Tìm số phức
trong phương trình sau: ![]()
Ta có
Tìm số phức
trong phương trình sau: ![]()
Ta có
Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với
là tâm hình vuông sao cho
như hình vẽ bên thì các đường cong OA có phương trình
và
. Tính giá trị
biết rằng diện tích trang trí màu sẫm chiếm
diện tích mặt sàn.

Đáp án: -2||- 2
Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với là tâm hình vuông sao cho
như hình vẽ bên thì các đường cong OA có phương trình
và
. Tính giá trị
biết rằng diện tích trang trí màu sẫm chiếm
diện tích mặt sàn.
Đáp án: -2||- 2
Diện tích 1 cánh của hình trang trí là:
Diện tích hình trang trí là:
Vì diện tích trang trí màu sẫm chiếm diện tích mặt sàn nên
Khi đó ta có:
Vậy .
Hàm số
là nguyên hàm của
. Hỏi hàm số
có bao nhiêu điểm cực trị?
TXĐ:
Ta có:
Phương trình có 1 nghiệm đơn
và một nghiệm kép
nên hàm số
có 1 điểm cực trị.
Biết rằng
. Mệnh đề nào sau đây đúng?
Ta có:
Khi đó
Suy ra suy ra
.
Trong không gian
, phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm
và song song với mặt phẳng
?
Mặt phẳng có phương trình là
nên có một vectơ pháp tuyến là
.
Phương trình của mặt phẳng cần tìm có dạng
.
Trong các mệnh đề sau, mệnh đề nào sai?
Bằng quy tắc 3 điểm ta nhận thấy rằng: đúng với mọi điểm
nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.
Trong không gian với hệ tọa độ
, phương trình mặt phẳng
đi qua điểm
và cắt các tia
lần lượt tại các điểm
sao cho
đạt giá trị nhỏ nhất là:
Giả sử với
là các số thực dương do
khác 0.
Khi đó phương trình mặt phẳng qua
có phương trình là
Mà nên
, do đó theo bất đẳng thức Bunhiacopski ta có:
T đạt giá trị nhỏ nhất nên ta có dấu bằng xảy ra, tức là:
Vậy phương trình mặt phẳng (P) là .
Viết phương trình tổng quát của mặt phẳng
cắt hai trục
và
tại và tạo với mặt phẳng
một góc
.
Gọi là giao điểm của
và trục
Vecto pháp tuyến của là:
Vecto pháp tuyến của là:
Gọi là góc tạo bởi và
Vậy có hai mặt phẳng:
Trong không gian, cho hình lập phương
. Góc giữa hai vectơ
và
bằng
Hình vẽ minh họa
Ta có: . Do đó,
Vì nên tam giác
là tam giác đều.
Suy ra
Vậy
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Một ô tô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc
, trong đó
là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là bao nhiêu mét?
Ta có:
Khi đó do ban đầu ô tô đang dừng nên
Quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là: .
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Điểm
thuộc
là điểm thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
bằng?
Hình vẽ minh họa
Ta có: có một vectơ chỉ phương là
Ta có cùng phương với
Mà đồng phẳng.
Xét mặt phẳng chứa và
. Gọi
là điểm đối xứng của
qua
là mặt phẳng qua
, vuông góc với
.
Khi đó, giao điểm của
với
là trung điểm của
.
có 1 vectơ pháp tuyến
đi qua
có phương trình:
Giả sử
.
Ta có khi và chỉ khi
trùng với
là giao điểm của
và
.
.
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính khoảng cách
từ gốc toạ độ
đến mặt phẳng
?
Phương trình tổng quát của mặt phẳng có dạng:
Khoảng cách từ gốc tọa độ đến
là:
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Tìm nguyên hàm của hàm số ![]()
Trong không gian với hệ trục tọa độ
cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Trong không gian với hệ trục tọa độ cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Cho số phức
. Số phức
là số phức nào sau đây?
Ta có:
Suy ra
.
Tìm nguyên hàm của hàm số
?
Đặt
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Biết luôn có hai số
để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Cho biểu thức
với
. Biểu thức M có giá tri là?
Ta có: .
Khi đó:
.
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình mặt phẳng
đi qua
và vuông góc với đường thẳng
là:
Ta có: là vectơ pháp tuyến của mặt phẳng
Phương trình mặt phẳng là:
Trong không gian với hệ tọa độ
, phương trình nào dưới đây là phương trình đường thẳng
đi qua điểm
và vuông góc với mặt phẳng
?
Đường thẳng vuông góc với mặt phẳng
nên
có một vectơ chỉ phương là
.
Phương trình là
Kiểm tra được điểm thỏa mãn hệ (*).
Vậy phương trình: cũng là phương trình của
.
Tìm nguyên hàm của hàm của hàm số ![]()
Họ nguyên hàm của hàm số
là:
Ta có:
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Tìm nguyên hàm của hàm số ![]()
Ta có:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn
và
. Tìm số phần tử của S.
2 || Hai || hai
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn và
. Tìm số phần tử của S.
2 || Hai || hai
Điều kiện: .
Đặt .
Theo giả thiết .
là đường tròn tâm O(0; 0), bán kính
.
Mặt khác
là đường tròn tâm
, bán kính
.
Để tồn tại duy nhất số phức z thì và
tiếp xúc ngoài hoặc trong.
TH1: và
tiếp xúc ngoài khi và chỉ khi
.
TH2: và
tiếp xúc trong khi và chỉ khi
.
Vậy .
Tìm nguyên hàm của hàm số
bằng:
Gọi
là diện tích hình phẳng giới hạn bởi các đường
. Mệnh đề nào dưới đây đúng?
Ta có:
Cho M trên đường thẳng AB với
và
. Nếu
với
thì tọa độ của M là:
Vì M nằm trên AB và nên khi xét theo tọa độ vecto 2 điểm A và B, ta có:
Trong không gian với hệ tọa độ
, cho tam giác
có
. Độ dài đường cao của tam giác
kẻ từ
là:
Ta có:
Mà
Một ô tô đang chuyển động đều với vận tốc
thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
(trong đó
là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian
giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?
Khi dừng hẳn
Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Vì lần lượt là trung điểm của
suy ra
Mà là trung điểm của
Khi đó
Vậy khẳng định sai là: .
Tính tích phân
?
Đặt . Ta có:
suy ra
.
Cho tích phân
, a và b là các số hữu tỉ. Giá trị của
là:
Ta có:
, với
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Cho số phức
. Tìm
?
Ta có:
.
Tìm tọa độ giao điểm của hai đường thẳng:
Theo đề bài, ta biến đổi được (b) có dạng:
Thay x, y, z vào phương trình x+2y+z =9 , ta có:
=> Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)
Cho hình lập phương
; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Tích phân
bằng:
Ta có:
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Cho hàm số
có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Trong hệ tọa độ
, điểm nào dưới đây thuộc đường thẳng
?
Dựa vào phương trình đường thẳng ta thấy đường thẳng đã cho đi qua điểm .