Đề thi HK2 Toán 12 Đề 3

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình chính tắc của đường thẳng?

    Phương trình chính tắc của đường thẳng có dạng:

    \frac{x - x_{0}}{a} = \frac{y - y_{0}}{b}
= \frac{z - z_{0}}{c} với a.b.c
eq 0.

    Vậy đáp án đúng là : \frac{x - 6}{3} =
\frac{y - 3}{4} = \frac{z - 5}{3}

  • Câu 2: Nhận biết

    Số phức nào dưới đây là số thuần ảo?

     Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.

  • Câu 3: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f(x) = e^{x}, thỏa mãn F(0) = 2020. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) +
F(2019)?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{e^{x}dx} = e^{x} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x}, ta có: F(x) = e^{x} + CF(0) = 2020

    \Rightarrow C = 2019 \Rightarrow F(x) =
e^{x} + 2019

    T = F(0) + F(1) + ... + F(2018) +
F(2019)

    T = 1 + e + e^{2} + .... + e^{2018} +
e^{2019} + 2019.2020

    T = \frac{e^{2020} - 1}{e - 1} +
2019.2020.

  • Câu 4: Vận dụng

    Cho F(x) là nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{{e^x} + 3}} thỏa mãn F\left( 0 ight) =  - \frac{{ - 1}}{3}\ln 4. Tìm tập nghiệm S của phương trình 3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2

    F\left( x ight) = \int {\frac{1}{{{e^x} + 3}}dx}  = \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}

     Đặt t = {e^x} \Rightarrow dt = {e^x}dx

    \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}  = \int {\frac{1}{{t\left( {t + 3} ight)}}dt}

    = \int {\left( {\frac{1}{{3t}} - \frac{1}{{3\left( {t + 3} ight)}}} ight)dt = \frac{{\ln |t|}}{3} - \frac{{\ln |t + 3|}}{3} + C}

    = \frac{{\ln \left( {{e^x}} ight)}}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C = \frac{x}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C

    F\left( 0 ight) =  - \frac{1}{3}\ln 4 \Rightarrow  - \frac{{\ln 4}}{3} + C =  - \frac{1}{3}\ln 4 \Rightarrow C = 0

    Ta có:

    \begin{matrix}  3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow 3\left[ {\dfrac{x}{3} - \dfrac{{\ln \left( {{e^x} + 3} ight)}}{3}} ight] + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow x = 2 \hfill \\ \end{matrix}

  • Câu 5: Thông hiểu

    Biết \int_{0}^{1}{\frac{x^{2} + 2x}{(x +
3)^{2}}dx} = \frac{a}{4} - 4ln\frac{4}{b} với a;b là các số nguyên dương. Giá trị của biểu thức a^{2} + b^{2} bằng:

    Giả sử I = \int_{0}^{1}{\frac{x^{2} +
2x}{(x + 3)^{2}}dx}. Đặt t = x + 3
\Rightarrow dt = dx, đổi cận \left\{ \begin{matrix}
x = 0 \Rightarrow t = 3 \\
x = 1 \Rightarrow t = 4 \\
\end{matrix} ight.

    I = \int_{3}^{4}{\frac{t^{2} - 4t +
3}{t^{2}}dx} = \int_{3}^{4}{\left( 1 - \frac{4}{t} + \frac{3}{t^{2}}
ight)dx}

    = \left. \ \left( t - 4ln|t| -
\frac{3}{t} ight) ight|_{3}^{4} = \frac{5}{4} -
4ln\frac{4}{3}

    \Rightarrow \left\{ \begin{matrix}
a = 5 \\
b = 3 \\
\end{matrix} ight.\  \Rightarrow a^{2} + b^{2} = 34

  • Câu 6: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hai điểm A(0;1; - 2),B(3; - 1;1). Tìm tọa độ điểm M sao cho \overrightarrow{AM} =
3\overrightarrow{AB}?

    Gọi tọa độ độ điểm M(x;y;z).

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AM} = (x;y - 1;z + 2) \\
\overrightarrow{AB} = (3; - 2;3) \\
\end{matrix} ight.

    Lại có: \overrightarrow{AM} =
3\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x = 9 \\
y - 1 = - 6 \\
z + 2 = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 9 \\
y = - 5 \\
z = 7 \\
\end{matrix} ight.\  \Rightarrow M(9; - 5;7)

    Vậy đáp án cần tìm là: M(9; -
5;7).

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 8: Nhận biết

    \int_{}^{}{x^{2}dx} bằng

    Ta có \int_{}^{}{x^{2}dx} =\frac{1}{3}x^{3} + C.

  • Câu 9: Thông hiểu

    Số phức z thỏa mãn z = 1 + 2i + 3{i^2} + 4{i^3} + ... + 18{i^{19}}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:  z - iz = 1 + i + ... + {i^{19}} - 18{i^{20}} = 1.\frac{{1 - {i^{20}}}}{{1 - i}} - 18{i^{20}} =  - 18

    \Rightarrow z = \frac{{ - 18}}{{1 - i}} =  - 9 - 9i

  • Câu 10: Nhận biết

    Cho hai số phức {z_1} = 1 - 3i{z_2} =  - 2 - 5i. Tìm phần ảo b của số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {1 - 3i} ight) - \left( { - 2 - 5i} ight) \hfill \\ = 1 - 3i + 2 + 5i \hfill \\= (1 + 2) + ( - 3 + 5)i \hfill \\  \,\,\,\, = 3 + 2i \hfill \\ \end{matrix}

  • Câu 11: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm và liên tục trên đoạn \lbrack
a;bbrack với f(a) = 0. Đặt M = \max_{\lbrack a;bbrack}\left| f(x)
ight|. Tìm giá trị nhỏ nhất của \int_{a}^{b}{\left\lbrack f'(x)
ightbrack^{2}dx}?

    Gọi x_{0} \in \lbrack a;bbrack sao cho \left| f\left( x_{0} ight) ight|
= M. Ta có:

    \left( \int_{a}^{x_{0}}{f'(x)dx}
ight)^{2} \leq \int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}.\int_{a}^{x_{0}}{dx}

    \Leftrightarrow \left\lbrack f\left(
x_{0} ight) - f(a) ightbrack^{2} \leq \left( x_{0} - a
ight)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    \Leftrightarrow f^{2}\left( x_{0}
ight) \leq \left( x_{0} - a ight)\int_{a}^{x_{0}}{\left\lbrack
f'(x) ightbrack^{2}dx}

    \Leftrightarrow M^{2} \leq \left( x_{0}
- a ight)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    \left( x_{0} - a
ight)\int_{a}^{x_{0}}{\left\lbrack f'(x) ightbrack^{2}dx} \leq
(b - a)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    Suy ra M^{2} \leq (b -
a)\int_{a}^{x_{0}}{\left\lbrack f'(x)
ightbrack^{2}dx}

    \Rightarrow
\int_{a}^{x_{0}}{\left\lbrack f'(x) ightbrack^{2}dx} \geq
\frac{M^{2}}{b - a}

    Dấu bằng xảy ra khi và chỉ khi f'(x)
= 1 .

    Vậy giá trị nhỏ nhất của \int_{a}^{b}{\left\lbrack f'(x)
ightbrack^{2}dx} đạt được bằng \frac{M^{2}}{b - a} khi f'(x) = 1.

  • Câu 12: Nhận biết

    Trong \mathbb C, phương trình 2x^2+x+1=0 có nghiệm là:

     Ta có: \Delta  = {b^2} - 4ac = {1^2} - 4.2.1 =  - 7 = 7{i^2} < 0 nên phương trình có hai nghiệm phức là: {x_{1,2}} = \frac{{ - 1 \pm i\sqrt 7 }}{4}

  • Câu 13: Thông hiểu

    Cho hình hộp ABCD.EFGH. Gọi I là tâm hình bình hành ABEFK là tâm của hình bình hành BCGF. Khẳng định nào sau đây đúng?

    Hình vẽ minh họa

    Vì I; K lần lượt là trung điểm của AF và CF suy ra IK là đường trung bình tam giác AFC suy ra IK // AC => IK // (ABCD)

    Mà GF // (ABCD); BD \subset
(ABCD) suy ra \overrightarrow{BD};\overrightarrow{IK};\overrightarrow{GF} đồng phẳng.

  • Câu 14: Nhận biết

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 15: Thông hiểu

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình tham số của trung tuyến AM ?

     Vì AM là trung tuyến nên M là trung điểm của BC. Gọi M\left( {{x_M},{y_M},{z_M}} ight)

    Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:

    \begin{array}{l}\left\{ \begin{array}{l}{x_M} = \frac{{2 + 3}}{2}\\{y_M} = \frac{{ - 1 - 2}}{2}\\{z_M} = \frac{{4 + 5}}{2}\end{array} ight.\\ \Rightarrow M\left( {\frac{5}{2}, - \frac{3}{2},\frac{9}{2}} ight)\end{array}

    Ta có 1 vecto chỉ phương của (AM) là \overrightarrow {AM}  = \left( {\frac{3}{2}, - \frac{7}{2},\frac{{15}}{2}} ight) = \frac{1}{2}\left( {3, - 7,15} ight)

    (AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:

    \begin{array}{l}\left\{ \begin{array}{l}x = 1 + 3t\\y = 2 - 7t\\z = 15t - 3\end{array} ight.\\(t \in R)\end{array}  

  • Câu 16: Vận dụng cao

    Cho F\left( x ight) = \left( {x - 1} ight).{e^x} là một nguyên hàm của hàm số f\left( x ight).{e^{2x}}. Tìm nguyên hàm của hàm số f'\left( x ight).{e^{2x}}

    Ta có: F(x) là một nguyên hàm của hàm số f\left( x ight).{e^{2x}} nên:

    \begin{matrix}  F'\left( x ight) = f\left( x ight).{e^{2x}} \hfill \\   \Leftrightarrow \left[ {\left( {x - 1} ight).{e^x}} ight]' = f\left( x ight).{e^{2x}} \hfill \\ \end{matrix}

    Hay f\left( x ight).{e^{2x}} = {e^x} + \left( {x - 1} ight).{e^x} = x.{e^x}

    Xét I = \int {f'\left( x ight).{e^{2x}}dx}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {u = {e^{2x}}} \\   {dv = f'\left( x ight)dx} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {du = 2{e^{2x}}dx} \\   {v = f\left( x ight)} \end{array}} ight.

    Khi đó

    I = f\left( x ight).{e^{2x}} - \int {2f\left( x ight).{e^{2x}}dx}  = x.{e^x} - 2\left( {x - 1} ight){e^x} + C = \left( {2 - x} ight).{e^x} + C

     

  • Câu 17: Thông hiểu

    Số phức z = 1 + i + {\left( {1 + i} ight)^2} + {\left( {1 + i} ight)^3} + ... + {\left( {1 + i} ight)^{20}} là số phức nào sau đây?

     z = \left( {1 + i} ight)\frac{{1 - {{\left( {1 + i} ight)}^{20}}}}{{1 - \left( {1 + i} ight)}} =  - 1025 + 1025i

  • Câu 18: Vận dụng cao

    Cho số phức z = \frac{{ - m + i}}{{1 - m(m - 2i)}},\,\,m \in \mathbb R. Tìm {\left| z ight|_{\max }}?

     Ta có: z = \frac{{ - m + i}}{{1 - m(m - 2i)}} = \frac{m}{{{m^2} + 1}} + \frac{i}{{{m^2} + 1}}

    \Rightarrow \left| z ight| = \sqrt {\frac{1}{{{m^2} + 1}}}  \le 1

    \Rightarrow {\left| z ight|_{\max }} = 1 \Leftrightarrow m = 0.

  • Câu 19: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho điểm M(2; - 1;1) và vectơ \overrightarrow{n} = (1;3;4). Viết phương trình mặt phẳng (P) đi qua điểm M(2; - 1;1) và có vectơ pháp tuyến \overrightarrow{n}.

    Phương trình tổng quát của mặt phẳng (P) có dạng:

    (x - 2) + 3(y - 1) + 4(z - 1) =
0

    \Leftrightarrow x + 3y + 4z - 3 =
0

  • Câu 20: Vận dụng

    Cho đường tròn \left( C ight):{x^2} + {y^2} = 8 và parabol \left( P ight):{y^2} = 2x. \left( P ight) cắt \left( C ight) thành hai phần. Tìm tỉ số diện tích của hai phần đó.

    Hoành độ giao điểm của (P) và (C) là: 2x = 8 - {x^2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2} \\   {x =  - 4\left( L ight)} \end{array}} ight.

    Xét giao điểm thuộc góc phần tư thứ nhất, với x = 2 \Rightarrow y = 2

    Gọi S2 là phần có diện tích nhỏ hơn, S1 là phần còn lại

    Ta có:

    \begin{matrix}  {S_2} = 2\int\limits_0^2 {\left[ {\sqrt {8 - {y^2}}  - \dfrac{{{y^2}}}{2}} ight]} dy \hfill \\   = 2\int\limits_0^2 {\sqrt {8 - {y^2}} } dy - \int\limits_0^2 {{y^2}} dy \hfill \\   = 2I - \left. {\dfrac{{{y^3}}}{3}} ight|_0^2 = 2I - \dfrac{8}{3} \hfill \\ \end{matrix}

    Đặt y = 2\sqrt 2 \sin t \Rightarrow dy = 2\sqrt 2 \cos tdt

    \begin{matrix}  I = \int_0^2 {\sqrt {8 - {y^2}} } dy = \int_0^{\frac{\pi }{4}} {\sqrt {8 - 8{{\sin }^2}t} } .2\sqrt 2 \cos tdt \hfill \\   = 8\int_0^{\frac{\pi }{4}} {\sqrt {1 - {{\sin }^2}t} } .\cos tdt = 8\int_0^{\frac{\pi }{4}} {{{\cos }^2}} tdt \hfill \\   = 4\int_0^{\frac{\pi }{4}} {(1 + \cos 2t)} dt = \left. {4\left[ {t + \frac{1}{2}\sin 2t} ight]} ight|_0^{\frac{\pi }{4}} = \pi  + 2 \hfill \\ \end{matrix}

    Khi đó {S_2} = 2\pi  + \frac{4}{3}

    Diện tích hình tròn {S_2} = \pi {\left( {2\sqrt 2 } ight)^2} = 8\pi

    \begin{matrix}  {S_1} = 8\pi  - \left( {2\pi  + \dfrac{4}{3}} ight) = 6\pi  - \dfrac{4}{3} \hfill \\   \Rightarrow \dfrac{{{S_1}}}{{{S_2}}} = \dfrac{{9\pi  - 2}}{{3\pi  + 2}} \hfill \\ \end{matrix}

  • Câu 21: Vận dụng

    Gọi và là hai nghiệm phức của phương trình {z^2} + 2z + 10 = 0. Giá trị của biểu thức A = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} là:

    Ta có:

    {z^2} + 2z + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - 1 + 3i\\{z_2} =  - 1 - 3i\end{array} ight.

    Suy ra  A = {\left| { - 1 + 3i} ight|^2} + {\left| { - 1 - 3i} ight|^2} = 20

  • Câu 22: Nhận biết

    Cho số phức z = 1 - i + {i^3}. Tìm phần thực a và phần ảo b của z.

     Ta có z = 1 - i + {i^3} = 1 - i - i = 1 - 2i \Rightarrow a = 1,b =  - 2

  • Câu 23: Nhận biết

    Nguyên hàm của hàm số f(x) = 2^{x} +
x

    Ta có: \int_{}^{}f(x)dx =
\int_{}^{}\left( 2^{x} + x ight)dx = \frac{2^{x}}{ln2} +
\frac{x^{2}}{2} + C.

  • Câu 24: Nhận biết

    Trong không gian Oxyz, đường thẳng đi qua hai điểm A(1;2; - 3)B(2; - 3;1) có phương trình tham số là:

    Ta có: \overrightarrow{AB} = (1; -
5;4)

    Đường thẳng đi qua hai điểm A(1; 2; −3) và B(2; −3; 1) có phương trình tham số là \left\{ \begin{matrix}
x = 1 - t \\
y = 2 + 5t \\
z = - 3 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Với t = −2, ta được M(3; −8; 5) thuộc đường thẳng AB. Khi đó, đường thẳng AB có phương trình tham số \left\{
\begin{matrix}
x = 3 - t \\
y = - 8 + 5t \\
z = 5 - 4t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 25: Vận dụng

    Cho số phức {z_1},{z_2} thỏa mãn \left| {z + 2 - i} ight| = 2\left| {z - 1 - i} ight|{z_1} + {z_2} = 1 + i.

    Tính giá trị biểu thức P = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

     Ta có \left| {{z_1} + 2 - i} ight| = 2\left| {{z_1} - 1 - i} ight|{z_1} + {z_2} = 1 + i

    \Rightarrow \left| {{z_1} + 2 - i} ight| = 2\left| {{z_2}} ight|

    \Rightarrow 4{\left| {{z_2}} ight|^2} = \left( {{z_1} + 2 - i} ight)\left( {\overline {{z_1}}  + 2 + i} ight) = {\left| {{z_1}} ight|^2} + \left( {2 - i} ight)\overline {{z_1}}  + \left( {2 + i} ight){z_1} + 5.(1)

    Tương tự ta có

    4{\left| {{z_1}} ight|^2} = {\left| {{z_2}} ight|^2} + \left( {2 - i} ight)\overline {{z_2}}  + \left( {2 + i} ight){z_2} + 5.\;\;\;\;\;\;\;\;\;\;\;\;\;\;\left( 2 ight)

    Cộng (1) và (2) ta có:

    4P = P + \left( {2 - i} ight)\overline {{z_1} + {z_2}}  + \left( {2 + i} ight)\left( {{z_1} + {z_2}} ight) + 10

    = P + \left( {2 - i} ight)\left( {1 - i} ight) + \left( {2 + i} ight)\left( {1 + i} ight) + 10 = P + 12 \Rightarrow P = 4.

  • Câu 26: Vận dụng cao

    Trong không gian Oxyz cho mặt phẳng (P):2x + y + z - 3 = 0 và hai điểm A(m;1;0),B(1; - m;2). Gọi E;F lần lượt là hình chiếu của A;B lên mặt phẳng (P). Biết EF = \sqrt{5}. Tổng tất cả các giá trị của tham số m là

    Hình vẽ minh họa

    Xét trường hợp m = 1. Khi đó cả A;B đều thuộc (P). Trong trường hợp này EF = AB = 2\sqrt{2} (loại).

    Khi m eq 1. Ta tính toán các đại lượng:

    d\left( A;(P) ight) = \frac{|2m -
2|}{\sqrt{6}};d\left( B;(P) ight) = \frac{|1 -
m|}{\sqrt{6}}

    Từ đó suy ra A;B khác phía với (P) và d\left( A;(P) ight) = 2d\left(
B;(P) ight)

    Gọi H là giao điểm của AB với (P).

    Theo Thales ta có:

    EH = \frac{2\sqrt{5}}{3};AH =
\frac{2}{3}AB = \frac{2}{3}\sqrt{(1 - m)^{2} + (m + 1)^{2} +
2^{2}}

    Áp dụng định lý Pythagore cho tam giác AEH ta có:

    AE^{2} + EH^{2} = AH^{2}

    \Leftrightarrow \frac{(2m - 2)^{2}}{6} +
\left( \frac{2\sqrt{5}}{3} ight)^{2} = \frac{4}{9}\left\lbrack (1 -
m)^{2} + (m + 1)^{2} + 4 ightbrack

    \Leftrightarrow \frac{3\left( 4m^{2} -
8m + 4 ight)}{18} + \frac{40}{18} = \frac{8\left( 2m^{2} + 6
ight)}{18}

    \Leftrightarrow 4m^{2} + 24m - 4 =
0

    Phương trình này có hai nghiệm và tổng hai nghiệm đó bằng: - \frac{24}{4} = - 6.

  • Câu 27: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

  • Câu 28: Nhận biết

    Cho 3 vectơ \vec a,\,\,\vec b,\,\,\,\vec c đều khác \vec{0}. Ba vectơ \vec a,\,\,\vec b,\,\,\,\vec c đồng phẳng khi và chỉ khi (có thể chọn 2 đáp án):

    Áp dụng Điều kiện để 3 vecto đồng phẳng là:

    \vec a,\,\,\vec b,\,\,\,\vec c cùng vuông góc với \vec{d} eq  \vec{0} và có giá vuông góc với mp(P)

  • Câu 29: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (P):x - 2y + z - 1 = 0;(Q):x - 2y + z + 8 =0;(R):x - 2y + z - 4 = 0. Một đường thẳng d thay đổi cắt ba mặt (P),(Q),(R) lần lượt tại A,B,C. Tìm giá trị nhỏ nhất của T = AB^{2} + \frac{144}{AC^{2}}.

    Dễ dàng nhận thấy (P)//(Q)//(R).

    Kẻ đường thẳng qua B vuông góc với cả 3 mặt phẳng (P),(Q),(R) cắt (P) tại H và cắt (Q) tại K.

    Ta có BH = d\left( (Q),(P) ight) = 9;HK
= d\left( (P),(R) ight) = 3

    Khi đó ta có:

    T = AB^{2} + \frac{144}{AC^{2}} \geq
2\sqrt{AB^{2}.\frac{144}{AC^{2}}} = 24.\frac{AB}{AC} = 24.\frac{BH}{HK}
= 24.\frac{9}{3} = 72

    Vậy T_{\min} = 72.

  • Câu 30: Thông hiểu

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 31: Vận dụng

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{x} + \sin x là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( \frac{1}{x} + \sin x ight)dx} = \ln|x| - \cos x +
C.

  • Câu 33: Nhận biết

    Xét hình phẳng (H) giới hạn bởi các đường như hình vẽ (phần gạch sọc).

    Diện tích hình phẳng (H) được tính theo công thức

    Ta có:

    S = \int_{0}^{1}{\left| f(x) ight|dx}
+ \int_{1}^{4}{\left| g(x) ight|dx}

    = \int_{0}^{1}{f(x)dx} +
\int_{1}^{4}{g(x)dx}

  • Câu 34: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;3),\overrightarrow{b} =
( - 2;0;1),\overrightarrow{c} = ( - 1;0;1). Tọa độ vectơ \overrightarrow{n} = \overrightarrow{a} +
\overrightarrow{b} + 2\overrightarrow{c} - 3\overrightarrow{i} là:

    Ta có:

    \overrightarrow{n} = \overrightarrow{a}
+ \overrightarrow{b} + 2\overrightarrow{c} -
3\overrightarrow{i}

    \Rightarrow \overrightarrow{n} = (1;2;3)
+ ( - 2;0;1) + 2( - 1;0;1) - 3(1;0;0)

    \Rightarrow \overrightarrow{n} = ( -
6;2;6)

  • Câu 35: Thông hiểu

    Có bao nhiêu số phức z thỏa mãn \left| {\frac{{z + 1}}{{i - z}}} ight| = 1\left| {\frac{{z - i}}{{2 + z}}} ight| = 1

    Ta có:  \left\{ \begin{array}{l}\left| {\dfrac{{z + 1}}{{i - z}}} ight| = 1\\\left| {\dfrac{{z - i}}{{2 + z}}} ight| = 1\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\left| {z + 1} ight| = \left| {i - z} ight|\\\left| {z - i} ight| = \left| {2 + z} ight|\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x =  - y\\4x + 2y =  - 3\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{3}{2}\\y = \frac{3}{2}\end{array} ight.

    \Rightarrow z =  - \frac{3}{2} + \frac{3}{2}i

  • Câu 36: Thông hiểu

    Cho hàm số y = \cos4x có một nguyên hàm là F(x); F\left( \frac{\pi}{4} ight) = 2. Khẳng định nào sau đây đúng?

    Ta có: F(x) = \int_{}^{}{\cos4x}dx =\frac{1}{4}\sin4x + C

    F\left( \frac{\pi}{4} ight) = 2
\Rightarrow C = 2

    Ta được F(x) = \frac{1}{4}\sin4x +2

    \Rightarrow \int_{}^{}{F(x)dx} =\int_{}^{}{\left( \frac{1}{4}\sin4x + 2 ight)dx}

    = - \frac{\cos4x}{16} + 2x +C

  • Câu 37: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 38: Nhận biết

    Cho hình vẽ:

    Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:

    Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{2}{\left( - x^{2} + 3 -
x^{2} + 2x + 1 ight)dx} = \int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4
ight)dx}.

  • Câu 39: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^x} + 2x thỏa mãn F\left( 0 ight) = \frac{3}{2}. Tìm F(x).

     F\left( x ight) = \int {f\left( x ight)dx = \int {\left( {{e^x} + 2x} ight)dx = {e^x} + {x^2} + C} }

    Theo bài ra ta có:

    F\left( 0 ight) = \frac{3}{2} \Rightarrow {e^x} + {x^2} + C = \frac{3}{2} \Rightarrow C = \frac{1}{2}

    => F\left( x ight) = {e^x} + {x^2} + \frac{1}{2}

  • Câu 40: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 41: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 6z} ight| - 2\left| {{z^4} + 1} ight|. Tính M - m.

    M-m=1 || 1 || một || Một

    Đáp án là:

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 6z} ight| - 2\left| {{z^4} + 1} ight|. Tính M - m.

    M-m=1 || 1 || một || Một

     Ta có P = \left| {{z^5} + {{\overline z }^3} + 6z} ight| - 2\left| {{z^4} + 1} ight|

    = \left| {{z^4} + {{\overline z }^4} + 6} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{{\left( {{z^2} + {{\overline z }^2}} ight)}^2} + 4} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {{z^2} + {{\overline z }^2}} ight)^2} + 4 - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {\left| {{z^2} + {{\overline z }^2}} ight| - 1} ight)^2} + 3

    \left\{ \begin{array}{l}{z^2} + {\overline z ^2} \in \mathbb{R}\\ - 2 \le {z^2} + {\overline z ^2} \le 2\end{array} ight.   nên {P_{{m{max}}}} = 4;   {P_{{m{min}}}} = 3

    Suy ra M=4; m=3 \mbox{ do đó  } M-m=4-3=1

  • Câu 42: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - y + 1 = 0. Trong các mệnh đề sau, mệnh đề nào sai?

    Mặt phẳng (P) có một véc-tơ pháp tuyến \overrightarrow{n_{P}} = (2; - 1;0).

    Ta có \frac{2}{2} = \frac{- 1}{1} eq
\frac{0}{1} nên \overrightarrow{n_{P}} không cùng phương với \overrightarrow{n} = (2; -
1;1).

    Suy ra \overrightarrow{n} = (2; -
1;1) không là vectơ pháp tuyến của (P).

    Vậy khẳng định sai là: “Vectơ \overrightarrow{n} = (2; - 1;1) là một véc-tơ pháp tuyến của (P)”.

  • Câu 43: Thông hiểu

    Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao 162m so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật v(t) = 10t - t^{2}, trong đó t (phút) là thời gian tính từ lúc bắt đầu chuyển động, v(t) được tính theo đơn vị mét/phút (m/p). Nếu như vậy thì khi bắt đầu tiếp đất vận tốc v của khí cầu là:

    Khi bắt đầu tiếp đất vật chuyển động được quãng đường làs = 162m

    Ta có: S = \int_{0}^{t_{0}}{\left( 10t -
t^{2} ight)dt} = \left. \ \left( 5t - \frac{t^{3}}{3} ight)
ight|_{0}^{t_{0}} = 5{t_{0}}^{2} - \frac{{t_{0}}^{3}}{3} (với t_{0} là thời điểm vật tiếp đất)

    Cho 5{t_{0}}^{2} - \frac{{t_{0}}^{3}}{3}
= 162 \Leftrightarrow t_{0} = 9 (Do v(t) = 10t - t^{2} \Rightarrow 0 \leq t \leq
10)

    Khi đó vận tốc của vật là: v(9) = 10.9 -
9^{2} = 9(m/p).

  • Câu 44: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 45: Thông hiểu

    Cho giá trị của tích phân {I_1} = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{3}} {\left( {\sin 2x + \cos x} ight)dx}  = a, {I_2} = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\left( {\cos 2x + \sin x} ight)dx}  = b. Giá trị của a + b là:

    Ta có: 

    {I_1} = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{3}} {\left( {\sin 2x + \cos x} ight)dx}  = \left. {\left( { - \dfrac{1}{2}\cos 2x + \sin x} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{3}}

    = \dfrac{3}{4} + \dfrac{{\sqrt 3 }}{2} \Rightarrow a = \dfrac{3}{4} + \dfrac{{\sqrt 3 }}{2}

    {I_2} = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\left( {\cos 2x + \sin x} ight)dx}  = \left. {\left( {\frac{1}{2}\sin 2x - \cos x} ight)} ight|_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} = \frac{{\sqrt 3 }}{2} \Rightarrow b = \frac{{\sqrt 3 }}{2}

    \Rightarrow P = a + b = \frac{3}{4} + \sqrt 3

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 46: Nhận biết

    Phương trình tổng quát của mặt phẳng qua A(3,-1, 2), B(4, -2, -1), C(2, 0, 2) là:

     Theo đề bài, ta có được các vecto sau:

    \begin{array}{l}\overrightarrow {AB}  = \left( {1, - 1, - 3} ight),\overrightarrow {AC}  = \left( { - 1,1,0} ight);\\ \Rightarrow \left[ {\overrightarrow {AB,} \overrightarrow {AC} } ight] = \left( {3,3,0} ight) = 3(1,1,0) = 3\overrightarrow n \end{array}

    Vì mặt phẳng đi qua 3 điểm nên VTPT của mp là tích có hướng của \vec{AB}\vec{AC} .

    Chọn \overrightarrow n  = \left( {1,1,0} ight) làm một vectơ pháp tuyến.

    Phương trình mp (ABC)có dạng x+y+D=0

    (ABC) là mp qua A  \Leftrightarrow 3 - 1 + D = 0 \Leftrightarrow D =  - 2

    Vậy phương trình (ABC): x + y -2=0.

  • Câu 47: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số f(x) = 25^{x}?

    Vì: \left( \frac{25^{x}}{ln25}
ight)' = \frac{1}{ln25}.25^{x}.ln25 = 25^{x}

  • Câu 48: Nhận biết

    Nguyên hàm của hàm số f(x) =
2^{2x}.3^{x}.7^{x} là:

    Ta có: \int_{}^{}{\left(2^{2x}.3^{x}.7^{x} ight)dx =}\int_{}^{}{\left( 84^{x} ight)dx}=\frac{84^{x}}{\ln84} + C

  • Câu 49: Thông hiểu

    Họ các nguyên hàm của hàm số f(x) =
\frac{2x - 1}{(x + 1)^{2}} trên khoảng ( - 1; + \infty) là:

    Ta có: f(x) = \frac{2x - 1}{(x + 1)^{2}}
= \frac{2}{x + 1} - \frac{3}{(x + 1)^{2}}

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(\frac{2}{x + 1} - \frac{3}{(x + 1)^{2}} ight)dx}= 2\ln|x + 1| +\frac{3}{x + 1} + C

  • Câu 50: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 34 lượt xem
Sắp xếp theo