Biết rằng vectơ
và
. Tìm tọa độ vectơ
?
Ta có:
Biết rằng vectơ
và
. Tìm tọa độ vectơ
?
Ta có:
Cho tam giác
vuông tại
và có hai đỉnh
nằm trên mặt phẳng
. Gọi
là hình chiếu vuông góc của đỉnh
lên
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì
suy ra góc
là góc tù.
Trong không gian với hệ toạ độ
, cho
. Viết phương trình đường thẳng
qua
, song song với
sao cho khoảng cách từ
đến
là lớn nhất.
Hình vẽ minh họa
Vì nên hai điểm A, B khác phía so với (P).
Gọi H là hình chiếu của B lên d.
Ta có: BH ≤ BA nên khoảng cách BH từ B đến d lớn nhất khi và chỉ khi H trùng A.
Khi đó AB ⊥ d.
VTPT của (P) là
VTCP của d là
Mà d qua A(−3; 0; 1) nên phương trình đường thẳng d là:
Phần thực, phần ảo của số phức z thỏa mãn
lần lượt là?
Ta có:
Phần thực, phần ảo của z lần lượt là 1;1.
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có: nên
là một nguyên hàm của hàm số
.
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Trong không gian
, điểm nào sau đây thuộc mặt phẳng
?
Ta có: nên điểm cần tìm là
.
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc
. Đi được 12 giây, người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc
. Tính quãng đường
đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn?
Quãng đường xe đi được trong 12s đầu là
Sau khi đi được 12s vật đạt vận tốc , sau đó vận tốc của vật có phương trình
Vật dừng hẳn sau 2s kể từ khi phanh.
Quãng đường vật đi được từ khi đạp phanh đến khi dừng hẳn là
Vậy tổng quãng đường ô tô đi được là
Tìm một nguyên hàm
của hàm số
, biết rằng
?
Ta có:
Theo bài ra ta có:
. Vậy
.
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Trong không gian Oxyz, đường thẳng (d) qua
và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Trong không gian Oxyz, đường thẳng (d) qua và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Tìm
để góc giữa hai vectơ
là góc nhọn.
Để
.
Kết hợp điều kiện
Trong không gian với hệ tọa độ
, cho đường thẳng
là giao tuyến của hai mặt phẳng
. Tìm tọa độ giao điểm
của đường thẳng
và
, biết đường thẳng d' có phương trình 
Tọa độ giao điểm I của d và d’ thỏa mãn hệ phương trình:
Tính tích phân
?
Đặt . Ta có:
suy ra
.
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Tìm nguyên hàm của hàm số ![]()
Ta có:
Cho hàm số
là một nguyên hàm của hàm số
trên khoảng
. Giá trị biểu thức
bằng:
Ta có:
Theo bài ra ta có:
Nguyên hàm của hàm số
là:
Ta có:
Trong không gian
, mặt phẳng
có một vectơ pháp tuyến là:
Mặt phẳng có một vectơ pháp tuyến là:
.
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số ![]()
Trong không gian
, hãy tính
và
lần lượt là khoảng cách từ điểm
đến mặt phẳng
và mặt phẳng
?
Do mặt phẳng có phương trình y = 0 nên
Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Tích phân
có giá trị là:
Ta có:
Đặt
Đổi cận
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Hình vẽ minh họa
Phương trình hoành độ giao điểm
Diện tích hình giới hạn là
Thành phố định xây cây cầu bắc ngang con sông dài
, biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Thành phố định xây cây cầu bắc ngang con sông dài , biết rằng người ta định xây cầu có 10 nhịp cầu hình dạng parabol, biết hai bên đầu cầu và giữa mối nhịp nối người ta xây một chân trụ rộng
khoảng cách giữa 2 chân trụ liên tiếp là
. Bề dày nhịp cầu không đổi là
. Biết một nhịp cầu như hình vẽ. Hỏi lượng bê tông để xây các nhịp cầu là bao nhiêu
? (kết quả làm tròn đến hàng đơn vị)
Đáp án: 40 m3.
Cả hai bên cầu có tất cả nhịp cầu.
Chọn hệ trục tọa độ như hình vẽ với gốc là chân cầu, đỉnh
, điểm
Gọi Parabol phía trên có phương trình: (vì
)
là phương trình parabol phía dưới
(Vì bề dày nhịp cầu là )
Ta có
Khi đó diện tích S của mỗi nhịp cầu là diện tích phần hình phẳng giới hạn bởi và trục Ox nên ta có:
Vì bề dày nhịp cầu không đổi nên thể tích của mỗi nhịp cầu là
Suy ra lượng bê tông cần cho 20 nhịp của cả hai bên cầu (mỗi bên 10 nhịp cầu) là
Trong không gian
cho điểm
. Viết phương trình mặt phẳng
đi qua điểm
và cắt các trục tọa độ tại ba điểm phân biệt
sao cho
là trực tâm của tam giác
?
Giả sử (P) cắt các trục tọa độ tại
Khi đó
Ta có: mà H là trực tâm của tam giác ABC nên
Mặt khác
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức
. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.
Ta có
Từ giả thiết
Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm và mặt cầu tâm
Dễ thấy
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Cho hình
giới hạn bởi các đường
, trục hoành. Quay hình phẳng
quanh trục
ta được khối tròn xoay có thể tích là:
Phương trình hoành độ giao điểm của là:
Khi đó .
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
lần lượt có phương trình là
và cho điểm
. Tìm phương trình mặt phẳng
đi qua điểm
và đồng thời vuông góc với hai mặt phẳng
?
Ta có:
Do vuông góc với
nên
Chọn
Hơn nữa đi qua
nên có phương trình là:
Trong không gian với hệ tọa độ
, cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tỉ số
bằng
Ta có:
Nguyên hàm của hàm số
là:
Ta có:
.
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Biết điểm
thuộc đường thẳng d sao cho tam giác MAB có diện tích nhỏ nhất. Khi đó giá trị
bằng:
Vì nên SMAB nhỏ nhất khi d(M, AB) nhỏ nhất. Phương trình của
Dễ dàng kiểm tra AB và d chéo nhau.
Gọi H là hình chiếu của M lên đường thẳng AB.
Khi đó nhỏ nhất khi MH là đoạn vuông góc chung của d và AB.
Ta có:
Vectơ chỉ phương của d và AB theo thứ tự là
Vậy
Tính
?
Áp dụng công thức
Suy ra
Giá trị của
bằng
Ta có:
Trong không gian với hệ trục tọa độ
, cho ba mặt phẳng ![]()
![]()
. Một đường thẳng d thay đổi cắt ba mặt phẳng
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Trong không gian với hệ trục tọa độ , cho ba mặt phẳng
. Một đường thẳng d thay đổi cắt ba mặt phẳng
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Cho số phức
. Tìm số phức
?
Ta có:
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Tích phân
bằng:
Ta có:
.
Cho hàm số
liên tục, luôn dương trên
và thỏa mãn
. Khi đó giá trị của tích phân
là:
Ta có:
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có: