Đề thi HK2 Toán 12 Đề 1

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 50 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 2: Nhận biết

    Kí hiệu {z_1},{z_2} là hai nghiệm phức của phương trình 3{z^2} - z + 1 = 0. Tính P = \left| {{z_1}} ight| + \left| {{z_2}} ight|

    Phương trình 3{z^2} - z + 1 = 0 có hai nghiệm {z_{1,2}} = \frac{{1 \pm i\sqrt {11} }}{6}.

    Khi đó P = \left| {{z_1}} ight| + \left| {{z_2}} ight| = \frac{{2\sqrt 3 }}{3}

  • Câu 3: Nhận biết

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

  • Câu 4: Nhận biết

    Trong không gian Oxyz cho hai điểm A(2;0; - 1),B(1;1;0)(\alpha) là mặt phẳng trung trực của đoạn thẳng AB. Vectơ nào sau đây là một vectơ pháp tuyến của (\alpha)?

    Do (\alpha) là mặt phẳng trung trực của đoạn thẳng AB nên (\alpha) nhận \overrightarrow{AB} = ( - 1;1;1) làm vectơ pháp tuyến.

    Suy ra \overrightarrow{n}(1; - 1; - 1) =
- \overrightarrow{AB} cũng là vectơ pháp tuyến của (α).

  • Câu 5: Thông hiểu

    Trong không gian Oxyz, cho tọa độ ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Góc giữa hai đường thẳng ABAC

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;2) \\
\overrightarrow{AC} = (1;2; - 1) \\
\end{matrix} ight..

    \Rightarrow \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{1}{2}

    \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = (AB;AC) =
60^{0}

  • Câu 6: Nhận biết

    Số phức liên hợp của số phức 3 - 2i là

     \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 2i}  = 3 - ( - 2i) = 3 + 2i

  • Câu 7: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x - 3y + 4z - 5 = 0. Vectơ nào dưới đây là một vectơ pháp tuyến của (P)?

    Mặt phẳng ax + by + cz + d = 0 có vectơ pháp tuyến \overrightarrow{n} =
(a;b;c)

    Mặt phẳng (P):2x - 3y + 4z - 5 =
0 có vectơ pháp tuyến là: \overrightarrow{n} = (2; - 3;4)

  • Câu 8: Nhận biết

    Cho hai số phức {z_1} = 5 - 7i{z_2} = 2 + 3i. Tìm số phức z = {z_1} + {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} + {z_2} \hfill \\  = \left( {5 - 7i} ight) + \left( {2 + 3i} ight) \hfill \\   = (5 + 2) + ( - 7 + 3)i \hfill \\ = 7 - 4i \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu

    Tìm nghiệm của phương trình sau trên tập số phức \mathbb C: {z^4} - {z^3} + \frac{{{z^2}}}{2} + z + 1 = 0 (1)

    Kiểm tra nghiệm z=0 ta dễ dàng nhận xét z=0 không là nghiệm của phương trình đã cho vậy z eq 0.

    Chia hai vế PT (1) cho z2 ta được : ({z^2} + \frac{1}{{{z^2}}}) - (z - \frac{1}{z}) + \frac{1}{2} = 0 (2)

    Đặt t= z - \frac{1}{z} .  Khi đó {t^2} = {z^2} + \frac{1}{{{z^2}}} - 2 \Leftrightarrow {z^2} + \frac{1}{{{z^2}}} = {t^2} + 2

    Phương trình (2) có dạng :t^2-t+\frac{5}{2} = 0 (3)

    \Delta  = 1 - 4.\frac{5}{2} =  - 9 = 9{i^2}

    Vậy PT (3) có 2 nghiệm:    t=\frac{{1 + 3i}}{2};t=\frac{{1 - 3i}}{2} 

    Với  t=\frac{{1 + 3i}}{2},  ta có z - \frac{1}{z} = \frac{{1 + 3i}}{2} \Leftrightarrow 2{z^2} - (1 + 3i)z - 2 = 0(4)

    \Delta  = {(1 + 3i)^2} + 16 = 8 + 6i = 9 + 6i + {i^2} = {(3 + i)^2}

    Vậy PT(4) có 2 nghiệm :

    z=\frac{{(1 + 3i) + (3 + i)}}{4} = 1 + iz= \frac{{(1 + 3i) - (3 + i)}}{4} = \frac{{i - 1}}{2}

    Do đó PT đã cho có 4 nghiệm : z=1+i; z=1-iz=\frac{{i - 1}}{2}; z=\frac{{-i - 1}}{2}

  • Câu 10: Vận dụng cao

    Trong không gian Oxyz, cho điểm M(1;2;3). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x'Ox,y'Oy,z'Oz lần lượt tại các điểm A,B,C sao cho OA = OB = 2OC eq 0?

    Đặt A(a;0;0),B(0;b;0),C(0;0;c) với abc eq 0.

    Phương trình mặt phẳng (P) đi qua ba điểm A, B, C có dạng \frac{x}{a} + \frac{y}{b} + \frac{z}{c} =
1.

    Do OA = OB = 2OC nên ta có |a| = |b| = 2|c|.

    Suy ra a = ±2c, b = ±2c.

    Nếu a = 2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{9}{2}.

    Ta có (P): x + y + 2z − 9 = 0.

    Nếu a = 2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{2c} -
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{5}{2}

    Ta có (P): x − y + 2z − 5 = 0.

    Nếu a = −2cb = 2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{2c} + \frac{3}{c} = 1 \Rightarrow c = \frac{7}{2}

    Ta có (P): − x + y + 2z − 7 = 0.

    Nếu a = −2cb = −2c thì mặt phẳng (P) có dạng \frac{x}{- 2c} + \frac{y}{- 2c} + \frac{z}{c} =
1.

    Vì (P) đi qua M nên \frac{1}{- 2c} +
\frac{2}{- 2c} + \frac{3}{c} = 1 \Rightarrow c =
\frac{3}{2}

    Ta có (P): − x − y + 2z − 3 = 0.

    Vậy có bốn mặt phẳng thỏa yêu cầu bài toán.

  • Câu 11: Vận dụng cao

    Cho điểm P(-3 , 1, -1)  và đường thẳng (d): \left\{ \begin{array}{l}4x - 3y - 13 = 0\\y - 2z + 5 = 0\end{array} ight.

    Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:

    Chuyển (d) về dạng tham số : \left\{ \begin{array}{l}x =  - \frac{1}{2} + 3t\\y =  - 5 + 4t\\z = 2t\end{array} ight.

    Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: 3x + 4y + 2z + D = 0, cho qua P tính được D=7 .

    Ta có (Q): 3x + 4y + 2z + 7 = 0 .

    Thế x, y, z  theo t từ phương trình của (d) vào phương trình (Q) được t = \frac{1}{2}

    Giao điểm I của (d) và (Q)  là I (1, -3, 1) .

    Vì I là trung điểm của PP’ nên \Rightarrow P'\left( {5, - 7,3} ight).

  • Câu 12: Nhận biết

    Cho bốn điểm A;B;C;D trong không gian. Hỏi có bao nhiêu vectơ khác \overrightarrow{0} có điểm đầu và điểm cuối là 4 điểm?

    Lấy A làm gốc ta được 3 vectơ \overrightarrow{AB};\overrightarrow{AC};\overrightarrow{AD}. Tương tự đối với B;C;D ta được 4.3 = 12 vectơ.

  • Câu 13: Vận dụng

    Gọi và là hai nghiệm phức của phương trình {z^2} + 2z + 10 = 0. Giá trị của biểu thức A = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} là:

    Ta có:

    {z^2} + 2z + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - 1 + 3i\\{z_2} =  - 1 - 3i\end{array} ight.

    Suy ra  A = {\left| { - 1 + 3i} ight|^2} + {\left| { - 1 - 3i} ight|^2} = 20

  • Câu 14: Nhận biết

    Một vật chuyển động chậm dần đều với vận tốc v(t) = 30 - 2t(m/s). Hỏi trong 5s trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?

    Khi dừng hẳn v(t) = 30 - 2t = 0
\Rightarrow t = 15(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{10}^{15}{v(t)dt} =
\int_{10}^{15}{(30 - 2t)dt} = 25m.

  • Câu 15: Thông hiểu

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 16: Vận dụng cao

    Tính tổng S = \frac{{{2^2}}}{2}C_{2018}^1 + \frac{{{2^3}}}{3}C_{2018}^2 + \frac{{{2^4}}}{4}C_{2018}^3 + .... + \frac{{{2^{2019}}}}{{2019}}C_{2018}^{2018}

    Ta có:

    \begin{matrix}  {\left( {1 + x} ight)^{2018}} = 1 + C_{2018}^1x + C_{2018}^2{x^2} + ... + C_{2018}^{2018}{x^{2018}} \hfill \\   \Rightarrow {\left( {1 + x} ight)^{2018}} - 1 = C_{2018}^1x + C_{2018}^2{x^2} + ... + C_{2018}^{2018}{x^{2018}} \hfill \\ \end{matrix}

    Khi đó ta có:

    \begin{matrix}  \int\limits_0^2 {\left[ {{{\left( {1 + x} ight)}^{2018}} - 1} ight]dx = \int\limits_0^2 {\left( {C_{2018}^1x + C_{2018}^2{x^2} + ... + C_{2018}^{2018}{x^{2018}}} ight)dx} }  \hfill \\   \Leftrightarrow \left. {\left[ {{{\left( {1 + x} ight)}^{2018}} - 1} ight]} ight|_0^2 = \left. {\left( {\dfrac{{{x^2}}}{2}C_{2018}^1 + \dfrac{{{x^3}}}{3}C_{2018}^2 + ... + \dfrac{{{x^{2019}}}}{{2019}}C_{2019}^{2019}} ight)} ight|_0^2 \hfill \\   \Leftrightarrow S = \dfrac{{{3^{2019}}}}{{2019}} - 2 - \dfrac{1}{{2019}} = \dfrac{{{3^{2019}} - 4039}}{{2019}} \hfill \\ \end{matrix}

  • Câu 17: Thông hiểu

    Tìm phần thực, phần ảo của số phức z thỏa mãn \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}}

     Ta có: \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}} \Leftrightarrow \frac{z}{2} - i = \frac{{{{(1 + i)}^{3980}}}}{2}

    \Leftrightarrow \frac{z}{2} - i = {2^{1989}}.{i^{1990}} \Leftrightarrow z =  - {2^{1990}} + 2i

     Vậy số phức có phần thực là -2^{1990} và phần ảo là 2.

  • Câu 18: Thông hiểu

    Trong không gian với hệ trục toạ độ Oxyz, tìm tất cả giá trị tham số m để đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
1}{1} song song với mặt phẳng (P):2x + y - m^{2}z + m = 0.

    Ta có:

    d qua điểm M(1; 0; 1) và có VTCP là \overrightarrow{u} = (1;2;1)

    (P) có VTPT là \overrightarrow{n} =
\left( 2;1; - m^{2} ight)

    Vì d // (P) nên \overrightarrow{u}\bot\overrightarrow{n}
\Rightarrow \overrightarrow{u}.\overrightarrow{n} = 0 \Leftrightarrow m
= \pm 2

    Với m = 2, (P): 2x + y − 4z + 2 = 0 ⇒ M ∈ (P) (loại).

    Với m = −2, (P): 2x + y − 4z − 2 = 0\Rightarrow M otin (P) (thỏa mãn).

  • Câu 19: Thông hiểu

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 20: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hai vectơ \overrightarrow{x} = (2;1; - 3);\overrightarrow{y}
= (1;0; - 1). Tìm tọa độ vectơ \overrightarrow{a} = \overrightarrow{x} +
2\overrightarrow{y}?

    Ta có: 2\overrightarrow{y} = (2;0; -
2). Khi đó \overrightarrow{a} =
\overrightarrow{x} + 2\overrightarrow{y} = (2 + 2;1 + 0; - 3 - 2) =
(4;1; - 5).

    Vậy \overrightarrow{a} = (4;1; -
5)

  • Câu 21: Thông hiểu

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đồ thị (C) là đường cong như hình vẽ:

    Diện tích hình phẳng giới hạn bởi đồ thị (C), trục hoành và hai đường thẳng x = 0;x = 2 (phần tô đen) là:

    Dựa vào hình vẽ ta thấy x \in
(0;1) thì \left\{ \begin{matrix}
f(x) > 0;\forall x \in (0;1) \\
f(x) < 0;\forall x \in (1;2) \\
\end{matrix} ight.

    Vậy S = \int_{0}^{1}{f(x)dx} -
\int_{1}^{2}{f(x)dx}

  • Câu 22: Nhận biết

    Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số y = x^{2} - 2;y = 0;x = - 1;x
= 2 quanh trục Ox bằng

    Ta có:

    V = \pi\int_{- 1}^{2}{\left( x^{2} - 2x
ight)^{2}dx} = \pi\int_{- 1}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} -
x^{4} + \frac{4x^{3}}{3} ight) ight|_{- 1}^{2} =
\frac{18\pi}{5}

  • Câu 23: Nhận biết

    Nguyên hàm của hàm số f(x) =
2^{2x}.3^{x}.7^{x} là:

    Ta có: \int_{}^{}{\left(2^{2x}.3^{x}.7^{x} ight)dx =}\int_{}^{}{\left( 84^{x} ight)dx}=\frac{84^{x}}{\ln84} + C

  • Câu 24: Thông hiểu

    Tìm nguyên hàm F(x) của hàm số f(x) = \left( x^{2} - 1 ight)e^{x^{3} -
3x}, biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành?

    Ta có:

    F(x) = \int_{}^{}{\left( x^{2} - 1
ight)e^{x^{3} - 3x}dx} = \frac{1}{3}\int_{}^{}{e^{x^{3} - 3x}d\left(
x^{3} - 3x ight)}

    = \frac{1}{3}e^{x^{3} - 3x} +
C

    F'(x) = f(x) = \left( x^{2} - 1
ight)e^{x^{3} - 3x} = 0 \Leftrightarrow x = \pm 1

    F''(x) = 2xe^{x^{3} - 3x} +
\left( x^{2} - 1 ight)e^{x^{3} - 3x};F''(1) >
0;F''(1) < 0

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(1;0)

    Suy ra F(1) = 0 \Leftrightarrow
\frac{1}{3}e^{- 2} + C = 0 \Rightarrow C = -
\frac{1}{3e^{2}}

    Do đó F(x) = \frac{e^{x^{3} - 3x + 2} -
1}{3e^{2}}

  • Câu 25: Vận dụng

    Xác định hàm số f(x) biết rằng f'\left( x ight) = x\sqrt {1 + {x^2}} ;3f\left( 0 ight) = 4

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  \hfill \\   \Rightarrow f\left( x ight) = \int {x\sqrt {{x^2} + 1} dx}  = \dfrac{1}{2}\int {{{\left( {{x^2} + 1} ight)}^{\frac{1}{2}}}d\left( {{x^2} + 1} ight) = \dfrac{{{{\left( {\sqrt {{x^2} + 1} } ight)}^3}}}{3} + C}  \hfill \\ \end{matrix}

    3f\left( 0 ight) = 4 \Rightarrow 3\left[ {\frac{{{{\left( {\sqrt {{0^2} + 1} } ight)}^3}}}{3} + C} ight] = 4 \Rightarrow C = 1

    Vậy hàm số cần tìm là f\left( x ight) = \frac{{{{\left( {\sqrt {{x^2} + 1} } ight)}^3}}}{3} + 1

  • Câu 26: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;1;1),B( - 1;2;1),C(36; - 5). Điểm M thuộc mặt phẳng (Oxy) sao cho MA^{2} + MB^{2} + MC^{2} đạt giá trị nhỏ nhất là:

    Gọi G là trọng tâm của tam giác ABC.

    Ta có: MA^{2} + MB^{2} + MC^{2} = 3MG^{2}
+ GA^{2} + GB^{2} + GC^{2}

    Dễ thấy MA^{2} + MB^{2} + MC^{2} nhỏ nhất khi MG nhỏ nhất, suy ra M là hình chiếu vuông góc của G trên mặt phẳng (Oxy).

    Dễ thấy G(1;3; - 1) \Rightarrow
M(1;3;0).

  • Câu 27: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho ba mặt phẳng (P):x - 2y + z - 1 = 0;(Q):x - 2y + z + 8 =0;(R):x - 2y + z - 4 = 0. Một đường thẳng d thay đổi cắt ba mặt (P),(Q),(R) lần lượt tại A,B,C. Tìm giá trị nhỏ nhất của T = AB^{2} + \frac{144}{AC^{2}}.

    Dễ dàng nhận thấy (P)//(Q)//(R).

    Kẻ đường thẳng qua B vuông góc với cả 3 mặt phẳng (P),(Q),(R) cắt (P) tại H và cắt (Q) tại K.

    Ta có BH = d\left( (Q),(P) ight) = 9;HK
= d\left( (P),(R) ight) = 3

    Khi đó ta có:

    T = AB^{2} + \frac{144}{AC^{2}} \geq
2\sqrt{AB^{2}.\frac{144}{AC^{2}}} = 24.\frac{AB}{AC} = 24.\frac{BH}{HK}
= 24.\frac{9}{3} = 72

    Vậy T_{\min} = 72.

  • Câu 28: Thông hiểu

    Giá trị của tích phân I = \int\limits_e^{{e^2}} {\left( {\frac{{1 + x + {x^2}}}{x}} ight)} dx = a. Biểu thức P = a - 1 có giá trị là:

     Giá trị của tích phân I = \int\limits_e^{{e^2}} {\left( {\frac{{1 + x + {x^2}}}{x}} ight)} dx = a. Biểu thức P = a - 1 có giá trị là:

    Ta có:

    \begin{matrix}  I = \int\limits_e^{{e^2}} {\left( {\dfrac{{1 + x + {x^2}}}{x}} ight)} dx \hfill \\ = \int\limits_e^{{e^2}} {\left( {\frac{1}{x} + 1 + x} ight)} dx \hfill \\ = \left. {\left( {\ln \left| x ight| + x + \dfrac{{{x^2}}}{2}} ight)} ight|_e^{{e^2}} \hfill \\ = 1 - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow a = 1 - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\\Leftrightarrow a - 1 = - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\   \Leftrightarrow P =  - e + \dfrac{{{e^2}}}{2} + \dfrac{{{e^4}}}{2} \hfill \\ \end{matrix}

  • Câu 29: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|. Tính \left| {M - mi} ight|

     Ta có P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{z^4} + {{\overline z }^4} + 4} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{{\left( {{z^2} + {{\overline z }^2}} ight)}^2} + 2} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {{z^2} + {{\overline z }^2}} ight)^2} + 2 - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {\left| {{z^2} + {{\overline z }^2}} ight| - 1} ight)^2} + 1

    Vì \left\{ \begin{array}{l}{z^2} + {\overline z ^2} \in \mathbb{R} \\ - 2 \le {z^2} + {\overline z ^2} \le 2\end{array} ight.  nên {P_{{m{max}}}} = 2; {P_{{m{min}}}} = 1.

    Suy ra  \left| {M - mi} ight| = \sqrt 5

  • Câu 30: Thông hiểu

    Cho hai số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm môđun của số phức \overline {{z_1}}  - {z_2}.

     Ta có: \left| {\overline {{z_1}}  - {z_2}} ight| = \left| {1 + i - 3 - 2i} ight| = \sqrt 5

  • Câu 31: Nhận biết

    Tìm nguyên hàm F(t) =
\int_{}^{}txdt.

    Ta có:

    F(t) = \int_{}^{}txdt = x\int_{}^{}tdt =
x.\frac{t^{2}}{2} + C

  • Câu 32: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = (x +
1)(x + 2)?

    Ta có: f(x) = (x + 1)(x + 2) = x^{2} + 3x
+ 2

    \int_{}^{}{f(x)}dx = \int_{}^{}{\left(
x^{2} + 3x + 2 ight)dx} = \frac{x^{3}}{3} + \frac{3}{2}x^{2} + 2x +
C

  • Câu 33: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, điểm M(a;b;c) thuộc mặt phẳng (P):x + y + z - 6 = 0 và cách đều các điểm A(1;6;0),B( - 2;2; - 1),C(5; -
1;3). Tích T = a.b.c bằng

    Do M \in (P)MA^{2} = MB^{2} = MC^{2}, nên ta được hệ:

    \left\{ \begin{matrix}
a + b + c = 6 \\
(a - 1)^{2} + (b - 6)^{2} + c^{2} = (a + 2)^{2} + (b - 2)^{2} + (c +
1)^{2} \\
(a - 1)^{2} + (b - 6)^{2} + c^{2} = (a - 5)^{2} + (b + 1)^{2} + (c -
3)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a + b + c = 6 \\
3a + 4b + c = 14 \\
4a - 7b + 3c = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 3 \\
\end{matrix} ight.\  \Rightarrow T = 6

  • Câu 34: Nhận biết

    Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = \cos x,y = 0,x = 0,x = \pi quay xung quanh Ox.

    Thể tích vật thể bằng:

    V = \pi\int_{0}^{\pi}{\left( \cos xight)^{2}dx} = \frac{\pi}{2}\int_{0}^{\pi}{(1 + \cos2x)dx} = \pi\left.\ \left( x + \frac{1}{2}\sin2x ight) ight|_{1}^{\pi} =\frac{\pi^{2}}{2}.

  • Câu 35: Thông hiểu

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

    Đáp án là:

    PT sau có số nghiệm là : z^3 – 27 = 0

    3 || ba || Ba

     Ta có: z^3 – 27 = 0 \Leftrightarrow (z – 1) (z^2 + 3z + 9) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\{z^2} + 3z + 9 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z_{2,3}} = \dfrac{{ - 3 \pm 3\sqrt 3 i}}{2}\end{array} ight.

    Vậy phương trình đã cho có 3 nghiệm.

  • Câu 36: Vận dụng cao

    Cho F\left( x ight) = \left( {x - 1} ight).{e^x} là một nguyên hàm của hàm số f\left( x ight).{e^{2x}}. Tìm nguyên hàm của hàm số f'\left( x ight).{e^{2x}}

    Ta có: F(x) là một nguyên hàm của hàm số f\left( x ight).{e^{2x}} nên:

    \begin{matrix}  F'\left( x ight) = f\left( x ight).{e^{2x}} \hfill \\   \Leftrightarrow \left[ {\left( {x - 1} ight).{e^x}} ight]' = f\left( x ight).{e^{2x}} \hfill \\ \end{matrix}

    Hay f\left( x ight).{e^{2x}} = {e^x} + \left( {x - 1} ight).{e^x} = x.{e^x}

    Xét I = \int {f'\left( x ight).{e^{2x}}dx}

    Đặt \left\{ {\begin{array}{*{20}{c}}  {u = {e^{2x}}} \\   {dv = f'\left( x ight)dx} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {du = 2{e^{2x}}dx} \\   {v = f\left( x ight)} \end{array}} ight.

    Khi đó

    I = f\left( x ight).{e^{2x}} - \int {2f\left( x ight).{e^{2x}}dx}  = x.{e^x} - 2\left( {x - 1} ight){e^x} + C = \left( {2 - x} ight).{e^x} + C

     

  • Câu 37: Thông hiểu

    Cho hai số phức {z_1} = 2 + i,{z_2} = 3 - 4i. Môđun của số phức \left( {{z_1} - {z_2}} ight) là:

     Ta có: \left| {{z_1} - {z_2}} ight| = \left| {2 + i - 3 + 4i} ight| = \left| { - 1 + 5i} ight| = \sqrt {26}

  • Câu 38: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 39: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;4;2),B( - 1;2;4) và đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + t \\
z = 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm M \in \Delta mà tổng MA^{2} + MB^{2} có giá trị nhỏ nhất có tọa độ là:

    M \in \Delta nên ta có tọa độ điểm M(1 - t; - 2 + t;2t).

    Ta có:

    MA^{2} + MB^{2} = ( - t)^{2} + (t -
6)^{2} + (2t - 2)^{2} + (2 - t)^{2} + (t - 4)^{2} + (2t - 4)^{2}

    = 12t^{2} - 48t + 76 = 12(t - 2)^{2} +
28 \geq 28

    Vậy giá trị nhỏ nhất của MA^{2} +
MB^{2}28 khi t = 2 \Rightarrow M( - 1;0;4).

  • Câu 40: Thông hiểu

    Biết rằng F(x) = \left( ax^{2} + bx + c
ight)e^{- x} là một nguyên hàm của hàm số f(x) = \left( 2x^{2} - 5x + 2 ight)e^{-
x} trên \mathbb{R}. Giá trị của biểu thức f\left( F(0)
ight) bằng:

    Ta có: \left( F(x) ight)' =
\left\lbrack \left( ax^{2} + bx + c ight)e^{- x}
ightbrack'

    = \left\lbrack - ax^{2} + (2a - b)x + b
- c ightbrack e^{- x}

    = \left( 2x^{2} - 5x + 2 ight)e^{-
x} suy ra \left\{ \begin{matrix}a = - 2 \\2a - b = - 5 \\b - c = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - 2 \\b = 1 \\c = - 1 \\\end{matrix} ight.\Rightarrow F(x) = \left( 2x^{2} + x - 1ight)e^{- x}

    \Rightarrow F(0) = - 1 \Rightarrow
f\left( F(0) ight) = f( - 1) = 9e

  • Câu 41: Vận dụng

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị đo lấy kilômét, ra đa phát hiện một máy bay chiến đấu của Mỹ di chuyển với vận tốc và hướng không đổi từ điểm M(1000;600;14) đến điểm N trong 30 phút. Nếu máy bay tiếp tục giữ nguyên vận tốc và hướng bay thì tọa độ của máy bay sau 10 phút tiếp theo bằng Q(1400;800;16). Xác định tọa độ vị trí điểm N. (Kết quả ghi dưới dạng số thập phân nếu có)

    Đáp án: N(1300; 750; 15,5)

    Gọi N(x;y;z) là tọa độ của máy bay sau 10 phút tiếp theo.

    \overrightarrow{MQ} =
(400;200;2).

    \overrightarrow{NQ} = (1400 - x;800 -
y;16 - z).

    Vì máy bay giữ nguyên hướng bay nên \overrightarrow{MQ}\overrightarrow{NQ} cùng hướng.

    Do máy bay tiếp tục giữ nguyên vận tốc và thời gian bay từ M đến Q gấp 4 lần thời gian bay từ N đến Q nên MQ =
4NQ.

    Suy ra: \overrightarrow{MQ} =
4\overrightarrow{NQ}

    \Leftrightarrow \left\{ \begin{matrix}
400 = 4(1400 - x) \\
200 = 4(800 - y) \\
2 = 4(16 - z) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 1300 \\
y = 750 \\
z = 15,5 \\
\end{matrix} ight.

    \Rightarrow N(1300;750;15,5)

  • Câu 42: Nhận biết

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 43: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 44: Vận dụng

    Trong không gian Oxyz, cho ba điểm A(1;2;3),B(1;0; - 1),C(2; -
1;2). Điểm D thuộc tia Oz sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện ABCD bằng \frac{3\sqrt{30}}{10} có tọa độ là

    Ta có D thuộc tia Oz nên D(0; 0; d) với d > 0.

    Tính \left\{ \begin{matrix}
\overrightarrow{AB} = (0; - 2; - 4) \\
\overrightarrow{AC} = (1; - 3; - 1) \\
\end{matrix} ight.

    Mặt phẳng (ABC): có vectơ pháp tuyến \overrightarrow{n_{(ABC)}} = \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 10; -
4;2) và đi qua điểm A(1; 2; 3).

    \Rightarrow (ABC): - 10(x - 1) - 4(y -
2) + 2(z - 3) = 0

    \Leftrightarrow 5x + 2y - y - 6 =
0

    Ta có d\left( D;(ABC) ight) =
\frac{3\sqrt{30}}{10} \Leftrightarrow \frac{|d + 6|}{\sqrt{30}} =
\frac{3\sqrt{30}}{10}

    \Leftrightarrow |d + 6| = 9
\Leftrightarrow \left\lbrack \begin{matrix}
d = 3(tm) \\
d = - 15(ktm) \\
\end{matrix} ight.

    Vậy D(0;0;3).

  • Câu 45: Nhận biết

    Cho hai đường thẳng trong không gian Oxyz: \left( D ight):\,\frac{{x\, - \,{x_1}}}{{{a_1}}} = \frac{{y\, - \,{y_1}}}{{{a_2}}} = \frac{{z\, - \,{z_1}}}{{{a_3}}} , \left( d ight):\,\frac{{x\, - \,{x_2}}}{{{b_1}}} = \frac{{y\, - \,{y_2}}}{{{b_2}}} = \frac{{z\, - \,{z_2}}}{{{b_3}}}. Với {a_1},\,\,{a_2},\,\,{a_3},\,\,{b_1},\,\,{b_2},\,\,{b_3} e \,0 . Gọi \overrightarrow a  = \left( {\,{a_1},\,\,{a_2},\,\,{a_3}} ight);\,\,\overrightarrow b  = \left( {\,{b_1},\,\,{b_2},\,\,{b_3}} ight)\overrightarrow {AB}  = \left( {\,{x_2}\, - \,{x_1},\,\,{y_2}\, - \,{y_1},\,\,{z_2}\, - \,{z_1}} ight). (D) và (d) song song khi và chỉ khi:

     Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {AB}  = 0 \Rightarrow \left( D ight)và (d) cùng nằm trong một mặt phẳng

    Để (D) và d song song, ta sẽ xét tỉ số chứng minh chúng cùng phương rồi kiểm tra rằng d không nằm trong (D):

      {a_1}:{a_2}:{a_3} = {b_1}:{b_2}:{b_3} \Leftrightarrow \frac{{{a_1}}}{{{b_1}}} = \frac{{{a_2}}}{{{b_2}}} = \frac{{{a_3}}}{{{b_3}}} \Rightarrow \left( D ight)và (d)  cùng phương A\left( {{x_1},{y_1},{z_1}} ight) \in \left( D ight)A otin \left( d ight) \Rightarrow \left( D ight) và (d) song song.

  • Câu 46: Nhận biết

    Cho số phức {\left( {\overline {2 + i} } ight)^5} - \left( {2 + i} ight).\overline z  =  - 37 - 43i. Khẳng định nào sau đây là khẳng định sai?

     Ta có: {\left( {\overline {2 + i} } ight)^5} =  - 38 - 41i \Rightarrow \overline z  = \frac{{1 - 2i}}{{ - \left( {2 + i} ight)}} = i.

  • Câu 47: Nhận biết

    Tính tích phân I =\int_{0}^{\frac{\pi}{2}}{\left( \sin2x + \sin x ight)dx}?

    Ta có:

    I = \int_{0}^{\frac{\pi}{2}}{\left(\sin2x + \sin x ight)dx} = \left. \ \left( - \frac{1}{2}\cos2x - \cos xight) ight|_{0}^{\frac{\pi}{2}} = 2

  • Câu 48: Thông hiểu

    Tìm tất cả các giá trị thực của tham số m thỏa mãn \int_{0}^{m}{(2x + 1)dx} < 2?

    Ta có: \int_{0}^{m}{(2x + 1)dx} < 2
\Leftrightarrow \left. \ \left( x^{2} + x ight) ight|_{0}^{m} <
2

    \Leftrightarrow m^{2} + m - 2 < 0
\Leftrightarrow - 2 < m < 1

  • Câu 49: Vận dụng

    Cho hình phẳng D được giới hạn bởi hai đường y = 2\left( x^{2} - 1ight);y = 1 - x^{2}. Tính thể tích khối tròn xoay tạo thành do D quay quanh trục Ox?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hình phẳng D được giới hạn bởi hai đường y = 2\left( x^{2} - 1ight);y = 1 - x^{2}. Tính thể tích khối tròn xoay tạo thành do D quay quanh trục Ox?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 50: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 204 lượt xem
Sắp xếp theo