Đề thi HK2 Toán 12 Đề 3

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm A(1;2;3) và vuông góc với mặt phẳng (\alpha):4x + 3y - 7z + 1 = 0. Phương trình tham số của d là:

    Đường thẳng d vuông góc với mặt phẳng (\alpha) nên nhận vectơ \overrightarrow{n_{(\alpha)}} làm véc-tơ chỉ phương.

    Suy ra, phương trình đường thẳng: \left\{
\begin{matrix}
x = 1 + 4t \\
y = 2 + 3t \\
z = 3 - 7t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 2: Vận dụng cao

    Biết số phức z = x + yi,\left( {x,y \in \mathbb{R}} ight) thỏa mãn đồng thời hai điều kiện \left| z ight| = \left| {\bar z + 4 - 3i} ight| và biểu thức P = \left| {z + 1 - i} ight| + \left| {z - 2 + 3i} ight| đạt giá trị nhỏ nhất. Tính P = x + 2y?

    Theo giả thiết

    \left| z ight| = \left| {\bar z + 4 - 3i} ight| \Leftrightarrow \left| {x + yi} ight| = \left| {\left( {x + 4} ight) - \left( {y + 3} ight)i} ight|

    \begin{matrix}   \Leftrightarrow \sqrt {{x^2} + {y^2}}  = \sqrt {{{\left( {x + 4} ight)}^2} + {{\left( {y + 3} ight)}^2}}  \hfill \\   \Leftrightarrow {x^2} + {y^2} = {x^2} + 8x + 16 + {y^2} + 6y + 9 \hfill \\   \Leftrightarrow 8x + 6y + 25 = 0 \hfill \\ \end{matrix}

    Ta có P = \sqrt {{{\left( {x + 1} ight)}^2} + {{\left( {y - 1} ight)}^2}}  + \sqrt {{{\left( {x - 2} ight)}^2} + {{\left( {y + 3} ight)}^2}}

    Xét điểm E\left( { - 1;1} ight),F\left( {2; - 3} ight)M\left( {x;y} ight). Khi đó P = ME + MF

    Bài toán trở thành tìm điểm M \in \Delta :8x + 6y + 25 = 0 sao cho ME + MF đạt giá trị nhỏ nhất.

    \left( {8{x_E} + 8{y_E} + 25} ight).\left( {8{x_F} + 8{y_F} + 25} ight) > 0 nên hai điểm E, F nằm cùng phía đối với đường thẳng \Delta.

    Gọi E' là điểm đối xứng với E qua \Delta

    Đường thẳng EE' đi qua điểm E\left( {1; - 1} ight) và có VTPT {\vec n_{EE'}} = {\vec u_\Delta } = \left( {3; - 4} ight) nên có phương trình

    3\left( {x + 1} ight) - 4\left( {y - 1} ight) = 0

    \Leftrightarrow 3x - 4y + 7 = 0

    Gọi H là giao điểm của EE' và \Delta. Tọa độ điểm H là nghiệm của hệ phương trình:

    \left\{ \begin{gathered}  3x - 4y =  - 7 \hfill \\  8x + 6y =  - 25 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x =  - \frac{{71}}{{25}} \hfill \\  y =  - \frac{{19}}{{50}} \hfill \\ \end{gathered}  ight.suy ra H\left( { - \frac{{71}}{{25}}; - \frac{{19}}{{50}}} ight)

    E' đối xứng với E' qua H nên \left\{ \begin{gathered}  {x_{E'}} =  - \frac{{117}}{{25}} \hfill \\  {y_{E'}} =  - \frac{{44}}{{25}} \hfill \\ \end{gathered}  ight.

    Ta có ME + MF = ME' + MF \geqslant E'F

    Dấu bằng xảy ra khi và chỉ khi M là giao điểm của E'F và đường thẳng \Delta

    Đường thẳng E'F đi qua điểm F\left( {2; - 3} ight) và có VTPT {\vec n_{EE'}} = \left( {31;167} ight) có phương trình

    31\left( {x - 2} ight) + 167\left( {y + 3} ight) = 0

    => 31x + 167y + 439 = 0

    Tọa độ điểm M là nghiệm của hệ phương trình

    \left\{ \begin{gathered}  31x + 167y =  - 439 \hfill \\  8x + 6y =  - 25 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x =  - \frac{{67}}{{50}} \hfill \\  y =  - \frac{{119}}{{50}} \hfill \\ \end{gathered}  ight.

    Vậy P = x + 2y =  - \frac{{61}}{{10}}.

  • Câu 3: Thông hiểu

    Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v_{1}(t) = 2t(m/s). Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a = -
12\left( m/s^{2} ight). Tính quãng đường S(m) đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?

    Quãng đường xe đi được trong 12s đầu là S_{1} = \int_{0}^{12}{2tdt} = 144m

    Sau khi đi được 12s vật đạt vận tốc v =
24(m/s), sau đó vận tốc của vật có phương trình v = 24 - 12t

    Vật dừng hẳn sau 2s kể từ khi phanh.

    Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là

    S_{2} = \int_{0}^{2}{(24 - 22t)dt} =
24m

    Vậy tổng quãng đường ô tô đi được là S =
S_{1} + S_{2} = 144 + 24 = 168(m)

  • Câu 4: Vận dụng

    Trong không gian Oxyz, cho mặt phẳng (P): x − 4y + z + 1 = 0 và hai điểm A(1; 0; 2), B(2; 5; 3). Đường thẳng d đi qua điểm A và song song với mặt phẳng (P) sao cho khoảng cách từ điểm B đến đường thẳng d nhỏ nhất có phương trình là

    Giả sử đường thẳng d có vectơ chỉ phương là \overrightarrow{u} = (1;b;c)

    Phương trình đường thẳng d có dạng \left\{ \begin{matrix}
x = 1 + t \\
y = bt \\
z = 2 + ct \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do đường thẳng d k (P) nên 1 - 4b + c = 0
\Rightarrow c = 4b - 1.

    Khoảng cách từ B đến đường thẳng d là:

    d(B;d) = \frac{\left| \overrightarrow{u}
\land \overrightarrow{AB} ight|}{\left| \overrightarrow{u} ight|} =
\frac{\sqrt{378b^{2} - 216b + 54}}{\sqrt{17b^{2} - 8b + 2}}

    Xét hàm số f(b) = \frac{378b^{2} - 216b +
54}{17b^{2} - 8b + 2}

    f'(b) = \frac{648b^{2} -
324b}{\left( 17b^{2} - 8b + 2 ight)^{2}} \Rightarrow f'(b) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
b = 0 \\
b = \frac{1}{2} \\
\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Dựa vào bảng biến thiên ta được khoảng cách từ B đến d nhỏ nhất tại b = \frac{1}{2}

    Khi đó \overrightarrow{u} = \left(
1;\frac{1}{2};1 ight), chọn \overrightarrow{u} = (2;1;2).

    Phương trình đường thẳng d:\frac{x -
3}{2} = \frac{y - 1}{1} = \frac{z - 2}{2} hay \frac{x - 3}{2} = \frac{1 - y}{- 1} = \frac{z -
4}{2}.

  • Câu 5: Nhận biết

    Cho số phức {\left( {\overline {2 + i} } ight)^5} - \left( {2 + i} ight).\overline z  =  - 37 - 43i. Khẳng định nào sau đây là khẳng định sai?

     Ta có: {\left( {\overline {2 + i} } ight)^5} =  - 38 - 41i \Rightarrow \overline z  = \frac{{1 - 2i}}{{ - \left( {2 + i} ight)}} = i.

  • Câu 6: Thông hiểu

    Biết rằng \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = a\ln|x + 1| + b\ln|x - 2| + C. Mệnh đề nào sau đây đúng?

    Ta có: \frac{2x - 13}{(x + 1)(x - 2)} =
\frac{A}{x + 1} + \frac{B}{x - 2}

    = \frac{A(x - 2) + B(x + 1)}{(x + 1)(x -
2)} = \frac{(A + B)x + ( - 2A + B)}{(x + 1)(x - 2)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 2 \\
- 2A + B = - 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 5 \\
B = - 3 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = \int_{}^{}{\left( \frac{5}{x + 1} - \frac{3}{x - 2}
ight)dx}

    = 5\ln|x + 1|  - 3\ln|x - 2| +C

    Suy ra a = 5;b = - 3 suy ra a - b = 8.

  • Câu 7: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Vận dụng

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC}(1),\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}(2). Tìm x để các đường thẳng AD;BC;MN cùng song song với một mặt phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC}(1),\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}(2). Tìm x để các đường thẳng AD;BC;MN cùng song song với một mặt phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số f(x) = x.e^{- x} thỏa mãn F(0) = 1?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = e^{- x}dx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - e^{- x} \\
\end{matrix} ight.

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(
x.e^{- x} ight)dx}

    = - xe^{- x} + \int_{}^{}{e^{- x}dx} +
C

    = - xe^{- x} - e^{- x} + C. Theo bài ra ta có: F(0) = 1 \Leftrightarrow - 1 -
1 + C = 1 \Rightarrow C = 2

    Vậy - (x + 1)e^{- x} + 2 là đáp án cần tìm.

  • Câu 10: Thông hiểu

    Họ nguyên hàm của hàm số f(x) = \frac{x +
2}{\sqrt{x + 1}} là:

    Đặt t = \sqrt{x + 1} \Rightarrow t^{2} =
x + 1 \Rightarrow 2tdt = dx

    \Rightarrow \int_{}^{}{\left( \frac{x +
2}{\sqrt{x + 1}} ight)dx} = \int_{}^{}{\left( \frac{t^{2} + 1}{t}
ight)2tdt} = \int_{}^{}{\left( 2t^{2} + 2 ight)dt} =
\frac{2t^{3}}{3} + 2t + C

    = \frac{2(x + 1)\sqrt{x + 1}}{3} +
2\sqrt{x + 1} + C = \frac{2}{3}(x + 4)\sqrt{x + 1} + C

  • Câu 11: Vận dụng

    Cho hàm số f(x) liên tục và có đạo hàm trên \left( 0;\frac{\pi}{2}
ight) thỏa mãn f(x) + \tan xf'(x) = \frac{x}{\cos^{3}x}. Biết rằng \sqrt{3}f\left( \frac{\pi}{3} ight) - f\left(
\frac{\pi}{6} ight) = a\pi\sqrt{3} + bln3 trong đó a;b\mathbb{\in R}. Kết luận nào sau đây đúng?

    Ta có: f(x) + \tan xf'(x) =\frac{x}{\cos^{3}x}

    \Leftrightarrow \cos xf(x) + \sin xf'(x) = \frac{x}{\cos^{2}x}

    \Leftrightarrow \left\lbrack \sin xf(x)ightbrack' = \frac{x}{\cos^{2}x}

    \Rightarrow \int_{}^{}{\left\lbrack \sin xf(x) ightbrack'dx} =\int_{}^{}{\frac{x}{\cos^{2}x}dx}

    \Rightarrow \sin xf(x) =\int_{}^{}{\frac{x}{\cos^{2}x}dx}.

    Tính I =
\int_{}^{}{\frac{x}{cos^{2}x}dx}. Đặt \left\{ \begin{matrix}u = x \\dv = \dfrac{dx}{\cos^{2}x} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \tan x \\\end{matrix} ight. khi đó:

    I = x\tan x - \int_{}^{}{\tan xdx} =
x\tan x - \int_{}^{}\frac{d\left( \cos x ight)}{\cos x}

    = x\tan x + \ln\left| \cos x
ight|

    \Rightarrow f(x) = \frac{x\tan x +
\ln\left| \cos x ight|}{\sin x} = \frac{x}{\cos x} + \frac{\ln\left|
\cos x ight|}{\sin x}

    Theo bài ra ta có:

    \Rightarrow \sqrt{3}f\left(\frac{\pi}{3} ight) - f\left( \frac{\pi}{6} ight) = \sqrt{3}\left(\frac{2\pi}{3} - \dfrac{2\ln2}{\sqrt{3}} ight)- \left(\frac{\pi\sqrt{3}}{9} + 2\ln\dfrac{\sqrt{3}}{2} ight) =\dfrac{5\pi\sqrt{3}}{9}\ln3

    \Rightarrow \left\{ \begin{matrix}a = \dfrac{5}{9} \\b = - 1 \\\end{matrix} ight.\  \Rightarrow a + b = - \frac{4}{9}

  • Câu 12: Nhận biết

    Cho hình hộp ABCD.EFFH. Tính tổng \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE}?

    Hình vẽ minh họa

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AC} +
\overrightarrow{AE} = \overrightarrow{AG}

  • Câu 13: Vận dụng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x} trên khoảng (0;\pi). Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{\dfrac{2\cos x - 1}{\sin^{2}x}dx} =\int_{}^{}{\dfrac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\dfrac{1}{\sin^{2}x}dx}

    = \int_{}^{}\frac{2d\left( \sin xight)}{\sin^{2}x} - \int_{}^{}{\frac{1}{\sin^{2}x}dx} = - \frac{2}{\sin x} + \cot x + C

    F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x} trên khoảng (0;\pi) nên hàm số F(x) có công thức dạng F(x) = - \frac{2}{\sin x} + \cot x + C với mọi x \in (0;\pi)

    Xét hàm số F(x) = - \frac{2}{\sin x} +
\cot x + C xác định và liên tục trên (0;\pi)

    Ta có: F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    \Rightarrow F'(x) = 0\Leftrightarrow \frac{2\cos x - 1}{\sin^{2}x} = 0

    \Leftrightarrow \cos x = \frac{1}{2}
\Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Trên khoảng (0;\pi) phương trình F'(x) = 0 có một nghiệm x = \frac{\pi}{3}

    Ta có bảng biến thiên như sau:

    \underset{(0;\pi)}{\max F(x)} = F\left(
\frac{\pi}{3} ight) = - \sqrt{3} + C. Theo bài ra ta có: - \sqrt{3} + C = \sqrt{3} \Rightarrow C =
2\sqrt{3}

    Do đó F(x) = - \frac{2}{\sin x} + \cot x
+ 2\sqrt{3} suy ra F\left(
\frac{\pi}{6} ight) = 3\sqrt{3} - 4.

  • Câu 14: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 15: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x + 5?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +
5)dx} = x^{2} + 5x + C

  • Câu 16: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x - x_{0}}{a} = \frac{y - y_{0}}{b} =
\frac{z - z_{0}}{c}. Điểm M nằm trên đường thẳng \Delta thì điểm M có dạng nào sau đây?

    Đường thẳng \Delta đi qua điểm M\left( x_{0};y_{0};z_{0} ight) và có vectơ chỉ phương \overrightarrow{u} =
(a;b;c) nên đường thẳng \Delta có phương trình tham số là \Delta:\left\{ \begin{matrix}
x = x_{0} + at \\
y = y_{0} + bt \\
z = z_{0} + ct \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Điểm M nằm trên đường thẳng \Delta nên điểm M có dạng M\left( x_{0} + at;y_{0} + bt;z_{0} + ct
ight)

  • Câu 17: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (P):ax + by + cz - 27 = 0 đi qua hai điểm A(3;2;1),B( - 3;5;2) và vuông góc với mặt phẳng (Q):3x + y + z + 4 =
0. Tính tổng S = a + b +
c.

    Từ giả thiết ta có hệ phương trình:

    \left\{ \begin{matrix}
3a + 2b + c - 27 = 0 \\
- 3a + 5b + 2c - 27 = 0 \\
3a + b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 6 \\
b = 27 \\
c = - 45 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = -
12

  • Câu 18: Nhận biết

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 19: Nhận biết

    Tìm họ nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{2x + 1}}

     \int {\frac{1}{{2x + 1}}dx}  = \frac{1}{2}\ln \left| {2x + 1} ight| + C

  • Câu 20: Thông hiểu

    Tính diện tích S của hình phẳng giới hạn bởi các đường y = e^{x};y = 2;x = 0;x = 1?

    Phương trình hoành độ giao điểm e^{x} = 2
\Leftrightarrow x = ln2 \in (0;1)

    Do đó, diện tích hình phẳng giới hạn bởi các đường y = e^{x};y = 2;x = 0;x = 1

    S = \int_{0}^{1}{\left| e^{x} - 2
ight|dx}

    = - \int_{0}^{\ln2}{\left( e^{x} - 2ight)dx} + \int_{\ln2}^{1}{\left( e^{x} - 2 ight)dx}

    = - \left. \ \left( e^{x} - 2x ight)ight|_{0}^{\ln2} + \left. \ \left( e^{x} - 2x ight)ight|_{\ln2}^{1}

    = - (2 - 2\ln2 - 1) + (e - 2 - 2 +2\ln2)

    = 4\ln2 + e - 5

  • Câu 21: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 22: Vận dụng cao

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

    Đáp án là:

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

     Đặt {m{w}} = z - 2 + 2i

    Ta có = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|

    \Leftrightarrow \left| {(z - 1 + 2i)} ight|.\left| {(z - 1 - 2i)} ight|=\left| {(z - 1 + 2i)} ight|.\left| {(z + 3i - 1)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z - 1 + 2i = 0\\\left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|\end{array} ight..

    TH1: z = 1 - 2i \Rightarrow {m{w}} =  - 1 \Rightarrow \left| {m{w}} ight| = 1  (1)

    TH2: \left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|.

    Đặt z=a+bi; a, b \in \mathbb R.

    \Rightarrow {(a - 1)^2} + {(b - 2)^2} = {(a - 1)^2} + {(b + 3)^2}\Leftrightarrow b = \frac{{ - 1}}{2}.

    \Rightarrow z = a - \frac{1}{2}i  \Rightarrow \left| {m{w}} ight| = \sqrt {{{(a - 2)}^2} + \frac{9}{4}}  \ge \frac{3}{2}    (2)

    Từ (1) và (2) , suy ra \min |w| = 1.

  • Câu 23: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 24: Thông hiểu

    Cho số phức z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}}. Phần thực của số phức z là?

     Ta có: z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}} = \frac{{{{\left( {1 + i} ight)}^{27}} - 1}}{i}

    = \frac{{{{\left( {1 + i} ight)}^{26}}.\left( {1 + i} ight) - 1}}{i} = \frac{{{{(2i)}^{13}}\left( {1 + i} ight) - 1}}{i}

    = \frac{{{2^{13}}i - {2^{13}} - 1}}{i} = {2^{13}} + (1 + {2^{13}})i

    Vậy phần thực là  2^{13}.

  • Câu 25: Nhận biết

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 26: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\left\{ \begin{matrix}
x = 1 + mt \\
y = t \\
z = - 1 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)d_{2}:\left\{ \begin{matrix}
x = 1 - t' \\
y = 2 + 2t' \\
z = 3 - t' \\
\end{matrix} ight.\ ;\left( t'\mathbb{\in R} ight). Giá trị của m để hai đường thẳng d_{1}d_{2} cắt nhau là

    Đường thẳng d_{1} đi qua A(1; 0; −1), có vectơ chỉ phương \overrightarrow{u_{1}} = (m;1;2)

    Đường thẳng d_{2} đi qua B(1; 2; 3), có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 1;2; -
1)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 5;m -
2;2m + 1)\overrightarrow{AB} =
(0;2;4)

    Hai đường thẳng d và d 0 cắt nhau \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack.\overrightarrow{AB} = 0 \Leftrightarrow m = 0

  • Câu 27: Thông hiểu

    Cho hàm số f(x) = \frac{1}{\sin
x} có một nguyên hàm là F(x) thỏa mãn F\left( \frac{\pi}{3} ight) = 0. Giá trị của e^{F\left( \frac{2\pi}{3}
ight)} bằng:

    Ta có: F(x) = \int_{}^{}{\frac{1}{\sin x}dx} =\int_{}^{}{\frac{1}{2\sin\frac{x}{2}.\cos\frac{x}{2}}dx}

    = \int {\frac{1}{{2\tan \frac{x}{2}.{{\cos }^2}\frac{x}{2}}}dx}  = \int {\frac{1}{{\tan \frac{x}{2}}}d\left( {\tan \frac{x}{2}} ight)}= \ln \left| {\tan \frac{x}{2}} ight| + C

    Lại có F\left( \frac{\pi}{3} ight) = 0
\Leftrightarrow \ln\left| \tan\frac{\pi}{6} ight| + C = 0

    \Rightarrow C = - \ln\frac{\sqrt{3}}{3}= \ln\sqrt{3} = \frac{1}{2}\ln3

    Do đó: {e^{F\left( {\frac{{2\pi }}{3}} ight)}} = {e^{\ln \left| {\tan \frac{\pi }{3}} ight| + \frac{1}{2}\ln 3}} = {e^{\ln 3}} = 3

  • Câu 28: Nhận biết

    Trong không gian Oxyz, hãy viết phương trình của mặt phẳng (P) đi qua điểm M(0; - 1;0) và vuông góc với đường thẳng OM.

    Mặt phẳng (P) đi qua điểm M(0; -
1;0) và có một véc-tơ pháp tuyến là \overrightarrow{OM} = (0; - 1;0) nên có phương là:

    0(y - 0) + ( - 1)(y + 1) + 0(z - 0) = 0
\Leftrightarrow y + 1 = 0.

  • Câu 29: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 30: Nhận biết

    Nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{1}{x\sqrt{x}}dx}

    = \int_{}^{}{x^{- \frac{3}{2}}dx=}\dfrac{x^{- \frac{1}{2}}}{- \dfrac{1}{2}} + C = - \frac{2}{\sqrt{x}} +C.

  • Câu 31: Vận dụng cao

    Biết I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {x\cos 2xdx}  = a\pi \sqrt 3  + b\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sin 2xdx}, a và b là các số hữu tỉ. Giá trị của \frac{a}{b} là:

     Biết I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {x\cos 2xdx}  = a\pi \sqrt 3  + b\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sin 2xdx}. Giá trị của \frac{a}{b} là:

    Ta có: 

    I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {x\cos 2xdx}  = \left. {\left( {\frac{1}{2}x\sin 2x} ight)} ight|_{\frac{\pi }{6}}^{\frac{\pi }{2}} - \frac{1}{2}\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sin 2xdx}  =  - \frac{{\pi \sqrt 3 }}{{24}} - \frac{1}{2}\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sin 2xdx}

    \Rightarrow \left\{ \begin{gathered}  a =  - \frac{1}{{24}} \hfill \\  b =  - \frac{1}{2} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{a}{b} = \frac{1}{{12}}

  • Câu 32: Nhận biết

    Trong không gian Oxyz, cho điểm A(1;2; - 3),\ \ B(3; - 2;1). Tọa độ trung điểm của AB là.

    Tọa độ trung điểm I của AB là:

    I = \left( \frac{1 + 3}{2};\frac{2 -
2}{2};\frac{- 3 + 1}{2} ight) = (2;0; - 1)

  • Câu 33: Nhận biết

    Cho số phức {z_1} = 1 + 2i{z_2} =  - 1 - 2i. Khẳng định nào sau đây là khẳng định đúng?

     Ta có: {z_1}.{z_2} =  - {\left( {1 + 2i} ight)^2} =  - \left( {1 + 4i - 4} ight) = 3 - 4i

    Vậy {z_1}.{z_2} = 3 - 4i là khẳng định đúng.

  • Câu 34: Vận dụng

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm phức của phương trình 2{z^4} - 3{z^2} - 2 = 0. Tổng T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight|  bằng:

     Ta có:  2{z^4} - 3{z^2} - 2 = 0 \Leftrightarrow \left( {2{z^2} + 1} ight)\left( {{z^2} - 2} ight) = 0

    \Leftrightarrow \left( {z + \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \sqrt 2 } ight)\left( {z + \sqrt 2 } ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - \dfrac{{\sqrt 2 }}{2}i\\{z_2} = \dfrac{{\sqrt 2 }}{2}i\\{z_3} = \sqrt 2 \\{z_4} =  - \sqrt 2 \end{array} ight.

    T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight| = 3\sqrt 2

  • Câu 35: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số f(x) = 25^{x}?

    Vì: \left( \frac{25^{x}}{ln25}
ight)' = \frac{1}{ln25}.25^{x}.ln25 = 25^{x}

  • Câu 36: Thông hiểu

    Chọn mệnh đề sai. Trong không gian, cho hình hộp ABCD\ .A'B'C'D'.

    Hình vẽ minh họa

    Đáp án \overrightarrow{AC'}\  = \
\overrightarrow{AB}\ \  + \ \ \overrightarrow{AD}\  + \ \
\overrightarrow{AA'}\ đúng theo quy tắc hình hộp

    Đáp án \overrightarrow{BD}\  = \
\overrightarrow{BA}\ \  + \ \ \overrightarrow{BC}\ \  + \
\overrightarrow{BB'} sai

    Đáp án \overrightarrow{CA'}\  = \
\overrightarrow{CB}\ \  + \ \ \overrightarrow{CD}\  + \ \
\overrightarrow{CC'}\ đúng theo quy tắc hình hộp

    Đáp án \overrightarrow{C'A'}\  =
\ \overrightarrow{C'B'}\ \  + \ \ \overrightarrow{C'D'} đúng theo quy tắc hình bình hành

  • Câu 37: Nhận biết

    Viết công thức tính thể tích V của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm x = a;x = b;a < b, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;(a \leq x \leq b)S(x).

    Thể tích của vật thể đã cho là: V =
\int_{a}^{b}{S(x)dx}.

  • Câu 38: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 39: Thông hiểu

    Biết \int_{1}^{2}{\left\lbrack 4f(x) - 2x
ightbrack dx} = 1. Khi đó \int_{1}^{2}{f(x)dx} bằng:

    Ta có:

    \int_{1}^{2}{\left\lbrack 4f(x) - 2x
ightbrack dx} = 1 \Leftrightarrow 4\int_{1}^{2}{f(x)dx} -
2\int_{1}^{2}{xdx} = 1

    \Leftrightarrow 4\int_{1}^{2}{f(x)dx} -
2\left. \ .x^{2} ight|_{1}^{2} = 1 \Leftrightarrow
4\int_{1}^{2}{f(x)dx} = 4 \Leftrightarrow \int_{1}^{2}{f(x)dx} =
1

  • Câu 40: Thông hiểu

    Cho số phức z =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i. Số phức w = 1 + z + {z^2},\left| w ight| bằng:

     Ta có: \left| w ight| = \left| {1 + z + {z^2}} ight| = \left| {1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} ight| = 0

  • Câu 41: Vận dụng

    Trong không gian Oxyz, cho hai điểm A(1;2; - 1),B(3;0;3). Biết mặt phẳng (P) đi qua điểm A và cách B một khoảng lớn nhất. Phương trình mặt phẳng (P)

    Hình vẽ minh họa

    Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.

    Ta có BH ≤ AB.

    Dấu “=” xảy ra ⇔ H ≡ A

    ⇒ BHmax = AB khi AB ⊥ (P).

    Ta có:

    \left\{ \begin{matrix}
AB\bot(P) \\
A \in (P) \\
\end{matrix} ight.\  \Rightarrow (P):2x - 2y + 4z + 6 = 0

    \Leftrightarrow x - y + 2z + 3 =
0

  • Câu 42: Thông hiểu

    Cho hình hộp ABCD.EFGH\overrightarrow{AB} =\overrightarrow{a};\overrightarrow{AD} =\overrightarrow{b};\overrightarrow{AE} = \overrightarrow{c}. Gọi I là trung điểm của đoạn BG. Biểu thị \overrightarrow{AI} theo ba vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AI} =
\overrightarrow{AB} + \overrightarrow{BI} = \overrightarrow{a} +
\frac{1}{2}\overrightarrow{BG}

    = \overrightarrow{a} + \frac{1}{2}\left(
\overrightarrow{BF} + \overrightarrow{BC} ight) = \overrightarrow{a} +
\frac{1}{2}\left( \overrightarrow{b} + \overrightarrow{c}
ight)

  • Câu 43: Thông hiểu

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 44: Nhận biết

    Cho hai mặt phẳng \left( \alpha  ight):x + 5y - z + 1 = 0,\left( \beta  ight):2x - y + z + 4 = 0.

    Gọi \varphi là góc nhọn tạo bởi (\alpha)(\beta) thì giá trị đúng của cos \varphi là:

    Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:

    (\alpha) có vectơ pháp tuyến \overrightarrow a  = \left( {1,5, - 2} ight)

    (\beta) có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1,1} ight)

    Áp dụng công thức tính cosin giữa 2 vecto, ta có:

    \cos \varphi  = \frac{{\left| {1.2 + 5\left( { - 1} ight) + \left( { - 2} ight).1} ight|}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} ight)}^2}} .\sqrt {{2^2} + {{\left( { - 1} ight)}^2} + {1^2}} }} = \frac{{\sqrt 5 }}{6}

  • Câu 45: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz cho điểm A(2;1;3) và mặt phẳng (P): x+my+(2m+1)z-m-2=0,  m là tham số. Gọi là hình chiếu vuông góc của điểm trên . Tính khi khoảng cách từ điểm đến lớn nhất ?

     Ta có d(A,(P))=\dfrac{\left | 6m+3 ight |}{\sqrt{5m^2+4m+2}}

    d^2(A,(P))=\dfrac{\left | 36m^2+36m+9 ight |}{5m^2+4m+2}

    Xét hàm số f(m)=\dfrac{ 36m^2+36m+9}{5m^2+4m+2}

    \Rightarrow f'(m)=\dfrac{ -36m^2+54m+36}{(5m^2+4m+2)^2}

    \Rightarrow f'(m)=0 \Leftrightarrow m=\frac{-1}{2}; m=2

    Ta lập bảng biến thiên cho hàm số trên, được:

    Max của kc

    Qua bảng biến thiên, ta thấy hàm số đạt GTLN khim=2 \Rightarrow (P): x+2y+5z-4=0

    Đường thẳng \triangle qua A và vuông góc với (P) có phương trình là \left\{\begin{matrix} x=2+t \\ y=1+2t \\ z=3+5t \end{matrix}ight.

    Ta có H\in \triangle \Rightarrow H(2+t;1+2t;3+5t)

    H\in P \Rightarrow 2+t+2(1+2t)+5(3+5t)-4=0

    \Rightarrow t=\frac{-1}{2}\Rightarrow H(\frac{3}{2};0;\frac{1}{2})\Rightarrow a+b=\frac{3}{2}

  • Câu 46: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 47: Vận dụng

    Trong các số phức z thỏa mãn điều kiện \left| {z - 2 - 4i} ight| = \left| {z - 2i} ight|. Số phức z có mô đun bé nhất bằng

     Đặt z = x + yi{\mkern 1mu} {\mkern 1mu} \left( {x,y \in \mathbb{R}} ight)

    Khi đó \left| {z - 2 - 4i} ight| = \left| {z - 2i} ight|

    \Leftrightarrow \left| {x + yi - 2 - 4i} ight| = \left| {x + yi - 2i} ight|

    \Leftrightarrow {\left( {x - 2} ight)^2} + {\left( {y - 4} ight)^2} = {x^2} + {\left( {y - 2} ight)^2}

    \Leftrightarrow  - 4x - 4y + 16 = 0

    \Leftrightarrow x + y - 4 = 0

    Số phức có mô đun nhỏ nhất bằng khoảng cách từ đến đường thẳng \Delta :x + y - 4 = 0.

    {\left| z ight|_{\min }} = d\left( {O;\Delta } ight) = \frac{{\left| 4 ight|}}{{\sqrt 2 }} = 2\sqrt 2

  • Câu 48: Thông hiểu

    Có bao nhiêu số phức z thỏa mãn \left| {\frac{{z + 1}}{{i - z}}} ight| = 1\left| {\frac{{z - i}}{{2 + z}}} ight| = 1

    Ta có:  \left\{ \begin{array}{l}\left| {\dfrac{{z + 1}}{{i - z}}} ight| = 1\\\left| {\dfrac{{z - i}}{{2 + z}}} ight| = 1\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\left| {z + 1} ight| = \left| {i - z} ight|\\\left| {z - i} ight| = \left| {2 + z} ight|\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x =  - y\\4x + 2y =  - 3\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{3}{2}\\y = \frac{3}{2}\end{array} ight.

    \Rightarrow z =  - \frac{3}{2} + \frac{3}{2}i

  • Câu 49: Nhận biết

    Tìm số phức z trong phương trình sau: \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

     Ta có \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

    \Leftrightarrow z = \frac{{( - 1 + 3i)(1 - i)}}{{{{(2 + i)}^2}}}

    \Leftrightarrow z = \frac{{2 + 4i}}{{3 + 4i}} \Leftrightarrow z = \frac{{(2 + 4i)(3 - 4i)}}{{25}}

    \Leftrightarrow z = \frac{{22}}{{25}} + \frac{4}{{25}}i

  • Câu 50: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1),B( - 1;2;1),C(36; - 5). Điểm M thuộc mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất là:

    Gọi G là trọng tâm của tam giác ABC.

    Ta có: MA^{2} + MB^{2} + MC^{2} = 3MG^{2}
+ GA^{2} + GB^{2} + GC^{2}

    Dễ thấy MA^{2} + MB^{2} + MC^{2} nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).

    Dễ thấy G(1;3; - 1) \Rightarrow
M(1;3;0).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 44 lượt xem
Sắp xếp theo