Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Trong không gian
, hãy viết phương trình của đường thẳng
đi qua điểm
và vuông góc với mặt phẳng
?
Đường thẳng đi qua điểm
và có một véc-tơ chỉ phương là
nên
có phương trình chính tắc là
.
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
biết rằng mỗi đơn vị dài trên các trục tọa độ là
?
Ta có:
Do mỗi đơn vị trên trục là 2 cm nên
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Trong không gian với hệ tọa độ cho các điểm
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểm
?
Mặt phẳng có phương trình là:
, do đó
.
Lại có A là trung điểm BD.
Ta có chứa các điểm O, A, B, D;
chứa các điểm O, B, C;
chứa các điểm O, A, C;
chứa các điểm A, B, C, D;
chứa các điểm O, C ,D.
Vậy có mặt phẳng phân biệt thỏa mãn bài toán.
Trong không gian
, cho hai vecto
,
cùng có độ dài bằng
. Biết rằng góc giữa hai vecto đó bằng
, giá trị của biểu thức
là
Ta có:
Do đó:
.
Trong các khẳng định sau đây, khẳng định nào đúng?
Ta có:
Do
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho hàm số
liên tục trên đoạn
và
là một nguyên hàm của
. Biết rằng
. Xác định tích phân
?
Ta có: .
Tìm số phức z thỏa mãn ![]()
Ta có
Số phức liên hợp của số phức
là
=
= a - bi
Tìm nguyên hàm
của hàm số
?
Ta có:
Vậy một nguyên hàm của hàm số là .
Tìm nguyên hàm của hàm số
?
Đặt
Cho tam giác ABC có
. Gọi BD và BE lần lượt là phân giác trong và phân giác ngoài của góc B với D và E là chân của hai phân giác này trên AC. Tính tọa độ vectơ ![]()
Gọi tọa độ điểm E là .
Ta có là trung điểm của AE nên ta tính được tọa độ điểm E lần lượt là:
Trong không gian
, cho hai đường thẳng
. Gọi
là tập hợp tất cả các số
sao cho
chéo nhau và khoảng cách giữa chúng bằng
. Tính tổng tất cả các phần tử của
.
Vectơ chỉ phương của là
Khi đó: .
Gọi là mặt phẳng chứa
song song với
.
Tức là, qua
và nhận
làm vectơ pháp tuyến.
Ta có phương trình
Xét điểm . Do
chéo nhau nên
.
Lại có:
Vậy tổng các phần tử của S là .
Trong không gian tọa độ
, mặt phẳng
đi qua
và chắn trên tia
một đoạn thẳng dài gấp đôi các đoạn thẳng mà nó chắn trên các tia
và
. Giả sử
, với
. Tính
.
Từ giả thiết, ta suy ra các giao điểm của (α) với các tia lần lượt là
.
Suy ra phương trình (đoạn chắn) của (α) là .
Do (α) đi qua M nên .
Suy ra .
Từ đó, ta tính được: .
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có do đó
hay
Suy ra
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Biết
là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Gọi
là đường thẳng tùy ý đi qua điểm
và có hệ số góc âm. Giả sử
cắt các trục
lần lượt tại
. Quay tam giác
quanh trục
thu được một khối tròn xoay có thể tích là
. Giá trị nhỏ nhất của
bằng
Hình vẽ minh họa
Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d:
Mà M(1; 1) ∈ d nên
Từ (1) suy ra d có hệ số góc là ; theo giả thiết ta có
Nếu mẫu thuẫn với (2) suy ra
Mặt khác từ (2) suy ra kết hợp với a > 0, b > 0 suy ra a > 1.
Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao và bán kính đường tròn đáy
Thể tích khối nón là
Suy ra V đạt giá trị nhỏ nhất khi đạt giá trị nhỏ nhất.
Xét hàm số trên khoảng
Ta có bảng biến thiên như sau:
Vậy giá trị nhỏ nhất của V bằng
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Trong không gian với hệ tọa độ
, cho đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương và đường thẳng
đi qua điểm
, nhận vectơ
làm vectơ chỉ phương. Điều kiện để đường thẳng
song song với
là:
Điều kiện để là:
.
Biết
và
là ba nghiệm của phương trình
,
trong đó
là nghiệm có phần ảo dương. Phần ảo của số phức
bằng:
Xét phương trình là phương trình bậc ba với hệ số thực nên luôn có một nghiệm thực là
.
Do đó phương trình tương đương với:
.
Nên là hai nghiệm phức của phương trình bậc hai với hệ số thực (1).
Suy ra .
Khi đó : .
Vậy phần ảo của là
.
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Cho hai điểm
và vectơ
. Mặt phẳng chứa hai điểm A, B và song song với vectơ
có phương trình:
Theo đề bài, ta có:
Như vậy, và
sẽ là cặp vectơ chỉ phương của
Chọn làm vectơ pháp tuyến của
Phương trình mặt phẳng có dạng
Mặt khác, vì điểm nên thay tọa độ điểm A vào phương trình mặt phẳng
được:
Vậy có phương trình là:
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Ta có: là một nguyên hàm của hàm số
nên
Hay
Xét , đặt
Khi đó
Tìm họ nguyên hàm của hàm số
?
Ta có:
Trong không gian tọa độ
, cho hai điểm
. Tìm tọa độ điểm
có hoành độ dương thuộc trục
sao cho tam giác
vuông tại
?
Ta có: có hoành độ dương thuộc trục
Theo bài ra ta có: và tam giác
vuông tại
nên
Vậy
Cho hàm số
xác định trên tập số thực thỏa mãn
và
. Tính
biết rằng
?
Vì nên ta có:
Cho
Do đó
Trong không gian
, cho các điểm
. Xác định tọa độ điểm
sao cho tứ giác
là hình bình hành?
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
.
Cho bốn điểm
trong không gian. Hỏi có bao nhiêu vectơ khác
có điểm đầu và điểm cuối là
điểm?
Lấy làm gốc ta được 3 vectơ
. Tương tự đối với
ta được
vectơ.
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Một quả bóng bầu dục có khoảng cách giữa 2 điểm xa nhất bằng 10 cm và cắt quả bóng bằng mặt phẳng trung trực của đoạn thẳng đó thì được đường tròn có diện tích bằng
. Thể tích của quả bóng bằng (Tính gần đúng đến hai chữ số thập phân, đơn vị lít)
Quả bóng bầu dục sẽ có dạng elip.
Độ dài trục lớn bằng
Ta có diện tích đường tròn thiết diện là
Ta sẽ có phương trình elip
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ta có:
Nhận xét: Không thể dùng máy tính để tính ra kết quả trực tiếp như trên nhưng ta có thể dùng để kiểm tra kết quả bằng cách thử thay số trong các đáp án.
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Tìm nguyên hàm của hàm của hàm số ![]()
Cho hai hàm số
và
. Biết
là các số thực để
là một nguyên hàm của
. Tính
?
Từ giả thiết ta có:
Đồng nhất hai vế ta có: .
Cho số phức
,
thỏa mãn
và
.
Tính
.
Ta áp dụng công thức , có:
Ta xét:
Với nên không thỏa yêu cầu bài toán.
Với thỏa yêu cầu bài toán.
Vậy
Một chất điểm đang chuyển động với vận tốc
thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian
kể từ lúc bắt đầu tăng tốc.
Ta có: .
Khi đó
Khi đó quãng đường đi được bằng:
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Họ nguyên hàm của hàm số
là:
Ta có:
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và
. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?
Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).
.
Cho số phức z thỏa mãn
. Giá trị lớn nhất của biểu thức
là:
Ta gọi là điểm biểu diễn số phức z
=>
Khi đó:
với
Ta có: suy ra
.
Theo định lý Stewart ta có:
(Hoặc có thể chứng minh theo phương pháp véc tơ
Suy ra:
Khi đó suy ra:
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Trong không gian với hệ trục tọa độ
, cho ba điểm
. Viết phương trình mặt phẳng đi qua ba điểm
.
Ta có:
Theo giả thiết mặt phẳng cần tìm qua A(2; 0; −1) và nhận làm vectơ pháp tuyến.
Vậy phương trình mặt phẳng qua là
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và
. Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Trong không gian
, cho hai đường thẳng song song
và
. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.
Lấy .
Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.
Phương trình đường thẳng cần tìm là:
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.