Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Cho hàm số
thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
.
Theo bài ra ta có:
Vậy .
Tìm số phức
trong phương trình sau: ![]()
Ta có
Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Biết rằng
. Xác định
?
Ta có:
Do đó:
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với
là tâm hình vuông sao cho
như hình vẽ bên thì các đường cong OA có phương trình
và
. Tính giá trị
biết rằng diện tích trang trí màu sẫm chiếm
diện tích mặt sàn.

Đáp án: -2||- 2
Mặt sàn của một thang máy có dạng hình vuông ABCD cạnh 2m được lát gạch màu trắng và trang trí vởi một hình 4 cánh giống nhau màu sẫm. Khi đặt trong hệ tọa độ Oxy với là tâm hình vuông sao cho
như hình vẽ bên thì các đường cong OA có phương trình
và
. Tính giá trị
biết rằng diện tích trang trí màu sẫm chiếm
diện tích mặt sàn.
Đáp án: -2||- 2
Diện tích 1 cánh của hình trang trí là:
Diện tích hình trang trí là:
Vì diện tích trang trí màu sẫm chiếm diện tích mặt sàn nên
Khi đó ta có:
Vậy .
Cho số phức
. Tính |z|
Ta có
Điều kiện cần và đủ để ba vectơ
không đồng phẳng là:
Ba vectơ đồng phẳng khi và chỉ khi giá của chúng cùng song song với một mặt phẳng.
Trong các khẳng định sau, khẳng định nào sai?
Ta có: nên khẳng định
sai.
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x)
Mặt khác
=>
Xác định nguyên hàm
của hàm số
?
Ta có:
Cho hình hộp chữ nhật
có
. Mặt phẳng
thay đổi và luôn đi qua
, mặt phẳng
cắt các tia
lần lượt tại
(khác
). Tính tổng
sao cho thể tích khối tứ diện
nhỏ nhất.
Hình vẽ minh họa
Chọn hệ trục tọa độ sao cho
Khi đó .
Phương trình mặ phẳng
Vì
Thể tích khối đa diện AEFG là:
Do dó thể tích khối tứ diện AEFG nhỏ nhất bằng 27 khi và chỉ khi:
Khi đó
Cho tam giác ABC có ![]()
Viết phương trình tham số của trung tuyến AM ?
Vì AM là trung tuyến nên M là trung điểm của BC. Gọi
Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:
Ta có 1 vecto chỉ phương của (AM) là
(AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:
Cho hàm số
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại điểm có hoành độ bằng
là:
Ta có:
Lấy nguyên hàm hai vế ta được:
. Theo bài ra ta có:
Suy ra
Vậy
Ta có:
Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:
Cho tứ diện đều
cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ
) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ
và
bằng
. Sai||Đúng
c) Nếu
thì
. Sai||Đúng
d) Tích vô hướng
. Đúng||Sai
Cho tứ diện đều cạnh
.
là điểm trên đoạn
sao cho
. Xét tính đúng sai của các khẳng định sau:
a) Có 6 vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng
b) Góc giữa hai vectơ và
bằng
. Sai||Đúng
c) Nếu thì
. Sai||Đúng
d) Tích vô hướng . Đúng||Sai
Hình vẽ minh họa
a) Sai: Các vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là:
.
Do đó có 12 vectơ thỏa mãn yêu cầu.
b) Sai:
c) Sai: .
Do đó suy ra
.
d) Đúng: Ta có:
Suy ra
Vật thể
giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Trong không gian với hệ tọa độ
, cho bốn điểm
. Tính khoảng cách từ điểm
đến mặt phẳng
.
Ta có
Mặt phẳng đi qua
và nhận
là vectơ pháp tuyến có phương trình tổng quát là
.
Khoảng cách từ điểm đến mặt phẳng
là:
.
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Điểm
thuộc
là điểm thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
bằng?
Hình vẽ minh họa
Ta có: có một vectơ chỉ phương là
Ta có cùng phương với
Mà đồng phẳng.
Xét mặt phẳng chứa và
. Gọi
là điểm đối xứng của
qua
là mặt phẳng qua
, vuông góc với
.
Khi đó, giao điểm của
với
là trung điểm của
.
có 1 vectơ pháp tuyến
đi qua
có phương trình:
Giả sử
.
Ta có khi và chỉ khi
trùng với
là giao điểm của
và
.
.
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Trong không gian
, cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là
và
. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số
. Tính thể tích bình cắm hoa?
Một bình cắm hoa dạng khối tròn xoay, biết đáy bình và miệng bình có đường kính lần lượt là và
. Mặt xung quanh của bình là một phần của mặt tròn xoay có đường sinh là đồ thị hàm số
. Tính thể tích bình cắm hoa?
Tìm nguyên hàm của hàm số
?
Ta có:
Tìm nguyên hàm của hàm số ![]()
Ta có:
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Trong không gian với hệ trục tọa độ
cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Tính tổng
?
Ta có:
.
Do đó
.
Mặt khác:
.
Đặt .
Đổi cận và
. Khi đó
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian với hệ trục toạ độ
, cho mặt phẳng
. Hỏi có bao nhiêu điểm
thuộc mặt phẳng
với
là các số nguyên không âm.
Ta có nên mặt phẳng
đi qua các điểm
Từ đó suy ra tất cả các điểm có toạ độ nguyên của mặt phẳng (P) đều nằm trong miền tam giác ABC.
Tam giác ABC đều có các cạnh bằng , chiếu các điểm có toạ độ nguyên của hình tam giác ABC xuống mặt phẳng (Oxy) ta được các điểm có toạ độ nguyên của hình tam giác OAB.
Mà số điểm có toạ độ nguyên của tam giác OAB bằng
Cho hai số phức z, w thỏa mãn
;
với
là tham số. Giá trị của m để ta luôn có
là:
Đặt có biểu diễn hình học là điểm
Ta có:
Suy ra biểu diễn của số phức là đường thẳng
Ta xét:
với .
Mà ta có
Nên
Có bao nhiêu số thực
sao cho
?
Ta có:
Do nên có đúng 4 giá trị của
thỏa mãn.
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm
và
?
Ta có là vectơ chỉ phương của đường thẳng
. Phương trình chính tắc của đường thẳng
là:
.
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Trong không gian với hệ tọa độ
, cho mặt phẳng
. Vectơ nào dưới đây là một vectơ pháp tuyến của
?
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến là:
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Tìm nguyên hàm của hàm của hàm số ![]()
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Gọi
lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Gọi lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Tìm nguyên hàm của hàm số
?
Ta có:
Trong không gian với hệ tọa độ
, đường thẳng đi qua điểm
và song song với trục
có phương trình tham số là:
Gọi là đường thẳng cần tìm.
Ta có nên
có vectơ chỉ phương là
.
Do đó .
Trong không gian với hệ tọa độ
, cho hai mặt phẳng ![]()
. Khoảng cách giữa hai mặt phẳng
và
là
Lấy .
Vì nên khoảng cách giữa hai mặt phẳng (P) và (Q) bằng khoảng cách từ điểm M đến mặt phẳng (Q).
.
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Một chất điểm chuyển động với gia tốc
. Vận tốc ban đầu của chất điểm là
. Hỏi vận tốc của chất điểm sau khi chuyển động với gia tốc đó được
giây bằng bao nhiêu?
Ta có:
Biết
là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Cho số phức
. Tìm
?
Ta có:
.
Trong không gian
, cho hai điểm
và
. Viết phương trình mặt phẳng
đi qua
và vuông góc với đường thẳng
.
Mặt phẳng có một véctơ pháp tuyến
Phương trình mặt phẳng là:
hay
.