Đề thi HK2 Toán 12 Đề 3

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Tính số phức sau: z = (1+i)15

    Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i

    z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i

  • Câu 2: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(0;1;3),N(10;6;0) và mặt phẳng (P):x - 2y + 2z - 10 = 0. Biết rằng tồn tại điểm I( - 10;a;b) thuộc (P) sao cho |IM - IN| đạt giá trị lớn nhất. Tính T = a + b.

    Thay tọa độ điểm M và N vào vế trái phương trình mặt phẳng (P), ta có (0 - 2 + 3 - 10).(10 - 12 - 10) >
0 nên hai điểm M, N nằm cùng phía đối với mặt phẳng (P).

    Khi đó ta có |IM - IN| \leq MN và đẳng thức xảy ra khi I = MN \cap
(P)

    Phương trình tham số của đường thẳng MN là \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
\end{matrix} ight.

    Tọa độ giao điểm của MN và (P) là nghiệm hệ phương trình

    \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
x - 2y + 2z - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 10 \\
y = - 4 \\
z = 6 \\
\end{matrix} ight.

    Vậy T = a + b = 2

  • Câu 3: Thông hiểu

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0ight\} thỏa mãn 2xf(x) +x^{2}f'(x) = 1f(1) =0. Hệ số góc của phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có: 2xf(x) + x^{2}f'(x) =1

    \Leftrightarrow \left( x^{2}ight)'f(x) + x^{2}f'(x) = 1

    \Leftrightarrow \left( x^{2}f'(x)ight)' = 1

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( x^{2}f'(x)ight)'dx} = \int_{}^{}{1dx} \Leftrightarrow x^{2}f(x) = x +C

    Lại có f(1) = 0 \Rightarrow 1.f(1) = 1 +C \Rightarrow C = - 1

    Từ đó suy ra x^{2}f(x) = x - 1\Leftrightarrow f(x) = \frac{x - 1}{x^{2}}

    Xét phương trình hoành độ giao điểm \frac{x - 1}{x^{2}} = 0 \Leftrightarrow x =1(tm)

    Ta có: f'(x) = \frac{2 - x}{x^{3}}\Rightarrow f'(1) = 1

    Vậy hệ số góc phương trình tiếp tuyến cần tìm là 1.

  • Câu 4: Vận dụng cao

    Cho số phức z thỏa mãn điêu kiện \left| {z - 1} ight| = \sqrt 2. Tính giá trị lớn nhất của biểu thức T = \left| {z + i} ight| + \left| {z - 2 - i} ight|

    Đặt z = x + yi\left( {x,y \in \mathbb{R}} ight), ta có:

    \left| {z - 1} ight| = \sqrt 2  \Leftrightarrow \left| {x - 1 + yi} ight| = \sqrt 2

    \Leftrightarrow {\left( {x - 1} ight)^2} + {y^2} = 2 \Leftrightarrow {x^2} + {y^2} = 2x + 1\left( * ight)

    Mặt khác: T = \left| {z + i} ight| + \left| {z - 2 - i} ight| = \left| {x + \left( {y + 1} ight)i} ight| + \left| {x - 2} ight| + \left( {y - 1} ight)i

    = \sqrt {{x^2} + {{\left( {y + 1} ight)}^2}}  + \sqrt {{{\left( {x - 2} ight)}^2} + {{\left( {y - 1} ight)}^2}}

    = \sqrt {{x^2} + {y^2} + 2y + 1}  + \sqrt {{x^2} + {y^2} - 4x - 2y + 5}

    Kết hợp với (*), ta được:

    T = \sqrt {2x + 2y + 2}  + \sqrt {6 - 2x - 2y}

    Áp dụng bất đẳng thức Bunhacopxki ta được

    T \leqslant \sqrt {\left( {{1^2} + {1^2}} ight)\left[ {{{\left( {\sqrt {2x + 2y + 2} } ight)}^2} + {{\left( {\sqrt {6 - 2x - 2y} } ight)}^2}} ight]}  = 4

    Vậy \max T = 4

  • Câu 5: Thông hiểu

    Cho số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm số phức z thỏa mãn \overline z .{z_1} + {z_2} = 0.

     Ta có: \overline z  = \frac{{ - {z_2}}}{{{z_1}}} = \frac{{ - 3 - 2i}}{{1 - i}} =  - \frac{1}{2} - \frac{5}{2}i \Rightarrow z =  - \frac{1}{2} + \frac{5}{2}i

  • Câu 6: Thông hiểu

    Trong không gian tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (2; - 1;3),\overrightarrow{b}
= (1; - 3;2),\overrightarrow{c} = (3;2; - 4). Gọi \overrightarrow{x} là vectơ thoả mãn: \left\{ \begin{matrix}
\overrightarrow{x}.\overrightarrow{a} = - 5 \\
\overrightarrow{x}.\overrightarrow{b} = - 11 \\
\overrightarrow{x}.\overrightarrow{c} = 20 \\
\end{matrix} ight.. Tọa độ của vectơ \overrightarrow{x} là:

    Đặt \overrightarrow{x} =
(a;b;c).

    Ta có: \left\{ \begin{matrix}\overrightarrow{x}.\overrightarrow{a} = - 5 \\\overrightarrow{x}.\overrightarrow{b} = - 11 \\\overrightarrow{x}.\overrightarrow{c} = 20 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}2a - b + 3c = - 5 \\a - 3b + 2c = - 11 \\3a + 2b - 4c = 20 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}a = 2 \\b = 3 \\c = - 2 \\\end{matrix} ight.\  ight.\  ight.

    Vậy \overrightarrow{x} = (2;3; -
2).

  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABCA(1;0;1),B(0;2;3),C(2;1;0). Độ dài đường cao của tam giác ABC kẻ từ C là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = ( - 1;2;2) \Rightarrow \left| \overrightarrow{AB}
ight| = 3 \\
\overrightarrow{AC} = (1;1; - 1) \\
\end{matrix} ight.

    \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = ( -
4;1;3)

    S_{ABC} = \frac{1}{2}\left| \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack ight| =
\frac{\sqrt{26}}{2}

    S_{ABC} =
\frac{1}{2}d(C;AB).AB

    \Rightarrow d(C;AB) =
\frac{2S_{ABC}}{AB} = \frac{\sqrt{26}}{3}

  • Câu 8: Nhận biết

    Kí hiệu {z_1},{z_2} là hai nghiệm phức của phương trình 3{z^2} - z + 1 = 0. Tính P = \left| {{z_1}} ight| + \left| {{z_2}} ight|

    Phương trình 3{z^2} - z + 1 = 0 có hai nghiệm {z_{1,2}} = \frac{{1 \pm i\sqrt {11} }}{6}.

    Khi đó P = \left| {{z_1}} ight| + \left| {{z_2}} ight| = \frac{{2\sqrt 3 }}{3}

  • Câu 9: Nhận biết

    Cho tứ diện đều ABCD. Mệnh đề nào sau đây sai?

    Vì tứ diện ABCD là tứ diện đều nên có các cặp cạnh đối vuông góc

    Suy ra \overrightarrow{AC}.\overrightarrow{BD} =
\overrightarrow{AD}.\overrightarrow{BC} =
\overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{0}

    Vậy mệnh đề chưa chính xác là: \overrightarrow{AD}.\overrightarrow{CD} =
\overrightarrow{AC}.\overrightarrow{DC} =
\overrightarrow{0}.

  • Câu 10: Thông hiểu

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 11: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    a) Đúng: Gọi I là trung điểm AB.

    Ta có \left\{ \begin{matrix}
  {x_I} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{1 + 2}}{2} = \dfrac{3}{2} \hfill \\
  {y_I} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2} \hfill \\
  {z_I} = \dfrac{{{z_A} + {z_B}}}{2} = \dfrac{{3 + 5}}{2} = 4 \hfill \\ 
\end{matrix}  ight. \Rightarrow I\left( {\dfrac{3}{2};\dfrac{3}{2};4} ight)

    b) Đúng: Ta có \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10).

    c) Đúng: Ta có \overrightarrow{AB} = (1;
- 1;2),\overrightarrow{AC} = (1;2; - 1).

    \cos(AB,AC) =\cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{|\overrightarrow{AB} \cdot\overrightarrow{AC}|}{|\overrightarrow{AB}| \cdot|\overrightarrow{AC}|}

    = \frac{|1 \cdot 1 + ( - 1) \cdot 2 + 2
\cdot ( - 1)|}{\sqrt{1^{2} + ( - 1)^{2} + 2^{2}} \cdot \sqrt{1^{2} +
2^{2} + ( - 1)^{2}}} = \frac{1}{2}

    Suy ra (AB,AC) = 60^{\circ}.

    d) Sai: Gọi K(x;y;z) thỏa mãn 3\overrightarrow{KB} - \overrightarrow{KC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - (2 - x) = 0 \\3(1 - y) - (4 - y) = 0 \\3(5 - z) - (2 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{1}{2} \\z = \dfrac{13}{2} \\\end{matrix} ight.\  ight.

    Suy ra K\left( 2; -
\frac{1}{2};\frac{13}{2} ight).

    Khi đó T = |3\overrightarrow{IB} -
\overrightarrow{IC}| = |3\overrightarrow{IK} + 3\overrightarrow{KB} -
\overrightarrow{IK} - \overrightarrow{KC}| = |2\overrightarrow{IK}| =
2IK.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của K trên (Oxz) suy ra I(2;0;\frac{13}{2} )..

    Suy ra a = 2,b = 0,c =
\frac{13}{2}.

    Vậy a - 2b + 2c = 15.

  • Câu 12: Thông hiểu

    Hàm số nào dưới đây là họ nguyên hàm của hàm số y = cos2x?

    Ta có: \int_{}^{}{\cos2xdx} =\frac{1}{2}\sin2x + C

    = \frac{1}{2}.2\sin x\cos x + C =\frac{1}{2}.\left( 1 + 2\sin x\cos x ight) + C -\frac{1}{2}

    = \frac{1}{2}.\left( \sin^{2}x +2\sin x\cos x + \cos^{2}x ight) + C'

    = \frac{1}{2}.\left( \sin x + \cos x
ight)^{2} + C'

    Vậy đáp án cần tìm là: y =
\frac{1}{2}\left( \sin x + \cos x ight)^{2} + C.

  • Câu 13: Nhận biết

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = x^{2} + 2x +
1 trục hoành và hai đường thẳng x =
- 1;x = 3.

    Diện tích hình phẳng được tính như sau:

    S = \int_{- 1}^{3}{\left( x^{2} + 2x + 1
ight)dx} = \left. \ \left( \frac{x^{3}}{3} + x^{2} + x ight)
ight|_{- 1}^{3} = \frac{64}{3}.

  • Câu 14: Thông hiểu

    Trong không gian tọa độ Oxyzcho ba điểm M(1;1;1),\ N(2;3;4),\
P(7;7;5). Tìm tọa độ điểm Q để tứ giác MNPQ là hình bình hành

    Minh họa bằng hình vẽ sau:

    Ta có \overrightarrow{MN} = (1;2;3),\
\overrightarrow{QP} = \left( 7 - x_{Q};7 - y_{Q};5 - z_{Q}
ight).

    MNPQ là hình bình hành \Leftrightarrow \overrightarrow{MN} =
\overrightarrow{QP}

    \Leftrightarrow \left\{ \begin{matrix}
1 = 7 - x_{Q} \\
2 = 7 - y_{Q} \\
3 = 5 - z_{Q} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x_{Q} = 6 \\
y_{Q} = 5 \\
z_{Q} = 2 \\
\end{matrix} ight..

    Vậy Q(6;5;2).

  • Câu 15: Vận dụng

    Cho hàm số f(x) có đồ thị như hình vẽ:

    Các biểu thức E;F;G;H xác định bởi E = \int_{0}^{3}{f(x)dx};F =
\int_{3}^{5}{f(x)dx};G = \int_{2}^{4}{f(x)dx};H = f'(x). Mệnh đề nào sau đây đúng?

    Dựa vào hình vẽ và diện tích hình phẳng ta có:

    E = \int_{0}^{3}{f(x)dx} = -
\int_{0}^{3}{\left| f(x) ight|dx} < - 2

    F = \int_{3}^{5}{f(x)dx} >
3

    0 < G = \int_{2}^{4}{f(x)dx} <
2

    - 1 < H = f'(1) < 0 (hệ số góc của tiếp tuyến tại x = 1)

    Như vậy E < H < G <
F

  • Câu 16: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 2022 - 2023i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 17: Nhận biết

    Cho hình vẽ:

    Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:

    Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{2}{\left( - x^{2} + 3 -
x^{2} + 2x + 1 ight)dx} = \int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4
ight)dx}.

  • Câu 18: Vận dụng

    Cho tam giác ABC với A\left( {\,1,\,\, - 2,\,\,6\,} ight);\,\,B\left( {\,2,\,\,5,\,\,1} ight);\,\,C\left( {\, - 1,\,\,8,\,\,4} ight) . Viết phương trình tổng quát của mặt phẳng (R) vuông góc với mặt phẳng (ABC) song song phân giác ngoài AF của góc A?

     Một vecto chỉ phương của (R)\overrightarrow n  = 12\left( {3,1,2} ight)

    Ta có :

    \begin{array}{l}A{B^2} = 75 \Rightarrow AB = 5\sqrt 3 ;A{C^2} = 108 \Rightarrow AC = 6\sqrt 3 \\6\overrightarrow {FB}  = 5\overrightarrow {FC}  \Leftrightarrow \left\{ \begin{array}{l}6\left( {2 - x} ight) = 5\left( { - 1 - x} ight)\\6\left( {5 - y} ight) = 5\left( {8 - y} ight)\\6\left( {1 - z} ight) = 5\left( {4 - z} ight)\end{array} ight. \Rightarrow F\left\{ \begin{array}{l}x = 17\\y =  - 10\\z =  - 14\end{array} ight.\end{array}

    Vecto chỉ phương thứ hai \overrightarrow {AF}  = 4\left( {4, - 2, - 5} ight)

    Suy ra vecto pháp tuyến của (R)\overrightarrow N  = \left[ {\overrightarrow n ,\overrightarrow {AF} } ight] = \left( { - 1,23, - 10} ight)

    Mp (R) đi qua A (1, -2, 6) và nhận vecto (-1, 23, -10) làm 1 VTPT có phương trình là:

    \Rightarrow \left( R ight):\left( {x - 1} ight)\left( { - 1} ight) + \left( {y + 2} ight)23 + \left( {z - 6} ight)\left( { - 10} ight) = 0

    \Leftrightarrow x - 23y + 10z - 108 = 0

  • Câu 19: Thông hiểu

    Cho hàm số y = f(x) liên tục, luôn dương trên \lbrack 0;3brack và thỏa mãn I = \int_{0}^{3}{f(x)dx} =
4. Khi đó giá trị của tích phân K =
\int_{0}^{3}{\left( e^{1 + \ln f(x)} + 4 ight)dx} là:

    Ta có:

    K = \int_{0}^{3}{\left( e^{1 + \ln f(x)}
+ 4 ight)dx} = \int_{0}^{3}{\left\lbrack e.e^{\ln f(x)} ightbrack
dx} + \int_{0}^{3}{4dx}

    = e\int_{0}^{3}{f(x)dx} +
\int_{0}^{3}{4dx} = 4e + 12

  • Câu 20: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

    Đáp án là:

    Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật. Biết rằng cạnh AB = a, AD = 2a, cạnh bên SA = 2a và vuông góc với mặt đáy. Gọi M, N lần lượt là trung điểm của các cạnh SB, SD. Xét tính đúng sai của các khẳng định sau:

    a) Hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, cùng hướng. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{SC};\overrightarrow{AC} bằng 60^{0}. Sai||Đúng

    c) Tích vô hướng của \overrightarrow{AM};\overrightarrow{AB} bằng \frac{a^{2}}{2}. Đúng||Sai

    d) Độ dài vectơ \overrightarrow{AM} -
\overrightarrow{AN}\frac{a\sqrt{3}}{2}. Sai||Đúng

     

    a) Sai

     

    Ta thấy ABCD là hình chữ nhật nên AB//CD

    Suy ra hai vectơ \overrightarrow{AB};\overrightarrow{CD} là hai vectơ cùng phương, ngược hướng.

    b) Sai

    Ta có ABCD là hình chữ nhật nên AC =
\sqrt{AB^{2} + AD^{2}} = a\sqrt{5}

    Hình chóp S.ABCD có SA vuông góc với mặt đáy nên tam giác SAC là tam giác vuông tại A.

    Suy ra \tan\widehat{SAC} = \frac{SA}{SC}
= \frac{2a}{a\sqrt{5}} \Rightarrow \widehat{SAC} \approx
41^{0}48'

    Ta có: \left(
\overrightarrow{SC};\overrightarrow{AC} ight) = \left(
\overrightarrow{CS};\overrightarrow{CA} ight) = \widehat{SAC} \approx
41^{0}48'

    c) Đúng

    Hình chóp S. ABCD có SA vuông góc với mặt đáy nên tam giác SAB là tam giác vuông tại A.

    Suy ra SB = \sqrt{SA^{2} +
AB^{2}} = a\sqrt{5}

    Trong tam giác SAB vuông tại A có AM là đường trung tuyến nên:

    AM = \frac{1}{2}SB =
\frac{a\sqrt{5}}{2}

    Lại có M là trung điểm của SB nên MB =
\frac{1}{2}SB = \frac{a\sqrt{5}}{2}

    Ta tính được \cos MAB = \frac{MA^{2} +
AB^{2} - MB^{2}}{2MA.AB} = \frac{\sqrt{5}}{5}

    \left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\widehat{MAB}

    \Rightarrow
\overrightarrow{AM}.\overrightarrow{AB} = \left| \overrightarrow{AM}
ight|.\left| \overrightarrow{AB} ight|.cos\left(
\overrightarrow{AM};\overrightarrow{AB} ight) =
\frac{a\sqrt{5}}{2}.a.\frac{\sqrt{5}}{5} = \frac{a^{2}}{2}

    d) Sai

    Ta có: M, N lần lượt là trung điểm của các cạnh SB, SD nên MN là đường trung bình của tam giác SBD

    Do đó MN = \frac{1}{2}BD = \sqrt{AB^{2} +
AD^{2}} = \frac{a\sqrt{5}}{2}

    Suy ra \left| \overrightarrow{AM} -
\overrightarrow{AN} ight| = \left| \overrightarrow{MN} ight| =
\frac{a\sqrt{5}}{2}

  • Câu 21: Thông hiểu

    Cho số phức z thỏa mãn \left( {1 - i} ight)z + 2i\overline z  = 5 + 3i. Môđun của z là:

     Giả sử: z = x + yi{\text{ }}\left( {x,y \in \mathbb{R}} ight).

    \left( {1 - i} ight)\left( {x + yi} ight) + 2i\left( {x - yi} ight) = 5 + 3i

    \Leftrightarrow \left( {x + 3y} ight) + \left( {x + y} ight)i = 5 + 3i \Leftrightarrow \left\{ \begin{gathered}  x + 3y = 5 \hfill \\  x + y = 3 \hfill \\ \end{gathered}  ight.

    \Leftrightarrow \left\{ \begin{gathered}  x = 2 \hfill \\  y = 1 \hfill \\ \end{gathered}  ight. \Rightarrow \left| z ight| = \sqrt 5

  • Câu 22: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 23: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 24: Nhận biết

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Đáp án là:

    Một xe ô tô đang chạy với vận tốc 72 km/h thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó 45\ \
m. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ v(t) = - 12t + 24\ \ (m/s), trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi s(t) là quảng đường xe ô tô đi được trong t (giây) kể từ lúc đạp phanh.

    a) Quảng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Đúng||Sai

    b) Quãng đường s(t) = - 12t^{2} +
24t. Đúng||Sai

    c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 10 giây. Sai||Đúng

    d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai

    Do s'(t) = v(t) nên quãng đường s(t) mà xe ô tô đi được trong thời gian t (giây) là một nguyên hàm của hàm số v(t). Ta có: \int_{}^{}{( - 12t + 24)}dt = - 6t^{2} + 24t +
C với C là hằng số.

    Khi đó, ta gọi hàm số s(t) = - 6t^{2} + 24t +
C.

    Do s(0) = 0 nên C = 0. Suy ra s(t) = - 6t^{2} + 24t.

    Xe ô tô dừng hẳn khi v(t) = 0 hay - 12t + 24 = 0 \Leftrightarrow t =
2. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.

    Ta có xe ô tô đang chạy với tốc độ 72\
km/h = 20\ m/s.

    Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: s(2) = - 6.2^{2} + 24.2
= 24(\ m).

    Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: 20 + 24 \approx 44\ (\ m).

    Do 44 < 45 nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.

  • Câu 25: Vận dụng

    Tìm nguyên hàm của hàm số  f\left( x ight) = \frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}

     \int {f\left( x ight)} dx = \int {\frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}} dx = {\int {\left( {\frac{{x - 2}}{{x + 1}}} ight)} ^{10}}.\frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    Đặt t = \frac{{x - 2}}{{x + 1}} \Rightarrow dt = \frac{3}{{{{\left( {x + 1} ight)}^2}dx}} \Rightarrow \frac{1}{3}dt = \frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    => \int {f\left( x ight)} dx = \int {{t^{10}}.\frac{1}{3}dt = \frac{1}{{33}}.{t^{11}} + C}

    => \frac{1}{{33}}{\left( {\frac{{x - 2}}{{x + 1}}} ight)^{11}} + C

  • Câu 26: Vận dụng cao

    Cho tích phân I = \int\limits_1^e {\left( {x + \frac{1}{x}} ight)\ln xdx}  = a{e^2} + b, a và b là các số hữu tỉ. Giá trị của 2a - 3b là:

     Ta có:

    \begin{matrix}  I = \int\limits_1^e {\left( {x + \dfrac{1}{x}} ight)\ln xdx}  \hfill \\ = \int\limits_1^e {x\ln xdx}  + \int\limits_1^e {\dfrac{1}{x}\ln xdx}  \hfill \\ \end{matrix}

    = \left. {\left( {\frac{{{x^2}}}{2}\ln x} ight)} ight|_1^e - \int\limits_1^e {\frac{x}{2}dx}  + \int\limits_0^1 {dt}  = \frac{{{e^2}}}{4} + \frac{5}{4}, với t = \ln x

    \begin{matrix}   \Rightarrow a = \dfrac{1}{4},b = \dfrac{5}{4} \hfill \\   \Rightarrow 2a - 3b =  - \dfrac{{13}}{4} \hfill \\ \end{matrix}

  • Câu 27: Thông hiểu

    Một ô tô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc a(t) = 6 - 2t\left( m/s^{2}
ight), trong đó t là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là bao nhiêu mét?

    Ta có:

    v(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{(6 - 2t)dt} = 6t - t^{2} + C

    Khi đó v_{\max} \Leftrightarrow t =
3 do ban đầu ô tô đang dừng nên v(0) = 0 \Rightarrow C = 0

    Quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là: S =
\int_{0}^{3}{\left( 6t - t^{2} ight)dt} = 18m.

  • Câu 28: Nhận biết

    Trong không gian Oxyz, cho ba mặt phẳng (P),(Q),(R) lần lượt có phương trình là x - 4z + 8 = 0,2x - 8z = 0,y
= 0. Mệnh đề nào dưới đây đúng?

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{p} = (1;0; - 4) và mặt phẳng (R) có một vectơ pháp tuyến là \overrightarrow{r} = (0;1;0)

    Do \overrightarrow{p} eq
k.\overrightarrow{r};\forall k\mathbb{\in R} nên vectơ \overrightarrow{p} không cùng phương với vectơ \overrightarrow{r}.

    Vậy mặt phẳng (R) cắt mặt phẳng (P).

  • Câu 29: Vận dụng cao

    Trong không gian với hệ tọa độ cho các điểm A(1;0;0), B(0;2;0), C(0;0;3), D(2;-2;0). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểmO, A, B, C, D ?

     Mặt phẳng (ABC) có phương trình là:

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1\Leftrightarrow 6x + 3y + 2z - 6 = 0, do đó D \in \left( {ABC} ight).

    Lại có A là trung điểm BD.

    Ta có (Oxy) chứa các điểm O, A, B, D;

    (Oyz) chứa các điểm O, B, C;

    (Oxz) chứa các điểm O, A, C;

    (ABC) chứa các điểm A, B, C, D;

    (OCD) chứa các điểm O, C ,D.

    Vậy có mặt phẳng phân biệt thỏa mãn bài toán.

  • Câu 30: Thông hiểu

    Cho hàm số f(x) có đạo hàm với mọi x\mathbb{\in R}f'(x) = 2x + 1. Giá trị của f(2) - f(1) bằng:

    Ta có:

    f'(x) = 2x + 1 \Rightarrow\int_{}^{}{f'(x)dx = \int_{}^{}{(2x + 1)dx}}

    = x^{2} + x + C \Rightarrow \existsC_{1}\mathbb{\in R}:f(x) = x^{2} + x + C

    \Rightarrow f(2) - f(1) = 2^{2} + 2 +C_{1} - \left( 1^{2} + 1 + C_{1} ight) = 4

  • Câu 31: Thông hiểu

    Cho hai đường thẳng \left( {d'} ight)\left\{ \begin{array}{l}x = 3 - 2t\\y = 1 + t\\z =  - 2 - t\end{array} ight.\,\,;\,\,\,\,\,\left( {d''} ight)\left\{ \begin{array}{l}x = m - 3\\y = 2 + 2m\\z = 1 - 4m\end{array} ight.\,\,;t,\,\,m \in \mathbb{R}

    Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).

     Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP

    VTCP\left( P ight):\overrightarrow a  = \left( { - 2,1, - 1} ight)

    Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :

    VTCP\left( P ight):\overrightarrow b  = \left( {1,2, - 4} ight)

    Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :

    VTPT\left( P ight):\left[ {\overrightarrow a ,\overrightarrow b } ight] = \left( {2,9,5} ight)

    Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):

    \begin{array}{l}A\left( {3,1, - 2} ight) \in \left( P ight) \Rightarrow \left( {x - 3} ight)2 + \left( {y - 1} ight)9 + \left( {z + 2} ight)5 = 0\\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow \left( P ight):2x + 9y + 5z - 5 = 0\end{array}

  • Câu 32: Nhận biết

    Cho số phức z thỏa mãn: \frac{{z - 1}}{{z - i}} = i. Môđun của số phức w = \left( {2 - i} ight)z - 1 là?

     Ta có:

    \frac{{z - 1}}{{z - i}} = i \Rightarrow z\left( {1 - i} ight) = 2

    \Leftrightarrow z = 1 + i \Rightarrow w = \left( {2 - i} ight)\left( {1 + i} ight) - 1 = 2 + i

    \left| w ight| = \sqrt 5

  • Câu 33: Vận dụng cao

    Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên \left( {0; + \infty } ight) và thỏa mãn f(1) = 1, f\left( x ight) = f'\left( x ight)\sqrt {3x + 1} ,\forall x > 0. Mệnh đề nào sau đây đúng?

    Ta có: f\left( x ight) > 0f\left( x ight) = f'\left( x ight)\sqrt {3x + 1}

    => \frac{{f'\left( x ight)}}{{f\left( x ight)}} = \frac{1}{{\sqrt {3x + 1} }}

    => \int {\frac{{f'\left( x ight)}}{{f\left( x ight)}}dx}  = \int {\frac{1}{{\sqrt {3x + 1} }}} dx \Rightarrow \ln f\left( x ight) = \frac{{2\sqrt {3x + 1} }}{3} + C

    Mà f(1) = 1 => C =  - \frac{4}{3}f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}}.f\left( 5 ight) = {e^{\frac{4}{3}}} \approx 3,79

  • Câu 34: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 2x +\sin2x là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +\sin2x)dx}

    = 2.\frac{x^{2}}{2} - \frac{1}{2}\cos2x +c = x^{2} - \frac{1}{2}\cos2x + c

  • Câu 35: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, vectơ \overrightarrow{u} = (1;2; - 5) là vectơ chỉ phương của đường thẳng nào sau đây?

    Đường thẳng d:\left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là \overrightarrow{v} = ( -
1; - 2;5) cùng phương với vectơ \overrightarrow{u} = (1;2; - 5). Vậy \overrightarrow{u} = (1;2; - 5) là một vectơ chỉ phương của đường thẳng \left\{ \begin{matrix}
x = 6 - t \\
y = - 1 - 2t \\
z = 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 36: Nhận biết

    Trong không gian Oxyz cho hai điểm A(2;0; - 1),B(1;1;0)(\alpha) là mặt phẳng trung trực của đoạn thẳng AB. Vectơ nào sau đây là một vectơ pháp tuyến của (\alpha)?

    Do (\alpha) là mặt phẳng trung trực của đoạn thẳng AB nên (\alpha) nhận \overrightarrow{AB} = ( - 1;1;1) làm vectơ pháp tuyến.

    Suy ra \overrightarrow{n}(1; - 1; - 1) =
- \overrightarrow{AB} cũng là vectơ pháp tuyến của (α).

  • Câu 37: Nhận biết

    Cho hai điểm phân biệt A;B và một điểm O bất kì. Hãy xét xem mệnh đề nào sau đây là đúng?

    Mệnh đề đúng: “Điểm M thuộc đường thẳng AB khi và chỉ khi \overrightarrow{OM} = k\overrightarrow{OA} + (1 -
k).\overrightarrow{OB}”.

  • Câu 38: Thông hiểu

    Cho số phức z =  - 6 - 3i. Tìm phần thực và phần ảo của số phức \overline z.

     Ta có \overline z  = \overline { - 6 - 3i}  =  - 6 + 3i nên suy ra phần thực a = -6; phần ảo b = 3.

  • Câu 39: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 40: Thông hiểu

    Diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = \frac{1}{2x - 1};y
= 1 và đường thẳng x = 2

    Phương trình hoành độ giao điểm:

    \frac{1}{2x - 1} = 1 \Leftrightarrow\left\{ \begin{matrix}x eq \dfrac{1}{2} \\2x - 1 = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x eq \dfrac{1}{2} \\x = 1 \\\end{matrix} ight.\  \Leftrightarrow x = 1

    Khi đó:

    S = \int_{1}^{2}{\left| \frac{1}{2x - 1}
- 1 ight|dx} = \left| \int_{1}^{2}{\left( \frac{1}{2x - 1} - 1
ight)dx} ight|

    = \left| \left. \ \left( \frac{\ln|2x -1|}{2} - x ight) ight|_{1}^{2} ight| = \left| \frac{1}{2}\ln3 - 1ight| = 1 - \frac{1}{2}\ln3.

  • Câu 41: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1. Tìm giá trị lớn nhất của biểu thức P = \left| {1 + z} ight| + 3\left| {1 - z} ight|.

     Gọi z = x + yi,\left( {x \in \mathbb R;y \in \mathbb R } ight).

    Ta có:

    \left| z ight| = 1 \Rightarrow \sqrt {{x^2} + {y^2}}  = 1 \Rightarrow {y^2} = 1 - {x^2}\Rightarrow x \in \left[ { - 1;1} ight].

    Ta có:

    P = \left| {1 + z} ight| + 3\left| {1 - z} ight| = \sqrt {{{\left( {1 + x} ight)}^2} + {y^2}}+ 3\sqrt {{{\left( {1 - x} ight)}^2} + {y^2}}

    = \sqrt {2\left( {1 + x} ight)}  + 3\sqrt {2\left( {1 - x} ight)}

    Xét hàm số

    f\left( x ight) = \sqrt {2\left( {1 + x} ight)}  + 3\sqrt {2\left( {1 - x} ight)} ;x \in \left[ { - 1;1} ight].

    Hàm số liên tục trên \left[ { - 1;1} ight] và với x \in \left( { - 1;1} ight) ta có:

    f'\left( x ight) = \frac{1}{{\sqrt {2\left( {1 + x} ight)} }} - \frac{3}{{\sqrt {2\left( {1 - x} ight)} }} = 0 \Leftrightarrow x =  - \frac{4}{5} \in \left( { - 1;1} ight)

    Ta có:

    f\left( 1 ight) = 2;f\left( { - 1} ight) = 6;f\left( { - \frac{4}{5}} ight) = 2\sqrt {10}  \Rightarrow {P_{\max }} = 2\sqrt {10}

  • Câu 42: Thông hiểu

    Có bao nhiêu số phức z thỏa mãn \left| {\frac{{z + 1}}{{i - z}}} ight| = 1\left| {\frac{{z - i}}{{2 + z}}} ight| = 1

    Ta có:  \left\{ \begin{array}{l}\left| {\dfrac{{z + 1}}{{i - z}}} ight| = 1\\\left| {\dfrac{{z - i}}{{2 + z}}} ight| = 1\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\left| {z + 1} ight| = \left| {i - z} ight|\\\left| {z - i} ight| = \left| {2 + z} ight|\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x =  - y\\4x + 2y =  - 3\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{3}{2}\\y = \frac{3}{2}\end{array} ight.

    \Rightarrow z =  - \frac{3}{2} + \frac{3}{2}i

  • Câu 43: Nhận biết

    Cho hai số phức {z_1} = 1 - 3i{z_2} =  - 2 - 5i. Tìm phần ảo b của số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {1 - 3i} ight) - \left( { - 2 - 5i} ight) \hfill \\ = 1 - 3i + 2 + 5i \hfill \\= (1 + 2) + ( - 3 + 5)i \hfill \\  \,\,\,\, = 3 + 2i \hfill \\ \end{matrix}

  • Câu 44: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {7^x} là 

     Ta có:

    \int {{7^x}dx}  = \frac{{7x}}{{\ln 7}} + C

  • Câu 45: Thông hiểu

    Tìm một nguyên hàm F(x) của hàm số f(x) = ax + \frac{b}{x^{2}};(x eq
0), biết rằng F( - 1) = 1;F(1) =
4;f(1) = 0?

    Ta có: F(x) = \int_{}^{}{\left( ax +
\frac{b}{x^{2}} ight)dx = \frac{ax^{2}}{2} - \frac{b}{x} +
c}

    Theo bài ra ta có:

    F( - 1) = 1;F(1) = 4;f(1) =
0

    \Rightarrow \left\{ \begin{matrix}\dfrac{a}{2} + b + c = 1 \\\dfrac{a}{2} - b + c = 4 \\a + b = 0 \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}a = \dfrac{3}{2} \\b = - \dfrac{3}{2} \\c = \dfrac{7}{4} \\\end{matrix} ight.. Vậy F(x) =
\frac{3x^{2}}{4} + \frac{3}{2x} + \frac{7}{4}.

  • Câu 46: Nhận biết

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} ,  \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) cắt nhau khi và chỉ khi:

     Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB}  = 0 \Rightarrow \left( D ight)và (d)  cùng nằm trong một mặt phẳng

    Để (D) và d cắt nhau, ta sẽ xét tỉ số sau:

      {a_1}:{a_2}:{a_3} e {b_1}:{b_2}:{b_3} \Leftrightarrow \frac{{{a_1}}}{{{b_1}}} e \frac{{{a_2}}}{{{b_2}}} e \frac{{{a_3}}}{{{b_3}}} \Rightarrow \left( D ight)

    và (d) cắt nhau.

  • Câu 47: Thông hiểu

    Trong không gian Oxyz, cho bốn điểm A( - 1;3;1),B(1; - 1;2),C(2;1;3),D(0;1;
- 1). Mặt phẳng (P) chứa AB và song song với CD có phương trình là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2; - 4;1) \\
\overrightarrow{CD} = ( - 2;0; - 4) \\
\end{matrix} ight.\  \Rightarrow \left\lbrack
\overrightarrow{AB};\overrightarrow{CD} ightbrack = (8;3; -
4).

    Mặt phẳng (P) đi qua A( -
1;3;1), nhận \overrightarrow{n} =
\left\lbrack \overrightarrow{AB};\overrightarrow{CD} ightbrack =
(8;3; - 4) là vectơ pháp tuyến, có phương trình là

    \ 8(x + 1) + 3(y - 3) - 4(z - 1) =
0

    \Leftrightarrow 8x + 3y - 4z + 3 =
0

    (Thỏa mãn song song CD nên thỏa mãn đề bài).

  • Câu 48: Nhận biết

    Nghiệm của phương trình: {z^2} - (3i + 8)z + 11\,.i + 13 = 0  là 

     Ta có: \Delta  = {(3i + 8)^2} - 4(11.i + 13) = 4i + 3.

    Giả sử m+ni \,\,(m; n \in \mathbb R)  là căn bậc hai của \triangle.

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 3 + 4i \Leftrightarrow {m^2} + 2mni - {n^2} = 3 + 4i

    \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3\\2mn = 4\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3 \,\,  (1)\ = \dfrac{2}{m}\,\,\,\, \,\,\,\,  (2)\end{array} ight.

    Thay (2) vào (1) ta có:

    {m^2} - {\left( {\frac{2}{m}} ight)^2} = 3 \Leftrightarrow {m^4} - 3{m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\,\,\,\,\,\,\,\,(TM)\\{m^2} =  - 1\,\,\,\,\,\,\,(L{m{)}}\end{array} ight.

    \Rightarrow \left[ \begin{array}{l}m = 2 \Rightarrow n = 1\\m =  - 2 \Rightarrow n =  - 1\end{array} ight.

    Vậy \triangle có hai căn bậc hai là  2+i  và -2-i.

    Do đó nghiệm của phương trình là:

    \left[ \begin{array}{l}z = \dfrac{{3i + 8 + i + 2}}{2} = 2i + 5\\z = \dfrac{{3i + 8 - i - 2}}{2} = i + 3\end{array} ight.

  • Câu 49: Vận dụng

    Biết z_1z_2 là hai nghiệm phức của phương trình: 2{x^2} + \sqrt 3 x + 3 = 0. Khi đó z_1^2 + z_2^2  bằng:

     Ta có: z_1^2 + z_2^2 = {\left( {{z_1} + {z_2}} ight)^2} - 2{z_1}{z_2}

    Áp dụng hệ thức Viet ta có: \left\{ \begin{array}{l}{z_1} + {z_2} =  - \dfrac{{\sqrt 3 }}{2}\\{z_1}{z_2} = \dfrac{3}{2}\end{array} ight.

    Suy ra ta có:z_1^2 + z_2^2 = {\left( { - \frac{{\sqrt 3 }}{2}} ight)^2} - 2.\frac{3}{2} =  - \frac{9}{4}.

  • Câu 50: Nhận biết

    Tìm nguyên hàm F(t) =
\int_{}^{}txdt.

    Ta có:

    F(t) = \int_{}^{}txdt = x\int_{}^{}tdt =
x.\frac{t^{2}}{2} + C

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 44 lượt xem
Sắp xếp theo