Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
. Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng (d)?
Phương trình chính tắc của đường thẳng có dạng:
với
.
Vectơ chỉ phương .
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
. Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng (d)?
Phương trình chính tắc của đường thẳng có dạng:
với
.
Vectơ chỉ phương .
Thể tích của khối tròn xoay tạo thành khi quay hình phẳng giới hạn bời các đường thẳng
xung quanh trục Ox là:
Phương trình hoành độ giao điểm của và
là
Thể tích khối tròn xoay cần tính là
Đặt
Ta có:
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất
, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

Đáp án: 667m
Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất , sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).
Đáp án: 667m
Giả sử hàm số biểu thị cho vận tốc có dạng
Do đi qua gốc
nên
có đỉnh là
Do đó
Xe dừng lại khi
Quảng đường xe ô tô di chuyển trong 20 giây là
Tìm nguyên hàm của hàm số ![]()
Phần thực của số phức
là:
Ta có:
Tìm một nguyên hàm của hàm số
?
Ta có:
Đặt
Khi đó .
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là
và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.
Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.
Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)
Ta có
OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0
⟺13906t - 76483 = 0 ⟺
Suy ra
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
Cho hai đường thẳng
và
lần lượt có vectơ chỉ phương là
và
. Nếu
là góc giữa hai đường thẳng
và
thì:
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là .
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính giá trị của biểu thức ![]()
Ta có:
=>
Trong không gian toạ độ
, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?
PTTQ của mặt phẳng có dạng , với
nên ta chọn
.
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số ![]()
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ
.
Cho hàm số
biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của
?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)
=>
=> Hay
Trong không gian
, cho hai đường thẳng cắt nhau ![]()
. Trong mặt phẳng
, hãy viết phương trình đường phân giác
của góc nhọn tạo bởi ![]()
Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là
Ta có , suy ra góc giữa hai vectơ
và
là góc tù.
Lại có
Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là
Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là
Vậy phương trình đường thẳng d là:
Cho
với
là các số thực. Giá trị của biểu thức
bằng:
Ta có:
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Do đó:
Gọi
là các nghiệm của phương trình
. Tính giá trị biểu thức ![]()
Ta có phương trình
Suy ra:
Vì (1)
Mà ;
.
Vậy từ .
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc vào thời gian
là
. Biết vận tốc đầu bằng
. Hỏi trong
giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?
Ta có:
Vận tốc của vật được tính theo công thức:
Suy ra quãng đường vật đi được tính theo công thức:
Ta có:
Suy ra
Vậy thời điểm chất điểm ở xa nhất về phía bên phải là 2s.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Tìm nguyên hàm của hàm số
?
Ta có:
Cho hình vuông
có cạnh
. Trên hai tia
vuông góc và nằm cùng phía với mặt phẳng
lần lượt lấy hai điểm
sao cho
. Tính góc
giữa hai mặt phẳng
.
Cho hình vuông có cạnh
. Trên hai tia
vuông góc và nằm cùng phía với mặt phẳng
lần lượt lấy hai điểm
sao cho
. Tính góc
giữa hai mặt phẳng
.
Cho hàm số
là hàm số chẵn, liên tục trên đoạn
và
. Tính tích phân
?
Cho hàm số là hàm số chẵn, liên tục trên đoạn
và
. Tính tích phân
?
Cho hình phẳng
giới hạn với các đường
. Tính thể tích
của khối tròn xoay thu được khi
quay quanh trục
?
Thể tích cần tìm là:
Cho số phức
thỏa mãn
và
.
Tính giá trị biểu thức
.
Ta có mà
(1)
Tương tự ta có
Cộng (1) và (2) ta có:
Nếu
thì
bằng:
Ta có:
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Gọi M và m lần lượt là giá trị lớn
nhất và giá trị nhỏ nhất của
với z là số phức khác 0 và thỏa mãn
. Tính ![]()
Ta có
Mặt khác:
Vậy giá trị nhỏ nhất của P là , xảy ra khi
giá trị lớn nhất của P bằng
xảy ra khi
=>
Viết phương trình tổng quát của mặt phẳng (P) qua
và song song với mặt phẳng (Q): ![]()
Vì mp nên ta có PTTQ mp
sẽ có dạng là:
Mặt khác, (P) qua
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:
: vectơ chỉ phương của trục Ox:
.
: Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng
, qua A nên:
Vậy ta có phương trình mp cần tìm là:
Trong không gian với hệ tọa độ
, cho điểm
và hai mặt phẳng
. Dường thẳng đi qua
và song song với hai mặt phẳng
có phương trình là
Gọi là đường thẳng cần tìm.
Mặt phẳng có một véc-tơ pháp tuyến là
và
có một vectơ pháp tuyến là
. Ta có
.
Khi đó, đi qua điểm
và nhận véc-tơ
làm vec-tơ chỉ phương. Phương trình đường thẳng
là
Với thì điểm
thuộc
. Viết lại phương trình đường thẳng
Nguyên hàm của hàm số
là:
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Số phức
là số phức nào sau đây?
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng
và
. Tìm
để hai mặt phẳng
và
song song với nhau.
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến
Để thì
Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.
Cho số phức
. Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Trong không gian hệ tọa độ Oxyz, cho điểm
và mặt phẳng
. Gọi
thuộc
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Giả sử là điểm thỏa mãn
.
Khi đó ,
,
;
;
;
(vì
)
Vì I cố định nên đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên
.
Gọi là đường thẳng qua I và vuông góc với
Phương trình đường thẳng .
Tọa độ của M là nghiệm hệ phương trình:
.
Cho số phức
. Tìm số phức
?
Ta có:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Điểm
nằm trên đường thẳng
thì điểm M có dạng nào sau đây?
Đường thẳng đi qua điểm
và có vectơ chỉ phương
nên đường thẳng
có phương trình tham số là
Điểm nằm trên đường thẳng
nên điểm
có dạng
Cho hình lập phương
; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Trong không gian
, cho điểm
. Tọa độ trung điểm của
là.
Tọa độ trung điểm I của AB là:
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Cho ba điểm
. Tính x và y để ba điểm A, B, C đã cho thẳng hàng với nhau?
A, B, C thẳng hàng cùng phương với