Cho hình chóp có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hình chóp có đường thẳng
vuông góc với đáy
,
. Khoảng cách từ điểm
đến đường thẳng
bằng:
Vì vuông góc với đáy
nên
Cho hàm số xác định trên
thỏa mãn
. Kết quả đúng là:
Ta có
Cho hàm số có bảng biến thiên như hình bên. Giá trị nhỏ nhất của hàm số
trên
bằng:
Dựa vào bảng biến thiên ta có giá trị nhỏ nhất của hàm số trên
bằng
.
Cho hình chóp có đáy là tam giác
vuông tại
. Đường thẳng vuông góc với đáy
. Đường thẳng
vuông góc với mặt phẳng nào sau đây?
Hình vẽ minh họa
Ta có
Cho hình lập phương có cạnh bằng
Khoảng cách từ
đến mp
bằng:
Hình vẽ minh họa
Ta có nên
.
Một nhóm học sinh gồm học sinh nam và
học sinh nữ. Có bao nhiêu cách chọn một học sinh trong nhóm đó tham gia đội thanh niên tình nguyện của trường?
Có cách chọn một học sinh.
Cho hàm số bậc ba có đồ thị là đường cong hình bên.
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Từ đồ thị đã cho ta thấy hàm số nghịch biến trên khoảng .
Cho hình chóp tam giác đều . Mặt bên
là tam giác gì?
Hình chóp tam giác đều có các mặt bên là các tam giác cân.
Một vật chuyển động có phương trình . Khi đó, vận tốc tức thời tại thời điểm
của vật là:
Ta có .
Nghiệm của phương trình là:
Ta có
Cho hàm số liên tục trên đoạn
và có đồ thị là đường cong trong hình bên dưới.
Hàm số đạt cực tiểu tại điểm
Theo hình vẽ thì hàm số đạt cực tiểu tại điểm
.
Khảo sát thời gian tập thể dục của một số học sinh khối 11 thu được mẫu số liệu ghép nhóm sau:
Mốt của mẫu số liệu trên là
Mốt chứa trong nhóm
.
Do đó:
;
.
Một bệnh nhân hàng ngày phải uống thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn
lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?
a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là . Đúng||Sai
b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là
. Đúng||Sai
c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là
. Sai||Đúng
d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là . Đúng||Sai
Một bệnh nhân hàng ngày phải uống thuốc kháng sinh đặc trị bệnh bạch hầu. Sau một ngày hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể vẫn còn
lượng thuốc của ngày hôm trước. Các mệnh đề sau đúng hay sai?
a) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu còn trong cơ thể sau ngày đầu tiên uống thuốc là . Đúng||Sai
b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là
. Đúng||Sai
c) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau khi uống viên thuốc của ngày thứ là
. Sai||Đúng
d) Ước tính lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể nếu bệnh nhân sử dụng thuốc trong một thời gian 30 ngày là . Đúng||Sai
a) Ta có hàm lượng thuốc kháng sinh đặc trị bệnh bạch hầu có trong cơ thể sau ngày đầu còn , suy ra mệnh đề đúng.
b) Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
suy ra mệnh đề đúng.
c) Gọi là lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể bệnh nhân sau khi uống ở ngày thứ n
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Lượng thuốc kháng sinh đặc trị bệnh bạch hầu sau khi uống ở ngày thứ là:
Suy ra mệnh đề sai.
d) Nếu bệnh nhân sử dụng thuốc trong thời gian 30 ngày. Khi đó lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng là:
Vậy lượng thuốc kháng sinh đặc trị bệnh bạch hầu trong cơ thể được ước lượng trong 30 ngày là , suy ra mệnh đề đúng.
Cho là các số thực thỏa mãn
. Các khẳng định sau đúng hay sai?
a) Điều kiện xác định của hàm số là
. Đúng||Sai
b) Với cặp số thỏa mãn điều kiện xác định của hàm số
, ta có:
. Sai||Đúng
c) Cặp số thỏa mãn
. Sai||Đúng
d) Với thì
. Đúng||Sai
Cho là các số thực thỏa mãn
. Các khẳng định sau đúng hay sai?
a) Điều kiện xác định của hàm số là
. Đúng||Sai
b) Với cặp số thỏa mãn điều kiện xác định của hàm số
, ta có:
. Sai||Đúng
c) Cặp số thỏa mãn
. Sai||Đúng
d) Với thì
. Đúng||Sai
a) Điều kiện để bất phương trình có nghĩa là , suy ra mệnh đề đúng.
b) Ta có , suy ra mệnh đề sai.
c) Ta thấy , suy ra mệnh đề sai.
d) Ta có:
Do đó
Khi đó
Suy ra suy ra mệnh đề đúng.
Cho hình chóp có đáy là hình vuông cạnh
,
, biết
. Gọi
lần lượt là trung điểm của
,
,
,
. Các mệnh đề sau đúng hay sai?
a) Thể tích của khối chóp bằng
. Đúng||Sai
b) Thể tích của khối chóp bằng thể tích của khối chóp
. Đúng||Sai
c) Thể tích của khối chóp bằng
. Sai||Đúng
d) Thể tích của khối chóp bằng
. Đúng||Sai
Cho hình chóp có đáy là hình vuông cạnh
,
, biết
. Gọi
lần lượt là trung điểm của
,
,
,
. Các mệnh đề sau đúng hay sai?
a) Thể tích của khối chóp bằng
. Đúng||Sai
b) Thể tích của khối chóp bằng thể tích của khối chóp
. Đúng||Sai
c) Thể tích của khối chóp bằng
. Sai||Đúng
d) Thể tích của khối chóp bằng
. Đúng||Sai
Hình vẽ minh họa
a) Ta có: . Suy ra mệnh đề đúng.
b) Từ giả thiết có ;
.
. Suy ra mệnh đề đúng.
c) Ta có .
Suy ra . Vậy mệnh đề sai.
d) Ta có .
Suy ra là hình bình hành; mặt khác, ta có:
Mà nên tứ giác
là hình chữ nhật.
Do nên ta có:
.
.
Với .
Ta có
Mà .
Vậy . Suy ra mệnh đề đúng.
Cho hàm số xác định và liên tục trên
có đồ thị như hình vẽ
Các mệnh đề sau đây đúng hay sai?
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số có
. Đúng||Sai
c) Hàm số nghịch biến trên khoảng
. Sai||Đúng
d) Hàm số đồng biến trên
và
. Đúng||Sai
Cho hàm số xác định và liên tục trên
có đồ thị như hình vẽ
Các mệnh đề sau đây đúng hay sai?
a) Hàm số nghịch biến trên khoảng . Đúng||Sai
b) Hàm số có
. Đúng||Sai
c) Hàm số nghịch biến trên khoảng
. Sai||Đúng
d) Hàm số đồng biến trên
và
. Đúng||Sai
a) Từ đồ thị ta có hàm số nghịch biến trên khoảng suy ra mệnh đề đúng.
b) Từ đồ thị ta thấy hàm số đồng biến trên và
suy ra hàm số có
. Vậy mệnh đề đúng.
c) Ta có
Hàm số nghịch biến khi
suy ra mệnh đề sai.
d) Từ đồ thị hàm số ta có đồ thị của hàm số
như hình vẽ.
Từ đồ thị ta có hàm số đồng biến trên
và
suy ra mệnh đề đúng.
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Một thùng sách có 5 quyển sách Toán, 7 quyển sách Vật Lí và 4 quyển sách Hóa. Chọn ngẫu nhiên 3 cuốn sách, tính xác suất để 3 cuốn sách được chọn không cùng một loại (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,91
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
3 cuốn sách lấy ra không cùng một loại
.
Để tìm số phần tử của , ta đi tìm số phần tử của biến cố
, với biến cố
là 3 cuốn sách lấy ra cùng một loại.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một đoàn tàu gồm toa đỗ ở sân ga. Có
hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên
toa. Tính xác suất để mỗi toa có ít nhất
hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,62
Một đoàn tàu gồm toa đỗ ở sân ga. Có
hành khách bước lên tàu, mỗi hành khách độc lập với nhau chọn ngẫu nhiên
toa. Tính xác suất để mỗi toa có ít nhất
hành khách bước lên tàu (kết quả làm tròn đến hàng phần trăm).
Đáp án: 0,62
Không gian mẫu là số cách sắp xếp hành khách lên
toa tàu. Vì mỗi hành khách có
cách chọn toa nên có
cách xếp.
Suy ra số phần tử của không gian mẫu là .
Gọi là biến cố
hành khách bước lên tàu mà mỗi toa có ít nhất
hành khách
. Để tìm số phần tử của biến cố
ta đi tìm số phần tử của biến cố
, tức có toa không có hành khách nào bước lên tàu, có
khả năng sau:
Trường hợp thứ nhất: Có toa không có hành khách bước lên.
+) Chọn trong
toa để không có khách bước lên, có
cách.
+) Sau đó cả hành khách lên toa còn lại, có
cách.
Do đó trường hợp này có cách.
Trường hợp thứ hai: Có toa không có hành khách bước lên.
+) Chọn trong
toa để không có khách bước lên, có
cách.
+) Hai toa còn lại ta cần xếp hành khách lên và mỗi toa có ít nhất
hành khách, có
.
Do đó trường hợp này có cách.
Suy ra số phần tử của biến cố là
.
Suy ra số phần tử của biến cố là
.
Vậy xác suất cần tính .
Một vật chuyển động theo quy luật (với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Một vật chuyển động theo quy luật (với
(giây) là khoảng thời gian tính từ lúc vật bắt đầu chuyển động và
(mét) là quãng đường vật đi được trong thời gian đó). Tính quãng đường mà vật đi được khi vận tốc đạt
(Kết quả làm tròn đến chữ số thập phân thứ nhất).
Đáp án: 54,2 m
Ta có: .
Khi vận tốc của vật đạt ta có:
.
Vì nên nhận
.
Lúc đó quảng đường vật đi được là:
Một tấm ván hình chữ nhật được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33
Một tấm ván hình chữ nhật được dùng làm mặt phẳng nghiêng để kéo một vật lên khỏi hố sâu
. Cho biết
,
. Tính góc giữa đường thẳng
và đáy hố. (Kết quả làm tròn đến độ).
Đáp án : 33
Gọi ,
lần lượt là hình chiếu của
,
lên đáy hố là mặt phẳng
.
Khi đó có hình chiếu lên đáy là
, suy ra
.
Với độ sâu hố là (m), ta có
.
.
.
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Cho hai số thực thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
?
Đáp án: 2025
Giả thiết cho
Xét hàm số trên
Suy ra
Vậy hàm số luôn đồng biến trên
nên ta có:
Suy ra:
Xét hàm số
luôn nghịch biến trên
luôn nghịch biến trên
Vậy khi
.