Đề thi HK2 Toán 12 Đề 3

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \cos 5x.\cos x thỏa mãn F\left( {\frac{\pi }{5}} ight) = 0. Tính F\left( {\frac{\pi }{6}} ight).

     \begin{matrix}  \cos 5x + \cos x = \dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight) \hfill \\  \int {\cos 5x.\cos xdx}  = \int {\dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight)} dx = \dfrac{1}{2}.\dfrac{{\sin 6x}}{6} + \dfrac{1}{2}\dfrac{{\sin 4x}}{4} + C \hfill \\  F\left( {\dfrac{\pi }{3}} ight) = 0 \Rightarrow C = \dfrac{{\sqrt 3 }}{6} \hfill \\  F\left( {\dfrac{\pi }{6}} ight) = \dfrac{{\sqrt 3 }}{8} \hfill \\ \end{matrix}

  • Câu 2: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 3: Vận dụng

    Cho tam giác ABC vuông tại A và có hai đỉnh B;C nằm trên mặt phẳng (P). Gọi A' là hình chiếu vuông góc của đỉnh A lên (P). Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì

    \overrightarrow{A'B}.\overrightarrow{A'C}
= \overrightarrow{A'A}.\overrightarrow{A'C} +
\overrightarrow{AB}.\overrightarrow{A'C}

    =
\overrightarrow{AB}.\overrightarrow{A'C} =
\overrightarrow{AB}.\left( \overrightarrow{A'A} +
\overrightarrow{AC} ight)

    =
\overrightarrow{AB}.\overrightarrow{A'A} = -
\overrightarrow{AB}.\overrightarrow{AA'} < 0 suy ra góc \widehat{BA'C} là góc tù.

  • Câu 4: Vận dụng

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Đáp án là:

    Một xe ô tô sau khi chờ hết đèn đỏ đã bắt đầu tăng tốc liên tục. Sau 10 giây thì ôtô đạt vận tốc cao nhất v =
50m/s, sau đó giảm dần và dừng lại. Hàm vận tốc được biểu thị bằng đồ thị là đường cong parabol như hình bên dưới. Tính quãng đường xe ôtô bắt đầu chạy sau khi chờ hết đèn đỏ đến khi dừng lại (làm tròn kết quả đến hàng đơn vị).

    Đáp án: 667m

    Giả sử hàm số biểu thị cho vận tốc có dạng (P):v(t) = at^{2} + bt + c\left( a,b,c\mathbb{\in
R} ight)

    Do (P) đi qua gốc O nên c =
0

    (P) có đỉnh là I(10;50) \Rightarrow \left\{ \begin{matrix}
\frac{- b}{2a} = 10 \\
50 = a.100 + b.10 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - \frac{1}{2} \\
b = 10 \\
\end{matrix} ight.

    Do đó (P):v(t) = - \frac{1}{2}t^{2} +
10t

    Xe dừng lại khi v(t) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
t = 0 \\
t = 20 \\
\end{matrix} ight.

    Quảng đường xe ô tô di chuyển trong 20 giây là S = \int_{0}^{20}{\left( - \frac{1}{2}t^{2} + 10t
ight)dt} \approx 667m

  • Câu 5: Nhận biết

    Tìm họ nguyên hàm của hàm số f(x) = x -\sin2x?

    Ta có: \int_{}^{}{f(x)}dx = \int_{}^{}{(x- \sin2x)dx} = \frac{x^{2}}{2} + \frac{1}{2}\cos2x + C

  • Câu 6: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 7: Nhận biết

    Trong không gian Oxyz, cho điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0. Mệnh đề nào dưới đây đúng?

    Ta có điểm M(a;b;1) thuộc mặt phẳng (P):2x - y + z - 3 = 0 nên:

    2a - b + 1 - 3 = 0 \Leftrightarrow 2a -
b = 2

  • Câu 8: Thông hiểu

    Cho hình thang cong (H) giới hạn bởi các đường y = \frac{1}{x};y = 0;x = 1;x
= 5. Đường thẳng x = k;1 < k
< 5 chia (H) thành hai phần có diện tích S_{1}S_{2} (hình vẽ bên).

    Tính giá trị k để S_{1} = 2S_{2}?

    Ta có: \frac{1}{x} > 0;x >
1 do đó ta được:

    S_{1} = \int_{1}^{k}{\frac{1}{x}dx} =
\left. \ \ln x ight|_{1}^{k} = \ln k

    S_{2} = \int_{k}^{5}{\frac{1}{x}dx} =
\left. \ \ln x ight|_{k}^{5} = ln5 - \ln k

    Theo bài ra ta có:

    S_{1} = 2S_{2}

    \Leftrightarrow \ln k = 2\left( ln5 - \ln
k ight) \Leftrightarrow k = \sqrt[3]{25}.

  • Câu 9: Thông hiểu

    Hai đường thẳng \left( {d'} ight):\left\{ \begin{array}{l}x = 2 + 4t\\y =  - 3m - t\\z = 2t - 1\end{array} ight.\left( d ight):\left\{ \begin{array}{l}x = 4 - 2m\\y = m + 2\\z =  - m\end{array} ight.với cắt nhau tại M có tọa độ là :

     

    Để (d’) cắt (d) tại M \Leftrightarrow \left\{ \begin{array}{l}2 + 4t = 4 - 2m\\ - 3 - t = m + 2\\2t - 1 =  - m\end{array} ight. \\\Leftrightarrow \left\{ \begin{array}{l}2t + m = 1\\t + m =  - 5\end{array} ight. \\\Leftrightarrow t = 6;m =  - 11

    \Rightarrow M\left( {26, - 9,11} ight)

     

  • Câu 10: Nhận biết

    Trong không gian Oxyz, đường thẳng đi qua điểm A( - 2;4;3) và vuông góc với mặt phẳng 2x - 3y + 6z + 19 =
0 có phương trình là:

    Ta có một vectơ pháp tuyến của mặt phẳng 2x - 3y + 6z + 19 = 0\overrightarrow{n} = (2; - 3;6)

    Đường thẳng đi qua điểm A( -
2;4;3) và vuông góc với mặt phẳng 2x - 3y + 6z + 19 = 0 có một vectơ chỉ phương là \overrightarrow{u} =
\overrightarrow{n} = (2; - 3;6) nên có phương trình là \frac{x + 2}{2} = \frac{y - 4}{- 3} = \frac{z -
3}{6}.

  • Câu 11: Nhận biết

    Hàm số f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số nào sau đây?

    Ta có: f'(x) = - e^{- x} + 2 nên f(x) = e^{- x} + 2x - 5 là một nguyên hàm của hàm số y = - e^{- x} +
2.

  • Câu 12: Nhận biết

    Cho số phức z thỏa mãn z + \frac{{2{{\left( {2 - i} ight)}^3}\overline z }}{{1 + i}} + {\left( {4 + i} ight)^5} = 422 + 1088i . Khẳng định nào sau đây là khẳng định đúng?

     Gọi z = x + yi,x,y \in \mathbb{R} tìm được z = 1 - 2i.

    Tính mô đun ta được  \left| z ight| = \sqrt 5.

  • Câu 13: Nhận biết

    Số phức liên hợp của số phức 5 - 3i là

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {5 - 3i}  = 5 - ( - 3i) = 5 + 3i

  • Câu 14: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hai véc tơ \overrightarrow{u} = ( - 3;0;1)\overrightarrow{v} = (0;2; - 2). Tọa độ của véc tơ \overrightarrow{w} =
2\overrightarrow{u} - \overrightarrow{v} tương ứng là:

    Ta có: 2\overrightarrow{u} = ( -
6;0;2).

    \overrightarrow{v} = (0;2; -
2).

    Suy ra \overrightarrow{w} = ( - 6 - 0;0 -
2;2 + 2) = ( - 6; - 2;4).

  • Câu 15: Vận dụng

    Trong các số phức z thỏa mãn điều kiện \left| {z - 2 - 4i} ight| = \left| {z - 2i} ight|. Số phức z có mô đun bé nhất bằng

     Đặt z = x + yi{\mkern 1mu} {\mkern 1mu} \left( {x,y \in \mathbb{R}} ight)

    Khi đó \left| {z - 2 - 4i} ight| = \left| {z - 2i} ight|

    \Leftrightarrow \left| {x + yi - 2 - 4i} ight| = \left| {x + yi - 2i} ight|

    \Leftrightarrow {\left( {x - 2} ight)^2} + {\left( {y - 4} ight)^2} = {x^2} + {\left( {y - 2} ight)^2}

    \Leftrightarrow  - 4x - 4y + 16 = 0

    \Leftrightarrow x + y - 4 = 0

    Số phức có mô đun nhỏ nhất bằng khoảng cách từ đến đường thẳng \Delta :x + y - 4 = 0.

    {\left| z ight|_{\min }} = d\left( {O;\Delta } ight) = \frac{{\left| 4 ight|}}{{\sqrt 2 }} = 2\sqrt 2

  • Câu 16: Thông hiểu

    Có bao nhiêu số phức z thỏa mãn \left| {\frac{{z + 1}}{{i - z}}} ight| = 1\left| {\frac{{z - i}}{{2 + z}}} ight| = 1

    Ta có:  \left\{ \begin{array}{l}\left| {\dfrac{{z + 1}}{{i - z}}} ight| = 1\\\left| {\dfrac{{z - i}}{{2 + z}}} ight| = 1\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\left| {z + 1} ight| = \left| {i - z} ight|\\\left| {z - i} ight| = \left| {2 + z} ight|\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x =  - y\\4x + 2y =  - 3\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{3}{2}\\y = \frac{3}{2}\end{array} ight.

    \Rightarrow z =  - \frac{3}{2} + \frac{3}{2}i

  • Câu 17: Thông hiểu

    Xe đạp A xuất phát từ C, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật v(t) =
\frac{t^{2}}{100} + \frac{13t}{30}(m/s) trong đó t (giây) là khoảng thời gian tính từ lúc A bắt đầu chuyển động. Từ trạng thái nghỉ, một xe đạp B cũng xuất phát từ C, chuyển động thẳng cùng hướng với A nhưng chậm hơn 10 giây so với A và có gia tốc bằng a\left( m/s^{2} ight) (a là hằng số). Sau khi B xuất phát được 15 giây thì đuổi kịp A. Vận tốc của B tại thời điểm đuổi kịp A bằng bao nhiêu?

    Quãng đường xe đạp A đi được cho đến khi hai xe gặp nhau là:

    S = \int_{0}^{25}{\left(
\frac{t^{2}}{100} + \frac{13t}{30} ight)dt} =
\frac{375}{2}(m)

    Vận tốc của xe đạp B tại thời điểm t(s) tính từ lúc B xuất phát là: v_{B}(t) = at

    Quãng đường xe đạp B đi được cho đến khi hai xe gặp nhau là:

    S = \int_{0}^{15}{(at)dt} = \left. \
\left( \frac{at^{2}}{2} ight) ight|_{0}^{15} =
\frac{225a}{2}(m)

    \Rightarrow \frac{225a}{2} =
\frac{375}{2} \Rightarrow a = \frac{5}{3}

    Vậy vận tốc của B tại thời điểm đuổi kịp A là: v_{B}(15) = 15a = 25(m/s)

  • Câu 18: Thông hiểu

    Cho hai mặt phẳng (\alpha)(\beta) . Với  (\alpha) cho biết A\left( { - 1,2,1} ight) \in \left( \alpha  ight) và cặp vectơ chỉ phương \overrightarrow a  = \left( {2, - 1,3} ight);\overrightarrow b  = \left( { - 3,1, - 2} ight). Với (\beta) cho PTTQ \left( \beta  ight):2x + y - z + 1 = 0. Phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của (\alpha)(\beta) , qua điểm M\left( {3, - 2,1} ight) là:

     Trước tiên, ta cần đưa phương trình (\alpha) về dạng tổng quát.

    Theo đề bài, ta có A\left( { - 1,2,1} ight) \in \left( \alpha  ight) và cặp vectơ chỉ phương \overrightarrow a  = \left( {2, - 1,3} ight);\overrightarrow b  = \left( { - 3,1, - 2} ight) nên vecto pháp tuyến của mp (\alpha) là tích có hướng của 2 vecto chỉ phương.

    Ta có \left[ {\overrightarrow a ,\overrightarrow b } ight] = \left( { - 1, - 5, - 1} ight).

    Chọn \overrightarrow n  = \left( {1,5,1} ight) làm vectơ pháp tuyến cho (\alpha) thì phương trình tổng quát của (\alpha) có dạng x + 5y + z + D = 0

    A \in \left( \alpha  ight) \Leftrightarrow  - 1 + 5.2 + 1 + D = 0 \Leftrightarrow D =  - 10.

    Vậy phương trình (\alpha): x + 5y + z - 10 = 0

    Để tìm phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của (\alpha)(\beta) ta xét chùm mặt phẳng :

    \begin{array}{l}m\left( {x + 5y + z - 10} ight) + \left( {2x + y - z + 1} ight) = 0\\ \Leftrightarrow \left( {m + 2} ight)x + \left( {5m + 1} ight)y + \left( {m - 1} ight)z - 10m + 1 = 0\left( * ight)\end{array}

    Mặt khác, ta có  M \in \left( P ight)

    \Leftrightarrow \left( {m + 2} ight).3 + \left( {5m + 1} ight).\left( { - 2} ight) + m - 1 - 10m + 1 = 0

    \Leftrightarrow m = \frac{1}{4}

    Thế vào (*) ta được: 

    \begin{array}{l}\left( * ight):\left( {\frac{1}{4} + 2} ight)x + \left( {\frac{5}{4} + 1} ight)y + \left( {\frac{1}{4} - 1} ight)z - \frac{{10}}{4} + 1 = 0\\ \Leftrightarrow 9x + 9y - 3z - 6 = 0\\ \Leftrightarrow 3x + 3y - z - 2 = 0\end{array}

  • Câu 19: Vận dụng cao

    Cho {z_1} = 1 + \sqrt 3 i; {z_2} = \frac{{7 + i}}{{4 - 3i}}; {z_3} = {\left( {1 - i} ight)^{2016}}. Tìm dạng đại số của w = z_1^{25}.z_2^{10}.z_3^{2016}.

     Ta có:

    \left. \begin{array}{l}z_1^{25} = {(1 + \sqrt 3 i)^{25}} = {8^8} + {8^8}\sqrt 3 i\\z_2^{10} = {\left( {\frac{{7 + i}}{{4 - 3i}}} ight)^{10}} = {(2i)^5} = {2^5}i\\z_3^{2016} = {(1 - i)^{2016}} = {( - 2i)^{1008}} = {2^{1008}}\end{array} ight\}

    \Rightarrow w = z_1^{25}.z_2^{10}.z_3^{2016} =  - {2^{1037}}\sqrt 3  + {2^{1037}}i.

  • Câu 20: Thông hiểu

    Hàm số nào dưới đây là họ nguyên hàm của hàm số y = cos2x?

    Ta có: \int_{}^{}{\cos2xdx} =\frac{1}{2}\sin2x + C

    = \frac{1}{2}.2\sin x\cos x + C =\frac{1}{2}.\left( 1 + 2\sin x\cos x ight) + C -\frac{1}{2}

    = \frac{1}{2}.\left( \sin^{2}x +2\sin x\cos x + \cos^{2}x ight) + C'

    = \frac{1}{2}.\left( \sin x + \cos x
ight)^{2} + C'

    Vậy đáp án cần tìm là: y =
\frac{1}{2}\left( \sin x + \cos x ight)^{2} + C.

  • Câu 21: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {e^{ - 2x}} + \frac{1}{{\sqrt x }}

     \begin{matrix}  \int {\left( {{e^{ - 2x}} + \dfrac{1}{{\sqrt x }}} ight)dx}  = \int {{e^{ - 2x}}dx}  + \int {\dfrac{1}{{\sqrt x }}} dx =  - \dfrac{1}{2}\int {{e^{ - 2x}}d\left( { - 2x} ight)}  + 2\int {\dfrac{1}{{2\sqrt x }}} dx \hfill \\   =  - \dfrac{{{e^{ - 2x}}}}{2} + 2\sqrt x  + C =  - \dfrac{1}{{2{e^{2x}}}} + 2\sqrt x  + C \hfill \\ \end{matrix}

  • Câu 22: Vận dụng

    Trong không gian Oxyz, cho hai đường thẳng cắt nhau \Delta_{1}:\frac{x +1}{1} = \frac{y - 2}{2} = \frac{z + 1}{3},\Delta_{2}:\frac{x + 1}{1} =\frac{y - 2}{2} = \frac{z + 1}{- 3}. Trong mặt phẳng \left( \Delta_{1};\Delta_{2} ight), hãy viết phương trình đường phân giác d của góc nhọn tạo bởi \Delta_{1};\Delta_{2}

    Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là \overrightarrow{u_{1}} =
(1;2;3),\overrightarrow{u_{2}} = (1;2; - 3)

    Ta có \overrightarrow{u_{1}}.\overrightarrow{u_{2}} = -
4 < 0, suy ra góc giữa hai vectơ \overrightarrow{u_{1}}\overrightarrow{u_{2}} là góc tù.

    Lại có \left| \overrightarrow{u_{1}}
ight| = \left| \overrightarrow{u_{2}} ight|

    Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là \overrightarrow{u} = \overrightarrow{u_{1}} -
\overrightarrow{u_{2}} = (0;0;6) = 6(0;0;1)

    Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là \overrightarrow{u} =
(0;0;1)

    Vậy phương trình đường thẳng d là: \left\{ \begin{matrix}
x = - 1 \\
y = 2 \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 23: Thông hiểu

    Số phức liên hợp của số phức 2022i - 2023

     \overline z = \overline {a + bi} = a - bi

    \Rightarrow \overline z  = \overline {2022i - 2023}  = \overline { - 2023 + 2022i}  =  - 2023 - 2022i

  • Câu 24: Nhận biết

    Nếu \int_{1}^{2}{f(x)dx} =
5;\int_{2}^{5}{f(x)dx} = - 1 thì \int_{1}^{5}{f(x)dx} bằng:

    Ta có:

    \int_{1}^{5}{f(x)dx} =
\int_{1}^{2}{f(x)dx} + \int_{2}^{5}{f(x)dx} = 5 + ( - 1) =
4

  • Câu 25: Nhận biết

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) song song khi và chỉ khi:

     Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB}  = 0 \Rightarrow \left( D ight)và (d) cùng nằm trong một mặt phẳng

    Để (D) và d song song, ta sẽ xét tỉ số chứng minh chúng cùng phương rồi kiểm tra rằng d không nằm trong (D):

      {a_1}:{a_2}:{a_3} = {b_1}:{b_2}:{b_3} \Leftrightarrow \frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = \frac{{{a_3}}}{{{b_3}}} \Rightarrow \left( D ight)và (d)  cùng phương A\left( {{x_1},{y_1},{z_1}} ight) \in \left( D ight)A otin \left( d ight) \Rightarrow \left( D ight) và (d) song song.

  • Câu 26: Nhận biết

    Tính tích phân I =\int_{0}^{\frac{\pi}{2}}{\left( \sin2x + \sin x ight)dx}?

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\left(\sin2x + \sin x ight)dx} = \left. \ \left( - \frac{1}{2}\cos2x - \cos xight) ight|_{0}^{\frac{\pi}{2}} = 2

  • Câu 27: Thông hiểu

    Hàm số F\left( x ight) = 2\sin x - 3\cos x là một nguyên hàm của hàm số nào sau đây?

     F'\left( x ight) = f\left( x ight) = 2\cos x + 3\sin x

  • Câu 28: Nhận biết

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 29: Vận dụng cao

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 30: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + 4z - 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

    Mặt phẳng ax + by + cz + d = 0 có vectơ pháp tuyến \overrightarrow{n} =
(a;b;c)

    Mặt phẳng (P):2x - 3y + 4z - 5 =
0 có vectơ pháp tuyến là: \overrightarrow{n} = (2; - 3;4)

  • Câu 31: Vận dụng

    Cho hai điểm A\left( {2, - 3,4} ight);\,\,\,\,B\left( { - 1,4,3} ight). Viết phương trình tổng quát của mặt phẳng (P) vuông góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích hình chóp O.MNE  bằng \frac{3}{14} đvtt.

     Vecto pháp tuyến của \left( P ight):\overrightarrow {AB}  = \left( { - 3,7, - 1} ight)

    Phương trình \left( P ight):3x - 7y + z + D = 0

    (P) cắt 3 trục tọa độ tại M\left( { - \frac{D}{3},0,0} ight);\,\,N\left( {0,\frac{D}{7},0} ight);\,\,E\left( {0,0, - D} ight)

    Thể tích hình chóp O.MNE là:

    V_{O.MNE} = \frac{1}{6}OM.ON.OE = \frac{1}{6}\left| {\frac{D}{3}.\frac{D}{7}.D} ight|

    \begin{array}{l} \Leftrightarrow \dfrac{{{{\left| D ight|}^3}}}{{126}} = \dfrac{3}{{14}} \Leftrightarrow {\left| D ight|^3} = 27 \Leftrightarrow D =  \pm 3\\ \Rightarrow \left( P ight):3x - 7y + z \pm 3 = 0\end{array}

  • Câu 32: Vận dụng

    Cho a, b, c là các số thực và z =  - \frac{1}{2} + i\frac{{\sqrt 3 }}{2}. Giá trị của \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight) bằng:

     Cách 1: Ta có

    z =  - \frac{1}{2} + i\frac{{\sqrt 3 }}{2} \Rightarrow {z^2} =  - \frac{1}{2} - i\frac{{\sqrt 3 }}{2}

    {z^3} = 1;{z^4} = z{z^2} + z =  - 1 .

    Ta có \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight)

    = {a^2} + {b^2}{z^3} + {c^2}{z^3} + ab\left( {{z^2} + z} ight) + bc\left( {{z^2} + z} ight) + ca\left( {{z^2} + z} ight)

    = {a^2} + {b^2} + {c^2} - ab - bc - ca

    Cách 2: Chọn a = 1;b = 2;c = 3.

    Ta có \left( {a + bz + c{z^2}} ight)\left( {a + b{z^2} + cz} ight)

    = \left( {1 + 2z + 3{z^2}} ight)\left( {1 + 2{z^2} + 3z} ight) = 3

    Thử lại các đáp án với a = 1;b = 2;c = 3  ta thấy chỉ có đáp án {a^2} + {b^2} + {c^2} - ab - bc - ca

    thỏa mãn.

  • Câu 33: Thông hiểu

    Cho tứ diện ABCD trọng tâm G. Mệnh đề nào sau đây sai?

    Hình vẽ minh họa

    Vì G là trọng tâm tứ diện ABCD nên suy ra:

    \overrightarrow{GA} +
\overrightarrow{GB} + \overrightarrow{GC} + \overrightarrow{GD} =
\overrightarrow{0}

    \Leftrightarrow \overrightarrow{AG} =
\overrightarrow{GB} + \overrightarrow{GC} +
\overrightarrow{GD}

    \Leftrightarrow \overrightarrow{AG} =
\left( \overrightarrow{GA} + \overrightarrow{AB} ight) + \left(
\overrightarrow{GA} + \overrightarrow{AC} ight) + \left(
\overrightarrow{GA} + \overrightarrow{AD} ight)

    \Leftrightarrow 4\overrightarrow{AG} =
\overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AG} =
\frac{1}{4}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight)

    Suy ra mệnh đề sai là \overrightarrow{AG}
= \frac{2}{3}\left( \overrightarrow{AB} + \overrightarrow{AC} +
\overrightarrow{AD} ight).

  • Câu 34: Nhận biết

    Tìm số phức z trong phương trình sau: (1 + z)(2 + 3i) = 1 + i

     Ta có (1 + z)(2 + 3i) = 1 + i

    \begin{array}{l} \Leftrightarrow 1 + z = \dfrac{{1 + i}}{{2 + 3i}}\\ \Leftrightarrow 1 + z = \dfrac{{5 - i}}{{13}}\;\\ \Leftrightarrow z =  - \dfrac{8}{{13}} - \dfrac{1}{{13}}i\;\;\;\end{array}

  • Câu 35: Vận dụng cao

    Tính tổng T = \frac{C_{2018}^{0}}{3} -
\frac{C_{2018}^{1}}{4} + \frac{C_{2018}^{2}}{5} - \frac{C_{2018}^{3}}{6}
+ ... - \frac{C_{2018}^{2017}}{2020} +
\frac{C_{2018}^{2018}}{2021}?

    Ta có:

    x^{2}(1 - x)^{2018} = x^{2} \cdot \sum_{k
= 0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k}( - 1)^{k} = \sum_{k =
0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}.

    Do đó

    \int_{0}^{1}\mspace{2mu} x^{2}(1 -x)^{2018}dx = \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx.

    Mặt khác:

    \int_{0}^{1}\mspace{2mu}\sum_{k =0}^{2018}\mspace{2mu} C_{2018}^{k}x^{k + 2}( - 1)^{k}dx. =\left. \ \sum_{k = 0}^{2018}\mspace{2mu} C_{2018}^{k}\frac{x^{k + 3}}{k+ 3}( - 1)^{k} ight|_{0}^{1}= \sum_{k = 0}^{2018}\mspace{2mu}C_{2018}^{k} \cdot \frac{( - 1)^{k}}{k + 3} = T.

    Đặt t = 1 - x \Rightarrow dt = -
dx.

    Đổi cận x = 0 \Rightarrow t = 1x = 1 \Rightarrow t = 0. Khi đó

    \int_{0}^{1}\mspace{2mu}\mspace{2mu}x^{2}(1 - x)^{2018}dx = \int_{1}^{0}\mspace{2mu}\mspace{2mu}t^{2018}(1 - t)^{2}( - dt)

    = \int_{0}^{1}\mspace{2mu}\mspace{2mu}
t^{2018}\left( t^{2} - 2t + 1 ight)dt = \left. \ \left(
\frac{t^{2021}}{2021} - 2 \cdot \frac{t^{2020}}{2020} +
\frac{t^{2019}}{2019} ight) ight|_{0}^{1}

    = \frac{1}{2021} - \frac{2}{2020} +
\frac{1}{2019} = \frac{1}{1010 \cdot 2019 \cdot 2021} =
\frac{1}{4121202990}

  • Câu 36: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =\frac{e^{\tan x}}{\cos^{2}x}?

    Đặt t = \tan x \Rightarrow dt =\frac{1}{\cos^{2}x}dx

    \int_{}^{}{\frac{e^{\tan x}}{\cos^{2}x}dx} = \int_{}^{}{e^{t}dt} = e^{t} + C = e^{\tan x} +C

  • Câu 37: Vận dụng

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MNP là một điểm bất kì trong không gian. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{PI} =
k.\left( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}
+ \overrightarrow{PD} ight)?

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của các cạnh AC;BD nên ta có: \left\{ \begin{matrix}
\overrightarrow{IA} + \overrightarrow{IC} = 2\overrightarrow{IM} \\
\overrightarrow{IB} + \overrightarrow{ID} = 2\overrightarrow{IN} \\
\end{matrix} ight..

    Mặt khác \overrightarrow{IM} +
\overrightarrow{IN} = \overrightarrow{0} (vì I là trung điểm của MN) suy ra \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
\overrightarrow{0}

    Theo bài ra ta có:

    \overrightarrow{PA} +
\overrightarrow{PB} + \overrightarrow{PC} +
\overrightarrow{PD}

    = 4\overrightarrow{PI} +
\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID} = 4\overrightarrow{PI}

    \Rightarrow 4k = 1 \Rightarrow k =
\frac{1}{4}

  • Câu 38: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hai điểm A(3;1; - 2),B(2; - 3;5). Điểm M thuộc đoạn AB sao cho MA
= 2MB, tọa độ điểm M là:

    Gọi tọa độ độ điểm M(x;y;z). Vì điểm M \in AB nên

    \overrightarrow{MA} =2\overrightarrow{MB} \Leftrightarrow \left\{ \begin{matrix}3 - x = - 2(2 - x) \\1 - y = - 2( - 3 - y) \\- 2 - z = - 2(5 - z) \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}x = \dfrac{7}{3} \\y = - \dfrac{5}{3} \\z = \dfrac{8}{3} \\\end{matrix} ight.\  \Rightarrow M\left( \dfrac{7}{3}; -\dfrac{5}{3};\dfrac{8}{3} ight)

    Vậy đáp án cần tìm là: \left(
\frac{7}{3}; - \frac{5}{3};\frac{8}{3} ight).

  • Câu 39: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{2}{{x - 1}};f\left( 0 ight) = 3;f\left( 2 ight) = 4. Tính giá trị của biểu thức  N = f\left( { - 2} ight) + f\left( 5 ight)

     

    f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\frac{2}{{x - 1}}dx}  = \ln \left| {2x - 1} ight| + C

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + {C_2}{\text{ khi x  <  }}1} \end{array}} ight.

    Theo bài ra ta có: \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 3 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 3} \\   {f\left( 2 ight) = 4 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 3} \\   {{C_1} = 4} \end{array}} ight.

    => f\left( x ight) = \left\{ {\begin{array}{*{20}{c}}  {2\ln \left( {x - 1} ight) + 4{\text{ khi x  >  }}1} \\   {2\ln \left| {1 - x} ight| + 3{\text{ khi x  <  }}1} \end{array}} ight.

    => N = f\left( { - 2} ight) + f\left( 5 ight) = \left\{ {2\ln \left[ {1 - \left( { - 2} ight)} ight] + 3} ight\} + \left\{ {2\ln \left( {5 - 1} ight) + 4} ight\}

    = 2\ln 3 + 2\ln 4 + 7

  • Câu 40: Nhận biết

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 41: Nhận biết

    Hàm số y = {x^3} + x có nguyên hàm là:

     Ta có: \int {\left( {{x^3} + x} ight)dx}  = \int {{x^3}dx}  + \int {xdx}  = \frac{1}{4}{x^4} + \frac{1}{2}{x^2} + C

  • Câu 42: Thông hiểu

    Số phức z = 1 + i + {\left( {1 + i} ight)^2} + {\left( {1 + i} ight)^3} + ... + {\left( {1 + i} ight)^{20}} là số phức nào sau đây?

     z = \left( {1 + i} ight)\frac{{1 - {{\left( {1 + i} ight)}^{20}}}}{{1 - \left( {1 + i} ight)}} =  - 1025 + 1025i

  • Câu 43: Nhận biết

    Cho số phức z = 1 - i + {i^3}. Tìm phần thực a và phần ảo b của z.

     Ta có z = 1 - i + {i^3} = 1 - i - i = 1 - 2i \Rightarrow a = 1,b =  - 2

  • Câu 44: Vận dụng cao

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Đáp án là:

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Gọi M(x; y) là điểm biểu diễn số phức z trong mặt phẳng phức.

    \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight| \Leftrightarrow \left| {z - 2i} ight|.\left| {z + 2i} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z = 2i\\\left| {z + 2i} ight| = \left| {z - 1 + 2i} ight|\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}x = 0;\;y = 2\\x = \frac{1}{2};\;y \in \mathbb R\end{array} ight.

    Vậy M= (0; 2) hoặc M \in d:x = \frac{1}{2}.

    Gọi I(-3;2) thì P=IM. Khi đó I{M_{\min }} = 3 hoặc I{M_{\min }} = d(I;d) = \frac{7}{2}.

    Vậy {P_{\min }} = 3.

  • Câu 45: Vận dụng cao

    Trong không gian Oxyz, cho ba điểm A(a;0;0),B(0;b;0),C(0;0;c) với a,b,c là những số thực dương sao cho a^{2} + 4b^{2} + 16c^{2} = 49. Tính T = a^{2} + b^{2} + c^{2} sao cho khoảng cách từ O đến mặt phẳng (ABC) là lớn nhất

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    d\left\lbrack O;(ABC) ightbrack =\dfrac{1}{\sqrt{\left( \dfrac{1}{a^{2}} + \dfrac{1}{b^{2}} +\dfrac{1}{c^{2}} ight)}} = d

    Xét \overrightarrow{u} =
(a;2b;4c),\overrightarrow{v} = \left(
\frac{1}{a};\frac{1}{b};\frac{1}{c} ight) ta có:

    \left(
\overrightarrow{u}.\overrightarrow{v} ight)^{2} \leq
{\overrightarrow{u}}^{2}.{\overrightarrow{v}}^{2}

    \Rightarrow \left( a.\frac{1}{a} +
2b.\frac{1}{b} + 4c.\frac{1}{c} ight)^{2} \leq \left( a^{2} + 4b^{2} +
16c^{2} ight).\left( \frac{1}{a^{2}} + \frac{1}{b^{2}} +
\frac{1}{c^{2}} ight)

    \Rightarrow 49 \leq 49.\left(
\frac{1}{a^{2}} + \frac{1}{b^{2}} + \frac{1}{c^{2}} ight)

    \Rightarrow \frac{1}{a^{2}} +
\frac{1}{b^{2}} + \frac{1}{c^{2}} \geq 1 \Rightarrow d\left\lbrack
O;(ABC) ightbrack \leq 1

    Dấu "=" xảy ra khi và chỉ khi

    \left\{ \begin{matrix}\dfrac{a}{\dfrac{1}{a}} = \dfrac{2b}{\dfrac{1}{b}} = \dfrac{4c}{\dfrac{1}{c}}\\a^{2} + 4b^{2} + 16c^{2} = 49 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a^{2} = 2b^{2} = 4c^{2} \\a^{2} + 4b^{2} + 16c^{2} = 49 \\\end{matrix} ight.

    \Leftrightarrow 28c^{2} = 49
\Leftrightarrow c^{2} = \frac{7}{4} \Rightarrow F = 7c^{2} =
\frac{49}{4}

    \max d\left\lbrack O;(ABC)
ightbrack = 1, khi đó F =
\frac{49}{4}.

  • Câu 46: Nhận biết

    Cho bốn điểm A;B;C;D trong không gian. Hỏi có bao nhiêu vectơ khác \overrightarrow{0} có điểm đầu và điểm cuối là 4 điểm?

    Lấy A làm gốc ta được 3 vectơ \overrightarrow{AB};\overrightarrow{AC};\overrightarrow{AD}. Tương tự đối với B;C;D ta được 4.3 = 12 vectơ.

  • Câu 47: Thông hiểu

    Số phức z thỏa mãn: \left( {1 + i} ight)z + \left( {2 - 3i} ight)\left( {1 + 2i} ight) = 7 + 3i là:

     Ta áp dụng các quy tắc thực hiện phép tính, có:

    \begin{matrix}  \left( {1 + i} ight)z + \left( {2 - 3i} ight)\left( {1 + 2i} ight) = 7 + 3i \hfill \\   \Leftrightarrow (1 + i)z = 7 + 3i - (2 - 3i)(1 + 2i) \hfill \\   \Leftrightarrow (1 + i)z =  - 1 + 2i \hfill \\   \Leftrightarrow z = \dfrac{{ - 1 + 2i}}{{1 + i}} \hfill \\   \Leftrightarrow z = \dfrac{1}{2} + \dfrac{3}{2}i \hfill \\ \end{matrix}

    Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.

  • Câu 48: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 49: Thông hiểu

    Biết rằng \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx} = \frac{1}{a} + \frac{\pi}{b} với a;b là các số hữu tỉ. Giá trị của a.b là:

    Ta có: I = \int_{0}^{\frac{\pi}{4}}{(x +1)\cos2xdx}

    Đặt \left\{ \begin{matrix}u = x + 1 \\dv = \cos2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = dx \\v = \dfrac{1}{2}\sin2x \\\end{matrix} ight.

    \Rightarrow I = \left. \ \frac{1}{2}(x +1)\sin2x ight|_{0}^{\frac{\pi}{4}} -\frac{1}{2}\int_{0}^{\frac{\pi}{4}}{\sin2xdx}

    \Rightarrow I = \frac{1}{2}\left(\frac{\pi}{4} + 1 ight) + \left. \ \frac{1}{4}\cos2xight|_{0}^{\frac{\pi}{4}} = \frac{\pi}{8} + \frac{1}{4}

    \Rightarrow a.b = 8.4 = 32

  • Câu 50: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 3 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 36 lượt xem
Sắp xếp theo