Tìm nguyên hàm
.
Ta có:
Tìm nguyên hàm
.
Ta có:
Cho hàm số
có đạo hàm liên tục trên
và có đồ thị như hình vẽ:

Tính tích phân
?
Ta có:
Tích phân
có giá trị là:
Ta biến đổi:
Đặt
Đổi cận
Gọi (H) là hình phẳng xác định bởi
và trục hoành. Tính thể tích khối tròn xoay khi quay hình (H) quanh trục Ox.
Hình vẽ minh họa:

Tọa độ giao điểm của (C) và trục hoành là (1; 0) và (2; 0)
Tọa độ giao điểm của (C) và (D) là (0; 2) và (4; 6)
Dễ thấy
Thể tích cần tìm là:
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho giá trị của tích phân
,
. Giá trị a.b gần nhất với giá trị nào sau đây?
Ta có:
Tìm nguyên hàm
của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Tìm
để góc giữa hai vectơ
là góc nhọn.
Để
.
Kết hợp điều kiện
Cho tam giác
vuông tại
và có hai đỉnh
nằm trên mặt phẳng
. Gọi
là hình chiếu vuông góc của đỉnh
lên
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì
suy ra góc
là góc tù.
Tìm nguyên hàm của hàm số
?
Ta có:
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Cho hàm số
có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Trong không gian với hệ trục tọa độ
, cho điểm
. Khẳng định nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Một người có mảnh đất hình tròn có bán kính
. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Một người có mảnh đất hình tròn có bán kính . Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Ba mặt phẳng
cắt nhau tại điểm
. Chọn kết luận đúng?
Tọa độ điểm là nghiệm của hệ phương trình
Cho hai điểm
và vectơ
. Mặt phẳng chứa hai điểm A, B và song song với vectơ
có phương trình:
Theo đề bài, ta có:
Như vậy, và
sẽ là cặp vectơ chỉ phương của
Chọn làm vectơ pháp tuyến của
Phương trình mặt phẳng có dạng
Mặt khác, vì điểm nên thay tọa độ điểm A vào phương trình mặt phẳng
được:
Vậy có phương trình là:
Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Cho hai đường thẳng 
Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).
Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP
Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :
Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :
Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Số phức
là số phức nào sau đây?
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Trong không gian
, cho hai điểm
và
. Viết phương trình mặt phẳng
đi qua
và vuông góc với đường thẳng
.
Mặt phẳng có một véctơ pháp tuyến
Phương trình mặt phẳng là:
hay
.
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) song song khi và chỉ khi:
Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:
và (d) cùng nằm trong một mặt phẳng
Để (D) và d song song, ta sẽ xét tỉ số chứng minh chúng cùng phương rồi kiểm tra rằng d không nằm trong (D):
và (d) cùng phương
và
và (d) song song.
Tìm nguyên hàm của hàm số
??
Đặt
Cho hình lập phương
. Phân tích vectơ
theo các vectơ
?
Ta có phép cộng vectơ đối với hình vuông :
Khi đó ta có:
Cho hàm số
biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Gọi
là 2 nghiệm của phương trình
thỏa mãn
. Biết rằng w là số phức thỏa mãn
. Tìm GTNN của biểu thức
.
Giả sử
Ta có:
=> x = 0
=> Tập hợp điểm biểu diễn là trục tung.
Giả sử A, B lần lượt là 2 điểm biểu diễn cho , ta có
Giả sử và M là điểm biểu diễn cho số phức w, ta có
suy ra tập hợp điểm biểu diễn M cho số phức w là đường tròn tâm
bán kính R = 2
Ta có , gọi E là hình chiếu vuông góc của I lên trục tung, ta thấy P nhỏ nhất khi E là trung điểm AB suy ra
, vậy

Tìm nguyên hàm của hàm của hàm số ![]()
Trong không gian
, cho hai vectơ
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án cần tìm là
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Trong không gian với hệ trục tọa độ
, cho hai đường thẳng
và
. Vị trí tương đối của
và
là
Đường thẳng d có vectơ chỉ phương và đi qua điểm M(−1; 0; 1).
Đường thẳng d’ có vectơ chỉ phương .
Hai vectơ và
cùng phương và điểm M không thuộc đường thẳng d’.
Do đó hai đường thẳng d và d’ song song với nhau.
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Trong không gian với hệ tọa độ
, cho hai điểm
. Đường thẳng
đi qua tâm đường tròn nội tiếp tam giác
và vuông góc với mặt phẳng
. Hỏi
đi qua điểm nào dưới đây?
Ta có:
Gọi I là tâm đường tròn nội tiếp tam giác .
Phương trình đường thẳng
Đường thẳng ∆ đi qua điểm M(1; −1; 1).
Cho số phức
. Tính |z|
Ta có
Cho
là hai số phức thỏa mãn
, biết
. Tính giá trị của biểu thức ![]()
Cách 1: + Đặt ta có
+ Sử dụng công thức: ta có
=>
Cách 2.
+ Biến đổi:
Ta có
+ Sử dụng công thức bình phương mô đun:
Trong đó là góc
với M, N lần lượt là các điểm biểu diễn số phức
trên mặt phẳng phức
Vậy
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Tìm nguyên hàm của hàm số ![]()
Gọi
lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Gọi lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Cho hàm số
liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Thể tích khối tròn xoay tạo thành khi quay
quanh trục hoành được tính theo công thức:
Thể tích của khối tròn xoay cần tính là:
Tính diện tích hình phẳng giới hạn bởi các đường thẳng
?
Hình vẽ minh họa
Ta có:
Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng
Diện tích hình giới hạn là
Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi
lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là (
):
Theo đề bài, ta có:
Gọi
Ta có:
Cho số phức
. Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Trong không gian
, cho các điểm
. Số điểm cách đều bốn mặt phẳng
là
Gọi là điểm cách đều bốn mặt phẳng đã cho.
Dễ thấy các mặt phẳng lần lượt là các mặt phẳng
.
Mặt phẳng (ABC) có phương trình tổng quát là .
Do I cách đều các mặt phẳng này nên ta có:
Ta có các trường hợp
Trường hợp 1. . Khi đó (1) tương đương:
Ta được hai điểm thỏa mãn bài toán.
Trường hợp 2. Trong ba số có hai số bằng nhau và bằng số đối của số còn lại.
Khi đó, không mất tính tổng quát ta có thể giả sử (các trường hợp còn lại tương tự) và (1) tương đương:
Ta được hai điểm thỏa mãn bài toán.
Vậy số điểm cách đều bốn mặt phẳng đã cho là .
Trong không gian
khoảng cách giữa hai mặt phẳng
và
bằng:
Dựa vào phương trình có vectơ pháp tuyến là
nên
Ta có: suy ra
Tìm số phức z thỏa mãn ![]()
Ta có