Đề thi HK2 Toán 12 Đề 3

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tìm nguyên hàm F(t) =
\int_{}^{}txdt.

    Ta có:

    F(t) = \int_{}^{}txdt = x\int_{}^{}tdt =
x.\frac{t^{2}}{2} + C

  • Câu 2: Nhận biết

    Trong không gian Oxyz cho ba vectơ \vec a,\,\,\vec b\vec c  khác \vec 0 . Câu nào sai?

     Theo điều kiện để hai vecto cùng phương, ta có:

    \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]=\vec 0  Suy ra 

    • \vec a cùng phương \vec b \Leftrightarrow [\vec{a}, \vec{b}]= 0

    sai vì thiếu dấu vecto.

  • Câu 3: Thông hiểu

    Tìm phần thực, phần ảo của số phức z thỏa mãn \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}}

     Ta có: \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}} \Leftrightarrow \frac{z}{2} - i = \frac{{{{(1 + i)}^{3980}}}}{2}

    \Leftrightarrow \frac{z}{2} - i = {2^{1989}}.{i^{1990}} \Leftrightarrow z =  - {2^{1990}} + 2i

     Vậy số phức có phần thực là -2^{1990} và phần ảo là 2.

  • Câu 4: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 5: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x - 3)^{2} + (y - 1)^{2} =1.

    Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn (C) quanh trục hoành.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x - 3)^{2} + (y - 1)^{2} =1.

    Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn (C) quanh trục hoành.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 6: Thông hiểu

    Hàm số F(x) là một nguyên hàm của hàm số y = \frac{1}{x} trên ( - \infty;0) thỏa mãn F( - 2) = 0. Khẳng định nào sau đây đúng?

    Ta có: F(x) = \int_{}^{}{\frac{1}{x}dx} =
\ln|x| + C = \ln( - x) + C;\forall x \in ( - \infty;0)

    Lại có F( - 2) = 0 \Leftrightarrow \ln(2)
+ C = 0 \Rightarrow C = - ln2

    Do đó F(x) = \ln( - x) - ln2 = \ln\left(
- \frac{x}{2} ight)

    Vậy F(x) = \ln\left( - \frac{x}{2}
ight);\forall x \in ( - \infty;0).

  • Câu 7: Vận dụng

    Xét phương trình {z^3} = 1 trên tập số phức. Tập nghiệm của phương trình là:

     Ta có:

    {z^3} = 1 \Leftrightarrow \left( {z - 1} ight)\left( {{z^2} + z + 1} ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z^2} + z + 1 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z =  - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\end{array} ight.

    Suy ra: S = \left\{ {1; - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i} ight\}

  • Câu 8: Vận dụng cao

    Một khu vườn được quy hoạch để trồng hoa hồng được giới hạn bởi parabol và nửa đường tròn bán kính (phần tô màu trong hình vẽ). Hỏi số tiền tối thiểu để trồng kín hoa trong vườn? Biết mỗi mét vuông trồng hoa cần ít nhất 300.000 đồng.

    Tính số tiền tối thiểu để trồng kín hoa trong vườn

    Nửa đường tròn (T) có phương trình y = \sqrt {2 - {x^2}}

    Xét parabol (P) có trục đối xứng Oy nên có phương trình dạng y = a{x^2} + c

    (P) cắt Oy tại điểm \left( {0; - 1} ight) => c =  - 1

    (P) cắt (T) tại điểm \left( {1;1} ight) thuộc (T) => a + c = 1 \Rightarrow a = 2

    Phương trình (P) là: y = 2{x^2} - 1

    Diện tích miền phẳng D (phần tô màu trong hình là:

    \begin{matrix}  S = \int\limits_{ - 1}^1 {\left( {\sqrt {2 - {x^2}}  - 2{x^2} + 1} ight)dx}  \hfill \\   = \int\limits_{ - 1}^1 {\left( {\sqrt {2 - {x^2}} } ight)dx}  + \int\limits_{ - 1}^1 {\left( { - 2{x^2} + 1} ight)dx}  = {I_1} + {I_2} \hfill \\ \end{matrix}

    \Rightarrow {I_1} = \int\limits_{ - 1}^1 {\left( {\sqrt {2 - {x^2}} } ight)dx}  = \left. {\left( { - \frac{2}{3}{x^3} + x} ight)} ight|_{ - 1}^1 = \frac{2}{3}

    Xét {I_2} = \int\limits_{ - 1}^1 {\left( { - 2{x^2} + 1} ight)dx} đặt x = \sqrt 2 \sin t;t \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} ight]

    => dx = \sqrt 2 \cos tdt

    Ta có: x \in \left[ {1;1} ight] \Rightarrow t \in \left[ { - \frac{\pi }{4};\frac{\pi }{4}} ight]

    Khi đó ta có:

    \begin{matrix}  {I_2} = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\sqrt {2 - 2{{\sin }^2}t} .\sqrt 2 \cos tdt}  \hfill \\   = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {{{\cos }^2}tdt}  = \int\limits_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} {\left( {1 + \cos 2t} ight)dt}  \hfill \\   = \left. {\left( {t + \frac{1}{2}\sin 2t} ight)} ight|_{ - \frac{\pi }{4}}^{\frac{\pi }{4}} = 1 + \dfrac{\pi }{2} \hfill \\   \Rightarrow S = {I_1} + {I_2} = \dfrac{5}{3} + \dfrac{\pi }{2}\left( {{m^2}} ight) \hfill \\ \end{matrix}

    Số tiền trồng hoa tối thiểu là: 300000.\left( {\frac{5}{3} + \frac{\pi }{2}} ight) \approx 971239 đồng

  • Câu 9: Vận dụng cao

    Trong không gian Oxyz, cho \overrightarrow{a} = (1; - 1;0) và hai điểm A( - 4;7;3),B(4;4;5). Giả sử M;N là hai điểm thay đổi trong mặt phẳng (Oxy) sao cho \overrightarrow{MN} cùng hướng với \overrightarrow{a}MN = 5\sqrt{2}. Giá trị lớn nhất của |AM - BN| bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho \overrightarrow{a} = (1; - 1;0) và hai điểm A( - 4;7;3),B(4;4;5). Giả sử M;N là hai điểm thay đổi trong mặt phẳng (Oxy) sao cho \overrightarrow{MN} cùng hướng với \overrightarrow{a}MN = 5\sqrt{2}. Giá trị lớn nhất của |AM - BN| bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 10: Vận dụng cao

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Đáp án là:

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Gọi M(x; y) là điểm biểu diễn số phức z trong mặt phẳng phức.

    \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight| \Leftrightarrow \left| {z - 2i} ight|.\left| {z + 2i} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z = 2i\\\left| {z + 2i} ight| = \left| {z - 1 + 2i} ight|\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}x = 0;\;y = 2\\x = \frac{1}{2};\;y \in \mathbb R\end{array} ight.

    Vậy M= (0; 2) hoặc M \in d:x = \frac{1}{2}.

    Gọi I(-3;2) thì P=IM. Khi đó I{M_{\min }} = 3 hoặc I{M_{\min }} = d(I;d) = \frac{7}{2}.

    Vậy {P_{\min }} = 3.

  • Câu 11: Vận dụng

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    Đáp án là:

    Trong không gian Oxyz cho hai điểm M(2;3; - 1),N( - 1;1;1). Xác định tính đúng sai của từng phương án dưới đây:

    a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng

    b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là ( - 4; - 1;3). Đúng||Sai

    c) Cho P(1;m - 1;3), tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxy) thỏa mãn T = \left|
3\overrightarrow{IM} - \overrightarrow{IN} ight| đạt giá trị nhỏ nhất. Khi đó 2a + b + c = 9. Sai||Đúng

    a) Sai: Hình chiếu của điểm M trên trục Oy có tọa độ là (0;3;0)

    b) Đúng: Vì N là trung điểm của ME

    \Leftrightarrow \left\{ \begin{matrix}- 1 = \dfrac{2 + x_{E}}{2} \\1 = \dfrac{3 + y_{E}}{2} \\1 = \dfrac{- 1 + z_{E}}{2} \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x_{E} = - 4 \\y_{E} = - 1 \\z_{E} = 3 \\\end{matrix} \Rightarrow E( - 4; - 1;3) ight.\  ight..

    c) Đúng: Ta có \overrightarrow{NM} =
(3;2; - 2);\overrightarrow{NP} = (2;m - 2;2).

    \bigtriangleup MNP vuông tại N \Leftrightarrow\overrightarrow{NM}.\overrightarrow{NP} = 0

    \Leftrightarrow 3.2 + 2.(m - 2) + ( -
2).2 = 0 \Leftrightarrow m = 1.

    d) Sai.

    Gọi J(x;y;z) thỏa 3\overrightarrow{JM} - \overrightarrow{JN} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - ( - 1 - x) = 0 \\3(3 - y) - (1 - y) = 0 \\3( - 1 - z) - (1 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = \dfrac{7}{2} \\y = 4 \\z = - 2 \\\end{matrix} ight.\  ight.

    Suy ra J\left( \frac{7}{2};4; - 2
ight).

    Khi đó T = |3\overrightarrow{IM} -
\overrightarrow{IN}| = |3\overrightarrow{IJ} + 3\overrightarrow{JM} -
\overrightarrow{IJ} - \overrightarrow{JN}| = |2\overrightarrow{IJ}| =
2IJ.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của J trên (Oxy)

    \Leftrightarrow I\left( \frac{7}{2};4;0 ight).

    Vậy a = \frac{7}{2};b = 4;c =
0.

    Suy ra 2a+b+c=11

  • Câu 12: Vận dụng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x} trên khoảng (0;\pi). Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có: \int_{}^{}{f(x)dx} =\int_{}^{}{\dfrac{2\cos x - 1}{\sin^{2}x}dx} =\int_{}^{}{\dfrac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\dfrac{1}{\sin^{2}x}dx}

    = \int_{}^{}\frac{2d\left( \sin xight)}{\sin^{2}x} - \int_{}^{}{\frac{1}{\sin^{2}x}dx} = - \frac{2}{\sin x} + \cot x + C

    F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x} trên khoảng (0;\pi) nên hàm số F(x) có công thức dạng F(x) = - \frac{2}{\sin x} + \cot x + C với mọi x \in (0;\pi)

    Xét hàm số F(x) = - \frac{2}{\sin x} +
\cot x + C xác định và liên tục trên (0;\pi)

    Ta có: F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    \Rightarrow F'(x) = 0\Leftrightarrow \frac{2\cos x - 1}{\sin^{2}x} = 0

    \Leftrightarrow \cos x = \frac{1}{2}
\Leftrightarrow x = \pm \frac{\pi}{3} + k2\pi;\left( k\mathbb{\in Z}
ight)

    Trên khoảng (0;\pi) phương trình F'(x) = 0 có một nghiệm x = \frac{\pi}{3}

    Ta có bảng biến thiên như sau:

    \underset{(0;\pi)}{\max F(x)} = F\left(
\frac{\pi}{3} ight) = - \sqrt{3} + C. Theo bài ra ta có: - \sqrt{3} + C = \sqrt{3} \Rightarrow C =
2\sqrt{3}

    Do đó F(x) = - \frac{2}{\sin x} + \cot x
+ 2\sqrt{3} suy ra F\left(
\frac{\pi}{6} ight) = 3\sqrt{3} - 4.

  • Câu 13: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 14: Vận dụng

    Cho số phức w = x + yi;\left( {x,y \in \mathbb{R}} ight) thoả điều kiện \left| {{w^2} + 4} ight| = 2\left| w ight|.

    Đặt P = 8\left( {{x^2} - {y^2}} ight) + 12. Khẳng định nào sau đây đúng?

     Ta có:

    \left| {{w^2} + 4} ight| = 2\left| w ight| \Leftrightarrow \left| {{x^2} - {y^2} + 4 + 2xyi} ight| = 2\left| {x + yi} ight|

    \Leftrightarrow {\left( {{x^2} - {y^2} + 4} ight)^2} + 4{x^2}{y^2} = 4\left( {{x^2} + {y^2}} ight)

    \begin{matrix}   \Leftrightarrow {x^4} + {y^4} + 16 + 2{x^2}{y^2} + 4{x^2} - 12{y^2} = 0 \hfill \\   \Leftrightarrow {x^4} + {y^4} + 2{x^2}{y^2} - 4{x^2} - 4{y^2} + 4 + 8\left( {{x^2} - {y^2}} ight) + 12 = 0 \hfill \\ \end{matrix}

    \begin{matrix}   \Leftrightarrow 8\left( {{x^2} - {y^2}} ight) + 12 =  - \left( {{x^4} + {y^4} + 2{x^2}{y^2} - 4{x^2} - 4{y^2} + 4} ight) \hfill \\   \Leftrightarrow P =  - {\left( {{x^2} + {y^2} - 2} ight)^2} =  - {\left( {{{\left| {\text{w}} ight|}^2} - 2} ight)^2}. \hfill \\ \end{matrix}

    Nhận xét: câu này đáp án A cũng đúng vì \left| {\text{w}} ight| = \left| {\overline {\text{w}} } ight|.

  • Câu 15: Nhận biết

    Trong không gian Oxyz, cho điểm M(1;0;2). Mệnh đề nào sau đây đúng?

    Vì tọa độ điểm M(1;0;2)x = 1;y = 0;z = 2 nên M \in (Oxz).

  • Câu 16: Thông hiểu

    Hàm số y = f(x) có một nguyên hàm là F(x) = e^{2x}. Tìm nguyên hàm của hàm số \frac{f(x) +
1}{e^{x}}?

    Ta có: f(x) = F'(x) = \left( e^{2x}
ight)' = 2.e^{2x}

    \Rightarrow \int_{}^{}{\frac{f(x) +
1}{e^{x}}dx} = \int_{}^{}{\frac{2e^{2x} + 1}{e^{x}}dx}

    = 2e^{x} - e^{- x} + C

  • Câu 17: Nhận biết

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 18: Nhận biết

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

    Đáp án là:

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

     Ta có: z = \frac{{7 - 17i}}{{5 - i}} = \frac{{\left( {7 - 17i} ight)\left( {5 + i} ight)}}{{\left( {5 - i} ight)\left( {5 + i} ight)}} = \frac{{52 - 78i}}{{26}} = 2 - 3i

    Vậy phần thực của số phức z=2

  • Câu 19: Nhận biết

    Cho hình phẳng D giới hạn bới đường cong y = \sqrt {{x^2} + 1}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Thể tích cần tìm là: v = \pi \int\limits_0^1 {{{\left( {\sqrt {{x^2} + 1} } ight)}^2}dx}  = \frac{{4\pi }}{3}

  • Câu 20: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P):2x + 4y + 3z - 5 = 0(Q):mx - ny - 6z + 2\  = \ 0. Giá trị của m, n sao cho (P)//(Q)

    Ta có: (P) có vectơ chỉ phương \overrightarrow{u_{(P)}} = (2;4;3), (Q) có vectơ chỉ phương \overrightarrow{u_{(Q)}} = (m; - n; -
6)

    Để hai mặt phẳng song song thì \overrightarrow{u_{(P)}} =
k\overrightarrow{u_{(Q)}} \Leftrightarrow \left\{ \begin{matrix}
m = 2k \\
- n = 4k \\
- 6 = 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = - 2 \\
m = - 4 \\
n = 8 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: m = - 4;n =
8.

  • Câu 21: Vận dụng

    Cho tam giác ABC có A\left( { - 3,7,2} ight);\,\,B\left( {3, - 1,0} ight);\,\,\,C\left( {2,2, - 4} ight). Gọi BD và BE lần lượt là phân giác trong và phân giác ngoài của góc B với D và E là chân của hai phân giác này trên AC. Tính tọa độ của D.

    Theo đề bài, ta có: .\overrightarrow {AB} (6, - 8, - 2);\,\,\overrightarrow {BC} ( - 1,3, - 4)

    Áp dụng kiến thức: Bình phương tích vô hướng bằng bình phương độ dài, được:

    \left. \begin{array}{l}\overrightarrow {A{B^2}}  = A{B^2} = 36 + 64 + 4 = 104 \Rightarrow AB = 2\sqrt {26} \\{\overrightarrow {BC} ^2} = B{C^2} = 1 + 9 + 16 = 26 \Rightarrow BC = \sqrt {26} \end{array} ight\} \Rightarrow \frac{{BA}}{{BC}} = 2

    Mặt khác, D chia đoạn AC theo tỉ số k =  - 2

    Tọa đô của D là:

    x = \frac{{{x_A} - k{x_C}}}{{1 - k}} = \frac{{ - 3 + 4}}{3} = \frac{1}{3};\,

    \,y = \frac{{7 + 4}}{3} = \frac{{11}}{3};\,

    \,z = \frac{{2 - 8}}{3} =  - 2.

  • Câu 22: Nhận biết

    Trong không gian Oxyz, cho ba điểm M(0;1;0),N(2;0;0),P(0;0; - 3). Phương trình nào dưới đây là phương trình mặt phẳng (MNP)?

    Phương trình đoạn chắn của mặt phẳng (MNP) là: \frac{x}{2} + \frac{y}{1} + \frac{z}{- 3} =
1

  • Câu 23: Nhận biết

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 1x =
3 bằng

    Diện tích hình giới hạn là S =
\int_{1}^{3}{\left| x^{3} ight|dx} = \left| \int_{3}^{3}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{1}^{3}
ight| = 20

  • Câu 24: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D'. Khẳng định nào dưới đây là sai?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC}

    Vậy đáp án sai là: \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{A'A} =
\overrightarrow{AC}.

  • Câu 25: Nhận biết

    Kí hiệu {z_1},{z_2} là hai nghiệm phức của phương trình 3{z^2} - z + 1 = 0. Tính P = \left| {{z_1}} ight| + \left| {{z_2}} ight|

    Phương trình 3{z^2} - z + 1 = 0 có hai nghiệm {z_{1,2}} = \frac{{1 \pm i\sqrt {11} }}{6}.

    Khi đó P = \left| {{z_1}} ight| + \left| {{z_2}} ight| = \frac{{2\sqrt 3 }}{3}

  • Câu 26: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - y + 1 = 0. Trong các mệnh đề sau, mệnh đề nào sai?

    Mặt phẳng (P) có một véc-tơ pháp tuyến \overrightarrow{n_{P}} = (2; - 1;0).

    Ta có \frac{2}{2} = \frac{- 1}{1} eq
\frac{0}{1} nên \overrightarrow{n_{P}} không cùng phương với \overrightarrow{n} = (2; -
1;1).

    Suy ra \overrightarrow{n} = (2; -
1;1) không là vectơ pháp tuyến của (P).

    Vậy khẳng định sai là: “Vectơ \overrightarrow{n} = (2; - 1;1) là một véc-tơ pháp tuyến của (P)”.

  • Câu 27: Thông hiểu

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 28: Nhận biết

    Tìm họ nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{2x + 1}}

     \int {\frac{1}{{2x + 1}}dx}  = \frac{1}{2}\ln \left| {2x + 1} ight| + C

  • Câu 29: Thông hiểu

    Số phức z = \frac{{3 - 4i}}{{4 - i}} bằng:

     Ta có: z = \frac{{3 - 4i}}{{4 - i}} = \frac{{16}}{{17}} - \frac{{13}}{{17}}i

  • Câu 30: Vận dụng cao

    Cho số phức z thỏa mãn \left| {i.z + 3} ight| = \sqrt {\frac{5}{2}}. Giá trị lớn nhất của biểu thức P = \left| {2{\text{z}} + 1 - 4i} ight| + \left| {z - 1 - 5i} ight| là:

    Ta gọi M(x;y) là điểm biểu diễn số phức z

    \left| {i.z + 3} ight| = \sqrt {\frac{5}{2}}  \Leftrightarrow {x^2} + {\left( {y - 3} ight)^2} = \frac{5}{2}

    => M(x;y) \in C\left( {I(0;3);R = \sqrt {\frac{5}{2}} } ight)

    Khi đó:

    \begin{matrix}  P = \left| {2{\text{z}} + 1 - 4i} ight| + \left| {z - 1 - 5i} ight| \hfill \\   = 2\left| {{\text{z}} + \frac{1}{2} - 2i} ight| + \left| {z - 1 - 5i} ight| \hfill \\   = 2\left| {\overrightarrow {MA} } ight| + \left| {\overrightarrow {MB} } ight| \hfill \\ \end{matrix}

    với A\left( { - \frac{1}{2};2} ight);B\left( {1;5} ight)

    Ta có: \overrightarrow {IA}  = \left( { - \frac{1}{2}; - 1} ight),;\overrightarrow {IB}  = \left( {1;2} ight) suy ra \overrightarrow {IB}  =  - 2.\overrightarrow {IA}.

    Theo định lý Stewart ta có:

    \sqrt 5 M{A^2} + \frac{{\sqrt 5 }}{2}M{B^2} = \frac{{3\sqrt 5 }}{2}\left( {M{I^2} + \frac{{\sqrt 5 }}{2}.\sqrt 5 } ight)

    \Rightarrow 2M{A^2} + M{B^2} = 15

    (Hoặc có thể chứng minh theo phương pháp véc tơ

    \overrightarrow {MI}  = \overrightarrow {MA}  + \overrightarrow {AB}  = \overrightarrow {MA}  + \frac{1}{3}\overrightarrow {AB}  = \overrightarrow {MA}  + \frac{1}{3}\left( {\overrightarrow {MB}  - \overrightarrow {MA} } ight) = \frac{2}{3}\overrightarrow {MA}  + \frac{1}{3}\overrightarrow {MB}

    Suy ra:

    \begin{matrix}  M{I^2} = \dfrac{4}{9}M{A^2} + \dfrac{1}{9}M{B^2} + \dfrac{4}{9}MA.MB.cos\left( {\overrightarrow {MA} ,\overrightarrow {MB} } ight) \hfill \\   = \dfrac{4}{9}M{A^2} + \dfrac{1}{9}M{B^2} + \dfrac{4}{9}MA.MB.cos\widehat {AMB} \hfill \\   = \dfrac{4}{9}M{A^2} + \dfrac{1}{9}M{B^2} + \dfrac{4}{9}MA.MB\left( {\dfrac{{M{A^2} + M{B^2} - A{B^2}}}{{2.MA.MB}}} ight) \hfill \\   = \dfrac{2}{3}M{A^2} + \dfrac{1}{3}M{B^2} - \dfrac{2}{9}A{B^2} \hfill \\   \Rightarrow 2M{A^2} + M{B^2} = 3M{I^2} + \dfrac{2}{3}A{B^2} = 15 \hfill \\ \end{matrix}

    Khi đó suy ra:

    P = 2\left| {\overrightarrow {MA} } ight| + \left| {\overrightarrow {MB} } ight|

    = \left( {\sqrt {2.} \sqrt 2 .MA + MB} ight) \leqslant \sqrt {\left( {{{\sqrt 2 }^2} + {1^2}} ight)\left( {2M{A^2} + M{B^2}} ight)}  = \sqrt {45}  = 3\sqrt 5 .

  • Câu 31: Thông hiểu

    Cho ba điểm A\left( {3,1,0} ight);\,\,\,B\left( {2,1, - 1} ight);\,\,\,C\left( {x,y, - 1} ight). Tìm tọa độ của C để ABC là tam giác đều?

     Tam giác ABC đều

    \begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}AC = AB\\BC = AB\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{x^2} + {y^2} - 6x - 2y + 9 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 1 ight)\\{x^2} + {y^2} - 4x - 2y + 3 = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 ight)\end{array} ight.\\\left( 2 ight) - \left( 1 ight):2x - 6 = 0 \Leftrightarrow x = 3 \Rightarrow {y^2} - 2y = 0 \Leftrightarrow y = 2 \vee y = 0\end{array}

    Suy ra tọa độ điểm C là có 2 nghiệm C thỏa mãn: 

    C\left( {3;2; - 1} ight);C'\left( {3;0; - 1} ight)

  • Câu 32: Thông hiểu

    Cho \int {f\left( x ight)dx}  = F\left( x ight) + C. Với a e 0, khẳng định nào sau đây đúng?

     Xét \int {f\left( {ax + b} ight)dx}, đặt t = ax + b

    => I = \int {f\left( t ight)d\left( {\frac{{t - b}}{a}} ight) = \frac{1}{a}} \int {f\left( t ight)dt = \frac{1}{a}} \int {f\left( x ight)d} x

    => \int {f\left( {ax + b} ight)d\left( {ax + b} ight) = \frac{1}{a}\left[ {F\left( {ax + b} ight) + C'} ight] = \frac{1}{a}F\left( {ax + b} ight) + C}

  • Câu 33: Nhận biết

    Cho số phức z thỏa mãn z + \frac{{2{{\left( {2 - i} ight)}^3}\overline z }}{{1 + i}} + {\left( {4 + i} ight)^5} = 422 + 1088i . Khẳng định nào sau đây là khẳng định đúng?

     Gọi z = x + yi,x,y \in \mathbb{R} tìm được z = 1 - 2i.

    Tính mô đun ta được  \left| z ight| = \sqrt 5.

  • Câu 34: Thông hiểu

    Tích phân I = \int\limits_1^a {\left( {\frac{a}{x} + \frac{x}{a}} ight)dx}, với a e 0 có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_1^a {\left( {\dfrac{a}{x} + \dfrac{x}{a}} ight)dx}  = \left. {\left( {a\ln \left| x ight| + \dfrac{{{x^2}}}{{2a}}} ight)} ight|_1^a \hfill \\  = a\ln \left| a ight| + \dfrac{a}{2} - \dfrac{1}{{2a}} = a\ln \left| a ight| + \dfrac{{{a^2} - 1}}{{2a}} \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Tích phân I = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{2}} {\left( {\sin ax + \cos ax} ight)dx}, với a e 0 có giá trị là:

     Ta có:

    \begin{matrix}  I = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} {\left( {\sin ax + \cos ax} ight)dx}  \hfill \\ = \left. {\left( { - \dfrac{1}{a}\cos ax + \dfrac{1}{a}\sin ax} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} \hfill \\ \end{matrix}

    \begin{matrix}= \left. {\left( {\dfrac{{\sqrt 2 }}{a}\sin \left( {ax - \dfrac{\pi }{4}} ight)} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{2}} \hfill \\= \dfrac{{\sqrt 2 }}{a}\left[ {\sin \left( {a\dfrac{\pi }{2} - \dfrac{\pi }{4}} ight) + \sin \left( {a\dfrac{\pi }{2} + \dfrac{\pi }{4}} ight)} ight] \hfill \\ \end{matrix}

     

  • Câu 36: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{1} = \frac{y + 2}{1} = \frac{z- 3}{- 1},d_{2}:\frac{x}{1} = \frac{y - 1}{2} = \frac{z - 6}{3} chéo nhau. Viết phương trình đường vuông góc chung của d_{1},d_{2}.

    Đường thẳng d_{1},d_{2} lần lượt có vectơ chỉ phương là \overrightarrow{u_{1}} = (1;1; -
1),\overrightarrow{u_{2}} = (1;2;3)

    Giả sử ∆ giao với d_{1},d_{2} lần lượt tại \left\{ \begin{matrix}
A(1 + s; - 2 + s;3 - s) \\
B(t;1 + 2t;6 + 3t) \\
\end{matrix} ight., khi đó ta có \overrightarrow{AB} = ( - 1 - s + t;3 - s + 2t;3 +
s + 3t)

    Do ∆ là đường vuông góc chung, suy ra:

    \left\{ \begin{matrix}
\overrightarrow{u_{1}}.\overrightarrow{AB} = 0 \\
\overrightarrow{u_{2}.}\overrightarrow{AB} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
1( - 1 - s + t) + 1(3 - s + 2t) - 1(3 + s + 3t) = 0 \\
1( - 1 - s + t) + 2(3 - s + 2t) + 3(3 + s + 3t) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- 3s = 1 \\14t = - 14 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}s = - \dfrac{1}{3} \\t = - 1 \\\end{matrix} ight.

    Đường vuông góc chung của d_{1},d_{2} nhận \overrightarrow{AB} = \left( -
\frac{5}{3};\frac{4}{3}; - \frac{1}{3} ight) làm VTCP và đi qua điểm B( - 1; - 1;3)

    Vậy ta có phương trình đường thẳng: \frac{x + 1}{5} = \frac{y + 1}{- 1} = \frac{z -
3}{1}

  • Câu 37: Thông hiểu

    Cho hai số phức {z_1} = 2 + i,{z_2} = 3 - 4i. Môđun của số phức \left( {{z_1} - {z_2}} ight) là:

     Ta có: \left| {{z_1} - {z_2}} ight| = \left| {2 + i - 3 + 4i} ight| = \left| { - 1 + 5i} ight| = \sqrt {26}

  • Câu 38: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm A(1;2;3) và vuông góc với mặt phẳng (\alpha):4x + 3y - 7z + 1 = 0. Phương trình tham số của d là:

    Đường thẳng d vuông góc với mặt phẳng (\alpha) nên nhận vectơ \overrightarrow{n_{(\alpha)}} làm véc-tơ chỉ phương.

    Suy ra, phương trình đường thẳng: \left\{
\begin{matrix}
x = 1 + 4t \\
y = 2 + 3t \\
z = 3 - 7t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 39: Nhận biết

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

  • Câu 40: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng (\alpha):x + 3y - 5z + 6 = 0(\beta):x - y + 3z - 6 = 0. Phương trình tham số của d là:

    Nhận thấy A(1;1;2),B(2; - 1;1) đều thuộc (α) và (β) nên chúng cũng thuộc đường thẳng d.

    Ta có \overrightarrow{AB} = (1; - 2; -
1) là một vectơ chỉ phương của d.

    Khi đó phương trình tham số của d là: \left\{
\begin{matrix}
x = 1 + t \\
y = 1 - 2t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 41: Thông hiểu

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 42: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =
3x + 1?

    Ta có:

    \int_{}^{}{(3x + 1)dx} =
\frac{1}{3}\int_{}^{}{(3x + 1)d(3x + 1)}

    = \frac{1}{3}.\frac{(3x + 1)^{2}}{2} + C
= \frac{1}{6}(3x + 1)^{2} + C

  • Câu 43: Thông hiểu

    Xác định nguyên hàm F(x) của hàm số f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1}?

    Ta có:

    f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1} = \frac{(x + 1)^{3} - 2}{(x + 1)^{2}} = x + 1 -
\frac{2}{(x + 1)^{2}}

    \Rightarrow F(x) = \frac{x^{2}}{2} + x +
\frac{2}{x + 1} + C

  • Câu 44: Thông hiểu

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 45: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 46: Nhận biết

    Số phức liên hợp của số phức 3 - 2i là

     \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 2i}  = 3 - ( - 2i) = 3 + 2i

  • Câu 47: Vận dụng

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm M thoả mãn OM
= 7. Biết rằng khoảng cách từ M tới mặt phẳng (Oxz),(Oyz) lần lượt là 2 và 3. Tính khoảng cách từ M đến mặt phẳng (Oxy).

    Ta có: (Oxz):y = 0,(Oyz):x =
0

    Giả sử M(a;b;c) khi đó ta có:

    \left\{ \begin{matrix}
OM = 7 \\
d\left( M;(Oxz) ight) = 2 \\
d\left( M;(Oyz) ight) = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} = 49 \\
b^{2} = 4 \\
a^{2} = 9 \\
\end{matrix} ight.\  \Rightarrow c^{2} = 36

    d\left( M;(Oxy) ight) = \sqrt{c^{2}}
= 6

  • Câu 48: Thông hiểu

    Cho hình thang cong (H) giới hạn bởi các đường y = \frac{1}{x};y = 0;x = 1;x
= 5. Đường thẳng x = k;1 < k
< 5 chia (H) thành hai phần có diện tích S_{1}S_{2} (hình vẽ bên).

    Tính giá trị k để S_{1} = 2S_{2}?

    Ta có: \frac{1}{x} > 0;x >
1 do đó ta được:

    S_{1} = \int_{1}^{k}{\frac{1}{x}dx} =
\left. \ \ln x ight|_{1}^{k} = \ln k

    S_{2} = \int_{k}^{5}{\frac{1}{x}dx} =
\left. \ \ln x ight|_{k}^{5} = ln5 - \ln k

    Theo bài ra ta có:

    S_{1} = 2S_{2}

    \Leftrightarrow \ln k = 2\left( ln5 - \ln
k ight) \Leftrightarrow k = \sqrt[3]{25}.

  • Câu 49: Thông hiểu

    Gọi H(a;b;c) là hình chiếu của A(2; - 1;1) lên đường thẳng (d):\left\{ \begin{matrix}
x = 1 \\
y = 4 + 2t \\
z = - 2t \\
\end{matrix} ight.. Đẳng thức nào dưới đây đúng?

    H \in (d) \Rightarrow \left\{
\begin{matrix}
H(1;4 + 2t; - 2t) \\
\overrightarrow{AH} = ( - 1;5 + 2t; - 1 - 2t) \\
\end{matrix} ight.

    (d) có vtcp \overrightarrow{u} = (0;2; -
2)

    \overrightarrow{AH}.\overrightarrow{u} =
0 \Leftrightarrow ( - 1).0 + (5 + 2t)2 + ( - 1 - 2t)( - 2) =
0

    \Leftrightarrow 8t + 12 = 0
\Leftrightarrow t = - \frac{3}{2}

    Suy ra H(1;1;3). Vậy a + 2b + 3c = 12

  • Câu 50: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 43 lượt xem
Sắp xếp theo