Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Cho tứ diện
và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho hàm số
liên tục trên đoạn
và
. Tính tích phân
?
Ta có:
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Trong không gian với hệ tọa độ
, cho đường thẳng
là giao tuyến của hai mặt phẳng
và
. Phương trình tham số của
là:
Nhận thấy đều thuộc (α) và (β) nên chúng cũng thuộc đường thẳng
.
Ta có là một vectơ chỉ phương của
.
Khi đó phương trình tham số của là:
.
Cho số phức
. Tính |z|
Ta có
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Tìm nguyên hàm của hàm số
.
Ta có
Tìm nguyên hàm của hàm của hàm số ![]()
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Trong không gian
, cho ba mặt phẳng
lần lượt có phương trình là
. Mệnh đề nào dưới đây đúng?
Mặt phẳng (P) có một vectơ pháp tuyến là và mặt phẳng (R) có một vectơ pháp tuyến là
Do nên vectơ
không cùng phương với vectơ
.
Vậy mặt phẳng (R) cắt mặt phẳng (P).
Cho hàm số
xác định trên
thỏa mãn
và
. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.
Trong không gian với hệ tọa độ
, cho ba điểm
. Điểm
thuộc mặt phẳng
sao cho
đạt giá trị nhỏ nhất là:
Gọi G là trọng tâm của tam giác ABC.
Ta có:
Dễ thấy nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).
Dễ thấy .
Trong không gian
, đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Ta có một vectơ pháp tuyến của mặt phẳng là
Đường thẳng đi qua điểm và vuông góc với mặt phẳng
có một vectơ chỉ phương là
nên có phương trình là
.
Một khu vườn được quy hoạch để trồng hoa hồng được giới hạn bởi parabol và nửa đường tròn bán kính (phần tô màu trong hình vẽ). Hỏi số tiền tối thiểu để trồng kín hoa trong vườn? Biết mỗi mét vuông trồng hoa cần ít nhất 300.000 đồng.

Nửa đường tròn có phương trình
Xét parabol có trục đối xứng
nên có phương trình dạng
cắt
tại điểm
=>
cắt
tại điểm
thuộc
=>
Phương trình là:
Diện tích miền phẳng (phần tô màu trong hình là:
Xét đặt
=>
Ta có:
Khi đó ta có:
Số tiền trồng hoa tối thiểu là: đồng
Trong không gian
, cho ba điểm
. Điểm
thuộc tia
sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện
bằng
có tọa độ là
Ta có D thuộc tia nên
với
.
Tính
Mặt phẳng : có vectơ pháp tuyến
và đi qua điểm
.
Ta có
Vậy .
Xét tính đúng sai của mỗi khẳng định. Trong không gian
cho ba điểm
và hai vecto ![]()
a) Tích vô hướng của hai vecto
bằng
Đúng||Sai
b) Trung điểm của đoạn
có tọa độ là
. Sai||Đúng
c) Tọa độ của vecto
là
. Sai||Đúng
d) Hình chiếu vuông góc của trọng tâm tam giác
lên mặt phẳng
là
Đúng||Sai
Xét tính đúng sai của mỗi khẳng định. Trong không gian cho ba điểm
và hai vecto
a) Tích vô hướng của hai vecto bằng
Đúng||Sai
b) Trung điểm của đoạn có tọa độ là
. Sai||Đúng
c) Tọa độ của vecto là
. Sai||Đúng
d) Hình chiếu vuông góc của trọng tâm tam giác lên mặt phẳng
là
Đúng||Sai
a) đúng, b) sai, c) sai, d) đúng.
a) Ta có
b) Ta có trung điểm của đoạncó tọa độ là
c) Ta có
Suy ra
d) Ta có Suy ra hình chiếu vuông góc của trọng tâm tam giác
lên mặt phẳng
là
.
Tính diện tích hình phẳng giới hạn bởi các đường cong
và các đường thẳng
?
Hình vẽ minh họa
Với khi đó
Diện tích hình phẳng ta được:
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Cho số phức
thoả điều kiện
.
Đặt
. Khẳng định nào sau đây đúng?
Ta có:
Nhận xét: câu này đáp án A cũng đúng vì
Cho tứ diện
. Gọi
là trọng tâm của tam giác
.Phân tích nào sau đây là đúng?
Ta có: là trọng tâm tam giác
khi
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Cho hàm số
liên tục nhận giá trị dương trên
và thỏa mãn
;
. Giá trị
gần nhất với giá trị nào sau đây?
Vì
Mà
Gọi
là 2 nghiệm của phương trình
thỏa mãn
. Biết rằng w là số phức thỏa mãn
. Tìm GTNN của biểu thức
.
Giả sử
Ta có:
=> x = 0
=> Tập hợp điểm biểu diễn là trục tung.
Giả sử A, B lần lượt là 2 điểm biểu diễn cho , ta có
Giả sử và M là điểm biểu diễn cho số phức w, ta có
suy ra tập hợp điểm biểu diễn M cho số phức w là đường tròn tâm
bán kính R = 2
Ta có , gọi E là hình chiếu vuông góc của I lên trục tung, ta thấy P nhỏ nhất khi E là trung điểm AB suy ra
, vậy

Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Cho lập phương
có cạnh bằng
. Gọi
là trọng tâm tam giác
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Ta có:
Do G là trọng tâm tam giác suy ra
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn
và
. Tìm số phần tử của S.
2 || Hai || hai
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn và
. Tìm số phần tử của S.
2 || Hai || hai
Điều kiện: .
Đặt .
Theo giả thiết .
là đường tròn tâm O(0; 0), bán kính
.
Mặt khác
là đường tròn tâm
, bán kính
.
Để tồn tại duy nhất số phức z thì và
tiếp xúc ngoài hoặc trong.
TH1: và
tiếp xúc ngoài khi và chỉ khi
.
TH2: và
tiếp xúc trong khi và chỉ khi
.
Vậy .
Tìm một nguyên hàm của hàm số
?
Ta có:
Đặt
Khi đó .
Trong không gian với hệ trục toạ độ
, tìm tất cả giá trị tham số
để đường thẳng
song song với mặt phẳng
.
Ta có:
qua điểm
và có VTCP là
(P) có VTPT là
Vì d // (P) nên
Với (loại).
Với (thỏa mãn).
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Mặt khác
=>
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
biết rằng mỗi đơn vị dài trên các trục tọa độ là
?
Ta có:
Do mỗi đơn vị trên trục là 2 cm nên
Trong không gian với hệ tọa độ
, mặt phẳng
qua hai điểm
cắt các nửa trục dương Ox, Oy lần lượt tại A, B sao cho OG nhỏ nhất (G là trọng tâm tam giác ABC). Biết
. Tính
.
Gọi mà
nên
và
.
qua hai điểm
nên
.
Ta có:
Suy ra
Dấu bằng xảy ra khi và chỉ khi:
Phần thực của số phức
là:
Ta có:
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Do đó:
Số phức
bằng:
Ta có:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Gọi
là mặt phẳng đi qua
và song song với mặt phẳng
. Điểm nào sau đây không nằm trên mặt phẳng
?
Phương trình mặt phẳng đi qua
và song song với mặt phẳng
có dạng
Thay tọa độ các đáp án vào phương trình mặt phẳng ta có 3 điểm
thoả mãn, còn điểm
không thoả mãn.
Một ô tô đang chạy với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc
, trong đó
là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.
Khi xe dừng hẳn thì vận tốc bằng 0.
Nên thời gian kể từ lúc đạp phanh đến lúc ô tô dừng hẳn là
Quãng đường ô tô đi được từ lúc đạp phanh đến lúc ô tô dừng hẳn là
Như vậy trong 8 giây cuối thì có 3 giây ô tô ði với vận tốc và 5 s ô tô chuyển động chậm dần đều.
Quãng đường ô tô đi được trong 3 giây trước khi đạp phanh là
Vậy trong 8 giây cuối ô tô đi được quang đường
Tìm nguyên hàm của hàm số
là
Ta có:
Trong không gian hệ trục tọa độ
, cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Cho tứ diện
. Gọi
là trọng tâm tam giác
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Do G là trọng tâm tam giác BCD nên
Vậy mệnh đề đúng là “ thuộc tia
và
”.
Trong không gian
, cho hai đường thẳng cắt nhau ![]()
. Trong mặt phẳng
, hãy viết phương trình đường phân giác
của góc nhọn tạo bởi ![]()
Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là
Ta có , suy ra góc giữa hai vectơ
và
là góc tù.
Lại có
Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là
Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là
Vậy phương trình đường thẳng d là:
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Một mảnh vườn hình elip có trục lớn bằng
, trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).
Một mảnh vườn hình elip có trục lớn bằng , trục nhỏ bằng
được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là
mỗi
trồng cây con và
mỗi
trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).