Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”
Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vậy mệnh đề đúng là: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng còn lại.”
Cho hình chóp có đáy là hình thoi tâm O cạnh bằng ; . Biết . Gọi là góc giữa đường thẳng và mặt phẳng . Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Mà
Ta có:
Vậy
Cho đồ thị hàm số như hình vẽ:
Hàm số có thể là hàm số nào dưới đây?
Dựa vào đồ thị ta có hàm số có tập xác định và hàm số nghịch biến suy ra hàm số tương ứng là .
Tính giá trị biết ?
Ta có:
Mặt khác
Cho hình tứ diện OABC có OA, OB, OC đôi một vuông góc. Gọi I là hình chiếu của điểm O trên mặt phẳng (ABC). Tam giác ABC là:
Giả sử tam giác ABC vuông tại A
Khi đó B có hai đường thẳng BO và BA cùng vuông góc với mặt phẳng (OCA)
Điều này vô lí, do đó tam giác ABC không thể là tam giác vuông
Từ O hạ => (theo định lí ba đường vuông góc)
Vì điểm H giữa hai điểm A và B nên tam giác ABC không thể có góc tù.
Suy ra ABC có ba góc nhọn.
Xác định nghiệm của bất phương trình ?
Ta có:
Vậy tập nghiệm của bất phương trình là
Cho số thực dương a tùy ý. Viết biểu thức dưới dạng trong đó là phân số tối giản, . Tính giá trị biểu thức ?
Ta có:
Với thì giá trị của bằng bao nhiêu?
Ta có:
Cho hình chóp có đáy là hình vuông cạnh ; . Tính ?
Hình vẽ minh họa
Ta có: là hình vuông
Mặt khác
Suy ra
=> SD là hình chiếu của SC lên mặt phẳng (SAD)
Do đó
Xét tam giác vuông tại ta có:
Trên giá sách có 3 quyển sách giáo khoa và 4 quyển sách tham khảo. Gọi B là biến cố “Hai quyển sách cùng loại nằm cạnh nhau”. Tính số phần tử của biến cố B?
Ta có:
Biến cố B là hai quyển sách cùng loại nằm cạnh nhau
là biến cố các quyển sách không cùng loại nằm cạnh nhau.
Do số sách tham khảo có số lượng nhiều hơn sách giáo khoa nên để các quyển sách cùng loại không nằm cạnh nhau thì ta cần sắp xếp sách tham khảo ở các vị trí 1; 3; 5; 7 và các quyển sách kháo khoa nằm ở vị trí 2; 4; 6.
Cho phương trình . Tính tổng giá trị các nghiệm phương trình đã cho.
Ta có:
Vậy tổng tất cả các nghiệm của phương trình là
Tính giá trị biểu thức .
Ta có:
Cho hình lập phương . Tính ?
Hình vẽ minh họa
Ta có:
Do là các đường chéo hình vuông bằng nhau.
Vậy tam giác là tam giác đều
Với thỏa mãn biểu thức . Khẳng định nào dưới đây đúng?
Ta có:
Quan sát đồ thị hàm số sau:
Chọn khẳng định đúng?
Quan sát đồ thị ta thấy
Hai hàm số đồng biến nên
Hàm số nghịch biến nên
Vậy
Đường thẳng x = 1 cắt hai đồ thị hàm số lần lượt tại và ta thấy
Vậy
Cho hình lập phương . Đường thẳng nào dưới đây vuông góc với mặt phẳng ?
Hình vẽ minh họa
Ta có: nên cách đều các điểm
nên cách đều các điểm
Do đó A; C’ cùng nằm trên đường tròn ngoại tiếp tam giác
Biết là các số thực dương khác 1 thỏa mãn . Biến đổi biểu thức ta được kết quả là:
Ta có:
Cho hình chóp có cạnh bên vuông góc với mặt phẳng . Gọi là hình chiếu vuông góc của lên cạnh . Tìm khẳng định đúng dưới đây?
Hình vẽ minh họa
Ta có:
Mà
Trong các mệnh đề dưới đây, mệnh đề nào là mệnh đề đúng?
Mệnh đề đúng: “Một đường thẳng vuông góc với một trong hai đường thẳng song song thì vuông góc với đường thẳng kia”.
Cho hàm số . Tính giá trị của biểu thức:
Vì nên
Gieo ngẫu nhiên một đồng xu cân đối và đồng chất 5 lần. Không gian mẫu của phép thử có bao nhiêu phần tử?
Mỗi lần gieo đồng xu có hai khả năng xảy ra nên khi tung đồng xu đó 5 lần thì theo quy tắc nhân ta có:
Vậy số phần tử của không gian mẫu là
Cho hình chóp S.ABC có các mặt bên tạo với đáy một góc bằng nhau. Hình chiếu vuông góc của điểm S trên mặt phẳng (ABC) là:
Gọi I là hình chiếu vuông góc của S trên mặt phẳng (ABCD)
M, N, P lần lượt là hình chiếu vuông góc của S trên các cạnh AB, AC, BC.
Khi đó ta có:
Tương tự ta có:
Khi đó
Tương tự suy ra
=>
=> I là tâm đường tròn nội tiếp tam giác ABC.
Giá trị viết dưới dạng lũy thừa với số mũ hữu tỉ là:
Ta có:
Tìm số nghiệm của phương trình ?
Điều kiện xác định
Phương trình đã cho tương đương:
Vậy phương trình có 1 nghiệm duy nhất.
Với điều kiện , đơn giản biểu thức thu được kết quả là:
Ta có:
Một người gửi 150 triệu đồng vào ngân hàng theo hình thức lãi kép với lãi suất 0,8%/tháng. Kể từ ngày gửi nếu mỗi cuối tháng người đó rút đều đặn 3 triệu đồng (trừ tháng cuối) thì sau bao nhiêu tháng số tiền đó sẽ được tút hết? (Tháng cuối cùng là tháng mà số tiền còn trong ngân hàng không vượt quá 3 triệu đồng và khi đó người đó rút hết toàn bộ số tiền còn lại).
Gọi là số tiền còn lại sau khi người đó rút đến tháng thứ n, là số tiền gửi vào, là lãi suất hàng tháng và là số tiền rút ra hàng tháng.
Ta có:
….
Vậy n = 64 tháng.
Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?
21772800
Giáo viên chọn 16 học sinh gồm 4 học sinh giỏi, 5 học sinh khá và 7 học sinh trung bình để lập thành 4 nhóm thảo luận, mỗi nhóm có 4 học sinh. Hỏi có bao nhiêu kết quả thuận lợi cho biến cố N “Nhóm nào cũng có học sinh giỏi, học sinh khá”?
21772800
Đánh số thứ tự các nhóm là A, B, C, D
Bước 1: xếp vào mỗi nhóm một học sinh giỏi có 4! Cách.
Bước 2: xếp 5 học sinh khá vào 4 nhóm thì 1 nhóm có 2 học sinh khá và 3 nhóm có 1 học sinh khá.
Chọn nhóm có 2 học sinh khá có 4 cách, chọn 2 học sinh khá có cách, xếp 3 học sinh khá còn lại có 3! cách.
Bước 3: xếp 7 học sinh trung bình
+ Nhóm có 2 học sinh khá cần xếp vào đó 1 học sinh trung bình, có 7 cách chọn học sinh.
+ Nhóm có 1 học sinh khá cần xếp vào đó 2 học sinh trung bình.
Chọn nhóm 2 học sinh trung bình trong 6 học sinh và xếp vào 3 nhóm có cách.
Chọn nhóm 2 học sinh trung bình trong nhóm học sinh và xếp vào 2 nhóm có cách.
Xếp 2 học sinh trung bình còn lại có 1 cách.
Do đó số cách sắp xếp là:
Vậy
Biết là số thực dương khác 1. Viết và thu gọn biểu thức dưới dạng lũy thừa với số mũ hữu tỉ. Tìm số mũ của biểu thức rút gọn đó?
Ta có:
Tìm cặp số . Biết .
Ta có:
Cho tứ diện đều cạnh bằng , là trung điểm của . Khi đó là:
Hình vẽ minh họa
Gọi E là trung điểm cạnh AC. Khi đó ta có: EM // AB.
Ta có: là tứ diện đều cạnh bằng 1 và
Hàm số nào trong các hàm số sau đây là hàm nghịch biến trên tập số thực?
Hàm số nghịch biến trên vì
Cho là số nguyên dương và một số bất kì với . Biết
Khi đó giá trị của là bao nhiêu?
Ta có:
Vậy
Cho lăng trụ đều ABC.A’B’C’ có AB = 1; AA’ = m (m > 0). Để góc giữa AB’ và BC’ bằng 600 thì m có giá trị là bao nhiêu?
Hình vẽ minh họa
Giả sử M, N, O lần lượt là trung điểm của BB’; B’C’; AB
=> MP // AB’; MN // BC’
=> Góc cần tìm là góc giữa MP và MN
=>
Lấy Q là trung điểm của A’B’ khi đó suy ra:
Tìm nghiệm phương trình ?
Điều kiện
Ta có:
Vậy phương trình có nghiệm .
Một hộp chứa 3 viên bi đen khác nhau, 4 viên bi đỏ khác nhau và 5 viên bi xanh khác nhau. Gọi A là biến cố “Sắp xếp các viên bi thành một dãy sao cho các viên bi cùng màu nằm cạnh nhau”. Các kết quả thuận lợi của biến cố A là:
Ta có:
Số cách sắp xếp 3 viên bi đen thành một dãy bằng
Số cách sắp xếp 3 viên bi đỏ thành một dãy bằng
Số cách sắp xếp 3 viên bi xanh thành một dãy bằng
Số cách sắp xếp 3 viên bi nhóm thành một dãy bằng
Vậy số phần tử của tập hợp A là:
Cho hình chóp tứ giác có tất cả các cạnh đều bằng nhau và bằng . Số đo góc giữa hai đường thẳng và bằng bao nhiêu?
Hình vẽ minh họa
Ta có:
Tam giác đều nên
Tìm điều kiện xác định của hàm số ?
Điều kiện xác định của hàm số là:
Vậy tập xác định của hàm số đã cho là .
Cho (P) và (Q) là hai mặt phẳng vuông góc với nhau và giao tuyến của chúng là đường thẳng m. Gọi a, b, c, d là các đường thẳng. Xét các mệnh đề sau:
(1) Nếu a ⊂ (P) và a ⊥ m thì a ⊥ (Q).
(2) Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q).
(3) Nếu c // m thì c // (P) hoặc c // (Q).
(4) Nếu d ⊥ m thì d ⊥ (P).
Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?
(1) Nếu a ⊂ (P) và a ⊥ m thì a ⊥ (Q). ---> đúng
(2) Nếu b ⊥ m thì b ⊂ (P) hoặc b ⊂ (Q). ---> sai
(3) Nếu c // m thì c // (P) hoặc c // (Q). ---> đúng
(4) Nếu d ⊥ m thì d ⊥ (P). ---> sai
Gieo một đồng xu cân đối và đồng chất liên tiếp ba lần. Gọi X là biến cố “Ba lần liên tiếp kết quả như nhau” và Y là biến cố “Có ít nhất hai mặt sấp xuất hiện liên tiếp”. Chọn khẳng định đúng?
Ta có:
Trong không gian cho tam giác ABC. Xác định vị trí của điểm M sao cho giá trị của biểu thức P = MA2 + MB2 + MC2 đạt giá trị nhỏ nhất
Gọi G là trọng tâm giác ABC =>
Ta có:
Dấu bằng xảy ra khi M trùng với G
Vậy với M trùng G là trọng tâm tam giác ABC