Cho hàm số có đồ thị như hình 1. Điểm cực tiểu của hàm số đã cho là:
Điểm cực tiểu của hàm số là 2.
Cho hàm số có đồ thị như hình 1. Điểm cực tiểu của hàm số đã cho là:
Điểm cực tiểu của hàm số là 2.
Cho hàm số có đồ thị như hình 2. Đường thẳng nào sau đây là đường tiệm cận đứng của đồ thị hàm số đã cho?
Đường tiệm cận đứng của hàm số là:
Cho hàm số là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Trong không gian với hệ toạ độ , phương trình nào sau đây là phương trình tổng quát của mặt phẳng
Phương trình tổng quát của mặt phẳng là : .
Trong không gian với hệ toạ độ , phương trình nào sau đây là phương trình chính tắc của đường thẳng?
Phương trình chính tắc của đường thẳng có dạng:
với
.
Vậy đáp án đúng là :
Trong không gian với hệ toạ độ , phương trình nào sau đây là phương trình mặt cầu
Phương trình mặt cầu tâm bán kính
có dạng:
Vậy đáp án cần tìm là: .
Cho hai biến cố và
của một phép thử T. Xác suất của biến cố
với điều kiện biến cố
đã xảy ra được gọi là xác suất của
với điều kiện
, ký hiệu là
. Phát biểu nào sau đây đúng?
Nếu thì
.
Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:
Thời gian |
[0; 20) |
[20; 40) |
[40; 60) |
[60; 80) |
[80; 100) |
Số học sinh |
5 |
9 |
12 |
10 |
6 |
Tìm khoảng biến thiên của mẫu số liệu ghép nhóm trên.
Xác định là giá trị đầu mút trái của nhóm đầu tiên và
là giá trị đầu mút phải của nhóm cuối cùng có chứa dữ liệu. Suy ra
.
Khảo sát về cân nặng của các học sinh lớp 11D3 người ta được một mẫu dữ liệu ghép nhóm như sau:
Khoảng tứ phân vị của bảng số liệu ghép nhóm trên là
Ta có
Gọi là mẫu số liệu gốc về cân nặng của 40 học sinh lớp 11D3 và giả sử rằng dãy số liệu gốc này đã được sắp xếp theo thứ tự tăng dần.
Tứ phân vị thứ nhất của mẫu số liệu gốc là nên nhóm chứa tứ phân vị thứ nhất là nhóm [40;50). Do đó tứ phân vị thứ nhất của mẫu số liệu trên là
Ta có
Tứ phân vị thứ ba của mẫu số liệu gốc là nên nhóm chứa tứ phân vị thứ ba là nhóm [60;70). Do đó tứ phân vị thứ ba của mẫu số liệu trên là
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là
Diện tích hình phẳng được gạch chéo trong hình bên bằng
Dựa và hình vẽ ta có diện tích hình phẳng được gạch chéo trong hình bên là:
Trong các khẳng định sau, khẳng định nào sai?
Ta có khi thì
. Do đó khẳng định phương sai luôn lớn hơn độ lệch chuẩn là sai.
Chỉ số hay độ của một dung dịch được tính theo công thức
với
là nồng độ ion hydrogen. Độ
của một loại sữa có
là bao nhiêu?
Độ pH là
Trong không gian tọa độ , cho hai mặt phẳng
,
. Xét các vectơ
,
.
a) là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b) không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c) . Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
,
. Xét các vectơ
,
.
a) là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
b) không là vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
c) . Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
b) là một vectơ pháp tuyến của mặt phẳng
.
Ta có: có vectơ pháp tuyến
.
c) .
d) Gọi là góc giữa hai mặt phẳng
và
.
Cho hàm số .
a) Đạo hàm của hàm số đã cho là . Đúng||Sai
b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi . Đúng||Sai
c) Bảng biến thiên của hàm số đã cho như sau:
Sai||Đúng
d) Đồ thị của hàm số đã cho là đường cong trong hình sau:
Đúng||Sai
Cho hàm số .
a) Đạo hàm của hàm số đã cho là . Đúng||Sai
b) Đạo hàm của hàm số đã cho nhận giá trị âm với mọi . Đúng||Sai
c) Bảng biến thiên của hàm số đã cho như sau:
Sai||Đúng
d) Đồ thị của hàm số đã cho là đường cong trong hình sau:
Đúng||Sai
Ta có: ,
nên đạo hàm của hàm số đã cho nhận giá trị âm với mọi
.
Bảng biến thiên:
Hàm số đã cho nghịch biến trên các khoảng và
.
Đồ thị của hàm số có tiệm cận đứng , tiệm cận ngang
, nhận điểm
là giao điểm của hai đường tiệm cận làm tâm đối xứng.
Đồ thị hàm số cắt trục tại điểm
và đi qua điểm có tọa độ
.
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Khi xe dừng hẳn thì vận tốc bằng m/s.
Khi xe dừng hẳn thì m/s nên
s.
Nguyên hàm của hàm số vận tốc ,
.
Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là
m.
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a) và
là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là . Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là . Sai||Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án . Sai||Đúng
Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi lần lượt là biến cố thắng thầu dự án 1 và dự án 2.
a) và
là hai biến độc lập. Đúng||Sai
b) Xác suất công ty thắng thầu đúng 1 dự án là . Đúng||Sai
c) Biết công ty thắng thầu dự án 1, xác suất công ty thắng thầu dự án 2 là . Sai||Đúng
d) Biết công ty không thắng thầu dự án 1, xác suất công ty thắng thầu dự án . Sai||Đúng
Đề bài:
a) độc lập
mà nên
không độc lập
b) Gọi là biến cố thắng thầu đúng 1 dự án
c) Gọi là biến cố thắng dự 2 biết thắng dự án 1
d) Gọi là biến cố “thắng dự án 2 biết không thắng dự án 1”
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Gọi là diện tích hình phẳng
. Lúc dó
, trong đó
là diện tích phần gạch sọc ở bên phải
và
là diện tích phần gạch ca rô trong hình vẽ bên.
Gọi là các giao diếm có hoành độ dương của đường thẳng
và đồ thị hàm số
, trong đó
và
.
Thco yêu cầu bài toán .
.
.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Cả hai bên cầu có tất cả nhịp cầu.
Chọn hệ trục tọa độ như hình vẽ với gốc là chân cầu, đỉnh
, điểm
Gọi Parabol phía trên có phương trình: (vì
)
là phương trình parabol phía dưới
(Vì bề dày nhịp cầu là )
Ta có
Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi và trục Ox nên ta có:
Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là
Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Gọi là tọa độ của máy bay sau 5 phút tiếp theo.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ gấp 4 lần thời gian bay từ
nên
Mặt khác, máy bay giữ nguyên hướng bay nên và
cùng hướng.
Suy ra
Tọa độ của máy bay sau 5 phút tiếp theo là .
Do đó,
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Áo sơ mi An Phước trước khi xuất khẩu sang Mỹ phải qua 2 lần kiểm tra, nếu cả hai lần đều đạt thì chiếc áo đó mới đủ tiêu chuẩn xuất khẩu. Biết rằng bình quân 98% sản phẩm làm ra qua được lần kiểm tra thứ nhất và 95% sản phẩm qua được lần kiểm tra đầu sẽ tiếp tục qua được lần kiểm tra thứ hai. Tìm xác suất để một chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu? (kết quả làm tròn đến hàng phần trăm)
Đáp án : 0,93
Gọi A là biến cố “qua được lần kiểm tra đầu tiên”
Gọi B là biến cố “qua được lần kiểm tra thứ 2”
Chiếc áo sơ mi đủ tiêu chuẩn xuất khẩu phải thỏa mãn 2 điều kiện trên, hay ta đi tính .
Ta có
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 16 km
Hai thành phố A và B cách nhau một con sông. Người ta xây dựng một cây cầu EF bắc qua sông biết rằng thành phố A cách con sông một khoảng là 5km và thành phố B cách con sông một khoảng là 7km (hình vẽ), biết HE + KF = 24km và độ dài EF không đổi. Hỏi cần xây cây cầu cách thành phố B là bao nhiêu km để đường đi từ thành phố A đến thành phố B là ngắn nhất (đi theo đường AEFB) ? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 16 km
Đặt , với
Ta có:
Nhận định ngắn nhất khi
nhỏ nhất ( vì
không đổi).
Xét hàm số
.
Cho
Bảng biến thiên
Vậy
Khi đó
Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)
Trả lời: 23,9 cm
Một quả bóng rổ được đặt ở một góc của căn phòng hình hộp chữ nhật, sao cho quả bóng chạm và tiếp xúc với hai bức tường và nền nhà của căn phòng đó thì có một điểm trên quả bóng có khoảng cách lần lượt đến hai bức tường và nền nhà là 17 cm, 18 cm, 21 cm (tham khảo hình minh họa). Hỏi độ dài đường kính của quả bóng bằng bao nhiêu cm, biết rằng quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm? (Kết quả là tròn đến một chữ số thập phân)
Trả lời: 23,9 cm
Ta đặt hệ trục vào căn phòng sao cho có hai bức tường là mặt , và nền là
Vậy bài toán dẫn đến việc tìm đường kính của mặt cầu tiếp xúc với mặt phẳng toạ độ và chứa điểm
.
Ta có thể gọi phương trình mặt cầu là , với
Do mặt cầu tiếp xúc với các mặt phẳng toạ độ nên
Do nên
.
Vì quả bóng rổ tiêu chuẩn có đường kính từ 23 cm đến 24,5 cm nên thỏa.
Vậy đường kính quả bóng bằng .