Xác định nguyên hàm của hàm số
?
Ta có: .
Xác định nguyên hàm của hàm số
?
Ta có: .
Hàm số nào dưới đây là họ nguyên hàm của hàm số
?
Ta có:
Vậy đáp án cần tìm là: .
Trong không gian
, cho mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại các điểm
(khác
). Viết phương trình mặt phẳng
sao cho
là trực tâm của tam giác
.
Hình vẽ minh họa
Ta có:
Ta có:
Vậy nên
nhận
làm vectơ pháp tuyến.
Do đi qua
nên
Cho z1 = 1 + i; z2 = -1 - i. Tìm
sao cho các điểm biểu diễn của
tạo thành tam giác đều.
Giả sử
Để các điểm biểu diễn của tạo thành một tam giác đều thì
Vậy có hai số phức thoả mãn là:
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Cho số phức z thỏa mãn
. Tìm giá trị lớn nhất của biểu thức ![]()
Gọi
Ta có
Lại có
Mặt khác
Suy ra
Cho
là các số hữu tỉ thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có:
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Trong không gian
cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là
. Đúng||Sai
c) Cho
, tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm
nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
Trong không gian cho hai điểm
. Xác định tính đúng sai của từng phương án dưới đây:
a) Hình chiếu của điểm M trên trục Oy có tọa độ là (−2;3;1). Sai||Đúng
b) Gọi E là điểm đối xứng của điểm M qua N. Tọa độ của điểm E là . Đúng||Sai
c) Cho , tam giác MNP vuông tại N khi và chỉ khi m = 1. Đúng||Sai
d) Điểm nằm trên mặt phẳng (Oxy) thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
. Sai||Đúng
a) Sai: Hình chiếu của điểm trên trục
có tọa độ là
b) Đúng: Vì là trung điểm của
.
c) Đúng: Ta có .
vuông tại
.
d) Sai.
Gọi thỏa
Suy ra .
Khi đó .
đạt giá trị nhỏ nhất khi và chỉ khi
là hình chiếu của
trên
.
Vậy .
Suy ra
Trong không gian
, cho hai vecto
,
cùng có độ dài bằng
. Biết rằng góc giữa hai vecto đó bằng
, giá trị của biểu thức
là
Ta có:
Do đó:
.
Trong không gian với hệ trục tọa độ
, cho
và mặt phẳng
. Hình chiếu vuông góc của
lên mặt phẳng
là
Đường thẳng đi qua
và vuông góc với mặt phẳng
có phương trình
.
Gọi
Trong không gian Oxyz cho ba vectơ
và
khác
. Câu nào sai?
Theo điều kiện để hai vecto cùng phương, ta có:
cùng phương
Suy ra
sai vì thiếu dấu vecto.
Họ nguyên hàm của hàm số
là:
Ta có:
Gọi
là các nghiệm của phương trình
. Tính giá trị biểu thức ![]()
Ta có phương trình
Suy ra:
Vì (1)
Mà ;
.
Vậy từ .
Diện tích hình phẳng giới hạn bởi hai đường
và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Cho tứ diện
có
và
. Gọi
lần lượt là trung điểm của
. Hãy xác định góc giữa các cặp vectơ
và
?
Hình vẽ minh họa
Xét tam giác ICD có I là trung điểm đoạn CD
Tam giác ABC có và
suy ra tam giác
đều suy ra
Tương tự ta cũng có tam giác ABD đều nên
Ta có:
Xác định hàm số f(x) biết rằng ![]()
Mà
Vậy hàm số cần tìm là
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Trong không gian với hệ tọa đô
, cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các tia
lần lượt tại các điểm
sao cho thể tích tứ diện
nhỏ nhất.
đi qua điểm nào dưới đây?
Gọi với
Phương trình mặt phẳng
Vì
Áp dụng bất đẳng thức Cauchy ta có:
Thể tích tứ diện là
Đẳng thức xảy ra khi
Phương trình mặt phẳng là
Mặt phẳng đi qua điểm
.
Tìm số phức z thỏa mãn ![]()
Ta có
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Cho parabol
và hai điểm
thuộc
sao cho
. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol
và đường thẳng
.
Hình vẽ minh họa
Gọi và
là hai điểm thuộc (P) sao cho AB = 2.
Không mất tính tổng quát giả sử a < b.
Theo giả thiết ta có AB = 2 nên
Phương trình đường thẳng đi qua hai điểm A và B là
Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:
Mặt khác nên
do
Suy ra
Vậy dấu bằng xảy ra khi và chỉ khi a = − b = ±1.
Cho hàm số
có đạo hàm với mọi
và
. Giá trị của
bằng:
Ta có:
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho hình chóp
có
, các cạnh
đôi một vuông góc. Gọi
là trung điểm của
. Tính tích vô hướng của hai vectơ
.
Hình vẽ minh họa
Ta có:
Vậy
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc
. Đi được
người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc
. Tính quãng đường đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.
Vận tốc vật đạt được sau 5s là:
Ta có:
Do khi bắt đầu tăng tốc
Vật dừng hẳn khi
Khi đó quãng đường đi được bằng
Trong không gian
, cho điểm
và đường thẳng
. Tính khoảng cách từ A đến đường thẳng d.
Gọi
Ta có .
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là
, chiều cao trong lòng cốc là
đang đựng một lượng nước.

Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là , chiều cao trong lòng cốc là
đang đựng một lượng nước.
Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tìm
biết rằng
là phân số tối giản?
Ta có:
Đổi cận khi đó suy ra
Tích phân
bằng:
Ta có:
Cho tam giác
vuông tại
và có hai đỉnh
nằm trên mặt phẳng
. Gọi
là hình chiếu vuông góc của đỉnh
lên
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì
suy ra góc
là góc tù.
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Biết điểm
thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó giá trị
bằng:
Vì nên SMAB nhỏ nhất khi d(M, AB) nhỏ nhất. Phương trình của
Dễ dàng kiểm tra AB và d chéo nhau.
Gọi H là hình chiếu của M lên đường thẳng AB.
Khi đó nhỏ nhất khi MH là đoạn vuông góc chung của d và AB.
Ta có:
Vectơ chỉ phương của d và AB theo thứ tự là
Vậy
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Cho số phức
. Tính |z|
Ta có
Trong không gian
, cho ba mặt phẳng
lần lượt có phương trình là
. Mệnh đề nào dưới đây đúng?
Mặt phẳng (P) có một vectơ pháp tuyến là và mặt phẳng (R) có một vectơ pháp tuyến là
Do nên vectơ
không cùng phương với vectơ
.
Vậy mặt phẳng (R) cắt mặt phẳng (P).
Trong không gian với hệ tọa độ
, trục
có phương trình tham số là
Trục Ox đi qua O(0; 0; 0) và có véctơ chỉ phương nên có phương trình tham số là
.
Trong không gian với hệ tọa độ
, cho hai đường thẳng ![]()
?
Gọi lần lượt là vectơ chỉ phương của d1 và d2 ta chọn
Giả sử M1 ∈ d1 và M2 ∈ d2, ta chọn suy ra
Khi đó và
. Do đó (d1) và (d2) chéo nhau.
Cho hai số phức
. Môđun của số phức
là:
Ta có:
Cho
là hình phẳng giới hạn bởi đường cong
và đường thẳng
. Tính thể tích
của vật thể tròn xoay do hình phẳng
quay quanh trục hoành.
Phương trình hoành độ giao điểm là:
Thể tích cần tính là:
Trong không gian với hệ tọa độ
, cho điểm
, phương trình mặt phẳng
qua điểm
và cắt ba tia
lần lượt tại
sao cho
nhỏ nhất. Tính
.
Mặt phẳng cắt ba trục tọa độ lần lượt tại
với
.
Do đi qua điểm
nên:
Mà OA + OB + OC = a + b + c nên OA + OB + OC nhỏ nhất khi a + b + c nhỏ nhất và bằng 36.
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Họ nguyên hàm của hàm số
là:
Ta có: .
Cho a, b là các số hữu tỉ thỏa mãn
![]()
Tính giá trị biểu thức M = a + b.
=>
=>