Cho
. Hãy tính
?
Đặt
Đổi cận ta có:
Vậy
Cho
. Hãy tính
?
Đặt
Đổi cận ta có:
Vậy
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có do đó
hay
Suy ra
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Cho hàm số
liên tục và dương trên
, hình phẳng giới hạn bởi các đường
, trục hoành và
có diện tích bằng 5. Tính tích phân 
Ta có:
Đặt ta được:
=>
Cho hàm số
có đạo hàm với mọi
và
. Giá trị của
bằng:
Ta có:
Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và
. Giá trị của m để hai đường thẳng
và
cắt nhau là
Đường thẳng đi qua A(1; 0; −1), có vectơ chỉ phương
Đường thẳng đi qua B(1; 2; 3), có vectơ chỉ phương
Ta có và
Hai đường thẳng d và d 0 cắt nhau
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
Trong không gian
, cho điểm
và mặt phẳng
. Điểm
thay đổi thuộc
; điểm
thay đổi thuộc mặt phẳng
. Biết rằng tam giác
có chu vi nhỏ nhất. Tọa độ điểm
là:
Hình vẽ minh họa
Gọi B1 là điểm đối xứng với B qua (P).
Gọi M là hình chiếu của A lên trục Oz, M1 là điểm đối xứng của M qua (P)
(hằng số).
Vậy PABC nhỏ nhất khi B ≡ M và C là giao điểm của AM1 với (P).
Từ đó suy ra tọa độ của điểm B là .
Phần thực của số phức
là:
Ta có:
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Nguyên hàm của hàm số
là:
Ta có:
Trong không gian với hệ trục tọa độ
, cho ba điểm
và mặt phẳng
. Tìm điểm
sao cho
dạt giá trị nhỏ nhất.
Gọi là điểm sao cho
.
Từ đó:
với là hình chiếu của
trên mặt phẳng
.
Từ đó suy ra dạt giá trị nhỏ nhất khi và chỉ khi
.
Phương trình đường thẳng đi qua và vuông góc với mặt phẳng
là:
.
Tọa độ diểm là nghiệm
của hệ
Suy ra .
Vậy, tọa độ điểm cần tìm là
.
Trong không gian
, cho điểm
và đường thẳng
. Tính khoảng cách từ A đến đường thẳng d.
Gọi
Ta có .
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Trong các số phức z thỏa mãn điều kiện
. Số phức z có mô đun bé nhất bằng
Đặt
Khi đó
Số phức có mô đun nhỏ nhất bằng khoảng cách từ đến đường thẳng .
Tìm nguyên hàm của hàm số
?
Đặt
Cho hình vuông
có cạnh
. Trên hai tia
vuông góc và nằm cùng phía với mặt phẳng
lần lượt lấy hai điểm
sao cho
. Tính góc
giữa hai mặt phẳng
.
Cho hình vuông có cạnh
. Trên hai tia
vuông góc và nằm cùng phía với mặt phẳng
lần lượt lấy hai điểm
sao cho
. Tính góc
giữa hai mặt phẳng
.
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho hình vẽ:

Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:
Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:
.
Trong không gian với hệ tọa độ
, cho đường thẳng
đi qua điểm
và có vectơ chỉ phương
. Viết phương trình đường thẳng
?
Đường thẳng đi qua điểm
và có vectơ chỉ phương
là:
Nguyên hàm của hàm số
là
Ta có: .
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho tứ diện
có
và
. Gọi
lần lượt là trung điểm của
. Hãy xác định góc giữa các cặp vectơ
và
?
Hình vẽ minh họa
Xét tam giác ICD có I là trung điểm đoạn CD
Tam giác ABC có và
suy ra tam giác
đều suy ra
Tương tự ta cũng có tam giác ABD đều nên
Ta có:
Tìm nguyên hàm của hàm số 
Đặt
=>
=>
Cho hàm số
liên tục trên
và có đồ thị
là đường cong như hình vẽ:

Diện tích hình phẳng giới hạn bởi đồ thị
, trục hoành và hai đường thẳng
(phần tô đen) là:
Dựa vào hình vẽ ta thấy thì
Vậy
Biết rằng
. Mệnh đề nào sau đây đúng?
Ta có:
Khi đó
Suy ra suy ra
.
Tìm nguyên hàm của hàm số ![]()
Ta có:
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Cho số phức thỏa mãn điều kiện
.
Tìm giá trị nhỏ nhất của ![]()
1 || Một || một
Cho số phức thỏa mãn điều kiện .
Tìm giá trị nhỏ nhất của
1 || Một || một
Đặt
Ta có
.
TH1: (1)
TH2: .
Đặt .
.
(2)
Từ (1) và (2) , suy ra .
Trong không gian với hệ trục tọa độ
, cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ , cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Biết rằng
. Xác định
?
Ta có:
Do đó:
Cho số phức
. Tìm
?
Ta có:
.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian với hệ trục tọa độ
, cho
và mặt phẳng
. Hình chiếu vuông góc của
lên mặt phẳng
là
Đường thẳng đi qua
và vuông góc với mặt phẳng
có phương trình
.
Gọi
Cho hình lăng trụ tam giác
. Đặt
. Trong các mệnh đề sau, mệnh đề nào đúng?
Ta có:
Do đó
Tính diện tích hình phẳng giới hạn bởi các đường
và trục hoành?
Phương trình hoành độ giao điểm
Khi đó diện tích hình phẳng theo yêu cầu bài toán là:
.
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Trong không gian
, một vectơ pháp tuyến của mặt phẳng
là:
Mặt phẳng trên đi qua các điểm
Do đó vectơ pháp tuyến của mặt phẳng cùng phương với .
Ta có
Vậy chọn một vectơ pháp tuyến của mặt phẳng đó là .
Số phức
bằng:
Ta có:
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Tìm một nguyên hàm của hàm số
?
Ta có:
Đặt
Khi đó .
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Cho hàm số
có đạo hàm trên khoảng
thỏa mãn
và
. Giá trị tích phân
bằng:
Từ giả thiết ta có:
Lấy nguyên hàm hai vế của (*) suy ra
Vì nên
Đặt
Theo công thức tích phân từng phần ta được:
Trong không gian
, mặt phẳng
đi qua điểm
, đồng thời vuông góc với giá của vectơ
có phương trình là:
Mặt phẳng nhận vectơ
làm vectơ pháp tuyến và đi qua điểm
nên có phương trình là
.
Trong không gian với hệ tọa độ
, cho mặt phẳng
. Điểm nào dưới đây không thuộc mặt phẳng
?
Điểm không thuộc mặt phẳng
.