Trong không gian với hệ toạ độ
, mặt phẳng
đi qua hai điểm
và vuông góc với mặt phẳng
. Tính tổng
.
Từ giả thiết ta có hệ phương trình:
Trong không gian với hệ toạ độ
, mặt phẳng
đi qua hai điểm
và vuông góc với mặt phẳng
. Tính tổng
.
Từ giả thiết ta có hệ phương trình:
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn
và
. Tìm số phần tử của S.
2 || Hai || hai
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn và
. Tìm số phần tử của S.
2 || Hai || hai
Điều kiện: .
Đặt .
Theo giả thiết .
là đường tròn tâm O(0; 0), bán kính
.
Mặt khác
là đường tròn tâm
, bán kính
.
Để tồn tại duy nhất số phức z thì và
tiếp xúc ngoài hoặc trong.
TH1: và
tiếp xúc ngoài khi và chỉ khi
.
TH2: và
tiếp xúc trong khi và chỉ khi
.
Vậy .
Trong không gian với hệ trục tọa độ
, cho tọa độ ba điểm
. Điểm
thuộc mặt phẳng
sao cho giá trị của biểu thức
nhỏ nhất. Khi đó, giá trị của biểu thức
là:
Điểm luôn tồn tại.
Ta có nên
.
Cho số phức
. Số phức
bằng:
Ta có:
Trong không gian
cho mặt phẳng
và hai điểm
. Gọi
lần lượt là hình chiếu của
lên mặt phẳng (P). Biết
. Tổng tất cả các giá trị của tham số m là
Hình vẽ minh họa
Xét trường hợp m = 1. Khi đó cả đều thuộc (P). Trong trường hợp này
(loại).
Khi . Ta tính toán các đại lượng:
Từ đó suy ra khác phía với (P) và
Gọi H là giao điểm của AB với (P).
Theo Thales ta có:
Áp dụng định lý Pythagore cho tam giác AEH ta có:
Phương trình này có hai nghiệm và tổng hai nghiệm đó bằng: .
Trong không gian cho hình hộp
có
. Gọi
là trung điểm của
,
là giao điểm của
và
. Mệnh đề nào sau đây đúng?
Hình vẽ minh họa
Vì I là trung điểm của B’C’ suy ra
Và K là giao điểm của nên theo định lí Talet
Ta có:
Khi đó
Vậy .
Cho hình phẳng
giới hạn với các đường
. Tính thể tích
của khối tròn xoay thu được khi
quay quanh trục
?
Thể tích cần tìm là:
Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3
Tìm nguyên hàm của hàm số ![]()
Trong không gian với hệ tọa độ
, cho điểm
và hai mặt phẳng
. Dường thẳng đi qua
và song song với hai mặt phẳng
có phương trình là
Gọi là đường thẳng cần tìm.
Mặt phẳng có một véc-tơ pháp tuyến là
và
có một vectơ pháp tuyến là
. Ta có
.
Khi đó, đi qua điểm
và nhận véc-tơ
làm vec-tơ chỉ phương. Phương trình đường thẳng
là
Với thì điểm
thuộc
. Viết lại phương trình đường thẳng
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Diện tích hình phẳng giới hạn bởi hai đồ thị
được cho bởi công thức nào sau đây?
Ta có:
Với
Với
Ta có:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng
đi qua
và có vectơ chỉ phương
cắt
tại điểm
. Điểm
thay đổi trong
sao cho
luôn nhìn đoạn
dưới góc
. Khi độ dài
lớn nhất, đường thẳng
đi qua điểm nào trong các điểm sau?
Hình vẽ minh họa
Phương trình
Đường thẳng d cắt P tại .
Gọi H là hình chiếu của A lên (P).
Ta có:
Vì nên MB ⊥ MH suy ra
.
Do đó: MB lớn nhất bằng BH khi
Vậy MB đi qua B, nhận là vectơ chỉ phương.
Phương trình do đó MB đi qua điểm
.
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Cho số phức
. Tính |z|
Ta có
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Gọi phương trình parabol .
Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)
Ta có hệ phương trình:
Vậy
Dựa vào đồ thị, diện tích cửa parabol là:
Số tiền phải trả là đồng.
Cho hai số phức
. Môđun của số phức
là:
Ta có:
Tìm nguyên hàm
của hàm số
?
Ta có:
Vậy một nguyên hàm của hàm số là .
Cho hàm số
. Tính ![]()
Ta có:
.
Trong không gian
, cho điểm
. Phương trình mặt phẳng
đi qua
và chứa trục
là:
Mặt phẳng có VTPT
và đi qua điểm
.
Suy ra phương trình .
Trong không gian
, cho tọa độ các vectơ
;
và
. Mệnh đề nào sau đây sai?
Ta có: suy ra “
” là mệnh đề sai.
Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với
là tâm hình vuông sao cho
như hình vẽ bên thì các đường cong OA có phương trình
và
. Tính giá trị
biết rằng diện tích trang trí màu sẫm chiếm
diện tích mặt sàn.

Đáp án: -2||- 2
Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với là tâm hình vuông sao cho
như hình vẽ bên thì các đường cong OA có phương trình
và
. Tính giá trị
biết rằng diện tích trang trí màu sẫm chiếm
diện tích mặt sàn.
Đáp án: -2||- 2
Diện tích 1 cánh của hình trang trí là:
Diện tích hình trang trí là:
Vì diện tích trang trí màu sẫm chiếm diện tích mặt sàn nên
Khi đó ta có:
Vậy .
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho hàm số
xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có:
Trong không gian
, cho đường thẳng
. Mặt phẳng nào trong các mặt phẳng sau đây vuông góc với đường thẳng
.
Đường thẳng có vectơ chỉ phương
Mặt phẳng vuông góc với nhận vectơ
làm vectơ pháp tuyến.
Do đó là mặt phẳng thỏa mãn.
Tìm nguyên hàm của hàm của hàm số ![]()
Biết
là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Trong không gian tọa độ Oxyz, cho ba vectơ
. Gọi
là vectơ thoả mãn:
. Tọa độ của vectơ
là:
Đặt .
Ta có:
Vậy .
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Cho số phức , m nguyên dương. Có bao nhiêu giá trị
để z là số thuần ảo?
25|| hai mươi lăm||Hai mươi lăm
Ta có:
z là số thuần ảo khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Trong không gian với hệ tọa độ
, phương trình nào dưới đây là phương trình đường thẳng
đi qua điểm
và vuông góc với mặt phẳng
?
Đường thẳng vuông góc với mặt phẳng
nên
có một vectơ chỉ phương là
.
Phương trình là
Kiểm tra được điểm thỏa mãn hệ (*).
Vậy phương trình: cũng là phương trình của
.
Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:
Theo đề bài, ta có được các vecto sau:
Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của và
.
Chọn làm một vectơ pháp tuyến.
Phương trình mp có dạng
là mp qua A
Vậy phương trình .
Tính
?
Áp dụng công thức
Suy ra
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Cho hai số phức
và
. Tìm phần ảo b của số phức
.
Ta có:
Cho hình lập phương
có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn: ![]()
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho hình lập phương có đường chéo
. Gọi
là tâm hình vuông
và điểm S thỏa mãn:
. Khi đó độ dài của đoạn
bằng
với
và
là phân số tối giản. Tính giá trị của biểu thức
.
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi
là điểm nằm trên mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Trong không gian với hệ trục tọa độ , cho bốn điểm
. Gọi
là điểm nằm trên mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Cho hình phẳng
như hình vẽ (phần tô đậm):

Diện tích hình phẳng
là:
Gọi S là diện tích hình phẳng (H) theo hình vẽ suy ra
Theo công thức tích phân từng phần:
.
Cho số phức z thỏa mãn
. Gọi M, n lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của biểu thức
. Khi đó mô đun của số phức ![]()
Giả sử ta có:
Ta có
Ta có
=>
=>
Ta thu được kết quả:
=>
Tìm nguyên hàm của hàm số
là
Ta có:
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho hàm số
có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Cho hình lăng trụ ABCDEF.
Gọi M, N, G, H, I, J, K lần lượt là trung điểm của DE, DF, AE, CE, CD, BC, BE.
Có nhận xét gì về bộ ba vecto
?
Bằng nhau || Đồng phẳng || Bằng nhau và đồng phẳng || bằng nhau và đồng phẳng || bằng nhau, đồng phẳng
Cho hình lăng trụ ABCDEF.
Gọi M, N, G, H, I, J, K lần lượt là trung điểm của DE, DF, AE, CE, CD, BC, BE.
Có nhận xét gì về bộ ba vecto ?
Bằng nhau || Đồng phẳng || Bằng nhau và đồng phẳng || bằng nhau và đồng phẳng || bằng nhau, đồng phẳng

Theo giả thiết đề bài đã cho, M và N lần lượt là trung điểm của DE và DF
Suy ra, MN là đường trung bình trong tam giác DEF:
Tương tự: và
Vậy
đồng phẳng và bằng nhau.