Phương trình có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Phương trình có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Kí hiệu là hai nghiệm phức của phương trình
. Tính
Phương trình có hai nghiệm
.
Khi đó
Tìm nguyên hàm của hàm của hàm số
Trong không gian cho hai điểm
và
là mặt phẳng trung trực của đoạn thẳng
. Vectơ nào sau đây là một vectơ pháp tuyến của
?
Do là mặt phẳng trung trực của đoạn thẳng
nên
nhận
làm vectơ pháp tuyến.
Suy ra cũng là vectơ pháp tuyến của (α).
Trong không gian , cho tọa độ ba điểm
. Góc giữa hai đường thẳng
và
là
Ta có: .
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Trong không gian với hệ tọa độ , cho mặt phẳng
. Vectơ nào dưới đây là một vectơ pháp tuyến của
?
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến là:
Cho hai số phức và
. Tìm số phức
Ta có:
Tìm nghiệm của phương trình sau trên tập số phức :
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Trong không gian , cho điểm
. Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục
lần lượt tại các điểm
sao cho
?
Đặt với
.
Phương trình mặt phẳng (P) đi qua ba điểm có dạng
.
Do nên ta có
.
Suy ra .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên .
Ta có .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên
Ta có .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên
Ta có .
Nếu và
thì mặt phẳng (P) có dạng
.
Vì (P) đi qua M nên
Ta có .
Vậy có bốn mặt phẳng thỏa yêu cầu bài toán.
Cho điểm P(-3 , 1, -1) và đường thẳng (d):
Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:
Chuyển (d) về dạng tham số :
Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: , cho qua P tính được D=7 .
Ta có (Q): .
Thế x, y, z theo t từ phương trình của (d) vào phương trình (Q) được
Giao điểm I của (d) và (Q) là I (1, -3, 1) .
Vì I là trung điểm của PP’ nên .
Cho bốn điểm trong không gian. Hỏi có bao nhiêu vectơ khác
có điểm đầu và điểm cuối là
điểm?
Lấy làm gốc ta được 3 vectơ
. Tương tự đối với
ta được
vectơ.
Gọi và là hai nghiệm phức của phương trình . Giá trị của biểu thức
là:
Ta có:
Suy ra
Một vật chuyển động chậm dần đều với vận tốc . Hỏi trong
trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Tính tổng
Ta có:
Khi đó ta có:
Tìm phần thực, phần ảo của số phức z thỏa mãn
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Trong không gian với hệ trục toạ độ , tìm tất cả giá trị tham số
để đường thẳng
song song với mặt phẳng
.
Ta có:
qua điểm
và có VTCP là
(P) có VTPT là
Vì d // (P) nên
Với (loại).
Với (thỏa mãn).
Cho . Giá trị của x và y bằng:
Ta có:
Trong không gian với hệ trục tọa độ , cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
.
Vậy
Cho hàm số liên tục trên
và có đồ thị
là đường cong như hình vẽ:
Diện tích hình phẳng giới hạn bởi đồ thị , trục hoành và hai đường thẳng
(phần tô đen) là:
Dựa vào hình vẽ ta thấy thì
Vậy
Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số quanh trục
bằng
Ta có:
Nguyên hàm của hàm số là:
Ta có:
Tìm nguyên hàm của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Xác định hàm số f(x) biết rằng
Mà
Vậy hàm số cần tìm là
Trong không gian với hệ tọa độ , cho ba điểm
. Điểm
thuộc mặt phẳng
sao cho
đạt giá trị nhỏ nhất là:
Gọi G là trọng tâm của tam giác ABC.
Ta có:
Dễ thấy nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).
Dễ thấy .
Trong không gian với hệ tọa độ , cho ba mặt phẳng
. Một đường thẳng d thay đổi cắt ba mặt
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Dễ dàng nhận thấy (P)//(Q)//(R).
Kẻ đường thẳng qua B vuông góc với cả 3 mặt phẳng cắt (P) tại H và cắt (Q) tại K.
Ta có
Khi đó ta có:
Vậy .
Giá trị của tích phân . Biểu thức
có giá trị là:
Giá trị của tích phân . Biểu thức
có giá trị là:
Ta có:
Cho số phức z thỏa mãn , gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
Ta có
Vì nên
.
Suy ra
Cho hai số phức . Tìm môđun của số phức
.
Ta có:
Tìm nguyên hàm .
Ta có:
Tìm nguyên hàm của hàm số ?
Ta có:
Trong không gian với hệ tọa độ , điểm
thuộc mặt phẳng
và cách đều các điểm
. Tích
bằng
Do và
, nên ta được hệ:
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường quay xung quanh
.
Thể tích vật thể bằng:
.
PT sau có số nghiệm là :
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Cho là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
Ta có: F(x) là một nguyên hàm của hàm số nên:
Hay
Xét
Đặt
Khi đó
Cho hai số phức . Môđun của số phức
là:
Ta có:
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Trong không gian với hệ tọa độ , cho hai điểm
và đường thẳng
. Điểm
mà tổng
có giá trị nhỏ nhất có tọa độ là:
Vì nên ta có tọa độ điểm
.
Ta có:
Vậy giá trị nhỏ nhất của là
khi
.
Biết rằng là một nguyên hàm của hàm số
trên
. Giá trị của biểu thức
bằng:
Ta có:
suy ra
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)
Đáp án: N(1300; 750; 15,5)
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm đến điểm
trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng
. Xác định tọa độ vị trí điểm
. (Kết quả ghi dưới dạng số thập phân nếu có)
Đáp án: N(1300; 750; 15,5)
Gọi là tọa độ của máy bay sau 10 phút tiếp theo.
.
.
Vì máy bay giữ nguyên hướng bay nên và
cùng hướng.
Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ đến
gấp 4 lần thời gian bay từ
đến
nên
.
Suy ra:
Tìm nguyên hàm của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Cho số phức . Tính |z|
Ta có
Trong không gian , cho ba điểm
. Điểm
thuộc tia
sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện
bằng
có tọa độ là
Ta có D thuộc tia nên
với
.
Tính
Mặt phẳng : có vectơ pháp tuyến
và đi qua điểm
.
Ta có
Vậy .
Cho hai đường thẳng trong không gian Oxyz: ,
. Với
. Gọi
và
. (D) và (d) song song khi và chỉ khi:
Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:
và (d) cùng nằm trong một mặt phẳng
Để (D) và d song song, ta sẽ xét tỉ số chứng minh chúng cùng phương rồi kiểm tra rằng d không nằm trong (D):
và (d) cùng phương
và
và (d) song song.
Cho số phức . Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Tính tích phân ?
Ta có:
Tìm tất cả các giá trị thực của tham số thỏa mãn
?
Ta có:
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Phương trình sau có tập nghiệm trên trường số phức là:
Ta có
Vậy phương trình có 4 nghiệm: