Tìm tất cả các giá trị thực của tham số
để tồn tại tích phân
?
Tích phân tồn tại khi và chỉ khi hàm số
liên tục trên
hoặc
Mà hàm số liên tục trên các khoảng
Nên hàm số liên tục trên
hoặc
khi và chỉ khi
.
Tìm tất cả các giá trị thực của tham số
để tồn tại tích phân
?
Tích phân tồn tại khi và chỉ khi hàm số
liên tục trên
hoặc
Mà hàm số liên tục trên các khoảng
Nên hàm số liên tục trên
hoặc
khi và chỉ khi
.
Trong không gian
, cho ba điểm
. Các khẳng định sau là đúng hay sai?
a)
. Sai||Đúng
b)
. Sai||Đúng
c)
. Đúng||Sai
d)
. Đúng||Sai
Trong không gian , cho ba điểm
. Các khẳng định sau là đúng hay sai?
a) . Sai||Đúng
b) . Sai||Đúng
c) . Đúng||Sai
d) . Đúng||Sai
Ta có .
Ta có:
.
Ta có:
.
Ta có:
.
Ta có:
.
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm
đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?

Đáp án: 1223
Trong không gian chọn hệ trục tọa độ cho trước, (đơn vị đo là kilômét), rađa phát hiện một máy bay chiến đấu của Nga di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 20 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 5 phút tiếp theo là
, trong đó
là phân số tối giản. Khi đó, hãy tính
?
Đáp án: 1223
Gọi là tọa độ của máy bay sau 5 phút tiếp theo.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ gấp 4 lần thời gian bay từ
nên
Mặt khác, máy bay giữ nguyên hướng bay nên và
cùng hướng.
Suy ra
Tọa độ của máy bay sau 5 phút tiếp theo là .
Do đó,
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức
. Kết luận nào sau đây đúng?
Ta có:
Phần thực của số phức
là:
Ta có:
Cho hàm số
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Trong không gian tọa độ
, mặt phẳng
đi qua
và chắn trên tia
một đoạn thẳng dài gấp đôi các đoạn thẳng mà nó chắn trên các tia
và
. Giả sử
, với
. Tính
.
Từ giả thiết, ta suy ra các giao điểm của (α) với các tia lần lượt là
.
Suy ra phương trình (đoạn chắn) của (α) là .
Do (α) đi qua M nên .
Suy ra .
Từ đó, ta tính được: .
Cho số phức
, m nguyên dương. Có bao nhiêu giá trị
để z là số thực?
Ta có:
z là số thực khi và chỉ khi
Vậy có 25 giá trị m thỏa yêu cầu đề bài.
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình đường thẳng nào được cho dưới đây không phải là phương trình đường thẳng
?
Ta có
Vì điểm nên
không phải là phương trình đường thẳng AB.
Các đường thẳng còn lại đều có vectơ chỉ phương là (1; 1; −5) và đi qua điểm A(2; 3; −1) hoặc đi qua điểm B(1; 2; 4).
Cho hình vẽ:

Diện tích hình phẳng (phần gạch chéo) giới hạn bởi đồ thị 3 hàm số
như hình bên, bằng kết quả nào sau đây?
Diện tích miền tích phân được chia thành hai phần. Phần 1 với x nằm trong khoảng a đến b và phần 2 với x nằm trong khoảng b đến c:
.
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Tìm nguyên hàm
của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Trong không gian
, cho hai điểm
và
. Viết phương trình mặt phẳng
đi qua
và vuông góc với đường thẳng
.
Mặt phẳng có một véctơ pháp tuyến
Phương trình mặt phẳng là:
hay
.
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Cho hai mặt phẳng
và
. Với
cho biết
và cặp vectơ chỉ phương
. Với
cho PTTQ
. Phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của
và
, qua điểm
là:
Trước tiên, ta cần đưa phương trình về dạng tổng quát.
Theo đề bài, ta có và cặp vectơ chỉ phương
nên vecto pháp tuyến của mp
là tích có hướng của 2 vecto chỉ phương.
Ta có .
Chọn làm vectơ pháp tuyến cho
thì phương trình tổng quát của
có dạng
.
Vậy phương trình
Để tìm phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của và
ta xét chùm mặt phẳng :
Mặt khác, ta có
Thế vào (*) ta được:
Tìm nguyên hàm của hàm của hàm số ![]()
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Điểm
thuộc
là điểm thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
bằng?
Hình vẽ minh họa
Ta có: có một vectơ chỉ phương là
Ta có cùng phương với
Mà đồng phẳng.
Xét mặt phẳng chứa và
. Gọi
là điểm đối xứng của
qua
là mặt phẳng qua
, vuông góc với
.
Khi đó, giao điểm của
với
là trung điểm của
.
có 1 vectơ pháp tuyến
đi qua
có phương trình:
Giả sử
.
Ta có khi và chỉ khi
trùng với
là giao điểm của
và
.
.
Cho số phức z thỏa mãn
. Tìm
.
Gọi , với
.
Theo giả thiết ta có suy ra
và
,
.
Ta có
Xét hàm số trên
.
Ta có .
Ta có .
Vậy .
Do đó khi
và
.
Trong không gian
, viết phương trình mặt phẳng
biết
đi qua hai điểm
và vuông góc với mặt phẳng
.
Ta có và
có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Do đó, có phương trình là
.
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Do đường thẳng cần tìm vuông góc với mặt phẳng
nên vectơ pháp tuyến của (P) là
cũng là vectơ chỉ phương của
.
Mặt khác đi qua điểm
nên phương trình chính tắc của
là:
Cho tứ diện
trọng tâm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Vì G là trọng tâm tứ diện ABCD nên suy ra:
Suy ra mệnh đề sai là .
Cho hàm số
liên tục trên
và có một nguyên hàm là hàm số
. Mệnh đề nào sau đây đúng?
Theo định nghĩa tích phân ta có: .
Cho số phức z thỏa mãn
. Giá trị của
là:
Với
Với
Cho đường cong (C)
. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây?
Ta có:
Ta có:
Phương trình tiếp tuyến d của (C) tại A là
Ta có phương trình hoành độ giao điểm d và (C) là:
Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C).
Ta có:
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Trong không gian
, cho hai đường thẳng song song
và
. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.
Lấy .
Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.
Phương trình đường thẳng cần tìm là:
Hàm số
có nguyên hàm là:
Ta có:
Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Một ô tô đang chạy đều với vận tốc
m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
s. Sai||Đúng
c)
. Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là
m. Sai||Đúng
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Khi xe dừng hẳn thì vận tốc bằng m/s.
Khi xe dừng hẳn thì m/s nên
s.
Nguyên hàm của hàm số vận tốc ,
.
Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là
m.
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Cho số phức
. Tính |z|
Ta có
Cho tứ diện
. Gọi
là trọng tâm tam giác
. Điểm
xác định bởi công thức
. Mệnh đề nào sau đây đúng?
Do G là trọng tâm tam giác BCD nên
Vậy mệnh đề đúng là “ thuộc tia
và
”.
Hình chiếu vuông góc của điểm
trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Xe đạp A xuất phát từ C, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật
trong đó
(giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một xe đạp B cũng xuất phát từ C, chuyển động thẳng cùng hướng với A nhưng chậm hơn
giây so với A và có gia tốc bằng
(
là hằng số). Sau khi B xuất phát được
giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng bao nhiêu?
Quãng đường xe đạp A đi được cho đến khi hai xe gặp nhau là:
Vận tốc của xe đạp B tại thời điểm tính từ lúc B xuất phát là:
Quãng đường xe đạp B đi được cho đến khi hai xe gặp nhau là:
Vậy vận tốc của B tại thời điểm đuổi kịp A là:
Xác định nguyên hàm
của hàm số
?
Ta có:
Gọi
là 2 nghiệm của phương trình
thỏa mãn
. Biết rằng w là số phức thỏa mãn
. Tìm GTNN của biểu thức
.
Giả sử
Ta có:
=> x = 0
=> Tập hợp điểm biểu diễn là trục tung.
Giả sử A, B lần lượt là 2 điểm biểu diễn cho , ta có
Giả sử và M là điểm biểu diễn cho số phức w, ta có
suy ra tập hợp điểm biểu diễn M cho số phức w là đường tròn tâm
bán kính R = 2
Ta có , gọi E là hình chiếu vuông góc của I lên trục tung, ta thấy P nhỏ nhất khi E là trung điểm AB suy ra
, vậy

Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
. Từ (*) và (**) suy ra
Do đó
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho đồ thị của hàm số
như sau:

Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:
Dựa vào hình vẽ ta được: .
Cho số phức
. Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Cho số phức
. Số phức
là số phức nào sau đây?
Ta có:
Suy ra
.
Trong không gian với hệ trục tọa độ
, cho ba mặt phẳng ![]()
![]()
. Một đường thẳng d thay đổi cắt ba mặt phẳng
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Trong không gian với hệ trục tọa độ , cho ba mặt phẳng
. Một đường thẳng d thay đổi cắt ba mặt phẳng
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Tìm nguyên hàm của hàm số
??
Đặt
Tìm nguyên hàm của hàm số
.
Ta có
Ba mặt phẳng
cắt nhau tại điểm
. Chọn kết luận đúng?
Tọa độ điểm là nghiệm của hệ phương trình
Cho hàm số
liên tục trên đoạn
có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:

Tính giá trị
?
Hình vẽ minh họa
Dựa vào đồ thị ta có: suy ra phương trình đường thẳng
Phương trình đường tròn :
Điểm nên phương trình đường thẳng
là:
Vậy
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy