Tìm nguyên hàm của hàm số
?
Ta có:
Tìm nguyên hàm của hàm số
?
Ta có:
Tích vô hướng của 2 vectơ
trong không gian được tính bằng:
Theo định nghĩa tích vô hướng của hai vecto, ta có: .
Trong không gian
, cho điểm
. Phương trình mặt phẳng
đi qua
và chứa trục
là:
Mặt phẳng có VTPT
và đi qua điểm
.
Suy ra phương trình .
Viết phương trình tổng quát của đường thẳng (d) qua A (2, 3, 1) cắt đường thẳng
và vuông góc đường thẳng ![]()
Lấy điểm nằm trên đường thẳng (d1).
Theo đề bài, ta có (d1) qua có vecto chỉ phương là
Ta có:
Vecto pháp tuyến của mặt phẳng (P) chứa A và
(1)
Xét tiếp đường thẳng có vecto chỉ phương của là vecto pháp tuyến của mặt phẳng qua A và vuông góc với . Ta có phương trình mp (Q) là
(2)
Từ (1) và (2) ta suy ra:
Tích phân
bằng:
Ta có:
Cho
là số thực dương. Biết rằng
là một nguyên hàm của hàm số
thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
Vậy .
Trong không gian
, cho mặt phẳng
. Đường thẳng
vuông góc với mặt phẳng
có một vectơ chỉ phương có tọa độ là:
Mặt phẳng có một vectơ pháp tuyến là
.
Do nên vectơ
cũng là một vectơ chỉ phương của
.
Phần thực của số phức
là:
Ta có:
Tìm nguyên hàm
của hàm số
, biết rằng
?
Ta có:
Vậy .
Trong không gian
, cho vật thể
giới hạn bởi hai mặt phẳng có phương trình
và
với
. Gọi
là diện tích thiết diện của
bị cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ là
, với
. Biết hàm số
liên tục trên đoạn
, khi đó thể tích
của vật thể
được cho bởi công thức:
Vì là diện tích thiết diện của
bị cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ là
, với
ta có:
không phải là
.
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Nguyên hàm của hàm số
là
Ta có: .
Trong không gian với hệ tọa độ
, cho các điểm
. Phương trình mặt phẳng
nào dưới đây đi qua
, gốc tọa độ
và cách đều hai điểm
và
?
Vì đi qua O nên phương trình mặt phẳng
có dạng
.
Vì A ∈ (P) và B, C cách đều (P) nên
Chọn a = −6, ta có b = 3, suy ra c = ±4.
Vậy có hai mặt phẳng thỏa mãn là hoặc
.
Tính tổng
?
Ta có:
.
Do đó
.
Mặt khác:
.
Đặt .
Đổi cận và
. Khi đó
Xác định nguyên hàm của hàm số
?
Ta có: .
Đường thẳng (d):
có phương trình tham số là:
Ta có đường thẳng (d) qua A ( 2, -1, 4) và có vectơ chỉ phương là có phương trình tham số là:
=> (d)
Cho hàm số
liên tục trên
và
,
là một nguyên hàm của
trên
. Chọn khẳng định sai trong các khẳng định sau?
Theo định nghĩa tích phân ta có: .
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Cho biểu thức
với
. Biểu thức M có giá tri là?
Ta có: .
Khi đó:
.
Trong không gian với hệ trục toạ độ
, cho điểm
thoả mãn
. Biết rằng khoảng cách từ
tới mặt phẳng
lần lượt là 2 và 3. Tính khoảng cách từ
đến mặt phẳng
.
Ta có:
Giả sử khi đó ta có:
Mà
Họ các nguyên hàm của hàm số
trên khoảng
là:
Ta có:
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian với hệ toạ độ
, cho mặt phẳng
. Vectơ nào là vectơ pháp tuyến của mặt phẳng
?
Vectơ nào là vectơ pháp tuyến của mặt phẳng có tọa độ là
hoặc
.
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Trong không gian cho tam giác
. Tìm
sao cho giá trị của biểu thức
đạt giá trị nhỏ nhất?
Gọi G là trọng tâm tam giác ABC
Suy ra G cố định và
Dấu “=” xảy ra khi
Vậy với
là trọng tâm tam giác
.
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là
và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.
Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.
Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)
Ta có
OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0
⟺13906t - 76483 = 0 ⟺
Suy ra
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
lần lượt có phương trình là
và cho điểm
. Tìm phương trình mặt phẳng
đi qua điểm
và đồng thời vuông góc với hai mặt phẳng
?
Ta có:
Do vuông góc với
nên
Chọn
Hơn nữa đi qua
nên có phương trình là:
Trong không gian hệ trục tọa độ
cho
. Khi đó tọa độ
với hệ
là:
Ta có:
Lại có
Biết
và
là ba nghiệm của phương trình
,
trong đó
là nghiệm có phần ảo dương. Phần ảo của số phức
bằng:
Xét phương trình là phương trình bậc ba với hệ số thực nên luôn có một nghiệm thực là
.
Do đó phương trình tương đương với:
.
Nên là hai nghiệm phức của phương trình bậc hai với hệ số thực (1).
Suy ra .
Khi đó : .
Vậy phần ảo của là
.
Gọi
là 2 nghiệm của phương trình
thỏa mãn
. Biết rằng w là số phức thỏa mãn
. Tìm GTNN của biểu thức
.
Giả sử
Ta có:
=> x = 0
=> Tập hợp điểm biểu diễn là trục tung.
Giả sử A, B lần lượt là 2 điểm biểu diễn cho , ta có
Giả sử và M là điểm biểu diễn cho số phức w, ta có
suy ra tập hợp điểm biểu diễn M cho số phức w là đường tròn tâm
bán kính R = 2
Ta có , gọi E là hình chiếu vuông góc của I lên trục tung, ta thấy P nhỏ nhất khi E là trung điểm AB suy ra
, vậy

Cho
là các số hữu tỉ thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Cho số phức z thỏa mãn
. Môđun của số phức
là:
Ta có:
Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng
. Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)
Quả bóng bầu dục sẽ có dạng elip.
Độ dài trục lớn bằng
Ta có diện tích đường tròn thiết diện là
Ta sẽ có phương trình elip
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Trong không gian với hệ tọa độ
, cho ba điểm
. Gọi
là mặt phẳng đi qua
sao cho tổng khoảng cách từ
và
đến mặt phẳng
lớn nhất, biết rằng
không cắt đoạn
. Khi đó pháp tuyến của mặt phẳng
:
Hình vẽ minh họa
Lấy M là trung điểm của đoạn BC, suy ra .
Gọi lần lượt là khoảng cách từ
đến mặt phẳng (P), từ đó suy ra
.
Xét tam giác vuông , ta có
, từ đó suy ra để tổng khoảng cách từ B và C đến mặt phẳng (P) thì MM’ phải lớn nhất, điều này có nghĩa là M’ trùng với A hay MA ⊥ (P).
Từ đó suy ra vectơ pháp tuyến của mặt phẳng (P) là:
Cho hàm số
có một nguyên hàm là
thỏa mãn
. Giá trị của
bằng:
Ta có:
Lại có
Do đó:
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Mặt khác
=>
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc
. Đi được
người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc
. Tính quãng đường đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.
Vận tốc vật đạt được sau 5s là:
Ta có:
Do khi bắt đầu tăng tốc
Vật dừng hẳn khi
Khi đó quãng đường đi được bằng
Trong không gian
, cho
. Tọa độ điểm
là:
Ta có:
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) cắt nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:
và (d) cùng nằm trong một mặt phẳng
Để (D) và d cắt nhau, ta sẽ xét tỉ số sau:
và (d) cắt nhau.
Cho hình lăng trụ tam giác
có
. Hãy phân tích vectơ
theo các vectơ
?
Hình vẽ minh họa
Ta có:
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Xét số phức z thỏa mãn:
. Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
Cho số phức
. Số phức
có phần ảo là:
Ta có: