Tính diện tích
của hình phẳng giới hạn bởi đồ thị hai hàm số
và
?
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Hình vẽ minh hoạ
Diện tích S cần tìm là:
Tính diện tích
của hình phẳng giới hạn bởi đồ thị hai hàm số
và
?
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Hình vẽ minh hoạ
Diện tích S cần tìm là:
Trong không gian
, điểm nào sau đây thuộc mặt phẳng
?
Do điểm thuộc mặt phẳng nên điểm đó có tọa độ dạng
Suy ra điểm là đáp án cần tìm.
bằng
Ta có .
Gọi F(x) là một nguyên hàm của hàm số
, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Tìm nguyên hàm
.
Ta có:
Trong không gian với hệ tọa độ
; cho bốn điểm ![]()
. Tính thể tích tứ diện
.
Theo giả thiết ta có: suy ra
Vậy thể tích tứ diện là:
Cho hàm số
xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Cho
và
. Tính
?
Ta có và
. Tính:
Xác định nguyên hàm của hàm số
?
Ta có: .
Cho tứ diện
và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm
để các đường thẳng
cùng song song với một mặt phẳng?
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Trong không gian với hệ tọa độ
, cho các điểm
. Tìm tọa độ điểm H sao cho tứ giác
lập thành hình thang cân với hai đáy
.
Ta có là trung điểm AB.
Gọi (α) là mặt phẳng trung trực của AB
Gọi d là đường thẳng qua C và song song AB
Gọi I là hình chiếu của C lên (α).
Tọa độ I là nghiệm của hệ phương trình:
Do ABCH là hình thang cân nên H và C đối xứng nhau qua mp(α).
⇒ I là trung điểm CH
Cho hai điểm
và
. Tọa độ điểm
đối xứng với
qua
là:
Vì điểm đối xứng với
qua
nên
là trung điểm của
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Giả sử
với
là hằng số. Tổng các nghiệm của phương trình
bằng:
Ta có:
Đặt
Theo định lí Vi – et ta thấy phương trình có hai nghiệm
và
.
Trong không gian
khoảng cách giữa hai mặt phẳng
và
bằng:
Dựa vào phương trình có vectơ pháp tuyến là
nên
Ta có: suy ra
Cho
là các hàm số liên tục trên
và thỏa mãn
và
. Tính tích phân
?
Đặt . Theo giả thiết ta có:
Ta có:
Tìm một nguyên hàm của hàm số
?
Ta có:
Đặt
Khi đó .
Trong không gian Oxyz, đường thẳng (d) qua
và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Trong không gian Oxyz, đường thẳng (d) qua và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Cho tứ diện đều
với
lần lượt là trung điểm của
. Tính cosin của góc giữa hai đường thẳng
?
Hình vẽ minh họa
Giả sử cạnh tứ diện đều bằng a. Khi đó:
Ta có:
Do đó:
Ta lại có suy ra
Vậy đáp án cần tìm là .
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Diện tích hình phẳng giới hạn bởi các đường
bằng:
Gọi S là diện tích hình phẳng cần tìm. Khi đó
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua điểm
và cắt đường thẳng
tại
. Tính độ dài đoạn
.
Điểm . Mặt khác
nên
Điểm .
Trong không gian
, điểm đối xứng của điểm
qua trục
có tọa độ là
Gọi là điểm đối xứng của
qua trục
.
Hình chiếu vuông góc của lên trục
là
Khi đó là trung điểm của
. Do đó tọa độ của
là
Giá trị của tích phân
. Biểu thức
có giá trị là:
Giá trị của tích phân . Biểu thức
có giá trị là:
Ta có:
Cho số phức
. Tìm số phức
?
Ta có:
Tìm một nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Cho hình phẳng
giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)

Đáp án: 0,59
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Gọi là diện tích hình phẳng
. Lúc dó
, trong đó
là diện tích phần gạch sọc ở bên phải
và
là diện tích phần gạch ca rô trong hình vẽ bên.
Gọi là các giao diếm có hoành độ dương của đường thẳng
và đồ thị hàm số
, trong đó
và
.
Thco yêu cầu bài toán .
.
.
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho
. Giá trị của x và y bằng:
Ta có:
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Hàm số
có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Cho bốn điểm
và
. Câu nào sau đây đúng? ABDC là:
Ta có
Do đó cùng phương
ABDC là hình thang.
Tích phân
. Giá trị của a là:
Ta có:
Mà
Cho
là hai số phức thỏa mãn
, biết
. Tính giá trị của biểu thức ![]()
Cách 1: + Đặt ta có
+ Sử dụng công thức: ta có
=>
Cách 2.
+ Biến đổi:
Ta có
+ Sử dụng công thức bình phương mô đun:
Trong đó là góc
với M, N lần lượt là các điểm biểu diễn số phức
trên mặt phẳng phức
Vậy
Trong không gian
, cho mặt phẳng
đi qua điểm
và cắt các tia
lần lượt tại
sao cho độ dài
theo thứ tự lập thành một cấp số nhân có công bội bằng
. Tính khoảng cách từ gốc tọa độ
đến mặt phẳng
.
Giả sử với
.
Phương trình mặt phẳng có dạng
Ta có đi qua điểm
nên ta có
(∗)
Vì theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên
.
Thay vào (∗), ta được
Suy ra phương trình mặt phẳng (α) là hay
.
Cho số phức
. Tính |z|
Ta có
Họ các nguyên hàm của hàm số
là:
Ta có:
Trong không gian với hệ tọa độ
, cho mặt phẳng
, véc tơ nào trong các vectơ được cho dưới đây là một vectơ pháp tuyến của
?
Ta có phương trình mặt phẳng nên có một vectơ pháp tuyến của mặt phẳng
là:
Mặt khác cùng phương với
Do đó là một vectơ pháp tuyến của
.
Biết số phức
thỏa mãn đồng thời hai điều kiện
và biểu thức
đạt giá trị nhỏ nhất. Tính
?
Theo giả thiết
Ta có
Xét điểm và
. Khi đó
Bài toán trở thành tìm điểm sao cho
đạt giá trị nhỏ nhất.
Vì nên hai điểm E, F nằm cùng phía đối với đường thẳng
.
Gọi E' là điểm đối xứng với E qua
Đường thẳng EE' đi qua điểm và có VTPT
nên có phương trình
Gọi H là giao điểm của EE' và . Tọa độ điểm H là nghiệm của hệ phương trình:
suy ra
E' đối xứng với E' qua H nên
Ta có
Dấu bằng xảy ra khi và chỉ khi M là giao điểm của E'F và đường thẳng
Đường thẳng E'F đi qua điểm và có VTPT
có phương trình
=>
Tọa độ điểm M là nghiệm của hệ phương trình
Vậy .
Giá trị của
bằng
Ta có:
Trong không gian
, cho các điểm
. Số điểm cách đều bốn mặt phẳng
là
Gọi là điểm cách đều bốn mặt phẳng đã cho.
Dễ thấy các mặt phẳng lần lượt là các mặt phẳng
.
Mặt phẳng (ABC) có phương trình tổng quát là .
Do I cách đều các mặt phẳng này nên ta có:
Ta có các trường hợp
Trường hợp 1. . Khi đó (1) tương đương:
Ta được hai điểm thỏa mãn bài toán.
Trường hợp 2. Trong ba số có hai số bằng nhau và bằng số đối của số còn lại.
Khi đó, không mất tính tổng quát ta có thể giả sử (các trường hợp còn lại tương tự) và (1) tương đương:
Ta được hai điểm thỏa mãn bài toán.
Vậy số điểm cách đều bốn mặt phẳng đã cho là .
Tính
?
Áp dụng công thức
Suy ra
Trong không gian
, phương trình nào sau đây là phương trình của mặt phẳng?
Phương trình tổng quát của mặt phẳng là: .
Trong không gian
, cho đường thẳng
. Điểm nào sau đây không thuộc đường thẳng
?
Thay vào
ta được:
Thay vào
ta được:
Thay vào
ta được:
hệ vô nghiệm nên
.
Thay vào
ta được: