Đề thi HK2 Toán 12 Đề 3

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 2: Nhận biết

    Viết phương trình tổng quát của mặt phẳng (P) qua ba điểm A\left( {\,2,\,\,0,\,\,3\,} ight);\,\,\,B\left( {\,4,\,\, - 3,\,\,2\,} ight);\,\,\,C\left( {\,0,\,\,2,\,\,5\,} ight)

    Theo đề bài, ta có cặp vecto chỉ phương của \left( P ight):\overrightarrow {AB}  = \left( {2, - 3, - 1} ight);\overrightarrow {AC}  = \left( { - 2,2,2} ight)

    Từ đó, ta suy ra vecto pháp tuyến của (P) là tích có hướng của 2 VTCP của

    \left( P ight):\overrightarrow n  = \left( { - 4, - 2, - 2} ight) =  - 2\left( {2,1,1} ight)

    Mp (P) đi qua A (2,0,3) và nhận vecto có tọa độ (2,1,1) làm 1 VTPT có phương trình là:

    \Rightarrow \left( P ight):\left( {x - 2} ight)2 + y.1 + \left( {z - 3} ight).1 = 0

    \Leftrightarrow 2x + y + z - 7 = 0

  • Câu 3: Vận dụng cao

    Cho hai số phức {z_1},{z_2} có điểm biểu diễn lần lượt là {M_1},{M_2} cùng thuộc đường tròn có phương trình {x^2} + {y^2} = 1\left| {{z_1} - {z_2}} ight| = 1. Tính giá trị biểu thức P = \left| {{z_1} + {z_2}} ight|

     Cách 1: Do {M_1},{M_2} cùng thuộc đường tròn có phương trình {x^2} + {y^2} = 1 nên \left| {{z_1}} ight| = \left| {{z_2}} ight| = 1

    Lại có: 

    \begin{matrix}  \left| {{z_1} - {z_2}} ight| = 1 \Leftrightarrow {\left| {{z_1} - {z_2}} ight|^2} = 1 \hfill \\   \Leftrightarrow \left( {{z_1} - {z_2}} ight)\overline {\left( {{z_1} - {z_2}} ight)}  = 1 \hfill \\   \Leftrightarrow \left( {{z_1} - {z_2}} ight)\left( {\overline {{z_1}}  - \overline {{z_2}} } ight) = 1 \hfill \\ \end{matrix}

    \begin{matrix}   \Leftrightarrow {z_1}.\overline {{z_1}}  - \left( {{z_1}.\overline {{z_2}}  + \overline {{z_1}} .{z_2}} ight) + {z_2}.\overline {{z_2}}  = 1 \hfill \\   \Leftrightarrow {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} - \left( {{z_1}.\overline {{z_2}}  + \overline {{z_1}} .{z_2}} ight) = 1 \hfill \\   \Leftrightarrow {z_1}.\overline {{z_2}}  + \overline {{z_1}} .{z_2} = 1 \hfill \\  {P^2} = {\left| {{z_1} + {z_2}} ight|^2} = \left( {{z_1} + {z_2}} ight)\overline {\left( {{z_1} + {z_2}} ight)}  = \left( {{z_1} + {z_2}} ight)\left( {\overline {{z_1}}  + \overline {{z_2}} } ight) \hfill \\   = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} + \left( {{z_1}.\overline {{z_2}}  + \overline {{z_1}} .{z_2}} ight) = 3 \hfill \\ \end{matrix}

    Vậy P = \sqrt 3

    Cách 2: Do {M_1},{M_2}, cùng thuộc đường tròn (T) tâm O(0;0), bán kính R = 1 và \left| {{z_1} - {z_2}} ight| = 1 nên {M_1}{M_2} =1.

    Suy ra \Delta O{M_1}{M_2} là tam giác đều cạnh bằng 1

    P = \left| {{z_1} + {z_2}} ight| = \left| {\overrightarrow {O{M_1}}  + \overrightarrow {O{M_2}} } ight| = \left| {2\overrightarrow {OH} } ight| = 2.OH = 2.\frac{{\sqrt 3 }}{2} = \sqrt 3 ( Trong đó H là trung điểm {M_1}{M_2})

  • Câu 4: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|. Tính \left| {M - mi} ight|

     Ta có P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{z^4} + {{\overline z }^4} + 4} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{{\left( {{z^2} + {{\overline z }^2}} ight)}^2} + 2} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {{z^2} + {{\overline z }^2}} ight)^2} + 2 - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {\left| {{z^2} + {{\overline z }^2}} ight| - 1} ight)^2} + 1

    Vì \left\{ \begin{array}{l}{z^2} + {\overline z ^2} \in \mathbb{R} \\ - 2 \le {z^2} + {\overline z ^2} \le 2\end{array} ight.  nên {P_{{m{max}}}} = 2; {P_{{m{min}}}} = 1.

    Suy ra  \left| {M - mi} ight| = \sqrt 5

  • Câu 5: Thông hiểu

    Họ nguyên hàm của hàm số f(x) = \frac{x +
2}{\sqrt{x + 1}} là:

    Đặt t = \sqrt{x + 1} \Rightarrow t^{2} =
x + 1 \Rightarrow 2tdt = dx

    \Rightarrow \int_{}^{}{\left( \frac{x +
2}{\sqrt{x + 1}} ight)dx} = \int_{}^{}{\left( \frac{t^{2} + 1}{t}
ight)2tdt} = \int_{}^{}{\left( 2t^{2} + 2 ight)dt} =
\frac{2t^{3}}{3} + 2t + C

    = \frac{2(x + 1)\sqrt{x + 1}}{3} +
2\sqrt{x + 1} + C = \frac{2}{3}(x + 4)\sqrt{x + 1} + C

  • Câu 6: Thông hiểu

    Một chất điểm đang chuyển động với vận tốc v_{0} = 18(m/s) thì tăng tốc với gia tốc a(t) = t^{2} + 5t\left( m/s^{2}
ight). Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3s kể từ lúc bắt đầu tăng tốc.

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{\left( t^{2} + 5t ight)dt} = \frac{t^{3}}{3} +
\frac{5t^{2}}{2} + C

    Do khi bắt đầu tăng tốc v_{0} =
18 nên v_{(t = 0)} = 18 \Rightarrow
C = 18

    \Rightarrow v(t) = \frac{t^{3}}{3} +
\frac{5t^{2}}{2} + 18

    Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô bắt đầu tăng tốc bằng

    S = \int_{0}^{3}{v(t)dt} =
\int_{0}^{3}{\left( \frac{t^{3}}{3} + \frac{5t^{2}}{2} + 18 ight)dt} =
\frac{333}{4}(m)

  • Câu 7: Thông hiểu

    Hai đường thẳng \left( {d'} ight):\left\{ \begin{array}{l}x = 2 + 4t\\y =  - 3m - t\\z = 2t - 1\end{array} ight.\left( d ight):\left\{ \begin{array}{l}x = 4 - 2m\\y = m + 2\\z =  - m\end{array} ight.với cắt nhau tại M có tọa độ là :

     

    Để (d’) cắt (d) tại M \Leftrightarrow \left\{ \begin{array}{l}2 + 4t = 4 - 2m\\ - 3 - t = m + 2\\2t - 1 =  - m\end{array} ight. \\\Leftrightarrow \left\{ \begin{array}{l}2t + m = 1\\t + m =  - 5\end{array} ight. \\\Leftrightarrow t = 6;m =  - 11

    \Rightarrow M\left( {26, - 9,11} ight)

     

  • Câu 8: Nhận biết

    Trong không gian Oxyz, cho hai điểm A(2;3; - 1)B( - 4;1;9). Tìm tọa độ vectơ \overrightarrow{AB} ?

    Ta có:

    \overrightarrow{AB} = ( - 4 - 2;1 - 3;9
+ 1) = ( - 6; - 2;10)

    Vậy đáp án đúng là: \overrightarrow{AB} =
( - 6; - 2;10).

  • Câu 9: Thông hiểu

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 10: Nhận biết

    Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số y = x^{2} - 2;y = 0;x = - 1;x
= 2 quanh trục Ox bằng

    Ta có:

    V = \pi\int_{- 1}^{2}{\left( x^{2} - 2x
ight)^{2}dx} = \pi\int_{- 1}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} -
x^{4} + \frac{4x^{3}}{3} ight) ight|_{- 1}^{2} =
\frac{18\pi}{5}

  • Câu 11: Nhận biết

    Nghiệm của phương trình: {z^2} - (3i + 8)z + 11\,.i + 13 = 0  là 

     Ta có: \Delta  = {(3i + 8)^2} - 4(11.i + 13) = 4i + 3.

    Giả sử m+ni \,\,(m; n \in \mathbb R)  là căn bậc hai của \triangle.

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 3 + 4i \Leftrightarrow {m^2} + 2mni - {n^2} = 3 + 4i

    \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3\\2mn = 4\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3 \,\,  (1)\ = \dfrac{2}{m}\,\,\,\, \,\,\,\,  (2)\end{array} ight.

    Thay (2) vào (1) ta có:

    {m^2} - {\left( {\frac{2}{m}} ight)^2} = 3 \Leftrightarrow {m^4} - 3{m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\,\,\,\,\,\,\,\,(TM)\\{m^2} =  - 1\,\,\,\,\,\,\,(L{m{)}}\end{array} ight.

    \Rightarrow \left[ \begin{array}{l}m = 2 \Rightarrow n = 1\\m =  - 2 \Rightarrow n =  - 1\end{array} ight.

    Vậy \triangle có hai căn bậc hai là  2+i  và -2-i.

    Do đó nghiệm của phương trình là:

    \left[ \begin{array}{l}z = \dfrac{{3i + 8 + i + 2}}{2} = 2i + 5\\z = \dfrac{{3i + 8 - i - 2}}{2} = i + 3\end{array} ight.

  • Câu 12: Vận dụng

    Cho hình hộp chữ nhật OABC.DEFG có OA = a;\,\,OC = b;\,\,CD = c. Gọi L là tâm hình hộp. Biểu thị vectơ \overrightarrow {OL} theo ba vectơ \overrightarrow {OA} ,\,\,\overrightarrow {OC} và  \overrightarrow {OD}?

    Hinh-hop-chu-nhat-OABC-DEFG

    Vì I là tâm hình hộp theo giả thiết nên I là trung điểm đường chéo OF. Từ đây, suy ra

    \Rightarrow \overrightarrow {OL}  = \frac{1}{2}\overrightarrow {OF}  = \frac{1}{2}\left( {\overrightarrow {OB}  + \overrightarrow {BF} } ight) = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OC}  + \overrightarrow {OD} } ight)

            \Rightarrow \overrightarrow {OL}  = \left( {\frac{a}{2};\frac{b}{2};\frac{c}{2}} ight)

  • Câu 13: Thông hiểu

    Cho số phức \frac{{3 - i}}{z} + {\left( {2 - i} ight)^3} = 3 - 13i. Số phức \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} là số phức nào sau đây?

     Ta có: {\left( {2 - i} ight)^3} = 2 - 11i \Rightarrow z = \frac{{3 - i}}{{1 - 2i}} = 1 + i

    Suy ra  \frac{{{{\left( {z + 12i} ight)}^2}}}{i} + {z^2} = ((1+i) +12i)^2 :i +(1+i)^2

    =(1+13i)^2 :i +(1+i)^2 =26+168i +2i =26+170i.

  • Câu 14: Vận dụng cao

    Biết rằng trong không gian với hệ tọa độ Oxyz có hai mặt phẳng (P)(Q) cùng thỏa mãn các điều kiện sau: đi qua hai điểm A(1;1;1),B(0; - 2;2) đồng thời cắt các trục tọa độ Ox,Oy tại hai điểm cách đều O. Giả sử (P) có phương trình x + b_{1}y + c_{1}z + d_{1} = 0(Q) có phương trình x + b_{2}y + c_{2}z + d_{2} = 0. Tính giá trị biểu thức U = b_{1}b_{2} +c_{1}c_{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết rằng trong không gian với hệ tọa độ Oxyz có hai mặt phẳng (P)(Q) cùng thỏa mãn các điều kiện sau: đi qua hai điểm A(1;1;1),B(0; - 2;2) đồng thời cắt các trục tọa độ Ox,Oy tại hai điểm cách đều O. Giả sử (P) có phương trình x + b_{1}y + c_{1}z + d_{1} = 0(Q) có phương trình x + b_{2}y + c_{2}z + d_{2} = 0. Tính giá trị biểu thức U = b_{1}b_{2} +c_{1}c_{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + y - z - 3 = 0,(\beta):2x - y + 5 =0. Viết phương trình của mặt phẳng (P) song song với trục Oz và chứa giao tuyến của (\alpha)(\beta)?

    Mặt phẳng (P) chứa giao tuyến của hai mặt phẳng (\alpha)(\beta) nên có dạng:

    m(2x + y - z - 3) + n(2x - y + 5) =
0

    \Leftrightarrow (2m + 2n)x + (m - n)y -
mz - 3m + 5n = 0

    Mặt phẳng (P) song song với trục Oz nên m = 0.

    Chọn n = 1 ta có (P):2x - y + 5 =
0

  • Câu 16: Nhận biết

    Số phức 5 + 6i có phần thực bằng 

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 17: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng (\alpha):x - y + 2z = 1. Trong các đường thẳng sau, đường thẳng nào vuông góc với (\alpha).

    Mặt phẳng (\alpha):x - y + 2z =
1 có một vectơ pháp tuyến là \overrightarrow{n_{(\alpha)}} = (1; -
1;2).

    Đường thẳng d_{1} có một vectơ chỉ phương là \overrightarrow{u_{d_{1}}} =
(1; - 1;2) = \overrightarrow{n_{(\alpha)}}

    Suy ra d_{1}\bot(\alpha).

  • Câu 18: Nhận biết

    Cho số phức z = {\left( {2i} ight)^4} - \frac{{{{\left( {1 + i} ight)}^6}}}{{5i}}. Số phức \overline {5z + 3i} là số phức nào sau đây?

     Ta tính được z = \frac{{88}}{5} \Rightarrow 5z + 3i = 88 + 3i

  • Câu 19: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M(3;3; - 2) và có vectơ chỉ phương \overrightarrow{u} = (1;3;1). Viết phương trình đường thẳng d?

    Đường thẳng d đi qua điểm M(3;3; - 2) và có vectơ chỉ phương \overrightarrow{u} = (1;3;1) là:

    d:\frac{x - 3}{1} = \frac{y - 3}{3} =
\frac{z + 2}{1}

  • Câu 20: Thông hiểu

    Số phức liên hợp của số phức 2022i - 2023

     \overline z = \overline {a + bi} = a - bi

    \Rightarrow \overline z  = \overline {2022i - 2023}  = \overline { - 2023 + 2022i}  =  - 2023 - 2022i

  • Câu 21: Nhận biết

    Nguyên hàm của hàm số f(x) = \sqrt{3x +
2} là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\sqrt{3x
+ 2}dx} = \int_{}^{}{(3x + 2)^{\frac{1}{2}}dx}

    = \frac{(3x + 2)^{1 + \frac{1}{2}}}{1 +\dfrac{1}{2}}.\frac{1}{3} + C = \frac{2}{9}.(2x + 3).\sqrt{3x + 2} +C

  • Câu 22: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{u} = (2; -
1;1)\overrightarrow{v} = (0; -
3; - m). Xác định giá trị tham số m để \overrightarrow{u}.\overrightarrow{v} =
1?

    Ta có: \overrightarrow{u}.\overrightarrow{v} = 1
\Leftrightarrow 3 - m = 1 \Leftrightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 23: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = \cos 3x

     Ta có: \int {\cos 3xdx}  = \frac{{\sin 3x}}{3} + C

  • Câu 24: Nhận biết

    Cho số phức z = a + bi,\left( {a,b \in \mathbb{R}} ight) thỏa mãn \left( {1 + i} ight)z + 2\overline z  = 3 + 2i. Tính P = a + b

    Giả sử: z = a + bi{\text{ }}\left( {a,b \in \mathbb{R}} ight)

    \left( {1 + i} ight)\left( {a + bi} ight) + 2\left( {a - bi} ight) = 3 + 2i

    \Leftrightarrow 3a - b + \left( {a - b} ight)i = 3 + 2i

    \Leftrightarrow \left\{ \begin{gathered}  3a - b = 3 \hfill \\  a - b = 2 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  a = \frac{1}{2} \hfill \\  b =  - \frac{3}{2} \hfill \\ \end{gathered}  ight.

    \Rightarrow P = a + b =  - 1

  • Câu 25: Thông hiểu

    Cho số phức z thỏa mãn \overline z  = \frac{{{{(\sqrt 3  + i)}^3}}}{{i - 1}}. Môđun của số phức \overline z  + iz là:

     Ta có: \overline z  = \frac{{{{(\sqrt 3  + i)}^3}}}{{i - 1}} = 4 - 4i\, \to \,\left| {\overline z  + iz} ight| = 0

  • Câu 26: Vận dụng

    Cho hình hộp chữ nhật ABCD.EFGH có AB = a;\,\,AD = b;\,\,AE = c trong hệ trục Oxyz sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với Ox, Oy, Oz. Gọi M, N, P lần lượt là trung điểm BC, EF, DH. Tính khoảng cách giữa NP và CG.

    Ta biểu diễn các điểm N, P, C, G theo a, b, c được:

    N\left( {\frac{a}{2},0,c} ight);P\left( {0,b,\frac{c}{2}} ight);\,C\left( {a,b,0} ight);\,\,\,G\left( {a,b,c} ight)

    Từ đó, ta tính được các vecto tương ứng:

    \overrightarrow {NP}  = \left( { - \frac{a}{2},b, - \frac{c}{2}} ight);\,\,\,\overrightarrow {CG}  = \left( {0,0,c} ight);\,\,\overrightarrow {PC}  = \left( {a,0, - \frac{c}{2}} ight)

    Để tính khoảng cách giữa NP và CG, ta cần tính tích có hướng và tích độ dài giữa chúng rồi áp dụng CT tính khoảng cách:

    \begin{array}{l}\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight] = \left( { - bc, - \dfrac{{ac}}{2},0} ight) =  > \left| {\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight]} ight| = \dfrac{c}{2}\sqrt {{a^2} + 4{b^2}} \\\left[ {\overrightarrow {CG} ,\overrightarrow {NP} } ight].\overrightarrow {PC}  =  - abc =  > d\left( {NP,CG} ight) = \dfrac{{2ab\sqrt {{a^2} + 4{b^2}} }}{{{a^2} + 4{b^2}}}\end{array}

  • Câu 27: Nhận biết

    Phương trình tổng quát của mặt phẳng (\alpha) qua điểm B (3, 4, -5) và có cặp vectơ chỉ phương \overrightarrow a  = \left( {3,1, - 1} ight),\,\,\,\overrightarrow b  = \left( {1, - 2,1} ight)  là:

    Vectơ pháp tuyến của (\alpha) là tích có hướng của 2 vecto chỉ phương \overrightarrow n  = \left[ {\overrightarrow a \overrightarrow {,b} } ight] = \left( { - 1, - 4, - 7} ight) có thể thay thế bởi \overrightarrow n  = \left( {1,4,7} ight)

    Phương trình  (\alpha) có dạng x + 4y + 7z + D = 0

    B \in \left( \alpha  ight) \Leftrightarrow 3 + 16 - 35 + D = 0 \Leftrightarrow D = 16

    Vậy (\alpha): x + 4y +7z +16 = 0

  • Câu 28: Vận dụng cao

    Cho hàm số f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của 3e^2F(x)?

     Ta có:

    F\left( x ight) = \int {\left( {{x^2} - 1} ight){e^{{x^3} - 3x}}dx = \frac{1}{3}\int {{e^{{x^3} - 3x}}d\left( {{x^3} - 3x} ight) = \frac{1}{3}{e^{{x^3} - 3x}} + C} }

    F'\left( x ight) = f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} = 0 \Rightarrow x =  \pm 1

    \begin{matrix}  F''\left( x ight) = 2x.{e^{{x^3} - 3x}} + \left( {{x^2} - 1} ight)\left( {3{x^2} - 3} ight){e^{{x^3} - 3x}} \hfill \\  F''\left( 1 ight) > 0;F''\left( { - 1} ight) < 0 \hfill \\ \end{matrix}

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)

    => F\left( 1 ight) = 0 \Rightarrow \frac{1}{3}{e^{ - 2}} + C = 0 \Rightarrow C =  - \frac{1}{{3{e^2}}}

    => F\left( x ight) = \frac{{{e^{{x^3} - 3x + 2}} - 1}}{{3{e^2}}} Hay  3e^2F(x) = e^{{x^3} - 3x + 2} - 1

  • Câu 29: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0ight\} thỏa mãn 2xf(x) +x^{2}f'(x) = 1f(1) =0. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có: 2xf(x) + x^{2}f'(x) =1

    \Leftrightarrow \left( x^{2}ight)'f(x) + x^{2}f'(x) = 1

    \Leftrightarrow \left( x^{2}f'(x)ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( x^{2}f'(x)ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow x^{2}f(x) = x +C

    Lại có f(1) = 0 \Rightarrow 1.f(1) = 1 +C \Rightarrow C = - 1

    Từ đó suy ra x^{2}f(x) = x - 1\Leftrightarrow f(x) = \frac{x - 1}{x^{2}}

    Xét phương trình hoành độ giao điểm \frac{x - 1}{x^{2}} = 0 \Leftrightarrow x =1(tm)

    Ta có: f'(x) = \frac{2 - x}{x^{3}}\Rightarrow f'(1) = 1

    Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.

  • Câu 30: Nhận biết

    Họ nguyên hàm của hàm số f(x) = \sin x\cos x + \frac{1}{x + 1} là:

    Ta có:

    f(x) = \frac{1}{2}\sin2x + \frac{1}{x +1}

    \Rightarrow F(x) = \int_{}^{}{\left(\frac{1}{2}\sin2x + \frac{1}{x + 1} ight)dx} = - \frac{1}{4}\cos2x +\ln|x + 1| + C

  • Câu 31: Thông hiểu

    Trong không gian tọa độ Oxyz, cho hai điểm A(1;2;0),B(2; - 1;1). Tìm tọa độ điểm C có hoành độ dương thuộc trục Ox sao cho tam giác ABC vuông tại C?

    Ta có: C có hoành độ dương thuộc trục Ox \Rightarrow C(x;0;0);x >
0

    Theo bài ra ta có: \left\{ \begin{matrix}
\overrightarrow{AC} = (x - 1; - 2;0) \\
\overrightarrow{BC} = (x - 2;1; - 1) \\
\end{matrix} ight. và tam giác ABC vuông tại C nên

    \Leftrightarrow
\overrightarrow{AC}.\overrightarrow{BC} = 0 \Leftrightarrow (x - 1)(x -
2) - 2 = 0

    \Leftrightarrow x^{2} - 3x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0(L) \\
x = 3(tm) \\
\end{matrix} ight.

    Vậy C(3;0;0)

  • Câu 32: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {e^{ - 2x}} + \frac{1}{{\sqrt x }}

     \begin{matrix}  \int {\left( {{e^{ - 2x}} + \dfrac{1}{{\sqrt x }}} ight)dx}  = \int {{e^{ - 2x}}dx}  + \int {\dfrac{1}{{\sqrt x }}} dx =  - \dfrac{1}{2}\int {{e^{ - 2x}}d\left( { - 2x} ight)}  + 2\int {\dfrac{1}{{2\sqrt x }}} dx \hfill \\   =  - \dfrac{{{e^{ - 2x}}}}{2} + 2\sqrt x  + C =  - \dfrac{1}{{2{e^{2x}}}} + 2\sqrt x  + C \hfill \\ \end{matrix}

  • Câu 33: Vận dụng

    Trong không gian với hệ trục toạ độ Oxyz, cho mặt phẳng (P):x + y + z - 9 = 0. Hỏi có bao nhiêu điểm M(a;b;c) thuộc mặt phẳng (P) với a,b,c là các số nguyên không âm.

    Ta có (P):x + y + z - 9 = 0 \Rightarrow
\frac{x}{9} + \frac{y}{9} + \frac{z}{9} = 1 nên mặt phẳng (P) đi qua các điểm A(9; 0; 0), B(0; 9; 0), C(0; 0; 9).

    Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.

    Tam giác ABC đều có các cạnh bằng 9\sqrt{2}, chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.

    Mà số điểm có toạ độ nguyên của tam giác OAB bằng 1\  + \ 2\  + \ ...\  + \ 10\  = \ 55

  • Câu 34: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m thỏa mãn \int_{0}^{m}{(2x + 1)dx} < 2?

    Ta có: \int_{0}^{m}{(2x + 1)dx} < 2
\Leftrightarrow \left. \ \left( x^{2} + x ight) ight|_{0}^{m} <
2

    \Leftrightarrow m^{2} + m - 2 < 0
\Leftrightarrow - 2 < m < 1

  • Câu 35: Nhận biết

    Nguyên hàm của hàm số f(x) = 2^{x} +
x

    Ta có: \int_{}^{}f(x)dx =
\int_{}^{}\left( 2^{x} + x ight)dx = \frac{2^{x}}{ln2} +
\frac{x^{2}}{2} + C.

  • Câu 36: Vận dụng

    Cho số phức {z_1},{z_2} thỏa mãn \left| {z + 2 - i} ight| = 2\left| {z - 1 - i} ight|{z_1} + {z_2} = 1 + i.

    Tính giá trị biểu thức P = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

     Ta có \left| {{z_1} + 2 - i} ight| = 2\left| {{z_1} - 1 - i} ight|{z_1} + {z_2} = 1 + i

    \Rightarrow \left| {{z_1} + 2 - i} ight| = 2\left| {{z_2}} ight|

    \Rightarrow 4{\left| {{z_2}} ight|^2} = \left( {{z_1} + 2 - i} ight)\left( {\overline {{z_1}}  + 2 + i} ight) = {\left| {{z_1}} ight|^2} + \left( {2 - i} ight)\overline {{z_1}}  + \left( {2 + i} ight){z_1} + 5.(1)

    Tương tự ta có

    4{\left| {{z_1}} ight|^2} = {\left| {{z_2}} ight|^2} + \left( {2 - i} ight)\overline {{z_2}}  + \left( {2 + i} ight){z_2} + 5.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 2 ight)

    Cộng (1) và (2) ta có:

    4P = P + \left( {2 - i} ight)\overline {{z_1} + {z_2}}  + \left( {2 + i} ight)\left( {{z_1} + {z_2}} ight) + 10

    = P + \left( {2 - i} ight)\left( {1 - i} ight) + \left( {2 + i} ight)\left( {1 + i} ight) + 10 = P + 12 \Rightarrow P = 4.

  • Câu 37: Thông hiểu

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
\sin x + \cos x\ \ \ khi\ x \geq 0 \\
2(x + 1)\ \ \ khi\ x < 0 \\
\end{matrix} ight.F(\pi) +
F( - 1) = 1. Giá trị biểu thức T =
F(2\pi) + F( - 5) bằng:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x\sin x + C_{1}\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + C_{2}\ \ khi\ x < 0 \\
\end{matrix} ight.

    F(\pi) + F( - 1) = 1 \Rightarrow \left(
\pi\sin\pi + C_{1} ight) + \left( 1 - 2 + C_{2} ight) = 1
\Rightarrow C_{1} + C_{2} = 2(*)

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 0 tức là

    \lim_{x ightarrow 0^{+}}F(x) = \lim_{x
ightarrow 0^{-}}F(x) = F(0)

    \Leftrightarrow C_{1} =
C_{2}(**). Từ (*) và (**) suy ra C_{1} = C_{2} = 1

    Do đó F(x) = \left\{ \begin{matrix}
x\sin x + 1\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + 1\ \ khi\ x < 0 \\
\end{matrix} ight.

    T = F(2\pi) + F( - 5) = 17

  • Câu 38: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai mặt phẳng (\alpha):2x + 3y - z - 1 = 0(\beta):4x + 6y - mz - 2 = 0. Tìm m để hai mặt phẳng (\alpha)(\beta) song song với nhau.

    Mặt phẳng (\alpha) có vectơ pháp tuyến \overrightarrow{n_{1}} = (2;3; -
1)

    Mặt phẳng (\beta) có vectơ pháp tuyến \overrightarrow{n_{2}} = (4;6; -
m)

    Để (\alpha)//(\beta) thì \frac{2}{4} = \frac{3}{6} = \frac{- 1}{- m} eq
\frac{- 1}{- 2}

    Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.

  • Câu 39: Nhận biết

    Nếu \int_{0}^{1}{f(x)dx} =
2;\int_{1}^{2}{f(x)dx} = 4. Khi đó \int_{0}^{2}{f(x)dx} bằng:

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx} = 2 + 4 = 6.

  • Câu 40: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;0; - 2), B( - 2;3;4), ,\ C(4; - 6;1). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j}. Sai||Đúng

    b) \overrightarrow{AB} = (3\ ;\  - 3\
;\  - 6). Sai||Đúng

    c) Hình chiếu vuông góc của điểm B trên mặt phẳng tọa độ (Oxy) là điểm B( - 2\ ;\ 3\ ;\ 0). Đúng||Sai

    d) NếuABCD là hình bình hành thì tọa độ điểm D(1; -
3;7). Sai||Đúng

    Đáp án là:

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC với A(1;0; - 2), B( - 2;3;4), ,\ C(4; - 6;1). Các khẳng định sau đúng hay sai?

    a) \overrightarrow{OA} =
\overrightarrow{i} - 2\overrightarrow{j}. Sai||Đúng

    b) \overrightarrow{AB} = (3\ ;\  - 3\
;\  - 6). Sai||Đúng

    c) Hình chiếu vuông góc của điểm B trên mặt phẳng tọa độ (Oxy) là điểm B( - 2\ ;\ 3\ ;\ 0). Đúng||Sai

    d) NếuABCD là hình bình hành thì tọa độ điểm D(1; -
3;7). Sai||Đúng

    Ta có:

    A(1;0; - 2) \Rightarrow \overrightarrow{OA} =
\overrightarrow{i} + 0\overrightarrow{j} - 2\overrightarrow{k} \Rightarrow a) sai.

    \overrightarrow{AB} = \left( x_{B} -
x_{A}\ ;\ y_{B} - y_{A}\ ;\ z_{B} - z_{A} ight)

    \Rightarrow \overrightarrow{AB} = ( - 3\
;\ 3\ ;\ 6) \Rightarrow b) sai.

    c) đúng

    d) Gọi D(x;y;z),

    \overrightarrow{AB} = ( -
3;3;6), \overrightarrow{DC} = (4 -
x; - 6 - y;1 - z)

    ABCD là hình bình hành nên \overrightarrow{AB} =
\overrightarrow{DC}

    \Leftrightarrow \left\{ \begin{matrix}
4 - x = - 3 \\
- 6 - y = 3 \\
1 - z = 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 7 \\
y = - 9 \\
z = - 5 \\
\end{matrix} ight.

    \Rightarrow D(7\ ;\  - 9\ ;\  -
5).

    Vậy d) sai

  • Câu 41: Nhận biết

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

  • Câu 42: Thông hiểu

    Cho hai số phức {z_1} = 2 + i,{z_2} = 3 - 4i. Môđun của số phức \left( {{z_1} - {z_2}} ight) là:

     Ta có: \left| {{z_1} - {z_2}} ight| = \left| {2 + i - 3 + 4i} ight| = \left| { - 1 + 5i} ight| = \sqrt {26}

  • Câu 43: Vận dụng

    Cho hàm số y = f(x) thỏa mãn f'(x) - f(x) = e^{x}f(0) = 2. Phương trình tiếp tuyến của đồ thị hàm số y(x) = f(x) tại giao điểm với trục hoành là:

    Ta có: f'(x) - f(x) = e^{x}. Nhân cả hai vế với e^{- x} ta được:

    e^{- x}f'(x) - e^{- x}.f(x) =
1

    \Leftrightarrow \left( e^{- x}.f(x)
ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \Leftrightarrow \int_{}^{}{\left( e^{-
x}.f(x) ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow e^{- x}.f(x) =
x + C

    f(0) = 2 \Rightarrow f(0) = 0 + C
\Leftrightarrow C = 2

    Suy ra e^{- x}.f(x) = x + 2
\Leftrightarrow f(x) = \frac{x + 2}{e^{- x}} = (x + 2)e^{x}

    \Rightarrow f'(x) = (x +
3)e^{x}

    Xét phương trình hoành độ giao điểm (x +
2)e^{x} = 0 \Leftrightarrow x = - 2

    Ta có: f'( - 2) = ( - 2 + 3)e^{- 2} =
e^{- 2};f( - 2) = 0

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng -2 là: y = e^{- 2}(x + 2)

  • Câu 44: Vận dụng

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 45: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

  • Câu 46: Thông hiểu

    Trong hệ trục tọa độ Oxy cho elip (E) có phương trình \frac{x^{2}}{25} + \frac{y^{2}}{9} = 1. Hình phẳng (H) giới hạn bởi nửa elip nằm trên trục hoành và trục hoành. Quay hình (H) xung quanh trục Ox ta được khối tròn xoay, tính thể tích khối tròn xoay đó?

    Ta có: \frac{y^{2}}{9} = 1 -
\frac{x^{2}}{25} \Rightarrow y = \sqrt{9\left( 1 - \frac{x^{2}}{25}
ight)} với x \in \lbrack -
5;5brack

    Khi đó thể tích cần tìm là: V =
\pi\int_{- 5}^{5}{\left( 9 - \frac{9x^{2}}{25} ight)dx} =
60\pi

  • Câu 47: Vận dụng cao

    Biết {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = a{I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {b{x^3} + c{x^{\frac{1}{3}}}} ight)} ight|_0^1, a b là các số hữu tỉ. Giá trị của a + b + c là:

     Biết {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = a{I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {b{x^3} + c{x^{\frac{1}{3}}}} ight)} ight|_0^1. Giá trị của a + b + c là:

    Ta có:

    {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = \int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx}  = ... = \int\limits_0^1 {tdt}  = 1 , với t = \tan x

    {I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {\frac{1}{3}{x^3} + \frac{2}{3}{x^{\frac{1}{3}}}} ight)} ight|_0^1

    \Rightarrow a = 1,b = \frac{1}{3},c = \frac{2}{3} \Rightarrow a + b + c = 2

  • Câu 48: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

  • Câu 49: Vận dụng

    Cho đường cong (C) y = {x^3}. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây?

    Ta có: y' = 3{x^2}

    Ta có: A \in \left( C ight) \Rightarrow A\left( {a;{a^3}} ight);a > 0

    Phương trình tiếp tuyến d của (C) tại A là d:y = 3{a^2}\left( {x - a} ight) + {a^3}

    Ta có phương trình hoành độ giao điểm d và (C) là:

    \begin{matrix}  {x^3} = 3{a^2}\left( {x - a} ight) + {a^3} \hfill \\   \Leftrightarrow {\left( {x - a} ight)^2}\left( {x + 2a} ight) = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = a} \\   {x =  - 2a} \end{array}} ight. \hfill \\ \end{matrix}

    Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C).

    Ta có:

    \begin{matrix}  S = 27 \hfill \\   \Rightarrow \int\limits_{ - 2a}^a {\left| {{x^3} - 3{a^2}\left( {x - a} ight) - {a^3}} ight|dx = 27}  \hfill \\   \Rightarrow \left| {\int\limits_{ - 2a}^a {\left( {{x^3} - 3{a^2}\left( {x - a} ight) - {a^3}} ight)dx} } ight| = 27 \hfill \\   \Rightarrow \left| {\left. {\left( {\dfrac{{{x^4}}}{4} - \dfrac{{3{a^2}{x^2}}}{2} + 2{a^3}x} ight)} ight|_{ - 2a}^a} ight| = 27 \hfill \\   \Leftrightarrow \dfrac{{27}}{4}{a^4} = 27 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {a = \sqrt 2 \left( {tm} ight)} \\   {a =  - \sqrt 2 \left( {ktm} ight)} \end{array}} ight. \Rightarrow a = \sqrt 2  \hfill \\ \end{matrix}

  • Câu 50: Vận dụng

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

    Đáp án là:

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

     Dễ thấy rằng z=0 không thoả mãn z^2+z+1=0.

    Do đó ta có z^2+z+1=0

    \Leftrightarrow z+\dfrac{1}{z}=-1 \Rightarrow z^2+\dfrac{1}{z^2}=-1

    Ta cũng có z^3+\dfrac{1}{z^3}=(z+\dfrac{1}{z})^3-3z.\dfrac{1}{z}.(z+\dfrac{1}{z})=2

    z^4+\dfrac{1}{z^4}=(z^2+\dfrac{1}{z^2})^2-2=-1

    Vậy P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 =30.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 42 lượt xem
Sắp xếp theo