Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Trong không gian với hệ tọa độ
, cho ba mặt phẳng ![]()
![]()
. Một đường thẳng d thay đổi cắt ba mặt
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Dễ dàng nhận thấy (P)//(Q)//(R).
Kẻ đường thẳng qua B vuông góc với cả 3 mặt phẳng cắt (P) tại H và cắt (Q) tại K.
Ta có
Khi đó ta có:
Vậy .
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Một vật chuyển động với vận tốc
. Tính quãng đường vật đó đi được trong
giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?
Quãng đường vật đó đi được trong 4 giây đầu là:
.
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Viết phương trình tham số của đường thẳng (d) qua I (-1, 5, 2) và song song với trục x'Ox:
Theo đề bài, ta có (d) // x’Ox nên (d) có vecto chỉ phương là
Như vậy, (d) qua I (-1, 5, 2) và nhận làm 1 VTCP có PTTS là:
(d):
Trong không gian
, hãy tính
và
lần lượt là khoảng cách từ điểm
đến mặt phẳng
và mặt phẳng
?
Do mặt phẳng có phương trình y = 0 nên
Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính giá trị của biểu thức ![]()
Ta có:
=>
Viết phương trình tổng quát của mặt phẳng (P) qua hai điểm
và có một vectơ chỉ phương
.
Theo đề bài ta có:
Như vậy, VTPT của (P) là tích có hướng của 2 vecto chỉ phương
Mp (P) đi qua và nhận vecto
làm 1 VTPT có phương trình là:
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Trong không gian với hệ tọa độ
, phương trình chính tắc của đường thẳng
đi qua điểm
có vectơ chỉ phương
là:
Phương trình đường thẳng đi qua điểm có vectơ chỉ phương
nên có phương trình:
.
Trong không gian với hệ tọa độ
, cho hai điểm
. Giả sử
là tâm đường tròn ngoại tiếp tam giác
. Tính
.
Ta có:
Mặt phẳng (OAB) đi qua O và có vec-tơ pháp tuyến nên có phương trình
.
Ta xác định được
Theo giả thiết
Mặt khác
Giải hệ gồm (1), (2) và (3) ta được .
Vậy .
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho hàm số
có đạo hàm liên tục trên đoạn
và đồ thị hàm số
(như hình vẽ). biết
và
. Kết luận nào sau đây là đúng?

Hình vẽ minh họa:

Ta có:
Từ đồ thị ta thấy
Từ đồ thị ta thấy
=>
Mặt khác
Ta có bảng biến thiên như sau:

=> có duy nhất nghiệm trên
Cho số phức
. Tìm số phức
?
Ta có:
Trong không gian
, cho hai điểm
và
. Tìm tọa độ vectơ
?
Ta có:
Vậy đáp án đúng là: .
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Đặt
với
là tham số thực. Tìm giá trị của tham số
để
?
Ta có:
Do .
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho hình hộp
CÓ
. Giá trị của
bằng:
Ta có:
Vậy .
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Cho
với
là các số hữu tỉ. Giá trị của biểu thức
bằng:
Ta có:
Suy ra
Cho các số phức z thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
.
3 || ba || Ba
Cho các số phức z thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức
.
3 || ba || Ba
Gọi là điểm biểu diễn số phức z trong mặt phẳng phức.
Có
Vậy hoặc
.
Gọi thì
. Khi đó
hoặc
.
Vậy
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Họ nguyên hàm của hàm số
là:
Đặt
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Biết rằng
với
là các số hữu tỉ. Giá trị của
là:
Ta có:
Đặt
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Diện tích hình phẳng giới hạn bởi hai đồ thị hàm số
là:
Phương trình hoành độ giao điểm 2 đồ thị là:
Diện tích cần tìm là:
Trong không gian với hệ trục tọa độ
cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Cho hàm số f(x) xác định trên
thỏa mãn
. Tính giá trị của biểu thức ![]()
=>
Theo bài ra ta có:
=>
=>
Phương trình tổng quát của mặt phẳng đi qua A(4, -1, 1), B(3, 1, -1) và song song với trục Ox là:
: vectơ chỉ phương của trục Ox:
.
: Chọn làm vectơ pháp tuyến thì phương trình mặt phẳng cần tìm có dạng
, qua A nên:
Vậy ta có phương trình mp cần tìm là:
Cho hàm số
liên tục trên đoạn
và
là một nguyên hàm của
. Biết rằng
. Xác định tích phân
?
Ta có: .
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Trong không gian
, cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Trong không gian , cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Nguyên hàm của hàm số
là:
Ta có:
.
Cho số phức
. Tính |z|
Ta có
Tìm tất cả các giá trị thực của tham số
thỏa mãn
?
Ta có:
Trong không gian với hệ tọa độ
, cho hai đường thẳng:
và ![]()
a) Vectơ có tọa độ
là một vectơ chỉ phương của
. Sai||Đúng
b) Đường thẳng
đi qua điểm
. Đúng||Sai
c) Đường thẳng
đi qua
và vuông góc với
có phương trình tham số là
. Đúng||Sai
d) Góc giữa hai đường thẳng
và
khoảng
. Sai||Đúng
Trong không gian với hệ tọa độ , cho hai đường thẳng:
và
a) Vectơ có tọa độ là một vectơ chỉ phương của
. Sai||Đúng
b) Đường thẳng đi qua điểm
. Đúng||Sai
c) Đường thẳng đi qua
và vuông góc với
có phương trình tham số là
. Đúng||Sai
d) Góc giữa hai đường thẳng và
khoảng
. Sai||Đúng
a) Vectơ có tọa độ là một vectơ chỉ phương của
nên mệnh đề sai
b) Mệnh đề đúng
c) Gọi
nên mệnh đề đúng
d) Góc giữa hai đường thẳng luôn là góc nhọn nên mệnh đề sai
Biết rằng
và
. Tính
?
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có:
.
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm
và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Ta có:
Đường thẳng (BC) đi qua điểm B có VTCP có dạng
Điểm và
Ta có:
Vậy
Trong không gian
, viết phương trình mặt phẳng
biết
đi qua hai điểm
và vuông góc với mặt phẳng
.
Ta có và
có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Do đó, có phương trình là
.
Cho hàm số
có đồ thị như hình vẽ:

Các biểu thức
xác định bởi
. Mệnh đề nào sau đây đúng?
Dựa vào hình vẽ và diện tích hình phẳng ta có:
(hệ số góc của tiếp tuyến tại x = 1)
Như vậy
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức
. Kết luận nào sau đây đúng?
Ta có: