Cho tứ diện
. Gọi
là trọng tâm tam giác
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Do G là trọng tâm tam giác BCD nên
Vậy mệnh đề đúng là “ thuộc tia
và
”.
Cho tứ diện
. Gọi
là trọng tâm tam giác
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Do G là trọng tâm tam giác BCD nên
Vậy mệnh đề đúng là “ thuộc tia
và
”.
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Xét
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, trục tung và đường thẳng
. Giá trị của
sao cho thể tích của khối tròn xoay tạo thành khi quay
quanh trục hoành bằng
là?
Thể tích khối tròn xoay tạo thành khi quay quanh trục hoành là:
Mà
Vậy là giá trị cần tìm.
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a)
là một nguyên hàm của
. Đúng||Sai
b)
. Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a) là một nguyên hàm của
. Đúng||Sai
b) . Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Ta có: là một nguyên hàm của
và
Do
Tốc độ tăng dân số của nước ta vào năm 2034 là
( triệu người/năm)
Dân số của nước ta vào năm 2034 là
( triệu người)
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Trong không gian với hệ tọa độ
, cho ba điểm
. Gọi
là mặt phẳng đi qua
sao cho tổng khoảng cách từ
và
đến
lớn nhất, biết rằng
không cắt đoạn
. Khi đó vectơ pháp tuyến của mặt phẳng
là:
Kiểm tra : Mặt phẳng (P) có phương trình 2x − 2y − z − 1 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại .
Kiểm tra : Mặt phẳng (P) có phương trình x+ 2z −3 = 0.
Thay tọa độ B, C vào (P) ta thấy B ∈ (P) nên loại .
Kiểm tra : Mặt phẳng (P) có phương trình −x + 2y − z + 2 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại .
Kiểm tra v: Mặt phẳng (P) có phương trình x − 2z + 1 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về cùng phía (P) nên chọn .
Trong không gian tọa độ
, hình chiếu vuông góc của điểm
trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Cho số phức
và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Vậy là khẳng định đúng.
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Vì là một nguyên hàm của hàm số
trên khoảng
nên hàm số
có công thức dạng
với mọi
Xét hàm số xác định và liên tục trên
Ta có:
Trên khoảng phương trình
có một nghiệm
Ta có bảng biến thiên như sau:
. Theo bài ra ta có:
Do đó suy ra
.
Nguyên hàm của hàm số
là:
Ta có:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể kiểm tra bằng máy tính, dễ dàng thu được kết quả như cách trên
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Trong không gian Oxyz cho tam giác ABC, biết
.
Diện tích tam giác ABC bằng?
Áp dụng công thức ,
ta có
Suy ra .
Tìm số phức
trong phương trình sau: ![]()
Ta có
Tìm họ nguyên hàm của hàm số ![]()
Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua điểm
và cắt đường thẳng
tại
. Tính độ dài đoạn
.
Điểm . Mặt khác
nên
Điểm .
Tìm nguyên hàm
của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Cho đường tròn
và parabol
.
cắt
thành hai phần. Tìm tỉ số diện tích của hai phần đó.
Hoành độ giao điểm của (P) và (C) là:
Xét giao điểm thuộc góc phần tư thứ nhất, với
Gọi S2 là phần có diện tích nhỏ hơn, S1 là phần còn lại
Ta có:
Đặt
Khi đó
Diện tích hình tròn
Cho hai số phức
. Môđun của số phức
là:
Ta có:
Cho số phức
. Tính |z|
Ta có
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Cho tứ diện
có
. Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:
Theo đề bài, ta có các vecto là
Có thể chọn làm một vectơ pháp tuyến cho mặt phẳng.
Phương trình mặt phẳng này có dạng .
Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên:
Vậy phương trình cần tìm .
Tìm nguyên hàm của hàm số
?
Ta có:
Cho số phức
,
thỏa mãn
và
.
Tính
.
Ta áp dụng công thức , có:
Ta xét:
Với nên không thỏa yêu cầu bài toán.
Với thỏa yêu cầu bài toán.
Vậy
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính khoảng cách
từ gốc toạ độ
đến mặt phẳng
?
Phương trình tổng quát của mặt phẳng có dạng:
Khoảng cách từ gốc tọa độ đến
là:
Viết phương trình tham số của đường thẳng (d) qua điểm E(2, -4, 3) và song song với đường thẳng MN với tọa độ M(3, 2, 5) và N(1, -2, 2)
Đường thẳng d song song với MN nên VTCP của đường thẳng d chính là hay ta có
Như vậy, (d) là đường thẳng đi qua điểm E (2, -4, 3) và nhận làm 1 VTCP có phương trình là:
Cho hình hộp chữ nhật
có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Trong không gian với hệ trục tọa độ
, cho điểm
. Mặt phẳng
qua
cắt chiều dương của các trục
lần lượt tại
thỏa mãn
. Tính giá trị nhỏ nhất của thể tích khối chóp
?
Giả sử với
.
Khi đó mặt phẳng có dạng:
.
Vì (P) đi qua M nên
Vì
Thể tích khối chóp là:
Ta có:
khi
.
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Gọi M và m lần lượt là giá trị lớn
nhất và giá trị nhỏ nhất của
với z là số phức khác 0 và thỏa mãn
. Tính ![]()
Ta có
Mặt khác:
Vậy giá trị nhỏ nhất của P là , xảy ra khi
giá trị lớn nhất của P bằng
xảy ra khi
=>
Tính thể tích
của vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường
quay quanh
.
Xét phương trình hoành độ giao điểm:
Thể tích khối tròn xoay cần tính là:
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Cho biết
với
là phân số tối giản. Giá trị của biểu thức
bằng:
Đặt . Khi đó
Đổi cận
. Suy ra
. Do đó
.
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Trong không gian
, cho mặt phẳng
đi qua điểm
và chắn trên các trục tọa độ
theo ba đoạn có độ dài đại số lần lượt là
. Phương trình tổng quát của mặt phẳng
khi
theo thứ tự tạo thành một cấp số nhân có công bội bằng
là:
Do giả thiết suy ra .
Giả sử khi đó phương trình mặt phẳng
.
Do M thuộc (P) nên
Suy ra do đó phương trình mặt phẳng
.
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm
đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)

Đáp án: N(1300; 750; 15,5)
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)
Đáp án: N(1300; 750; 15,5)
Gọi là tọa độ của máy bay sau 10 phút tiếp theo.
.
.
Vì máy bay giữ nguyên hướng bay nên và
cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ đến
gấp 4 lần thời gian bay từ
đến
nên
.
Suy ra:
Cho F(x) là một nguyên hàm của hàm số
. Hàm số
có bao nhiêu điểm cực trị?
=> có 5 nghiệm đơn
=> Hàm số có 5 điểm cực trị
Nếu
. Khi đó
bằng:
Ta có: .
Trong không gian
, cho hai đường thẳng
. Gọi
là tập hợp tất cả các số
sao cho
chéo nhau và khoảng cách giữa chúng bằng
. Tính tổng tất cả các phần tử của
.
Vectơ chỉ phương của là
Khi đó: .
Gọi là mặt phẳng chứa
song song với
.
Tức là, qua
và nhận
làm vectơ pháp tuyến.
Ta có phương trình
Xét điểm . Do
chéo nhau nên
.
Lại có:
Vậy tổng các phần tử của S là .
Trong không gian với hệ tọa độ
, cho điểm
và
Biết tọa độ điểm
để tứ giác
là hình bình hành. Tính ![]()
Hình vẽ minh họa
Ta có
Để tứ giác là hình bình hành
Vậy
Cho hàm số
có đạo hàm và liên tục trên đoạn
với
. Đặt
. Tìm giá trị nhỏ nhất của
?
Gọi sao cho
. Ta có:
Mà
Suy ra
Dấu bằng xảy ra khi và chỉ khi .
Vậy giá trị nhỏ nhất của đạt được bằng
khi
.
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Trong hệ tọa độ
, cho đường thẳng
có vectơ chỉ phương
và mặt phẳng
có vectơ pháp tuyến
. Mệnh đề nào dưới đây đúng?
vuông góc
thì d có thể nằm trong
.
song song
thì
vuông góc
.
vuông góc
thì
cùng phương
.
Tìm nguyên hàm của hàm số
?
Ta có:
Ba mặt phẳng
cắt nhau tại điểm
. Chọn kết luận đúng?
Tọa độ điểm là nghiệm của hệ phương trình
Biết rằng hàm số
có
và đồ thị hàm số
cắt trục tung tại điểm có tung độ bằng
. Hàm số
là:
Theo lí thuyết
Ta có:
Khi đó có dạng
Theo đề ta có:
Vậy hàm số là .