Trong các mệnh đề sau, mệnh đề nào sai?
Bằng quy tắc 3 điểm ta nhận thấy rằng: đúng với mọi điểm
nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.
Trong các mệnh đề sau, mệnh đề nào sai?
Bằng quy tắc 3 điểm ta nhận thấy rằng: đúng với mọi điểm
nằm trong không gian chứ không phải chỉ riêng 4 điểm đồng phẳng.
Trong không gian với hệ tọa độ
, cho ba điểm
và đường thẳng
. Tìm điểm
thuộc đường thẳng
để thể tích của tứ diện
bằng
.
Ta có
Phương trình mặt phẳng
Dễ thấy tam giác ABC vuông tại A suy ra
Mà
Với
Với
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Cho các số phức z thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
.
3 || ba || Ba
Cho các số phức z thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức
.
3 || ba || Ba
Gọi là điểm biểu diễn số phức z trong mặt phẳng phức.
Có
Vậy hoặc
.
Gọi thì
. Khi đó
hoặc
.
Vậy
Cho số phức
, giá trị của số phức
là?
Ta có:
Gọi (H) là hình phẳng xác định bởi
và trục hoành. Tính thể tích khối tròn xoay khi quay hình (H) quanh trục Ox.
Hình vẽ minh họa:

Tọa độ giao điểm của (C) và trục hoành là (1; 0) và (2; 0)
Tọa độ giao điểm của (C) và (D) là (0; 2) và (4; 6)
Dễ thấy
Thể tích cần tìm là:
Cho hàm số
xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Trong không gian với hệ tọa độ
, cho mặt phẳng
. Điểm nào dưới đây không thuộc mặt phẳng
?
Điểm không thuộc mặt phẳng
.
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Trong không gian với hệ tọa độ Oxyz, cho hai điểm
và mặt phẳng
. Gọi M là điểm thuộc (P) sao cho
vuông tại M . Khoảng cách từ M đến (Oxy) bằng:
Ta có: suy ra M thuộc mặt cầu (S) đường kính AB.
Gọi I là trung điểm AB , khi đó và
.
Ta tính được suy ra (P) và mặt cầu (S) tiếp xúc nhau hay M là tiếp điểm của (P) và (S). Vậy M là hình chiếu của I trên (P) .
Phương trình đường thẳng qua I và vuông góc với (P) là:
Tọa độ của M là nghiệm của hệ phương trình:
suy ra .
Suy ra .
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
?
Xét các phương trình hoành độ giao điểm:
Diện tích S của hình phẳng (H) là:
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
và
. Giá trị biểu thức
bằng:
Ta có:
Do đó:
Trong không gian với hệ trục tọa độ
, cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Trong không gian với hệ trục tọa độ , cho ba điểm
,
và
. Điểm
sao cho tứ giác
là hình bình hành. Tính
?
Đáp án: 3
Gọi
Ta có:
là hình bình hành nên
.
Vậy .
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Cho
là một nguyên hàm của hàm số
. Khi đó hiệu số
bằng:
Theo định nghĩa tích phân ta có:
suy ra
.
Cho hàm số
là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Biết
. Khi đó
có giá trị bằng:
Ta có:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Trong không gian với hệ tọa độ
, cho mặt phẳng
cắt các trục tọa độ tại
. Biết trọng tâm của tam giác
là
. Mặt phẳng
song song với mặt phẳng nào sau đây?
Gọi là giao điểm với ba trục tọa độ.
Do G là trọng tâm tam giác ABC nên
Vậy phương trình mặt phẳng là
Vậy mặt phẳng song song với trong các đáp án đã cho là
.
Trong không gian với hệ tọa độ
, cho ba điểm
. Viết phương trình mặt phẳng đi qua ba điểm
.
Ta có:
Mặt phẳng có một vectơ pháp tuyến là
Từ đó phương trình mặt phẳng là
.
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Tính thể tích hình lăng trụ ABCD.EFGH, biết
và
.
Theo đề bài, ta có:
Áp dụng CT tính thể tích khối lăng trụ:
Suy ra: .
Trong không gian
, cho hai vectơ
và
. Phát biểu nào sau đây sai?
Dễ thấy từ đo suy ra hai vectơ
và
ngược hướng và
.
Lại có
Vậy phát biểu sai là: .
Tính tích phân
?
Đặt
Đổi cận
Khi đó:
.
Tìm nguyên hàm của hàm số
?
Đặt
Cho đồ thị hàm số
có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Cho đồ thị hàm số có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Một vật chuyển động chậm dần đều với vận tốc
. Hỏi trong
trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Cho hàm số
liên tục trên đoạn
và
là một nguyên hàm của
. Biết rằng
. Xác định tích phân
?
Ta có: .
Xác định nguyên hàm
của hàm số
?
Ta có:
Cho
. Giá trị của x và y bằng:
Ta có:
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Nguyên hàm của hàm số
là:
Ta có:
Cho số phức
. Tìm số phức
?
Ta có:
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Cho hai đường thẳng chéo nhau
và ![]()
Mặt phẳng song song và cách đều và có phương trình tổng quát:
Phương trình (d) cho biết và (d) có vectơ chỉ phương
Chuyển về dạng tham số
để có
và vectơ chỉ phương
.
Gọi I là trung điểm AB thì I (2, 2, 0), M(x, y, z) bất kỳ .
là phương trình của mặt phẳng (P).
Trong không gian
, cho tam giác
với
. Đường trung tuyến xuất phát từ đỉnh
của tam giác
nhận vectơ nào dưới đây làm một véc-tơ chỉ phương?
Gọi là trung điểm của
, suy ra tọa độ điểm
.
Đường trung tuyến xuất phát từ đỉnh có vectơ chỉ phương là
.
Trong không gian
, cho mặt phẳng
. Viết phương trình mặt phẳng
sao cho phép đối xứng qua mặt phẳng
biến mặt phẳng
thành mặt phẳng
.
Tọa độ giao điểm của mặt phẳng (α) với các trục tọa độ là .
Ta có và
.
Kí hiệu Đ(Oxy) là phép đối xứng qua mặt phẳng Oxy.
Ta có , (ảnh của A, B trùng với chính nó vì
).
Do C’ đối xứng với qua mặt phẳng Oxy, suy ra
Từ đó suy ra mặt phẳng (β) có phương trình theo đoạn chắn là:
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tìm nguyên hàm của hàm số
?
Ta có:
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức
. Kết luận nào sau đây đúng?
Ta có:
Cho hàm số
liên tục trên
. Gọi
là hình phẳng giới hạn bởi hai đồ thị
và các đường thẳng
. Diện tích hình
được tính theo công thức?
Ta có diện tích hình (H) được tính bằng công thức .
Trong không gian
, cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua điểm
và vuông góc với mặt phẳng
có phương trình là:
Do đường thẳng cần tìm vuông góc với mặt phẳng
nên vectơ pháp tuyến của (P) là
cũng là vectơ chỉ phương của
.
Mặt khác đi qua điểm
nên phương trình chính tắc của
là:
Trong không gian với hệ trục tọa độ
, cho đường thẳng
và mặt phẳng
. Điểm
nào dưới đây thuộc
và thỏa mãn khoảng cách từ
đến mặt phẳng
bằng
?
Vì A ∈ (d) nên ta có tọa độ điểm A(2a; −a; a − 1).
Khoảng cách từ A đến (P) là
Với