Đề thi HK2 Toán 12 Đề 3

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Cho hai số phức {z_1} = 5 - 7i{z_2} = 2 + 3i. Tìm số phức z = {z_1} + {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} + {z_2} \hfill \\  = \left( {5 - 7i} ight) + \left( {2 + 3i} ight) \hfill \\   = (5 + 2) + ( - 7 + 3)i \hfill \\ = 7 - 4i \hfill \\ \end{matrix}

  • Câu 2: Thông hiểu

    Biết rằng \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = a\ln|x + 1| + b\ln|x - 2| + C. Mệnh đề nào sau đây đúng?

    Ta có: \frac{2x - 13}{(x + 1)(x - 2)} =
\frac{A}{x + 1} + \frac{B}{x - 2}

    = \frac{A(x - 2) + B(x + 1)}{(x + 1)(x -
2)} = \frac{(A + B)x + ( - 2A + B)}{(x + 1)(x - 2)}

    \Rightarrow \left\{ \begin{matrix}
A + B = 2 \\
- 2A + B = - 13 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
A = 5 \\
B = - 3 \\
\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{2x - 13}{(x +
1)(x - 2)}dx} = \int_{}^{}{\left( \frac{5}{x + 1} - \frac{3}{x - 2}
ight)dx}

    = 5\ln|x + 1|  - 3\ln|x - 2| +C

    Suy ra a = 5;b = - 3 suy ra a - b = 8.

  • Câu 3: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}2x^{2} + x;\ \ \ x \geq 0 \\x.\sin x;\ \ \ \ x \leq 0 \\\end{matrix} ight.. Tính tích phân \int_{- \pi}^{1}{f(x)dx}?

    Ta có:

    \int_{- \pi}^{1}{f(x)dx} = \int_{-\pi}^{0}{(x.\sin x)dx} + \int_{0}^{1}{\left( 2x^{2} + xight)dx}

    = - \int_{- \pi}^{0}{xd\left( \cos xight)} + \left. \ \left( \frac{2}{3}x^{3} + \frac{1}{2}x^{2} ight)ight|_{0}^{1}

    = \left. \ \left( - x\cos x ight)
ight|_{- \pi}^{0} + \left. \ \left( \frac{2}{3}x^{3} +
\frac{1}{2}x^{2} ight) ight|_{0}^{1}

    = \pi + \frac{7}{6} + \left. \ \left(
\sin x ight) ight|_{- \pi}^{0} = \pi + \frac{7}{6}

  • Câu 4: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 6z} ight| - 2\left| {{z^4} + 1} ight|. Tính M - m.

    M-m=1 || 1 || một || Một

    Đáp án là:

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 6z} ight| - 2\left| {{z^4} + 1} ight|. Tính M - m.

    M-m=1 || 1 || một || Một

     Ta có P = \left| {{z^5} + {{\overline z }^3} + 6z} ight| - 2\left| {{z^4} + 1} ight|

    = \left| {{z^4} + {{\overline z }^4} + 6} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{{\left( {{z^2} + {{\overline z }^2}} ight)}^2} + 4} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {{z^2} + {{\overline z }^2}} ight)^2} + 4 - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {\left| {{z^2} + {{\overline z }^2}} ight| - 1} ight)^2} + 3

    \left\{ \begin{array}{l}{z^2} + {\overline z ^2} \in \mathbb{R}\\ - 2 \le {z^2} + {\overline z ^2} \le 2\end{array} ight.   nên {P_{{m{max}}}} = 4;   {P_{{m{min}}}} = 3

    Suy ra M=4; m=3 \mbox{ do đó  } M-m=4-3=1

  • Câu 5: Nhận biết

    Số phức liên hợp của số phức 5 - 3i là

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {5 - 3i}  = 5 - ( - 3i) = 5 + 3i

  • Câu 6: Vận dụng

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{IA} + (2k - 1)\overrightarrow{IB}+ k\overrightarrow{IC} + \overrightarrow{ID} =\overrightarrow{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{IA} + (2k - 1)\overrightarrow{IB}+ k\overrightarrow{IC} + \overrightarrow{ID} =\overrightarrow{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Thông hiểu

    Một người có mảnh đất hình tròn có bán kính 5m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây 6m vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một người có mảnh đất hình tròn có bán kính 5m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây 6m vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 8: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;3; - 1),B(1;2;4). Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng AB?

    Ta có \overrightarrow{BA} = (1;1; -
5)

    Vì điểm A(2;3; - 1) otin \frac{x +
2}{1} = \frac{y + 3}{1} = \frac{z - 1}{- 5} nên \frac{x + 2}{1} = \frac{y + 3}{1} = \frac{z - 1}{-
5} không phải là phương trình đường thẳng AB.

    Các đường thẳng còn lại đều có vectơ chỉ phương là (1; 1; −5) và đi qua điểm A(2; 3; −1) hoặc đi qua điểm B(1; 2; 4).

  • Câu 9: Thông hiểu

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 10: Vận dụng

    Cho hai số phức z, w thỏa mãn \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|; w = z + m + i với m \in \mathbb{R} là tham số. Giá trị của m để ta luôn có \left| w ight| \geqslant 2\sqrt 5 là:

     Đặt z = a + ib,\left( {a,b \in \mathbb{R}} ight) có biểu diễn hình học là điểm M\left( {x;y} ight)

    Ta có:

    \left| {z - 1} ight| = \left| {z + 3 - 2i} ight|

    \Leftrightarrow \left| {x - 1 + iy} ight| = \left| {x + 3 + \left( {y - 2} ight)i} ight|

    \Leftrightarrow \sqrt {{{\left( {x - 1} ight)}^2} + {y^2}}  = \sqrt {{{\left( {x + 3} ight)}^2} + {{\left( {y - 2} ight)}^2}}

    \Leftrightarrow  - 2x + 1 = 6x + 9 - 4y + 4 \Leftrightarrow 2x - y + 3 = 0

    Suy ra biểu diễn của số phức là đường thẳng \Delta :2x - y + 3 = 0

    Ta xét: \left| \omega  ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {z + m + i} ight| \geqslant 2\sqrt 5  \Leftrightarrow \left| {x + m +  + \left( {y + 1} ight)i} ight| \geqslant 2\sqrt 5

    với I\left( { - m; - 1} ight).

    Mà ta có MI \geqslant d\left( {I,\Delta } ight)

    Nên MI \geqslant 2\sqrt 5  \Leftrightarrow d\left( {I,\Delta } ight) \geqslant 2\sqrt 5  \Leftrightarrow \frac{{\left| { - 2m + 4} ight|}}{{\sqrt 5 }} \geqslant 2\sqrt 5  \Leftrightarrow \left| { - 2m + 4} ight| \geqslant 10

    \Leftrightarrow \left[ \begin{gathered}   - 2m + 4 \geqslant 10 \hfill \\   - 2m + 4 \leqslant  - 10 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  m \leqslant  - 3 \hfill \\  m \geqslant 7 \hfill \\ \end{gathered}  ight.

  • Câu 11: Vận dụng

    Mặt phẳng \left( P ight):2x - 2y + 4z + 5 = 0  và đường thẳng (d):\left\{ \begin{array}{l}x - y + 2z + 1 = 0\\y + 2z - 3 = 0\end{array} ight. :   

    Theo đề bài, ta có vecto pháp tuyến của \left( P ight):\overrightarrow n  = \left( {2, - 2,4} ight)

    Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: x - y + 2z + 1 = 02x + y - z - 3 = 0 cũng có 2 VTPT lần lượt \overrightarrow {{n_1}}  = \left( {1, - 1,2} ight);\overrightarrow {{n_2}}  = \left( {2,1, - 1} ight)

    Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT: \left( d ight):\overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( { - 1,5,3} ight)

    \Rightarrow \overrightarrow n .\overrightarrow a  =  - 2 - 10 + 12 = 0

    Cho\,\,\,\,\,z = 0 \Rightarrow \left\{ \begin{array}{l}x - y =  - 1\\2x + y = 3\end{array} ight. \Rightarrow \left\{ \begin{array}{l}x = \dfrac{2}{3}\\y = \dfrac{5}{3}\end{array} ight.

    \Rightarrow A\left( {\frac{2}{3},\frac{5}{3},0} ight) \in \left( d ight) và tọa độ của A không thỏa mãn phương trình của (P).

    Vậy (d) // (P) .

  • Câu 12: Thông hiểu

    Trong không gian Oxyz, mặt phẳng chứa trục Ox và đi qua điểm A(1;1; - 1) có phương trình là:

    Mặt phẳng chứa trục Ox có dạng By + Cz = 0;\left( B^{2} + C^{2} eq 0
ight)

    Mặt phẳng đi qua điểm A(1;1; -
1) nên B - C = 0 \Leftrightarrow B
= C

    Do đó chọn B = C = 1 suy ra phương trình mặt phẳng cần tìm là y + z =
0.

  • Câu 13: Vận dụng cao

    Một bể thủy tinh chứa nước có thiết diện ngang (mặt trong của thùng) là một đường elip có trục lớn bằng 1m, trục bé bằng 0,8m, chiều dài bằng 3m nằm trong của thùng. Bể nước được đặt sao cho trục bé nằm theo phương thẳng đúng (như hình vẽ). Tính thể tích V của nước có trong bể, biết chiều cao nước trong bể là 0,6m. (Kết quả được làm tròn đến phần trăm).

    Tính thể tích V của nước có trong bể

    Xét một đáy của bể và gắn hệ trục tọa độ như hình vẽ:

    Tính thể tích V của nước có trong bể

    Phương trình đường elip đáy khi đó có phương trình \frac{{{x^2}}}{{0,{5^2}}} + \frac{{{y^2}}}{{0,{4^2}}} = 1

    Khi đó chiều cao của mép nước trong bể với đường thẳng y=2

    Xét phương trình 0,4\sqrt {1 - \frac{{{x^2}}}{{0,{5^2}}}}  = 0,2 \Leftrightarrow x =  \pm \frac{{\sqrt 3 }}{4}

    Diện tích phần mặt chứa nước là:

    S = 0,5.0,4.\pi  - \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\left( {0,4\sqrt {1 - \frac{{{x^2}}}{{0,{5^2}}}} } ight)} dx \approx 0,506

    Do đó thể tích nước trong thùng là: V = 3S \approx 1,52{m^3}

  • Câu 14: Nhận biết

    Trong không gian Oxyz, mặt phẳng (Oxz) có phương trình là

    Mặt phẳng (Oxz) đi qua điểm O(0;0;0) và nhận \overrightarrow{j} = (0;1;0) là một véc-tơ pháp tuyến nên phương trình của mặt phẳng (Oxz)(Oxz).

  • Câu 15: Thông hiểu

    Tìm các số thực x, y thoả mãn:

    3x + y + 5xi = 2y – 1 +(x – y)i

    Theo giả thiết: 3x + y + 5xi = 2y – 1 +(x – y)i

    => (3x + y) + (5x)i = (2y – 1) +(x – y)i

    =>\left\{ \begin{gathered}  3x + y = 2y - 1 \hfill \\  5x = x - y \hfill \\ \end{gathered}  ight.

    => \left\{ \begin{gathered}  x =  - \frac{1}{7} \hfill \\  y = \frac{4}{7} \hfill \\ \end{gathered}  ight.

  • Câu 16: Thông hiểu

    Cho số phức z =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i. Số phức w = 1 + z + {z^2},\left| w ight| bằng:

     Ta có: \left| w ight| = \left| {1 + z + {z^2}} ight| = \left| {1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} ight| = 0

  • Câu 17: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sai?

    Bằng quy tắc 3 điểm ta nhận thấy rằng: \overrightarrow{AB} + \overrightarrow{BC} +
\overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{0} đúng với mọi điểm A;B;C;D nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.

  • Câu 18: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 19: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho tam giác ABC có phương trình đường phân giác trong góc A\frac{x}{1} = \frac{y - 6}{- 4} = \frac{z - 6}{-
3}. Biết rằng điểm M(0;5;3) thuộc đường thẳng AB và điểm N(1;1;0) thuộc đường thẳng AC. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng AC.

    Hình chiếu H của M trên đường phân giác trong góc A có tọa độ: H\left( \frac{1}{2};4;\frac{9}{2}
ight)

    M’ là điểm đối xứng của M qua H. Từ đây ta tìm được tọa độ M’(1; 3; 6).

    Vectơ chỉ phương của đường thẳng AC chính là vecto \overrightarrow{NM'} = (0;2;6).

    Suy ra, đường thẳng AC có một vectơ chỉ phương là (0; 1; 3)

  • Câu 20: Vận dụng

    Tích phân I = \int\limits_0^1 {\frac{a}{{\sqrt {3{x^2} + 12} }}} dx có giá trị là:

    Ta có:

    I = \int\limits_0^1 {\frac{a}{{\sqrt {3{x^2} + 12} }}} dx = \frac{a}{{\sqrt 3 }}\int\limits_0^1 {\frac{1}{{\sqrt {{x^2} + 4} }}} dx

    Đặt u = x + \sqrt {{x^2} + 4}  \Rightarrow du = \frac{{x + \sqrt {{x^2} + 4} }}{{\sqrt {{x^2} + 4} }}dx \Rightarrow \frac{{du}}{u} = \frac{{dx}}{{\sqrt {{x^2} + 4} }}

    I = \frac{a}{{\sqrt 3 }}\int\limits_2^{1 + \sqrt 5 } {\frac{1}{u}du}  = \left. {\frac{a}{{\sqrt 3 }}\left( {\ln u} ight)} ight|_2^{1 + \sqrt 5 } = \frac{a}{{\sqrt 3 }}\ln \left| {\frac{{1 + \sqrt 5 }}{2}} ight|

  • Câu 21: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2;1; - 1)B(1;0;1) và mặt phẳng (P):x + 2y - z = 0. Viết phương trình mặt phẳng (Q) qua A;B và vuông góc với (P)?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n_{1}} = (1;2; -
1);\overrightarrow{AB} = ( - 1; - 1;2)

    Mặt phẳng (Q) có một vectơ pháp tuyến là \overrightarrow{n} = \left\lbrack
\overrightarrow{n_{1}};\overrightarrow{AB} ightbrack = (3; -
1;1)

    Từ đó, phương trình mặt phẳng (Q)(Q):3x
- y + z - 4 = 0.

  • Câu 22: Vận dụng cao

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 23: Nhận biết

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

  • Câu 24: Thông hiểu

    Cho tứ diện ABCD. Đặt \overrightarrow{AB} =
\overrightarrow{a};\overrightarrow{AD} =
\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Gọi M là trung điểm của BC. Trong các đẳng thức sau, đẳng thức nào đúng?

    Hình vẽ minh họa

    Vì M là trung điểm của BC nên suy ra \overrightarrow{BM} =
\frac{1}{2}\overrightarrow{BC}

    Ta có: \overrightarrow{DM} =
\overrightarrow{DA} + \overrightarrow{AB} + \overrightarrow{BM} =
\overrightarrow{AB} - \overrightarrow{AD} +
\frac{1}{2}\overrightarrow{BC}

    = \overrightarrow{AB} -
\overrightarrow{AD} + \frac{1}{2}\left( \overrightarrow{BA} +
\overrightarrow{AC} ight) = \frac{1}{2}\overrightarrow{AB} +
\frac{1}{2}\overrightarrow{AC} - \overrightarrow{AD}

    = \frac{1}{2}\overrightarrow{a} +
\frac{1}{2}\overrightarrow{b} - \overrightarrow{c} = \frac{1}{2}\left(
\overrightarrow{a} + \overrightarrow{b} - 2\overrightarrow{c}
ight)

  • Câu 25: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính tích vô hướng \overrightarrow{AC}.\overrightarrow{B'C'}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC} =
\overrightarrow{B'C'} nên \left(
\overrightarrow{AC};\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC};\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}

    Suy ra \overrightarrow{AC}.\overrightarrow{B'C'}= \left| \overrightarrow{AC} ight|.\left|\overrightarrow{B'C'} ight|.\cos\left(\overrightarrow{AC};\overrightarrow{B'C'} ight)

    =a\sqrt{2}.a.\cos45^{0} =a^{2}

  • Câu 26: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số f(x) = 25^{x}?

    Vì: \left( \frac{25^{x}}{ln25}
ight)' = \frac{1}{ln25}.25^{x}.ln25 = 25^{x}

  • Câu 27: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = \left( x^{2} - 1 ight)e^{x^{3} -
3x}, biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành?

    Ta có:

    F(x) = \int_{}^{}{\left( x^{2} - 1
ight)e^{x^{3} - 3x}dx} = \frac{1}{3}\int_{}^{}{e^{x^{3} - 3x}d\left(
x^{3} - 3x ight)}

    = \frac{1}{3}e^{x^{3} - 3x} +
C

    F'(x) = f(x) = \left( x^{2} - 1
ight)e^{x^{3} - 3x} = 0 \Leftrightarrow x = \pm 1

    F''(x) = 2xe^{x^{3} - 3x} +
\left( x^{2} - 1 ight)e^{x^{3} - 3x};F''(1) >
0;F''(1) < 0

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(1;0)

    Suy ra F(1) = 0 \Leftrightarrow
\frac{1}{3}e^{- 2} + C = 0 \Rightarrow C = -
\frac{1}{3e^{2}}

    Do đó F(x) = \frac{e^{x^{3} - 3x + 2} -
1}{3e^{2}}

  • Câu 28: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

  • Câu 29: Thông hiểu

    Cho hàm số f(x) xác định trên \mathbb{R}\left\{ 1 ight\}thỏa mãn f'(x) = \frac{1}{x - 1}; f(0) = 2017;f(2) = 2018. Tính T = f(3) - f( - 1)?

    Trên khoảng (1; + \infty) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(x - 1) + C_{1}

    \Rightarrow f(x) = \ln(x - 1) +
C_{1}

    f(2) = 2018 \Rightarrow C_{1} =
2018

    Trên khoảng ( - \infty;1) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(1 - x) + C_{2}

    \Rightarrow f(x) = \ln(1 - x) +
C_{2}

    f(0) = 2017 \Rightarrow C_{2} =
2017

    Vậy f(x) = \left\{ \begin{matrix}
\ln(x - 1) + 2018\ \ \ khi\ x\  > \ 1 \\
\ln(1 - x) + 2017\ \ \ khi\ x\  < \ 1 \\
\end{matrix} ight.

    \Rightarrow T = f(3) - f( - 1) =
1.

  • Câu 30: Vận dụng cao

    Cho hai số phức z, w thỏa mãn \left\{ \begin{gathered}  \left| {z - 3 - 2i} ight| \leqslant 1 \hfill \\  \left| {w + 1 + 2i} ight| \leqslant \left| {w - 2 - i} ight| \hfill \\ \end{gathered}  ight.. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z - w} ight|

     Cách 1 :

    Giả sử z = a + bi,\left( {a,b \in \mathbb{R}} ight);w = x + yi,\left( {x,y \in \mathbb{R}} ight)

    \left| {z - 3 - 2i} ight| \leqslant 1 \Leftrightarrow {\left( {a - 3} ight)^2} + {\left( {b - 2} ight)^2} \leqslant 1(1)

    \left| {w + 1 + 2i} ight| \leqslant \left| {w - 2 - i} ight| \Leftrightarrow {\left( {x + 1} ight)^2} + {\left( {y + 2} ight)^2} \leqslant {\left( {x - 2} ight)^2} + {\left( {y - 1} ight)^2}

    Suy ra x + y = 0

    P = \left| {z - w} ight| = \sqrt {{{\left( {a - x} ight)}^2} + {{\left( {b - y} ight)}^2}}  = \sqrt {{{\left( {a - x} ight)}^2} + {{\left( {b + x} ight)}^2}}

    Từ (1) ta có I(3; 2), bán kính r = 1. Gọi H là hình chiếu của I trên d:y =  - x.

    Đường thẳng HI có PTTS: \left\{ \begin{gathered}  x = 3 + t \hfill \\  y = 2 + t \hfill \\ \end{gathered}  ight.

    \begin{matrix}  M \in HI \Rightarrow M\left( {3 + t;\,2 + t} ight) \hfill \\  M \in \left( C ight) \Leftrightarrow 2{t^2} = 1 \Leftrightarrow \left[ \begin{gathered}  t = \dfrac{1}{{\sqrt 2 }} \hfill \\  t =  - \dfrac{1}{{\sqrt 2 }} \hfill \\ \end{gathered}  ight. \hfill \\  t = 2 \Rightarrow M\left( {3 + \dfrac{1}{{\sqrt 2 }};\,2 + \dfrac{1}{{\sqrt 2 }}} ight),MH = \dfrac{{5 + \sqrt 2 }}{{\sqrt 2 }} \hfill \\  t = 3 \Rightarrow M\left( {3 - \dfrac{1}{{\sqrt 2 }};\,2 - \dfrac{1}{{\sqrt 2 }}} ight),MH = \dfrac{{5 - \sqrt 2 }}{{\sqrt 2 }} \hfill \\ \end{matrix}

    Vậy {P_{\min }} = \frac{{5\sqrt 2  - 2}}{2}

    Cách 2 :

    \left| {z - 3 - 2i} ight| \leqslant 1 điều này cho thấy M(z) đang nằm trên hình tròn tâm I(3; 2) bán kính bằng 1.

    \left| {w + 1 + 2i} ight| \leqslant \left| {w - 2 - i} ight| điều này cho thấy N(w) đang thuộc nửa mặt phẳng tạo bởi đường thẳng \Delta là trung trực của đoạn AB với A\left( { - 1; - 2} ight),B\left( {2;1} ight).

    \Delta :x + y = 0.

    (Minh hoạ như hình vẽ)

    Tìm giá trị nhỏ nhất của P

    P = \left| {z - w} ight| = MN.

    {P_{\min }} = d\left( {I,\Delta } ight) - R = \frac{{\left| {3 + 2} ight|}}{{\sqrt 2 }} - 1 = \frac{{5\sqrt 2  - 2}}{2}.

  • Câu 31: Nhận biết

    Tìm số phức z trong phương trình sau: (1 + z)(2 + 3i) = 1 + i

     Ta có (1 + z)(2 + 3i) = 1 + i

    \begin{array}{l} \Leftrightarrow 1 + z = \dfrac{{1 + i}}{{2 + 3i}}\\ \Leftrightarrow 1 + z = \dfrac{{5 - i}}{{13}}\;\\ \Leftrightarrow z =  - \dfrac{8}{{13}} - \dfrac{1}{{13}}i\;\;\;\end{array}

  • Câu 32: Nhận biết

    Nguyên hàm của hàm số f(x) =
\frac{1}{x\sqrt{x}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{1}{x\sqrt{x}}dx}

    = \int_{}^{}{x^{- \frac{3}{2}}dx=}\dfrac{x^{- \frac{1}{2}}}{- \dfrac{1}{2}} + C = - \frac{2}{\sqrt{x}} +C.

  • Câu 33: Nhận biết

    Trong không gian Oxyz, cho điểm A(1;1; - 1). Phương trình mặt phẳng (P) đi qua A và chứa trục Ox là:

    Mặt phẳng (P) có VTPT \overrightarrow{n}(0;1;1) và đi qua điểm A(1;1; - 1).

    Suy ra phương trình (P):y + z =
0.

  • Câu 34: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 35: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d có phương trình d:\frac{x - 1}{3} = \frac{y + 2}{2} = \frac{z -
3}{- 4}. Điểm nào sau đây không thuộc đường thẳng d?

    Ta thay lần lượt tọa độ các điểm vào phương trình đường thẳng d, điểm N(7;2;1) có tọa độ không thỏa mãn phương trình đường thẳng d.

  • Câu 36: Vận dụng

    Cho hàm số y = f(x) thỏa mãn f'(x).f^{2}(x) = x^{2}f(2) = 2. Phương trình tiếp tuyến của đồ thị hàm số g(x) = f(x) + x^{2} tại điểm có hoành độ bằng 3 là:

    Ta có: f'(x).f^{2}(x) =
x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{f'(x).f^{2}(x)dx} =
\int_{}^{}{x^{2}dx}

    \Leftrightarrow
\int_{}^{}{f^{2}(x)df(x)} = \frac{x^{3}}{3} + C

    \Leftrightarrow \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} + C. Theo bài ra ta có: f(2) = 2 \Rightarrow \frac{f^{3}(2)}{3} =
\frac{2^{3}}{3} + C \Rightarrow C = 0

    Suy ra \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} \Leftrightarrow f(x) = x

    Vậy g(x) = x^{2} + x \Rightarrow
g'(x) = 2x + 1

    Ta có: g'(3) = 7;g(3) =
12

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:

    y = g'(3)(x - 3) + g(3)

    \Leftrightarrow y = 7(x - 3) + 12
\Leftrightarrow y = 7x - 9

  • Câu 37: Thông hiểu

    Anh A xuất phát từ D, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t) =
\frac{t^{2}}{180} + \frac{11t}{18}(m/s) trong đó t (giây) là khoảng thời gian tính từ lúc anh A bắt đầu chuyển động. Từ trạng thái nghỉ, anh B cũng xuất phát từ D, chuyển động thẳng cùng hướng với anh A nhưng chậm hơn 5 giây so với anh A và có gia tốc bằng a\left( m/s^{2} ight) (a là hằng số). Sau khi anh B xuất phát được 10 giây thì đuổi kịp anh A. Vận tốc của anh B tại thời điểm đuổi kịp anh A bằng bao nhiêu?

    Quãng đường anh A đi được cho đến khi hai người gặp nhau là:

    S = \int_{0}^{15}{\left(
\frac{t^{2}}{180} + \frac{11t}{18} ight)dt} = 75(m)

    Vận tốc của anh B tại thời điểm t(s) tính từ lúc anh B xuất phát là: v_{B}(t) = at

    Quãng đường anh B đi được cho đến khi hai người gặp nhau là:

    S = \int_{0}^{10}{(at)dt} = \left. \
\left( \frac{at^{2}}{2} ight) ight|_{0}^{10} = 50a(m)

    \Rightarrow 50a = 75 \Rightarrow a =
\frac{3}{2}

    Vậy vận tốc của anh B tại thời điểm đuổi kịp anh A là: v_{B}(20) = 10a = 15(m/s)

  • Câu 38: Thông hiểu

    Xác định nguyên hàm F(x) của hàm số f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1}?

    Ta có:

    f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1} = \frac{(x + 1)^{3} - 2}{(x + 1)^{2}} = x + 1 -
\frac{2}{(x + 1)^{2}}

    \Rightarrow F(x) = \frac{x^{2}}{2} + x +
\frac{2}{x + 1} + C

  • Câu 39: Nhận biết

    Tìm số phức z trong phương trình sau: \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

     Ta có \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

    \Leftrightarrow z = \frac{{( - 1 + 3i)(1 - i)}}{{{{(2 + i)}^2}}}

    \Leftrightarrow z = \frac{{2 + 4i}}{{3 + 4i}} \Leftrightarrow z = \frac{{(2 + 4i)(3 - 4i)}}{{25}}

    \Leftrightarrow z = \frac{{22}}{{25}} + \frac{4}{{25}}i

  • Câu 40: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 41: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 42: Nhận biết

    Một ô tô đang chạy thì người lái đạp phanh, từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc v(t) =
- 12t + 24(m/s) trong đó t là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Hỏi từ lúc đạp phanh đến khi dừng hẳn, ô tô còn di chuyển bao nhiêu mét?

    Khi dừng hẳn v(t) = - 12t + 24 = 0
\Rightarrow t = 2(s)

    Do đó từ lúc đạp phanh đến khi dừng hẳn, ô tô đi được:

    S = \int_{0}^{2}{v(t)dt} =
\int_{0}^{2}{( - 12t + 24)dt} = 24m

  • Câu 43: Vận dụng cao

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm M(1;1;1). Mặt phẳng (P) qua M cắt chiều dương của các trục Ox,Oy,Oz lần lượt tại A;B;C thỏa mãn OA = 2OB. Tính giá trị nhỏ nhất của thể tích khối chóp OABC?

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c > 0.

    Khi đó mặt phẳng (P) có dạng: \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{a} +
\frac{1}{b} + \frac{1}{c} = 1

    OA = 2OB \Rightarrow a = 2b
\Rightarrow \frac{3}{2b} + \frac{1}{c} = 1

    Thể tích khối chóp OABC là: V = \frac{1}{6}abc =
\frac{1}{3}b^{2}c

    Ta có: 1 = \frac{3}{2b} + \frac{1}{c} =
\frac{3}{4b} + \frac{3}{4b} + \frac{1}{c} \geq
3\sqrt[3]{\frac{9}{16b^{2}c}}

    \Leftrightarrow
3\sqrt[3]{\frac{9}{16b^{2}c}} \leq \frac{1}{3} \Leftrightarrow
\frac{16b^{2}c}{9} \geq 27 \Leftrightarrow \frac{b^{2}c}{3} \geq
\frac{81}{16}

    \Rightarrow V_{OABC}\min =
\frac{81}{16} khi \dfrac{3}{4b} =\dfrac{1}{c} = \dfrac{1}{3} \Rightarrow \left\{ \begin{matrix}a = \dfrac{9}{2} \\b = \dfrac{9}{4} \\c = 3 \\\end{matrix} ight..

  • Câu 44: Thông hiểu

    Số phức z = 1 + i + {\left( {1 + i} ight)^2} + {\left( {1 + i} ight)^3} + ... + {\left( {1 + i} ight)^{20}} là số phức nào sau đây?

     z = \left( {1 + i} ight)\frac{{1 - {{\left( {1 + i} ight)}^{20}}}}{{1 - \left( {1 + i} ight)}} =  - 1025 + 1025i

  • Câu 45: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
e^{x}\left( 2017 - \frac{2018e^{- x}}{x^{5}} ight)?

    Ta có: \int_{}^{}\left\lbrack e^{x}\left(
2017 - \frac{2018e^{- x}}{x^{5}} ight) ightbrack dx =
\int_{}^{}\left( 2017e^{x} - \frac{2018}{x^{5}} ight)dx

    = 2017e^{x} + \frac{504,5}{x^{4}} +
C

  • Câu 46: Nhận biết

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} = (1;3;4). Hãy chọn vectơ cùng phương với \overrightarrow{a}?

    Ta có: \overrightarrow{b} cùng phương với \overrightarrow{a} khi \overrightarrow{b} =
k.\overrightarrow{a};\left( k\mathbb{\in R} ight). Khi đó đáp án cần tìm là \overrightarrow{b} = ( - 2; -
6; - 8) (vì \overrightarrow{b} = -2(1;3;4) = - 2\overrightarrow{a}).

  • Câu 47: Nhận biết

    Tìm số phức z thỏa mãn z + 2 - 3i = 3 - 2i

     Ta có z + 2 - 3i = 3 - 2i \Leftrightarrow z = 3 - 2i - 2 + 3i = 1 + i

  • Câu 48: Vận dụng

    Cho tam giác ABC vuông tại A và có hai đỉnh B;C nằm trên mặt phẳng (P). Gọi A' là hình chiếu vuông góc của đỉnh A lên (P). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì

    \overrightarrow{A'B}.\overrightarrow{A'C}
= \overrightarrow{A'A}.\overrightarrow{A'C} +
\overrightarrow{AB}.\overrightarrow{A'C}

    =
\overrightarrow{AB}.\overrightarrow{A'C} =
\overrightarrow{AB}.\left( \overrightarrow{A'A} +
\overrightarrow{AC} ight)

    =
\overrightarrow{AB}.\overrightarrow{A'A} = -
\overrightarrow{AB}.\overrightarrow{AA'} < 0 suy ra góc \widehat{BA'C} là góc tù.

  • Câu 49: Nhận biết

    Một vật chuyển động chậm dần với vận tốc v(t) = 150 - 15t(m/s). Hỏi rằng trong 5s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

    Khi dừng hẳn v(t) = 150 - 15t = 0
\Rightarrow t = 10(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{(150 - 15t)dt} = \frac{375}{2}m.

  • Câu 50: Vận dụng

    Trong không gian với hệ trục toạ độ Oxyz, cho điểm M thoả mãn OM
= 7. Biết rằng khoảng cách từ M tới mặt phẳng (Oxz),(Oyz) lần lượt là 2 và 3. Tính khoảng cách từ M đến mặt phẳng (Oxy).

    Ta có: (Oxz):y = 0,(Oyz):x =
0

    Giả sử M(a;b;c) khi đó ta có:

    \left\{ \begin{matrix}
OM = 7 \\
d\left( M;(Oxz) ight) = 2 \\
d\left( M;(Oyz) ight) = 3 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a^{2} + b^{2} + c^{2} = 49 \\
b^{2} = 4 \\
a^{2} = 9 \\
\end{matrix} ight.\  \Rightarrow c^{2} = 36

    d\left( M;(Oxy) ight) = \sqrt{c^{2}}
= 6

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 40 lượt xem
Sắp xếp theo