Đề thi học kì 2 Toán lớp 10 Cánh Diều - Đề 2

Mô tả thêm: Đề kiểm tra HK2 Toán lớp 10 được biên soạn gồm 40 câu hỏi trắc nghiệm chia thành 4 mức độ bám sát chương trình sách Cánh Diều.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Thông hiểu

    Tìm phương sai của mẫu số liệu 3;4;5;6;7?

    Số trung bình của mẫu số liệu là:

    \overline{x} = \frac{3 + 4 + 5 + 6 +
7}{5} = 5

    Phương sai của mẫu số liệu là:

    s^{2} = \frac{(3 - 5)^{2} + (4 - 5)^{2}
+ (5 - 5)^{2} + (6 - 5)^{2} + (7 - 5)^{2}}{4} = 2

    Vậy phương sai cần tìm bằng 2.

  • Câu 2: Thông hiểu

    Một hộp chứa 5 viên bi trắng, 10 viên bi xanh và 15 viên bi đỏ. Lấy ngẫu nhiên từ trong hộp 7 viên bi. Xác suất để trong số 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ?

    Số phần tử không gian mẫu là: n(\Omega) =
C_{30}^{7}

    Gọi A là biến cố để trong 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ

    \overline{A} là biến cố để trong 7 viên bi được lấy ra có số viên bi nhỏ hơn 2.

    TH1: 7 viên bi trong đó có 1 viên bi đỏ ta có: 15.C_{15}^{6}

    TH2: 7 viên bi trong đó có không có viên bi đỏ ta có: C_{15}^{7}

    \Rightarrow n\left( \overline{A} ight)
= 15.C_{15}^{6} + C_{15}^{7}

    Vậy xác suất của biến cố A cần tìm là:

    P(A) = 1 - P\left( \overline{A} ight)
= 1 - \frac{15.C_{15}^{6} + C_{15}^{7}}{C_{30}^{7}} =
\frac{5011}{5220}

  • Câu 3: Nhận biết

    Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?

     Vectơ chỉ phương của trục Ox là (1; 0).

  • Câu 4: Thông hiểu

    Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:

    12 vị trí là hoán vị của 12 học sinh đó.

    Do đó số phần tử của không gian mẫu là: n(Ω) = 12!.

    Gọi A là biến cố “Xếp 2 bạn nữ không đứng cạnh nhau”.

    Chia việc xếp thành 2 công đoạn:

    Công đoạn 1: Xếp 8 bạn nam vào 8 chỗ có 8! cách.

    Công đoạn 2: Khi đó 8 bạn nam tạo ra 9 khe trống, xếp 4 bạn nữ vào 9 khe trống đó có A_9^4 cách.

    Theo quy tắc nhân, xếp 12 bạn mà 2 bạn nữ không đứng cạnh nhau có: 8!. cách.

    => n\left( A ight) = 8!.A_9^4

     Xác suất biến cố A là: P\left( A ight) = \frac{{n\left( A ight)}}{{n\left( \Omega  ight)}} = \frac{{8!.A_9^4}}{{12!}} = \frac{{14}}{{55}}

  • Câu 5: Nhận biết

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)A(1; - 3)?

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    (Có thể kiểm tra đường thẳng nào không đi qua điểm A(1; - 3)).

  • Câu 6: Thông hiểu

    Lấy ngẫu nhiên hai tấm thẻ trong một hộp chứa 9 tấm thẻ được đánh số t 1 đến 9. Tính xác suất để tổng của các số trên hai tấm thẻ lấy ra là số chẵn?

    Từ 1 đến 9 có 4 số chẵn và 5 số lẻ.

    Số phần tử không gian mẫu là: n(\Omega) =
C_{9}^{2} = 36

    Gọi A là biến cố tổng của các số trên hai thẻ lấy ra là số chẵn.

    Để tổng nhận được là số chẵn thì 2 số được chọn hoặc là hai số chẵn hoặc là hai số lẻ.

    2 số được chọn là 2 số chẵn ta có: C_{4}^{2} cách chọn.

    2 số được chọn là 2 số lẻ ta có: C_{5}^{2} cách chọn.

    Suy ra số kết quả thuận lợi cho biến cố A là: n(A) = C_{4}^{2} + C_{5}^{2} = 16

    Vậy xác suất của biến cố A là: P(A) =
\frac{n(A)}{n(\Omega)} = \frac{16}{36} = \frac{4}{9}

  • Câu 7: Nhận biết

    Ngân hàng câu hỏi kiểm tra Toán lớp 11A gồm 35 câu hỏi đại số và 15 câu hỏi hình học. Học sinh được chọn một câu hỏi để trả lời. Khi đó số khả năng có thể xảy ra bằng:

    Áp dụng quy tắc cộng ta có số khả năng có thể xảy ra là: 35 + 15 = 50 khả năng.

  • Câu 8: Nhận biết

    Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:

    Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:

    Quan sát biểu đồ ta thấy:

    Giá trị lớn nhất là 342

    Giá trị nhỏ nhất là: 4

    Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.

  • Câu 9: Nhận biết

    Quy tròn số 21569 đến hàng chục nghìn ta được:

    Quy tròn số 21569 đến hàng nghìn ta được số quy tròn là 22000.

  • Câu 10: Nhận biết

    Cho bảng kết quả kiểm tra khối lượng của 30 quả trứng gà như sau:

    Khối lượng (gram)

    25

    30

    35

    40

    45

    50

    Số quả trứng

    3

    5

    7

    9

    4

    2

    Xác định mốt của mẫu số liệu?

    Mốt của mẫu số liệu là 40 (vì có tần số lớn nhất).

  • Câu 11: Thông hiểu

    Biết parabol (P) có phương trình đường chuẩn là \Delta:x + 2 = 0. Phương trình chính tắc của (P) là:

    Gọi phương trình chính tắc của Parabol là: (P):y^{2} = 2px

    Parabol có phương trình đường chuẩn là: \Delta:x + 2 = 0 nên \frac{p}{2} = 2 \Rightarrow p = 4

    Suy ra phương trình chính tắc của parabol là: y^{2} = 8x.

  • Câu 12: Nhận biết

    Số các hoán vị của n phần tử là:

     Số các hoán vị của n phần tử là: n!.

  • Câu 13: Nhận biết

    Cho phương trình đường tròn (C):x^{2} + y^{2} - 6x + 8y - 1 = 0. Xác định tâm và bán kính đường tròn đó?

    Ta có phương trình đường tròn: (C):x^{2}
+ y^{2} - 6x + 8y - 1 = 0 có: a =
3;b = - 4,c = - 1 nên đường tròn (C) có tâm I(3; - 4) và bán kính R = \sqrt{a^{2} + b^{2} - c} =
\sqrt{26}.

  • Câu 14: Nhận biết

    Trong hệ tọa độ Oxy cho tọa độ hai điểm A(2; - 3),B(4;7). Tìm tọa độ trung điểm I của đoạn thẳng AB?

    Tọa độ trung điểm của AB là: \left\{\begin{matrix}x_{I} = \dfrac{2 + 4}{2} = 3 \\y_{I} = \dfrac{- 3 + 7}{2} = 2 \\\end{matrix} ight.\  \Rightarrow I(3;2)

  • Câu 15: Vận dụng

    Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?

    Gọi số cần tìm có dạng \overline{abcd}. Vì \overline{abcd} chia hết cho 10 suy ra d = 0.

    TH1. Với a = 5, ta có

    + Nếu b = 4 suy ra c = \left\{ 0;1 ight\}, do đó có 2 số cần tìm.

    + Nếu b < 4 suy ra b = \left\{ 0;1 ight\}c = \left\{ 0;1;4;5;6;7;9 ight\}, do đó có 14 số cần tìm.

    TH2. Với a < 5
\Rightarrow a = \left\{ 1;4 ight\} suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn

    C.

    Suy ra có 2 \times 7 \times 7 =
98 số cần tìm. Vậy có tất cả 114 số cần tìm.

  • Câu 16: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \left( d_{1} ight):11x - 12y + 1 = 0\left( d_{2} ight):12x + 11y + 9 =
0. Khi đó vị trí tương đối của hai đường thẳng là:

    Ta có:

    Vectơ pháp tuyến của đường thẳng \left(
d_{1} ight):11x - 12y + 1 = 0 là: \overrightarrow{n_{d_{1}}} = (11; -
12)

    Vectơ pháp tuyến của đường thẳng \left(
d_{2} ight):12x + 11y + 9 = 0 là: \overrightarrow{n_{d_{2}}} = (12;11)

    Ta thấy \overrightarrow{n_{d}}.\overrightarrow{n_{d}} =
0

    Suy ra hai đường thẳng vuông góc với nhau.

  • Câu 17: Vận dụng

    Năm đoạn thẳng có độ dài 1cm; 3cm; 5cm; 7cm; 9cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Xác suất để ba đoạn thẳng lấy ra có thể tạo thành 1 tam giác là:

    Phân tích: Cần nhớ lại kiến thức cơ bản về bất đẳng thức tam giác.

    Ba đoạn thẳng với chiều dài a,b,c có thể là 3 cạch của một tam giác khi và chỉ khi \left\{ \begin{matrix}
a + b > c \\
a + c > b \\
b + c > a \\
\end{matrix} ight.

    Số phần tử của không gian mẫu là: C_{5}^{3} = 10

    Gọi A là biến cố “lấy ba đoạn thẳng lấy ra lập thành một tam giác”

    Các khả năng chọn được ba đoạn thẳng lập thành một tam giác là (3;5;7);(3;5;9);(5;7;9)

    Số trường hợp thuận lợi của biến cố A là 3. Suy ra xác suất của biến cố AP(A) =
\frac{3}{10}.

  • Câu 18: Thông hiểu

    Kết quả khi đo chiều dài của một cây thước là \overline{a} = 45 \pm 0,2(cm). Khi đó sai số tuyệt đối của phép đo được ước lượng là:

    Ta có độ dài gần đúng của cây thước là a= 45 với độ chính xác d =0,2cm

    Nên sai số tuyệt đối là \Delta_{a} \leq d= 0,2.

  • Câu 19: Thông hiểu

    Hai tổ sản xuất của một phân xưởng có 9 công nhân nam và 13 công nhân nữ trong đó có 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 7 người trong số 22 người nhưng không có cặp vợ chồng?

    TH1: Chọn 7 người 18 người không là cặp vợ chồng: C_{18}^{7}

    TH2: Chọn 1 trong 2 cặp vợ chồng và 6 người trong 18 người không là cặp vợ chồng: C_{4}^{1}.C_{18}^{6}

    TH3: Chọn 2 trong 2 cặp vợ chồng nhưng không phải 1 cặp và 5 người trong 1 người không là cặp vợ chồng: \left(
C_{4}^{2} - 2 ight).C_{18}^{5}

    Vậy số cách chọn thỏa mãn là: C_{18}^{7}
+ C_{4}^{1}.C_{18}^{6} + \left( C_{4}^{2} - 2 ight).C_{18}^{5} =
140352 cách

  • Câu 20: Vận dụng cao

    Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có tọa độ A(1;2). Biết phương trình đường trung tuyến BM:x + 2y - 2 = 0 và đường cao BH:2x + y = 0. Xác định phương trình tổng quát của đường thẳng BC?

    Tọa độ đỉnh B = BH \cap BM \Rightarrow
B\left( - \frac{2}{3};\frac{4}{3} ight)

    Phương trình đường thẳng AC đi qua điểm A(1;2) và vuông góc với đường thẳng BH là: x - 2y + 3 = 0

    Tọa độ M = AC \cap BM \Rightarrow M\left(
- \frac{1}{2};\frac{5}{4} ight)

    Vì BM là đường trung tuyến nên M là trung điểm cạnh AC suy ra C\left( - 2;\frac{1}{2} ight)

    Ta có: \overrightarrow{BC} = \left( -
\frac{4}{3}; - \frac{5}{6} ight) là VTCP \Rightarrow \overrightarrow{n} = (5; - 8) là VTPT

    Khi đó đường thẳng BC có phương trình là: 5x - 8y + 14 = 0.

    VDC

     

    1

  • Câu 21: Thông hiểu

    Với giá trị nào của m thì hai đường thẳng d_{1}:(m - 3)x + 2y + m^{2} - 1 = 0d_{2}: - x + my + m^{2} - 2m + 1 =
0 cắt nhau?

    \left\{ \begin{matrix}
d_{1}:(m - 3)x + 2y + m^{2} - 1 = 0 \\
d_{2}: - x + my + m^{2} - 2m + 1 = 0 \\
\end{matrix} ight.

    \overset{d_{1} \cap d_{2} =M}{ightarrow}\left\lbrack \begin{matrix}m = 0 ightarrow \left\{ \begin{matrix}d_{1}: - 3x + 2y - 1 = 0 \\d_{2}: - x + 1 = 0 \\\end{matrix} ight.\  ightarrow TM \\meq0 ightarrow \frac{m - 3}{- 1}eq\frac{2}{m}\Leftrightarrow \left\{ \begin{matrix}meq1 \\meq2 \\\end{matrix} ight.\  \\\end{matrix} ight.\ .

    Chọn \left\{ \begin{matrix}
m eq 1 \\
m eq 2 \\
\end{matrix} ight..

  • Câu 22: Nhận biết

    Cho một phép thử T có không gian mẫu \Omega. Giả thiết rằng các kết quả có thể của T là đồng khả năng. Khi đó nếu E là một biến cố liên quan đến phép thử T thì xác suất của E (kí hiệu là P(E)) được cho bởi công thức nào sau đây? Biết rằng kí hiệu số phần tử của không gian mẫu và tập E lần lượt làn(\Omega),n(E).

    Nếu E là một biến cố có liên quan đến phép thử T thì xác suất của biến cố E được xác định bởi công thức P(E) =
\frac{n(E)}{n(\Omega)}.

  • Câu 23: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Hai đường thẳng không có điểm chung thì chúng có thể song song với nhau (khi chúng đồng phẳng) hoặc chéo nhau (khi chúng không đồng phẳng).

    Vậy mệnh đề sai: "Hai đường thẳng không có điểm chung thì chéo nhau."

  • Câu 24: Nhận biết

    Xét một phép thử có không gian mẫu \Omega gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Biến cố đối của biến cố A là

    Biến cố đối của biến cố A là biến cố “A không xảy ra”.

  • Câu 25: Nhận biết

    Cho B\overline{B} là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?

    Mệnh đề đúng là: P(A) = 1 - P\left(
\overline{A} ight)

  • Câu 26: Nhận biết

    Khai triển biểu thức (a + 2b)^{5} ta thu được kết quả là:

     Ta có: (a + 2b)^{5} =a^{5}+10a^{4}b+40a^{3}b^{2}+80a^{2}b^{3}+80ab^{4}+32b^{5}.

  • Câu 27: Vận dụng

    Trong mặt phẳng tọa độ có đường thẳng \Delta có phương trình x - my = - 1 và đường tròn (C):x^{2} + y^{2} - 2mx + 2y = 0. Tìm tất cả các giá trị của tham số m để đường thẳng \Delta tiếp xúc với đường tròn (C)?

    Phương trình đường tròn (C) là: (C):(x -
m)^{2} + (y + 1)^{2} = m^{2} + 1

    Suy ra tâm đường tròn: I(m; - 1) và bán kính R = \sqrt{m^{2} +
1}

    Đường thẳng \Delta tiếp xúc với đường tròn (C) khi và chỉ khi

    d(I;\Delta) = R \Leftrightarrow
\frac{\left| m - m.( - 1) + 1 ight|}{\sqrt{1 + m^{2}}} = \sqrt{m^{2} +
1}

    \Leftrightarrow |2m - 1| = m^{2} + 1
\Leftrightarrow \left\lbrack \begin{matrix}
m^{2} + 1 = 2m + 1 \\
m^{2} + 1 = - 2m - 1 \\
\end{matrix} ight.

    \Leftrightarrow \left\lbrack
\begin{matrix}
m^{2} = 2m \\
m^{2} + 2m + 2 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 0 \\
m = 2 \\
\end{matrix} ight.

  • Câu 28: Nhận biết

    Trong các phương trình sau, phương trình nào là phương trình đường tròn?

    Phương trình x^{2} + y^{2} + 2x - 4y + 9
= 0 có dạng x^{2} + y^{2} - 2ax -
2by + c = 0 với a = - 1;b = 2;c =
9

    Ta có: a^{2} + b^{2} - c = 1 + 4 - 9 <
0

    Vậy phương trình x^{2} + y^{2} + 2x - 4y
+ 9 = 0 không là phương trình đường tròn.

    Phương trình x^{2} + y^{2} + 6x + 4y + 13
= 0 có dạng x^{2} + y^{2} - 2ax -
2by + c = 0 với a = 3;b = 2;c = -
13

    Ta có: a^{2} + b^{2} - c = 0

    Vậy phương trình x^{2} + y^{2} + 6x + 4y
+ 13 = 0 không là phương trình đường tròn.

    Ta có:

    2x^{2} + 2y^{2} - 6x - 4y - 1 =
0

    \Leftrightarrow x^{2} + y^{2} - 3x - 2y
- \frac{1}{2} = 0

    \Leftrightarrow \left( x - \frac{3}{2}
ight)^{2} + (y - 1)^{2} = \frac{5}{2}

    Vậy đường tròn có bán kính I\left(
\frac{3}{2};1 ight) và bán kính R
= \frac{\sqrt{10}}{2}

    Phương trình 2x^{2} + y^{2} + 2x - 3y + 9
= 0 không phải là phương trình đường tròn vì hệ số của x^{2};y^{2} khác nhau.

  • Câu 29: Nhận biết

    Hypebol có nửa trục thực là 4, tiêu cự bằng 10 có phương trình chính tắc là:

    Ta có : \left\{ \begin{matrix}
a = 4 \\
2c = 10 \\
b^{2} = c^{2} - a^{2} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 4 \\
c = 5 \\
b = 3 \\
\end{matrix} ight.\ .

    Phương trình chính tắc của Hyperbol là \frac{x^{2}}{16} - \frac{y^{2}}{9} =
1.

  • Câu 30: Thông hiểu

    Cho đường tròn (C):x^{2} + y^{2} - 4x - 6y - 12 = 0 và đường thẳng d:3x + 4y - 6 = 0. Tìm phương trình tiếp tuyến của (C) song song với đường thẳng d?

    Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5

    Phương trình đường thẳng \Delta_{1} song song với d có dạng 3x + 4y + c_{1} = 0

    \Delta_{1} tiếp xúc với (C) nên d\left( I;\Delta_{1} ight) = R

    Hay \frac{\left| 3.2 + 4.3 + c_{1}
ight|}{\sqrt{3^{2} + 4^{2}}} = 5 \Leftrightarrow \left| 18 + c_{1}
ight| = 25

    \Leftrightarrow \left\lbrack
\begin{matrix}
18 + c_{1} = 25 \\
18 + c_{1} = - 25 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
c_{1} = 7 \\
c_{1} = - 43 \\
\end{matrix} ight.

    Vậy phương trình tiếp tuyến của (C) song song với (d) là: 3x +
4y + 7 = 0 hoặc 3x + 4y - 43 =
0.

  • Câu 31: Nhận biết

    Cho tập hợp E có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp E?

    Mỗi tập con có 8 phần tử của tập hợp E là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp E là. C_{10}^{8} = 45.

  • Câu 32: Nhận biết

    Tính góc tạo bởi giữa hai đường thẳng: d_1:x+\sqrt{3}y+6=0d_2: x+1 = 0.

     Ta có: \cos ({d_1},{d_2}) = \frac{{\left| {1.1 + \sqrt 3 .0} ight|}}{{\sqrt {{1^2} + {{\sqrt 3 }^2}} .\sqrt {{1^2} + {0^2}} }} = \frac 12. Suy ra góc giữa hai đường thẳng bằng 60^{\circ}.

  • Câu 33: Thông hiểu

    Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.

    Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.

    Suy ra số phần tử của không gian mẫu là |\Omega| = C_{22}^{4} = 7315.

    Gọi A là biến cố ''Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu''. Để tìm số phần tử của A, ta đi tìm số phần tử của biến cố \overline{A}, với biến cố \overline{A} là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.

    Suy ra số phần tử của biến cố \overline{A}\left| \Omega_{\overline{A}} ight| =
C_{7}^{1}C_{6}^{1}C_{5}^{1}C_{4}^{1} = 840.

    Suy ra số phần tử của biến cố A\left| \Omega_{A} ight| = |\Omega| -
\left| \Omega_{\overline{A}} ight| = 6475.

    Vậy xác suất cần tính P(A) = \frac{\left|
\Omega_{A} ight|}{|\Omega|} = \frac{6475}{7315} =
\frac{185}{209}.

  • Câu 34: Vận dụng

    Cho n là số nguyên dương thỏa mãn A_{n}^{2} =
C_{n}^{2} + C_{n}^{1} + 4n + 6. Tìm hệ số của số hạng chứa x^{9} của khai triển biểu thức P(x) = \left( x^{2} + \frac{3}{x}
ight)^{n}.

    A_{n}^{2} = C_{n}^{2} + C_{n}^{1} + 4n +
6 \Leftrightarrow \frac{n!}{(n - 2)!} = \frac{n!}{(n - 2)!.2!} +
\frac{n!}{(n - 1)!.1!} + 4n + 6

    \Leftrightarrow n(n - 1) = \frac{n(n -
1)}{2} + n + 4n + 6 \Leftrightarrow n^{2} - 11n - 12 = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = - 1\ (l) \\
n = 12\ (n) \\
\end{matrix} ight..

    Khi đó P(x) = \left( x^{2} + \frac{3}{x}
ight)^{12}.

    Công thức số hạng tổng quát: T_{k + 1} =
C_{12}^{k}.\left( x^{2} ight)^{12 - k}.\left( \frac{3}{x} ight)^{k}
= C_{12}^{k}.3^{k}.x^{24 - 3k}.

    Số hạng chứa x^{9} \Rightarrow 24 - 3k =
9 \Leftrightarrow k = 5.

    Vậy hệ số của số hạng chứa x^{9} trong khai triển là C_{12}^{5}.3^{5} =
192456.

  • Câu 35: Thông hiểu

    Trong mặt phẳng Oxy cho hai điểm A(1;1),B(5;3). Viết phương trình đường tròn (C) đi qua hai điểm A;B, biết rằng tâm đường tròn thuộc trục hoành?

    Gọi I là tâm đường tròn (C)

    Tâm đường tròn thuộc trục hoành nên I(x;0)

    Đường tròn đi qua hai điểm A;B nên ta có:

    IA = IB \Leftrightarrow IA^{2} =
IB^{2}

    \Leftrightarrow (1 - x)^{2} + 1^{2} = (5
- x)^{2} + 3^{2}

    \Leftrightarrow x^{2} - 2x + 1 + 1 =
x^{2} - 10x + 25 + 9

    \Leftrightarrow x = 4

    Vậy đường tròn (C) có tâm I(4;0) và bán kính R = IA = \sqrt{(1 - 4)^{2} + 1^{2}} =
\sqrt{10}

    Vậy phương trình đường tròn là: (x -
4)^{2} + y^{2} = 10

  • Câu 36: Thông hiểu

    Từ một hộp chứa 5 viên bi xanh, 3 viên bi đỏ và 2 viên bi vành, chọn ngẫu nhiên 4 viên bi. Tính số cách chọn để 4 viên bi lấy ra có số bi đỏ bằng số bi vàng?

    Th1: Chọn 1 bi đỏ, 1 bi vàng và 2 bi xanh có: C_{3}^{1}.C_{2}^{1}.C_{5}^{2} = 60 cách

    Th2: Chọn 2 bi đỏ và 2 bi vàng có: C_{3}^{2}.C_{2}^{2} = 3 cách

    Vậy số cách chọn 4 viên bi sao cho số bi đỏ bằng số bi vàng là 63 cách.

  • Câu 37: Thông hiểu

    Gieo ngẫu nhiên một con xúc xắc cân đối và đồng chất liên tiếp hai lần. Tính xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm.

    Không gian mẫu \Omega = \left\{ (i;j)|i;j
= 1,2,3,4,5,6 ight\}

    Số phần tử của không gian mẫu n(\Omega) =
36

    Gọi A là biến cố: “Lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm”.

    \Rightarrow n(A) = 3.6 = 18

    Xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm là: P(A) = \frac{n(A)}{n(\Omega)} =
\frac{1}{2}.

  • Câu 38: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên lẻ có ba chữ số đôi một khác nhau?

    Gọi số tự nhiên có ba chữ số có dạng \overline{abc};(a eq 0)

    c \in \left\{ 1;3;5;7;9 ight\} => Có 5 cách.

    a eq 0,a eq c => Có 8 cách.

    b eq a,d => Có 8 cách.

    => Số các số được tạo thành là: 5.8.8
= 320 số.

  • Câu 39: Thông hiểu

    Cho tam giác ABC. Tập hợp các điểm M thỏa mãn \overrightarrow{MA}\times \overrightarrow{BC}=0 là:

    Ta có:

    \begin{matrix}  \overrightarrow {MA} .\overrightarrow {BC}  = 0 \Rightarrow \left| {\overrightarrow {MA} } ight|.\left| {\overrightarrow {BC} } ight|\cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \cos \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = 0 \hfill \\   \Leftrightarrow \left( {\overrightarrow {MA} ,\overrightarrow {BC} } ight) = {90^0} \hfill \\   \Leftrightarrow \overrightarrow {MA}  \bot \overrightarrow {BC}  \hfill \\   \Leftrightarrow MA \bot BC \hfill \\ \end{matrix}

    Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.

  • Câu 40: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho tọa độ các điểm A(2; - 3),B(3;4). Tìm tọa độ điểm M \in Ox sao cho ba điểm A;B;M thẳng hàng?

    Theo bài ra ta có: M \in Ox \Rightarrow
M(x;0)

    Lại có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x - 2;3) \\
\overrightarrow{BM} = (x - 3; - 4) \\
\end{matrix} ight.

    Ba điểm A, M, B thẳng hàng khi và chỉ khi \overrightarrow{AM}\overrightarrow{BM} cùng phương hay

    \frac{x - 2}{x - 3} = \frac{3}{- 4}
\Leftrightarrow - 4(x - 2) = 3(x - 3)

    \Leftrightarrow 7x = 17 \Leftrightarrow
x = \frac{17}{7}(tm)

    Vậy tọa độ điểm M là M\left(
\frac{17}{7};0 ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi học kì 2 Toán lớp 10 Cánh Diều - Đề 2 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 4 lượt xem
Sắp xếp theo