Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Cho hàm số
xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Trong không gian
, cho hai vectơ
và
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm
đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)

Đáp án: N(1300; 750; 15,5)
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)
Đáp án: N(1300; 750; 15,5)
Gọi là tọa độ của máy bay sau 10 phút tiếp theo.
.
.
Vì máy bay giữ nguyên hướng bay nên và
cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ đến
gấp 4 lần thời gian bay từ
đến
nên
.
Suy ra:
Cho hình chóp
có đáy là hình thoi cạnh
,
, mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi
lần lượt là trung điểm các cạnh
và
là giao điểm của
với
. Khoảng cách từ trung điểm
của đoạn thẳng
đến mặt phẳng
bằng bao nhiêu?
Cho hình chóp có đáy là hình thoi cạnh
,
, mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi
lần lượt là trung điểm các cạnh
và
là giao điểm của
với
. Khoảng cách từ trung điểm
của đoạn thẳng
đến mặt phẳng
bằng bao nhiêu?
Trong không gian toạ độ
, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?
PTTQ của mặt phẳng có dạng , với
nên ta chọn
.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Gọi phương trình parabol .
Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)
Ta có hệ phương trình:
Vậy
Dựa vào đồ thị, diện tích cửa parabol là:
Số tiền phải trả là đồng.
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có: nên
là một nguyên hàm của hàm số
.
Cho số phức
và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Vậy là khẳng định đúng.
Tính tích phân
bằng cách đặt
. Công thức nào dưới đây chính xác?
Đặt
Suy ra
Tìm họ nguyên hàm của hàm số
?
Ta có:
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính khoảng cách
từ gốc toạ độ
đến mặt phẳng
?
Phương trình tổng quát của mặt phẳng có dạng:
Khoảng cách từ gốc tọa độ đến
là:
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Tìm nguyên hàm của hàm số ![]()
Ta có:
Cho hình hộp
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ ![]()
Hình vẽ minh họa
Ta có:
.
Vậy .
Biết số phức
thỏa mãn đồng thời hai điều kiện
và biểu thức
đạt giá trị nhỏ nhất. Tính
?
Theo giả thiết
Ta có
Xét điểm và
. Khi đó
Bài toán trở thành tìm điểm sao cho
đạt giá trị nhỏ nhất.
Vì nên hai điểm E, F nằm cùng phía đối với đường thẳng
.
Gọi E' là điểm đối xứng với E qua
Đường thẳng EE' đi qua điểm và có VTPT
nên có phương trình
Gọi H là giao điểm của EE' và . Tọa độ điểm H là nghiệm của hệ phương trình:
suy ra
E' đối xứng với E' qua H nên
Ta có
Dấu bằng xảy ra khi và chỉ khi M là giao điểm của E'F và đường thẳng
Đường thẳng E'F đi qua điểm và có VTPT
có phương trình
=>
Tọa độ điểm M là nghiệm của hệ phương trình
Vậy .
Tính góc của hai đường thẳng
và
.
Theo đề bài, ta có (d’) và (d) có vec-tơ chỉ phương lần lượt là:
Áp dụng công thức cosin của góc giữa 2 đường thẳng, ta có:
Trong không gian
, hãy tính
và
lần lượt là khoảng cách từ điểm
đến mặt phẳng
và mặt phẳng
?
Do mặt phẳng có phương trình y = 0 nên
Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên
Cho hàm số
xác định trên
thỏa mãn
;
. Tính
?
Trên khoảng ta có:
Mà
Trên khoảng ta có:
Mà
Vậy
.
Trong không gian với hệ tọa độ
, cho tam giác
có
. Độ dài đường cao của tam giác
kẻ từ
là:
Ta có:
Mà
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Biết
là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Cho số phức z thỏa mãn
. Tìm giá trị lớn nhất của biểu thức
.
Gọi .
Ta có:
.
Ta có:
Xét hàm số
.
Hàm số liên tục trên và với
ta có:
Ta có:
Tính diện tích hình phẳng giới hạn bởi đồ thị
của hàm số
và đồ thị
của hàm số
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng cần tìm là:
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Viết phương trình tổng quát của mặt phẳng
cắt hai trục
và
tại và tạo với mặt phẳng
một góc
.
Gọi là giao điểm của
và trục
Vecto pháp tuyến của là:
Vecto pháp tuyến của là:
Gọi là góc tạo bởi và
Vậy có hai mặt phẳng:
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Trong không gian
, cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Trong không gian , cho
. Biết
trong đó
là số nguyên dương. Tìm
?
Đáp án: 135
Ta có .
Suy ra .
.
Vậy
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Nguyên hàm của hàm số
là:
Ta có:
.
Trong không gian
, cho hai điểm
và
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án đúng là: .
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Do đó:
Diện tích nhỏ nhất giới hạn bởi parabol
và đường thẳng
là:
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Vì nên phương trình luôn có 2 nghiệm phân biệt
với
Ta có: .
Diện tích hình phẳng giới hạn bởi (P) và (d) là:
Vậy diện tích nhỏ nhất giới hạn bởi parabol và đường thẳng
là
.
Số phức
là số phức nào sau đây?
Cho tam giác ABC có
. Gọi BD và BE lần lượt là phân giác trong và phân giác ngoài của góc B với D và E là chân của hai phân giác này trên AC. Tính tọa độ vectơ ![]()
Gọi tọa độ điểm E là .
Ta có là trung điểm của AE nên ta tính được tọa độ điểm E lần lượt là:
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Tính số phức sau: z = (1+i)15
Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i
z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i
Một vật chuyển động với vận tốc thay đổi theo thời gian được tính bởi công thức
, thời gian tính theo đơn vị giây, quãng đường vật đi được tính theo đơn vị mét. Biết tại thời điểm
thì vật đi được quãng đường là
. Hỏi tại thời điểm
thì vật đi được quãng đường là bao nhiêu?
Quãng đường vật đi được từ thời điểm đến
Giá trị của
bằng
Ta có:
Cho hàm số
. Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành. Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm:
Diện tích hình phẳng cần tìm là:
((do trong khoảng (0; 1) và (1; 2) phương trình
vô nghiệm)
Vậy mệnh đề sai là: .
Trong không gian
, cho điểm
và đường thẳng
. Tính khoảng cách từ A đến đường thẳng d.
Gọi
Ta có .
Trong không gian với hệ tọa độ
, cho mặt phẳng
và điểm
. Viết phương trình đường thẳng qua
và vuông góc với
.
Mặt phẳng có vectơ pháp tuyến là
nên đường thẳng cần tìm có vectơ chỉ phương là
.
Vậy phương trình đường thẳng đi qua và vuông góc với
là:
Biết rằng
và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Trong không gian
, cho tam giác
với
. Đường trung tuyến xuất phát từ đỉnh
của tam giác
nhận vectơ nào dưới đây làm một véc-tơ chỉ phương?
Gọi là trung điểm của
, suy ra tọa độ điểm
.
Đường trung tuyến xuất phát từ đỉnh có vectơ chỉ phương là
.
Cho
. Với
, khẳng định nào sau đây đúng?
Xét , đặt t = ax + b
=>
=>
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .