Cho hình phẳng
giới hạn với các đường
. Tính thể tích
của khối tròn xoay thu được khi
quay quanh trục
?
Thể tích cần tìm là:
Cho hình phẳng
giới hạn với các đường
. Tính thể tích
của khối tròn xoay thu được khi
quay quanh trục
?
Thể tích cần tìm là:
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Vật thể
giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
bằng
Ta có .
Trong không gian
, cho tam giác
vuông tại
,
,
, đường thẳng
có phương trình
, đường thẳng
nằm trong mặt phẳng
. Biết rằng đỉnh
có cao độ âm. Tìm hoành độ của đỉnh
.
Hình vẽ minh họa:
Tọa độ điểm B là nghiệm của hệ phương trình
Do C ∈ BC nên
Theo giả thiết nên:
Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).
Gọi . Do
nên:
Vậy đáp án cần tìm là .
Biết rằng
nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Dòng diện xoay chiều hình sin chạy qua mạch điện dao động
lí tưởng có phương trình
. Ngoài ra
với
là điện tích tức thời trong tụ. Tính từ lúc
, điện lượng chạy qua tiết diện thẳng của dây dẫn của mạch trong thời gian
là
Điện lượng cần tìm là:
Trong không gian
, cho điểm
. Gọi
là mặt phẳng thay đổi qua
và cắt các trục
lần lượt tại
với
. Khi diện tích tam giác
nhỏ nhất, hãy tính giá trị của tích
?
Trong không gian , cho điểm
. Gọi
là mặt phẳng thay đổi qua
và cắt các trục
lần lượt tại
với
. Khi diện tích tam giác
nhỏ nhất, hãy tính giá trị của tích
?
Cho bốn điểm
và
. Câu nào sau đây đúng? ABDC là:
Ta có
Do đó cùng phương
ABDC là hình thang.
Tính
?
Áp dụng công thức
Suy ra
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Xác định nguyên hàm của hàm số
?
Ta có: .
Trong không gian
, tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm đến mặt phẳng
là:
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Cho hình (H) giới hạn bởi đồ thị hàm số
, cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).

Biết thể tích của khối tròn xoay tạo thành khi quay
quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Cho hình (H) giới hạn bởi đồ thị hàm số , cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).
Biết thể tích của khối tròn xoay tạo thành khi quay quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Cho tam giác ABC có
. Phương trình tổng quát của đường cao AH.
Theo đề bài, ta tính được:
Mp (ABC) có 2 VTCP là nên vecto pháp tuyến của (ABC) chính là tích có hướng của 2 VTCP trên. Ta có:
Vì AH là đường cao của tam giác ABC nên ta có .
Mặt khác nên ta viết được vecto chỉ phương của đường thẳng AH là tích có hướng của 2 vecto pháp tuyến
Từ đây, ta có phương trình chính tắc của
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x)
Mặt khác
=>
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

Đáp án: 4,32m2.
Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).
Đáp án: 4,32m2.
Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Đồ thị của hàm số nhận trục Oy làm trục đối xứng đi qua hai điểm
và
có dạng hàm số
.
Giao điểm của hai parabol tại
Do đó, diện tích của con cá là
Trong không gian
, viết phương trình mặt phẳng
chứa
và đi qua điểm
?
Mặt phẳng có cặp véc-tơ chỉ phương là
Suy ra mặt phẳng có một véc-tơ pháp tuyến là
.
Mặt phẳng đi qua
có vectơ pháp tuyến (4; 3; 0).
Vậy mặt phẳng có phương trình tổng quát là
.
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian
, cho tọa độ ba điểm
. Tọa độ trọng tâm
của tam giác
là:
Tọa độ trọng tâm G của tam giác ABC bằng:
Vậy trọng tâm G tìm được là .
Trong không gian với hệ tọa độ
, cho đường thẳng
. Viết phương trình mặt phẳng
đi qua điểm
và vuông góc với
.
Phương trình mặt phẳng (P):
Tìm nguyên hàm của hàm số
?
Ta có:
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Tìm số phức z thỏa mãn ![]()
Ta có
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Cho hình phẳng
giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Cho M trên đường thẳng AB với
và
. Nếu
với
thì tọa độ của M là:
Vì M nằm trên AB và nên khi xét theo tọa độ vecto 2 điểm A và B, ta có:
Tìm tọa độ giao điểm của đường thẳng
và mặt phẳng
?
Gọi I là giao điểm của d và (P).
Ta có
Suy ra
Cho hai điểm
. Viết phương trình tổng quát của mặt phẳng
vuông góc với AB, cắt ba trục tọa độ Ox, Oy, Oz tại M, N, E sao cho thể tích hình chóp
bằng
đvtt.
Vecto pháp tuyến của
Phương trình
cắt 3 trục tọa độ tại
Thể tích hình chóp là:
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Trong không gian tọa độ
, cho hai mặt phẳng
và ![]()
a) Vectơ có tọa độ
là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ
là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ
và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng
và
bằng
. Sai||Đúng
Trong không gian tọa độ , cho hai mặt phẳng
và
a) Vectơ có tọa độ là một vectơ pháp tuyến của mặt phẳng
. Sai||Đúng
b) Vectơ có toạ độ là một vectơ pháp tuyến của mặt phẳng
. Đúng||Sai
c) Côsin của góc giữa hai vectơ và
bằng
. Đúng||Sai
d) Góc giữa hai mặt phẳng và
bằng
. Sai||Đúng
a) nên mệnh đề sai
b) nên mệnh đề đúng
c) mệnh đề đúng
d) Góc hai mặt phẳng không thể tù nên mệnh đề sai
Phần thực của số phức
là:
Ta có:
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Ba mặt phẳng
cắt nhau tại điểm A.Tọa độ của A là:
Tọa độ của A là nghiệm của hệ phương trình :
Giải (1),(2) tính x,y theo z được
Thế vào phương trình (3) được , từ đó có
.
Vậy .
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng
và
. Mặt phẳng nào sau đây cách đều hai mặt phẳng (P) và (Q)?
Gọi (R) là mặt phẳng cách đều hai mặt phẳng (P) và (Q) thì
Do đó (R) có dạng .
Gọi .
Khi đó trung điểm M của đoạn AB nằm trên (R), tức .
Suy ra .
Vậy hay
.
Trong không gian
, cho tam giác
có
, đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình
. Biết
, khi đó
bằng
Hình vẽ minh họa
Giả sử đường cao là ta có vectơ chỉ phương của CH là
.
B thuộc đường trung tuyến nên
.
Suy ra
Vì nên
.
Vậy .
Cho
là các hàm số liên tục trên
và thỏa mãn
và
. Tính tích phân
?
Đặt . Theo giả thiết ta có:
Ta có:
Diện tích
của hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
là
Phương trình hoành độ giao điểm:
Khi đó:
.