Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính
.
Cho parabol
và hai điểm
thuộc
sao cho
. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol
và đường thẳng
.
Hình vẽ minh họa
Gọi và
là hai điểm thuộc (P) sao cho AB = 2.
Không mất tính tổng quát giả sử a < b.
Theo giả thiết ta có AB = 2 nên
Phương trình đường thẳng đi qua hai điểm A và B là
Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:
Mặt khác nên
do
Suy ra
Vậy dấu bằng xảy ra khi và chỉ khi a = − b = ±1.
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Trong không gian với hệ trục tọa độ
, cho hai điểm
. Tìm giá trị tham số
để
?
Theo bài ra ta có:
Vậy đáp án cần tìm là .
Trong không gian
cho mặt phẳng
và hai điểm
. Gọi
lần lượt là hình chiếu của
lên mặt phẳng (P). Biết
. Tổng tất cả các giá trị của tham số m là
Hình vẽ minh họa
Xét trường hợp m = 1. Khi đó cả đều thuộc (P). Trong trường hợp này
(loại).
Khi . Ta tính toán các đại lượng:
Từ đó suy ra khác phía với (P) và
Gọi H là giao điểm của AB với (P).
Theo Thales ta có:
Áp dụng định lý Pythagore cho tam giác AEH ta có:
Phương trình này có hai nghiệm và tổng hai nghiệm đó bằng: .
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Biết rằng
là một nguyên hàm của hàm số
trên
. Giá trị của biểu thức
bằng:
Ta có:
suy ra
Một người có mảnh đất hình tròn có bán kính
. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Một người có mảnh đất hình tròn có bán kính . Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Xác định giá trị của tham số
thỏa mãn
?
Ta có:
Vậy đáp án .
Cho F(x) là một nguyên hàm của hàm số
. Hàm số
có bao nhiêu điểm cực trị?
=> có 5 nghiệm đơn
=> Hàm số có 5 điểm cực trị
Nếu
. Khi đó
bằng:
Ta có: .
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Trong không gian
cho hai điểm
và
là mặt phẳng trung trực của đoạn thẳng
. Vectơ nào sau đây là một vectơ pháp tuyến của
?
Do là mặt phẳng trung trực của đoạn thẳng
nên
nhận
làm vectơ pháp tuyến.
Suy ra cũng là vectơ pháp tuyến của (α).
Cho đường tròn
và parabol
.
cắt
thành hai phần. Tìm tỉ số diện tích của hai phần đó.
Hoành độ giao điểm của (P) và (C) là:
Xét giao điểm thuộc góc phần tư thứ nhất, với
Gọi S2 là phần có diện tích nhỏ hơn, S1 là phần còn lại
Ta có:
Đặt
Khi đó
Diện tích hình tròn
Diện tích hình phẳng được gạch chéo trong hình bên bằng

Dựa và hình vẽ ta có diện tích hình phẳng được gạch chéo trong hình bên là:
Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng
xung quanh trục Ox.
Ta có :
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân
giác trong góc A là
. Biết rằng điểm
thuộc đường thẳng AB và điểm
thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?
Giả sử , , ta có:
Theo bài ra: Vì d là đường phân giác của góc A nên:
Từ đây ta bình phương 2 vế được:
Vậy một véc tơ chỉ phương của AC là .
Trong không gian với hệ tọa độ
, cho đường thẳng
là giao tuyến của hai mặt phẳng
. Tìm tọa độ giao điểm
của đường thẳng
và
, biết đường thẳng d' có phương trình 
Tọa độ giao điểm I của d và d’ thỏa mãn hệ phương trình:
Trong không gian với hệ tọa độ
, cho phương trình đường thẳng
. Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng
?
Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:
.
Cho số phức
. Tính |z|
Ta có
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Cho hai điểm
và mặt phẳng
Mặt phẳng
chứa hai điểm A,B và vuông góc với mặt phẳng
có phương trình:
Theo đề bài, ta có: ;
Suy ra ;
có vectơ pháp tuyến
Ta có cùng phương với vectơ
Chọn làm 1 vectơ pháp tuyến cho mặt phẳng
.
Phương trình mặt phẳng có dạng:
Mặt phẳng :
Trong không gian
, cho mặt phẳng
đi qua điểm
và chắn trên các trục tọa độ
theo ba đoạn có độ dài đại số lần lượt là
. Phương trình tổng quát của mặt phẳng
khi
theo thứ tự tạo thành một cấp số nhân có công bội bằng
là:
Do giả thiết suy ra .
Giả sử khi đó phương trình mặt phẳng
.
Do M thuộc (P) nên
Suy ra do đó phương trình mặt phẳng
.
Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Cho hàm số
là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho số phức z thoả mãn
. Giá trị lớn nhất của biểu thức
bằng?
Đặt .
Từ giả thiết
(1).
Ta có
.
Dễ thấy P lớn nhất khi .
Khi đó
Do nên từ (1) ta có
.
Suy ra
Dấu = xảy ra khi
.
Họ nguyên hàm của hàm số
là:
Ta có: .
Cho hàm số
. Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành. Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm:
Diện tích hình phẳng cần tìm là:
((do trong khoảng (0; 1) và (1; 2) phương trình
vô nghiệm)
Vậy mệnh đề sai là: .
Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Cho hình phẳng
giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Nguyên hàm của hàm số
là:
Ta có:
Nguyên hàm của hàm số
là:
Ta có:
Trong không gian
, cho điểm
. Mặt phẳng
đi qua
và cắt các trục tọa độ
lần lượt tại các điểm
không trùng với gốc tọa độ
sao cho
là trực tâm tam giác
. Viết phương trình mặt phẳng nào song song với mặt phẳng
?
Trong không gian , cho điểm
. Mặt phẳng
đi qua
và cắt các trục tọa độ
lần lượt tại các điểm
không trùng với gốc tọa độ
sao cho
là trực tâm tam giác
. Viết phương trình mặt phẳng nào song song với mặt phẳng
?
Xét số phức z thỏa mãn:
. Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
Cho hình lăng trụ tam giác
. Đặt
. Trong các mệnh đề sau, mệnh đề nào đúng?
Ta có:
Do đó
Trong không gian
, cho hai điểm
. Viết phương trình đường thẳng
đi qua tâm đường tròn ngoại tiếp tam giác
và vuông góc với mặt phẳng
.
Tam giác OAB vuông tại O nên tâm đường tròn ngoại tiếp là trung điểm AB có tọa độ I(0; 1; 1).
Mặt phẳng (OAB) có véc-tơ pháp tuyến .
Suy ra đường thẳng ∆ có và đi qua I(0; 1; 1).
Vậy phương trình đường thẳng ∆ là .
Trong không gian với hệ toạ độ
, cho bốn đường thẳng ![]()
![]()
![]()
. Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:
Kiểm tra vị trí tương đối giữa hai đường thẳng ta thấy (d1) // (d2); (d4) cắt (d2), (d3).
Gọi (P) là mặt phẳng chứa (d1) và (d2); (Q) là mặt phẳng chứa (d3) và (d4).
Gọi (∆) là đường thẳng cắt cả 4 đường thẳng trên.
Ta thấy, (∆) cắt cả (d1), (d2) suy ra (∆) ⊂ (P).
(∆) cắt cả (d3),(d4) suy ra (∆) ⊂ (Q).
Mà (d2), (d4) có điểm chung nên (∆) là giao tuyến của (P) và (Q), do đó có duy nhất một đường thẳng thỏa mãn.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian
, cho mặt phẳng
. Tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm M đến mặt phẳng (P) là:
Trong không gian
, điểm nào sau đây thuộc mặt phẳng
?
Do điểm thuộc mặt phẳng nên điểm đó có tọa độ dạng
Suy ra điểm là đáp án cần tìm.
Cho hàm số f(x) xác định trên
thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Cho tứ diện
và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.