Cho hàm số
có đồ thị như hình vẽ:

Các biểu thức
xác định bởi
. Mệnh đề nào sau đây đúng?
Dựa vào hình vẽ và diện tích hình phẳng ta có:
(hệ số góc của tiếp tuyến tại x = 1)
Như vậy
Cho hàm số
có đồ thị như hình vẽ:

Các biểu thức
xác định bởi
. Mệnh đề nào sau đây đúng?
Dựa vào hình vẽ và diện tích hình phẳng ta có:
(hệ số góc của tiếp tuyến tại x = 1)
Như vậy
Trong không gian, cho hai vectơ
và
có cùng độ dài bằng
. Biết độ dài của vectơ
bằng
. Biết số đo góc giữa hai vectơ
và
là
độ. Giá trị của
là bao nhiêu?
Trong không gian, cho hai vectơ và
có cùng độ dài bằng
. Biết độ dài của vectơ
bằng
. Biết số đo góc giữa hai vectơ
và
là
độ. Giá trị của
là bao nhiêu?
Giá trị tích phân
bằng:
Ta có:
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, đường thẳng
như hình vẽ sau:

Hỏi khẳng định nào dưới đây là khẳng định đúng?
Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số trục hoành, đường thẳng
ta có:
.
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Trong không gian với hệ trục tọa độ
cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Trong không gian với hệ trục tọa độ cho ba điểm
. Tìm tất cả các điểm
sao cho
là hình thang có đáy
và tam giác
bằng
diện tích tứ giác
?
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau
năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a)
là một nguyên hàm của
. Đúng||Sai
b)
. Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau năm được xác định bởi hàm số
( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với
, với
là số năm kể từ năm 2014,
được tính bằng triệu người/năm.
a) là một nguyên hàm của
. Đúng||Sai
b) . Sai||Đúng
c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai
d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai
Ta có: là một nguyên hàm của
và
Do
Tốc độ tăng dân số của nước ta vào năm 2034 là
( triệu người/năm)
Dân số của nước ta vào năm 2034 là
( triệu người)
Một khối cầu có bán kính
, người ta cắt bỏ
phần bằng
mặt phẳng song song và vuông góc với bán kính, hai mặt phẳng đó đều cách tâm của khối cầu
để làm một chiếc lu đựng nước. Tính thể tích nước mà chiếc lu chứa được (coi độ dày của bề mặt không đáng kể).
Hình vẽ minh họa
Đặt trục tọa độ như hình vẽ. Thể tích cái được tính bằng cách cho đường tròn có phương trình quay quanh trục Ox.
Thể tích cái lu bằng;
Cho biết
với
. Tính
?
Xét trên đoạn ta có:
Xét . Đặt
Xét . Đặt
Vậy .
Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có:
Cho hàm số
liên tục trên đoạn
. Diện tích
của hình phẳng giới hạn bởi đồ thị của hàm số
, trục hoành và hai đường thẳng
được tính theo công thức
Theo lí thuyết về tính diện tích hình phẳng ta có diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số , trục hoành và hai đường thẳng
được tính theo công thức:
.
Trong không gian tọa độ
, cho hai điểm
. Tìm tọa độ điểm
sao cho
là trung điểm của
?
Gọi tọa độ điểm . Vì M là trung điểm của AB nên ta có:
Vậy tọa độ điểm B cần tìm là .
Cho F(x) là nguyên hàm của hàm số
thỏa mãn
. Tìm tập nghiệm S của phương trình ![]()
Đặt
Ta có:
Cho tam giác ABC có ![]()
Viết phương trình tham số của trung tuyến AM ?
Vì AM là trung tuyến nên M là trung điểm của BC. Gọi
Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:
Ta có 1 vecto chỉ phương của (AM) là
(AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Phương trình nào sau đây là phương trình chính tắc của
?
Đường thẳng d có vectơ chỉ phương và đi qua điểm
. Do đó phương trình chính tắc của
là:
Cho số phức z thỏa mãn
. Tìm giá trị lớn nhất của biểu thức
.
Gọi .
Ta có:
.
Ta có:
Xét hàm số
.
Hàm số liên tục trên và với
ta có:
Ta có:
Biết rằng
với
là các số hữu tủ. Giá trị của
bằng:
Ta có:
Cho
. Giá trị của x và y bằng:
Ta có:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Trong không gian với hệ trục tọa độ
, cho các điểm
. Có bao nhiêu điểm
cách đều các mặt phẳng
?
Ta có
Ta có:
Ta có:
Gọi điểm cách đều các mặt phẳng
Từ
Từ
Từ
Từ (1), (3), (5) suy ra , b khác 0 tùy ý.
Như vậy có vô số điểm cách đều bốn mặt phẳng
Nếu
. Khi đó
bằng:
Ta có: .
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Trong không gian
, cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Trong không gian , cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số
, ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Trong không gian với hệ tọa độ
, cho hai điểm
và mặt phẳng
. Biết rằng tồn tại điểm
thuộc
sao cho
đạt giá trị lớn nhất. Tính
.
Thay tọa độ điểm M và N vào vế trái phương trình mặt phẳng (P), ta có nên hai điểm M, N nằm cùng phía đối với mặt phẳng (P).
Khi đó ta có và đẳng thức xảy ra khi
Phương trình tham số của đường thẳng MN là
Tọa độ giao điểm của MN và (P) là nghiệm hệ phương trình
Vậy
Trong không gian với hệ tọa độ
, cho điểm
và hai mặt phẳng
. Viết phương trình đường thẳng
đi qua
và song song với hai mặt phẳng
?
Ta có:
Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là .
Vậy phương trình đường thẳng d là
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Họ nguyên hàm của hàm số
là:
Ta có: .
Biết rằng
và
, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:
Ta có:
, với
Trong không gian
, cho hai điểm
. Mặt phẳng đi qua
và vuông góc với đường thẳng
là:
Gọi (α) là mặt phẳng đi qua và vuông góc với đường thẳng
.
Do (α) vuông góc với AB nên vectơ pháp tuyến của mặt phẳng (α) là
Vậy phương trình mặt phẳng (α) là:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Mặt phẳng (P) chứa đường thẳng
và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là
. Tính tổng ![]()
Hình vẽ minh họa
Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương
Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.
Phương trình tham số của
Lấy điểm N(1; 2; 0) ∈ ∆.
Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.
Khi đó
Lại có:
Vậy lớn nhất khi và chỉ khi H trùng với K
Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).
Vectơ pháp tuyến của (Q) là
Vectơ pháp tuyến của (P) là
Phương trình mặt phẳng (P) là
Vậy
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Số phức
bằng:
Ta có:
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Trong không gian
cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Trong các khẳng định sau, khẳng định nào sai?
Ta có:
Vậy khẳng định sai là: .
Tìm họ nguyên hàm của hàm số ![]()
Ta có:
Biết luôn có hai số
để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Trong không gian với hệ tọa độ
cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các trục tọa độ tại
sao cho
là trực tâm tam giác
. Hãy viết trình mặt phẳng
.
Hình vẽ minh họa
Ta có:
Chứng minh tương tự BC ⊥ OH.
Do đó
Suy ra .
Cho số phức
. Tính |z|
Ta có