Phương trình có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Phương trình có mấy nghiệm nguyên ?
Đặt . Phương trình đã cho trở thành:
Vậy phương trình có 0 nghiệm nguyên.
Gieo một con xúc xắc cân đối đồng chất 2 lần. Tính xác suất để biến cố có tích 2 lần số chấm khi gieo xúc xắc là một số chẵn.
Số phần tử của không gian mẫu là
Gọi là biến cố
Tích hai lần số chấm khi gieo xúc xắc là một số chẵn
. Ta xét các trường hợp:
TH1:. Gieo lần một, số chấm xuất hiện trên mặt là số lẻ thì khi gieo lần hai, số chấm xuất hiện phải là số chẵn. Khi đó có cách gieo.
TH2:. Gieo lần một, số chấm xuất hiện trên mặt là số chẵn thì có hai trường hợp xảy ra là số chấm xuất hiện trên mặt khi gieo lần hai là số lẻ hoặc số chẵn. Khi đó có cách gieo.
Suy ra số kết quả thuận lợi cho biến cố là
Vậy xác suất cần tìm tính
Phương trình tham số của đường thẳng đi qua hai điểm
và
là:
Phương trình tham số của đường thẳng AB đi qua điểm và nhận
làm vectơ chỉ phương.
Vậy phương trình cần tìm là: .
Tìm m để đường thẳng và
tạo với nhau một góc
?
Ta có:
Vectơ pháp tuyến của đường thẳng là:
Vectơ pháp tuyến của đường thẳng là:
Hai đường thẳng vuông góc với nhau khi và chỉ khi:
Vậy hai đường thẳng vuông góc với nhau khi và chỉ khi .
Phương trình đường tròn có tâm và bán kính lần lượt là:
Ta có:
Vậy phương trình đường tròn đã cho có tâm và bán kính lần lượt là:
Công thức nào dưới đây là công thức tính khoảng cách từ một điểm đến đường thẳng
?
Công thức tính khoảng cách từ một điểm đến đường thẳng
là:
Cho đường tròn và đường thẳng
. Tìm giá trị của tham số m để
không cắt
?
Đường tròn (C) có tâm I(1; 2) và
Để không cắt
thì
Vậy thỏa mãn yêu cầu bài toán.
Cho hàm số . Khẳng định nào sau đây đúng?
Hàm số bậc hai y = x2 – 3x + 2 có tập xác định là ℝ. Khẳng định "Tập xác định của hàm số là D = (0; +∞)." sai.
Xét điểm M(1; 0): thay x = 1; y = 0 vào hàm số ta có: 0 = 12 – 3. 1 + 2 = 0 là mệnh đề đúng. Vậy M(1; 0) thuộc đồ thị hàm số. Khẳng định "Điểm M(1; 0) thuộc đồ thị hàm số." đúng.
Hàm số y = x2 – 3x + 2 có a = 1 > 0, b = ‒3 nên hàm số nghịch biến trên khoảng và đồng biến trên khoảng
. Khẳng định "Hàm số đồng biến trên ℝ." sai.
Hàm số y = x2 – 3x + 2 có a = 1 > 0 nên đồ thị hàm số có bề lõm quay lên trên. Khẳng định "Đồ thị hàm số có bề lõm quay xuống dưới." sai.
Có 3 bó hoa. Bó thứ nhất có 8 hoa hồng, bó thứ hai có 7 bông hoa ly, bó thứ ba có 6 bông hoa huệ. Chọn ngẫu nhiên 7 hoa từ ba bó hoa trên để cắm vào lọ hoa, tính xác suất để trong 7 hoa được có số hoa hồng bằng số hoa ly.
Không gian mẫu là số cách chọn ngẫu nhiên 7 hoa từ ba bó hoa gồm 21 hoa.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
7 hoa được ó số hoa hồng bằng số hoa ly
. Ta có các trường hợp thuận lợi cho biến cố
là:
TH1: Chọn 1 hoa hồng, 1 hoa ly và 5 hoa huệ nên có cách.
TH2: Chọn 2 hoa hồng, 2 hoa ly và 3 hoa huệ nên có cách.
TH3: Chọn 3 hoa hồng, 3 hoa ly và 1 hoa huệ nên có cách.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Ta có:
Vậy phương trình đường tròn cần tìm là: .
Tại khu vực giá sách tham khảo lớp 11 có 20 sách tham khảo môn Toán khác nhau, 40 sách tham khảo môn Vật lý khác nhau và 50 quyển sách tham khảo môn Hóa học khác nhau. Hỏi có bao nhiêu cách chọn một quyển sách trên giá sách?
Số cách chọn sách Toán là 20 cách.
Số cách chọn sách Vật lí là 40 cách.
Số cách chọn sách Hóa học là 50 cách.
Vậy để chọn một cuốn sách trên giá sách ta có 20 + 40 + 50 = 110 cách chọn.
Hoạt động nào sau đây không phải là phép thử?
Các hoạt động ở các phương án:
" Chọn một trong ba bạn An, Bình, Cường tham gia cuộc thi chạy điền kinh."
"Chơi trò chơi gắp thú nhồi bông."
"Chọn một quyển sách bất kì trên giá sách và đọc tên của quyển sách đó."
Đều là phép thử vì ta không thể đoán trước được kết quả của hoạt động đó mặc dù biết được tất cả các kết quả có thể xảy ra.
Hoạt động ở phương án A không phải là phép thử vì ta có thể đoán trước được kết quả của hoạt động đó là: 2 + 5 + 3 = 10 (chiếc bút bi).
Cho tập hợp có
phần tử. Số tập con gồm
phần tử của
là:
Số tập con gồm phần tử của
chính là số tổ hợp chập
của
phần tử, nghĩa là bằng
.
Khai triển thành đa thức ta được biểu thức gồm mấy số hạng?
Biểu thức khai triển thành đa thức có 5 hạng tử.
Xếp ngẫu nhiên 5 bạn nam và 3 bạn nữ vào một bàn tròn. Xác suất để không có ba bạn nữ nào ngồi cạnh nhau.
Theo công thức hoán vị vòng quanh ta có:
Để xếp các bạn nữ không ngồi cạnh nhau, trước hết ta xếp các bạn nam vào bàn tròn: có cách, giữa 5 bạn nam đó ta sẽ có được 5 ngăn (do ở đây là bàn tròn). Xếp chỉnh hợp 3 bạn nữ vào 5 ngăn đó có
cách.
Vậy xác suất xảy ra là:.
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: 2x + 3y + 5 = 0 và A(1; –3). Khoảng cách từ điểm A đến đường thẳng d là:
Ta có: .
Cho phương trình đường tròn . Viết phương trình tiếp tuyến của đường tròn
biết rằng tiếp tuyến vuông góc với đường thẳng
?
Đường tròn (C) có tâm
Vì vuông góc với đường thẳng
nên phương trình
có dạng
Vì là tiếp tuyến của (C) nên ta có:
Với thì phương trình
là
Với thì phương trình
là
Tổng các nghiệm của phương trình là bao nhiêu?
.
Vậy tổng các nghiệm của phương trình là .
Số giá trị nguyên của x để tam thức f(x) = 2x2 − 7x − 9 nhận giá trị âm là
Dựa vào bảng xét dấu, .
Mà x ∈ ℤ⇒ x ∈ {0;1;2;3;4} (5 giá trị).
Các giá trị m làm cho biểu thức luôn dương là
Biểu thức luôn dương
Phương trình có tất cả bao nhiêu nghiệm?
Điều kiện: .
Ta có: .
Loại . Do đó phương trình có 1 nghiệm.
Khai triển biểu thức ta thu được kết quả:
Ta có:
Tập nghiệm của bất phương trình là:
Ta có:
Vậy tập nghiệm của bất phương trình là:
Gieo một đồng tiền liên tiếp 3 lần. Xác suất của biến cố : "kết quả của 3 lần gieo là như nhau" là bao nhiêu?
Lần đầu có thể ra tùy ý nên xác suất là 1. Lần 2 và 3 phải giống lần 1 xác suất là .
Theo quy tắc nhân xác suất: .
Xét phép thử tung con súc sắc 6 mặt hai lần. Xác định số phần tử của không gian mẫu.
Không gian mẫu gồm các bộ , trong đó
.
nhận 6 giá trị,
cũng nhận 6 giá trị nên có
bộ
.
Vậy và
.
Cho đường thẳng và đường thẳng
. Tính góc hợp bởi hai đường thẳng?
Vectơ chỉ phương của là:
Vectơ chỉ phương của là:
Ta có:
Vậy góc hợp bởi hai đường thẳng đã cho bằng .
Từ các chữ số ,
,
,
,
,
có thể lập được bao nhiêu số tự nhiên gồm
chữ số đôi một khác nhau trong đó hai chữ số
và
không đứng cạnh nhau.
Số các số có chữ số được lập từ các chữ số
,
,
,
,
,
là
.
Số các số có chữ số và
đứng cạnh nhau:
.
Số các số có chữ số và
không đúng cạnh nhau là:
.
Phát biểu nào sau đây đúng?
Nếu một biến cố có xác suất rất bé thì trong một phép thử, biến cố đó sẽ không xảy ra.
Trong mặt phẳng tọa độ , cho tọa độ điểm
và hai đường thẳng
;
. Một đường tròn
có tâm
thuộc đường thẳng
, đi qua điểm
và tiếp xúc với
. Kết luận nào sau đây đúng?
Ta có:
Lại có đường tròn tâm I đi qua P và tiếp xúc với đường thẳng nên
Vậy khẳng định đúng là: .
Trong mặt phẳng tọa độ , cho đường thẳng
. Hệ số góc
của đường thẳng
là:
Ta có:
Đường thẳng có vectơ chỉ phương
nên có hệ số góc
.
Vậy hệ số góc của đường thẳng là .
Một hộp có bi đen,
bi trắng. Chọn ngẫu nhiên
bi. Tính xác suất
bi được chọn có đủ hai màu.
Số phần tử không gian mẫu: .
(bốc 2 bi bất kì từ 9 bi trong hộp ).
Gọi : “hai bi được chọn có đủ hai màu”. Ta có:
.
( chọn 1 bi đen từ 5 bi đen – chọn 1 bi trắng từ 4 bi trắng ).
Khi đó: .
Có thể lập được bao nhiêu số tự nhiên có ba chữ số đôi một khác nhau?
Gọi số tự nhiên có ba chữ số có dạng
Có 9 cách chọn a
Có 9 cách chọn b
Có 8 cách chọn c
=> Số các số được tạo thành là: số.
Tính giá trị biểu thức
Áp dụng công thức cho
ta có:
Chọn ngẫu nhiên 3 số tự nhiên từ tập hợp . Xác suất của
để trong 3 số tự nhiên được chọn không có 2 số tự nhiên liên tiếp bằng bao nhiêu?
Có tất cả cách chọn 3 số tự nhiên từ tập hợp
.
Suy ra .
Xét biến cố “Chọn 3 số tự nhiên sao cho không có 2 số tự nhiên liên tiếp”.
Ta có “Chọn 3 số tự nhiên sao luôn có 2 số tự nhiên liên tiếp”.
Xét các trường hợp sau:
+ Trường hợp 1: Trong ba số chọn được chỉ có 2 số liên tiếp:
- Nếu 2 số liên tiếp là hoặc
thì số thứ ba có
cách chọn (do không tính số liên tiếp sau và trước mỗi cặp số đó).
- Nếu 2 số liên tiếp là ,
,.,
thì số thứ ba có
cách chọn (do không tính 2 số liền trước và sau mỗi cặp số đó).
Trường hợp này có cách chọn.
+ Trường hợp 2: Chọn được 3 số liên tiếp.
Tức là chọn các bộ ,
,.,
: có tất cả 2017 cách.
Suy ra .
Vậy .
Cho là số thực dương, số hạng không chứa
trong khai triển nhị thức
là:
Ta có
Số hạng tổng quát thứ trong khai triển là
.
Số hạng này không chứa tương ứng với trường hợp
.
Vậy số hạng không chứa trong khai triển là
.
Cho tam giác nội tiếp đường tròn
. Gọi
là hình chiếu vuông góc của
trên cạnh
. Đường tròn đường kính
cắt
lần lượt tại
. Biết đường thẳng chứa
có phương trình
. Tìm tọa độ điểm
?
Hình vẽ minh họa
Do tam giác ABC vuông tại A và nội tiếp đường tròn (C) nên (C) là đường tròn đường kính BC (tâm I(3; 1) là trung điểm của BC.
Đường tròn đường kính AH cắt AB và AC lần lượt tại M và N nên
Ta có:
Do đó AI có phương trình
Ta có:
Suy ra phương trình AI là
Mà nên ta có tọa độ điểm A thỏa mãn hệ phương trình:
Nếu khi đó
khi đó A và I nằm cùng phía đối với đường thẳng MN nên không thỏa mãn yêu cầu đề bài.
Vậy tọa độ điểm A là
Trong mặt phẳng hệ trục tọa độ , cho đường thẳng
cắt hai trục
lần lượt tại điểm
với
. Khi đó phương trình đường thẳng
là:
Phương trình đường thẳng d là: .
Viết phương trình tham số của đường thẳng có phương trình
?
Đường thẳng đi qua điểm
và có vectơ pháp tuyến là
nên có vectơ chỉ phương là:
.
Vậy phương trình tham số của là:
.
Tập nghiệm của phương trình
là:
Ta có: .
Thử lại thấy không thỏa mãn.
Vậy .