Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Biết rằng
. Mệnh đề nào sau đây đúng?
Ta có:
Khi đó
Suy ra suy ra
.
Cho hàm số
. Tính tích phân
?
Ta có:
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Gọi
lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Gọi lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Một người có mảnh đất hình tròn có bán kính
. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Một người có mảnh đất hình tròn có bán kính . Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng
?
Ta có
Vì điểm nên
không phải là phương trình đường thẳng AB.
Các đường thẳng còn lại đều có vectơ chỉ phương là (1; 1; −5) và đi qua điểm A(2; 3; −1) hoặc đi qua điểm B(1; 2; 4).
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho hai số phức z, w thỏa mãn
;
với
là tham số. Giá trị của m để ta luôn có
là:
Đặt có biểu diễn hình học là điểm
Ta có:
Suy ra biểu diễn của số phức là đường thẳng
Ta xét:
với .
Mà ta có
Nên
Mặt phẳng
và đường thẳng
:
Theo đề bài, ta có vecto pháp tuyến của
Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: và
cũng có 2 VTPT lần lượt
Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT:
và tọa độ của A không thỏa mãn phương trình của (P).
Vậy (d) // (P) .
Trong không gian
, mặt phẳng chứa trục
và đi qua điểm
có phương trình là:
Mặt phẳng chứa trục có dạng
Mặt phẳng đi qua điểm nên
Do đó chọn suy ra phương trình mặt phẳng cần tìm là
.
Một bể thủy tinh chứa nước có thiết diện ngang (mặt trong của thùng) là một đường elip có trục lớn bằng 1m, trục bé bằng 0,8m, chiều dài bằng 3m nằm trong của thùng. Bể nước được đặt sao cho trục bé nằm theo phương thẳng đúng (như hình vẽ). Tính thể tích V của nước có trong bể, biết chiều cao nước trong bể là 0,6m. (Kết quả được làm tròn đến phần trăm).

Xét một đáy của bể và gắn hệ trục tọa độ như hình vẽ:

Phương trình đường elip đáy khi đó có phương trình
Khi đó chiều cao của mép nước trong bể với đường thẳng
Xét phương trình
Diện tích phần mặt chứa nước là:
Do đó thể tích nước trong thùng là:
Trong không gian
, mặt phẳng
có phương trình là
Mặt phẳng đi qua điểm
và nhận
là một véc-tơ pháp tuyến nên phương trình của mặt phẳng
là
.
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Cho số phức
. Số phức
bằng:
Ta có:
Trong các mệnh đề sau, mệnh đề nào sai?
Bằng quy tắc 3 điểm ta nhận thấy rằng: đúng với mọi điểm
nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Trong không gian với hệ toạ độ
, cho tam giác
có phương trình đường phân giác trong góc
là
. Biết rằng điểm
thuộc đường thẳng
và điểm
thuộc đường thẳng
. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng
.
Hình chiếu H của M trên đường phân giác trong góc A có tọa độ:
M’ là điểm đối xứng của M qua H. Từ đây ta tìm được tọa độ M’(1; 3; 6).
Vectơ chỉ phương của đường thẳng AC chính là vecto .
Suy ra, đường thẳng AC có một vectơ chỉ phương là (0; 1; 3)
Tích phân
có giá trị là:
Ta có:
Đặt
Trong không gian với hệ tọa độ
, cho hai điểm
và
và mặt phẳng
. Viết phương trình mặt phẳng
qua
và vuông góc với
?
Mặt phẳng có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Từ đó, phương trình mặt phẳng là
.
Biết
là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Cho tứ diện
. Đặt
. Gọi
là trung điểm của
. Trong các đẳng thức sau, đẳng thức nào đúng?
Hình vẽ minh họa
Vì M là trung điểm của BC nên suy ra
Ta có:
Cho hình lập phương
có cạnh bằng
. Tính tích vô hướng
?
Hình vẽ minh họa
Ta có: nên
Suy ra
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Tìm nguyên hàm
của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Cho hàm số
xác định trên
thỏa mãn
;
. Tính
?
Trên khoảng ta có:
Mà
Trên khoảng ta có:
Mà
Vậy
.
Cho hai số phức z, w thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức ![]()
Cách 1 :
Giả sử
(1)
Suy ra x + y = 0
Từ (1) ta có I(3; 2), bán kính r = 1. Gọi H là hình chiếu của I trên .
Đường thẳng HI có PTTS:
Vậy
Cách 2 :
điều này cho thấy M(z) đang nằm trên hình tròn tâm I(3; 2) bán kính bằng 1.
điều này cho thấy N(w) đang thuộc nửa mặt phẳng tạo bởi đường thẳng
là trung trực của đoạn AB với
(Minh hoạ như hình vẽ)

Tìm số phức
trong phương trình sau: ![]()
Ta có
Nguyên hàm của hàm số
là:
Ta có:
.
Trong không gian
, cho điểm
. Phương trình mặt phẳng
đi qua
và chứa trục
là:
Mặt phẳng có VTPT
và đi qua điểm
.
Suy ra phương trình .
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Trong không gian với hệ tọa độ
, cho đường thẳng
có phương trình
. Điểm nào sau đây không thuộc đường thẳng
?
Ta thay lần lượt tọa độ các điểm vào phương trình đường thẳng , điểm
có tọa độ không thỏa mãn phương trình đường thẳng
.
Cho hàm số
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Anh A xuất phát từ D, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật
trong đó
(giây) là khoảng thời gian tính từ lúc anh A bắt đầu chuyển động. Từ trạng thái nghỉ, anh B cũng xuất phát từ D, chuyển động thẳng cùng hướng với anh A nhưng chậm hơn
giây so với anh A và có gia tốc bằng
(
là hằng số). Sau khi anh B xuất phát được
giây thì đuổi kịp anh A. Vận tốc của anh B tại thời điểm đuổi kịp anh A bằng bao nhiêu?
Quãng đường anh A đi được cho đến khi hai người gặp nhau là:
Vận tốc của anh B tại thời điểm tính từ lúc anh B xuất phát là:
Quãng đường anh B đi được cho đến khi hai người gặp nhau là:
Vậy vận tốc của anh B tại thời điểm đuổi kịp anh A là:
Xác định nguyên hàm
của hàm số
?
Ta có:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc
trong đó
là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?
Khi dừng hẳn
Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:
Trong không gian với hệ trục tọa độ
, cho điểm
. Mặt phẳng
qua
cắt chiều dương của các trục
lần lượt tại
thỏa mãn
. Tính giá trị nhỏ nhất của thể tích khối chóp
?
Giả sử với
.
Khi đó mặt phẳng có dạng:
.
Vì (P) đi qua M nên
Vì
Thể tích khối chóp là:
Ta có:
khi
.
Số phức
là số phức nào sau đây?
Tìm nguyên hàm của hàm số
?
Ta có:
Trong không gian
, cho vectơ
. Hãy chọn vectơ cùng phương với
?
Ta có: cùng phương với
khi
. Khi đó đáp án cần tìm là
(vì
).
Tìm số phức z thỏa mãn ![]()
Ta có
Cho tam giác
vuông tại
và có hai đỉnh
nằm trên mặt phẳng
. Gọi
là hình chiếu vuông góc của đỉnh
lên
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì
suy ra góc
là góc tù.
Một vật chuyển động chậm dần với vận tốc
. Hỏi rằng trong
trước khi dừng hẳn vật di chuyển được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Trong không gian với hệ trục toạ độ
, cho điểm
thoả mãn
. Biết rằng khoảng cách từ
tới mặt phẳng
lần lượt là 2 và 3. Tính khoảng cách từ
đến mặt phẳng
.
Ta có:
Giả sử khi đó ta có:
Mà