Đề thi HK2 Toán 12 Đề 3

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng trung trực (\alpha) của đoạn thẳng AB với A(0; -
4;1),B( - 2;2;3)

    Gọi M là trung điểm của AB suy ra M(
- 1; - 1;2)

    Phương trình mặt phẳng (\alpha) đi qua M và nhận \overrightarrow{AM} = ( - 1;3;1) làm vectơ pháp tuyến:

    \Rightarrow (\alpha): - x + 3y + z =
0

    \Rightarrow (\alpha):x - 3y - z =
0

  • Câu 2: Nhận biết

    Cho số phức {z_1} = 1 + 2i{z_2} =  - 1 - 2i. Khẳng định nào sau đây là khẳng định đúng?

     Ta có: {z_1}.{z_2} =  - {\left( {1 + 2i} ight)^2} =  - \left( {1 + 4i - 4} ight) = 3 - 4i

    Vậy {z_1}.{z_2} = 3 - 4i là khẳng định đúng.

  • Câu 3: Nhận biết

    Nguyên hàm của hàm số f(x) = \sqrt{3x +
2} là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\sqrt{3x
+ 2}dx} = \int_{}^{}{(3x + 2)^{\frac{1}{2}}dx}

    = \frac{(3x + 2)^{1 + \frac{1}{2}}}{1 +\dfrac{1}{2}}.\frac{1}{3} + C = \frac{2}{9}.(2x + 3).\sqrt{3x + 2} +C

  • Câu 4: Vận dụng

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Đáp án là:

    Cho hình hộp chữ nhật ABCD.A'B'C'D'AB = BC = 2CC' = 4. Gọi MN lần lượt là trung điểm của cạnh BCAA'. Khoảng cách giữa hai đường thẳng B'D'MN bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)

    Đáp án: 2,43

    Cách 1. Gọi P là trung điểm CD, I = MP \cap AD, J = IN \cap DD', K = AC \cap MP.

    Ta có MP//BD \Rightarrow MP//B'D'
\Rightarrow d(B'D';MN) = d\left\lbrack B'D';(MNP)
ightbrack = d\left\lbrack D';(MNP) ightbrack.

    Lại có d\left\lbrack D';(MNP)
ightbrack = \frac{D'J}{DJ}d\left\lbrack D;(MNP) ightbrack =
5.d\left\lbrack D;(MNP) ightbrack.

    Mặt khác d\left\lbrack D;(MNP)
ightbrack = \frac{DI}{AI}d\left\lbrack A;(MNP) ightbrack =
\frac{1}{3}d\left\lbrack A;(MNP) ightbrack.

    Dễ thấy \left\{ \begin{matrix}
(NAK)\bot(MNP) \\
(NAK) \cap (MNP) = AK \\
AH\bot NK\ (H \in NK)\ trong\ (NAK) \\
\end{matrix} ight.

    \Rightarrow AH\bot(MNP) \Rightarrow
d\left\lbrack A;(MNP) ightbrack = AH.

    Suy ra d(MN;B'D') =
\frac{5}{3}d\left\lbrack A;(MNP) ightbrack = \frac{5}{3}AH với AN = \frac{AA'}{2} = 2 ; AK = \frac{3}{4}\sqrt{2}AB =
\frac{3\sqrt{2}}{2}.

    Vậy d(MN;B'D') = \frac{5}{3}AH =
\frac{5}{3}.\frac{AN.AK}{\sqrt{AN^{2} + AK^{2}}} =
\frac{5}{3}.\frac{\frac{3\sqrt{2}}{2}.2}{\sqrt{\left(
\frac{3\sqrt{2}}{2} ight)^{2} + 2^{2}}} = \frac{10.\sqrt{17}}{17}
\simeq 2,43.

    Cách 2. Đặt các trục Ox, OyOz vào hình như sau

    Ta có M(1;2;0), N(0;0;2), B'(0;2;4)D'(2;0;4).

    Ta có \overrightarrow{MN} = ( - 1; -
2;2), \overrightarrow{B'D'}
= (2; - 2;0)\overrightarrow{MB'} = ( - 1;0;4) \Rightarrow
\left\lbrack \overrightarrow{MN},\overrightarrow{B'D'}
ightbrack = (4;4;6).

    Khi đó :

    d\left( MN;B^{'}D^{'} ight) =
\frac{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}}
ightbrack.\overrightarrow{MB^{'}} ight|}{\left| \left\lbrack
\overrightarrow{MN};\overrightarrow{B^{'}D^{'}} ightbrack
ight|}

    = \frac{\left| ( - 1).4 + 0.4 + 4.6
ight|}{\sqrt{4^{2} + 4^{2} + 6^{2}}} = \frac{10\sqrt{17}}{17} \simeq
2,43.

  • Câu 5: Nhận biết

    Cho số phức z = 1 - i + {i^3}. Tìm phần thực a và phần ảo b của z.

     Ta có z = 1 - i + {i^3} = 1 - i - i = 1 - 2i \Rightarrow a = 1,b =  - 2

  • Câu 6: Thông hiểu

    Cho hai số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm môđun của số phức \overline {{z_1}}  - {z_2}.

     Ta có: \left| {\overline {{z_1}}  - {z_2}} ight| = \left| {1 + i - 3 - 2i} ight| = \sqrt 5

  • Câu 7: Thông hiểu

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1; -
1)\overrightarrow{b} =
(1;3;m). Xác định giá trị tham số m để \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90^{0}?

    Ta có: \left(
\overrightarrow{a};\overrightarrow{b} ight) = 90^{0} \Leftrightarrow
\overrightarrow{a}.\overrightarrow{b} = 0 \Leftrightarrow 5 - m = 0
\Leftrightarrow m = 5

    Vậy m = 5 là giá trị cần tìm.

  • Câu 8: Thông hiểu

    Cho giá trị của tích phân {I_1} = \int\limits_{ - \frac{\pi }{2}}^{\frac{\pi }{3}} {\left( {\sin 2x + \cos x} ight)dx}  = a, {I_2} = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\left( {\cos 2x + \sin x} ight)dx}  = b. Giá trị của a + b là:

    Ta có: 

    {I_1} = \int\limits_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{3}} {\left( {\sin 2x + \cos x} ight)dx}  = \left. {\left( { - \dfrac{1}{2}\cos 2x + \sin x} ight)} ight|_{ - \dfrac{\pi }{2}}^{\dfrac{\pi }{3}}

    = \dfrac{3}{4} + \dfrac{{\sqrt 3 }}{2} \Rightarrow a = \dfrac{3}{4} + \dfrac{{\sqrt 3 }}{2}

    {I_2} = \int\limits_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} {\left( {\cos 2x + \sin x} ight)dx}  = \left. {\left( {\frac{1}{2}\sin 2x - \cos x} ight)} ight|_{ - \frac{\pi }{3}}^{\frac{\pi }{3}} = \frac{{\sqrt 3 }}{2} \Rightarrow b = \frac{{\sqrt 3 }}{2}

    \Rightarrow P = a + b = \frac{3}{4} + \sqrt 3

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 9: Vận dụng cao

    Cho {z_1},{\text{ }}{z_2} là hai số phức thỏa mãn phương trình \left| {2z - i} ight| = \left| {2 + iz} ight|, biết \left| {{z_1} - {z_2}} ight| = 1

    Tính giá trị của biểu thức: P = \left| {{z_1} + {z_2}} ight|

    Cách 1. Ta có:

    \left| {2z - i} ight| = \left| {2 + iz} ight| \Leftrightarrow {\left| {2z - i} ight|^2} = {\left| {2 + iz} ight|^2} \Leftrightarrow (2z - i)(2\overline z  + i) = (2 + iz)(2 - i\overline z )

    \Leftrightarrow 4z.\overline z  + 2iz - 2i\overline z  - {i^2} = 4 - 2i\overline z  + 2iz - {i^2}z.\overline z  \Leftrightarrow 3z.\overline z  = 3

    \Leftrightarrow z.\overline z  = 1 \Leftrightarrow {\left| z ight|^2} = 1 \Rightarrow \left| z ight| = 1 \Rightarrow \left| {{z_1}} ight| = 1\left| {{z_2}} ight| = 1

    Chú ý: a.\overline a  = {a^2} \Rightarrow {\left| {2z - i} ight|^2} = (2z - i)(\overline {2z - i} ) = (2z - i)(2\overline z  + i)

    Tập hợp điểm biểu diễn số phức {z_1},{\text{ }}{z_2} là đường tròn tâm O bán kính R = 1.

    Tính giá trị của biểu thức P

    Gọi {M_1}({z_1}),{\text{ }}{M_2}({z_2}) \Rightarrow O{M_1} = O{M_2} = 1

    Ta có: \left| {{z_1} - {z_2}} ight| = \left| {\overrightarrow {O{M_1}}  - \overrightarrow {O{M_2}} } ight| = \left| {\overrightarrow {{M_2}{M_1}} } ight| = 1 \Rightarrow \Delta O{M_1}{M_2} đều

    \left| {{z_1} + {z_2}} ight| = \left| {\overrightarrow {O{M_1}}  + \overrightarrow {O{M_2}} } ight| = \left| {\overrightarrow {OM} } ight| = OM với M là điểm thỏa

    mãn là hình thoi cạnh 1\Rightarrow OM = \sqrt 3  \Rightarrow P = \sqrt 3

    Cách 2. Đặt z = x + yi,{\text{ }}\left( {x,y \in \mathbb{R}} ight), ta có 2z - i = 2x + (2y - 1)i2 + iz = 2 - y + xi

    Khi đó:

    \left| {2z - i} ight| = \left| {2 + iz} ight| \Leftrightarrow \sqrt {4{x^2} + {{(2y - 1)}^2}}  = \sqrt {{{(y - 2)}^2} + {x^2}}  \Leftrightarrow {x^2} + {y^2} = 1

    \Rightarrow \left| z ight| = 1 \Rightarrow \left\{ \begin{gathered}  \left| {{z_1}} ight| = 1 \hfill \\  \left| {{z_2}} ight| = 1 \hfill \\ \end{gathered}  ight.

    Sử dụng công thức 

    {\left| {{z_1} + {z_2}} ight|^2} + {\left| {{z_1} - {z_2}} ight|^2} = 2\left( {{{\left| {{z_1}} ight|}^2} + {{\left| {{z_2}} ight|}^2}} ight) \Rightarrow {\left| {{z_1} + {z_2}} ight|^2} = 3 \Rightarrow \left| {{z_1} + {z_2}} ight| = \sqrt 3

     

  • Câu 10: Thông hiểu

    Cho giá trị của tích phân {I_1} = \int\limits_1^2 {\frac{{{x^2} + 2x}}{{x + 1}}dx}  = a, {I_2} = \int\limits_e^{{e^2}} {\frac{1}{x}dx = b}. Giá trị của biểu thức P = a - b là:

     Ta có:

    \begin{matrix}  {I_1} = \int\limits_1^2 {\dfrac{{{x^2} + 2x}}{{x + 1}}dx}  \hfill \\ = \int\limits_1^2 {\left( {x + 1 - \dfrac{1}{{x + 1}}} ight)dx}  \hfill \\ = \left. {\left( {\dfrac{{{x^2}}}{2} + x - \ln \left| {x + 1} ight|} ight)} ight|_1^2 \hfill \\ = \dfrac{5}{2} + \ln 2 - \ln 3 \hfill \\ \Rightarrow a = \dfrac{5}{2} + \ln 2 - \ln 3 \hfill \\ \end{matrix}

    {I_2} = \int\limits_e^{{e^2}} {\frac{1}{x}dx = \left. {\left( {\ln \left| x ight|} ight)} ight|} _e^{{e^2}} = 1 \Rightarrow b = 1

    P = a - b = \frac{3}{2} + \ln 2 - \ln 3

  • Câu 11: Vận dụng

    Cho hình vuông ABCD có cạnh a. Trên hai tia Bt,Ds vuông góc và nằm cùng phía với mặt phẳng (ABCD) lần lượt lấy hai điểm E;F sao cho BE = \frac{a}{2};DF = a. Tính góc \varphi giữa hai mặt phẳng (AEF);(CEF).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình vuông ABCD có cạnh a. Trên hai tia Bt,Ds vuông góc và nằm cùng phía với mặt phẳng (ABCD) lần lượt lấy hai điểm E;F sao cho BE = \frac{a}{2};DF = a. Tính góc \varphi giữa hai mặt phẳng (AEF);(CEF).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Nhận biết

    Trong không gian hệ trục tọa độ Oxyz, điểm nào dưới đây thuộc trục Oy?

    Điểm A(x;y;z) \in Oy \Leftrightarrow
\left\{ \begin{matrix}
x = 0 \\
z = 0 \\
\end{matrix} ight.. Suy ra trong bốn điểm đã cho điểm T(0; - 3;0) \in Oy.

  • Câu 13: Thông hiểu

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị như hình vẽ:

    Tích phân

    Tính tích phân I = \int_{1}^{2}{f'(2x
- 1)dx}?

    Ta có:

    I = \int_{1}^{2}{f'(2x - 1)dx} =
\frac{1}{2}\int_{1}^{2}{f'(2x - 1)d(2x - 1)}

    = \frac{1}{2}\left. \ f(2x - 1)ight|_{1}^{2} = \frac{1}{2}\left\lbrack f(3) - f(1) ightbrack =2

  • Câu 14: Vận dụng

    Biết xe^{x} là một nguyên hàm của hàm số f( - x) trên khoảng ( - \infty; + \infty). Gọi F(x) là một nguyên hàm của f'(x)e^{x} thỏa mãn F(0) = 1. Giá trị của F( - 1) bằng:

    Ta có: f( - x) = \left( xe^{x}
ight)' = e^{x} + xe^{x};\forall x \in ( - \infty; +
\infty)

    Do đó f( - x) = e^{- ( - x)} - ( - x)e^{-
( - x)};\forall x \in ( - \infty; + \infty)

    Suy ra f(x) = e^{- x}(1 - x);\forall x
\in ( - \infty; + \infty)

    Nên f'(x) = \left\lbrack e^{- x}(1 -
x) ightbrack' = e^{- x}(x - 2)

    \Rightarrow f'(x)e^{x} = e^{- x}(x -
2)e^{x} = x - 2

    Vậy F(x) = \int_{}^{}{(x - 2)dx} =
\frac{1}{2}(x - 2)^{2} + C

    Từ đó F(0) = \frac{1}{2}(0 - 2)^{2} + C =
C + 2

    F(0) = 1 \Rightarrow C = -
1

    Vậy F(x) = \frac{1}{2}(x - 2)^{2} - 1
\Rightarrow F( - 1) = \frac{1}{2}( - 1 - 2)^{2} - 1 =
\frac{7}{2}

  • Câu 15: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 16: Thông hiểu

    Số phức z thỏa mãn z = 1 + 2i + 3{i^2} + 4{i^3} + ... + 18{i^{19}}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:  z - iz = 1 + i + ... + {i^{19}} - 18{i^{20}} = 1.\frac{{1 - {i^{20}}}}{{1 - i}} - 18{i^{20}} =  - 18

    \Rightarrow z = \frac{{ - 18}}{{1 - i}} =  - 9 - 9i

  • Câu 17: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = \frac{x
- 1}{x^{2}}?

    Ta có: f(x) = \frac{x - 1}{x^{2}} =
\frac{1}{x} - \frac{1}{x^{2}} \Rightarrow F(x) = \ln|x| + \frac{1}{x} +
C

  • Câu 18: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 19: Nhận biết

    Hàm số f(x) = x^{3} + \sin x là một nguyên hàm của hàm số nào sau đây?

    Ta có: F'(x) = 3x^{2} + \cos
x

  • Câu 20: Nhận biết

    Cho hình phẳng D giới hạn bởi đường cong y = e^{x}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Ta có:

    V = \pi\int_{0}^{1}{e^{2x}dx} = \left. \
\frac{\pi}{2}e^{2x} ight|_{0}^{1} = \frac{\pi\left( e^{2} - 1
ight)}{2}.

  • Câu 21: Nhận biết

    Tìm số phức z trong phương trình sau: \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

     Ta có \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

    \Leftrightarrow z = \frac{{( - 1 + 3i)(1 - i)}}{{{{(2 + i)}^2}}}

    \Leftrightarrow z = \frac{{2 + 4i}}{{3 + 4i}} \Leftrightarrow z = \frac{{(2 + 4i)(3 - 4i)}}{{25}}

    \Leftrightarrow z = \frac{{22}}{{25}} + \frac{4}{{25}}i

  • Câu 22: Vận dụng

    Tích phân I = \int\limits_1^2 {\frac{{ax - 2}}{{\sqrt {a{x^2} - 4x} }}} dx = 2\sqrt 3  - 1. Giá trị nguyên của a là:

    Ta có: \left( {a{x^2} - 4x} ight)' = 2ax - 4 = 2\left( {ax - 2} ight)

    \Rightarrow I = \frac{1}{2}\int\limits_1^2 {\frac{{2ax - 4}}{{\sqrt {a{x^2} - 4x} }}} dx

    Đặt t = a{x^2} - 4x \Rightarrow dt = \left( {2ax - 4} ight)dx

    Đổi cận \left\{ \begin{gathered}  x = 2 \Rightarrow t = 4a - 8 \hfill \\  x = 1 \Rightarrow t = a - 4 \hfill \\ \end{gathered}  ight.

    I = \frac{1}{2}\int\limits_{a - 4}^{4a - 8} {\frac{1}{{\sqrt t }}} dt = \left. {\left( {\sqrt t } ight)} ight|_{a - 4}^{4a - 8} = \sqrt {4a - 8}  - \sqrt {a - 4}

    Theo đề bài: 

    I = 2\sqrt 3  - 1 \Leftrightarrow \sqrt[{}]{{4a - 8}} - \sqrt {a - 4}  = 2\sqrt 3  - 1 \Leftrightarrow ..... \Leftrightarrow a = 5

  • Câu 23: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|. Tính \left| {M - mi} ight|

     Ta có P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{z^4} + {{\overline z }^4} + 4} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{{\left( {{z^2} + {{\overline z }^2}} ight)}^2} + 2} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {{z^2} + {{\overline z }^2}} ight)^2} + 2 - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {\left| {{z^2} + {{\overline z }^2}} ight| - 1} ight)^2} + 1

    Vì \left\{ \begin{array}{l}{z^2} + {\overline z ^2} \in \mathbb{R} \\ - 2 \le {z^2} + {\overline z ^2} \le 2\end{array} ight.  nên {P_{{m{max}}}} = 2; {P_{{m{min}}}} = 1.

    Suy ra  \left| {M - mi} ight| = \sqrt 5

  • Câu 24: Nhận biết

    Câu nào sau đây đúng? Trong không gian Oxyz:

     A sai và có thể (P) và (Q) trùng nhau

    B sai, vì mỗi mặt phẳng có vô số vecto pháp tuyến. Suy ra D sai.

    C đúng vì 1 mặt phẳng được xác định nếu biết một điểm và một VTPT của nó.

  • Câu 25: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 26: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\frac{x + 1}{1} = \frac{y + 4}{2} =
\frac{z}{1} và điểm A(2;0;1). Hình chiếu vuông góc của A trên (∆) là điểm nào dưới đây?

    Đường thẳng (∆) đi qua M(−1; −4; 0), có vectơ chỉ phương \overrightarrow{u_{(\Delta)}} = (1;\ 2;\
1)

    Phương trình tham số của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + t \\
y = - 4 + 2t \\
z = t \\
\end{matrix} ight.

    Gọi P là hình chiếu vuông góc của A trên (∆).

    Khi đó P \in (\Delta) \Rightarrow P( - 1
+ t; - 4 + 2t;t)

    Ta có \overrightarrow{AP} = ( - 3 + t; -
4 + 2t;t - 1). Vì \overrightarrow{AP}\bot\overrightarrow{u_{(\Delta)}}
\Rightarrow \overrightarrow{AP}.\overrightarrow{u_{(\Delta)}} =
0 nên

    \Leftrightarrow 1.( - 3 + t)
+ 2.( - 4 + 2t) + 1.(t - 1) = 0 \Leftrightarrow t = 2 \Rightarrow
P(1;0;2)

  • Câu 27: Nhận biết

    Số phức có phần thực bằng 1 và phần ảo bằng 3 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 28: Thông hiểu

    Biết F(x) = x2+ 4x + 1 là một nguyên hàm của hàm số y = f(x) . Tính giá trị của hàm số y = f(x) tại x = 3

     f\left( x ight) = \left[ {F\left( x ight)} ight]' = 2x + 4 \Rightarrow F\left( 3 ight) = 10

  • Câu 29: Vận dụng

    Xét phương trình {z^3} = 1 trên tập số phức. Tập nghiệm của phương trình là:

     Ta có:

    {z^3} = 1 \Leftrightarrow \left( {z - 1} ight)\left( {{z^2} + z + 1} ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z^2} + z + 1 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z =  - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\end{array} ight.

    Suy ra: S = \left\{ {1; - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i} ight\}

  • Câu 30: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta vuông góc với mặt phẳng (\alpha):x + 2z + 3 = 0. Một vectơ chỉ phương của \Delta là:

    Mặt phẳng (α) có một vectơ pháp tuyến là \overrightarrow{n} = (1;0;2).

    Đường thẳng \Delta vuông góc với mặt phẳng (α) nên có vectơ chỉ phương là \overrightarrow{a} = \overrightarrow{n} =
(1;0;2).

  • Câu 31: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(2; - 4;1) và chắn trên các trục tọa độ Ox,Oy,Oz theo ba đoạn có độ dài đại số lần lượt là a;b;c. Phương trình tổng quát của mặt phẳng (P) khi a;b;c theo thứ tự tạo thành một cấp số nhân có công bội bằng 2 là:

    Do giả thiết suy ra \left\{
\begin{matrix}
a,b,c eq 0\  \\
b = 2a,c = 2b \\
\end{matrix} ight..

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) khi đó phương trình mặt phẳng\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1.

    Do M thuộc (P) nên \frac{2}{a} -
\frac{4}{b} + \frac{1}{c} = 1 \Leftrightarrow \frac{2}{a} - \frac{4}{2a}
+ \frac{1}{4a} = 1 \Leftrightarrow a = \frac{1}{4}

    Suy ra b = \frac{1}{2};c = 1 do đó phương trình mặt phẳng (P):4x + 2y + z -
1 = 0.

  • Câu 32: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(2; - 2; - 1),B\left( - \frac{4}{3}; -
\frac{8}{3};\frac{8}{3} ight). Đường thẳng \Delta đi qua tâm đường tròn nội tiếp tam giác OAB và vuông góc với mặt phẳng (OAB). Hỏi \Delta đi qua điểm nào dưới đây?

    Ta có: OA = 3,OB = 4,AB = 5

    Gọi I là tâm đường tròn nội tiếp tam giác OAB.

    \left\{ \begin{matrix}
x_{I} = \frac{AB.x_{O} + OB.x_{A} + OA.x_{B}}{AB + OB + OA} \\
y_{I} = \frac{AB.y_{O} + OB.y_{A} + OA.y_{B}}{AB + OB + OA} \\
z_{I} = \frac{AB.z_{O} + OB.z_{A} + OA.z_{B}}{AB + OB + OA} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{5.0 + 4.2 + 3.\left( - \frac{4}{3} ight)}{5 + 4 + 3} \\
y_{I} = \frac{5.0 + 4.( - 2) + 3.\left( - \frac{8}{3} ight)}{5 + 4 +
3} \\
z_{I} = \frac{5.0 + 4.( - 1) + 3.\frac{8}{3}}{5 + 4 + 3} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
x_{I} = \frac{1}{3} \\
y_{I} = - \frac{4}{3} \\
z_{I} = \frac{1}{3} \\
\end{matrix} ight.\  \Rightarrow I\left( \frac{1}{3}; -
\frac{4}{3};\frac{1}{3} ight)

    \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = ( - 8; - 4; - 8)
= - 4(2;1;2)

    Phương trình đường thẳng \Delta:\frac{x -
\frac{1}{3}}{2} = \frac{y + \frac{4}{3}}{1} = \frac{z -
\frac{1}{3}}{2}

    Đường thẳng ∆ đi qua điểm M(1; −1; 1).

  • Câu 33: Thông hiểu

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 34: Thông hiểu

    Hàm số F\left( x ight) = 2\sin x - 3\cos x là một nguyên hàm của hàm số nào sau đây?

     F'\left( x ight) = f\left( x ight) = 2\cos x + 3\sin x

  • Câu 35: Vận dụng cao

    Một biển quảng cáo có dạng hình elip với bốn đỉnh A_{1};A_{2};B_{1};B_{2} như hình vẽ:

    Người ta chia elip bởi Parabol có đỉnh B_{1}, trục đối xứng B_{1}B_{2} và đi qua các điểm M;N. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng A_{1}A_{2} =4m;B_{1}B_{2} = MN = 2m

    Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)

    Phương trình đường Elip (E):\frac{x^{2}}{4} + \frac{y^{2}}{9} = 1\Leftrightarrow y = \pm \sqrt{1 - \frac{x^{2}}{4}}

    Ta có: M\left( - 1;\frac{\sqrt{3}}{2}ight),N\left( 1;\frac{\sqrt{3}}{2} ight) \in (E)

    Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình y = ax^{2} - 1, (a > 0), đi qua M; N

    \Rightarrow a = \frac{\sqrt{3}}{2} + 1\Rightarrow (P):y = \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2} -1

    Diện tích phần tô đậm

    S_{1} = 2\int_{0}^{1}{\left\lbrack\sqrt{1 - \frac{x^{2}}{4}} - \left( \frac{\sqrt{3}}{2} + 1 ight)x^{2}+ 1 ightbrack dx}

    = \int_{0}^{1}{\sqrt{4 - x^{2}}dx} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    Đặt x = 2\sin t;t \in \left\lbrack -\frac{\pi}{2};\frac{\pi}{2} ightbrack \Rightarrow dx =2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 0 \Rightarrow t = 0 \\x = 1 \Rightarrow t = \dfrac{\pi}{6} \\\end{matrix} ight.

    \Rightarrow S_{1} =\int_{0}^{\frac{\pi}{6}}{\sqrt{4 - 4\sin^{2}t}.2\cos tdt} -\frac{2}{3}\left( \frac{\sqrt{3}}{2} + 1 ight) + 2

    = 4\int_{0}^{\frac{\pi}{6}}{\cos^{2}tdt}- \frac{\sqrt{3}}{4} + \frac{4}{3} = 2\int_{0}^{\frac{\pi}{6}}{(1 +\cos2t)dt} - \frac{\sqrt{3}}{4} + \frac{4}{3}

    = \left. \ (2t + \sin2t)ight|_{0}^{\frac{\pi}{6}} - \frac{\sqrt{3}}{4} + \frac{4}{3} =\frac{\pi}{3} + \frac{\sqrt{3}}{6} + \frac{4}{3}

    Diện tích hình Elip là S = πab = 2π

    Suy ra diện tích phần còn lại là: S_{2} =S - S_{1} = \frac{5\pi}{3} - \frac{\sqrt{3}}{6} -\frac{4}{3}

    Kinh phí sử dụng là 2.10^{5}S_{1} +5.10^{5}S_{2} \approx 2.341.000 đồng.

  • Câu 36: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(1; - 6;1) và mặt phẳng (P):x + y + 7 = 0. Điểm B thay đổi thuộc Oz; điểm C thay đổi thuộc mặt phẳng (P). Biết rằng tam giác ABC có chu vi nhỏ nhất. Tọa độ điểm B là:

    Hình vẽ minh họa

    Gọi B1 là điểm đối xứng với B qua (P).

    P_{ABC} = AB + BC + CA = AB + B_{1}C +
CA \geq AB + AB_{1}

    Gọi M là hình chiếu của A lên trục Oz, M1 là điểm đối xứng của M qua (P)

    AB + AB_{1} \geq AM + AB_{1} \geq AM +
AM_{1} (hằng số).

    Vậy PABC nhỏ nhất khi B ≡ M và C là giao điểm của AM1 với (P).

    Từ đó suy ra tọa độ của điểm B là (0; 0; 1).

  • Câu 37: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x - 8\sin x\cos x thỏa mãn F(\pi) = 2?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(2x - 8\sin x\cos x ight)dx}

    = \int_{}^{}{(2x - 4\sin2x)dx} = x^{2} +2\cos2x + C

    Theo bài ra ta có: F(\pi) =
2

    \Rightarrow \pi^{2} + 2 + C = 2
\Leftrightarrow C = - \pi^{2}

    Vậy F(x) = x^{2} + 2\cos2x -\pi^{2}

  • Câu 38: Nhận biết

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2). Phương trình tham số của đường thẳng \Delta là:

    Do (2; - 2;1) cũng là vectơ chỉ phương nên phương trình tham số là: \left\{
\begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 39: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm B(1;2; - 3),C(7;4 - 2). Tìm tọa độ điểm E thỏa mãn đẳng thức \overrightarrow{CE} =
2\overrightarrow{EB}?

    Gọi E(x;y;z)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{CE} = (x - 7;y - 4;z + 2) \\
2\overrightarrow{EB} = (2 - 2x;4 - 2y; - 6 - 2z) \\
\end{matrix} ight.

    Theo bài ra ta có:

    \overrightarrow{CE} =2\overrightarrow{EB} \Leftrightarrow \left\{ \begin{matrix}x - 7 = 2 - 2x \\y - 4 = 4 - 2y \\z + 2 = - 6 - 2z \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = 3 \\y = \dfrac{8}{3} \\z = - \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow E\left( 3;\frac{8}{3}; - \dfrac{8}{3}ight)

    Vậy điểm E có tọa độ là E\left(
3;\frac{8}{3}; - \frac{8}{3} ight).

  • Câu 40: Nhận biết

    Trong không gian Oxyz, cho điểm M(1;0;2). Mệnh đề nào sau đây đúng?

    Vì tọa độ điểm M(1;0;2)x = 1;y = 0;z = 2 nên M \in (Oxz).

  • Câu 41: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2; - 1),B(2; - 1;3),C( -
4;7;5). Tọa độ chân đường phân giác của góc B trong tam giác ABC là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{BA} = ( - 1; - 3;4) \Rightarrow BA = \sqrt{26} \\
\overrightarrow{BC} = ( - 6;8;2) \Rightarrow BC = 2\sqrt{26} \\
\end{matrix} ight.

    Gọi D(a;b;c) là chân đường phân giác kẻ từ B lên AC của tam giác ABC.

    Suy ra \frac{DA}{DC} = \frac{BA}{BC}
\Rightarrow \overrightarrow{DA} = -
\frac{1}{2}\overrightarrow{DC}(*)

    Ta có: \left\{ \begin{matrix}
\overrightarrow{DA} = (1 - x;2 - y; - 1 - z) \\
\overrightarrow{DC} = ( - 4 - x;7 - y;5 - z) \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}1 - x = - \dfrac{1}{2}( - 4 - x) \\2 - y = - \dfrac{1}{2}(7 - y) \\- 1 - z = - \dfrac{1}{2}(5 - z) \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = - \dfrac{2}{3} \\y = \dfrac{11}{3} \\z = 1 \\\end{matrix} ight.\  \Rightarrow D\left( - \dfrac{2}{3};\dfrac{11}{3};1ight)

  • Câu 42: Thông hiểu

    Cho F(x) = (x - 1)e^{x} là một nguyên hàm của hàm số f(x)e^{2x}. Tìm nguyên hàm của hàm số f'(x)e^{2x}?

    Ta có: F(x) là một nguyên hàm của hàm số f(x)e^{2x} nên

    F'(x) = f(x)e^{2x} \Leftrightarrow
\left\lbrack (x - 1)e^{x} ightbrack' = f(x)e^{2x}

    Hay f(x)e^{2x} = e^{x} + (x - 1)e^{x} =
xe^{x}

    Xét I =
\int_{}^{}{f'(x)e^{2x}}dx, đặt \left\{ \begin{matrix}
u = e^{2x} \\
dv = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2e^{2x}dx \\
v = f(x) \\
\end{matrix} ight.

    Khi đó

    I = f(x)e^{2x} -
\int_{}^{}{2f(x)e^{2x}}dx

    = xe^{x} - 2(x - 1)e^{x} + C = (2 -
x)e^{x} + C

  • Câu 43: Nhận biết

    Tích phân I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx} có giá trị là:

     Tích phân I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx} có giá trị là:

    I = \int\limits_1^2 {\left( {\frac{1}{{{x^2}}} + 2x} ight)dx}  = \left. {\left( { - \frac{1}{x} + {x^2}} ight)} ight|_1^2 = \frac{7}{2}

    Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.

  • Câu 44: Nhận biết

    Hàm số f(x) có đạo hàm liên tục trên tập số thực và f'(x) = 2e^{2x} +
1;\forall x; f(0) = 2. Hàm số f(x) là:

    Ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\left( 2e^{2x} + 1 ight)dx} = e^{2x} + x + C

    \Rightarrow f(x) = e^{2x} + x +
C

    Theo bài ra ta có: f(0) = 2 \Rightarrow 1
+ C = 2 \Rightarrow C = 1

    Vậy f(x) = e^{2x} + x + 1.

  • Câu 45: Thông hiểu

    Cho số phức z =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i. Số phức w = 1 + z + {z^2},\left| w ight| bằng:

     Ta có: \left| w ight| = \left| {1 + z + {z^2}} ight| = \left| {1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} ight| = 0

  • Câu 46: Thông hiểu

    Cho hai hàm số F(x) = \left( x^{2} + bx +
c ight)e^{x}f(x) = \left(
x^{2} + 3x + 4 ight)e^{x}. Biết a;b là các số thực để F(x) là một nguyên hàm của f(x). Tính S
= a + b?

    Từ giả thiết ta có:

    F'(x) = f(x)

    \Leftrightarrow (2x + a)e^{x} + \left(
x^{2} + ax + b ight)e^{x} = \left( x^{2} + 3x + 4 ight)e^{x};\forall
x\mathbb{\in R}

    \Leftrightarrow x^{2} + (2 + a)x + a + b
= x^{2} + 3x + 4;\forall x\mathbb{\in R}

    Đồng nhất hai vế ta có: \left\{
\begin{matrix}
a + 2 = 3 \\
a + b = 4 \\
\end{matrix} ight.\  \Rightarrow S = a + b = 4.

  • Câu 47: Vận dụng

    Cho số phức z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;50} ight] để z là số thuần ảo?

    25|| hai mươi lăm||Hai mươi lăm

    Đáp án là:

    Cho số phức z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m}, m nguyên dương. Có bao nhiêu giá trị m \in \left[ {1;50} ight] để z là số thuần ảo?

    25|| hai mươi lăm||Hai mươi lăm

    Ta có: z = {\left( {\frac{{2 + 6i}}{{3 - i}}} ight)^m} = {(2i)^m} = {2^m}.{i^m}\,

    z là số thuần ảo khi và chỉ khi m = 2k + 1,\,\,k \in \mathbb N

    Vậy có 25 giá trị m thỏa yêu cầu đề bài.

  • Câu 48: Nhận biết

    Trong không gian tọa độ Oxyz, cho hai mặt phẳng (P):(m - 1)x + y - 2z + m
= 0(Q):2x - z + 3 = 0. Tìm m để (P) vuông góc với (Q)?

    Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là (m - 1;1; -
2).(2;0; - 1) = 0 \Leftrightarrow m = 0.

  • Câu 49: Nhận biết

    Nghiệm của phương trình: {z^2} - (3i + 8)z + 11\,.i + 13 = 0  là 

     Ta có: \Delta  = {(3i + 8)^2} - 4(11.i + 13) = 4i + 3.

    Giả sử m+ni \,\,(m; n \in \mathbb R)  là căn bậc hai của \triangle.

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 3 + 4i \Leftrightarrow {m^2} + 2mni - {n^2} = 3 + 4i

    \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3\\2mn = 4\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3 \,\,  (1)\ = \dfrac{2}{m}\,\,\,\, \,\,\,\,  (2)\end{array} ight.

    Thay (2) vào (1) ta có:

    {m^2} - {\left( {\frac{2}{m}} ight)^2} = 3 \Leftrightarrow {m^4} - 3{m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\,\,\,\,\,\,\,\,(TM)\\{m^2} =  - 1\,\,\,\,\,\,\,(L{m{)}}\end{array} ight.

    \Rightarrow \left[ \begin{array}{l}m = 2 \Rightarrow n = 1\\m =  - 2 \Rightarrow n =  - 1\end{array} ight.

    Vậy \triangle có hai căn bậc hai là  2+i  và -2-i.

    Do đó nghiệm của phương trình là:

    \left[ \begin{array}{l}z = \dfrac{{3i + 8 + i + 2}}{2} = 2i + 5\\z = \dfrac{{3i + 8 - i - 2}}{2} = i + 3\end{array} ight.

  • Câu 50: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 44 lượt xem
Sắp xếp theo