Đề thi HK2 Toán 12 Đề 3

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho vectơ \overrightarrow{OM} có độ dài \left| \overrightarrow{OM} ight| = 1, gọi \alpha;\beta;\gamma lần lượt là góc tạo bởi ba vectơ đơn vị \overrightarrow{i};\overrightarrow{j};\overrightarrow{k} trên ba trục Ox;Oy;Oz và vectơ \overrightarrow{OM}. Khi đó tọa độ điểm M là:

    Gọi M(x;y;z) \Rightarrow
\overrightarrow{OM} = (x;y;z)\overrightarrow{i} = (1;0;0),\overrightarrow{j} =
(0;1;0),\overrightarrow{k} = (0;0;1)

    \left\{ \begin{matrix}\cos\alpha = \dfrac{\overrightarrow{OM}.\overrightarrow{i}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{i} ight|} = x \\\cos\beta = \dfrac{\overrightarrow{OM}.\overrightarrow{j}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{j} ight|} = y \\\cos\gamma = \dfrac{\overrightarrow{OM}.\overrightarrow{k}}{\left|\overrightarrow{OM} ight|.\left| \overrightarrow{k} ight|} = z \\\end{matrix} ight.\  \Rightarrow M\left( \cos\alpha;\cos\beta;\cos\gammaight)

  • Câu 2: Thông hiểu

    Cho hai số phức {z_1} = 2 + i,{z_2} = 3 - 4i. Môđun của số phức \left( {{z_1} - {z_2}} ight) là:

     Ta có: \left| {{z_1} - {z_2}} ight| = \left| {2 + i - 3 + 4i} ight| = \left| { - 1 + 5i} ight| = \sqrt {26}

  • Câu 3: Thông hiểu

    Cho \int_{}^{}{\frac{1}{x^{2} - 1}dx} =
a\ln|x - 1| + b\ln|x + 1| + C với a;b là các số hữu tỉ. Khi đó a - b bằng:

    Ta có: \frac{1}{x^{2} - 1} = \frac{1}{(x
- 1)(x + 1)} = \frac{1}{x - 1} - \frac{1}{x + 1}

    \Rightarrow \int_{}^{}{\frac{1}{x^{2} -
1}dx} = \int_{}^{}{\left( \frac{1}{x - 1} - \frac{1}{x + 1} ight)dx} =
\frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C

    Suy ra a = \frac{1}{2};b = - \frac{1}{2}
\Rightarrow a - b = 1.

  • Câu 4: Nhận biết

    Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số y =  - {x^2} + 2x - 2, trục hoành và các đường thẳng x = 0;x = 3

    Diện tích S của hình phẳng trên là: S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}

    Ta có: - {x^2} + 2x - 2 \leqslant 0;\forall x \in \left[ {0;3} ight]

    => S = \int\limits_0^3 {\left| { - {x^2} + 2x - 2} ight|dx}  = \int\limits_0^3 {\left( {{x^2} - 2x + 2} ight)dx = \left. {\left( {\frac{{{x^3}}}{3} - {x^2} + 2x} ight)} ight|_0^3 = 6\left( {dvdt} ight)}

  • Câu 5: Nhận biết

    Tính diện tích hình phẳng giới hạn bởi các đường thẳng y = \cos x;Ox;x = - \frac{\pi}{2};x =
\frac{\pi}{2}?

    Hình vẽ minh họa

    Ta có: \cos x = 0 \Rightarrow x =
\frac{\pi}{2} + k\pi;k\mathbb{\in Z}

    Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng \left( - \frac{\pi}{2};\frac{\pi}{2}
ight)

    Diện tích hình giới hạn là S = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\left| \cos x ight|dx} = \left| \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}{\cos xdx} ight| = \left| \left. \ \sin x ight|_{- \frac{\pi}{2}}^{\frac{\pi}{2}} ight| = 2

  • Câu 6: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng (\alpha):x - 2y - 2z + 4 = 0(\beta): - x + 2y + 2z - 7 = 0. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?

    Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).

    \Rightarrow d\left\lbrack
(\alpha);(\beta) ightbrack = d\left( A;(\beta) ight) = \frac{|4 -
7|}{\sqrt{1 + 4 + 4}} = 1.

  • Câu 7: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 8: Nhận biết

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

    Đáp án là:

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

     Ta có: \overline z  = 24 + 7i \Rightarrow z = 24 - 7i

    Suy ra a + bi=10.

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho vật thể (H) giới hạn bởi hai mặt phẳng có phương trình x = ax = b với a
< b. Gọi f(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a \leq x \leq b. Biết hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack, khi đó thể tích V của vật thể (H) được cho bởi công thức:

    f(x) là diện tích thiết diện của (H) bị cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ là x, với a \leq x \leq b ta có: V = \int_{a}^{b}{f(x)}dx không phải là V = \pi{\int_{a}^{b}\left\lbrack f(x)
ightbrack}^{2}dx.

  • Câu 10: Vận dụng cao

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}}, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)

     Ta có: f\left( x ight) = \frac{1}{{{x^2}\left( {x + 1} ight)}} = \frac{A}{x} + \frac{B}{{{x^2}}} + \frac{C}{{x + 1}} = \frac{{\left( {A + C} ight){x^2} + (A + B)x + B}}{{{x^2}\left( {x + 1} ight)}}

    => \left\{ {\begin{array}{*{20}{c}}  {A + C = 0} \\   {B = 1} \\   {A + B = 0} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {A =  - 1} \\   {B = 1} \\   {B = 1} \end{array}} ight.

    => F\left( x ight) = \int {f\left( x ight)dx = \int {\left( { - \frac{1}{x} + \frac{1}{{{x^2}}} + \frac{1}{{x + 1}}} ight)dx} }

    => F\left( x ight) =  - \ln \left| x ight| - \frac{1}{x} + \ln \left| {x + 1} ight| + C = \ln \left| {\frac{{x + 1}}{x}} ight| - \frac{1}{x} + C

    Khi đó: F\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_1}{\text{ khi x}} \in \left( {0; + \infty } ight)} \\   {\ln \left( {\dfrac{{ - x - 1}}{x}} ight) - \dfrac{1}{x} + {C_2}{\text{ khi x}} \in \left( { - 1; + \infty } ight)} \\   {\ln \left( {\dfrac{{x + 1}}{x}} ight) - \dfrac{1}{x} + {C_3}{\text{ khi x}} \in \left( { - \infty ; - 1} ight)} \end{array}} ight.

    Theo bài ra ta có: F(x) + F(-2) = 0,5

    => \left( {\ln 2 - 1 + {C_1}} ight) + \left( {\ln \frac{1}{2} + \frac{1}{2} + {C_2}} ight) = \frac{1}{2}

    => {C_1} + {C_2} = 1

    => F\left( 2 ight) + F\left( { - 3} ight) = \left( {\ln \frac{3}{2} + \frac{1}{2} + {C_1}} ight) + \left( {\ln \frac{2}{3} + \frac{1}{2} + {C_1}} ight) = \frac{5}{6}

  • Câu 11: Vận dụng

    Cho tam giác ABC có A\left( { - 3,7,2} ight);\,\,B\left( {3, - 1,0} ight);\,\,\,C\left( {2,2, - 4} ight). Gọi BD và BE lần lượt là phân giác trong và phân giác ngoài của góc B với D và E là chân của hai phân giác này trên AC. Tính tọa độ vectơ \overrightarrow {BE}

    Gọi tọa độ điểm E là E(x_E; y_E; z_E).

    Ta có \overrightarrow {EA}  = 2\overrightarrow {EC}  \Rightarrow C là trung điểm của AE nên ta tính được tọa độ điểm E lần lượt là: 

    \Rightarrow {x_E} = 2{x_C} - {x_A} = 4 + 3 = 7;\,

    \,{y_E} = 4 - 7 =  - 3;\,

    \,{z_E} =  - 8 - 2 =  - 10

    \Rightarrow \overrightarrow {BE}  = \left( {7 - 3, - 3 + 1, - 10 - 0} ight) = \left( {4, - 2, - 10} ight)

  • Câu 12: Nhận biết

    Cho hai số phức {z_1} = 5 - 7i{z_2} = 2 + 3i. Tìm số phức z = {z_1} + {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} + {z_2} \hfill \\  = \left( {5 - 7i} ight) + \left( {2 + 3i} ight) \hfill \\   = (5 + 2) + ( - 7 + 3)i \hfill \\ = 7 - 4i \hfill \\ \end{matrix}

  • Câu 13: Thông hiểu

    Cho tích phân I = \int_{0}^{4}{f(x)dx} =
32. Tính tích phân H =
\int_{0}^{2}{f(2x)dx}?

    Đặt t = 2x \Rightarrow dt = 2dx
\Rightarrow dx = \frac{dt}{2}

    Đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 0 \\
x = 2 \Rightarrow t = 4 \\
\end{matrix} ight.

    Khi đó H =
\frac{1}{2}\int_{0}^{4}{f(t)dt} = \frac{1}{2}.32 = 16

  • Câu 14: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; - 2; - 1),B\left( - \frac{4}{3}; -
\frac{8}{3};\frac{8}{3} ight). Đường thẳng \Delta đi qua tâm đường tròn nội tiếp tam giác OAB và vuông góc với mặt phẳng (OAB). Hỏi \Delta đi qua điểm nào dưới đây?

    Ta có: OA = 3,OB = 4,AB = 5

    Gọi I là tâm đường tròn nội tiếp tam giác OAB.

    \left\{ \begin{matrix}
x_{I} = \frac{AB.x_{O} + OB.x_{A} + OA.x_{B}}{AB + OB + OA} \\
y_{I} = \frac{AB.y_{O} + OB.y_{A} + OA.y_{B}}{AB + OB + OA} \\
z_{I} = \frac{AB.z_{O} + OB.z_{A} + OA.z_{B}}{AB + OB + OA} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{5.0 + 4.2 + 3.\left( - \frac{4}{3} ight)}{5 + 4 + 3} \\
y_{I} = \frac{5.0 + 4.( - 2) + 3.\left( - \frac{8}{3} ight)}{5 + 4 +
3} \\
z_{I} = \frac{5.0 + 4.( - 1) + 3.\frac{8}{3}}{5 + 4 + 3} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{1}{3} \\
y_{I} = - \frac{4}{3} \\
z_{I} = \frac{1}{3} \\
\end{matrix} ight.\  \Rightarrow I\left( \frac{1}{3}; -
\frac{4}{3};\frac{1}{3} ight)

    \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = ( - 8; - 4; - 8)
= - 4(2;1;2)

    Phương trình đường thẳng \Delta:\frac{x -
\frac{1}{3}}{2} = \frac{y + \frac{4}{3}}{1} = \frac{z -
\frac{1}{3}}{2}

    Đường thẳng ∆ đi qua điểm M(1; −1; 1).

  • Câu 15: Nhận biết

    Hàm số y = {x^3} + x có nguyên hàm là:

     Ta có: \int {\left( {{x^3} + x} ight)dx}  = \int {{x^3}dx}  + \int {xdx}  = \frac{1}{4}{x^4} + \frac{1}{2}{x^2} + C

  • Câu 16: Vận dụng

    Giá trị của b và c để phương trình {z^2} + bz + c = 0 nhận z = 1 + i  làm nghiệm là?

     Do z = 1 + i là nghiệm của phương trình đã cho nên:

    {\left( {1 + i} ight)^2} + b\left( {1 + i} ight) + c = 0

    \Leftrightarrow 2i + b + bi + c = 0 \Leftrightarrow b + c + \left( {2 + b} ight)i = 0

    \Leftrightarrow \left\{ \begin{array}{l}b + c = 0\\2 + b = 0\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}b =  - 2\\c = 2\end{array} ight.

  • Câu 17: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1;1;4),B(2;7;9)C(0;9;13).

    Ta có: \overrightarrow{AB} =
(1;6;5),\overrightarrow{AC} = ( - 1;8;9)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (14; - 14;14) =
14(1; - 1;1)

    Mặt phẳng (ABC) đi qua điểm A(1;1;4) và nhận \overrightarrow{n} = (1; - 1;1) làm vectơ pháp tuyến có phương trình là:

    x - 1 - (y - 1) + z - 4 = 0

    \Leftrightarrow x - y + z - 4 =
0

  • Câu 18: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {e^{ - 2x}} + \frac{1}{{\sqrt x }}

     \begin{matrix}  \int {\left( {{e^{ - 2x}} + \dfrac{1}{{\sqrt x }}} ight)dx}  = \int {{e^{ - 2x}}dx}  + \int {\dfrac{1}{{\sqrt x }}} dx =  - \dfrac{1}{2}\int {{e^{ - 2x}}d\left( { - 2x} ight)}  + 2\int {\dfrac{1}{{2\sqrt x }}} dx \hfill \\   =  - \dfrac{{{e^{ - 2x}}}}{2} + 2\sqrt x  + C =  - \dfrac{1}{{2{e^{2x}}}} + 2\sqrt x  + C \hfill \\ \end{matrix}

  • Câu 19: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 20: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Khi xe dừng hẳn thì vận tốc bằng 0m/s.

    Khi xe dừng hẳn thì v(t) = 0m/s nên 0 = - 5t + 20 \Leftrightarrow t =
4s.

    Nguyên hàm của hàm số vận tốc \int_{}^{}{( - 5t + 20)dt = \frac{- 5t^{2}}{2} +
20t + C}, C\mathbb{\in
R}.

    Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là

    \int_{0}^{4}{( - 5t + 20)dt} = \left. \
\left( \frac{- 5t^{2}}{2} + 20t ight) ight|_{0}^{4} =
40m.

  • Câu 21: Thông hiểu

    Cho lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{u};\overrightarrow{AB} =
\overrightarrow{v};\overrightarrow{AC} = \overrightarrow{w}. Biểu diễn vectơ \overrightarrow{BC'} qua các vectơ \overrightarrow{u};\overrightarrow{v};\overrightarrow{w}. Chọn đáp án đúng?

    Ta có:

    \overrightarrow{BC'} =
\overrightarrow{BC} + \overrightarrow{CC'} = \overrightarrow{BA} +
\overrightarrow{AC} + \overrightarrow{CC'}

    = - \overrightarrow{v} +
\overrightarrow{w} + \overrightarrow{u} = \overrightarrow{u} -
\overrightarrow{v} + \overrightarrow{w}

    Vậy đáp án đúng là: \overrightarrow{BC'} = \overrightarrow{u} -
\overrightarrow{v} + \overrightarrow{w}.

  • Câu 22: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 23: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x + 5?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +
5)dx} = x^{2} + 5x + C

  • Câu 24: Vận dụng cao

    Cho số phức z thỏa mãn \left| {z - 3 - 4i} ight| = \sqrt 5. Gọi M, n lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức P = {\left| {z + 2} ight|^2} - {\left| {z - i} ight|^2}. Khi đó mô đun của số phức {\text{w}} = M + mi

     Giả sử z = x + yi\left( {x,y \in R} ight) ta có:

    \left| {z - 3 - 4i} ight| = \sqrt 5

    \Leftrightarrow {\left( {x - 3} ight)^2} + {\left( {y - 4} ight)^2} = 5

    Ta có

    P = 4x + 2y + 3 \Leftrightarrow 4\left( {x - 3} ight) + 2\left( {y - 4} ight) = P - 23

    Ta có

    {\left[ {4\left( {x - 3} ight) + 2\left( {y - 4} ight)} ight]^2} \leqslant 20\left[ {{{\left( {x - 3} ight)}^2} + {{\left( {y - 4} ight)}^2}} ight] = 100

    => - 10 \leqslant P - 23 \leqslant 10

    \Leftrightarrow 13 \leqslant P \leqslant 33

    => M = 33,m = 13

    Ta thu được kết quả: w = 33 + 13i

    => \left| {\text{w}} ight| = \sqrt {1258}

     

  • Câu 25: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(1;3; - 1),B(3; - 1;5). Tìm tọa độ điểm M thỏa mãn hệ thức \overrightarrow{MA} =
3\overrightarrow{MB}?

    Ta có: \overrightarrow{MA} =3\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} - 3x_{B}}{1 - 3} = 4 \\y_{M} = \dfrac{y_{A} - 3y_{B}}{1 - 3} = - 3 \\z_{M} = \dfrac{z_{A} - 3z_{B}}{1 - 3} = 8 \\\end{matrix} ight.\  \Rightarrow M(4; - 3;8)

  • Câu 26: Nhận biết

    Trong \mathbb C, phương trình 2x^2+x+1=0 có nghiệm là:

     Ta có: \Delta  = {b^2} - 4ac = {1^2} - 4.2.1 =  - 7 = 7{i^2} < 0 nên phương trình có hai nghiệm phức là: {x_{1,2}} = \frac{{ - 1 \pm i\sqrt 7 }}{4}

  • Câu 27: Vận dụng

    Cho hàm số f(x) đồng biến và có đạo hàm cấp hai trên đoạn \lbrack
0;2brack và thỏa mãn 2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0 với \forall x \in \lbrack
0;2brack. Biết rằng f(0) = 1;f(2)
= e^{6} khi đó tích phân M =
\int_{- 2}^{0}{(2x + 1)f(x)dx} bằng:

    Ta có:

    2\left\lbrack f(x) ightbrack^{2} -
f(x).f''(x) + \left\lbrack f'(x) ightbrack^{2} =
0

    \Leftrightarrow f(x).f''(x) -
\left\lbrack f'(x) ightbrack^{2} = 2\left\lbrack f(x)
ightbrack^{2}

    \Leftrightarrow
\frac{f(x).f''(x) - \left\lbrack f'(x)
ightbrack^{2}}{\left\lbrack f(x) ightbrack^{2}} = 2

    \Leftrightarrow \left\lbrack
\frac{f'(x)}{f(x)} ightbrack' = 2 \Leftrightarrow
\int_{}^{}{\left\lbrack \frac{f'(x)}{f(x)} ightbrack'dx} =
\int_{}^{}{2dx}

    \Leftrightarrow \frac{f'(x)}{f(x)} =
2x + C_{1} \Leftrightarrow \ln\left| f(x) ight| = x^{2} + C_{1}x +
C_{2}

    Theo bài ra ta có:

    \left\{ \begin{matrix}
f(0) = 1 \\
f(2) = e^{6} \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
ln1 = C_{2} \\
4 + 2C_{1} = 6 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
C_{2} = 0 \\
C_{1} = 1 \\
\end{matrix} ight.

    \Rightarrow \ln\left| f(x) ight| =
x^{2} + x \Rightarrow f(x) = e^{x^{2} + x}

    \Rightarrow M = \int_{- 2}^{0}{(2x +
1)e^{x^{2} + x}dx} = \left. \ e^{x^{2} + x} ight|_{- 2}^{0} = 1 -
e^{2}

  • Câu 28: Vận dụng

    Trong không gian Oxyz, cho mặt phẳng (\alpha):x - y + z - 3 = 0. Viết phương trình mặt phẳng (\beta) sao cho phép đối xứng qua mặt phẳng (Oxy) biến mặt phẳng (\alpha) thành mặt phẳng (\beta).

    Tọa độ giao điểm của mặt phẳng (α) với các trục tọa độ là A(3;0;0),B(0; - 3;0),C(0;0;3).

    Ta có A; B ∈ (Oxy)C ∈ Oz.

    Kí hiệu Đ(Oxy) là phép đối xứng qua mặt phẳng Oxy.

    Ta có Đ(Oxy):(\alpha) ightarrow (\beta)
\Rightarrow Đ(Oxy):(A;B;C) ightarrow (A;B;C'), (ảnh của A, B trùng với chính nó vì A,B \in
(Oxy)).

    Do C’ đối xứng với C(0;0;3) qua mặt phẳng Oxy, suy ra C'(0;0; -
3)

    Từ đó suy ra mặt phẳng (β) có phương trình theo đoạn chắn là:

    \frac{x}{3} + \frac{y}{- 3} + \frac{z}{-
3} = 1 \Leftrightarrow (\beta):x - y - z - 3 = 0

  • Câu 29: Vận dụng cao

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 6;5brack có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:

    Tính giá trị I = \int_{-
6}^{5}{\left\lbrack f(x) + 2 ightbrack dx}?

    Hình vẽ minh họa

    Dựa vào đồ thị ta có: A( - 6; - 1),B( -
2;1) suy ra phương trình đường thẳng AB:y = \frac{1}{2}x + 2

    \Rightarrow I_{1} = \int_{0}^{-
2}{\left\lbrack \frac{1}{2}x + 2 + 2 ightbrack dx} = 8

    Phương trình đường tròn (C): x^{2} + (y - 1)^{2} = 4 \Rightarrow y = 1 +
\sqrt{4 - x^{2}}

    \Rightarrow I_{2} = \int_{-
2}^{2}{\left\lbrack 1 + \sqrt{4 - x^{2}} + 2 ightbrack dx} = 12 +
2\pi

    Điểm C(2;1),D(5;3) nên phương trình đường thẳng CD là: y = \frac{2}{3}x - \frac{1}{3}

    \Rightarrow I_{3} =
\int_{2}^{5}{\left\lbrack \frac{2}{3}x - \frac{1}{3} + 2 ightbrack
dx} = 12

    Vậy I = I_{1} + I_{2} + I_{3} = 32 +
2\pi

  • Câu 30: Nhận biết

    Trong không gian Oxyz, một đường thẳng (d) có:

     Trong không gian Oxyz, một đường thẳng (d) có vô số vecto chỉ phương.

  • Câu 31: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(0;1;2),B(2; - 2;0),C( - 2;0;1). Mặt phẳng (P) đi qua A, trực tâm H của tam giác ABC và vuông góc với mặt phẳng (ABC) có phương trình là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 3; - 2) \\
\overrightarrow{AC} = ( - 2; - 1; - 1) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (1;6; -
8)

    Phương trình mặt phẳng (ABC) là: x + 6y -
8z + 10 = 0.

    Phương trình mặt phẳng qua B và vuông góc với AC là: 2x + y + z - 2 = 0.

    Phương trình mặt phẳng qua C và vuông góc với AB là: 2x - 3y - 2z + 6 = 0.

    Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên H\left( \frac{-
22}{101};\frac{70}{101};\frac{176}{101} ight).

    Mặt phẳng (P) đi qua A, H nên \overrightarrow{n_{P}}\bot\overrightarrow{AH} =
\left( \frac{- 22}{101}; - \frac{31}{101}; - \frac{26}{101} ight) = -
\frac{1}{101}(22;31;26)

    Mặt phẳng (P) ⊥ (ABC) nên \overrightarrow{n_{P}}\bot\overrightarrow{n_{(ABC)}}
= (1;6; - 8).

    Vậy \left\lbrack
\overrightarrow{n_{(ABC)}};\overrightarrow{u_{AH}} ightbrack = (404;
- 202; - 101) là một vectơ pháp tuyến của (P).

    Chọn \overrightarrow{n_{P}} = (4; - 2; -
1) nên phương trình mặt phẳng (P) là 4x - 2y - z + 4 = 0.

  • Câu 32: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 33: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = - 2x^{3} + x^{2} + x + 5 và đồ thị (C') của hàm số y = x^{2} - x + 5?

    Phương trình hoành độ giao điểm

    - 2x^{3} + x^{2} + x + 5 = x^{2} - x +
5

    \Leftrightarrow - 2x^{3} + 2x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{1}{\left| 2x^{3} - 2x
ight|dx}

    = \left| \int_{- 1}^{0}{\left( 2x^{3} -
2x ight)dx} ight| + \left| \int_{0}^{1}{\left( 2x^{3} - 2x
ight)dx} ight|

    = 1

  • Câu 34: Vận dụng cao

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

    Đáp án là:

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

     Đặt {m{w}} = z - 2 + 2i

    Ta có = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|

    \Leftrightarrow \left| {(z - 1 + 2i)} ight|.\left| {(z - 1 - 2i)} ight|=\left| {(z - 1 + 2i)} ight|.\left| {(z + 3i - 1)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z - 1 + 2i = 0\\\left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|\end{array} ight..

    TH1: z = 1 - 2i \Rightarrow {m{w}} =  - 1 \Rightarrow \left| {m{w}} ight| = 1  (1)

    TH2: \left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|.

    Đặt z=a+bi; a, b \in \mathbb R.

    \Rightarrow {(a - 1)^2} + {(b - 2)^2} = {(a - 1)^2} + {(b + 3)^2}\Leftrightarrow b = \frac{{ - 1}}{2}.

    \Rightarrow z = a - \frac{1}{2}i  \Rightarrow \left| {m{w}} ight| = \sqrt {{{(a - 2)}^2} + \frac{9}{4}}  \ge \frac{3}{2}    (2)

    Từ (1) và (2) , suy ra \min |w| = 1.

  • Câu 35: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) đi qua hai điểm M(1;8;0),C(0;0;3) cắt các tia Ox,Oy lần lượt tại A;B sao cho OG nhỏ nhất, với G là trọng tâm tam giác ABC. Biết G(a;b;c), hãy tính T = a + b + c.

    Gọi A(m;0;0),B(0;n;0) với m,n > 0.

    Khi đó phương trình của (ABC):\frac{x}{m}
+ \frac{y}{n} + \frac{z}{3} = 1.

    M \in (ABC) nên \frac{1}{m} + \frac{8}{n} = 1. Kết hợp với điều kiện m > 0,n > 0 suy ra m > 1n > 8.

    Cũng từ trên ta có m = \frac{n}{n -
8}.

    Trọng tâm G của tam giác ABC có tọa độ \left( \frac{m}{3};\frac{n}{3};1
ight).

    OG^{2} = |\overrightarrow{OG}|^{2} =
\left( \frac{m}{3} ight)^{2} + \left( \frac{n}{3} ight)^{2} + 1^{2}
= \frac{1}{9}\left\lbrack \left( \frac{n}{n - 8} ight)^{2} + n^{2}
ightbrack + 1

    Xét hàm số f(n) = \left( \frac{n}{n - 8}
ight)^{2} + n^{2} với n >
8.

    Ta có f^{'}(n) = 2 \cdot \frac{n}{n -
8} \cdot \frac{- 8}{(n - 8)^{2}} + 2n = 2n\left\lbrack \frac{- 8}{(n -
8)^{3}} + 1 ightbrack.

    f^{'}(n) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
n = 0 \\
n = 10 \\
\end{matrix} \Leftrightarrow n = 10 ight.

    Bảng biến thiên

    OG đạt giá trị nhỏ nhất khi và chỉ khi f(n) đạt giá trị nhỏ nhất. Điều này xảy ra khi n = 10; lúc đó m = 5G\left( \frac{5}{3};\frac{10}{3};1
ight).

    Vậy T = a + b + c = 6

  • Câu 36: Vận dụng

    Tính số phức sau: z = (1+i)15

    Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i

    z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i

  • Câu 37: Nhận biết

    Tìm số phức z trong phương trình sau: (1 + z)(2 + 3i) = 1 + i

     Ta có (1 + z)(2 + 3i) = 1 + i

    \begin{array}{l} \Leftrightarrow 1 + z = \dfrac{{1 + i}}{{2 + 3i}}\\ \Leftrightarrow 1 + z = \dfrac{{5 - i}}{{13}}\;\\ \Leftrightarrow z =  - \dfrac{8}{{13}} - \dfrac{1}{{13}}i\;\;\;\end{array}

  • Câu 38: Nhận biết

    Tính chất nào sau đây sai?

    Tính chất sai là: \overrightarrow{a} -
\overrightarrow{b} = \overrightarrow{b} -
\overrightarrow{a}

  • Câu 39: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, tính khoảng cách giữa đường thẳng d:\frac{x - 1}{2} = \frac{y + 2}{- 4} =
\frac{z - 4}{3} và trục Ox.

    Đường thẳng d có vectơ chỉ phương \overrightarrow{u_{d}} = (2; - 4;3) và đi qua điểm M(1; - 2;4)

    Trục Ox có vectơ chỉ phương \overrightarrow{u_{Ox}} = (1;0;0) và đi qua điểm N(1;0;0)

    Khoảng cách giữa đường thẳng d và trục Ox là:

    d(d;Ox) = \frac{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{Ox}}
ightbrack.\overrightarrow{MN} ight|}{\left| \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{u_{Ox}} ightbrack ight|} =
\frac{\left| (0;3;4).(0;2; - 4) ight|}{\left| (0;3;4) ight|} =
2

  • Câu 40: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(1;1;3)B( - 1;2;3). Trung điểm của đoạn thẳng AB có tọa độ là:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 0 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{3}{2} \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M\left( 0;\dfrac{3}{2};3ight)

    Vậy tọa độ trung điểm của AB là: \left(
0;\frac{3}{2};3 ight).

  • Câu 41: Thông hiểu

    Tìm các căn bậc hai của số phức z = 5 + 12i

     Giả sử m + ni (m; n \in R) là căn bậc hai của z

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 5 + 12i \Leftrightarrow {m^2} + 2mni - {n^2} = 5 + 12i

    \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5 \hfill \\  2mn = 12 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5(1) \hfill \\  m = \frac{6}{n}(2) \hfill \\ \end{gathered}  ight.

    Thay (2) vào (1) ta có: {\left( {\frac{6}{n}} ight)^2} - {n^2} = 5 \Leftrightarrow 36 - {n^4} = 5{n^2}

    \Leftrightarrow {n^4} + 5{n^2} - 36 = 0 \Leftrightarrow {n^2} = 4;{n^2} =  - 9(loai)

    \left[ \begin{gathered}  n = 2 \Rightarrow m = 3 \hfill \\  n =  - 2 \Rightarrow m =  - 3 \hfill \\ \end{gathered}  ight.

    Vậy z có hai căn bậc hai là 3+2i và -3-2i.

  • Câu 42: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 43: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = x\sin x, biết rằng F\left( \frac{\pi}{2} ight) = 2019?

    Ta có: \left\{ \begin{matrix}
u = x \\
dv = \sin xdx \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
du = dx \\
v = - \cos x \\
\end{matrix} ight.

    \Rightarrow \int_{}^{}{x\sin xdx} = -
x\cos x - \int_{}^{}{\left( - \cos x ight)dx} + C = - x\cos x + \sin x
+ C

    F\left( \frac{\pi}{2} ight) = -
\frac{\pi}{2}\cos\frac{\pi}{2} + \sin\frac{\pi}{2} + C = 2019
\Rightarrow C = 2018

    Vậy F(x) = - x\cos x + \sin x +
2018.

  • Câu 44: Nhận biết

    Trong hệ tọa độ Oxyz, cho đường thẳng d có vectơ chỉ phương \overrightarrow{u} và mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n}. Mệnh đề nào dưới đây đúng?

    \overrightarrow{u} vuông góc \overrightarrow{n} thì d có thể nằm trong (P).

    d song song (P) thì \overrightarrow{u} vuông góc \overrightarrow{n}.

    d vuông góc (P) thì \overrightarrow{u} cùng phương \overrightarrow{n}.

  • Câu 45: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, mặt phẳng (P):ax + by + cz - 27 = 0 đi qua hai điểm A(3;2;1),B( - 3;5;2) và vuông góc với mặt phẳng (Q):3x + y + z + 4 =
0. Tính tổng S = a + b +
c.

    Từ giả thiết ta có hệ phương trình:

    \left\{ \begin{matrix}
3a + 2b + c - 27 = 0 \\
- 3a + 5b + 2c - 27 = 0 \\
3a + b + c = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 6 \\
b = 27 \\
c = - 45 \\
\end{matrix} ight.

    \Rightarrow S = a + b + c = -
12

  • Câu 46: Thông hiểu

    Cho số phức \frac{{3 - i}}{z} + {\left( {2 - i} ight)^3} = 3 - 13i. Số phức \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} là số phức nào sau đây?

     Ta có: {\left( {2 - i} ight)^3} = 2 - 11i \Rightarrow z = \frac{{3 - i}}{{1 - 2i}} = 1 + i

    Suy ra  \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} = ((1+i) +12i)^2 :i +(1+i)^2

    =(1+13i)^2 :i +(1+i)^2 =26+168i +2i =26+170i.

  • Câu 47: Thông hiểu

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 48: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)?

    Ta có: f(x) = (x + 1)(x + 2) = x^{2} + 3x
+ 2

    \int_{}^{}{f(x)}dx = \int_{}^{}{\left(
x^{2} + 3x + 2 ight)dx} = \frac{x^{3}}{3} + \frac{3}{2}x^{2} + 2x +
C

  • Câu 49: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{1}{{x - 1}};f\left( 0 ight) = 2017;f\left( 2 ight) = 2018. Giá trị của biểu thức T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] là bao nhiêu?

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\dfrac{1}{{x - 1}}dx}  \hfill \\   = \ln \left| {x - 1} ight| + C = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  1}}} \\   {\ln \left( {1 - x} ight) + {C_2}{\text{ khi x  <  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 2017 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 2017} \\   {f\left( 2 ight) = 2018 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 2018} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 2017} \\   {{C_1} = 2018} \end{array}} ight.

    Khi đó

    \begin{matrix}  T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] \hfill \\   = \left[ {\ln \left( {3 - 1} ight) + 2018 - 2018} ight].\left[ {\ln \left( {1 - \left( { - 1} ight)} ight) + 2017 - 2017} ight] \hfill \\   = \ln 2.\ln 2 = {\ln ^2}2 \hfill \\ \end{matrix}

  • Câu 50: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {7^x} là 

     Ta có:

    \int {{7^x}dx}  = \frac{{7x}}{{\ln 7}} + C

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 42 lượt xem
Sắp xếp theo