Đề thi HK2 Toán 12 Đề 3

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' biết A(2;4;0),B(4;0;0),C( -
1;4;7),D'(6;8;10). Xác định tọa độ B’?

    Hình vẽ minh họa

    Giả sử điểm D(a;b;c),B'(a';b';c')

    Gọi O = AC \cap BD \Rightarrow O\left(
\frac{1}{2};4; - \frac{7}{2} ight) \Rightarrow \left\{ \begin{matrix}
a = - 3 \\
b = 8 \\
c = - 7 \\
\end{matrix} ight.

    Suy ra \left\{ \begin{matrix}
\overrightarrow{DD'} = (9;0;17) \\
\overrightarrow{BB'} = (a' - 4;b';c') \\
\end{matrix} ight.. Vì ABCD.A'B'C'D' là hình hộp nên \overrightarrow{DD'} =
\overrightarrow{BB'}

    \Leftrightarrow \left\{ \begin{matrix}
a' = 13 \\
b' = 0 \\
c' = 17 \\
\end{matrix} ight.\  \Rightarrow B'(13;0;17)

  • Câu 2: Thông hiểu

    Cho hai số phức {z_1} = 2 + i,{z_2} = 3 - 4i. Môđun của số phức \left( {{z_1} - {z_2}} ight) là:

     Ta có: \left| {{z_1} - {z_2}} ight| = \left| {2 + i - 3 + 4i} ight| = \left| { - 1 + 5i} ight| = \sqrt {26}

  • Câu 3: Vận dụng

    Cho tứ diện ABCD. Gọi M;N;P;Q;R;S;G lần lượt là trung điểm các đoạn thẳng AB;CD;AC;BD;AD;BC;MN.

    Xét tính đúng sai của các khẳng định sau.

    a) \overrightarrow{MR} =
\overrightarrow{SN}. Sai||Đúng

    b) \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Đúng||Sai

    c) 2\overrightarrow{PQ} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}. Sai||Đúng

    d) \left| \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}
ight| nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai

    Đáp án là:

    Cho tứ diện ABCD. Gọi M;N;P;Q;R;S;G lần lượt là trung điểm các đoạn thẳng AB;CD;AC;BD;AD;BC;MN.

    Xét tính đúng sai của các khẳng định sau.

    a) \overrightarrow{MR} =
\overrightarrow{SN}. Sai||Đúng

    b) \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}. Đúng||Sai

    c) 2\overrightarrow{PQ} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}. Sai||Đúng

    d) \left| \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}
ight| nhỏ nhất khi và chỉ khi điểm I trùng với điểm G. Đúng||Sai

    Hình vẽ minh họa

    a) Đúng: \left. \ \begin{matrix}\overrightarrow{MR} = \dfrac{1}{2}\overrightarrow{BD} \\\overrightarrow{SN} = \dfrac{1}{2}\overrightarrow{BD} \\\end{matrix} ight\} \Rightarrow \overrightarrow{MR} =\overrightarrow{SN}.

    b) Đúng: Vi M là trung điểm của AB nên \overrightarrow{GA} + \overrightarrow{GB} =
2\overrightarrow{GM}

    N là trung điểm của CD nên \overrightarrow{GC} + \overrightarrow{GD} =
2\overrightarrow{GN}

    G là trung điểm của MN nên \overrightarrow{GM} + \overrightarrow{GN} =
\overrightarrow{0}

    Do đó: \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
2(\overrightarrow{GM} + \overrightarrow{GN}) = 2.\overrightarrow{0} =
\overrightarrow{0}

    c) Sai: \overrightarrow{PQ} =\overrightarrow{AQ} - \overrightarrow{AP} =\frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AD}) -\frac{1}{2}\overrightarrow{AC}\Leftrightarrow 2\overrightarrow{PQ} =\overrightarrow{AB} - \overrightarrow{AC} +\overrightarrow{AD}

    d) Đúng

    Ta có: \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
4\overrightarrow{IG} + (\overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} + \overrightarrow{GD}) =
4\overrightarrow{IG}.

    \Rightarrow |\overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID}| =
|4\overrightarrow{IG}| = 4IG.

    Do đó: |\overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID}| nhỏ nhất khi IG = 0 \Leftrightarrow I \equiv G 

  • Câu 4: Vận dụng cao

    Biết rằng trong không gian với hệ tọa độ Oxyz có hai mặt phẳng (P)(Q) cùng thỏa mãn các điều kiện sau: đi qua hai điểm A(1;1;1),B(0; - 2;2) đồng thời cắt các trục tọa độ Ox,Oy tại hai điểm cách đều O. Giả sử (P) có phương trình x + b_{1}y + c_{1}z + d_{1} = 0(Q) có phương trình x + b_{2}y + c_{2}z + d_{2} = 0. Tính giá trị biểu thức U = b_{1}b_{2} +c_{1}c_{2}.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết rằng trong không gian với hệ tọa độ Oxyz có hai mặt phẳng (P)(Q) cùng thỏa mãn các điều kiện sau: đi qua hai điểm A(1;1;1),B(0; - 2;2) đồng thời cắt các trục tọa độ Ox,Oy tại hai điểm cách đều O. Giả sử (P) có phương trình x + b_{1}y + c_{1}z + d_{1} = 0(Q) có phương trình x + b_{2}y + c_{2}z + d_{2} = 0. Tính giá trị biểu thức U = b_{1}b_{2} +c_{1}c_{2}.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 5: Nhận biết

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có một nguyên hàm là hàm số F(x). Mệnh đề nào sau đây đúng?

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 6: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho ba điểm M(1;0;0),N(0; - 2;0),P(0;0;1). Tính khoảng cách h từ gốc toạ độ O đến mặt phẳng (MNP)?

    Phương trình tổng quát của mặt phẳng (MNP) có dạng:

    \frac{x}{1} + \frac{y}{- 2} +
\frac{z}{1} = 1 \Leftrightarrow 2x - y + 2z - 2 = 0

    Khoảng cách từ gốc tọa độ (0;0;0) đến (MNP) là: h =
\frac{| - 2|}{\sqrt{4 + 1 + 4}} = \frac{2}{3}

  • Câu 7: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P):2x - y + 2z - 3 = 0(Q):x + my + z - 1 = 0. Tìm tham số m để hai mặt phẳng (P)(Q) vuông góc với nhau?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{n_{(P)}} = (2; - 1;2) \\
\overrightarrow{n_{(Q)}} = (1;m;1) \\
\end{matrix} ight.

    Để hai mặt phẳng (P)(Q) vuông góc với nhau thì

    \overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}}
= 0 \Leftrightarrow 2 - m + 2 = 0 \Leftrightarrow m = 4

  • Câu 8: Nhận biết

    Phần thực, phần ảo của số phức z thỏa mãn \overline z  = \frac{5}{{1 - 2i}} - 3i lần lượt là?

    Ta có:

    \overline z  = \frac{5}{{1 - 2i}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{{\left( {1 - 2i} ight)\left( {1 + 2i} ight)}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{5} - 3i = 1 - i

    \Rightarrow z = 1 + i

    Phần thực, phần ảo của z lần lượt là 1;1.

  • Câu 9: Nhận biết

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

  • Câu 10: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

  • Câu 11: Vận dụng cao

    Cho hai quả bóng A, B đều chuyển động thẳng, di chuyển ngược chiều và va chạm với nhau. Sau mỗi va chạm, hai quả bóng nảy ngược lại một đoạn thì dừng hẳn. Tính khoảng cách giữa hai quả bóng sau khi dừng hẳn. Biết sau khi va chạm, quả bóng A này ngược lại với vận tốc {v_A}\left( t ight) = 8 - 2t\left( {m/s} ight) và quả bóng B nảy ngược lại với vận tốc {v_b}\left( t ight) = 12 - 4t\left( {m/s} ight).

    Thời gian quả bóng A chuyển động từ lúc va chạm đến khi dừng hẳn là:

    {v_A}\left( t ight) = 0 \Rightarrow 8 - 2t = 0 \Rightarrow t = 4\left( s ight)

    Quãng đường quả bóng A di chuyển được là: 

    {S_A} = \int\limits_0^4 {\left( {8 - 2t} ight)dt}  = 16\left( m ight)

    Thời gian quả bóng B chuyển động từ lúc va chạm đến khi dừng hẳn là:

    {v_B}\left( t ight) = 0 \Rightarrow 12 - 4t = 0 \Rightarrow t = 3\left( s ight)

    Quãng đường quả bóng B di chuyển được là:

    {S_B} = \int\limits_0^3 {\left( {12 - 4t} ight)dt}  = 18\left( m ight)

    Vậy khoảng cách hai quả bóng sau khi dừng hẳn là 

    S = {S_A} + {S_B} = 16 + 18 = 34\left( m ight)

  • Câu 12: Thông hiểu

    Cho hình lăng trụ tam giác ABC.A'B'C'\overrightarrow{AA'} =\overrightarrow{a};\overrightarrow{AB} =\overrightarrow{b};\overrightarrow{AC} = \overrightarrow{c}. Hãy phân tích vectơ \overrightarrow{B'C} theo các vectơ \overrightarrow{a};\overrightarrow{b};\overrightarrow{c}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{B'C} =\overrightarrow{BB'} + \overrightarrow{BC} = - \overrightarrow{a} +\left( \overrightarrow{AC} - \overrightarrow{AB} ight)

    = - \overrightarrow{a} +\overrightarrow{c} - \overrightarrow{b} = - \overrightarrow{a} -\overrightarrow{b} + \overrightarrow{c}

  • Câu 13: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x(m/s) thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc v(t) = - 4t + x(m/s). Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được 50m. Tìm x?

    Khi dừng hẳn v(t) = - 4t + x = 0
\Rightarrow t = \frac{x}{4}(s)

    Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:S = \int_{0}^{\frac{x}{4}}{v(t)dt} =
\int_{0}^{\frac{x}{4}}{( - 4t + x)dt}

    = \left. \ \left( - 2t^{2} + xt ight)
ight|_{0}^{\frac{x}{4}} = \frac{- x^{2}}{8} + \frac{x^{2}}{4} =
50

    \Leftrightarrow x^{2} = 400
\Leftrightarrow x = 20(m/s)

  • Câu 14: Nhận biết

    Họ nguyên hàm của hàm số f(x) =2\sin x.\cos2x là:

    Ta có: f(x) = 2\sin x.\cos2x = \sin( - x) +\sin3x = - \sin x + \sin3x

    Khi đó:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left( -\sin x + \sin3x ight)dx}

    = \int_{}^{}{\left( - \sin x ight)dx}+ \int_{}^{}{(\sin3x)dx} = \cos x - \frac{1}{3}\cos3x + C

  • Câu 15: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = e^{x}, thỏa mãn F(0) = 2020. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{e^{x}dx} = e^{x} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x}, ta có: F(x) = e^{x} + CF(0) = 2020

    \Rightarrow C = 2019 \Rightarrow F(x) =
e^{x} + 2019

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = 1 + e + e^{2} + .... + e^{2018} +
e^{2019} + 2019.2020

    T = \frac{e^{2020} - 1}{e - 1} +
2019.2020.

  • Câu 16: Nhận biết

    Tìm số phức z trong phương trình sau: (1 + z)(2 + 3i) = 1 + i

     Ta có (1 + z)(2 + 3i) = 1 + i

    \begin{array}{l} \Leftrightarrow 1 + z = \dfrac{{1 + i}}{{2 + 3i}}\\ \Leftrightarrow 1 + z = \dfrac{{5 - i}}{{13}}\;\\ \Leftrightarrow z =  - \dfrac{8}{{13}} - \dfrac{1}{{13}}i\;\;\;\end{array}

  • Câu 17: Nhận biết

    Mệnh đề nào sau đây sai?

    Hai vectơ có độ dài bằng nhau và cùng hướng thì hai vectơ đó bằng nhau.

  • Câu 18: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) cắt trục Ox tại ba điểm có hoành độ a;b;c với c\in (a;b) như hình bên. Đặt m =\int_{a}^{c}{f(x)dx;n} = \int_{c}^{b}{f(x)dx}. Diện tích của hình phẳng giới hạn bởi đồ thị (C) và trục hoành (phần tô đậm) bằng bao nhiêu?

    Diện tích hình phẳng

    Diện tích hình phẳng phần tô đậm được tính như sau:

    S = \int_{a}^{b}{\left| f(x) ight|dx}= \int_{a}^{c}{\left| f(x) ight|dx} + \int_{c}^{b}{\left| f(x)ight|dx}

    = \int_{a}^{c}{f(x)dx} -\int_{c}^{b}{f(x)dx} = m - n

  • Câu 19: Vận dụng cao

    Cho số phức z thỏa mãn \left| {z - 3 - 4i} ight| = \sqrt 5. Gọi M, n lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức P = {\left| {z + 2} ight|^2} - {\left| {z - i} ight|^2}. Khi đó mô đun của số phức {\text{w}} = M + mi

     Giả sử z = x + yi\left( {x,y \in R} ight) ta có:

    \left| {z - 3 - 4i} ight| = \sqrt 5

    \Leftrightarrow {\left( {x - 3} ight)^2} + {\left( {y - 4} ight)^2} = 5

    Ta có

    P = 4x + 2y + 3 \Leftrightarrow 4\left( {x - 3} ight) + 2\left( {y - 4} ight) = P - 23

    Ta có

    {\left[ {4\left( {x - 3} ight) + 2\left( {y - 4} ight)} ight]^2} \leqslant 20\left[ {{{\left( {x - 3} ight)}^2} + {{\left( {y - 4} ight)}^2}} ight] = 100

    => - 10 \leqslant P - 23 \leqslant 10

    \Leftrightarrow 13 \leqslant P \leqslant 33

    => M = 33,m = 13

    Ta thu được kết quả: w = 33 + 13i

    => \left| {\text{w}} ight| = \sqrt {1258}

     

  • Câu 20: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{2} = \frac{y - 7}{1} = \frac{z
- 3}{4}d_{2} là giao tuyến của hai mặt phẳng 2x + 3y - 9 = 0,y +
2z + 5 = 0. Vị trí tương đối của hai đường thẳng là:

    Xét hệ phương trình \left\{
\begin{matrix}
2x + 3y - 9 = 0 \\
y + 2z + 5 = 0 \\
\end{matrix} ight.

    Cho y = 1 \Rightarrow \left\{
\begin{matrix}
x = 3 \\
z = - 3 \\
\end{matrix} ight.\  \Rightarrow A(3;1; - 3) \in d_{2\ }

    Cho y = 3 \Rightarrow \left\{
\begin{matrix}
x = 0 \\
z = - 4 \\
\end{matrix} ight.\  \Rightarrow B(0;3; - 4) \in d_{2}

    Đường thẳng d1 đi qua M (1; 7; 3) và có vectơ chỉ phương \overrightarrow{u_{1}} =
(2;1;4)

    Đường thẳng d2 đi qua A (3; 1; −3) và có vectơ chỉ phương \overrightarrow{u_{2}} = ( - 3;2; - 1) =
\overrightarrow{AB};\overrightarrow{AM} = (2; - 6; - 6)

    Ta có \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}} ightbrack = ( - 9; -
10;7)

    \Rightarrow \left\lbrack
\overrightarrow{u_{1}};\overrightarrow{u_{2}}
ightbrack\overrightarrow{AM} = - 2.9 + 6.10 - 6.7 = 0

    Do đó vị trí tương đối của hai đường thẳng là cắt nhau.

  • Câu 21: Vận dụng

    Cho tam giác ABC có A\left( {3, - 1, - 1} ight);\,\,\,\,B\left( {1,2, - 7} ight);\,\,\,\,C\left( { - 5,14, - 3} ight). Viết phương trình tổng quát của đường trung trực (d) của cạnh BC của tam giác ABC. 

    Theo đề bài, ta tính được \overrightarrow {BA}  = \left( {2, - 3,6} ight),\overrightarrow {BC}  = 2\left( { - 3,6,2} ight)

    Từ đó, suy ra VTPT của mặt phẳng (ABC) là: \overrightarrow n  = \left[ {\overrightarrow {BA} ,\overrightarrow {BC} } ight] =  - \left( {42,22, - 3} ight)

    Phương trình (ABC) là:

    \begin{array}{l}\left( {x - 3} ight)42 + \left( {y + 1} ight)22 + \left( {z + 1} ight)\left( { - 3} ight) = 0\\ \Leftrightarrow \left( {ABC} ight):42x + 22y - 3z - 107 = 0\end{array}

    Mặt khác, ta có M là trung điểm của BC nên M có tọa độ là M (-2, 8, -5)

    Phương trình mặt phẳng trung trực (P) của cạnh BC là:

    \left( P ight):\,\,\left( {x + 2} ight)\left( { - 3} ight) + \left( {y - 8} ight)6 + \left( {z + 5} ight)2 = 0

    \begin{array}{l} \Leftrightarrow \left( P ight):3x - 6y - 2z + 44 = 0\\ \Rightarrow \left( d ight):42x + 22y - 3z - 107 = 0;\,\,3x - 6y - 2z + 44 = 0\end{array}

    Phương trình tổng quát của đường trung trực (d) của cạnh BC:

    (d):\,\,\left\{ \begin{array}{l}42x + 22y - 3z - 107 = 0\\3x - 6y - 2z + 44 = 0\end{array} ight.

  • Câu 22: Nhận biết

    Cho z_1 =2-iz_2 = 5+6i. Tính T = z_1 : z_2?

     Ta có z_1 =2-iz_2 = 5+6i. Tính:

     z_1 : z_2 = \frac {2-i}{5+6i}=\frac {(2-i)(5-6i)}{(5+6i)(5-6i)}=\frac{4}{61} - \frac{17}{61}i

  • Câu 23: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 24: Thông hiểu

    Số phức z = \frac{{3 - 4i}}{{4 - i}} bằng:

     Ta có: z = \frac{{3 - 4i}}{{4 - i}} = \frac{{16}}{{17}} - \frac{{13}}{{17}}i

  • Câu 25: Vận dụng

    Trong không gian Oxyz, cho điểm M(3;2;1). Viết phương trình mặt phẳng đi qua M và cắt các trục x'Ox,\ y'Oy,\ z'Oz lần lượt tại các điểm A,B,C sao cho M là trực tâm của tam giác ABC?

    Xét tứ diện OABC có các cạnh OA, OB, OC đôi một vuông góc với nhau.

    Ta có: \left\{
\begin{matrix}
AB\bot CM \\
AB\bot OC \\
\end{matrix} ight.\  \Rightarrow AB\bot(COM) \Rightarrow AB\bot
OM

    Chứng minh tương tự, ta được AC ⊥ OM.

    Từ đó OM ⊥ (ABC).

    Suy ra phương trình mặt phẳng (ABC) đi qua M(3; 2; 1) và nhận \overrightarrow{OM} = (3;2;1) làm vectơ pháp tuyến là:

    3(x - 3) + 2(y - 2) + z - 1 =
0

    \Leftrightarrow 3x + 2y + z - 14 = \
0

  • Câu 26: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 27: Nhận biết

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 28: Thông hiểu

    Cho a;b là các số hữu tỉ thỏa mãn \int_{}^{}\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} = a(x + 2)\sqrt{x + 2} + b(x + 1)\sqrt{x + 1} +
C. Tính giá trị biểu thức H = 3a +
b?

    Ta có:

    I = \int_{}^{}{\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} =}\int_{}^{}{\frac{\sqrt{x + 2} - \sqrt{x + 1}}{x + 2 - x
+ 1}dx}

    = \int_{}^{}{\left( \sqrt{x + 2} -
\sqrt{x + 1} ight)dx}

    \Rightarrow I = \frac{2}{3}(x +
2)\sqrt{x + 2} - \frac{2}{3}(x + 1)\sqrt{x + 1} + C

    \Rightarrow a = \frac{2}{3};b = -
\frac{2}{3} \Rightarrow H = \frac{4}{3}

  • Câu 29: Thông hiểu

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 30: Thông hiểu

    Trong không gian Oxyz, cho tọa độ ba điểm A( - 1; -
2;3),B(0;3;1),C(4;2;2). Tính cosin góc \widehat{BAC}?

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1;5; - 2) \\
\overrightarrow{AC} = (5;4; - 1) \\
\end{matrix} ight..

    \cos\widehat{BAC} = \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{5 + 20 + 2}{\sqrt{30}.\sqrt{42}} =
\frac{9}{2\sqrt{35}}

  • Câu 31: Nhận biết

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) chéo nhau khi và chỉ khi:

     Để xét điều kiện (D) và (d) có chéo nhau hay không, ta cẩn kiểm tra rằng (D) và d không cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ;\,\overrightarrow b } ight].\,\overrightarrow {AB} \, e \,\,0

    Suy ra (D) và (d) chéo nhau.

  • Câu 32: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 33: Vận dụng

    Giá trị của b và c để phương trình {z^2} + bz + c = 0 nhận z = 1 + i  làm nghiệm là?

     Do z = 1 + i là nghiệm của phương trình đã cho nên:

    {\left( {1 + i} ight)^2} + b\left( {1 + i} ight) + c = 0

    \Leftrightarrow 2i + b + bi + c = 0 \Leftrightarrow b + c + \left( {2 + b} ight)i = 0

    \Leftrightarrow \left\{ \begin{array}{l}b + c = 0\\2 + b = 0\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}b =  - 2\\c = 2\end{array} ight.

  • Câu 34: Thông hiểu

    Cho hàm số f(x) xác định trên \mathbb{R}\left\{ 1 ight\}thỏa mãn f'(x) = \frac{1}{x - 1}; f(0) = 2017;f(2) = 2018. Tính T = f(3) - f( - 1)?

    Trên khoảng (1; + \infty) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(x - 1) + C_{1}

    \Rightarrow f(x) = \ln(x - 1) +
C_{1}

    f(2) = 2018 \Rightarrow C_{1} =
2018

    Trên khoảng ( - \infty;1) ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\frac{1}{x - 1}dx} = \ln(1 - x) + C_{2}

    \Rightarrow f(x) = \ln(1 - x) +
C_{2}

    f(0) = 2017 \Rightarrow C_{2} =
2017

    Vậy f(x) = \left\{ \begin{matrix}
\ln(x - 1) + 2018\ \ \ khi\ x\  > \ 1 \\
\ln(1 - x) + 2017\ \ \ khi\ x\  < \ 1 \\
\end{matrix} ight.

    \Rightarrow T = f(3) - f( - 1) =
1.

  • Câu 35: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}}dx} =
\int_{}^{}\frac{d\left( e^{x} + 1 ight)}{\left( e^{x} + 1 ight)^{2}}
= - \frac{1}{e^{x} + 1} + C.

  • Câu 36: Vận dụng

    Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2} + \left( {a + b} ight)x + ab}}

    \begin{matrix}  f\left( x ight) = \dfrac{1}{{{x^2} + \left( {a + b} ight)x + ab}} \hfill \\   \Rightarrow f\left( x ight) = \dfrac{1}{{\left( {x + a} ight)\left( {x + b} ight)}} \hfill \\   \Rightarrow f\left( x ight) = \dfrac{1}{{\left( {b - a} ight)\left( {x + a} ight)}} - \dfrac{1}{{\left( {b - a} ight)\left( {x + b} ight)}} \hfill \\ \end{matrix} 

    \begin{matrix}  \int {f\left( x ight)dx}  = \int {\left[ {\dfrac{1}{{\left( {b - a} ight)\left( {x + a} ight)}} - \dfrac{1}{{\left( {b - a} ight)\left( {x + b} ight)}}} ight]dx}  \hfill \\   = \dfrac{1}{{b - a}}.\int {\left[ {\dfrac{1}{{x + a}} - \dfrac{1}{{x + b}}} ight]dx}  \hfill \\   = \dfrac{1}{{b - a}}.\left[ {\ln \left| {x + a} ight| - \ln \left| {x + b} ight|} ight] + C = \dfrac{1}{{b - a}}\ln \left| {\dfrac{{x + a}}{{x + b}}} ight| + C \hfill \\ \end{matrix}

  • Câu 37: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d đi qua điểm M, nhận vectơ \overrightarrow{a} làm vectơ chỉ phương và đường thẳng d' đi qua điểm M', nhận vectơ \overrightarrow{a'} làm vectơ chỉ phương. Điều kiện để đường thẳng d song song với d' là:

    Điều kiện để d//d' là: \left\{ \begin{matrix}
\overrightarrow{a} = k.\overrightarrow{a'};(k eq 0) \\
M otin d' \\
\end{matrix} ight..

  • Câu 38: Thông hiểu

    Cho các số phức z_1 , z_2. Khẳng định nào trong các khẳng định sau là khẳng định đúng?

    \left( I ight):\left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}.

    \left( {II} ight):\left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|.

    \left( {III} ight):{\left| {{z_1}} ight|^2} = {z_1}^2.

    Áp dụng tính chất số phức, ta có: 

    - Môđun của 1 thương hai số phức thì bằng thương của từng môđun \left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}

    -  Môđun của 1 tích hai số phức thì bằng tích của từng môđun  \left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|

    Vậy khẳng địn (I) và (II) là đúng.

  • Câu 39: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f\left( x ight) = \frac{{ - x - 2}}{{x - 1}}, trục hoành và các đường thẳng x =  - 1;x = 0

     Gọi S là diện tích của hình phẳng trên ta có: S = \int\limits_{ - 1}^0 {\left| {\frac{{ - x - 2}}{{x - 1}}} ight|dx}

    Ta có: \frac{{ - x - 2}}{{x - 1}} \geqslant 0;\forall x \in \left[ { - 1;0} ight]

    Khi đó:

    \begin{matrix}  S = \int\limits_{ - 1}^0 {\left| {\dfrac{{ - x - 2}}{{x - 1}}} ight|dx}  = \int\limits_{ - 1}^0 {\left( {\dfrac{{ - x - 2}}{{x - 1}}} ight)dx}  \hfill \\   = \int\limits_{ - 1}^0 {\dfrac{{ - \left( {x - 1} ight) - 3}}{{x - 1}}dx}  = \int\limits_{ - 1}^0 {\left( { - 1 - \dfrac{3}{{x - 1}}} ight)dx}  \hfill \\   = \left. {\left( { - x - 3\ln \left| {x - 1} ight|} ight)} ight|_{ - 1}^0 = 3\ln 2 - 1 \hfill \\ \end{matrix}

  • Câu 40: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 6z} ight| - 2\left| {{z^4} + 1} ight|. Tính M - m.

    M-m=1 || 1 || một || Một

    Đáp án là:

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 6z} ight| - 2\left| {{z^4} + 1} ight|. Tính M - m.

    M-m=1 || 1 || một || Một

     Ta có P = \left| {{z^5} + {{\overline z }^3} + 6z} ight| - 2\left| {{z^4} + 1} ight|

    = \left| {{z^4} + {{\overline z }^4} + 6} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{{\left( {{z^2} + {{\overline z }^2}} ight)}^2} + 4} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {{z^2} + {{\overline z }^2}} ight)^2} + 4 - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {\left| {{z^2} + {{\overline z }^2}} ight| - 1} ight)^2} + 3

    \left\{ \begin{array}{l}{z^2} + {\overline z ^2} \in \mathbb{R}\\ - 2 \le {z^2} + {\overline z ^2} \le 2\end{array} ight.   nên {P_{{m{max}}}} = 4;   {P_{{m{min}}}} = 3

    Suy ra M=4; m=3 \mbox{ do đó  } M-m=4-3=1

  • Câu 41: Nhận biết

    Giả sử \int_{0}^{9}{f(x)dx} = 37\int_{9}^{0}{g(x)dx} = 16. Khi đó I = \int_{0}^{9}{\left\lbrack 2f(x) +
3g(x) ightbrack dx} bằng

    Ta có: \int_{9}^{0}{g(x)dx} = 16
\Rightarrow \int_{0}^{9}{g(x)dx} = - 16

    \Rightarrow I =
\int_{0}^{9}{\left\lbrack 2f(x) + 3g(x) ightbrack dx} =
\int_{0}^{9}{2f(x)dx} + \int_{0}^{9}{3g(x)dx}

    = 2.37 + 3.( - 16) = 26

  • Câu 42: Thông hiểu

    Giả sử \int_{}^{}\frac{(2x + 3)dx}{x(x +
1)(x + 2)(x + 3) + 1} = - \frac{1}{g(x)} + C với C là hằng số. Tổng các nghiệm của phương trình g(x) = 0 bằng:

    Ta có: \int_{}^{}\frac{(2x + 3)dx}{x(x +
1)(x + 2)(x + 3) + 1} = \int_{}^{}\frac{(2x + 3)dx}{\left( x^{2} + 3x +
2 ight)\left( x^{2} + 3x ight) + 1}

    Đặt t = x^{2} + 3x \Rightarrow dt = (2x +
3)dx

    \int_{}^{}\frac{dt}{(t + 2)t + 1} =
\int_{}^{}\frac{dt}{(t + 1)^{2}} = - \frac{1}{t + 1} + C = -
\frac{1}{x^{2} + 3x + 1} + C

    \Rightarrow g(x) = x^{2} + 3x +
1

    Theo định lí Vi – et ta thấy phương trình g(x) = 0 có hai nghiệm x_{1};x_{2}x_{1} + x_{2} = - 3.

  • Câu 43: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng đi qua ba điểm A(1;1;4),B(2;7;9)C(0;9;13).

    Ta có: \overrightarrow{AB} =
(1;6;5),\overrightarrow{AC} = ( - 1;8;9)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = (14; - 14;14) =
14(1; - 1;1)

    Mặt phẳng (ABC) đi qua điểm A(1;1;4) và nhận \overrightarrow{n} = (1; - 1;1) làm vectơ pháp tuyến có phương trình là:

    x - 1 - (y - 1) + z - 4 = 0

    \Leftrightarrow x - y + z - 4 =
0

  • Câu 44: Vận dụng

    Cho số phức z thoả mãn \frac{1+i}{z} là số thực và |z-2|=m với m∈\mathbb{R}. Gọi m_0 là một giá trị của m để có đúng một số phức thoả mãn bài toán. Khi đó:

    Giả sử z=a+bi,(a,b∈ \mathbb R)..

    Đặt: w=\frac{1+i}{z}=\frac{1+i}{a+bi}

    =\frac{1}{a^2+b^2}[a+b+(a-b)i]=\frac{a+b}{a^2+b^2 }+\frac{a-b}{a^2+b^2 } i.

    w là số thực nên: a=b(1).

    Mặt khác:  |a-2+bi|=m⇔(a-2)^2+b^2=m^2

    Thay (1) vào (2) được: (a-2)^2+a^2=m^2⇔2a^2-4a+4-m^2=0

    Để có đúng một số phức thoả mãn bài toán thì PT (3) phải có nghiệm duy nhất a. \Leftrightarrow \Delta '=0 \Leftrightarrow 4-2(4-m^2 )=0 \Leftrightarrow m^2=2 \Leftrightarrow m= \sqrt 2 \in (1;\frac {3}{2})

    (Vì m là mô-đun).

  • Câu 45: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, mặt phẳng (P) đi qua M(
- 1;2;4) và chứa trục Oy có phương trình là:

    Ta có: (P) có cặp véc-tơ chỉ phương \overrightarrow{v_{Oy}} =
(0;1;0),\overrightarrow{OM} = ( - 1;2;4)

    Khi đó véc-tơ pháp tuyến của (P) là \overrightarrow{n_{P}} = ( - 4;0; - 1), ta chọn \overrightarrow{n_{P}} =
(4;0;1).

    Mặt phẳng (P) đi qua M( - 1;2;4) và có véc-tơ pháp tuyến \overrightarrow{n_{P}} = (4;0;1) nên có phương trình 4(x + 1) + (z - 4) = 0 hay 4x + z = 0.

  • Câu 46: Nhận biết

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 47: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x - 3)^{2} + (y - 1)^{2} =1.

    Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn (C) quanh trục hoành.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong mặt phẳng tọa độ Oxy, cho đường tròn (C):(x - 3)^{2} + (y - 1)^{2} =1.

    Tính thể tích của khối tròn xoay thu được khi quay hình phẳng giới hạn bởi đường tròn (C) quanh trục hoành.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 48: Vận dụng cao

    Cho F\left( x ight) = \left( {x - 1} ight).{e^x} là một nguyên hàm của hàm số f\left( x ight).{e^{2x}}. Tìm nguyên hàm của hàm số f'\left( x ight).{e^{2x}}

    Ta có: F(x) là một nguyên hàm của hàm số f\left( x ight).{e^{2x}} nên:

    \begin{matrix}  F'\left( x ight) = f\left( x ight).{e^{2x}} \hfill \\   \Leftrightarrow \left[ {\left( {x - 1} ight).{e^x}} ight]' = f\left( x ight).{e^{2x}} \hfill \\ \end{matrix}

    Hay f\left( x ight).{e^{2x}} = {e^x} + \left( {x - 1} ight).{e^x} = x.{e^x}

    Xét I = \int {f'\left( x ight).{e^{2x}}dx}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {u = {e^{2x}}} \\   {dv = f'\left( x ight)dx} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {du = 2{e^{2x}}dx} \\   {v = f\left( x ight)} \end{array}} ight.

    Khi đó

    I = f\left( x ight).{e^{2x}} - \int {2f\left( x ight).{e^{2x}}dx}  = x.{e^x} - 2\left( {x - 1} ight){e^x} + C = \left( {2 - x} ight).{e^x} + C

     

  • Câu 49: Nhận biết

    Tìm tọa độ trung điểm M của đoạn thẳng AB. Biết tọa độ hai điểm A(1;2;3)B(3; - 1;4).

    Ta có: M là trung điểm của AB nên tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M(2;1;3)

    Vậy đáp án đúng là: M(2;1;3).

  • Câu 50: Nhận biết

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 33 lượt xem
Sắp xếp theo