Đề thi HK2 Toán 12 Đề 1

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 50 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 3: Thông hiểu

    Cho phương trình {z^2} - 2z + 3 = 0 có hai nghiệm {z_1},{z_2} là . Giá trị của w = z_1^2 + z_2^2 + {z_1}{z_2} là?

    1 || Một || một

    Đáp án là:

    Cho phương trình {z^2} - 2z + 3 = 0 có hai nghiệm {z_1},{z_2} là . Giá trị của w = z_1^2 + z_2^2 + {z_1}{z_2} là?

    1 || Một || một

    Ta có:

    {z^2} - 2z + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}z = 1 + \sqrt 2 i\\z = 1 - \sqrt 2 i\end{array} ight.

    Suy ra:  w = z_1^2 + z_2^2 + {z_1}{z_2}

    = {\left( {1 + \sqrt 2 i} ight)^2} + {\left( {1 - \sqrt 2 i} ight)^2} + \left( {1 + \sqrt 2 i} ight)\left( {1 - \sqrt 2 i} ight) = 1

  • Câu 4: Vận dụng cao

    Một bể thủy tinh chứa nước có thiết diện ngang (mặt trong của thùng) là một đường elip có trục lớn bằng 1m, trục bé bằng 0,8m, chiều dài bằng 3m nằm trong của thùng. Bể nước được đặt sao cho trục bé nằm theo phương thẳng đúng (như hình vẽ). Tính thể tích V của nước có trong bể, biết chiều cao nước trong bể là 0,6m. (Kết quả được làm tròn đến phần trăm).

    Tính thể tích V của nước có trong bể

    Xét một đáy của bể và gắn hệ trục tọa độ như hình vẽ:

    Tính thể tích V của nước có trong bể

    Phương trình đường elip đáy khi đó có phương trình \frac{{{x^2}}}{{0,{5^2}}} + \frac{{{y^2}}}{{0,{4^2}}} = 1

    Khi đó chiều cao của mép nước trong bể với đường thẳng y=2

    Xét phương trình 0,4\sqrt {1 - \frac{{{x^2}}}{{0,{5^2}}}}  = 0,2 \Leftrightarrow x =  \pm \frac{{\sqrt 3 }}{4}

    Diện tích phần mặt chứa nước là:

    S = 0,5.0,4.\pi  - \int\limits_{ - \frac{{\sqrt 3 }}{4}}^{\frac{{\sqrt 3 }}{4}} {\left( {0,4\sqrt {1 - \frac{{{x^2}}}{{0,{5^2}}}} } ight)} dx \approx 0,506

    Do đó thể tích nước trong thùng là: V = 3S \approx 1,52{m^3}

  • Câu 5: Thông hiểu

    Cho số phức z =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i. Số phức w = 1 + z + {z^2},\left| w ight| bằng:

     Ta có: \left| w ight| = \left| {1 + z + {z^2}} ight| = \left| {1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} ight| = 0

  • Câu 6: Nhận biết

    Trong không gian Oxyz cho mặt phẳng (\alpha):x - 2y + 2z - 3 = 0. Điểm nào sau đây nằm trên mặt phẳng (\alpha)?

    Ta thấy tọa độ điểm Q(1;0;1) thỏa mãn phương trình mặt phẳng (\alpha):x -
2y + 2z - 3 = 0 nên điểm Q nằm trên (\alpha).

  • Câu 7: Vận dụng

    Tìm nguyên hàm của hàm số  f\left( x ight) = \frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}

     \int {f\left( x ight)} dx = \int {\frac{{{{\left( {x - 2} ight)}^{10}}}}{{{{\left( {x + 1} ight)}^{12}}}}} dx = {\int {\left( {\frac{{x - 2}}{{x + 1}}} ight)} ^{10}}.\frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    Đặt t = \frac{{x - 2}}{{x + 1}} \Rightarrow dt = \frac{3}{{{{\left( {x + 1} ight)}^2}dx}} \Rightarrow \frac{1}{3}dt = \frac{1}{{{{\left( {x + 1} ight)}^2}}}dx

    => \int {f\left( x ight)} dx = \int {{t^{10}}.\frac{1}{3}dt = \frac{1}{{33}}.{t^{11}} + C}

    => \frac{1}{{33}}{\left( {\frac{{x - 2}}{{x + 1}}} ight)^{11}} + C

  • Câu 8: Thông hiểu

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 9: Vận dụng

    Xét phương trình {z^3} = 1 trên tập số phức. Tập nghiệm của phương trình là:

     Ta có:

    {z^3} = 1 \Leftrightarrow \left( {z - 1} ight)\left( {{z^2} + z + 1} ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z^2} + z + 1 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z =  - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\end{array} ight.

    Suy ra: S = \left\{ {1; - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i} ight\}

  • Câu 10: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 11: Nhận biết

    Trong không gian Oxyz, cho tọa độ ba điểm A(5; - 2;0),B( -
2;3;0),C(0;2;3). Tọa độ trọng tâm G của tam giác ABC là:

    Tọa độ trọng tâm G của tam giác ABC bằng:

    \left\{ \begin{matrix}x_{G} = \dfrac{x_{A} + x_{B} + x_{C}}{3} = \dfrac{5 + ( - 2) + 0}{3} = 1\\y_{G} = \dfrac{y_{A} + y_{B} + y_{C}}{3} = \dfrac{- 2 + 3 + 2}{3} = 1 \\z_{G} = \dfrac{z_{A} + z_{B} + z_{C}}{3} = \dfrac{0 + 0 + 3}{3} = 1 \\\end{matrix} ight.\  \Rightarrow G(1;1;1)

    Vậy trọng tâm G tìm được là G(1;1;1).

  • Câu 12: Nhận biết

    Cho hình phẳng D giới hạn bới đường cong y = \sqrt {{x^2} + 1}, trục hoành và các đường thẳng x = 0;x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu?

    Thể tích cần tìm là: v = \pi \int\limits_0^1 {{{\left( {\sqrt {{x^2} + 1} } ight)}^2}dx}  = \frac{{4\pi }}{3}

  • Câu 13: Vận dụng cao

    Cho điểm P(-3 , 1, -1)  và đường thẳng (d): \left\{ \begin{array}{l}4x - 3y - 13 = 0\\y - 2z + 5 = 0\end{array} ight.

    Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:

    Chuyển (d) về dạng tham số : \left\{ \begin{array}{l}x =  - \frac{1}{2} + 3t\\y =  - 5 + 4t\\z = 2t\end{array} ight.

    Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: 3x + 4y + 2z + D = 0, cho qua P tính được D=7 .

    Ta có (Q): 3x + 4y + 2z + 7 = 0 .

    Thế x, y, z  theo t từ phương trình của (d) vào phương trình (Q) được t = \frac{1}{2}

    Giao điểm I của (d) và (Q)  là I (1, -3, 1) .

    Vì I là trung điểm của PP’ nên \Rightarrow P'\left( {5, - 7,3} ight).

  • Câu 14: Nhận biết

    Nghiệm của phương trình sau trên trường số phức là:z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0

    \Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow  (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm:z = {m{\{ }}1;\,\,3;\,\,2i;\,\, - 2i{m{ \} }}.

  • Câu 15: Nhận biết

    Một vật chuyển động chậm dần với vận tốc v(t) = 150 - 15t(m/s). Hỏi rằng trong 5s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

    Khi dừng hẳn v(t) = 150 - 15t = 0
\Rightarrow t = 10(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{(150 - 15t)dt} = \frac{375}{2}m.

  • Câu 16: Nhận biết

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack a;bbrack. Diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y = f(x), trục hoành và hai đường thẳng x = a;x = b;(a <
b) được tính theo công thức

    Theo lí thuyết về tính diện tích hình phẳng ta có diện tích S của hình phẳng giới hạn bởi đồ thị của hàm số y
= f(x), trục hoành và hai đường thẳng x = a;x = b;(a < b) được tính theo công thức: S = \int_{a}^{b}{\left| f(x)
ight|dx}.

  • Câu 17: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 18: Nhận biết

    Cho số phức {z_1} = 1 + 2i{z_2} =  - 1 - 2i. Khẳng định nào sau đây là khẳng định đúng?

     Ta có: {z_1}.{z_2} =  - {\left( {1 + 2i} ight)^2} =  - \left( {1 + 4i - 4} ight) = 3 - 4i

    Vậy {z_1}.{z_2} = 3 - 4i là khẳng định đúng.

  • Câu 19: Nhận biết

    Cho số phức z thỏa mãn z + \frac{{2{{\left( {2 - i} ight)}^3}\overline z }}{{1 + i}} + {\left( {4 + i} ight)^5} = 422 + 1088i . Khẳng định nào sau đây là khẳng định đúng?

     Gọi z = x + yi,x,y \in \mathbb{R} tìm được z = 1 - 2i.

    Tính mô đun ta được  \left| z ight| = \sqrt 5.

  • Câu 20: Vận dụng cao

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z.\bar z = 1\left| {z - \sqrt 3  + i} ight| = m. Tìm số phần tử của S. 

    2 || Hai || hai

    Đáp án là:

    Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn z.\bar z = 1\left| {z - \sqrt 3  + i} ight| = m. Tìm số phần tử của S. 

    2 || Hai || hai

    Điều kiện: m > 0.

    Đặt z = x + yi\left( {x,y \in \mathbb{R}} ight).

    Theo giả thiết z.\bar z = 1 \Leftrightarrow {\left| z ight|^2} = 1 \Leftrightarrow {x^2} + {y^2} = 1\left( {{C_1}} ight).

    \left( {{C_1}} ight) là đường tròn tâm O(0; 0), bán kính {R_1} = 1.

    Mặt khác  {R_1} = 1

    \left( {{C_2}} ight) là đường tròn tâm I\left( {\sqrt 3 ; - 1} ight), bán kính {R_2} = m.

    Để tồn tại duy nhất số phức z thì \left( {{C_1}} ight)\left( {{C_2}} ight) tiếp xúc ngoài hoặc trong.

    TH1: \left( {{C_1}} ight)\left( {{C_2}} ight) tiếp xúc ngoài khi và chỉ khi {R_1} + {R_2} = OI \Leftrightarrow 1 + m = 2 \Leftrightarrow m = 1\left( {TM} ight).

    TH2: \left( {{C_1}} ight)\left( {{C_2}} ight) tiếp xúc trong khi và chỉ khi \left[ \begin{array}{l}{R_1} + OI = {R_2} \Leftrightarrow 1 + 2 = m \Leftrightarrow m = 3\,\,\,\,\,\,\left( {TM} ight)\\OI + {R_2} = {R_1} \Leftrightarrow m + 2 = 1 \Leftrightarrow m =  - 1\,\,\,\,\,\,(L)\end{array} ight..

    Vậy S = \left\{ {1,3} ight\}.

  • Câu 21: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình sau: (z^2 + z)^2 + 4(z^2 + z) -12 = 0 là?

     Đặt t = z^2 + z, khi đó phương trình đã cho có dạng:

    t^2 + 4t – 12 = 0 \Leftrightarrow\left[ \begin{array}{l}t =  - 6\\t = 2\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}{z^2} + z - 6 = 0\\{z^2} + z - 2 = 0\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{{ - 1 + \sqrt {23} i}}{2}\\z = \dfrac{{ - 1 - \sqrt {23} i}}{2}\\z = 1\\z =  - 2\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm có tổng là

    \frac{{ - 1 + \sqrt {23} i}}{2} + \frac{{ - 1 - \sqrt {23} i}}{2} + 1 - 2 =  - 1 + 1 - 2 =  - 2

  • Câu 22: Nhận biết

    Tìm nguyên hàm F(t) =
\int_{}^{}txdt.

    Ta có:

    F(t) = \int_{}^{}txdt = x\int_{}^{}tdt =
x.\frac{t^{2}}{2} + C

  • Câu 23: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng

    Phương trình tổng quát của mặt phẳng là : 2x + y = 0.

  • Câu 24: Vận dụng

    Cho A(1; - 1;0)(P):2x - 2y + z - 1 = 0. Điểm M(a;b;c) \in (P) sao cho MA\bot OA và đoạn AM bằng 3 lần khoảng cách từ A đến (P). Khẳng định nào sau đây đúng?

    Ta có:

    \left\{ \begin{matrix}
M \in (P) \\
MA\bot OA \\
AM = 3d\left( A;(P) ight) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
1(a - 1) - 1(b + 1) + 0(c - 0) = 0 \\
\sqrt{(a - 1)^{2} + (b + 1)^{2} + (c - 0)^{2}} = 3 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
2a - 2b + c - 1 = 0 \\
a - b - 2 = 0 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
b = a - 2 \\
c = - 3 \\
(a - 1)^{2} + (b + 1)^{2} + c^{2} = 9 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
c = - 3 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b + c = - 3.

  • Câu 25: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(2;0;0),M(1;1;1). Gọi (P) là mặt phẳng thay đổi qua A,M và cắt các trục Oy,Oz lần lượt tại B(0;b;0),C(0;0;c) với b > 0,c > 0. Khi diện tích tam giác ABC nhỏ nhất, hãy tính giá trị của tích bc?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm A(2;0;0),M(1;1;1). Gọi (P) là mặt phẳng thay đổi qua A,M và cắt các trục Oy,Oz lần lượt tại B(0;b;0),C(0;0;c) với b > 0,c > 0. Khi diện tích tam giác ABC nhỏ nhất, hãy tính giá trị của tích bc?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 26: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn 2xf\left( x ight) + {x^2}f'\left( x ight) = 1;f\left( 1 ight) = 0. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

    Ta có:

    \begin{matrix}  2xf\left( x ight) + {x^2}f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left( {{x^2}} ight)'.f\left( x ight) + {x^2}.f'\left( x ight) = 1 \hfill \\   \Leftrightarrow \left[ {{x^2}f\left( x ight)} ight]' = 1 \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {{x^2}f\left( x ight)} ight]'dx}  = \int {1.dx}  \hfill \\   \Leftrightarrow {x^2}f\left( x ight) = x + C \hfill \\ \end{matrix}

    Ta có:

    \begin{matrix}  f\left( 1 ight) = 0 \Rightarrow 1.f\left( 1 ight) = 1 + C \Rightarrow C =  - 1 \hfill \\   \Rightarrow {x^2}f\left( x ight) = x - 1 \Rightarrow f\left( x ight) = \dfrac{{x - 1}}{{{x^2}}} \hfill \\ \end{matrix}

    Xét phương trình hoành độ giao điểm với trục hoành ta có:

    \frac{{x - 1}}{{{x^2}}} = 0 \Rightarrow x = 1\left( {tm} ight)

    Ta lại có: f'\left( x ight) = \frac{{2 - x}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( 1 ight) = 1} \\   {f\left( 1 ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( 1 ight)\left( {x - 1} ight) + f\left( 1 ight) \Rightarrow y = x - 1

  • Câu 27: Thông hiểu

    Hàm số f\left( x ight) = {x^3} + 3x - 2 có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:

     F\left( x ight) = \int {\left( {{x^3} + 3x - 2} ight)dx = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + C}

    Hàm số đi qua B(2; 10) => \frac{{{2^4}}}{4} + \frac{{{{3.2}^2}}}{2} - 2.2 + C = 10 \Rightarrow C = 4

    => F\left( x ight) = \frac{{{x^4}}}{4} + \frac{{3{x^2}}}{2} - 2x + 4

    => F\left( { - 2} ight) = \frac{{{{\left( { - 2} ight)}^4}}}{4} + \frac{{3.{{\left( { - 2} ight)}^2}}}{2} - 2\left( { - 2} ight) + 4 = 6

  • Câu 28: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, hình chiếu vuông góc của điểm M(2;3;4) trên mặt phẳng (P):2x - y - z + 6 = 0 là điểm nào dưới đây?

    Gọi ∆ là đường thẳng đi qua M và vuông góc mặt phẳng (P).

    Khi đó phương trình tham số của ∆ là \left\{ \begin{matrix}
x = 2 + 2t \\
y = 3 - t \\
z = 4 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Gọi M’ là hình chiếu vuông góc của M trên mặt phẳng (M).

    Tọa độ điểm M’ là nghiệm của hệ phương trình: \left\{ \begin{matrix}x = 2 + 2t \\y = 3 - t \\z = 4 - t \\2x - y - z + 6 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t = - \dfrac{1}{2} \\x = 1 \\y = \dfrac{7}{2} \\z = \dfrac{9}{2} \\\end{matrix} ight.

    Vậy M'\left(
1;\frac{7}{2};\frac{9}{2} ight)

  • Câu 29: Thông hiểu

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) ( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với S'(t) = 1,2698.e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) được tính bằng triệu người/năm.

    a) S(t) là một nguyên hàm của S'(t) . Đúng||Sai

    b) S(t) = 90,7.e^{0,014t} +
90,7. Sai||Đúng

    c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai

    Đáp án là:

    Vào năm 2014, dân số nước ta khoảng 90,7 triệu người. Giả sử, dân số nước ta sau t năm được xác định bởi hàm số S(t) ( đơn vị: triệu người), trong đó tốc độ gia tăng dân số được cho với S'(t) = 1,2698.e^{0,014t}, với t là số năm kể từ năm 2014, S'(t) được tính bằng triệu người/năm.

    a) S(t) là một nguyên hàm của S'(t) . Đúng||Sai

    b) S(t) = 90,7.e^{0,014t} +
90,7. Sai||Đúng

    c) Theo công thức trên, tốc độ gia tăng dân số nước ta năm 2034 (làm tròn đến hàng phần mười của triệu người/năm) khoảng 1,7 triệu người/năm. Đúng||Sai

    d) Theo công thức trên, dân số nước ta năm 2034 (làm tròn đến hàng đơn vị của triệu người) khoảng 120 triệu người. Đúng||Sai

    Ta có: S(t) là một nguyên hàm của S'(t)

    \int_{}^{}{S'(t)}dt =
\int_{}^{}{1,2698.e^{0,014t}}dt = 90,7.e^{0,014t} + C

    Do S(0) = 90,7 \Rightarrow C = 0
\Rightarrow S(t) = 90,7.e^{0,014t}

    Tốc độ tăng dân số của nước ta vào năm 2034 là

    S'(20) = 1,2698.e^{0,014.20} \approx
1,7( triệu người/năm)

    Dân số của nước ta vào năm 2034 là

    S(20)
= 90,7.e^{0,014.20} \approx 120( triệu người)

  • Câu 30: Nhận biết

    Viết phương trình tham số của đường thẳng d qua hai điểm: A\left( { - 1,3, - 2} ight);B\left( {2, - 3,4} ight)

     Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là \overrightarrow {AB} hay ta có: \overrightarrow {AB}  = \left( {3, - 6,6} ight) = 3\left( {1, - 2,2} ight) =  - 3\left( { - 1,2, - 2} ight)

    \begin{array}{l} \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 3t - 1\\y = 3 - 6t\\z = 6t - 2\end{array} ight.\,\,;t \in \mathbb{R},\,\\hay\,\,\left( d ight)\left\{ \begin{array}{l}x = 2 + m\\y =  - 3 - 2m\\z = 4 + 2m\end{array} ight.\,\,;m \in \mathbb{R}\\\hay\,\,\left( d ight)\,\left\{ \begin{array}{l}x =  - 1 - \tan t\\y = 3 + 2\tan t\\z =  - 2 - 2\tan t\end{array} ight.\,\,;t \in\mathbb{R}\end{array}

     

  • Câu 31: Thông hiểu

    Một chất điểm đang chuyển động với vận tốc v_{0} = 16(m/s) thì tăng tốc với gia tốc a(t) = t^{2} + 3t\left( m/s^{2}
ight). Tính quãng đường chất điểm đó đi được trong khoảng thời gian 4s kể từ lúc bắt đầu tăng tốc.

    Ta có: v(t) = a(t) = \int_{}^{}{\left(
t^{2} + 3t ight)dt} = \frac{t^{3}}{3} + \frac{3t^{2}}{2} +
C.

    Khi đó v_{0} = v(0) = C = 16 \Rightarrow
v(t) = \frac{t^{3}}{3} + \frac{3t^{2}}{2} + 16

    Khi đó quãng đường đi được bằng:

    S(t) = \int_{0}^{4}{v(t)dt} =
\int_{0}^{4}{\left( \frac{t^{3}}{3} + \frac{3t^{2}}{2} + 16
ight)dt}

    = \left. \ \left( \frac{t^{4}}{12} +
\frac{t^{3}}{2} + 16t ight) ight|_{0}^{4} =
\frac{352}{2}(m)

  • Câu 32: Nhận biết

    Tìm số phức z trong phương trình sau: \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

     Ta có \frac{{2 + i}}{{1 - i}}z = \frac{{ - 1 + 3i}}{{2 + i}}

    \Leftrightarrow z = \frac{{( - 1 + 3i)(1 - i)}}{{{{(2 + i)}^2}}}

    \Leftrightarrow z = \frac{{2 + 4i}}{{3 + 4i}} \Leftrightarrow z = \frac{{(2 + 4i)(3 - 4i)}}{{25}}

    \Leftrightarrow z = \frac{{22}}{{25}} + \frac{4}{{25}}i

  • Câu 33: Thông hiểu

    Cho hình lập phương ABCD.A_{1}B_{1}C_{1}D_{1} có cạnh a. Gọi M là trung điểm của AD. Tính tích vô hướng \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}}?

    Hình vẽ minh họa

    Ta có: \overrightarrow{BD_{1}} =
\overrightarrow{BA} + \overrightarrow{AD_{1}} = - \overrightarrow{AB} +
\overrightarrow{AA_{1}} + \overrightarrow{AD}

    Ta có: \overrightarrow{B_{1}M} =
\overrightarrow{B_{1}A} + \overrightarrow{AM} hay \overrightarrow{B_{1}M} = - \overrightarrow{AB} -
\overrightarrow{AA_{1}} + \frac{1}{2}\overrightarrow{AD}

    Do đó \overrightarrow{B_{1}M}.\overrightarrow{BD_{1}} =
AB^{2} - A_{1}A^{2} + \frac{1}{2}AD^{2} = \frac{a^{2}}{2}

  • Câu 34: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 35: Thông hiểu

    Trong không gian Oxyz, điểm M thuộc trục Oy và cách đều hai mặt phẳng (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0 có tọa độ là?

    Ta có M \in Oy suy ra M(0;m;0).

    Theo đề bài ra ta có:

    d\left( M,(P) ight) = d\left( M,(Q)
ight)

    \Leftrightarrow \frac{|m + 1|}{\sqrt{3}}
= \frac{| - m - 5|}{\sqrt{3}} \Leftrightarrow m = - 3

    Vậy M(0; - 3;0).

  • Câu 36: Thông hiểu

    Cho số phức z thỏa mãn điều kiện \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i. Môđun của số phứcw = 1 + 2z + {z^2} có giá trị là

    10

    Đáp án là:

    Cho số phức z thỏa mãn điều kiện \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i. Môđun của số phứcw = 1 + 2z + {z^2} có giá trị là

    10

    Ta có: \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i  \Leftrightarrow \left( {2 + i} ight)z + \frac{{{{\left( {1 - i} ight)}^2}}}{{\left( {1 + i} ight)\left( {1 - i} ight)}} = 5 - i

    \Leftrightarrow \left( {2 + i} ight)z + \frac{{ - 2i}}{2} = 5 - i

    \Leftrightarrow \left( {2 + i} ight)z = 5 \Leftrightarrow z = \frac{5}{{2 + i}} = 2 - i

    \Rightarrow w = 1 + 2z + {z^2} = {\left( {1 + z} ight)^2} = {\left( {3 - i} ight)^2} = 8 - 6i

    \Leftrightarrow \left| w ight| = \sqrt {{8^2} + {{\left( { - 6} ight)}^2}}  = 10

  • Câu 37: Thông hiểu

    Cho hàm số f(x) = x^{4} - 5x^{2} +4. Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y =f(x) và trục hoành. Mệnh đề nào sau đây sai?

    Phương trình hoành độ giao điểm:

    x^{4} - 5x^{2} + 4 = 0 \Leftrightarrow\left\lbrack \begin{matrix}x^{2} = 1 \\x^{2} = 4 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = - 1 \\x = 2 \\x = - 2 \\\end{matrix} ight.

    Diện tích hình phẳng cần tìm là:

    S = \int_{- 2}^{2}{\left| f(x)ight|dx} = 2\int_{0}^{2}{\left| f(x) ight|dx}

    = 2\int_{0}^{1}{\left| f(x) ight|dx} +2\int_{1}^{2}{\left| f(x) ight|dx}

    = 2\left| \int_{0}^{1}{f(x)dx} ight| +2\left| \int_{1}^{2}{f(x)dx} ight| ((do trong khoảng (0; 1) và (1; 2) phương trình f(x) = 0 vô nghiệm)

    Vậy mệnh đề sai là: S = 2\left|\int_{0}^{2}{f(x)dx} ight|.

  • Câu 38: Thông hiểu

    Viết phương trình tham số của đường thẳng \left( d ight):\,\left\{ \begin{array}{l}2x - 3y + z - 4 = 0\\2x + 5y - 3z + 4 = 0\end{array} ight.

     Theo đề bài, đường thẳng d là giao của 2 mặt phẳng, ta gọi 2 mặt phẳng (P) và (Q) tương ứng lần lượt là:\left( P ight):2x - 3y + z - 4 = 0;\,\left( Q ight):2x + 5y - 3z + 4 = 0

    Mp (P) và (Q) có 2 vecto pháp tuyến tương ứng là: \overrightarrow {{n_1}}  = \left( {2, - 3,1} ight);\overrightarrow {{n_2}}  = \left( {2,5, - 3} ight)

    Từ đây ta suy ra vecto chỉ phương của đường thẳng (d) là tích có hướng của 2 VTPT:

    \overrightarrow a  = \left[ {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } ight] = \left( {4,8,16} ight) \Leftrightarrow \overrightarrow a  = 4\left( {1,2,4} ight)

    Cho y = 0, ta có:

    y = 0 \Rightarrow \left\{ \begin{array}{l}2x + z = 4\\2x - 3z =  - 4\end{array} ight.\, \Leftrightarrow x = 1;z = 2

    Đường thẳng (d) đi qua A( 1, 0, 2) và nhận vecto (1,2,4) làm 1 VTCP có PTTS là:

    A\left( {1,0,2} ight) \in \left( d ight) \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 1 + t\\y = 2t\\z = 2 + 4t\end{array} ight.\,\,;t \in R

  • Câu 39: Nhận biết

    Số phức liên hợp của số phức 5 - 3i là

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {5 - 3i}  = 5 - ( - 3i) = 5 + 3i

  • Câu 40: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {7^x} là 

     Ta có:

    \int {{7^x}dx}  = \frac{{7x}}{{\ln 7}} + C

  • Câu 41: Nhận biết

    Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = \frac{1}{x} và các đường thẳng y = 0;x = 1;x = 4. Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng (H) quay quanh trục?

    Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng (H) quay quanh trục Ox là:

    V = \pi\int_{1}^{4}{\left( \frac{1}{x}
ight)^{2}dx} = \pi\left. \ \left( - \frac{1}{x^{4}} ight)
ight|_{1}^{4} = \pi\left( - \frac{1}{4} + 1 ight) =
\frac{3\pi}{4}.

  • Câu 42: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 43: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz cho hai mặt phẳng (P):x + y - z + 1 = 0(Q):x - y + z - 5 = 0. Có bao nhiêu điểm M trên trục Oy thỏa mãn M cách đều hai mặt phẳng (P)(Q)?

    M \in Oy nên M(0;y;0)

    Ta có: \left\{ \begin{matrix}d\left( M;(P) ight) = \dfrac{|y + 1|}{\sqrt{3}} \\d\left( M;(Q) ight) = \dfrac{| - y - 5|}{\sqrt{3}} \\\end{matrix} ight..

    Theo giả thiết:

    d\left( M;(P) ight) = d\left( M;(Q)
ight) \Leftrightarrow \frac{|y + 1|}{\sqrt{3}} = \frac{| - y -
5|}{\sqrt{3}}

    \Leftrightarrow \left\lbrack
\begin{matrix}
y + 1 = - y - 5 \\
y + 1 = y + 5 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
y = - 3(TM) \\
0y = 4(L) \\
\end{matrix} ight.

    \Rightarrow M(0; - 3;0)

    Vậy có 1 điểm M thỏa mãn bài.

  • Câu 44: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 45: Nhận biết

    Tính chất nào sau đây sai?

    Tính chất sai là: \overrightarrow{a} -
\overrightarrow{b} = \overrightarrow{b} -
\overrightarrow{a}

  • Câu 46: Thông hiểu

    Cho số phức z thỏa mãn z = 1 + i + {i^2} + {i^3} + ... + {i^{2022}}. Khi đó phần thực và phần ảo của z lần lượt là?

     Ta có: z = 1 + i\frac{{1 - {i^{2022}}}}{{1 - i}} = i

    Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.

  • Câu 47: Vận dụng

    Trong không gian Oxyz, xét mặt phẳng (P) đi qua điểm A(2;1;3) đồng thời cắt các tia Ox,Oy,Oz lần lượt tại M,N,P sao cho tứ diện OMNP có thể tích nhỏ nhất. Giao điểm của đường thẳng \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 4 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) với (P) có toạ độ là:

    Gọi M(a;0;0),N(0;b;0),P(0;0;c)

    Theo giả thiết, ta có a;b;c là các số dương.

    Phương trình mặt phẳng (P) là \frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    (P) đi qua điểm A (2; 1; 3) nên \frac{2}{a} + \frac{1}{b} + \frac{3}{c} =
1

    Ta có: \frac{2}{a} + \frac{1}{b} +
\frac{3}{c} \geq 3\sqrt[3]{\frac{2}{a}.\frac{1}{b}.\frac{3}{c}} =
\frac{3\sqrt[3]{6}}{\sqrt[3]{abc}}

    \Leftrightarrow 1 \geq
\frac{3\sqrt[3]{6}}{\sqrt[3]{abc}} \Leftrightarrow \sqrt[3]{abc} \geq
3\sqrt[3]{6} \Leftrightarrow abc \geq 112

    V_{OMNP} = \frac{abc}{6} \geq
27. Dấu bằng xảy ra khi và chỉ khi \left\{ \begin{matrix}
\frac{2}{a} = \frac{1}{b} = \frac{3}{c} \\
\frac{2}{a} + \frac{1}{b} + \frac{3}{c} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 6 \\
b = 3 \\
c = 9 \\
\end{matrix} ight.

    Vậy (P):\frac{x}{6} + \frac{y}{3} +
\frac{z}{9} = 1

    Tọa độ giao điểm của d và (P) là nghiệm của hệ: \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 4 + t \\
\frac{x}{6} + \frac{y}{3} + \frac{z}{9} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 1 \\
z = 6 \\
t = 2 \\
\end{matrix} ight..

    Vậy đáp án cần tìm là: (4; -
1;6).

  • Câu 48: Nhận biết

    Hàm số f(x) có đạo hàm liên tục trên tập số thực và f'(x) = 2e^{2x} +
1;\forall x; f(0) = 2. Hàm số f(x) là:

    Ta có: \int_{}^{}{f'(x)dx} =
\int_{}^{}{\left( 2e^{2x} + 1 ight)dx} = e^{2x} + x + C

    \Rightarrow f(x) = e^{2x} + x +
C

    Theo bài ra ta có: f(0) = 2 \Rightarrow 1
+ C = 2 \Rightarrow C = 1

    Vậy f(x) = e^{2x} + x + 1.

  • Câu 49: Nhận biết

    Họ các nguyên hàm của hàm số f(x) = \sin
x + 1 là:

    Ta có: \int_{}^{}{\left( \sin x + 1
ight)dx} = - \cos x + x + C

  • Câu 50: Thông hiểu

    Một chất điểm chuyển động với gia tốc a(t) = 6t^{2} + 2t\left( m/s^{2} ight). Vận tốc ban đầu của chất điểm là 2(m/s). Hỏi vận tốc của chất điểm sau khi chuyển động với gia tốc đó được 2 giây bằng bao nhiêu?

    Ta có: v(2) - v(0) =
\int_{0}^{2}{a(t)dt}

    \Rightarrow v(2) = \int_{0}^{2}{\left(
6t^{2} + 2t ight)dt} + v(0)

    \Rightarrow v(2) = \left. \ \left(
2t^{3} + t^{2} ight) ight|_{0}^{2} + 2 = 22

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 210 lượt xem
Sắp xếp theo