Cho số phức . Tính |z|
Ta có
Cho số phức . Tính |z|
Ta có
Xác định nguyên hàm của hàm số
?
Ta có:
Cho số phức . Số phức
là số phức nào sau đây?
Ta tính được
Phần thực của số phức là:
Ta có:
Một biển quảng cáo có dạng hình elip với bốn đỉnh như hình vẽ:
Người ta chia elip bởi Parabol có đỉnh , trục đối xứng
và đi qua các điểm
. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng
Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)
Phương trình đường Elip
Ta có:
Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình , (a > 0), đi qua M; N
Diện tích phần tô đậm
Đặt
Đổi cận
Diện tích hình Elip là
Suy ra diện tích phần còn lại là:
Kinh phí sử dụng là đồng.
Tìm nguyên hàm của hàm số ?
Ta có:
Trong không gian , cho đường thẳng
. Điểm nào sau đây không thuộc đường thẳng
?
Thay vào
ta được:
Thay vào
ta được:
Thay vào
ta được:
hệ vô nghiệm nên
.
Thay vào
ta được:
Cho hàm số biết
,
liên tục trên
và
. Tính
?
Ta có:
Trong không gian với hệ trục tọa độ , mặt phẳng
đi qua hai điểm
cắt các tia
lần lượt tại
sao cho
nhỏ nhất, với
là trọng tâm tam giác
. Biết
, hãy tính
.
Gọi với
.
Khi đó phương trình của .
Vì nên
. Kết hợp với điều kiện
suy ra
và
.
Cũng từ trên ta có .
Trọng tâm của tam giác
có tọa độ
.
Xét hàm số với
.
Ta có .
Bảng biến thiên
đạt giá trị nhỏ nhất khi và chỉ khi
đạt giá trị nhỏ nhất. Điều này xảy ra khi
; lúc đó
và
.
Vậy
Cho số phức . Tìm số phức
?
Ta có:
Giá trị của b và c để phương trình nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Xác định nguyên hàm của hàm số
?
Ta có:
Trong không gian , mặt phẳng
đi qua điểm
, đồng thời vuông góc với giá của vectơ
có phương trình là:
Mặt phẳng nhận vectơ
làm vectơ pháp tuyến và đi qua điểm
nên có phương trình là
.
Cho hàm số liên tục trên
thỏa mãn
và
. Tính tích phân
?
Ta có: .
Ta có:
Đặt . Đổi cận
do đó:
Ta có:
Đặt . Đổi cận
do đó:
.
Vậy
Cho hình phẳng giới hạn bởi các đường
. Thể tích vật thể tròn xoay có được khi
quay quanh trục
bằng:
Gọi là thể tích khối tròn xoay cần tính. Ta có:
Trong không gian , phương trình đường thẳng
đi qua hai điểm
là:
Ta có là một vectơ chỉ phương của đường thẳng
.
đi qua điểm
, nên có phương trình là:
.
Hàm số có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Diện tích hình phẳng giới hạn bởi , trục hoành,
và
là:
Ta có: nên ta có:
Nguyên hàm của hàm số là:
Ta có:
Cho số phức thỏa mãn
. Tính
Giả sử:
Trong không gian với hệ trục tọa độ , cho ba điểm
và mặt phẳng
. Tìm điểm
sao cho
dạt giá trị nhỏ nhất.
Gọi là điểm sao cho
.
Từ đó:
với là hình chiếu của
trên mặt phẳng
.
Từ đó suy ra dạt giá trị nhỏ nhất khi và chỉ khi
.
Phương trình đường thẳng đi qua và vuông góc với mặt phẳng
là:
.
Tọa độ diểm là nghiệm
của hệ
Suy ra .
Vậy, tọa độ điểm cần tìm là
.
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Cho hình hộp có tâm
. Gọi
là tâm hình bình hành
. Đặt
. Chọn khẳng định đúng?
Vì là tâm hình bình hành
nên
Biết rằng . Xác định
?
Ta có:
Do đó:
Trong không gian với hệ trục tọa độ , cho điểm
. Khẳng định nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và . Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Trong không gian hệ trục tọa độ , cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Gọi là các nghiệm của phương trình
. Tính giá trị biểu thức
Ta có phương trình
Suy ra:
Vì (1)
Mà ;
.
Vậy từ .
Diện tích hình phẳng giới hạn bởi các đường , trục hoành;
và
bằng:
Hoành độ giao điểm của đồ thị hàm số và trục hoành là nghiệm của phương trình:
Diện tích hình phẳng giới hạn bởi các đường là:
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Cho bốn điểm và
. Câu nào sau đây đúng? ABDC là:
Ta có
Do đó cùng phương
ABDC là hình thang.
Phương trình nào dưới đây nhận hai số phức và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Trong không gian , tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm đến mặt phẳng
là:
Tìm nguyên hàm của hàm số là
Ta có:
Cho hàm số là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
bằng
Ta có .
Gọi F(x) là một nguyên hàm của hàm số , F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Cho số phức . Số phức
bằng:
Ta có:
Trong không gian hệ trục tọa độ , cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Trong không gian với hệ trục tọa độ , cho ba vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
Vậy
Viết phương trình tổng quát của mặt phẳng (P) qua giao tuyến của hai mặt phẳng và vuông góc với mặt phẳng
Theo đề bài, qua giao tuyến của hai mặt phẳng
nên
có dạng là
Chọn làm vectơ pháp tuyến của
, ta có:
Cho số phức . Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Biết số phức thỏa mãn đồng thời hai điều kiện
và biểu thức
đạt giá trị nhỏ nhất. Tính
?
Theo giả thiết
Ta có
Xét điểm và
. Khi đó
Bài toán trở thành tìm điểm sao cho
đạt giá trị nhỏ nhất.
Vì nên hai điểm E, F nằm cùng phía đối với đường thẳng
.
Gọi E' là điểm đối xứng với E qua
Đường thẳng EE' đi qua điểm và có VTPT
nên có phương trình
Gọi H là giao điểm của EE' và . Tọa độ điểm H là nghiệm của hệ phương trình:
suy ra
E' đối xứng với E' qua H nên
Ta có
Dấu bằng xảy ra khi và chỉ khi M là giao điểm của E'F và đường thẳng
Đường thẳng E'F đi qua điểm và có VTPT
có phương trình
=>
Tọa độ điểm M là nghiệm của hệ phương trình
Vậy .
Trong không gian với hệ trục tọa độ , cho hai mặt phẳng
. Viết phương trình của mặt phẳng
song song với trục
và chứa giao tuyến của
và
?
Mặt phẳng chứa giao tuyến của hai mặt phẳng
và
nên có dạng:
Mặt phẳng song song với trục
nên
.
Chọn n = 1 ta có
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Cho z1 = 1 + i; z2 = -1 - i. Tìm sao cho các điểm biểu diễn của
tạo thành tam giác đều.
Giả sử
Để các điểm biểu diễn của tạo thành một tam giác đều thì
Vậy có hai số phức thoả mãn là:
Kí hiệu là hai nghiệm phức của phương trình
. Tính
Phương trình có hai nghiệm
.
Khi đó
Viết phương trình tham số của đường thẳng (d) qua I (-1, 5, 2) và song song với trục x'Ox:
Theo đề bài, ta có (d) // x’Ox nên (d) có vecto chỉ phương là
Như vậy, (d) qua I (-1, 5, 2) và nhận làm 1 VTCP có PTTS là:
(d):
Trong , phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Trong không gian với hệ tọa độ , cho các điểm
. Mặt phẳng
đi qua
, trực tâm
của tam giác
và vuông góc với mặt phẳng
có phương trình là:
Ta có
Phương trình mặt phẳng (ABC) là: .
Phương trình mặt phẳng qua B và vuông góc với AC là: .
Phương trình mặt phẳng qua C và vuông góc với AB là: .
Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên .
Mặt phẳng (P) đi qua A, H nên
Mặt phẳng (P) ⊥ (ABC) nên .
Vậy là một vectơ pháp tuyến của (P).
Chọn nên phương trình mặt phẳng (P) là
.