Tìm phương sai của mẫu số liệu ?
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm bằng 2.
Tìm phương sai của mẫu số liệu ?
Số trung bình của mẫu số liệu là:
Phương sai của mẫu số liệu là:
Vậy phương sai cần tìm bằng 2.
Một hộp chứa 5 viên bi trắng, 10 viên bi xanh và 15 viên bi đỏ. Lấy ngẫu nhiên từ trong hộp 7 viên bi. Xác suất để trong số 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ?
Số phần tử không gian mẫu là:
Gọi A là biến cố để trong 7 viên bi lấy ra có ít nhất 2 viên bi màu đỏ
là biến cố để trong 7 viên bi được lấy ra có số viên bi nhỏ hơn 2.
TH1: 7 viên bi trong đó có 1 viên bi đỏ ta có:
TH2: 7 viên bi trong đó có không có viên bi đỏ ta có:
Vậy xác suất của biến cố A cần tìm là:
Vectơ nào dưới đây là một vectơ chỉ phương của đường thẳng song song với trục Ox?
Vectơ chỉ phương của trục Ox là (1; 0).
Đội tuyển của một lớp có 8 học sinh nam và 4 học sinh nữ. Trong buổi dự lễ trao thưởng, các học sinh được xếp thành 1 hàng ngang. Xác suất để xếp cho 2 học sinh nữ không đứng cạnh nhau là:
12 vị trí là hoán vị của 12 học sinh đó.
Do đó số phần tử của không gian mẫu là: n(Ω) = 12!.
Gọi A là biến cố “Xếp 2 bạn nữ không đứng cạnh nhau”.
Chia việc xếp thành 2 công đoạn:
Công đoạn 1: Xếp 8 bạn nam vào 8 chỗ có 8! cách.
Công đoạn 2: Khi đó 8 bạn nam tạo ra 9 khe trống, xếp 4 bạn nữ vào 9 khe trống đó có cách.
Theo quy tắc nhân, xếp 12 bạn mà 2 bạn nữ không đứng cạnh nhau có: 8!. cách.
=>
Xác suất biến cố A là:
Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm và ?
Kiểm tra đường thẳng nào không chứa loại.
(Có thể kiểm tra đường thẳng nào không đi qua điểm ).
Lấy ngẫu nhiên hai tấm thẻ trong một hộp chứa 9 tấm thẻ được đánh số t 1 đến 9. Tính xác suất để tổng của các số trên hai tấm thẻ lấy ra là số chẵn?
Từ 1 đến 9 có 4 số chẵn và 5 số lẻ.
Số phần tử không gian mẫu là:
Gọi A là biến cố tổng của các số trên hai thẻ lấy ra là số chẵn.
Để tổng nhận được là số chẵn thì 2 số được chọn hoặc là hai số chẵn hoặc là hai số lẻ.
2 số được chọn là 2 số chẵn ta có: cách chọn.
2 số được chọn là 2 số lẻ ta có: cách chọn.
Suy ra số kết quả thuận lợi cho biến cố A là:
Vậy xác suất của biến cố A là:
Ngân hàng câu hỏi kiểm tra Toán lớp 11A gồm 35 câu hỏi đại số và 15 câu hỏi hình học. Học sinh được chọn một câu hỏi để trả lời. Khi đó số khả năng có thể xảy ra bằng:
Áp dụng quy tắc cộng ta có số khả năng có thể xảy ra là: 35 + 15 = 50 khả năng.
Cho biểu đồ lượng mưa trung bình các tháng năm 2019 tại Thành phố Hồ Chí Minh như sau:
Mẫu số liệu nhận được từ biểu đồ trên có khoảng biến thiên là:
Quan sát biểu đồ ta thấy:
Giá trị lớn nhất là 342
Giá trị nhỏ nhất là: 4
Vậy khoảng biến thiên của mẫu số liệu là: 342 – 4 = 338.
Quy tròn số đến hàng chục nghìn ta được:
Quy tròn số đến hàng nghìn ta được số quy tròn là .
Cho bảng kết quả kiểm tra khối lượng của 30 quả trứng gà như sau:
Khối lượng (gram) |
25 |
30 |
35 |
40 |
45 |
50 |
Số quả trứng |
3 |
5 |
7 |
9 |
4 |
2 |
Xác định mốt của mẫu số liệu?
Mốt của mẫu số liệu là 40 (vì có tần số lớn nhất).
Biết parabol có phương trình đường chuẩn là . Phương trình chính tắc của là:
Gọi phương trình chính tắc của Parabol là:
Parabol có phương trình đường chuẩn là: nên
Suy ra phương trình chính tắc của parabol là: .
Số các hoán vị của n phần tử là:
Số các hoán vị của n phần tử là: n!.
Cho phương trình đường tròn . Xác định tâm và bán kính đường tròn đó?
Ta có phương trình đường tròn: có: nên đường tròn (C) có tâm và bán kính .
Trong hệ tọa độ cho tọa độ hai điểm . Tìm tọa độ trung điểm của đoạn thẳng ?
Tọa độ trung điểm của AB là:
Cho các chữ số 0; 1; 4; 5; 6; 7; 9. Từ các chữ số này, ta lập được bao nhiêu số có 4 chữ số chia hết cho 10 và nhỏ hơn 5430?
Gọi số cần tìm có dạng . Vì chia hết cho 10 suy ra .
TH1. Với , ta có
+ Nếu suy ra , do đó có 2 số cần tìm.
+ Nếu suy ra và , do đó có 14 số cần tìm.
TH2. Với suy ra có 2 cách chọn a, 7 cách chọn b, 7 cách chọn
C.
Suy ra có số cần tìm. Vậy có tất cả 114 số cần tìm.
Trong mặt phẳng tọa độ , cho hai đường thẳng và . Khi đó vị trí tương đối của hai đường thẳng là:
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Ta thấy
Suy ra hai đường thẳng vuông góc với nhau.
Năm đoạn thẳng có độ dài 1cm; 3cm; 5cm; 7cm; 9cm. Lấy ngẫu nhiên ba đoạn thẳng trong năm đoạn thẳng trên. Xác suất để ba đoạn thẳng lấy ra có thể tạo thành 1 tam giác là:
Phân tích: Cần nhớ lại kiến thức cơ bản về bất đẳng thức tam giác.
Ba đoạn thẳng với chiều dài có thể là 3 cạch của một tam giác khi và chỉ khi
Số phần tử của không gian mẫu là:
Gọi là biến cố “lấy ba đoạn thẳng lấy ra lập thành một tam giác”
Các khả năng chọn được ba đoạn thẳng lập thành một tam giác là
Số trường hợp thuận lợi của biến cố là 3. Suy ra xác suất của biến cố là .
Kết quả khi đo chiều dài của một cây thước là . Khi đó sai số tuyệt đối của phép đo được ước lượng là:
Ta có độ dài gần đúng của cây thước là với độ chính xác
Nên sai số tuyệt đối là .
Hai tổ sản xuất của một phân xưởng có 9 công nhân nam và 13 công nhân nữ trong đó có 2 cặp vợ chồng. Hỏi có bao nhiêu cách chọn ra 7 người trong số 22 người nhưng không có cặp vợ chồng?
TH1: Chọn 7 người 18 người không là cặp vợ chồng:
TH2: Chọn 1 trong 2 cặp vợ chồng và 6 người trong 18 người không là cặp vợ chồng:
TH3: Chọn 2 trong 2 cặp vợ chồng nhưng không phải 1 cặp và 5 người trong 1 người không là cặp vợ chồng:
Vậy số cách chọn thỏa mãn là: cách
Trong mặt phẳng tọa độ , cho tam giác có tọa độ . Biết phương trình đường trung tuyến và đường cao . Xác định phương trình tổng quát của đường thẳng ?
Tọa độ đỉnh
Phương trình đường thẳng AC đi qua điểm và vuông góc với đường thẳng BH là:
Tọa độ
Vì BM là đường trung tuyến nên M là trung điểm cạnh AC suy ra
Ta có: là VTCP là VTPT
Khi đó đường thẳng BC có phương trình là: .
VDC
1
Với giá trị nào của thì hai đường thẳng và cắt nhau?
Chọn .
Cho một phép thử có không gian mẫu . Giả thiết rằng các kết quả có thể của là đồng khả năng. Khi đó nếu là một biến cố liên quan đến phép thử thì xác suất của (kí hiệu là ) được cho bởi công thức nào sau đây? Biết rằng kí hiệu số phần tử của không gian mẫu và tập E lần lượt là.
Nếu E là một biến cố có liên quan đến phép thử T thì xác suất của biến cố E được xác định bởi công thức .
Trong các mệnh đề sau, mệnh đề nào sai?
Hai đường thẳng không có điểm chung thì chúng có thể song song với nhau (khi chúng đồng phẳng) hoặc chéo nhau (khi chúng không đồng phẳng).
Vậy mệnh đề sai: "Hai đường thẳng không có điểm chung thì chéo nhau."
Xét một phép thử có không gian mẫu gồm hữu hạn các kết quả có cùng khả năng xảy ra và A là một biến cố bất kì của phép thử đó. Biến cố đối của biến cố A là
Biến cố đối của biến cố A là biến cố “A không xảy ra”.
Cho và là hai biến cố đối nhau. Chọn mệnh đề đúng trong các mệnh đề sau đây?
Mệnh đề đúng là:
Khai triển biểu thức ta thu được kết quả là:
Ta có: .
Trong mặt phẳng tọa độ có đường thẳng có phương trình và đường tròn . Tìm tất cả các giá trị của tham số m để đường thẳng tiếp xúc với đường tròn ?
Phương trình đường tròn (C) là:
Suy ra tâm đường tròn: và bán kính
Đường thẳng tiếp xúc với đường tròn khi và chỉ khi
Trong các phương trình sau, phương trình nào là phương trình đường tròn?
Phương trình có dạng với
Ta có:
Vậy phương trình không là phương trình đường tròn.
Phương trình có dạng với
Ta có:
Vậy phương trình không là phương trình đường tròn.
Ta có:
Vậy đường tròn có bán kính và bán kính
Phương trình không phải là phương trình đường tròn vì hệ số của khác nhau.
Hypebol có nửa trục thực là , tiêu cự bằng có phương trình chính tắc là:
Ta có :
Phương trình chính tắc của Hyperbol là
Cho đường tròn và đường thẳng . Tìm phương trình tiếp tuyến của song song với đường thẳng ?
Ta có: Phương trình đường tròn (C) có tâm I(2; 3) bán kính R = 5
Phương trình đường thẳng song song với d có dạng
tiếp xúc với nên
Hay
Vậy phương trình tiếp tuyến của song song với là: hoặc .
Cho tập hợp có 10 phần tử. Hỏi có bao nhiêu tập con có 8 phần tử của tập hợp ?
Mỗi tập con có 8 phần tử của tập hợp là một tổ hợp chập 8 của 10. Vậy số tập con có 8 phần tử của tập hợp là. .
Tính góc tạo bởi giữa hai đường thẳng: và .
Ta có: . Suy ra góc giữa hai đường thẳng bằng .
Một chiếc hộp đựng 7 viên bi màu xanh, 6 viên bi màu đen, 5 viên bi màu đỏ, 4 viên bi màu trắng. Chọn ngẫu nhiên ra 4 viên bi, tính xác suất để lấy được ít nhất 2 viên bi cùng màu.
Không gian mẫu là số cách chọn ngẫu nhiên 4 viên bi từ 22 viên bi đã cho.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố Lấy được 4 viên bi trong đó có ít nhất hai viên bi cùng màu. Để tìm số phần tử của , ta đi tìm số phần tử của biến cố , với biến cố là lấy được 4 viên bi trong đó không có hai viên bi nào cùng màu.
Suy ra số phần tử của biến cố là .
Suy ra số phần tử của biến cố là .
Vậy xác suất cần tính .
Cho là số nguyên dương thỏa mãn . Tìm hệ số của số hạng chứa của khai triển biểu thức .
.
Khi đó .
Công thức số hạng tổng quát: .
Số hạng chứa .
Vậy hệ số của số hạng chứa trong khai triển là .
Trong mặt phẳng cho hai điểm . Viết phương trình đường tròn đi qua hai điểm , biết rằng tâm đường tròn thuộc trục hoành?
Gọi I là tâm đường tròn
Tâm đường tròn thuộc trục hoành nên
Đường tròn đi qua hai điểm nên ta có:
Vậy đường tròn có tâm và bán kính
Vậy phương trình đường tròn là:
Từ một hộp chứa 5 viên bi xanh, 3 viên bi đỏ và 2 viên bi vành, chọn ngẫu nhiên 4 viên bi. Tính số cách chọn để 4 viên bi lấy ra có số bi đỏ bằng số bi vàng?
Th1: Chọn 1 bi đỏ, 1 bi vàng và 2 bi xanh có: cách
Th2: Chọn 2 bi đỏ và 2 bi vàng có: cách
Vậy số cách chọn 4 viên bi sao cho số bi đỏ bằng số bi vàng là 63 cách.
Gieo ngẫu nhiên một con xúc xắc cân đối và đồng chất liên tiếp hai lần. Tính xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm.
Không gian mẫu
Số phần tử của không gian mẫu
Gọi A là biến cố: “Lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm”.
Xác suất để lần gieo đầu con xúc xắc xuất hiện mặt lẻ chấm là: .
Có thể lập được bao nhiêu số tự nhiên lẻ có ba chữ số đôi một khác nhau?
Gọi số tự nhiên có ba chữ số có dạng
=> Có 5 cách.
=> Có 8 cách.
=> Có 8 cách.
=> Số các số được tạo thành là: số.
Cho tam giác ABC. Tập hợp các điểm M thỏa mãn là:
Ta có:
Vậy tập hợp các điểm M là đường thẳng đi qua A và vuông góc với BC.
Trong mặt phẳng tọa độ , cho tọa độ các điểm . Tìm tọa độ điểm sao cho ba điểm thẳng hàng?
Theo bài ra ta có:
Lại có:
Ba điểm thẳng hàng khi và chỉ khi và cùng phương hay
Vậy tọa độ điểm M là .