Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Xác định tọa độ trọng tâm
của tam giác
, biết rằng
?
Tọa độ trọng tâm G của tam giác được xác định như sau:
Cho hai hàm số
và
. Biết
là các số thực để
là một nguyên hàm của
. Tính
?
Từ giả thiết ta có:
Đồng nhất hai vế ta có: .
Họ nguyên hàm của hàm số
là:
Ta có:
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Cho hàm số
liên tục trên
và
. Xác định giá trị của
?
Ta có:
Cho tứ giác ABCD có
. Viết phương trình của mặt phẳng (P) qua A, B và chia tứ diện thành hai khối ABCE và ABDE có tỉ số thể tích bằng 3.

Theo đề bài, ta có mp (P) cắt cạnh CD tại E, E chia đoạn CD theo tỷ số -3
Từ đó, ta suy ra:
Như vậy, VTPT mp (P) là:
Trong không gian với hệ toạ độ
, cho điểm
, đường thẳng
và mặt phẳng
. Viết phương trình đường thẳng
qua
vuông góc với d và song song với
.
Đường thẳng có vec tơ chỉ phương
.
Mặt phẳng có vec tơ pháp tuyến
.
Đường thẳng ∆ vuông góc với nên vectơ chỉ phương
Đường thẳng ∆ song song với (P) nên
Ta có
Suy ra vec tơ chỉ phương của đường thẳng ∆ là
Vậy phương trình đường thẳng ∆ là .
Tìm nguyên hàm của hàm số
bằng:
Tìm nguyên hàm của hàm số
là
Ta có:
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho
và hai mặt phẳng
. Khi đó:
Thay tọa độ điểm A vào phương trình mặt phẳng (Q) thỏa mãn, do đó A ∈ (Q).
Vì nên
.
Cho tứ diện
và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho
và
. Hãy xác định tọa độ của
?
Ta có:
Cho số phức z thỏa mãn
Biết rằng tập hợp các điểm biểu diễn số phức
là một đường tròn. Tính bán kính của đường tròn đó.
Ta có:
=> Tập hợp các điểm biểu diễn số phức là một đường tròn bán kính
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường
quay xung quanh
.
Thể tích vật thể bằng:
.
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Viết phương trình tham số của đường thẳng (d) qua điểm E(2, -4, 3) và song song với đường thẳng MN với tọa độ M(3, 2, 5) và N(1, -2, 2)
Đường thẳng d song song với MN nên VTCP của đường thẳng d chính là hay ta có
Như vậy, (d) là đường thẳng đi qua điểm E (2, -4, 3) và nhận làm 1 VTCP có phương trình là:
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Trong không gian
, một vectơ pháp tuyến của mặt phẳng
là:
Mặt phẳng trên đi qua các điểm
Do đó vectơ pháp tuyến của mặt phẳng cùng phương với .
Ta có
Vậy chọn một vectơ pháp tuyến của mặt phẳng đó là .
Cho số phức z thỏa mãn
. Tìm giá trị lớn nhất của biểu thức ![]()
Gọi
Ta có
Lại có
Mặt khác
Suy ra
Trong không gian
, cho điểm
. Mặt phẳng
đi qua
cắt các trục
,
lần lượt tại
khác gốc tọa độ sao cho
đạt giá trị nhỏ nhất, trong đó
lần lượt là diện tích các tam giác
và
lần lượt là diện tích các tam giác
. Điểm
nào dưới đây thuộc
?
Ta có . Lại có
,
và
.
Đặt , ta có
Tương tự, ta có và
.
Khi đó .
Dấu "=" xảy ra khi và chỉ khi hay
.
Từ đó suy ra nhận
làm vectơ pháp tuyến.
Do đó có phương trình
.
Vậy là điểm thuộc
.
Gọi
lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Gọi lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Trong không gian
, cho điểm
và mặt phẳng
. Mặt phẳng
đi qua
và song song với mặt phẳng
có phương trình là:
Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là
Phương trình mặt phẳng (Q) là:
Cho hàm số
biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Cho hàm số
liên tục và có đạo hàm trên
thỏa mãn
. Biết rằng
trong đó
. Kết luận nào sau đây đúng?
Ta có:
.
Tính . Đặt
khi đó:
Theo bài ra ta có:
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Thể tích khối tròn xoay được tạo thành khi quay hình phẳng giới hạn bởi các đường
, khi xoay quanh trục
.
Phương trình hoành độ giao điểm là:
Gọi là thể tích khối tròn xoay cần tìm ta có:
Đặt
Cho
với
là các số hữu tỉ. Khi đó
bằng:
Ta có:
Suy ra .
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Cho hai mặt phẳng
Đường thẳng (D) qua M (1, -2, 3) song song với (P) và (Q):
Vì (D) song song với (P) và (Q)
=> Một vectơ chỉ phương của (D) là:
Xét vecto pháp tuyến của (R), có:
Xét đáp án có điểm N
cùng phương với
=> (D) vuông góc với (S).
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho
với
. Tính
?
Ta có:
Vậy
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Gọi
là số phức thoả mãn
.
Giá trị của biểu thức
là?
30 || Ba mươi || ba mươi
Gọi là số phức thoả mãn
.
Giá trị của biểu thức là?
30 || Ba mươi || ba mươi
Dễ thấy rằng z=0 không thoả mãn .
Do đó ta có
Ta cũng có
và
Vậy .
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Cho tứ diện
có
. Gọi
là góc giữa
và
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có:
Mặt khác
Do đó:
Vậy
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian
, cho mặt phẳng
và hai điểm
. Đường thẳng d đi qua điểm A và song song với mặt phẳng (P) sao cho khoảng cách từ điểm B đến đường thẳng d nhỏ nhất có phương trình là
Giả sử đường thẳng d có vectơ chỉ phương là
Phương trình đường thẳng d có dạng
Do đường thẳng d k (P) nên .
Khoảng cách từ B đến đường thẳng d là:
Xét hàm số có
Ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta được khoảng cách từ B đến d nhỏ nhất tại
Khi đó , chọn
.
Phương trình đường thẳng hay
.
Cho hình phẳng
giới hạn bởi đồ thị các hàm số sau
và đườDng thẳng
(tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng
bằng

Đặt . Ta được hệ trục tọa độ OXY như hình vẽ
Ta có:
Thể tích cần tìm là
Trong không gian
, cho tọa độ các điểm
. Cho các khẳng định sau:
(I)
.
(II)
.
(III) Ba điểm
tạo thành một tam giác.
(IV) Ba điểm
thẳng hàng.
Trong các khẳng định trên, có bao nhiêu khẳng định đúng.
Ta có: nên
là trung điểm của
và ba điểm
thẳng hàng.
Vậy có 2 khẳng định sai và 2 khẳng định đúng.
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Hàm số
là nguyên hàm của
. Hỏi hàm số
có bao nhiêu điểm cực trị?
TXĐ:
Ta có:
Phương trình có 1 nghiệm đơn
và một nghiệm kép
nên hàm số
có 1 điểm cực trị.
Tìm nguyên hàm của hàm số
?
Đặt