Đếm số tập con gồm phần tử được lấy ra từ tập
?
Mỗi tập con tập gồm phần tử được lấy ra từ tập
có
phần tử là một tổ hợp chập
của
phần tử.
Vậy số tập con gồm phần tử của
là
tập con.
Đếm số tập con gồm phần tử được lấy ra từ tập
?
Mỗi tập con tập gồm phần tử được lấy ra từ tập
có
phần tử là một tổ hợp chập
của
phần tử.
Vậy số tập con gồm phần tử của
là
tập con.
Trong mặt phẳng cho các điểm
. Phương trình đường tròn ngoại tiếp tam giác
là:
Gọi phương trình đường tròn là: với
Vì đường tròn đi qua ba điểm nên ta có hệ phương trình:
Vậy phương trình đường tròn cần tìm là: .
Một lớp học có học sinh trong đó có
cặp anh em sinh đôi. Trong buổi họp đầu năm thầy giáo chủ nhiệm lớp muốn chọn ra
học sinh để làm cán sự lớp gồm lớp trưởng, lớp phó và bí thư. Xác suất để chọn ra
học sinh làm cán sự lớp mà không có cặp anh em sinh đôi nào là bao nhiêu?
Không gian mẫu là số cách chọn ngẫu nhiên học sinh trong
học sinh.
Suy ra số phần tử không gian mẫu là .
Gọi là biến cố
học sinh được chọn không có cặp anh em sinh đôi nào
. Để tìm số phần tử của
, ta đi tìm số phần tử của biến cố
, với biến cố
là
học sinh được chọn luôn có
cặp anh em sinh đôi.
+ Chọn cặp em sinh đôi trong
cặp em sinh đôi, có
cách.
+ Chọn thêm học sinh trong 38 học sinh, có
cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Khoảng cách từ giao điểm của hai đường thẳng và
đến đường thẳng
bằng:
Hypebol có hai tiêu điểm là:
Ta có : Các tiêu điểm là
,
Cho mẫu số liệu: . Có bao nhiêu giá trị bất thường của mẫu số liệu đã cho?
Ta có
Suy ra
Nhận thấy trong mẫu số liệu đã cho không có giá trị nào nhỏ hơn 2 và lớn hơn 10.
Vậy không có giá trị nào bất thường trong mẫu số liệu.
Tâm sai của Hyperbol bằng:
Ta có :
Tìm số hạng chứa trong khai triển
.
Ta có công thức của số hạng tổng quát:
Số hạng chứa khi và chỉ khi
.
Vậy số hạng chứa trong khai triển là
.
Cho giá trị gần đúng của là 0,429. Sai số tuyệt đối của số 0,429 là:
Ta có: nên sai số tuyệt đối của 0,429 là
Đường thẳng nào sau đây có đúng một điểm chung với đường thẳng ?
Ta cần tìm đường thẳng cắt
loại
loại
và
. Chọn
Cho hai điểm . Tọa độ trung điểm của đoạn AB là:
Gọi M là trung điểm của đoạn thẳng AB. Khi đó tọa độ điểm M là:
Có bao nhiêu cách xếp 8 người vào một bàn tròn?
Vì xếp vào bàn tròn nên vị trí xếp đầu tiên là như nhau nên có 1 cách xếp, ta xếp 7 người còn lại vào 7 vị trí nên có 7! cách xếp.
Vậy có 1.7! = 5040 cách xếp
Một nhóm học sinh gồm học sinh nam và
học sinh nữ. Hỏi có bao nhiêu cách sắp xếp
học sinh trên thành
hàng dọc sao cho nam nữ đứng xen kẽ?
Xếp học sinh nam thành hàng dọc có
cách xếp.
Giữa học sinh nam có
khoảng trống ta xếp các bạn nữ vào vị trí đó nên có
cách xếp.
Theo quy tắc nhân có cách xếp thoả mãn.
Trên hệ trục tọa độ cho đường tròn . Trong các điểm sau điểm nào nằm trên đường tròn đã cho?
Thay tọa độ điểm vào phương trình đường tròn
ta được:
Vậy điểm thuộc đường tròn là .
Quan sát mạch điện như sau:
Mạch điện có 6 công tắc khác nhau, trong đó mỗi công tắc có 2 trạng thái đóng và mở. Hỏi có bao nhiêu cách đóng mở 6 công tắc để mạch điện thông mạch từ E đến F?
Cả 3 công tắc của nhánh trên đóng còn 1 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh trên đóng còn 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh dưới đóng còn 1 trong 3 công tắc của nhánh trên mở có: Cả 3 công tắc của nhánh trên đóng còn 2 trong 3 công tắc của nhánh dưới mở có:
Cả 3 công tắc của nhánh dưới đóng còn 3 công tắc nhánh trên mở có:
Cả 3 công tắc của nhánh trên đóng và cả 3 công tắc nhánh dưới đóng có:
Vậy có tất cả 15 cách.
Lấy ngẫu nhiên đồng thời 3 quả cầu từ trong hộp chứa 10 quả cầu đỏ và 5 quả cầu xanh. Xác suất để ba quả cầu được chọn đều là màu xanh bằng:
Số phần tử không gian mẫu là:
Gọi A là biến cố lấy được 3 quả màu xanh
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A là:
Gọi là xác suất của biến cố A trong phép thử
. Hãy chọn khẳng định đúng trong các khẳng định sau?
Vì là xác suất của biến cố A trong phép thử T ta luôn có
.
Có 5 tấm bìa được đánh số từ 1 đến 5. Rút ngẫu nhiên ba tấm. Xác suất để tổng các số ghi trên ba tấm bìa chia hết cho 3 bằng bao nhiều?
Số phần tử không gian mẫu là:
Gọi A là biến cố tổng các số ghi trên ba tấm bìa chia hết cho 3.
Các số ghi trên tấm bia chia thành 3 nhóm:
Nhóm 1: Các số chia hết cho 3 ta có 3 số
Nhóm 2: Các số chia hết cho 3 dư 1 ta có: 4 số
Nhóm 3: Các số chia hết cho 3 dư 2 ta có: 5 số
Vì chỉ có 5 số như trên nên muốn tổng ba số là số chia hết cho 3 thì 3 số lấy ra sẽ có 1 số ở nhóm 1, 1 số ở nhóm 2, một số ở nhóm 3.
Khi đó:
Suy ra xác suất của biến cố cần tìm là
Xác định tâm và bán kính đường tròn ?
Ta có:
Vậy đường tròn có bán kính và bán kính
Một người đo kích thước mảnh vườn hình chữ nhật rồi ghi lại chiều dài là (m) và chiều rộng là
(m). Xác định sai số tương đối của phép đo diện tích mảnh vườn.
Gọi là chiều dài và chiều rộng của mảnh vườn.
Vì
Gọi diện tích mảnh vườn là . Khi đó
. Suy ra
(m2).
Sai số tương đối trong phép đo là .
Số cách chọn một học sinh trong nhóm gồm 5 nữ và 4 nam là:
Áp dụng quy tắc cộng ta có số cách chọn một học sinh là: 5 + 4 = 9 cách.
Từ tập hợp các chữ số có thể lập được bao nhiêu số có ba chữ số khác nhau thuộc khoảng
?
Gọi số tự nhiên có ba chữ số cần tìm có dạng
Số cần tìm thuộc khoảng nên
=> a có 2 cách chọn.
Số cách chọn b là 5 cách chọn
Số cách chọn c là 4 cách chọn
Vậy có thể lập được (số) thỏa mãn yêu cầu đề bài.
Đường thẳng đi qua điểm
và có vectơ pháp tuyến
có phương trình tham số là:
Ta có:
Một tổ học sinh gồm 7 học sinh nam và 3 học sinh nữ. Chọn ngẫu nhiên 2 học sinh. Tính xác suất sao cho 2 người có cả nam và nữ?
Số phần tử không gian mẫu là:
Gọi A là biến cố 2 người được chọn có đủ nam và nữ
Số phần tử của biến cố A là:
Vậy xác suất của biến cố A cần tìm là:
Cho hai đường thẳng và
song song với nhau. Trên đường thẳng
lấy 5 điểm phân biệt, trên đường thẳng
lấy 4 điểm phân biệt. Số tam giác có 3 đỉnh là 3 điểm có được từ các điểm trên là bao nhiêu?
Th1: Chọn 2 điểm trên đường thẳng và 1 điểm trên đường thẳng
suy ra ta có:
Th2: Chọn 1 điểm trên đường thẳng và 2 điểm trên đường thẳng
suy ra ta có:
Vậy số tam giác được tạo thành là: 30 + 40 = 70 tam giác.
Trong các thí nghiệm sau thí nghiệm nào không phải là phép thử ngẫu nhiên:
Theo định nghĩa ta có phép thử ngẫu nhiên là những phép thử mà ta không thể đoán trước kết quả của nó, mặc dù đã biết được tập hợp tất cả các kết quả của phép thử đó
Đáp án "Bỏ hai viên bi xanh và ba viên bi đỏ trong một chiếc hộp, sau đó lấy từng viên một để đếm xem có tất cả bao nhiêu viên bi." không phải phép thử vì ta có thể biết chắc chắn kết quả chỉ có thể là 1 số cụ thể là tổng số bi đỏ và xanh.
Tìm hệ số của trong khai triển
thành đa thức?
Số hạng chứa trong khai triển
là
Số hạng chứa trong khai triển
là
Số hạng chứa trong khai triển
là
Do đó tổng các số hạng chứa trong khai triển đã cho là:
Vậy hệ số cần tìm là .
Trong mặt phẳng tọa độ , cho tọa độ hai điểm
. Tìm tọa độ điểm
sao cho điểm
cách đều hai điểm
?
Ta có:
Từ
Vậy tọa độ điểm D cần tìm là: .
Viết phương trình tham số của đường thẳng đi qua hai điểm và
.
Phương trình tiếp tuyến của đường tròn
tại điểm
là:
Đường tròn (C) có tâm nên tiếp tuyến tại M có VTPT là
nên có phương trình là:
Tính góc tạo bởi giữa hai đường thẳng: và
.
Ta có: . Suy ra góc giữa hai đường thẳng bằng
.
Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên. Tính xác suất để chọn được số chia hết cho 3 là:
Chọn ngẫu nhiên một số trong 20 số nguyên dương đầu tiên có 20 cách chọn
Gọi A là biến cố “chọn được số chia hết cho 3”
Vậy .
Kết quả kiểm tra của 40 học sinh lớp 10A được thống kê trong bảng sau:
Điểm |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
Số học sinh |
2 |
3 |
7 |
18 |
3 |
2 |
4 |
1 |
Tìm mốt của mẫu số liệu đã cho?
Mốt của mẫu số liệu là: (vì có nhiều học sinh đạt điểm 6 nhất trong 40 học sinh).
Kết quả thống kê số tiền điện của một hộ gia đình trong 6 tháng liên tiếp (đơn vị: nghìn đồng) như sau: . Khoảng biến thiên của mẫu số liệu bằng:
Giá trị lớn nhất bằng 350
Giá trị nhỏ nhất bằng 270
=> Khoảng biến thiên của mẫu số liệu là: 350 – 270 = 80.
Vậy khoảng biến thiên của mẫu số liệu bằng 80.
Cho dường tròn và đường thẳng
. Biết rằng các tiếp tuyến của
tạo với đường thẳng
một góc
với
tạo thành một đa giác. Chu vi của đa giác là:
Đường tròn (C) có tâm I(1; -2) bán kính r = 5
Gọi là tiếp tuyến của
. Gọi
là một vectơ pháp tuyến của
.
thấy
Khi thì ta chọn
. Khi đó, ta được
. Do
là tiếp tuyến của
nên ta có
Lúc đó, ta có .
Khi thì ta chọn
. Khi đó, ta được
.
Do là tiếp tuyến của
nên ta có:
.
Lúc đó, ta có .
Ta thấy 4 tiếp tuyến này tạo thành hình thoi , với tọa độ của
là nghiệm của hệ
hay
.
Tọa độ của là nghiệm của hệ phương trình
hay
.
Tọa độ của là nghiệm của hệ phương trình:
hay
.
Ta được nên chu vi của hình thoi
sẽ bằng
.
Viết phương trình đường thẳng đi qua giao điểm hai đường thẳng
và cosin góc giữa
với đường thẳng
một góc bằng
?
Gọi A là giao điểm hai đường thẳng , khi đó tọa độ điểm A là nghiệm của hệ phương trình:
Phương trình đường thẳng có dạng
Vì
Mặt khác
Với
Với
Vậy phương trình đường thẳng là: .
Cho mẫu số liệu có . Khi đó độ lệch chuẩn của mẫu số liệu bằng:
Độ lệch chuẩn
Cho khai triển trong đó
và các hệ số thỏa mãn hệ thức
. Hệ số lớn nhất là:
Xét khai triển .
Cho ta được
Khi đó .
Ta có hệ số
Hệ số lớn nhất nên
Vì nên nhận
Vậy hệ số lớn nhất .
Cho hai vectơ và
. Góc giữa hai vectơ
và
là:
Số quy tròn của số đến hàng chục bằng:
Số quy tròn của số đến hàng chục bằng
.