Đề thi HK2 Toán 12 Đề 3

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 2: Thông hiểu

    Cho hàm số f(x) = 2x^{2}.e^{x^{3} + 2} +
2xe^{2x}, ta có: \int_{}^{}{f(x)dx}
= me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C. Tính giá trị biểu thức S = m + n + p?

    Ta có:

    \int_{}^{}{f(x)dx} = me^{x^{3} + 2} +
nxe^{2x} - pe^{2x} + C nên \left(
me^{x^{3} + 2} + nxe^{2x} - pe^{2x} + C ight)' = f(x)

    \Rightarrow 3mx^{2}e^{x^{3} + 2} +
2nxe^{2x} + (n - 2p)e^{2x} = 2x^{2}.e^{x^{3} + 2} + 2xe^{2x} đồng nhất 2 biểu thức ta được hệ phương trình \left\{ \begin{matrix}3m = 2 \\2n = 2 \ - 2p = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m = \dfrac{2}{3} \ = 1 \\p = \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow S = \dfrac{13}{6}

  • Câu 3: Thông hiểu

    Biết rằng \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = a\ln|x + 1| + b\ln|x - 2| + C. Mệnh đề nào sau đây đúng?

    Ta có: \frac{2x - 13}{(x + 1)(x - 2)} =
\frac{A}{x + 1} + \frac{B}{x - 2}

    = \frac{A(x - 2) + B(x + 1)}{(x + 1)(x -
2)} = \frac{(A + B)x + ( - 2A + B)}{(x + 1)(x - 2)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 2 \\
- 2A + B = - 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 5 \\
B = - 3 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = \int_{}^{}{\left( \frac{5}{x + 1} - \frac{3}{x - 2}
ight)dx}

    = 5\ln|x + 1|  - 3\ln|x - 2| +C

    Suy ra a = 5;b = - 3 suy ra a - b = 8.

  • Câu 4: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 5: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2; - 1),B(1;4;3). Độ dài của đoạn AB

    Ta có:

    \overrightarrow{AB} = (0;6;4) khi đó độ dài đoạn AB bằng:

    \left| \overrightarrow{AB} ight| =
\sqrt{0^{2} + 6^{2} + 4^{2}} = \sqrt{56} = 2\sqrt{13}

  • Câu 6: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 7: Vận dụng cao

    Biết số phức z = x + yi,\left( {x,y \in \mathbb{R}} ight) thỏa mãn đồng thời hai điều kiện \left| z ight| = \left| {\bar z + 4 - 3i} ight| và biểu thức P = \left| {z + 1 - i} ight| + \left| {z - 2 + 3i} ight| đạt giá trị nhỏ nhất. Tính P = x + 2y?

    Theo giả thiết

    \left| z ight| = \left| {\bar z + 4 - 3i} ight| \Leftrightarrow \left| {x + yi} ight| = \left| {\left( {x + 4} ight) - \left( {y + 3} ight)i} ight|

    \begin{matrix}   \Leftrightarrow \sqrt {{x^2} + {y^2}}  = \sqrt {{{\left( {x + 4} ight)}^2} + {{\left( {y + 3} ight)}^2}}  \hfill \\   \Leftrightarrow {x^2} + {y^2} = {x^2} + 8x + 16 + {y^2} + 6y + 9 \hfill \\   \Leftrightarrow 8x + 6y + 25 = 0 \hfill \\ \end{matrix}

    Ta có P = \sqrt {{{\left( {x + 1} ight)}^2} + {{\left( {y - 1} ight)}^2}}  + \sqrt {{{\left( {x - 2} ight)}^2} + {{\left( {y + 3} ight)}^2}}

    Xét điểm E\left( { - 1;1} ight),F\left( {2; - 3} ight)M\left( {x;y} ight). Khi đó P = ME + MF

    Bài toán trở thành tìm điểm M \in \Delta :8x + 6y + 25 = 0 sao cho ME + MF đạt giá trị nhỏ nhất.

    \left( {8{x_E} + 8{y_E} + 25} ight).\left( {8{x_F} + 8{y_F} + 25} ight) > 0 nên hai điểm E, F nằm cùng phía đối với đường thẳng \Delta.

    Gọi E' là điểm đối xứng với E qua \Delta

    Đường thẳng EE' đi qua điểm E\left( {1; - 1} ight) và có VTPT {\vec n_{EE'}} = {\vec u_\Delta } = \left( {3; - 4} ight) nên có phương trình

    3\left( {x + 1} ight) - 4\left( {y - 1} ight) = 0

    \Leftrightarrow 3x - 4y + 7 = 0

    Gọi H là giao điểm của EE' và \Delta. Tọa độ điểm H là nghiệm của hệ phương trình:

    \left\{ \begin{gathered}  3x - 4y =  - 7 \hfill \\  8x + 6y =  - 25 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x =  - \frac{{71}}{{25}} \hfill \\  y =  - \frac{{19}}{{50}} \hfill \\ \end{gathered}  ight.suy ra H\left( { - \frac{{71}}{{25}}; - \frac{{19}}{{50}}} ight)

    E' đối xứng với E' qua H nên \left\{ \begin{gathered}  {x_{E'}} =  - \frac{{117}}{{25}} \hfill \\  {y_{E'}} =  - \frac{{44}}{{25}} \hfill \\ \end{gathered}  ight.

    Ta có ME + MF = ME' + MF \geqslant E'F

    Dấu bằng xảy ra khi và chỉ khi M là giao điểm của E'F và đường thẳng \Delta

    Đường thẳng E'F đi qua điểm F\left( {2; - 3} ight) và có VTPT {\vec n_{EE'}} = \left( {31;167} ight) có phương trình

    31\left( {x - 2} ight) + 167\left( {y + 3} ight) = 0

    => 31x + 167y + 439 = 0

    Tọa độ điểm M là nghiệm của hệ phương trình

    \left\{ \begin{gathered}  31x + 167y =  - 439 \hfill \\  8x + 6y =  - 25 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  x =  - \frac{{67}}{{50}} \hfill \\  y =  - \frac{{119}}{{50}} \hfill \\ \end{gathered}  ight.

    Vậy P = x + 2y =  - \frac{{61}}{{10}}.

  • Câu 8: Vận dụng

    Cho số phức z thỏa mãn \left| {z - 1 + 2i} ight| = 2 Biết rằng tập hợp các điểm biểu diễn số phức {\text{w}} = 3 - 2i + \left( {2 - i} ight)z là một đường tròn. Tính bán kính của đường tròn đó.

    Ta có: {\text{w}} = 3 - 2i + \left( {2 - i} ight)z = 3 - 7i + \left( {2 - i} ight)\left( {z - 1 + 2i} ight)

    \Rightarrow {\text{w}} - 3 + 7i = \left( {2 - i} ight)\left( {z - 1 + 2i} ight)

    \Rightarrow \left| {{\text{w}} - 3 + 7i} ight| = \left| {\left( {2 - i} ight)\left( {z - 1 + 2i} ight)} ight| = \left| {2 - i} ight|\left| {z - 1 + 2i} ight| = 2\sqrt 5

    => Tập hợp các điểm biểu diễn số phức {\text{w}} = 3 - 2i + \left( {2 - i} ight)z là một đường tròn bán kính R = 2\sqrt 5

  • Câu 9: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = x^{3}, trục hoành và hai đường thẳng x = - 1;x = 2 biết rằng mỗi đơn vị dài trên các trục tọa độ là 2cm?

    Ta có: S = \int_{- 1}^{2}{\left| x^{3}
ight|dx} = \int_{- 1}^{0}{\left| x^{3} ight|dx} +
\int_{0}^{2}{\left| x^{3} ight|dx}

    = - \int_{- 1}^{0}{x^{3}dx} +
\int_{0}^{2}{x^{3}dx} = \left. \  - \frac{x^{4}}{4} ight|_{-
1}^{0}\left. \  + \frac{x^{4}}{4} ight|_{0}^{2} =
\frac{17}{4}

    Do mỗi đơn vị trên trục là 2 cm nên S =
\frac{17}{4}.2^{2} = 17\left( cm^{2} ight)

  • Câu 10: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho tọa độ ba điểm A(1;2;3),B(0;1;1),C(1;0; - 2). Điểm M(a;b;c) thuộc mặt phẳng (P):x + y + z + 2 = 0 sao cho giá trị của biểu thức T = MA^{2} + 2MB^{2} +
3MC^{2} nhỏ nhất. Khi đó, giá trị của biểu thức a + b + c là:

    Điểm M luôn tồn tại.

    Ta có M \in (P) nên a + b + c + 2 = 0 \Leftrightarrow a + b + c = -
2.

  • Câu 11: Nhận biết

    Tìm nguyên hàm F(t) =
\int_{}^{}txdt.

    Ta có:

    F(t) = \int_{}^{}txdt = x\int_{}^{}tdt =
x.\frac{t^{2}}{2} + C

  • Câu 12: Nhận biết

    Số phức 5 + 6i có phần thực bằng 

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 13: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 14: Nhận biết

    Cho hai số phức {z_1} = 1 - 3i{z_2} =  - 2 - 5i. Tìm phần ảo b của số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {1 - 3i} ight) - \left( { - 2 - 5i} ight) \hfill \\ = 1 - 3i + 2 + 5i \hfill \\= (1 + 2) + ( - 3 + 5)i \hfill \\  \,\,\,\, = 3 + 2i \hfill \\ \end{matrix}

  • Câu 15: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{x - 1} trên khoảng (1; + \infty) thỏa mãn F(e + 1) = 4. Xác định công thức F(x)?

    Ta có: F(x) = \int_{}^{}\frac{dx}{x - 1}
= \int_{}^{}\frac{d(x - 1)}{x - 1} = \ln|x - 1| + C = \ln(x - 1) +
C (vì (1; + \infty))

    F(e + 1) = 4 \Leftrightarrow \ln(e + 1
- 1) + C = 4 \Rightarrow C = 3

    Vậy F(x) = \ln(x - 1) + 3.

  • Câu 16: Thông hiểu

    Cho số phức z thỏa mãn \overline z  = \frac{{{{(\sqrt 3  + i)}^3}}}{{i - 1}}. Môđun của số phức \overline z  + iz là:

     Ta có: \overline z  = \frac{{{{(\sqrt 3  + i)}^3}}}{{i - 1}} = 4 - 4i\, \to \,\left| {\overline z  + iz} ight| = 0

  • Câu 17: Thông hiểu

    Diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} + |x|;y = x^{2} + 1 được cho bởi công thức nào sau đây?

    Ta có: y = x^{2} + |x| = \left\{\begin{matrix}x^{2} + x;\ \ x \geq 0 \\x^{2} - x;\ \ x \leq 0 \\\end{matrix} ight.

    Với x \geq 0 \Rightarrow x^{2} + x =x^{2} + 1 \Leftrightarrow x = 1

    Với x \leq 0 \Rightarrow x^{2} - x =x^{2} + 1 \Leftrightarrow x = - 1

    Ta có:

    S = \left| \int_{- 1}^{0}{( - x - 1)dx}ight| + \left| \int_{0}^{1}{(x - 1)dx} ight|

  • Câu 18: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)(x + 3)?

    Ta có:

    f(x) = (x + 1)(x + 2)(x + 3) = x^{3} +
6x^{2} + 11x + 6

    \Rightarrow F(x) = \frac{x^{4}}{4} +
2x^{3} + \frac{11}{2}x^{2} + 6x + C

  • Câu 19: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(3;4;5) và mặt phẳng (P):x - y + 2z - 3 = 0. Gọi H là hình chiếu vuông góc của M lên (P). Tìm tọa độ điểm H?

    Vì H là hình chiếu vuông góc của M lên (P) nên H(3 + t;4 - t;5 + 2t)

    Điểm H thuộc mặt phẳng (P) nên ta có phương trình:

    (3 + t) - (4 - t) + 2(5 + 2t) - 3 =
0

    \Leftrightarrow t = - 1 \Leftrightarrow
H = (2;5;3)

  • Câu 20: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = \frac{2x}{x + \sqrt{x^{2} -
1}}?

    Ta có: F(x) = \int_{}^{}{\frac{2x}{x +
\sqrt{x^{2} - 1}}dx} = \int_{}^{}{\left\lbrack 2x\left( x - \sqrt{x^{2}
- 1} ight) ightbrack dx}

    = \int_{}^{}{2x^{2}dx} -
\int_{}^{}{\left\lbrack 2x\sqrt{x^{2} - 1} ightbrack dx} =
\frac{2}{3}x^{3} - \int_{}^{}{\left( x^{2} - 1
ight)^{\frac{1}{2}}d\left( x^{2} - 1 ight)}

    = \frac{2}{3}x^{3} - \frac{2}{3}\left(
x^{2} - 1 ight)\sqrt{x^{2} - 1} + C

    Vậy một nguyên hàm của hàm số là F(x) =
\frac{2}{3}x^{3} - \frac{2}{3}\left( x^{2} - 1 ight)\sqrt{x^{2} -
1}.

  • Câu 21: Vận dụng cao

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Đáp án là:

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Gọi M(x; y) là điểm biểu diễn số phức z trong mặt phẳng phức.

    \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight| \Leftrightarrow \left| {z - 2i} ight|.\left| {z + 2i} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z = 2i\\\left| {z + 2i} ight| = \left| {z - 1 + 2i} ight|\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}x = 0;\;y = 2\\x = \frac{1}{2};\;y \in \mathbb R\end{array} ight.

    Vậy M= (0; 2) hoặc M \in d:x = \frac{1}{2}.

    Gọi I(-3;2) thì P=IM. Khi đó I{M_{\min }} = 3 hoặc I{M_{\min }} = d(I;d) = \frac{7}{2}.

    Vậy {P_{\min }} = 3.

  • Câu 22: Thông hiểu

    Cho số phức z = 3 + 2i. Tìm số phức w = 2i - \left( {3 - i} ight)\overline z  + 2iz - 1?

     Ta có: w = 2i - \left( {3 - i} ight)\overline z  + 2iz - 1

    = 2i - \left( {3 - i} ight)\left( {3 - 2i} ight) + 2i\left( {3 + 2i} ight) - 1

    =  - 12 + 17i

  • Câu 23: Vận dụng

    Cho A(1; - 1;0)(P):2x - 2y + z - 1 = 0. Điểm M(a;b;c) \in (P) sao cho MA\bot OA và đoạn AM bằng 3 lần khoảng cách từ A đến (P). Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
M \in (P) \\
MA\bot OA \\
AM = 3d\left( A;(P) ight) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
1(a - 1) - 1(b + 1) + 0(c - 0) = 0 \\
\sqrt{(a - 1)^{2} + (b + 1)^{2} + (c - 0)^{2}} = 3 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
a - b - 2 = 0 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = a - 2 \\
c = - 3 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
c = - 3 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b + c = - 3.

  • Câu 24: Nhận biết

    Giả sử f(x) là một hàm số bất kì và liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta). Mệnh đề nào sau đây sai?

    Dựa vào tính chất của tích phân với f(x) là một số bất kì liên tục trên khoảng (\alpha;\beta)a;b;c;b + c \in (\alpha;\beta) ta có:

    \int_{a}^{b}{f(x)dx} =
\int_{a}^{c}{f(x)dx} + \int_{c}^{b}{f(x)dx}

    = \int_{a}^{c}{f(x)dx} -
\int_{b}^{c}{f(x)dx}

    = \int_{a}^{b + c}{f(x)dx} + \int_{b +
c}^{b}{f(x)dx}

  • Câu 25: Thông hiểu

    Tìm các số thực x, y thoả mãn:

    3x + y + 5xi = 2y – 1 +(x – y)i

    Theo giả thiết: 3x + y + 5xi = 2y – 1 +(x – y)i

    => (3x + y) + (5x)i = (2y – 1) +(x – y)i

    =>\left\{ \begin{gathered}  3x + y = 2y - 1 \hfill \\  5x = x - y \hfill \\ \end{gathered}  ight.

    => \left\{ \begin{gathered}  x =  - \frac{1}{7} \hfill \\  y = \frac{4}{7} \hfill \\ \end{gathered}  ight.

  • Câu 26: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 27: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) qua hai điểm M(1;8;0), C(0;0;3) cắt các nửa trục dương Ox, Oy lần lượt tại A, B sao cho OG nhỏ nhất (G là trọng tâm tam giác ABC). Biết G( a, b ,c). Tính P=a+b+c.

    Gọi A(m;0;0), B(0;n;0) mà  C(0;0;3) nên G(\frac{m}{3};\frac{n}{3};1)OG^2=\frac{1}{9} (m^2+n^2)+1.

    (P):\frac{x}{m}+\frac{y}{n}+\frac{z}{3}=1.(P) qua hai điểm M(1; 8; 0) nên  \frac{1}{m}+\frac{8}{n}=1.

    Ta có:  1=\frac{1}{m}+\frac{8}{n}=\frac{1}{m}+\frac{16}{2n} \geq\frac{(1+4)^2}{m+2n}

    \Rightarrow m+2n \geq25

    Suy ra

    25 \leq m+2n \leq \sqrt{5(m^2+n^2)} \Leftrightarrow m^2+n^2 \geq 125

    \Rightarrow OG^2 \geq \frac{134}{9}

    Dấu bằng xảy ra khi và chỉ khi: 

    \left\{\begin{matrix} \dfrac{1}{m}+ \dfrac{8}{n}=1 \\ \dfrac{m}{1}= \dfrac{n}{2} \end{matrix}ight. \Leftrightarrow \left\{\begin{matrix} m=5 \\  n=10 \end{matrix}ight. \Rightarrow G(\frac{5}{3}; \frac{10}{3}; 1)

  • Câu 28: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = ( - 2;2;0);\overrightarrow{b}
= (2;2;0);\overrightarrow{c} = (2;2;2). Khi đó giá trị của \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| bằng bao nhiêu?

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = ( - 2 + 2 + 2;2 + 2 + 2;0 + 0
+ 2) = (2;6;2).

    Khi đó \left| \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} ight| = \sqrt{2^{2} + 6^{2} +
2^{2}} = 2\sqrt{11}

    Vậy đáp án cần tìm là: 2\sqrt{11}

  • Câu 29: Vận dụng cao

    Số nghiệm nguyên âm của phương trình: {x^3} - ax + 2 = 0 với a = \int\limits_1^{3e} {\frac{1}{x}dx} là:

     Ta có:

    \begin{matrix}  a = \int\limits_1^{3e} {\dfrac{1}{x}dx}  = \left. {\left( {\ln \left| x ight|} ight)} ight|_1^{3e} = 3 \hfill \\   \Rightarrow {x^3} - 3x + 2 = 0 \hfill \\   \Leftrightarrow {\left( {x - 1} ight)^2}\left( {x + 2} ight) = 0 \hfill \\   \Leftrightarrow x = 1 \vee x =  - 2 \hfill \\ \end{matrix}

  • Câu 30: Nhận biết

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

    Đáp án là:

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

     Ta có: z = \frac{{7 - 17i}}{{5 - i}} = \frac{{\left( {7 - 17i} ight)\left( {5 + i} ight)}}{{\left( {5 - i} ight)\left( {5 + i} ight)}} = \frac{{52 - 78i}}{{26}} = 2 - 3i

    Vậy phần thực của số phức z=2

  • Câu 31: Thông hiểu

    Một chất điểm đang chuyển động với vận tốc v_{0} = 18(m/s) thì tăng tốc với gia tốc a(t) = t^{2} + 5t\left( m/s^{2}
ight). Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3s kể từ lúc bắt đầu tăng tốc.

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( t^{2} + 5t ight)dt} = \frac{t^{3}}{3} +
\frac{5t^{2}}{2} + C

    Do khi bắt đầu tăng tốc v_{0} =
18 nên v_{(t = 0)} = 18 \Rightarrow
C = 18

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{5t^{2}}{2} + 18

    Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô bắt đầu tăng tốc bằng

    S = \int_{0}^{3}{v(t)dt} =
\int_{0}^{3}{\left( \frac{t^{3}}{3} + \frac{5t^{2}}{2} + 18 ight)dt} =
\frac{333}{4}(m)

  • Câu 32: Vận dụng

    Cho hàm số y = f(x) thỏa mãn f'(x).f^{2}(x) = x^{2}f(2) = 2. Phương trình tiếp tuyến của đồ thị hàm số g(x) = f(x) + x^{2} tại điểm có hoành độ bằng 3 là:

    Ta có: f'(x).f^{2}(x) =
x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{f'(x).f^{2}(x)dx} =
\int_{}^{}{x^{2}dx}

    \Leftrightarrow
\int_{}^{}{f^{2}(x)df(x)} = \frac{x^{3}}{3} + C

    \Leftrightarrow \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} + C. Theo bài ra ta có: f(2) = 2 \Rightarrow \frac{f^{3}(2)}{3} =
\frac{2^{3}}{3} + C \Rightarrow C = 0

    Suy ra \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} \Leftrightarrow f(x) = x

    Vậy g(x) = x^{2} + x \Rightarrow
g'(x) = 2x + 1

    Ta có: g'(3) = 7;g(3) =
12

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:

    y = g'(3)(x - 3) + g(3)

    \Leftrightarrow y = 7(x - 3) + 12
\Leftrightarrow y = 7x - 9

  • Câu 33: Nhận biết

    Tìm số phức z trong phương trình sau: \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

     Ta có \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

    \Leftrightarrow z = \frac{{( - 1 + 3i)(1 - i)}}{{{{(2 + i)}^2}}}

    \Leftrightarrow z = \frac{{2 + 4i}}{{3 + 4i}} \Leftrightarrow z = \frac{{(2 + 4i)(3 - 4i)}}{{25}}

    \Leftrightarrow z = \frac{{22}}{{25}} + \frac{4}{{25}}i

  • Câu 34: Nhận biết

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} =
(2;3;2);\overrightarrow{b} = (1;1; - 1). Khi đó tọa độ vectơ \overrightarrow{a} -
\overrightarrow{b} là:

    Ta có:

    \overrightarrow{a} - \overrightarrow{b}
= (2 - 1;3 - 1;2 + 1) = (1;2;3)

  • Câu 35: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, vectơ \overrightarrow{u} = (1;2; - 5) là vectơ chỉ phương của đường thẳng nào sau đây?

    Đường thẳng d:\left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{v} = ( -
1; - 2;5) cùng phương với vectơ \overrightarrow{u} = (1;2; - 5). Vậy \overrightarrow{u} = (1;2; - 5) là một vectơ chỉ phương của đường thẳng \left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 36: Nhận biết

    Giá trị của tích phân \int_{- 1}^{0}{e^{x
+ 1}dx} bằng:

    Ta có: \int_{- 1}^{0}{e^{x + 1}dx} =
\left. \ e^{x + 1} ight|_{- 1}^{0} = e^{1} - e^{0} = e -
1.

  • Câu 37: Nhận biết

    Kí hiệu {z_1},{z_2} là hai nghiệm phức của phương trình 3{z^2} - z + 1 = 0. Tính P = \left| {{z_1}} ight| + \left| {{z_2}} ight|

    Phương trình 3{z^2} - z + 1 = 0 có hai nghiệm {z_{1,2}} = \frac{{1 \pm i\sqrt {11} }}{6}.

    Khi đó P = \left| {{z_1}} ight| + \left| {{z_2}} ight| = \frac{{2\sqrt 3 }}{3}

  • Câu 38: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = \frac{x
- 1}{x^{2}}?

    Ta có: f(x) = \frac{x - 1}{x^{2}} =
\frac{1}{x} - \frac{1}{x^{2}} \Rightarrow F(x) = \ln|x| + \frac{1}{x} +
C

  • Câu 39: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 40: Nhận biết

    Xác định nguyên hàm của hàm số f(x) =
3x^{2} + \frac{x}{2}?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}\left( 3x^{2} + \frac{x}{2} ight)dx = x^{3} +
\frac{x^{2}}{4} + C.

  • Câu 41: Vận dụng

    Thiết diện của vật thể cắt bởi mặt phẳng \left( P ight) vuông góc với trục Ox tại điểm có hoành độ x;\left( {0 \leqslant x \leqslant 1} ight) là một hình chữ nhật có độ dài hai cạnh x\ln \left( {{x^2} + 1} ight). Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0x=1.

    Do thiết diện là hình chữ nhật nên diện tích của thiết diện là  S\left( x ight) = x.\ln \left( {{x^2} + 1} ight)

    Ta có thể tích cần tính là:

    \begin{matrix}  V = \int\limits_0^1 {x\ln \left( {{x^2} + 1} ight)dx}  = \dfrac{1}{2}\int\limits_0^1 {\ln \left( {{x^2} + 1} ight)d\left( {{x^2} + 1} ight)}  \hfill \\   = \left. {\frac{1}{2}.\left( {{x^2} + 1} ight)\ln \left( {{x^2} + 1} ight)} ight|_0^1 - \dfrac{1}{2}\int\limits_0^1 {\left( {{x^2} + 1} ight)d\left( {\ln \left( {{x^2} + 1} ight)} ight)}  \hfill \\   = \ln 2 - \frac{1}{2}\int\limits_0^1 {2xd\left( x ight) = \ln 2 - \dfrac{1}{2}}  \hfill \\ \end{matrix}

  • Câu 42: Vận dụng cao

    Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức f\left( 1 ight) + g\left( 1 ight) = 4;g\left( x ight) =  - xf'\left( x ight);f\left( x ight) =  - xg'\left( x ight). Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {g\left( x ight) =  - xf'\left( x ight)} \\   {f\left( x ight) =  - xg'\left( x ight)} \end{array}} ight. \hfill \\   \Rightarrow f\left( x ight) + g\left( x ight) =  - x\left[ {f'\left( x ight) + g'\left( x ight)} ight] \hfill \\   \Rightarrow \dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}} = \dfrac{{ - 1}}{x} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow \int\limits_1^4 {\dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}}dx = \int\limits_1^4 {\dfrac{{ - 1}}{x}dx} }  \hfill \\   \Leftrightarrow \int\limits_1^4 {\dfrac{{d\left[ {f\left( x ight) + g\left( x ight)} ight]}}{{f\left( x ight) + g\left( x ight)}} = } \left. {\ln \left| x ight|} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( x ight) + g\left( x ight)} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| - \ln \left| {f\left( 1 ight) + g\left( 1 ight)} ight| =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| = 0 \hfill \\   \Rightarrow f\left( 4 ight) + g\left( 4 ight) = 1 \hfill \\ \end{matrix}

     

  • Câu 43: Nhận biết

    Trong không gian Oxyz, đường thẳng \Delta:\frac{x - 1}{2} = \frac{y +
2}{1} = \frac{z}{- 1} không đi qua điểm nào dưới đây?

    Ta có \frac{- 1 - 1}{2} eq \frac{2 +
2}{1} eq \frac{0}{- 1} nên điểm (
- 1;2;0) không thuộc đường thẳng \Delta.

  • Câu 44: Thông hiểu

    Trong không gian Oxyz, cho các điểm M( - 2;6;1),M'(a;b;c) đối xứng nhau qua mặt phẳng (Oyz). Tính giá trị biểu thức S = 7a - 2b + 2017c -
1?

    Gọi H là hình chiếu của M trên mặt phẳng (Oyz) suy ra H(0; 6; 1)

    Do M’ đối xứng với M qua (Oyz) nên MM’ nhận H làm trung điểm suy ra M’(2; 6; 1) suy ra a = 2; b = 6; c = 1

    Vậy S = 7a - 2b + 2017c - 1 =
2018.

  • Câu 45: Vận dụng

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm phức của phương trình 2{z^4} - 3{z^2} - 2 = 0. Tổng T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight|  bằng:

     Ta có:  2{z^4} - 3{z^2} - 2 = 0 \Leftrightarrow \left( {2{z^2} + 1} ight)\left( {{z^2} - 2} ight) = 0

    \Leftrightarrow \left( {z + \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \sqrt 2 } ight)\left( {z + \sqrt 2 } ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - \dfrac{{\sqrt 2 }}{2}i\\{z_2} = \dfrac{{\sqrt 2 }}{2}i\\{z_3} = \sqrt 2 \\{z_4} =  - \sqrt 2 \end{array} ight.

    T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight| = 3\sqrt 2

  • Câu 46: Vận dụng

    Trong không gian với hệ toạ độ Oxyz, cho bốn đường thẳng \left( d_{1} ight):\frac{x - 3}{1} = \frac{y +1}{- 2} = \frac{z + 1}{1},\left( d_{2} ight):\frac{x}{1} = \frac{y}{-2} = \frac{z - 1}{1},\left( d_{3} ight):\frac{x - 1}{2} = \frac{y +1}{1} = \frac{z - 1}{1},\left( d_{4} ight):\frac{x}{1} = \frac{y -1}{- 1} = \frac{z - 1}{1}. Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:

    Kiểm tra vị trí tương đối giữa hai đường thẳng ta thấy (d1) // (d2); (d4) cắt (d2), (d3).

    Gọi (P) là mặt phẳng chứa (d1) và (d2); (Q) là mặt phẳng chứa (d3) và (d4).

    Gọi (∆) là đường thẳng cắt cả 4 đường thẳng trên.

    Ta thấy, (∆) cắt cả (d1), (d2) suy ra (∆) ⊂ (P).

    (∆) cắt cả (d3),(d4) suy ra (∆) ⊂ (Q).

    Mà (d2), (d4) có điểm chung nên (∆) là giao tuyến của (P) và (Q), do đó có duy nhất một đường thẳng thỏa mãn.

  • Câu 47: Thông hiểu

    Cho hình hộp ABCD.A'B'C'D' có tâm O. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{BC} = \overrightarrow{b}. Điểm M xác định bởi đẳng thức \overrightarrow{OM} = \frac{1}{2}\left(
\overrightarrow{a} - \overrightarrow{b} ight). Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Gọi I;I' lần lượt là tâm các mặt đáy ABCD;A'B'C'D' suy ra O là trung điểm của II'

    Do ABCD.A'B'C'D' là hình hộp nên \overrightarrow{AB} =
\overrightarrow{DC}

    Theo giả thiết ta có:

    \overrightarrow{OM} = \frac{1}{2}\left(
\overrightarrow{a} - \overrightarrow{b} ight) = \frac{1}{2}\left(
\overrightarrow{AB} - \overrightarrow{BC} ight) = \frac{1}{2}\left(
\overrightarrow{DC} + \overrightarrow{CB} ight) =
\frac{1}{2}\overrightarrow{DB} = \overrightarrow{IB}

    ABCD.A'B'C'D' là hình hộp nên từ đẳng thức \overrightarrow{OM} = \overrightarrow{IB} suy ra M là trung điểm của BB'.

  • Câu 48: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, điểm M(a;b;c) thuộc mặt phẳng (P):x + y + z - 6 = 0 và cách đều các điểm A(1;6;0),B( - 2;2; - 1),C(5; -
1;3). Tích T = a.b.c bằng

    Do M \in (P)MA^{2} = MB^{2} = MC^{2}, nên ta được hệ:

    \left\{ \begin{matrix}
a + b + c = 6 \\
(a - 1)^{2} + (b - 6)^{2} + c^{2} = (a + 2)^{2} + (b - 2)^{2} + (c +
1)^{2} \\
(a - 1)^{2} + (b - 6)^{2} + c^{2} = (a - 5)^{2} + (b + 1)^{2} + (c -
3)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a + b + c = 6 \\
3a + 4b + c = 14 \\
4a - 7b + 3c = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 3 \\
\end{matrix} ight.\  \Rightarrow T = 6

  • Câu 49: Nhận biết

    Trong không gian Oxyz, cho điểm A(1; -
1;2) và vectơ \overrightarrow{n} =
(2;4; - 6). Viết phương trình mặt phẳng (\alpha) qua A và nhận vectơ \overrightarrow{n} làm vectơ pháp tuyến.

    Phương trình mặt phẳng có dạng:

    A\left( x - x_{A} ight) + B\left( y -
y_{A} ight) + C\left( z - z_{A} ight) = 0 .

    2(x - 1) + 4(y + 1) + 6(z - 2) =
0

    \Leftrightarrow x + 2y - 3z + 7 =
0.

  • Câu 50: Vận dụng

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Khi chuyển động trong không gian, máy bay luôn chịu tác động của 4 lực chính: lực đẩy của động cơ, lực cản của không khí, trọng lực và lực nâng khí động học.

    Lực cản của không khí ngược hướng với lực đẩy của động cơ và có độ lớn tỉ lệ thuận với bình phương vận tốc máy bay. Một chiếc máy bay tăng vận tốc từ 900(km/h) lên 920(km/h), trong quá trình tăng tốc máy bay giữ nguyên hướng bay. Lực cản của không khí khi máy bay đạt vận tốc 900(km/h)920(km/h) lần lượt biểu diễn bởi hai vectơ \overrightarrow{F_{1}}\overrightarrow{F_{2}} với \overrightarrow{F_{1}} =k.\overrightarrow{F_{2}};\left( k\mathbb{\in R};k > 0ight). Tính giá trị của k (Làm tròn kết quả đến chữ số thập phân thứ hai).

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 44 lượt xem
Sắp xếp theo