Số phức z thỏa mãn . Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Số phức z thỏa mãn . Khẳng định nào sau đây là khẳng định đúng?
Ta có:
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
ột nguồn âm phát ra sóng âm là sóng cầu. Khi gắn hệ trục toạ độ (đơn vị trên mỗi trục là mét). Cường độ âm chuẩn tại điểm
là tâm của nguồn phát âm với bán kính
. Để kiểm tra một điểm ở vị trí
có nhận được cường độ âm phát ra tại
hay không người ta sẽ tính khoảng cách giữa hai vị trí
và
. Hỏi khoảng cách giữa hai vị trí
và
là bao nhiêu mét?
Đáp án: 14 (m)
Ta có
(m).
Đáp số 14(m).
Cho hàm số có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Biết rằng liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
. Từ (*) và (**) suy ra
Do đó
Tính ?
Áp dụng công thức
Suy ra
Trong không gian , viết phương trình mặt phẳng
chứa
và đi qua điểm
?
Mặt phẳng có cặp véc-tơ chỉ phương là
Suy ra mặt phẳng có một véc-tơ pháp tuyến là
.
Mặt phẳng đi qua
có vectơ pháp tuyến (4; 3; 0).
Vậy mặt phẳng có phương trình tổng quát là
.
Trong không gian Oxyz cho tam giác ABC có G là trọng tâm của tam giác, biết .
Tìm tọa độ trọng tâm G của tam giác ABC đã cho?
Ta có nên suy ra được tọa độ điểm B và C tương ứng theo hệ sau là:
Vì G là trọng tâm của tam giác ABC nên ta có tọa độ điểm G là nghiệm của hệ:
Cho các số phức . Khẳng định nào trong các khẳng định sau là khẳng định đúng?
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Số phức là số phức nào sau đây?
Viết công thức tính thể tích của khối tròn xoay được tạo ra khi quay hình thang cong, giới hạn bởi đồ thị hàm số
, trục
và hai đường thẳng
xung quanh trục
.
Thể tích của khối tròn xoay cần tính là:
Cho hình phẳng giới hạn với các đường
. Tính thể tích
của khối tròn xoay thu được khi
quay quanh trục
?
Thể tích cần tìm là:
Tìm nguyên hàm của hàm số ?
Đặt
Trong không gian với hệ tọa độ , đường thẳng đi qua điểm
và song song với trục
có phương trình tham số là:
Gọi là đường thẳng cần tìm.
Ta có nên
có vectơ chỉ phương là
.
Do đó .
Trong không gian với hệ toạ độ , cho mặt phẳng
. Vectơ nào là vectơ pháp tuyến của mặt phẳng
?
Vectơ nào là vectơ pháp tuyến của mặt phẳng có tọa độ là
hoặc
.
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).
a) Vị trí của khinh khí cầu thứ hai có tọa độ là . Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ . Đúng||Sai
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).
a) Vị trí của khinh khí cầu thứ hai có tọa độ là . Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ . Đúng||Sai
a) Sai
Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là .
b) Đúng
Chiếc khinh khí cầu thứ nhất có tọa độ là .
Khoảng cách giữa hai chiếc khinh khí cầu là
c) Sai
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:
Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.
d) Đúng
Vị trí của chiếc flycam là
.
Khoảng cách bay của flycam là:
Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ là
Vậy flycam không đến được vị trí có tọa độ .
Trong không gian , hãy viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với đường thẳng
.
Mặt phẳng (P) đi qua điểm và có một véc-tơ pháp tuyến là
nên có phương là:
.
Nghiệm của phương trình: là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Cho hàm số là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Tính số phức sau: z = (1+i)15
Ta có: (1 + i)2 = 1 + 2i – 1 = 2i => (1 + i)14 = (2i)7 = 128.i7 = -128.i
z = (1+i)15 = (1+i)14(1+i) = -128i (1+i) = -128 (-1 + i) = 128 – 128i
Gọi F(x) là một nguyên hàm của hàm số , F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Phương trình nào dưới đây nhận hai số phức và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Trong không gian với hệ tọa độ , cho 2 đường thẳng
:
và điểm
. Đường thẳng
đi qua
, cắt
và vuông góc với
có một vectơ chỉ phương là
. Tính
Hình vẽ minh họa
Gọi là mặt phẳng chứa
và
.
Lấy .
Mặt phẳng có véc-tơ pháp tuyến vuông góc với các véc-tơ
và
.
Ta có .
Một trong các véc-tơ pháp tuyến của mặt phẳng là
.
Đường thẳng nằm trong mặt phẳng
và vuông góc với
có
Vậy .
Cho số phức . Tính |z|
Ta có
Họ nguyên hàm của hàm số là:
Ta có: .
Tính diện tích hình phẳng được giới hạn bởi đồ thị và hai tiếp tuyến của
tại
Ta có hình vẽ minh họa như sau:
Phương trình tiếp tuyến của (P) tại A(-1;0) là:
Phương trình tiếp tuyến của (P) tại B(2;3) là:
Từ hình vẽ ta suy ra diện tích của hình phẳng cần tìm là:
Trong không gian , cho mặt phẳng
và hai điểm
. Đường thẳng d đi qua điểm A và song song với mặt phẳng (P) sao cho khoảng cách từ điểm B đến đường thẳng d nhỏ nhất có phương trình là
Giả sử đường thẳng d có vectơ chỉ phương là
Phương trình đường thẳng d có dạng
Do đường thẳng d k (P) nên .
Khoảng cách từ B đến đường thẳng d là:
Xét hàm số có
Ta có bảng biến thiên như sau:
Dựa vào bảng biến thiên ta được khoảng cách từ B đến d nhỏ nhất tại
Khi đó , chọn
.
Phương trình đường thẳng hay
.
Cho số phức . Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Cho số phức . Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Cho số phức , giá trị của số phức
là?
Ta có:
Phương trình có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Gọi là các nghiệm của phương trình
. Tính giá trị biểu thức
Ta có phương trình
Suy ra:
Vì (1)
Mà ;
.
Vậy từ .
Tìm họ nguyên hàm của hàm số
Ta có:
Diện tích hình phẳng giới hạn bởi hai đường và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Trong không gian với hệ tọa độ , cho hai điểm
và
và mặt phẳng
. Viết phương trình mặt phẳng
qua
và vuông góc với
?
Mặt phẳng có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Từ đó, phương trình mặt phẳng là
.
Hàm số là một nguyên hàm của hàm số nào sau đây?
Tính diện tích hình phẳng giới hạn bởi các đường cong và các đường thẳng
?
Hình vẽ minh họa
Với khi đó
Diện tích hình phẳng ta được:
Xác định phần ảo của số phức .
Phần ảo của số phức z = 18 - 12i là -12
Trong không gian , cho điểm
. Điểm đối xứng với
qua mặt phẳng
có tọa độ là:
Giữ nguyên y, z và đổi dấu x nên ta suy ra điểm đối xứng với A qua có tọa độ là
.
Cho hai số phức có điểm biểu diễn lần lượt là
cùng thuộc đường tròn có phương trình
và
. Tính giá trị biểu thức
Cách 1: Do cùng thuộc đường tròn có phương trình
nên
Lại có:
Vậy
Cách 2: Do , cùng thuộc đường tròn (T) tâm O(0;0), bán kính R = 1 và
nên
.
Suy ra là tam giác đều cạnh bằng 1
( Trong đó H là trung điểm
)
Trong không gian , cho đường thẳng
đi qua điểm
và có vectơ chỉ phương
. Phương trình tham số của đường thẳng
là
đường thẳng đi qua điểm
và có vectơ chỉ phương
nên có phương trình tham số
.
Biết là một nguyên hàm của hàm số
trên khoảng
. Gọi
là một nguyên hàm của
thỏa mãn
. Giá trị của
bằng:
Ta có:
Do đó
Suy ra
Nên
Vậy
Từ đó
Vậy
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Gọi là số phức thoả mãn
.
Giá trị của biểu thức là?
30 || Ba mươi || ba mươi
Gọi là số phức thoả mãn
.
Giá trị của biểu thức là?
30 || Ba mươi || ba mươi
Dễ thấy rằng z=0 không thoả mãn .
Do đó ta có
Ta cũng có
và
Vậy .
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(2;2;0), B(1;0;-2) và mặt
phẳng. Gọi
là điểm thuộc mặt phẳng (P) sao cho MA=MB
và góc có số đo lớn nhất. Khi đó giá trị
bằng ?
nên M thuộc mặt phẳng mặt phẳng trung trực của đoạn thẳng AB. Ta có phương trình trung trực của AB là (Q); y+z=0
M thuộc giao tuyến của hai mặt phẳng (P) và (Q) nên M thuộc đường thẳng
.
Gọi , ta có
.
Khảo sát hàm số , ta được
khi
.
Suy ra có số đo lớn nhất khi
, ta có
.
Khi đó giá trị .
Xác định nguyên hàm của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Một bể thủy tinh chứa nước có thiết diện ngang (mặt trong của thùng) là một đường elip có trục lớn bằng 1m, trục bé bằng 0,8m, chiều dài bằng 3m nằm trong của thùng. Bể nước được đặt sao cho trục bé nằm theo phương thẳng đúng (như hình vẽ). Tính thể tích V của nước có trong bể, biết chiều cao nước trong bể là 0,6m. (Kết quả được làm tròn đến phần trăm).
Xét một đáy của bể và gắn hệ trục tọa độ như hình vẽ:
Phương trình đường elip đáy khi đó có phương trình
Khi đó chiều cao của mép nước trong bể với đường thẳng
Xét phương trình
Diện tích phần mặt chứa nước là:
Do đó thể tích nước trong thùng là:
Cho hình vẽ:
Diện tích hình phẳng (phần gạch chéo) giới hạn bởi đồ thị 3 hàm số như hình bên, bằng kết quả nào sau đây?
Diện tích miền tích phân được chia thành hai phần. Phần 1 với x nằm trong khoảng a đến b và phần 2 với x nằm trong khoảng b đến c:
.
Trong không gian , cho điểm
. Phương trình mặt phẳng
cắt trục
lần lượt tại
(không trùng với gốc tọa độ
) sao cho
là tâm đường tròn ngoại tiếp tam giác
?
Trong không gian , cho điểm
. Phương trình mặt phẳng
cắt trục
lần lượt tại
(không trùng với gốc tọa độ
) sao cho
là tâm đường tròn ngoại tiếp tam giác
?
Trong không gian , điểm nào sau đây thuộc trục tung
?
Điểm thuộc trục tung Oy là .