Biết rằng và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Biết rằng và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Cho số phức và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Vậy là khẳng định đúng.
Trong không gian , cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Cho số phức , giá trị của số phức
là?
Ta có:
Cho tứ diện và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho số phức z thỏa mãn . Môđun của z là:
Giả sử: .
Cho điểm và mặt phẳng
. Xét điểm
thay đổi trên
, giá trị lớn nhất của
bằng:
Hình vẽ minh họa
Xét là điểm thỏa mãn
thế thì
hay .
Ta có
=
Dấu " " xảy ra khi
là hình chiếu của
lên
.
Cho hàm số thỏa mãn
và
với mọi
. Tính
?
Ta có:
Với
Do đó
Vậy
Gọi là số phức thoả mãn
.
Giá trị của biểu thức là?
30 || Ba mươi || ba mươi
Gọi là số phức thoả mãn
.
Giá trị của biểu thức là?
30 || Ba mươi || ba mươi
Dễ thấy rằng z=0 không thoả mãn .
Do đó ta có
Ta cũng có
và
Vậy .
Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol và đường thẳng
xoay quanh trục
tính bởi công thức nào sau đây?
Hình vẽ minh họa
Ta có và
cắt nhau tại hai điểm
và
Suy ra thể tích khối tròn xoay đã cho bằng thể tích khối tròn xoay
trừ đi thể tích khối tròn xoay
. Trong đó:
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
Vậy thể tích khối tròn xoay đã cho bằng .
Cho hàm số có đồ thị
. Các tiếp tuyến với đồ thị tại
và tại
cắt nhau tại
. Tính diện tích hình phẳng giới hạn bởi cung
của
và hai tiếp tuyến
?
Tập xác định
Tiếp tuyến tại O(0; 0) là OB:
Tiếp tuyến tại A(3; 3) là AB:
Suy ra
Diện tích hình giới hạn là
Trong không gian với hệ tọa độ , đường thẳng đi qua điểm
và song song với trục
có phương trình tham số là:
Gọi là đường thẳng cần tìm.
Ta có nên
có vectơ chỉ phương là
.
Do đó .
Cho hàm số dương và liên tục trên
thỏa mãn
và biểu thức
đạt giá trị lớn nhất, khi đó
bằng:
Do
Dấu bằng xảy ra khi và chỉ khi .
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của
với z là số phức khác 0 và thỏa mãn
. Tính
Ta có
Mặt khác:
Vậy giá trị nhỏ nhất của P là , xảy ra khi
giá trị lớn nhất của P bằng
xảy ra khi
=>
Số phức liên hợp của số phức là
=
= a - bi
Tích phân có giá trị là:
Ta có:
Đặt
Đổi cận
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Trong không gian , cho tam giác
có
, đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình
. Biết
, khi đó
bằng
Hình vẽ minh họa
Giả sử đường cao là ta có vectơ chỉ phương của CH là
.
B thuộc đường trung tuyến nên
.
Suy ra
Vì nên
.
Vậy .
Họ nguyên hàm của hàm số là:
Ta có:
Biết rằng liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Cho hàm số là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Biết và
là ba nghiệm của phương trình
,
trong đó là nghiệm có phần ảo dương. Phần ảo của số phức
bằng:
Xét phương trình là phương trình bậc ba với hệ số thực nên luôn có một nghiệm thực là
.
Do đó phương trình tương đương với:
.
Nên là hai nghiệm phức của phương trình bậc hai với hệ số thực (1).
Suy ra .
Khi đó : .
Vậy phần ảo của là
.
Trong không gian với hệ tọa độ , cho các điểm
. Phương trình mặt phẳng
nào dưới đây đi qua
, gốc tọa độ
và cách đều hai điểm
và
?
Vì đi qua O nên phương trình mặt phẳng
có dạng
.
Vì A ∈ (P) và B, C cách đều (P) nên
Chọn a = −6, ta có b = 3, suy ra c = ±4.
Vậy có hai mặt phẳng thỏa mãn là hoặc
.
Tìm nguyên hàm của hàm số
Ta có:
Trong không gian với hệ trục tọa độ , cho đường thẳng
có phương trình tham số là
Gọi vectơ chỉ phương của đường thẳng
, ta chọn
Giả sử , chọn
suy ra phương trình tham số d là:
.
Phương trình nào dưới đây nhận hai số phức và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Trong không gian với hệ trục tọa độ , cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tính tỉ số
?
Ta có:
Lại có và ba điểm
thẳng hàng
Vậy đáp án đúng là .
Trong không gian với hệ tọa độ , cho hai mặt phẳng
và
. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng
là:
Xét hệ phương trình
. Đặt
ta suy ra
.
Từ đó ta thu được phương trình đường thẳng:
Xét điểm , ta thấy
chỉ thuộc đường thẳng:
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Trong không gian , cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian với hệ trục tọa độ , cho các vectơ
và
. Mệnh đề nào sau đây đúng?
Ta có:
không cùng phương vì
Vậy mệnh đề đúng là
Tích phân có giá trị là:
Tích phân có giá trị là:
Trong không gian với hệ tọa độ , cho hai điểm
. Tìm tọa độ điểm
thuộc
sao cho
ngắn nhất.
Gọi là điểm sao cho
Suy ra J(2; 3; 1).
Khi đó
Vậy đạt GTNN khi và chỉ khi
đạt GTNN hay M là hình chiếu của J lên mặt phẳng (Oxy).
Vậy M(2; 3; 0).
Tìm họ nguyên hàm của hàm số ?
Ta có:
Cho số phức . Tìm số phức
?
Ta có:
Gọi là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành như hình vẽ:
Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là:
Từ hình vẽ ta thấy
Do đó
Vậy mệnh đề sai là:
Trong không gian , cho hai điểm
. Tìm tọa độ điểm
thỏa mãn hệ thức
?
Ta có:
Cho ba vectơ . Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?
Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.
Tìm họ các nguyên hàm của hàm số ?
Ta có:
Trong không gian với hệ tọa độ , cho hai mặt phẳng
. Chọn khẳng định đúng.
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Ta có
⇒ .
Tính tích phân ?
Ta có:
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức . Kết luận nào sau đây đúng?
Ta có:
Phương trình có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho hàm số là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Kí hiệu là hai nghiệm phức của phương trình
. Tính
Phương trình có hai nghiệm
.
Khi đó
Phần thực của số phức là:
Ta có:
Cho số phức thoả mãn
là số thực và
với
. Gọi
là một giá trị của
để có đúng một số phức thoả mãn bài toán. Khi đó:
Giả sử .
Đặt:
.
là số thực nên:
.
Mặt khác:
Thay (1) vào (2) được:
Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất .
(Vì là mô-đun).
Trong không gian với hệ tọa độ , cho mặt phẳng
và điểm
. Viết phương trình mặt phẳng (Q) đi qua A và song song với (P)?
Mặt phẳng (Q) và song song với (P) nên (Q) có dạng , với
Vì nên
.
Vậy .
Tìm một nguyên hàm của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.