Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Trong không gian với hệ tọa độ
, cho các điểm
. Phương trình mặt phẳng
nào dưới đây đi qua
, gốc tọa độ
và cách đều hai điểm
và
?
Vì đi qua O nên phương trình mặt phẳng
có dạng
.
Vì A ∈ (P) và B, C cách đều (P) nên
Chọn a = −6, ta có b = 3, suy ra c = ±4.
Vậy có hai mặt phẳng thỏa mãn là hoặc
.
Cho hai số phức z, w thỏa mãn
;
với
là tham số. Giá trị của m để ta luôn có
là:
Đặt có biểu diễn hình học là điểm
Ta có:
Suy ra biểu diễn của số phức là đường thẳng
Ta xét:
với .
Mà ta có
Nên
Cho hai hàm số
có đồ thị như hình vẽ:

Gọi
là diện tích hình phẳng được gạch trong hình vẽ. Khi
thì
bằng bao nhiêu?
Phương trình hoành độ giao điểm
Ký hiệu là diện tích hình phẳng như hình vẽ:
Ta có:
Vì vậy
Cho tứ diện
, có
đôi một vuông góc,
là điểm thuộc miền trong của tam giác
. Gọi khoảng cách từ
đến các mặt phẳng
lần lượt là
. Tính độ dài đoạn
sao cho tứ diện
có thể tích nhỏ nhất.
Xét hệ trục tọa độ Oxyz sao cho A thuộc tia Ox; B thuộc tia Oy và C thuộc tia Oz.
Ta có
Ta có:
Đẳng thức xảy ra khi chỉ khi
Giá trị của tích phân
. Biểu thức có giá trị
là:
Giá trị của tích phân . Biểu thức
có giá trị là:
Ta có:
Trong không gian
, mặt phẳng
đi qua điểm
, đồng thời vuông góc với giá của vectơ
có phương trình là:
Mặt phẳng nhận vectơ
làm vectơ pháp tuyến và đi qua điểm
nên có phương trình là
.
Biết rằng
là một nguyên hàm của hàm số
trên
. Giá trị của biểu thức
bằng:
Ta có:
suy ra
Cho hình phẳng
giới hạn bởi đồ thị các hàm số sau
và đườDng thẳng
(tham khảo hình vẽ). Thể tích khối tròn xoay sinh bởi hình (H) khi quay quanh đường thẳng
bằng

Đặt . Ta được hệ trục tọa độ OXY như hình vẽ
Ta có:
Thể tích cần tìm là
Cho
. Hãy tính
?
Đặt
Đổi cận ta có:
Vậy
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Cho số phức z thoả mãn
. Giá trị lớn nhất của biểu thức
bằng?
Đặt .
Từ giả thiết
(1).
Ta có
.
Dễ thấy P lớn nhất khi .
Khi đó
Do nên từ (1) ta có
.
Suy ra
Dấu = xảy ra khi
.
Tìm nguyên hàm của hàm số
??
Đặt
Trong không gian với hệ tọa độ
, phương trình nào dưới đây là phương trình đường thẳng
đi qua điểm
và vuông góc với mặt phẳng
?
Đường thẳng vuông góc với mặt phẳng
nên
có một vectơ chỉ phương là
.
Phương trình là
Kiểm tra được điểm thỏa mãn hệ (*).
Vậy phương trình: cũng là phương trình của
.
Tính diện tích S của hình phẳng giới hạn bới đồ thị của hàm số
và các đường thẳng
là:
Ta có:
Phương trình hoành độ giao điểm của hai đồ thị là
Diện tích hình phẳng cần tìm là:
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Cho hai mặt phẳng
.
Gọi
là góc nhọn tạo bởi
và
thì giá trị đúng của
là:
Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:
có vectơ pháp tuyến
có vectơ pháp tuyến
Áp dụng công thức tính cosin giữa 2 vecto, ta có:
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Trong không gian với hệ tọa độ
, cho hai điểm
. Tìm tọa độ điểm
thuộc
sao cho
ngắn nhất.
Gọi là điểm sao cho
Suy ra J(2; 3; 1).
Khi đó
Vậy đạt GTNN khi và chỉ khi
đạt GTNN hay M là hình chiếu của J lên mặt phẳng (Oxy).
Vậy M(2; 3; 0).
Hãy chọn mệnh đề đúng trong các mệnh đề sau đây?
Nếu thì
Suy ra tứ giác là hình bình hành
Mệnh đề sai vì:
Trong không gian
, cho tọa độ các vectơ
;
và
. Mệnh đề nào sau đây sai?
Ta có: suy ra “
” là mệnh đề sai.
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Cho hai vectơ
và
với
và
.Tìm m để
và
vuông góc.
Điều kiện để
vuông góc
Với
Cho tứ diện
. Đặt
. Gọi
là trọng tâm tam giác
. Trong các đẳng thức sau, đẳng thức nào đúng?
Hình vẽ minh họa
Gọi M là trung điểm của CD suy ra
Ta có:
Trong không gian
, xét mặt phẳng
đi qua điểm
đồng thời cắt các tia
lần lượt tại
sao cho tứ diện
có thể tích nhỏ nhất. Giao điểm của đường thẳng
với
có toạ độ là:
Gọi
Theo giả thiết, ta có là các số dương.
Phương trình mặt phẳng (P) là
(P) đi qua điểm A (2; 1; 3) nên
Ta có:
. Dấu bằng xảy ra khi và chỉ khi
Vậy
Tọa độ giao điểm của d và (P) là nghiệm của hệ: .
Vậy đáp án cần tìm là: .
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Gọi
là 2 nghiệm của phương trình
thỏa mãn
. Biết rằng w là số phức thỏa mãn
. Tìm GTNN của biểu thức
.
Giả sử
Ta có:
=> x = 0
=> Tập hợp điểm biểu diễn là trục tung.
Giả sử A, B lần lượt là 2 điểm biểu diễn cho , ta có
Giả sử và M là điểm biểu diễn cho số phức w, ta có
suy ra tập hợp điểm biểu diễn M cho số phức w là đường tròn tâm
bán kính R = 2
Ta có , gọi E là hình chiếu vuông góc của I lên trục tung, ta thấy P nhỏ nhất khi E là trung điểm AB suy ra
, vậy

Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Cho
. Giá trị của x và y bằng:
Ta có:
Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường
. Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là
giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường . Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Do nên quãng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Ta có:
với
là hằng số.
Khi đó, ta gọi hàm số .
Do nên
. Suy ra
.
Xe ô tô dừng hẳn khi hay
. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.
Ta có xe ô tô đang chạy với tốc độ .
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: .
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: .
Do nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.
Tìm nguyên hàm của hàm số ![]()
Ta có:
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Cho hình phẳng
giới hạn với các đường
. Tính thể tích
của khối tròn xoay thu được khi
quay quanh trục
?
Thể tích cần tìm là:
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Trong không gian với hệ tọa độ
, cho đường thẳng
và hai điểm
. Tìm điểm
thuộc
sao cho
vuông tại
.
Điểm thuộc đường thẳng
nên
.
Ta có và
.
Tam giác vuông tại
khi và chỉ khi
Khi đó tọa độ điểm .
Phần thực, phần ảo của số phức z thỏa mãn
lần lượt là?
Ta có:
Phần thực, phần ảo của z lần lượt là 1;1.
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
với các trục tọa độ?
Xét .
Ta có diện tích hình phẳng giới hạn bởi đồ thị hàm số với các trục tọa độ là:
.
Vì biểu thức không đổi dấu trên miền
nên:
Trong không gian
, cho đường thẳng
vuông góc với mặt phẳng
. Một vectơ chỉ phương của
là:
Mặt phẳng (α) có một vectơ pháp tuyến là .
Đường thẳng vuông góc với mặt phẳng (α) nên có vectơ chỉ phương là
.
Trong không gian
, điểm nào sau đây thuộc mặt phẳng
?
Ta có: nên điểm cần tìm là
.
Biết
là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.
Trong không gian
, cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Ta có:
Cho hàm số
xác định trên tập số thực thỏa mãn
và
. Tính
biết rằng
?
Vì nên ta có:
Cho
Do đó
Trong không gian với hệ tọa độ
, cho hai mặt phẳng ![]()
. Mặt phẳng
vuông góc với cả
và
đồng thời cắt trục
tại điểm có hoành độ bằng
. Phương trình của mặt phẳng
là:
Ta có: (P) có vectơ pháp tuyến , (Q) có vectơ pháp tuyến
.
Vì mặt phẳng (α) vuông góc với cả (P) và (Q) nên (α) có một vectơ pháp tuyến là
Vì mặt phẳng (α) cắt trục Ox tại điểm có hoành độ bằng 3 nên (α) đi qua điểm M(3; 0; 0).
Vậy (α) đi qua điểm M(3; 0; 0) và có vectơ pháp tuyến nên (α) có phương trình
.