Đề thi HK2 Toán 12 Đề 1

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 50 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên \left( {0; + \infty } ight) và thỏa mãn f(1) = 1, f\left( x ight) = f'\left( x ight)\sqrt {3x + 1} ,\forall x > 0. Mệnh đề nào sau đây đúng?

    Ta có: f\left( x ight) > 0f\left( x ight) = f'\left( x ight)\sqrt {3x + 1}

    => \frac{{f'\left( x ight)}}{{f\left( x ight)}} = \frac{1}{{\sqrt {3x + 1} }}

    => \int {\frac{{f'\left( x ight)}}{{f\left( x ight)}}dx}  = \int {\frac{1}{{\sqrt {3x + 1} }}} dx \Rightarrow \ln f\left( x ight) = \frac{{2\sqrt {3x + 1} }}{3} + C

    Mà f(1) = 1 => C =  - \frac{4}{3}f\left( x ight) = {e^{\frac{2}{3}\sqrt {3x + 1}  - \frac{4}{3}}}.f\left( 5 ight) = {e^{\frac{4}{3}}} \approx 3,79

  • Câu 2: Thông hiểu

    Trong không gian hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{a} = (m;2;4),\overrightarrow{b} =
(1;n;2) cùng phương. Tìm cặp số thực (m;n)?

    Ta có hai vectơ \overrightarrow{a} =
(m;2;4),\overrightarrow{b} = (1;n;2) cùng phương

    \Leftrightarrow \frac{m}{1} =
\frac{2}{n} = \frac{4}{2} \Leftrightarrow \left\{ \begin{matrix}
m = 2 \\
n = 1 \\
\end{matrix} ight.

    Vậy (m;n) = (2;1).

  • Câu 3: Nhận biết

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

    Đáp án là:

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

     Ta có: z = \frac{{7 - 17i}}{{5 - i}} = \frac{{\left( {7 - 17i} ight)\left( {5 + i} ight)}}{{\left( {5 - i} ight)\left( {5 + i} ight)}} = \frac{{52 - 78i}}{{26}} = 2 - 3i

    Vậy phần thực của số phức z=2

  • Câu 4: Thông hiểu

    Trong không gian Oxyz, gọi (P) là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Ta có: (Q) có một vectơ pháp tuyến là \overrightarrow{n}(1;1;1).

    Từ giả thiết, ta suy ra (P) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n};\overrightarrow{i} ightbrack = (0;1; -
1).

    Do (P) đi qua gốc tọa độ O nên phương trình của (P) là y - z = 0.

  • Câu 5: Thông hiểu

    Tìm nghiệm của phương trình sau trên tập số phức \mathbb C: {z^4} - {z^3} + \frac{{{z^2}}}{2} + z + 1 = 0 (1)

    Kiểm tra nghiệm z=0 ta dễ dàng nhận xét z=0 không là nghiệm của phương trình đã cho vậy z eq 0.

    Chia hai vế PT (1) cho z2 ta được : ({z^2} + \frac{1}{{{z^2}}}) - (z - \frac{1}{z}) + \frac{1}{2} = 0 (2)

    Đặt t= z - \frac{1}{z} .  Khi đó {t^2} = {z^2} + \frac{1}{{{z^2}}} - 2 \Leftrightarrow {z^2} + \frac{1}{{{z^2}}} = {t^2} + 2

    Phương trình (2) có dạng :t^2-t+\frac{5}{2} = 0 (3)

    \Delta  = 1 - 4.\frac{5}{2} =  - 9 = 9{i^2}

    Vậy PT (3) có 2 nghiệm:    t=\frac{{1 + 3i}}{2};t=\frac{{1 - 3i}}{2} 

    Với  t=\frac{{1 + 3i}}{2},  ta có z - \frac{1}{z} = \frac{{1 + 3i}}{2} \Leftrightarrow 2{z^2} - (1 + 3i)z - 2 = 0(4)

    \Delta  = {(1 + 3i)^2} + 16 = 8 + 6i = 9 + 6i + {i^2} = {(3 + i)^2}

    Vậy PT(4) có 2 nghiệm :

    z=\frac{{(1 + 3i) + (3 + i)}}{4} = 1 + iz= \frac{{(1 + 3i) - (3 + i)}}{4} = \frac{{i - 1}}{2}

    Do đó PT đã cho có 4 nghiệm : z=1+i; z=1-iz=\frac{{i - 1}}{2}; z=\frac{{-i - 1}}{2}

  • Câu 6: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

  • Câu 7: Thông hiểu

    Xác định nguyên hàm F(x) của hàm số f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1}?

    Ta có:

    f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1} = \frac{(x + 1)^{3} - 2}{(x + 1)^{2}} = x + 1 -
\frac{2}{(x + 1)^{2}}

    \Rightarrow F(x) = \frac{x^{2}}{2} + x +
\frac{2}{x + 1} + C

  • Câu 8: Nhận biết

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 9: Vận dụng cao

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Đáp án là:

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Gọi M(x; y) là điểm biểu diễn số phức z trong mặt phẳng phức.

    \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight| \Leftrightarrow \left| {z - 2i} ight|.\left| {z + 2i} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z = 2i\\\left| {z + 2i} ight| = \left| {z - 1 + 2i} ight|\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}x = 0;\;y = 2\\x = \frac{1}{2};\;y \in \mathbb R\end{array} ight.

    Vậy M= (0; 2) hoặc M \in d:x = \frac{1}{2}.

    Gọi I(-3;2) thì P=IM. Khi đó I{M_{\min }} = 3 hoặc I{M_{\min }} = d(I;d) = \frac{7}{2}.

    Vậy {P_{\min }} = 3.

  • Câu 10: Vận dụng cao

    Cho hàm số f(x) liên tục trên đoạn \lbrack - 6;5brack có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:

    Tính giá trị I = \int_{-
6}^{5}{\left\lbrack f(x) + 2 ightbrack dx}?

    Hình vẽ minh họa

    Dựa vào đồ thị ta có: A( - 6; - 1),B( -
2;1) suy ra phương trình đường thẳng AB:y = \frac{1}{2}x + 2

    \Rightarrow I_{1} = \int_{0}^{-
2}{\left\lbrack \frac{1}{2}x + 2 + 2 ightbrack dx} = 8

    Phương trình đường tròn (C): x^{2} + (y - 1)^{2} = 4 \Rightarrow y = 1 +
\sqrt{4 - x^{2}}

    \Rightarrow I_{2} = \int_{-
2}^{2}{\left\lbrack 1 + \sqrt{4 - x^{2}} + 2 ightbrack dx} = 12 +
2\pi

    Điểm C(2;1),D(5;3) nên phương trình đường thẳng CD là: y = \frac{2}{3}x - \frac{1}{3}

    \Rightarrow I_{3} =
\int_{2}^{5}{\left\lbrack \frac{2}{3}x - \frac{1}{3} + 2 ightbrack
dx} = 12

    Vậy I = I_{1} + I_{2} + I_{3} = 32 +
2\pi

  • Câu 11: Thông hiểu

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 12: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + t \\
y = - 3 + 2t \\
z = 1 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Gọi d' là hình chiếu vuông góc của d trên mặt phẳng tọa độ (Oxz). Viết phương trình đường thẳng d'.

    Ta có: d đi qua M(2; −3; 1) và có vectơ chỉ phương \overrightarrow{u} = (1;2;3)

    Mặt phẳng (Oxz) có vectơ pháp tuyến \overrightarrow{n} = (0;1;0) và có phương trình y = 0.

    Suy ra \left\lbrack
\overrightarrow{n};\overrightarrow{u} ightbrack = ( -
3;0;1)

    Gọi H là hình chiếu vuông góc của M trên Oxz ⇒ H(2; 0; 1).

    Suy ra d' là đường thẳng qua H(2; 0; 1) và nhận vectơ \overrightarrow{u'} = \left\lbrack
\overrightarrow{n}.\left\lbrack \overrightarrow{n};\overrightarrow{u}
ightbrack ightbrack = (1;0;3) làm vectơ chỉ phương.

    Vậy phương trình đường thẳng cần tìm là d':\left\{ \begin{matrix}
x = 2 + t \\
y = 3 - 2t \\
z = 1 + 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 13: Vận dụng cao

    Trong không gian với hệ tọa độ cho các điểm A(1;0;0), B(0;2;0), C(0;0;3), D(2;-2;0). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểmO, A, B, C, D ?

     Mặt phẳng (ABC) có phương trình là:

    \frac{x}{1} + \frac{y}{2} + \frac{z}{3} = 1\Leftrightarrow 6x + 3y + 2z - 6 = 0, do đó D \in \left( {ABC} ight).

    Lại có A là trung điểm BD.

    Ta có (Oxy) chứa các điểm O, A, B, D;

    (Oyz) chứa các điểm O, B, C;

    (Oxz) chứa các điểm O, A, C;

    (ABC) chứa các điểm A, B, C, D;

    (OCD) chứa các điểm O, C ,D.

    Vậy có mặt phẳng phân biệt thỏa mãn bài toán.

  • Câu 14: Vận dụng

    Tích phân I = \int\limits_1^2 {\frac{{ax - 2}}{{\sqrt {a{x^2} - 4x} }}} dx = 2\sqrt 3  - 1. Giá trị nguyên của a là:

    Ta có: \left( {a{x^2} - 4x} ight)' = 2ax - 4 = 2\left( {ax - 2} ight)

    \Rightarrow I = \frac{1}{2}\int\limits_1^2 {\frac{{2ax - 4}}{{\sqrt {a{x^2} - 4x} }}} dx

    Đặt t = a{x^2} - 4x \Rightarrow dt = \left( {2ax - 4} ight)dx

    Đổi cận \left\{ \begin{gathered}  x = 2 \Rightarrow t = 4a - 8 \hfill \\  x = 1 \Rightarrow t = a - 4 \hfill \\ \end{gathered}  ight.

    I = \frac{1}{2}\int\limits_{a - 4}^{4a - 8} {\frac{1}{{\sqrt t }}} dt = \left. {\left( {\sqrt t } ight)} ight|_{a - 4}^{4a - 8} = \sqrt {4a - 8}  - \sqrt {a - 4}

    Theo đề bài: 

    I = 2\sqrt 3  - 1 \Leftrightarrow \sqrt[{}]{{4a - 8}} - \sqrt {a - 4}  = 2\sqrt 3  - 1 \Leftrightarrow ..... \Leftrightarrow a = 5

  • Câu 15: Nhận biết

    Cho hai số phức {z_1} = 1 - 3i{z_2} =  - 2 - 5i. Tìm phần ảo b của số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {1 - 3i} ight) - \left( { - 2 - 5i} ight) \hfill \\ = 1 - 3i + 2 + 5i \hfill \\= (1 + 2) + ( - 3 + 5)i \hfill \\  \,\,\,\, = 3 + 2i \hfill \\ \end{matrix}

  • Câu 16: Thông hiểu

    Tìm các căn bậc hai của số phức z = 5 + 12i

     Giả sử m + ni (m; n \in R) là căn bậc hai của z

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 5 + 12i \Leftrightarrow {m^2} + 2mni - {n^2} = 5 + 12i

    \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5 \hfill \\  2mn = 12 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5(1) \hfill \\  m = \frac{6}{n}(2) \hfill \\ \end{gathered}  ight.

    Thay (2) vào (1) ta có: {\left( {\frac{6}{n}} ight)^2} - {n^2} = 5 \Leftrightarrow 36 - {n^4} = 5{n^2}

    \Leftrightarrow {n^4} + 5{n^2} - 36 = 0 \Leftrightarrow {n^2} = 4;{n^2} =  - 9(loai)

    \left[ \begin{gathered}  n = 2 \Rightarrow m = 3 \hfill \\  n =  - 2 \Rightarrow m =  - 3 \hfill \\ \end{gathered}  ight.

    Vậy z có hai căn bậc hai là 3+2i và -3-2i.

  • Câu 17: Nhận biết

    Xác định nguyên hàm của hàm số f(x) =
3x^{2} + \frac{x}{2}?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}\left( 3x^{2} + \frac{x}{2} ight)dx = x^{3} +
\frac{x^{2}}{4} + C.

  • Câu 18: Thông hiểu

    Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm B(2;1; - 3), đồng thời vuông góc với hai mặt phẳng (Q):x + y + 3z = 0,(R):2x
- y + z = 0 là:

    Ta có \left\{ \begin{matrix}
\overrightarrow{n_{1}} = (1;1;3) \\
\overrightarrow{n_{2}} = (2; - 1;1) \\
\end{matrix} ight. lần lượt là vectơ pháp tuyến của các mặt phẳng (Q),(R).

    Do mặt phẳng (P) vuông góc với hai mặt phẳng (Q),(R) nên \left\lbrack
\overrightarrow{n_{1}},\overrightarrow{n_{2}} ightbrack = (4;5; -
3) là một vectơ pháp tuyến của (P).

    Từ đó suy ra mặt phẳng (P) có phương trình 4x + 5y - 3z - 22 =
0.

  • Câu 19: Vận dụng

    Trong không gian Oxyz, cho bốn điểm A(2;0;0),B(0;3;0),C(0;0;3)D\left( 1;1;\frac{1}{2} ight). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm O,A,B,C,D?

    Hình vẽ minh họa

    Ta có mặt phẳng (ABC): \frac{x}{2} +
\frac{y}{3} + \frac{z}{3} = 1.

    Suy ra D\left( 1;1;\frac{1}{2}
ight) thuộc mặt phẳng (ABC).

    Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.

    Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là C_{4}^{2} = 6.

    Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm O,A,B,C,D1 + 6 = 7.

  • Câu 20: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 21: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = \cos x;y = 0;x = 0;x =
\frac{\pi}{2}. Thể tích vật thể tròn xoay có được khi (H) quay quanh trục Ox bằng:

    Gọi V là thể tích khối tròn xoay cần tính. Ta có:

    V = \pi\int_{0}^{\frac{\pi}{2}}{\left(\cos x ight)^{2}dx} = \pi\int_{0}^{\frac{\pi}{2}}{\frac{1 +\cos2x}{2}dx}

    = \pi\left. \ \left( \frac{x}{2} +\frac{\sin2x}{4} ight) ight|_{0}^{\frac{\pi}{2}} =\frac{\pi^{2}}{4}

  • Câu 22: Thông hiểu

    Diện tích hình phẳng giới hạn bởi các đường y = (x - 1)e^{2x}, trục hoành; x = 0x =
2 bằng:

    Hoành độ giao điểm của đồ thị hàm số y =
(x - 1)e^{2x} và trục hoành là nghiệm của phương trình: (x - 1)e^{2x} = 0 \Leftrightarrow x =
1

    Diện tích hình phẳng giới hạn bởi các đường là:

    S = \int_{0}^{2}{\left| (x - 1)e^{2x}
ight|dx}

    = \int_{0}^{1}{\left\lbrack (1 -
x)e^{2x} ightbrack dx} + \int_{1}^{2}{\left\lbrack (x - 1)e^{2x}
ightbrack dx}

    = \frac{1}{2}\int_{0}^{1}{(1 - x)d\left(
e^{2x} ight)} + \frac{1}{2}\int_{1}^{2}{(x - 1)d\left( e^{2x}
ight)}

    = \frac{1}{2}\left. \ (1 - x)e^{2x}
ight|_{0}^{1} + \frac{1}{2}\int_{0}^{1}{e^{2x}dx} + \frac{1}{2}\left.
\ (x - 1)e^{2x} ight|_{1}^{2} -
\frac{1}{2}\int_{1}^{2}{e^{2x}dx}

    = \frac{e^{4}}{2} - \frac{1}{2} +
\frac{1}{4}\left. \ e^{2x} ight|_{0}^{1} - \frac{1}{4}\left. \ e^{2x}
ight|_{1}^{2}

    = \frac{e^{4}}{4} + \frac{e^{2}}{2} -
\frac{3}{4}

  • Câu 23: Nhận biết

    Cho 3 vectơ \vec a,\,\,\vec b,\,\,\,\vec c  đều khác \vec{0} . Ba vectơ \vec a,\,\,\vec b,\,\,\,\vec c đồng phẳng khi và chỉ khi:

    Ta có: m, n, p eq 0 theo điều kiện để 3 vectơ nên suy ra này sai.

    Theo điều kiện đồng phẳng, nếu \vec a,\,\,\vec b,\,\,\,\vec c cùng vuông góc với \vec{d}\vec{d} vuông góc với thì giá của \vec a,\,\,\vec b,\,\,\,\vec c cùng song song với (P) . Suy ra đáp án này đúng.

    Từ đây ta loại tiếp được đáp án: Cả 3 điều kiện trên thỏa mãn

    Nếu xét tiếp đáp án:

    • \vec{a}\vec{b} cùng nằm trong mặt phẳng (Q) và \vec c có giá vuông góc (Q)

    thì khi có và cùng nằm trong mặt phẳng (Q) và có giá vuông góc (Q) nên sẽ nằm trong mặt phẳng vuông góc với mặt phẳng chứa và là mặt phẳng (Q).

    Suy ra chúng không đồng phẳng.

  • Câu 24: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số y = \frac{1}{x \ln3}?

    Ta có: y = \log_{3}x \Rightarrow y' = \frac{1}{x \ln3}.

  • Câu 25: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x + 5?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{(2x +
5)dx} = x^{2} + 5x + C

  • Câu 26: Nhận biết

    Trong không gian Oxyz, đường thẳng d:\frac{x + 3}{1} = \frac{y - 1}{- 1}
= \frac{z - 5}{2} có một vectơ chỉ phương là:

    Đường thẳng (P) có một vectơ chỉ phương là: \overrightarrow{u_{4}} = ( - 1;\
1;\  - 2)

  • Câu 27: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y = 3x^{2} -
1. Phát biểu nào sau đây đúng?

    Ta có \int_{}^{}{\left( 3x^{2} - 1
ight)dx = x^{3} - x + C}.

  • Câu 28: Vận dụng

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm phức của phương trình 2{z^4} - 3{z^2} - 2 = 0. Tổng T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight|  bằng:

     Ta có:  2{z^4} - 3{z^2} - 2 = 0 \Leftrightarrow \left( {2{z^2} + 1} ight)\left( {{z^2} - 2} ight) = 0

    \Leftrightarrow \left( {z + \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \frac{{\sqrt 2 }}{2}i} ight)\left( {z - \sqrt 2 } ight)\left( {z + \sqrt 2 } ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - \dfrac{{\sqrt 2 }}{2}i\\{z_2} = \dfrac{{\sqrt 2 }}{2}i\\{z_3} = \sqrt 2 \\{z_4} =  - \sqrt 2 \end{array} ight.

    T = \left| {{z_1}} ight| + \left| {{z_2}} ight| + \left| {{z_3}} ight| + \left| {{z_4}} ight| = 3\sqrt 2

  • Câu 29: Nhận biết

    Tính tích phân I =\int_{0}^{\frac{\pi}{2}}{\left( \sin2x + \sin x ight)dx}?

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\left(\sin2x + \sin x ight)dx} = \left. \ \left( - \frac{1}{2}\cos2x - \cos xight) ight|_{0}^{\frac{\pi}{2}} = 2

  • Câu 30: Thông hiểu

    Số nghiệm của phương trình: (z^2 + 3z +6)^2 + 2z(z^2 + 3z +6) – 3z^2 = 0 là?

     Đặt t = z^2 + 3z +6 phương trình đã cho có dang:

    t^2 +2zt – 3z^2 = 0 \Leftrightarrow (t – z)(t+3z) = 0 \Leftrightarrow\left[ \begin{array}{l}t = z\\t =  - 3z\end{array} ight.

    + Với t = z \Leftrightarrow z^2 + 3z +6 –z = 0  \Leftrightarrow  z^2 + 2z + 6 = 0  \Leftrightarrow\left[ \begin{array}{l}z =  - 1 + \sqrt 5 i\\z =  - 1 - \sqrt 5 i\end{array} ight.

    + Với t = -3z \Leftrightarrow  z^2 + 3z +6 +3z = 0 \Leftrightarrow z^2 + 6z + 6 = 0 \Leftrightarrow\left[ \begin{array}{l}z =  - 3 + \sqrt 3 \\z =  - 3 - \sqrt 3 \end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm.

  • Câu 31: Vận dụng

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình lập phương ABCD.A'B'C'D'; đáy là hình vuông cạnh a. Trên cạnh DC;BB' lần lượt lấy các điểm M;N sao cho DM = BN = x;(0 \leq x \leq a). Tính số đo góc giữa hai đường thẳng A'CMN.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 32: Thông hiểu

    Diện tích S của hình phẳng giới hạn bởi đường cong y = - x^{3} + 3x^{2} - 2, trục hoành và hai đường thẳng x = 0;x = 2

    Phương trình hoành độ giao điểm

    - x^{3} + 3x^{2} - 2 = 0 \Leftrightarrow
(1 - x)\left( x^{2} - 2x - 2 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \\
x = 1 + \sqrt{3} \\
x = 1 - \sqrt{3} \\
\end{matrix} ight.

    Khi đó:

    S = \int_{0}^{2}{\left| - x^{3} + 3x^{2}
- 2 ight|dx}

    = \int_{0}^{1}{\left| - x^{3} + 3x^{2} -
2 ight|dx} + \int_{1}^{2}{\left| - x^{3} + 3x^{2} - 2
ight|dx}

    = \left| \int_{0}^{1}{\left( - x^{3} +
3x^{2} - 2 ight)dx} ight| + \left| \int_{1}^{2}{\left( - x^{3} +
3x^{2} - 2 ight)dx} ight|

    = \left| \left. \ \left( -
\frac{x^{4}}{4} + x^{3} - 2x ight) ight|_{0}^{1} ight| + \left|
\left. \ \left( - \frac{x^{4}}{4} + x^{3} - 2x ight) ight|_{1}^{2}
ight|

    = \frac{5}{2}

  • Câu 33: Vận dụng cao

    Cho điểm {m{A(2, - 1,1)}} và đường thẳng (\Delta ):\left\{ \begin{array}{l}y + z - 4 = 0\\2x - y - z + 2 = 0\end{array} ight.. Gọi A'  là điểm đối xứng của A qua (\triangle) . Tọa độ điểm A'  là:

    Đưa phương trình (\triangle) về dạng tham số: \left\{ \begin{array}{l}x = 1\\y = 4 - t\\z = t\end{array} ight.

    Gọi (P) là mặt phẳng qua A và vuông góc với (\triangle).

    Phương trình mp (P) có dạng - y + z + D = 0 , qua A nên D =  -2

    Phương trình (P) là: y - z + 2 = 0

    Thế x, y, z từ phương trình (\triangle) vào phương trình (P) được t=1

    \Rightarrow (\triangle ) \cap (\alpha ) = (1,3,1).

    I là trung điểm của AA' nên: {x_{A'}} + 2 = 2;{y_{A'}} - 1 = 6;{z_{A'}} + 1 = 2

    \Rightarrow A'(0,7,1).

  • Câu 34: Nhận biết

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

  • Câu 35: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình sau: (z^2 + z)^2 + 4(z^2 + z) -12 = 0 là?

     Đặt t = z^2 + z, khi đó phương trình đã cho có dạng:

    t^2 + 4t – 12 = 0 \Leftrightarrow\left[ \begin{array}{l}t =  - 6\\t = 2\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}{z^2} + z - 6 = 0\\{z^2} + z - 2 = 0\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{{ - 1 + \sqrt {23} i}}{2}\\z = \dfrac{{ - 1 - \sqrt {23} i}}{2}\\z = 1\\z =  - 2\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm có tổng là

    \frac{{ - 1 + \sqrt {23} i}}{2} + \frac{{ - 1 - \sqrt {23} i}}{2} + 1 - 2 =  - 1 + 1 - 2 =  - 2

  • Câu 36: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(3;0;1). Khẳng định nào sau đây đúng?

    Vì tọa độ điểm A(3;0;1)x = 3;y = 0;z = 1 nên A \in (Oxz).

  • Câu 37: Thông hiểu

    Số phức z thỏa mãn z = 1 + 2i + 3{i^2} + 4{i^3} + ... + 18{i^{19}}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:  z - iz = 1 + i + ... + {i^{19}} - 18{i^{20}} = 1.\frac{{1 - {i^{20}}}}{{1 - i}} - 18{i^{20}} =  - 18

    \Rightarrow z = \frac{{ - 18}}{{1 - i}} =  - 9 - 9i

  • Câu 38: Vận dụng

    Cho F(x) là nguyên hàm của hàm số y = f\left( x ight) = \frac{1}{{{e^x} + 3}} thỏa mãn F\left( 0 ight) =  - \frac{{ - 1}}{3}\ln 4. Tìm tập nghiệm S của phương trình 3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2

    F\left( x ight) = \int {\frac{1}{{{e^x} + 3}}dx}  = \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}

     Đặt t = {e^x} \Rightarrow dt = {e^x}dx

    \int {\frac{{{e^x}}}{{{e^x}\left( {{e^x} + 3} ight)}}dx}  = \int {\frac{1}{{t\left( {t + 3} ight)}}dt}

    = \int {\left( {\frac{1}{{3t}} - \frac{1}{{3\left( {t + 3} ight)}}} ight)dt = \frac{{\ln |t|}}{3} - \frac{{\ln |t + 3|}}{3} + C}

    = \frac{{\ln \left( {{e^x}} ight)}}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C = \frac{x}{3} - \frac{{\ln \left( {{e^x} + 3} ight)}}{3} + C

    F\left( 0 ight) =  - \frac{1}{3}\ln 4 \Rightarrow  - \frac{{\ln 4}}{3} + C =  - \frac{1}{3}\ln 4 \Rightarrow C = 0

    Ta có:

    \begin{matrix}  3F\left( x ight) + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow 3\left[ {\dfrac{x}{3} - \dfrac{{\ln \left( {{e^x} + 3} ight)}}{3}} ight] + \ln \left( {{e^x} + 3} ight) = 2 \hfill \\   \Leftrightarrow x = 2 \hfill \\ \end{matrix}

  • Câu 39: Nhận biết

    Trong không gian Oxyz, hãy tính pq lần lượt là khoảng cách từ điểm M(5; - 2;0) đến mặt phẳng (Oxz) và mặt phẳng (P):3x - 4z + 5 = 0?

    Do mặt phẳng (Oxz) có phương trình y = 0 nên

    p = d\left( M;(Oxz) ight) = \frac{| -
2|}{\sqrt{0^{2} + 1^{2} + 0^{2}}} = 2

    Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên

    q = d\left( M;(P) ight) = \frac{|3.5 -
4.0 + 5|}{\sqrt{3^{2} + 0^{2} + ( - 4)^{2}}} = 4

  • Câu 40: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, gọi (\alpha) là mặt phẳng chứa đường thẳng (\beta):\frac{x - 2}{1} = \frac{y - 3}{1} =
\frac{z}{2} và vuông góc với mặt phẳng (\beta):x + y - 2z + 1 = 0. Hỏi giao tuyến của (\alpha)(\beta) đi qua điểm nào dưới đây?

    Ta có: (\alpha):\left\{ \begin{matrix}
d \subset (\alpha)\  \\
(\beta)\bot(\alpha) \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
A(2;3;0) \in d \Rightarrow A \in (\alpha)\  \\
\overrightarrow{n_{\alpha}}\bot\overrightarrow{u_{d}} = (1;1;2)\  \\
\overrightarrow{n_{\alpha}}\bot\overrightarrow{n_{\beta}} = (1;1; - 2)
\\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
A(2;3;0) \in (\alpha)\  \\
\overrightarrow{n_{\alpha}} = \left\lbrack
\overrightarrow{u_{d}};\overrightarrow{n_{\beta}} ightbrack = ( -
4;4;0) \\
\end{matrix} ight.

    Suy ra (\alpha):x - y + 1 =
0

    Khi đó giao tuyến thỏa hệ \left\{
\begin{matrix}
x - y + 1 = 0 \\
x + y - 2z + 1 = 0 \\
\end{matrix} ight.

    Thay các phương án vào hệ, ta nhận phương án (2;3;3).

  • Câu 41: Thông hiểu

    Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x) =
\frac{1}{3}x^{3} - x^{2} - \frac{1}{3}x + 1 và trục hoành như hình vẽ:

    Mệnh đề nào sau đây sai?

    Phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và trục hoành là:

    \frac{1}{3}x^{3} - x^{2} - \frac{1}{3}x
+ 1 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
x = 3 \\
\end{matrix} ight.

    Từ hình vẽ ta thấy \left\{ \begin{matrix}
f(x) > 0;\forall x \in ( - 1;1) \\
f(x) < 0;\forall x \in (1;3) \\
\end{matrix} ight.

    Do đó S = \int_{- 1}^{3}{\left| f(x)
ight|dx} = \int_{- 1}^{1}{f(x)dx} - \int_{1}^{3}{f(x)dx} = 2\int_{-
1}^{1}{f(x)dx}

    Vậy mệnh đề sai là: S =
2\int_{1}^{3}{f(x)dx}

  • Câu 42: Thông hiểu

    Biết \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C. Khi đó \int_{}^{}{f\left( e^{x}
ight)}dx tương ứng bằng

    Ta có: \int_{}^{}{f(x)dx} = 3x^{2} - 4x +
C \Rightarrow f(x) = 6x - 4

    \Rightarrow f\left( e^{x} ight) =
6e^{x} - 4

    \Rightarrow \int_{}^{}{f\left( e^{x}
ight)}dx = \int_{}^{}{\left( 6e^{x} - 4 ight)dx} = 6e^{x} - 4e^{x} +
C

  • Câu 43: Nhận biết

    Xác định giá trị của tham số a thỏa mãn \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = a^{3} + 2?

    Ta có: \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = \left. \ \left( x^{3} + 2x ight) ight|_{0}^{a} = a^{3}
+ 2a

    \Rightarrow \int_{0}^{a}{\left( 3x^{2} +
2 ight)dx} = a^{3} + 2 \Leftrightarrow a^{3} + 2a = a^{3} + 2
\Leftrightarrow a = 1

    Vậy đáp án a = 1.

  • Câu 44: Vận dụng

    Cho hình hộp chữ nhật ABCD.EFGH có AB = a; AD = b; AE = c trong hệ trục Oxyz sao cho A trùng với O;\,\,\overrightarrow {AB} ,\overrightarrow {AD} ,\overrightarrow {AE} lần lượt trùng với Ox, Oy, Oz . Gọi M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của đường thẳng MN.

    Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:

    M\left( {a,\frac{b}{2},0} ight);\,\,\,N\left( {\frac{a}{2},0,c} ight) =  > \,\,\overrightarrow {MN}  = \left( { - \frac{a}{2}, - \frac{b}{2},c} ight)

    (MN) là đường thẳng đi qua M và nhận vecto \overrightarrow {MN} là 1 VTCP có PT là:

    =  > \frac{{2\left( {x - a} ight)}}{{ - a}} = \frac{{2y - b}}{{ - b}} = \frac{z}{c} =  > \left\{ \begin{array}{l}2bx - 2ay - ab = 0\\2cx + az - 2ac = 0\end{array} ight.

  • Câu 45: Nhận biết

    Số phức nào dưới đây là số thuần ảo?

     Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.

  • Câu 46: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 2022 - 2023i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 47: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 3 + 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Vectơ nào dưới đây là vectơ chỉ phương của d?

    Ta có: d:\left\{ \begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 3 + 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) suy ra vectơ chỉ phương của đường thẳng d là \overrightarrow{u} = (2; - 3;5)

  • Câu 48: Nhận biết

    Tìm nguyên hàm F(t) =
\int_{}^{}txdt.

    Ta có:

    F(t) = \int_{}^{}txdt = x\int_{}^{}tdt =
x.\frac{t^{2}}{2} + C

  • Câu 49: Nhận biết

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 50: Thông hiểu

    Cho số phức z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}}. Phần thực của số phức z là?

     Ta có: z = 1 + \left( {1 + i} ight) + {\left( {1 + i} ight)^2} + ... + {\left( {1 + i} ight)^{26}} = \frac{{{{\left( {1 + i} ight)}^{27}} - 1}}{i}

    = \frac{{{{\left( {1 + i} ight)}^{26}}.\left( {1 + i} ight) - 1}}{i} = \frac{{{{(2i)}^{13}}\left( {1 + i} ight) - 1}}{i}

    = \frac{{{2^{13}}i - {2^{13}} - 1}}{i} = {2^{13}} + (1 + {2^{13}})i

    Vậy phần thực là  2^{13}.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 204 lượt xem
Sắp xếp theo