Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Cho
và
. Điểm
sao cho
và đoạn
bằng 3 lần khoảng cách từ
đến
. Khẳng định nào sau đây đúng?
Ta có:
.
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Trong không gian
, cho hai điểm
. Mặt phẳng đi qua
và vuông góc với đường thẳng
là:
Gọi (α) là mặt phẳng đi qua và vuông góc với đường thẳng
.
Do (α) vuông góc với AB nên vectơ pháp tuyến của mặt phẳng (α) là
Vậy phương trình mặt phẳng (α) là:
Cho hàm số
xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Diện tích hình phẳng giới hạn bởi các đường
là
. Tính giá trị
?
Diện tích hình phẳng cần tìm là:
Đặt
Đổi cận . Khi đó:
hay
Cho tứ diện
có
đôi một vuông góc với nhau. Tính giá trị của biểu thức
?
Vì các vectơ có độ dài bằng 1 và đôi một vuông góc với nhau nên
Tìm nguyên hàm của hàm số
?
Ta có:
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
. Xác định
để hai mặt phẳng
và
song song với nhau?
Hai mặt phẳng đã cho song song với nhau khi và chỉ khi
Tập xác định
Vậy thì hai mặt phẳng
song song với nhau.
Gọi M và m lần lượt là giá trị lớn
nhất và giá trị nhỏ nhất của
với z là số phức khác 0 và thỏa mãn
. Tính ![]()
Ta có
Mặt khác:
Vậy giá trị nhỏ nhất của P là , xảy ra khi
giá trị lớn nhất của P bằng
xảy ra khi
=>
Họ các nguyên hàm của hàm số
là:
Ta có:
Cho
. Giá trị của x và y bằng:
Ta có:
Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
Tính diện tích hình phẳng được giới hạn bởi đồ thị
và hai tiếp tuyến của
tại ![]()
Ta có hình vẽ minh họa như sau:

Phương trình tiếp tuyến của (P) tại A(-1;0) là:
Phương trình tiếp tuyến của (P) tại B(2;3) là:
Từ hình vẽ ta suy ra diện tích của hình phẳng cần tìm là:
Trong không gian với hệ tọa độ
, cho phương trình đường thẳng
. Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng
?
Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:
.
Cho lăng trụ tam giác
. Đặt
. Gọi điểm
sao cho
,
là trọng tâm tứ diện
. Biểu diễn vectơ
qua các vectơ
. Đáp án nào dưới đây đúng?
Ta có G là trọng tâm của tứ diện nên
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho số phức
. Tìm số phức
?
Ta có:
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Trong không gian
, cho điểm
. Mặt phẳng
đi qua
và cắt các trục tọa độ
lần lượt tại các điểm
không trùng với gốc tọa độ
sao cho
là trực tâm tam giác
. Viết phương trình mặt phẳng nào song song với mặt phẳng
?
Trong không gian , cho điểm
. Mặt phẳng
đi qua
và cắt các trục tọa độ
lần lượt tại các điểm
không trùng với gốc tọa độ
sao cho
là trực tâm tam giác
. Viết phương trình mặt phẳng nào song song với mặt phẳng
?
Biết
khác
và vuông góc với cả hai vectơ
. Khẳng định nào sau đây đúng?
Theo đề bài ta có: khác
và vuông góc với cả hai vectơ
nên
Vậy khẳng định đúng là
Họ nguyên hàm của hàm số
là:
Ta có:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian
là
. Biết vận tốc đầu bằng
. Hỏi trong
giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?
Ta có:
Vận tốc của vật được tính theo công thức:
Suy ra quãng đường vật đi được tính theo công thức:
Ta có:
Suy ra
Vậy thời điểm chất điểm ở xa nhất về phía bên phải là 2s.
Hàm số
là một nguyên hàm của hàm số
trên
thỏa mãn
. Khẳng định nào sau đây đúng?
Ta có:
Lại có
Do đó
Vậy .
Biết rằng
và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức
. Kết luận nào sau đây đúng?
Ta có:
Cho số phức z thỏa mãn
Biết rằng tập hợp các điểm biểu diễn số phức
là một đường tròn. Tính bán kính của đường tròn đó.
Ta có:
=> Tập hợp các điểm biểu diễn số phức là một đường tròn bán kính
Cho bốn điểm
trong không gian. Hỏi có bao nhiêu vectơ khác
có điểm đầu và điểm cuối là
điểm?
Lấy làm gốc ta được 3 vectơ
. Tương tự đối với
ta được
vectơ.
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

Đáp án: 4,32m2.
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).
Đáp án: 4,32m2.
Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Giao điểm của hai parabol tại
Do đó, diện tích của con cá là
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Trong không gian với hệ tọa độ
, tính khoảng cách giữa đường thẳng
và trục
.
Đường thẳng d có vectơ chỉ phương và đi qua điểm
Trục Ox có vectơ chỉ phương và đi qua điểm
Khoảng cách giữa đường thẳng d và trục Ox là:
Trong không gian với hệ tọa độ
, cho điểm
và
Biết tọa độ điểm
để tứ giác
là hình bình hành. Tính ![]()
Hình vẽ minh họa
Ta có
Để tứ giác là hình bình hành
Vậy
Kí hiệu
là hình phẳng giới hạn bởi đồ thị
với trục hoành (
). Quay hình
xung quanh trục hoành ta thu được khối tròn xoay có thể tích
. Tìm
?
Phương trình hoành độ giao điểm
Trường hợp 1: Với thì thể tích khối tròn xoay là:
Trường hợp 2: Với thì thể tích khối tròn xoay là:
Vậy .
Giả sử
là các hàm số bất kì liên tục trên
và
là các số thực. Mệnh đề nào sau đây sai?
Theo tính chất tích phân ta có:
Vậy mệnh đề sai:
Trong không gian
, cho điểm
. Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục
lần lượt tại các điểm
sao cho
?
Đặt với
.
Phương trình mặt phẳng (P) đi qua ba điểm có dạng
.
Do nên ta có
.
Suy ra .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên .
Ta có .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên
Ta có .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên
Ta có .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên
Ta có .
Vậy có bốn mặt phẳng thỏa yêu cầu bài toán.
Ba mặt phẳng
cắt nhau tại điểm
. Chọn kết luận đúng?
Tọa độ điểm là nghiệm của hệ phương trình
Cho số phức thỏa mãn điều kiện
.
Tìm giá trị nhỏ nhất của ![]()
1 || Một || một
Cho số phức thỏa mãn điều kiện .
Tìm giá trị nhỏ nhất của
1 || Một || một
Đặt
Ta có
.
TH1: (1)
TH2: .
Đặt .
.
(2)
Từ (1) và (2) , suy ra .
Xác định nguyên hàm của hàm số
?
Ta có: .
Trong không gian
, cho hai vectơ
. Vectơ
có tọa độ là:
Ta có: . Khi đó
Vậy
Nguyên hàm của hàm số
là
Ta có: .
Trong không gian với hệ toạ độ
, cho bốn đường thẳng ![]()
![]()
![]()
. Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:
Kiểm tra vị trí tương đối giữa hai đường thẳng ta thấy (d1) // (d2); (d4) cắt (d2), (d3).
Gọi (P) là mặt phẳng chứa (d1) và (d2); (Q) là mặt phẳng chứa (d3) và (d4).
Gọi (∆) là đường thẳng cắt cả 4 đường thẳng trên.
Ta thấy, (∆) cắt cả (d1), (d2) suy ra (∆) ⊂ (P).
(∆) cắt cả (d3),(d4) suy ra (∆) ⊂ (Q).
Mà (d2), (d4) có điểm chung nên (∆) là giao tuyến của (P) và (Q), do đó có duy nhất một đường thẳng thỏa mãn.
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Trong không gian với hệ tọa độ
, cho đường thẳng
. Vectơ nào dưới đây là vectơ chỉ phương của
?
Ta có: suy ra vectơ chỉ phương của đường thẳng d là