Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Cho
với
. Tính
?
Ta có:
Vậy
Trong không gian với hệ tọa độ
cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các trục tọa độ tại
sao cho
là trực tâm tam giác
. Hãy viết trình mặt phẳng
.
Hình vẽ minh họa
Ta có:
Chứng minh tương tự BC ⊥ OH.
Do đó
Suy ra .
Cho hình hộp chữ nhật ABCD.EFGH có AB = a; AD = b; AE = c trong hệ trục Oxyz sao cho A trùng với
lần lượt trùng với Ox, Oy, Oz . Gọi M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của đường thẳng MN.
Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:
(MN) là đường thẳng đi qua M và nhận vecto là 1 VTCP có PT là:
Trong không gian với hệ tọa độ
, cho 2 đường thẳng
:
và điểm
. Đường thẳng
đi qua
, cắt
và vuông góc với
có một vectơ chỉ phương là
. Tính ![]()
Hình vẽ minh họa
Gọi là mặt phẳng chứa
và
.
Lấy .
Mặt phẳng có véc-tơ pháp tuyến vuông góc với các véc-tơ
và
.
Ta có .
Một trong các véc-tơ pháp tuyến của mặt phẳng là
.
Đường thẳng nằm trong mặt phẳng
và vuông góc với
có
Vậy .
Cho
là các số hữu tỉ thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Cho số phức z thỏa mãn
Biết rằng tập hợp các điểm biểu diễn số phức
là một đường tròn. Tính bán kính của đường tròn đó.
Ta có:
=> Tập hợp các điểm biểu diễn số phức là một đường tròn bán kính
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Cho
;
;
. Tìm dạng đại số của
.
Ta có:
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Kí hiệu
là hình phẳng giới hạn bởi đồ thị
với trục hoành (
). Quay hình
xung quanh trục hoành ta thu được khối tròn xoay có thể tích
. Tìm
?
Phương trình hoành độ giao điểm
Trường hợp 1: Với thì thể tích khối tròn xoay là:
Trường hợp 2: Với thì thể tích khối tròn xoay là:
Vậy .
Trong không gian
, cho đường thẳng
. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng
?
Đường thẳng có 1 vectơ chỉ phương là
. Do đó vectơ
không là vectơ chỉ phương của
.
Cho số phức
. Số phức
bằng:
Ta có:
Trong không gian
, mặt phẳng
có phương trình là
Mặt phẳng đi qua điểm
và nhận
là một véc-tơ pháp tuyến nên phương trình của mặt phẳng
là
.
Tích phân
có giá trị là:
Tích phân có giá trị là:
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có: nên
là một nguyên hàm của hàm số
.
Cho hai hàm số
và
liên tục trên tập số thực và thỏa mãn
. Tính tích phân
?
Đặt
Đổi cận
Theo bài ra ta có:
Đặt
Đổi cận
Biết rằng
là một nguyên hàm của hàm số
trên
. Giá trị của biểu thức
bằng:
Ta có:
suy ra
Trong không gian
, cho hai vectơ
và
. Khẳng định nào sau đây đúng?
Ta có:
Vậy khẳng định đúng là
Họ nguyên hàm của hàm số
là:
Ta có:
Cho biết
với
. Tính
?
Xét trên đoạn ta có:
Xét . Đặt
Xét . Đặt
Vậy .
Họ nguyên hàm của hàm số
là:
Ta có: .
Cho hình lập phương
có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn: ![]()
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Trong không gian với hệ tọa độ
, cho
. Gọi
là trọng tâm của tam giác
. Gọi
là điểm nằm trên mặt phẳng
sao cho độ dài đoạn thẳng
ngắn nhất. Tính độ dài đoạn thẳng
.
Ta có: là trọng tâm tam giác
nên
Mặt phẳng có phương trình
.
ngắn nhất khi và chỉ khi
là hình chiếu vuông góc của
lên mặt phẳng
. Khi đó, ta có:
.
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian tọa độ
cho các điểm
. Hỏi có bao nhiêu mặt phẳng cách đều 5 điểm trên?
Hình vẽ minh họa
Ta có: . Suy ra
là hình bình hành.
nên
là hình chóp đỉnh E có đáy ABCD là hình bình hành.
Gọi lần lượt là trung điểm các cạnh
.
Do đó có 5 mặt phẳng cách đều 5 điểm là:
Mặt phẳng qua 4 trung điểm của 4 cạnh bên: (GHIK)
Mặt phẳng qua 4 trung điểm lần lượt của EC, ED, AD, BC: (IKQN)
Mặt phẳng qua 4 trung điểm của EB, EA, AD, BC: (HGQN)
Mặt phẳng qua 4 trung điểm của EA, ED, CD, AB: (GKPM)
Mặt phẳng qua 4 trung điểm của EB, EC, CD, AB: (HIPM)
Cho số phức
, giá trị của số phức
là?
Ta có:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Trong không gian Oxyz cho tam giác ABC, biết
.
Diện tích tam giác ABC bằng?
Áp dụng công thức ,
ta có
Suy ra .
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Biết rằng
nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Tìm nguyên hàm của hàm số
.
Ta có
Cho
là một nguyên hàm của hàm số
thỏa mãn
. Chọn khẳng định đúng trong các khẳng định sau?
Ta có:
là một nguyên hàm của hàm số
suy ra
có dạng
Theo bài ra ta có:
Vậy .
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức
. Kết luận nào sau đây đúng?
Ta có:
Tìm nguyên hàm của hàm số ![]()
Ta có:
Trong không gian với hệ trục tọa độ
, cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
.
Vậy
Gọi
là các nghiệm của phương trình
. Tính giá trị biểu thức ![]()
Ta có phương trình
Suy ra:
Vì (1)
Mà ;
.
Vậy từ .
Gọi
là đường thẳng tùy ý đi qua điểm
và có hệ số góc âm. Giả sử
cắt các trục
lần lượt tại
. Quay tam giác
quanh trục
thu được một khối tròn xoay có thể tích là
. Giá trị nhỏ nhất của
bằng
Hình vẽ minh họa
Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d:
Mà M(1; 1) ∈ d nên
Từ (1) suy ra d có hệ số góc là ; theo giả thiết ta có
Nếu mẫu thuẫn với (2) suy ra
Mặt khác từ (2) suy ra kết hợp với a > 0, b > 0 suy ra a > 1.
Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao và bán kính đường tròn đáy
Thể tích khối nón là
Suy ra V đạt giá trị nhỏ nhất khi đạt giá trị nhỏ nhất.
Xét hàm số trên khoảng
Ta có bảng biến thiên như sau:
Vậy giá trị nhỏ nhất của V bằng
Trong không gian với hệ tọa độ
, cho đường thẳng
. Viết phương trình mặt phẳng
đi qua điểm
và vuông góc với
.
Phương trình mặt phẳng (P):
Trong không gian với hệ trục tọa độ
, cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ , cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Cho hai điểm
và mặt phẳng
Mặt phẳng
chứa hai điểm A,B và vuông góc với mặt phẳng
có phương trình:
Theo đề bài, ta có: ;
Suy ra ;
có vectơ pháp tuyến
Ta có cùng phương với vectơ
Chọn làm 1 vectơ pháp tuyến cho mặt phẳng
.
Phương trình mặt phẳng có dạng:
Mặt phẳng :
Cho hàm số
có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Trong không gian
, mặt phẳng
đi qua điểm
, đồng thời vuông góc với giá của vectơ
có phương trình là:
Mặt phẳng nhận vectơ
làm vectơ pháp tuyến và đi qua điểm
nên có phương trình là
.