Phần thực của số phức
là:
Ta có:
Phần thực của số phức
là:
Ta có:
Cho
. Giá trị của x và y bằng:
Ta có:
Nguyên hàm của hàm số
là:
Ta có:
Trong không gian
có điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Ta có: . Khi đó
Vậy giá trị cần tìm là .
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Do đường thẳng cần tìm vuông góc với mặt phẳng
nên vectơ pháp tuyến của (P) là
cũng là vectơ chỉ phương của
.
Mặt khác đi qua điểm
nên phương trình chính tắc của
là:
Trong không gian toạ độ
, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?
PTTQ của mặt phẳng có dạng , với
nên ta chọn
.
Tìm họ nguyên hàm của hàm số ![]()
Trong không gian với hệ tọa độ
, cho đường thẳng
và mặt phẳng
. Mệnh đề nào sau đây đúng?
Ta có: có vectơ chỉ phương là
,
có véc-tơ pháp tuyến là
.
Do không cùng phương
nên
cắt
.
Mặt khác nên
không vuông góc
.
Vậy cắt nhưng không vuông góc với
.
Xác định nguyên hàm của hàm số
?
Ta có: .
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Trong không gian
, cho hai đường thẳng
và
, (với
là tham số). Tìm
để hai đường thẳng
và
cắt nhau
Ta có:
đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương
đi qua điểm M2(1; m; −2) và có vectơ chỉ phương
Ta có:
và
cắt nhau
Cho biểu thức
với
. Biểu thức A có giá tri là?
1 || Một || một
Cho biểu thức với
. Biểu thức A có giá tri là?
1 || Một || một
Ta có
Cho hàm số
liên tục và có đạo hàm trên
thỏa mãn
. Biết rằng
trong đó
. Kết luận nào sau đây đúng?
Ta có:
.
Tính . Đặt
khi đó:
Theo bài ra ta có:
Cho hàm số
. Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành. Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm:
Diện tích hình phẳng cần tìm là:
((do trong khoảng (0; 1) và (1; 2) phương trình
vô nghiệm)
Vậy mệnh đề sai là: .
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
bằng
Ta có .
Cho
. Tính
.
Ta có:
Cho
là miền hình phẳng giới hạn bởi các đường
và đồ thị của hai hàm số
. Gọi V là thể tích của vật thể tròn xoay khi quay
quanh Ox. Mệnh đề nào dưới đây đúng?
Thể tích của khối tròn xoay cần tính là:
Cho hình phẳng
giới hạn bới đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích
bằng bao nhiêu?
Thể tích cần tìm là:
Cho 3 vectơ
đều khác
. Ba vectơ
đồng phẳng khi và chỉ khi (có thể chọn 2 đáp án):
Áp dụng Điều kiện để 3 vecto đồng phẳng là:
cùng vuông góc với
và có giá vuông góc với mp(P)
Hàm số
có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Trong không gian với hệ tọa độ
, cho ba điểm
. Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng
?
Ta có:
Vậy là đáp án cần tìm.
Cho
là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Gọi (H) là hình phẳng giới hạn bởi các đường
và
(với
) được minh họa bằng hình vẽ bên (phần tô đậm):

Cho
quay quanh trục
, thể tích khối tròn xoay tạo thành bằng bao nhiêu?
Ta có:
Thể tích khối tròn xoay cần tính là
Cho hình lập phương
. Phân tích vectơ
theo các vectơ
?
Ta có phép cộng vectơ đối với hình vuông :
Khi đó ta có:
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Cho hàm số
có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Trong không gian với hệ trục tọa độ
cho các điểm
. Phương trình mặt phẳng đi qua
và vuông góc với
là:
Ta có:
Vậy phương trình mặt phẳng đi qua và vuông góc với
là:
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Trong không gian với hệ tọa độ
, cho hai điểm
. Giả sử
là tâm đường tròn ngoại tiếp tam giác
. Tính
.
Ta có:
Mặt phẳng (OAB) đi qua O và có vec-tơ pháp tuyến nên có phương trình
.
Ta xác định được
Theo giả thiết
Mặt khác
Giải hệ gồm (1), (2) và (3) ta được .
Vậy .
Biết rằng
. Xác định
?
Ta có:
Do đó:
Phần thực, phần ảo của số phức z thỏa mãn
lần lượt là?
Ta có:
Phần thực, phần ảo của z lần lượt là 1;1.
Biết rằng
và
, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:
Ta có:
, với
Trong không gian với hệ trục tọa độ
cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Tìm số phức
trong phương trình sau: ![]()
Ta có
Xét số phức z thỏa mãn:
. Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
Số phức
bằng:
Ta có:
Hàm số
có nguyên hàm là:
Ta có:
Cho lăng trụ tam giác
. Đặt
. Gọi điểm
sao cho
,
là trọng tâm tứ diện
. Biểu diễn vectơ
qua các vectơ
. Đáp án nào dưới đây đúng?
Ta có G là trọng tâm của tứ diện nên
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Cho hàm số
biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Trong không gian với hệ trục tọa độ
, cho hai điểm
và
. Xác định tọa độ trung điểm
của
?
Ta có: I là trung điểm của AB nên tọa độ điểm I là:
Vậy đáp án đúng là: .
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Cho hàm số
có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Trong không gian
, cho mặt phẳng
và hai điểm
. Đường thẳng d đi qua điểm A và song song với mặt phẳng (P) sao cho khoảng cách từ điểm B đến đường thẳng d nhỏ nhất có phương trình là
Giả sử đường thẳng d có vectơ chỉ phương là
Phương trình đường thẳng d có dạng
Do đường thẳng d k (P) nên .
Khoảng cách từ B đến đường thẳng d là:
Xét hàm số có
Ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta được khoảng cách từ B đến d nhỏ nhất tại
Khi đó , chọn
.
Phương trình đường thẳng hay
.
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Trong không gian với hệ tọa độ
, mặt phẳng
qua hai điểm
cắt các nửa trục dương Ox, Oy lần lượt tại A, B sao cho OG nhỏ nhất (G là trọng tâm tam giác ABC). Biết
. Tính
.
Gọi mà
nên
và
.
qua hai điểm
nên
.
Ta có:
Suy ra
Dấu bằng xảy ra khi và chỉ khi:
Cho
là hai số phức thỏa mãn phương trình
, biết ![]()
Tính giá trị của biểu thức: ![]()
Cách 1. Ta có:
và
Chú ý:
Tập hợp điểm biểu diễn số phức là đường tròn tâm O bán kính
.

Gọi
Ta có: đều
Mà với M là điểm thỏa
mãn là hình thoi cạnh 1
Cách 2. Đặt , ta có
và
Khi đó:
Sử dụng công thức