{x(x +
1)} = \frac{1}{x} - \frac{1}{x + 1}

    Khi đó:

    S = f'(1) + f'(2) + f'(3) +
... + f'(2017)

    S = \frac{1}{1} - \frac{1}{2} +
\frac{1}{2} - \frac{1}{3} + ... + \frac{1}{2017} -
\frac{1}{2018}

    S = 1 - \frac{1}{2018} =
\frac{2017}{2018}

  • Câu 16: Vận dụng cao

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh 2a, tam giác SAB đều, góc giữa (SCD) và (ABCD) bằng 60◦. Gọi M là trung điểm của cạnh AB. Biết hình chiếu vuông góc của đỉnh S lên mặt phẳng (ABCD) nằm trong hình vuông ABCD. Tính theo a khoảng cách giữa hai đường thẳng SM và AC.

    Hình vẽ minh họa:

    Gọi H là hình chiếu của S lên (ABCD).

    Ta có: \left\{ \begin{matrix}SM\bot AB \\AB\bot SH \\\end{matrix} ight.

    => AB ⊥ MH

    => MH là đường trung bình của hình vuông ABCD

    Giả sử MH cắt CD tại N, ta có N là trung điểm CD

    Ta cũng có SN ⊥ CD nên \widehat{\left((SCD),(ABCD) ight)} = \widehat{(SN,MN)} = \widehat{SNM}

    Gọi P là trung điểm BC, ta có MP // AC nên AC // (SMP)

    Do đó, d(SM, AC) = d(AC,(SMP)) = d(O,(SMP))

    Gọi K là hình chiếu của H lên MP (nhận thấy HK // OB), I là hình chiếu của H lên SK

    Khi đó d(H, (SMP)) = HI

    Áp dụng định lý cosin cho tam giác SMN, ta có:

    \begin{matrix}SM^{2} = MN^{2} + SN^{2} - 2MN.SN.cos60^{0} \hfill\\\Leftrightarrow 3a^{2} = 4a^{2} + SN^{2} - 2.2a.SN.\dfrac{1}{2} \hfill \\\Leftrightarrow a = SN \hfill \\\end{matrix}

    Xét tam giác vuông SHN ta có:

    SH = SN.sin60^{0} =\frac{a\sqrt{3}}{2}

    HN = SN.cos60^{0} =\frac{a}{2}

    \Rightarrow MH = \frac{3}{4}.MN\Rightarrow KH = \frac{3}{4}NP = \frac{3a\sqrt{2}}{4}

    Xét tam giác SHK vuông tại H, ta có:

    HI = \sqrt{\frac{HK^{2}.SH^{2}}{HK^{2} +SH^{2}}} = \frac{3a\sqrt{5}}{10}

    Mặt khác: d\left( O;(SMP) ight) =\frac{2}{3}d\left( H;(SMP) ight) = \frac{a\sqrt{5}}{5}

  • Câu 17: Nhận biết

    Đạo hàm cấp hai của hàm số y = \sin^{2}x là:

    Ta có: y = \sin^{2}x

    \Rightarrow y' = 2\sin x.\cos x =\sin2x

    \Rightarrow y'' =2\cos2x

  • Câu 18: Thông hiểu

    Giả sử S là tổng các nghiệm của phương trình \frac{1}{4}\log_{4}(a - 3)^{8} +\frac{1}{2}\log_{\sqrt{2}}(a + 1) = \log_{2}(4a). Giá trị của S là:

    Điều kiện xác định \left\{ \begin{matrix}
(a - 3)^{8} > 0 \\
a + 1 > 0 \\
4a > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a eq 3 \\
a > - 1 \\
a > 0 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a eq 3 \\
a > 0 \\
\end{matrix} ight.

    Phương trình đã cho tương đương:

    \Leftrightarrow \dfrac{1}{4}\log_{2^{2}}(a- 3)^{8} + \frac{1}{2}\log_{2^{\frac{1}{2}}}(a + 1) =\log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| +\log_{2}(a + 1) = \log_{2}(4a)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}(4a) - \log_{2}(a + 1)

    \Leftrightarrow \log_{2}|a - 3| =\log_{2}\left( \frac{4a}{a + 1} ight)

    \Leftrightarrow |a - 3| = \dfrac{4a}{a +1} \Leftrightarrow \left\lbrack \begin{matrix}a - 3 = \dfrac{4a}{a + 1} \\a - 3 = - \dfrac{4a}{a + 1} \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
a^{2} - 6a - 3 = 0 \\
a^{2} + 2a - 3 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
a = 3 + 2\sqrt{3}(tm) \\
a = 3 - 2\sqrt{3}(ktm) \\
a = 1(tm) \\
a = - 3(ktm) \\
\end{matrix} ight.

    \Rightarrow S = 3 + 2\sqrt{3} + 1 = 4 +
2\sqrt{3}

  • Câu 19: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình vuông ABCD cạnh a, cạnh SA ⊥ (ABCD) , SA = a\sqrt{2}. Góc giữa SC với mặt phẳng (ABCD) là:

    Hình vẽ minh họa:

    Ta có: \widehat{\left( SC,(ABCD) ight)}= \widehat{(SC,AC)} = \widehat{SCA}

    Lại có: \tan\widehat{SCA} = \frac{SA}{AC}= \frac{SA}{AB\sqrt{2}} = \frac{a\sqrt{2}}{a\sqrt{2}} = 1

    => \widehat{SCA} = 45^{0}

  • Câu 20: Thông hiểu

    Phương trình chuyển động của một chất điểm được biểu diễn S(t) = t^{3} - 3t^{2} + 5t +
2,(t > 0), t tính bằng giây, S(t) tính bằng mét. Tại thời điểm t = 2s thì gia tốc tức thời của chất điểm bằng bao nhiêu?

    Gọi gia tốc của chuyển động tính theo thời gian t là a(t) ta có:

    a(t) = S''(t) = \left( 3t^{2} -
6t + 5 ight)' = 6t - 6

    Gia tốc tức thời tại thời điểm t = 2s là

    a(2) = 6.2 - 6 = 6\left( m/s^{2}
ight)

  • Câu 21: Thông hiểu

    Viết phương trình tiếp tuyến của đồ thị hàm số (C):y = \frac{2x + 1}{x - 1}. Biết (C) song song với đường thẳng y = - 3x?

    Gọi M\left( x_{0};y_{0}
ight)là tiếp điểm của tiếp tuyến

    Ta có: y' = \frac{- 3}{(x -
1)^{2}}

    Do (C) song song với đường thẳng y = - 3x nên y'\left( x_{0} ight) = - 3

    \Leftrightarrow \frac{- 3}{\left( x_{0}
- 1 ight)^{2}} = - 3 \Leftrightarrow \left\lbrack \begin{matrix}
x_{0} = 0 \\
x_{0} = 2 \\
\end{matrix} ight.

    Với x_{0} = 0 \Rightarrow y_{0} = -
1 nên phương trình tiếp tuyến tương ứng là

    y = - 3(x - 0) - 1 \Rightarrow y = - 3x
- 1

    Với x_{0} = 2 \Rightarrow y_{0} =
5 nên phương trình tiếp tuyến tương ứng là

    y = - 3(x - 2) + 5 \Rightarrow y = - 3x
+ 11

  • Câu 22: Thông hiểu

    Cho 4 chữ số 2;4;6;8 có thể lập được bao nhiêu chữ số biết rằng các số tạo thành thuộc khoảng (200;600)?

    Gọi số cần tìm có dạng \overline{abc} với a,b,c \in \left\{ 2;4;6;8 ight\}.

    Theo giả thiết ta có hai cách chọn a

    Với mỗi cách chọn a ta có 4 cách chọn b và 4 cách chọn x.

    Vậy có 2.4.4 = 32 số thỏa mãn yêu cầu đề bài.

  • Câu 23: Nhận biết

    Có bao nhiêu cách chọn một tổ tưởng tổ dân phố từ một nhóm cư dân gồm 25 nam và 20 nữ?

    Số cách chọn một người từ 45 người là: C_{45}^{1} = 45 (cách)

    Vậy có 45 cách chọn tổ trưởng tổ dân phố.

  • Câu 24: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Trong trường hợp a và b vuông góc nhau và chéo nhau, nếu (P) ⊃ a, (P) // b và (Q) ⊃ b, (Q) // a thì (P) // (Q).

  • Câu 25: Thông hiểu

    Tính giá trị biểu thức: W = x^{2} - y^{2}. Biết x,y là các số thực dương khác 1 và thỏa mãn \log_{\sqrt[3]{x}}y =\dfrac{3y}{8};\log_{\sqrt{2}}x = \dfrac{32}{y}?

    Ta có:

    \log_{\sqrt{2}}x = \dfrac{32}{y}\Leftrightarrow 2\log_{2}x = \dfrac{32}{y}

    \Leftrightarrow y = \dfrac{16}{\log_{2}x}= 16\log_{x}2(*)

    Lại có \log_{\sqrt[3]{x}}y = \dfrac{3y}{8}\Leftrightarrow 3\log_{x}y = \dfrac{3y}{8}

    \Leftrightarrow \log_{x}y = \frac{y}{8}\Leftrightarrow \log_{x}\left( 16\log_{x}2 ight) =2\log_{x}2

    \Leftrightarrow \log_{x}\left( 16\log_{x}2ight) = \log_{x}2^{2}

    \Leftrightarrow 16\log_{x}2 = 4\Leftrightarrow \log_{x}2 = \frac{1}{4}

    \Leftrightarrow \log_{2}x = 4\Leftrightarrow x = 16 \Rightarrow y = 4

    \Rightarrow W = x^{2} - y^{2} =
240

  • Câu 26: Nhận biết

    Cho hình chóp S.ABCD có đáy là hình thoi tâm O. Biết rằng SA = SC;SB = SD. Hãy chọn kết luận sai dưới đây?

    Hình vẽ minh họa

    Ta có tam giác SAC cân tại S và SO là đường trung tuyến cũng đồng thời là đường cao

    => SO\bot AC

    Trong tam giác SOA thì AC và SA không thể vuông tại A

    Vậy khẳng định sai là: AC\bot
SA.

  • Câu 27: Thông hiểu

    Có bao nhiêu cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho các bạn nam và nữ ngồi xen kẽ:

    Chọn vị trí cho hai nhóm 3 nam và 3 nữ có 2 cách chọn (1 nhóm ở vị trí chẵn và nhóm còn lại ở vị trí lẻ)

    Xếp 3 nam có: 3.2.1 = 6 cách xếp

    Xếp 3 nữ có: 3.2.1 = 6 cách xếp

    Vậy có 2.(3.2.1)2 = 72 cách xếp

  • Câu 28: Nhận biết

    Hình chóp tam giác đều S.ABC. Gọi Glà trọng tâm tam giác ABC. Khẳng định nào sau đây đúng?

    Ta có khối chóp tam giác đều S.ABC có đáy ABC là tam giác đều, trọng tâm G cũng là tâm của đáy nên SG\bot(ABC).

  • Câu 29: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a. Giả sử góc BAD bằng 600. Khoảng cách từ điểm S đến mặt phẳng (ABCD) bằng:

    Hình vẽ minh họa

    Khoảng cách từ điểm S đến mặt phẳng (ABCD)

    Từ S vẽ SO ⊥ (ABCD) ⇒ OA = OB = OC (là hình chiếu của các đường xiên bằng nhau) ⇒ O là tâm đường tròn ngoại tiếp đáy

    \begin{matrix}  S{O^2} = S{A^2} - A{O^2} \hfill \\   = {a^2} - {\left( {\dfrac{{a\sqrt 3 }}{2}} ight)^2} = \dfrac{{{a^2}}}{4} \hfill \\   \Rightarrow SO = \dfrac{a}{2} \hfill \\ \end{matrix}

  • Câu 30: Thông hiểu

    Cho tứ diện S.ABC có SBC và ABC nằm trong hai mặt phẳng vuông góc với nhau. Tam giác SBC đều, tam giác ABC vuông tại A. Gọi H, I lần lượt là trung điểm của BC và AB. Khẳng định nào sau đây sai?

    Hình vẽ minh họa:

    Khẳng định nào sau đây sai

    Ta có: SBC là tam giác đều có H là trung điểm BC nên SH⊥BC

    Mà (SBC)⊥(ABC) theo giao tuyến BC ⇒SH⊥(ABC)⇒SH⊥AB

    => SH \perp AB đúng.

    Ta có HI là đường trung bình của ΔABC nên H//AC⇒HI⊥AB

    => HI \perp AB đúng.

    Ta có \left\{ {\begin{array}{*{20}{l}}  {SH \bot AB} \\   {HI \bot AB} \end{array}} ight.

    ⇒AB⊥(SHI)⇒(SAB)⊥(SHI)

    => (SHI) \perp (SAB) đúng

  • Câu 31: Nhận biết

    Cho khối chóp S.ABCSA\bot(ABC) biết độ dài các cạnh SA = 4cm,AB = 6cm, BC = 10cm;CA = 8cm. Thể tích khối chóp S.ABC là:

    Hình vẽ minh họa

    Ta có:

    AB^{2} + AC^{2} = 6^{2} + 8^{2} = 10^{2}
= BC^{2}

    Nên tam giác ABC vuông tại A

    Suy ra S_{ABC} = \frac{1}{2}AB.AC =
24

    Vậy V_{S.ABC} = \frac{1}{3}.S_{ABC}.SA =
32cm^{3}

  • Câu 32: Nhận biết

    Trong các phát biểu sau, phát biểu nào sau là đúng?

     Đáp án đúng là "Nếu hàm số y = f(x) có đạo hàm tại x_{0} thì nó liên tục tại điểm đó."

  • Câu 33: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất hai lần liên tiếp. Gọi biến cố lần đầu xuất hiện mặt 3 chấm là A và biến cố lần thứ hai xuất hiện mặt 3 chấm là B. Khẳng định nào dưới dây sai?

    Hai biến cố A và B có thể cùng xảy ra suy ra khẳng định sai là: “A;B là hai biến cố xung khắc.”

  • Câu 34: Nhận biết

    Hàm số nào sau đây phù hợp với hình vẽ:

    Ta có: y(1) = 0 và hàm số đồng biến trên (0; + \infty) nên chỉ có hàm số y = \log_{\sqrt{6}}x thỏa mãn.

  • Câu 35: Vận dụng

    Sơ đồ phân phối điện như hình vẽ:

    Điện được tải từ trạm điện P đến nơi tiêu thụ Q qua các trạm tải nhỏ A, B, C. Xác suất có sự cố kĩ thuật sau một thời gian hoạt động của các trạm tải nhỏ A, B, C lần lượt là \frac{1}{10};\frac{1}{10};\frac{1}{20}. Hãy tính xác suất để nơi tiêu thụ Q không bị mất điện (biết rằng các trạm tải nhỏ hoạt động độc lập với nhau).

    Gọi Q là biến cố nơi tiêu thụ Q không mất điện

    A, B, C là biến cố các trạm tải nhỏ A, B, C gặp sự cố kĩ thuật.

    Ta có:

    Q = (A \cap B) \cup (C)

    Suy ra P(Q) = P(AB) + P(C) -
P(ABC)

    P(Q) = P(A).P(B) + P(C) -
P(A).P(B).P(C)

    = 0,1.0,1 + 0,05 - 0,1.0,1.0,05 =
0,0595

  • Câu 36: Nhận biết

    Gieo một con xúc xắc cân đối và đồng chất 2 lần liên tiếp. Giả sử N là biến cố “Có ít nhất một mặt 6 chấm xuất hiện” Mô tả nào sau đây đúng khi mô tả biến cố N?

    Mô tả đúng biến cố N là:

    N =\{(1;6),(2;6),(3;6),(4;6),(5;6),(6;6),(6;1),(6;2),(6;3),(6;4),(6;5)\}

  • Câu 37: Thông hiểu

    Quản lí xưởng kiểm tra 4 sản phẩm trong kho gồm hai loại là đạt và không đạt. Gọi N_{k} là biến cố sản phẩm được kiểm tra lần thứ k thuộc loại không đạt, k \in \left\{ 1;2;3;4 ight\}. Mô tả nào sau đây mô tả đúng biến cố chỉ có một sản phẩm thuộc loại đạt qua các N_{k}?

    Mô tả đúng là:

    N_{1}N_{2}N_{3}\overline{N_{4}} +
N_{1}N_{2}\overline{N_{3}}N_{4} + N_{1}\overline{N_{2}}N_{3}N_{4} +
\overline{N_{1}}N_{2}N_{3}N_{4}

  • Câu 38: Nhận biết

    Cho hình chóp S.ABCD ABCD là hình vuông cạnh a, tam giác SAD đều. góc giữa BCSA là:

    Hình vẽ minh họa

    BC//AD \Rightarrow (BC,SA) = (AD,SA) =
60^{0}

  • Câu 39: Vận dụng

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Đáp án là:

    Bà A gửi ngân hàng 100 triệu đồng vào ngân hàng với lãi suất 10%/ 1 năm theo hình thức lại kép một thời gian dài (nghĩa là nếu bà không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lãi sẽ được nhập vào gốc để tính lãi cho năm tiếp theo). Năm nay gia đình có việc cần nên bà rút hết tiền trong ngân hàng để xử lí công việc. Sau khi rút cả vốn và lãi, bà trích ra 10 triệu để mua đồ tân gia cho con trai thì bà còn 240 triệu. Hỏi bà A đã gửi tiết kiệm được bao nhiêu năm? 10 năm||12 năm||20 năm||15 năm

    Giả sử bà A đã gửi ngân hàng trong x năm

    Số tiền bà nhận được là 250 triệu đồng

    Áp dụng công thức lại kép thì sau n năm số tiền bà A nhận được là T = 100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow 250.10^{6} =
100.10^{6}.(1 + 0,1)^{n}

    \Leftrightarrow n = \log_{1,1}2,5\Leftrightarrow n \approx 9,61

    Vậy bà A đã gửi tiết kiệm trong 10 năm.

  • Câu 40: Thông hiểu

    Lẫy ngẫu nhiên 5 viên bi trong hộp có 13 viên bi gồm 6 bi xanh, 7 bi đỏ. Tính xác suất để 5 viên bi lấy được có số bi xanh nhiều hơn số bi đỏ?

    Gọi A là biến cố lấy số bi xanh nhiều hơn bi đỏ

    Khi đó ta có: n(\Omega) =
C_{13}^{5}

    TH1: lấy được 5 viên bi xanh C_{6}^{5} cách

    TH2: lấy được 4 viên bi xanh; 1 viên bi đỏ C_{6}^{4}.C_{7}^{1} cách

    TH3: lấy được 3 viên bi xanh; 2 viên bi đỏ C_{6}^{3}.C_{7}^{2} cách

    Do đó xác suất của biến cố A là:

    \Rightarrow P(A) =
\frac{n(A)}{n(\Omega)} = \frac{59}{143}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 2 Toán 11 Kết nối tri thức Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 1 lượt xem
Sắp xếp theo