Trong không gian hệ trục tọa độ
, cho hình hộp
biết
. Xác định tọa độ B’?
Hình vẽ minh họa
Giả sử điểm
Gọi
Suy ra . Vì
là hình hộp nên
Trong không gian hệ trục tọa độ
, cho hình hộp
biết
. Xác định tọa độ B’?
Hình vẽ minh họa
Giả sử điểm
Gọi
Suy ra . Vì
là hình hộp nên
Cho hai số phức
. Môđun của số phức
là:
Ta có:
Cho tứ diện
. Gọi
lần lượt là trung điểm các đoạn thẳng
.

Xét tính đúng sai của các khẳng định sau.
a)
. Sai||Đúng
b)
. Đúng||Sai
c)
. Sai||Đúng
d)
nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Cho tứ diện . Gọi
lần lượt là trung điểm các đoạn thẳng
.
Xét tính đúng sai của các khẳng định sau.
a) . Sai||Đúng
b) . Đúng||Sai
c) . Sai||Đúng
d) nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai
Hình vẽ minh họa
a) Đúng: .
b) Đúng: Vi là trung điểm của
nên
Vì là trung điểm của
nên
Vì là trung điểm của
nên
Do đó:
c) Sai:
d) Đúng
Ta có: .
.
Do đó: nhỏ nhất khi
Biết rằng trong không gian với hệ tọa độ
có hai mặt phẳng
và
cùng thỏa mãn các điều kiện sau: đi qua hai điểm
đồng thời cắt các trục tọa độ
tại hai điểm cách đều
. Giả sử
có phương trình
và
có phương trình
. Tính giá trị biểu thức
.
Biết rằng trong không gian với hệ tọa độ có hai mặt phẳng
và
cùng thỏa mãn các điều kiện sau: đi qua hai điểm
đồng thời cắt các trục tọa độ
tại hai điểm cách đều
. Giả sử
có phương trình
và
có phương trình
. Tính giá trị biểu thức
.
Cho hàm số
liên tục trên
và có một nguyên hàm là hàm số
. Mệnh đề nào sau đây đúng?
Theo định nghĩa tích phân ta có: .
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính khoảng cách
từ gốc toạ độ
đến mặt phẳng
?
Phương trình tổng quát của mặt phẳng có dạng:
Khoảng cách từ gốc tọa độ đến
là:
Trong không gian
, cho mặt phẳng
và
. Tìm tham số m để hai mặt phẳng
và
vuông góc với nhau?
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
Phần thực, phần ảo của số phức z thỏa mãn
lần lượt là?
Ta có:
Phần thực, phần ảo của z lần lượt là 1;1.
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Cho hai quả bóng A, B đều chuyển động thẳng, di chuyển ngược chiều và va chạm với nhau. Sau mỗi va chạm, hai quả bóng nảy ngược lại một đoạn thì dừng hẳn. Tính khoảng cách giữa hai quả bóng sau khi dừng hẳn. Biết sau khi va chạm, quả bóng A này ngược lại với vận tốc
và quả bóng B nảy ngược lại với vận tốc
.
Thời gian quả bóng A chuyển động từ lúc va chạm đến khi dừng hẳn là:
Quãng đường quả bóng A di chuyển được là:
Thời gian quả bóng B chuyển động từ lúc va chạm đến khi dừng hẳn là:
Quãng đường quả bóng B di chuyển được là:
Vậy khoảng cách hai quả bóng sau khi dừng hẳn là
Cho hình lăng trụ tam giác
có
. Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Ta có:
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
. Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được
. Tìm
?
Khi dừng hẳn
Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Mệnh đề nào sau đây sai?
Hai vectơ có độ dài bằng nhau và cùng hướng thì hai vectơ đó bằng nhau.
Cho hàm số
liên tục trên
và có đồ thị
cắt trục
tại ba điểm có hoành độ
với
như hình bên. Đặt
. Diện tích của hình phẳng giới hạn bởi đồ thị
và trục hoành (phần tô đậm) bằng bao nhiêu?

Diện tích hình phẳng phần tô đậm được tính như sau:
Cho số phức z thỏa mãn
. Gọi M, n lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức
. Khi đó mô đun của số phức ![]()
Giả sử ta có:
Ta có
Ta có
=>
=>
Ta thu được kết quả:
=>
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và
là giao tuyến của hai mặt phẳng
. Vị trí tương đối của hai đường thẳng là:
Xét hệ phương trình
Cho
Cho
Đường thẳng d1 đi qua M (1; 7; 3) và có vectơ chỉ phương
Đường thẳng d2 đi qua A (3; 1; −3) và có vectơ chỉ phương
Ta có
Do đó vị trí tương đối của hai đường thẳng là cắt nhau.
Cho tam giác ABC có
. Viết phương trình tổng quát của đường trung trực (d) của cạnh BC của tam giác ABC.
Theo đề bài, ta tính được
Từ đó, suy ra VTPT của mặt phẳng (ABC) là:
Phương trình (ABC) là:
Mặt khác, ta có M là trung điểm của BC nên M có tọa độ là M (-2, 8, -5)
Phương trình mặt phẳng trung trực (P) của cạnh BC là:
Phương trình tổng quát của đường trung trực (d) của cạnh BC:
Cho
và
. Tính
?
Ta có và
. Tính:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Số phức
bằng:
Ta có:
Trong không gian
, cho điểm
. Viết phương trình mặt phẳng đi qua
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
?
Xét tứ diện OABC có các cạnh đôi một vuông góc với nhau.
Ta có:
Chứng minh tương tự, ta được AC ⊥ OM.
Từ đó .
Suy ra phương trình mặt phẳng (ABC) đi qua M(3; 2; 1) và nhận làm vectơ pháp tuyến là:
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho
là các số hữu tỉ thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Phần thực của số phức
là:
Ta có:
Trong không gian
, cho tọa độ ba điểm
. Tính cosin góc
?
Ta có: .
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) chéo nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:
Suy ra (D) và (d) chéo nhau.
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Cho hàm số
xác định trên
thỏa mãn
;
. Tính
?
Trên khoảng ta có:
Mà
Trên khoảng ta có:
Mà
Vậy
.
Họ nguyên hàm của hàm số
là:
Ta có: .
Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số ![]()
Trong không gian với hệ tọa độ
, cho đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương và đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương. Điều kiện để đường thẳng
song song với
là:
Điều kiện để là:
.
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và các đường thẳng ![]()
Gọi S là diện tích của hình phẳng trên ta có:
Ta có:
Khi đó:
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Giả sử
và
. Khi đó
bằng
Ta có:
Giả sử
với
là hằng số. Tổng các nghiệm của phương trình
bằng:
Ta có:
Đặt
Theo định lí Vi – et ta thấy phương trình có hai nghiệm
và
.
Trong không gian với hệ tọa độ
, viết phương trình mặt phẳng đi qua ba điểm
và
.
Ta có:
Mặt phẳng đi qua điểm
và nhận
làm vectơ pháp tuyến có phương trình là:
Cho số phức
thoả mãn
là số thực và
với
. Gọi
là một giá trị của
để có đúng một số phức thoả mãn bài toán. Khi đó:
Giả sử .
Đặt:
.
là số thực nên:
.
Mặt khác:
Thay (1) vào (2) được:
Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất .
(Vì là mô-đun).
Trong không gian với hệ tọa độ
, mặt phẳng
đi qua
và chứa trục
có phương trình là:
Ta có: (P) có cặp véc-tơ chỉ phương
Khi đó véc-tơ pháp tuyến của (P) là , ta chọn
.
Mặt phẳng (P) đi qua và có véc-tơ pháp tuyến
nên có phương trình
hay
.
Tìm họ nguyên hàm của hàm số ![]()
Ta có:
Trong mặt phẳng tọa độ
, cho đường tròn
.

Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn
quanh trục hoành.
Trong mặt phẳng tọa độ , cho đường tròn
.
Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn quanh trục hoành.
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số ![]()
Ta có: F(x) là một nguyên hàm của hàm số nên:
Hay
Xét
Đặt
Khi đó
Tìm tọa độ trung điểm
của đoạn thẳng
. Biết tọa độ hai điểm
và
.
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Tìm nguyên hàm của hàm của hàm số ![]()