Cho giá trị của tích phân
,
. Giá trị của a + b là:
Ta có:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Cho giá trị của tích phân
,
. Giá trị của a + b là:
Ta có:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
. Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng (d)?
Phương trình chính tắc của đường thẳng có dạng:
với
.
Vectơ chỉ phương .
Viết công thức tính thể tích
của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục
tại các điểm
, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là
.
Thể tích của vật thể đã cho là: .
Cho tứ giác ABCD có
. Viết phương trình của mặt phẳng (P) qua A, B và chia tứ diện thành hai khối ABCE và ABDE có tỉ số thể tích bằng 3.

Theo đề bài, ta có mp (P) cắt cạnh CD tại E, E chia đoạn CD theo tỷ số -3
Từ đó, ta suy ra:
Như vậy, VTPT mp (P) là:
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
. Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được
. Tìm
?
Khi dừng hẳn
Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:
Cho hàm số
liên tục trên
, có đồ thị hàm số
như sau:

Mệnh đề nào dưới đây là đúng?
Theo ý nghĩa hình học của tích phân thì là diện tích hình thang cong
.
Giả sử
là các hàm số bất kì liên tục trên
và
là các số thực. Mệnh đề nào sau đây sai?
Theo tính chất tích phân ta có:
Vậy mệnh đề sai:
Họ nguyên hàm của hàm số
là:
Ta có: .
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Họ nguyên hàm của hàm số
là:
Ta có:
Trong không gian hệ trục tọa độ
, cho hai điểm
. Tìm tọa độ điểm
sao cho
?
Gọi tọa độ độ điểm .
Ta có:
Lại có:
Vậy đáp án cần tìm là: .
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức
. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.
Ta có
Từ giả thiết
Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm và mặt cầu tâm
Dễ thấy
Cho hình hộp chữ nhật OABC.DEFG có
. Gọi L là tâm hình hộp. Biểu thị vectơ
theo ba vectơ
và
?

Vì I là tâm hình hộp theo giả thiết nên I là trung điểm đường chéo OF. Từ đây, suy ra
Trong không gian
, điểm nào sau đây thuộc trục tung
?
Điểm thuộc trục tung Oy là .
Tính tích phân
?
Ta có:
Trong hệ trục tọa độ Oxy, cho parabol
và hai đường thẳng
(mô tả như hình vẽ). Gọi
là diện tích hình phẳng giới hạn bới và đường thẳng
(phần tô màu đen);
là diện tích hình phẳng giới hạn bới parabol
và đường thẳng
(phần gạch chéo). Với điều kiện nào sau đây của
thì
?

Phương trình hoành độ giao điểm của và đường thẳng
là:
Phương trình hoành độ giao điểm của và đường thẳng
là:
Diện tích hình phẳng giới hạn bởi và
là:
Diện tích hình phẳng giới hạn bởi và
là:
Khi đó:
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Trong không gian
, cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Gọi (H) là hình phẳng giới hạn bởi các đường
và
(với
) được minh họa bằng hình vẽ bên (phần tô đậm):

Cho
quay quanh trục
, thể tích khối tròn xoay tạo thành bằng bao nhiêu?
Ta có:
Thể tích khối tròn xoay cần tính là
Cho số phức
. Tính |z|
Ta có
Trong không gian với hệ tọa độ
cho điểm
và mặt phẳng
, m là tham số. Gọi là hình chiếu vuông góc của điểm trên . Tính khi khoảng cách từ điểm đến lớn nhất ?
Ta có
Xét hàm số
Ta lập bảng biến thiên cho hàm số trên, được:

Qua bảng biến thiên, ta thấy hàm số đạt GTLN khi
Đường thẳng qua A và vuông góc với (P) có phương trình là
Ta có
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và
. Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Mặt khác
=>
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian với hệ tọa độ
, điểm
thuộc mặt phẳng
và cách đều các điểm
. Tích
bằng
Do và
, nên ta được hệ:
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Trong không gian với hệ tọa độ
, cho mặt phẳng
và hai điểm
. Gọi
là mặt phẳng qua
và vuông góc với
. Phương trình nào là phương trình của mặt phẳng
?
Vì là mặt phẳng đi qua A, B và vuông góc với
nên mặt phẳng
nhận
làm hai vectơ chỉ phương.
Vectơ pháp tuyến của mặt phẳng là
Phương trình mặt phẳng
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường
. Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là
giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường . Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Do nên quãng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Ta có:
với
là hằng số.
Khi đó, ta gọi hàm số .
Do nên
. Suy ra
.
Xe ô tô dừng hẳn khi hay
. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.
Ta có xe ô tô đang chạy với tốc độ .
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: .
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: .
Do nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Nguyên hàm của hàm số
là:
Ta có:
Tìm một nguyên hàm của hàm số
?
Ta có:
Đặt
Khi đó .
Trong không gian
, cho hai điểm
. Điểm
nằm trên mặt phẳng
sao cho
nhỏ nhất là:
Thay tọa độ của A, B vào vế trái của phương trình mặt phẳng ta được:
Suy ra A, B nằm về hai phía của mặt phẳng (P).
Vậy dấu “ = ” xảy ra khi
.
Ta có chọn vtcp của đường thẳng AB:
.
Vậy phương trình đường thẳng AB: .
Tọa độ của M là nghiệm hệ:
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho hàm số
là một nguyên hàm của hàm số
. Biết rằng giá trị lớn nhất của
trên khoảng
là
. Chọn mệnh đề đúng trong các mệnh đề sau?
Ta có:
Suy ra
Trên khoảng ta có:
Ta có bảng biến thiên
Giá trị lớn nhất của trên khoảng
là
nên t s có:
Vậy .
Trong không gian với hệ toạ độ
, cho điểm
, đường thẳng
và mặt phẳng
. Viết phương trình đường thẳng
qua
vuông góc với d và song song với
.
Đường thẳng có vec tơ chỉ phương
.
Mặt phẳng có vec tơ pháp tuyến
.
Đường thẳng ∆ vuông góc với nên vectơ chỉ phương
Đường thẳng ∆ song song với (P) nên
Ta có
Suy ra vec tơ chỉ phương của đường thẳng ∆ là
Vậy phương trình đường thẳng ∆ là .
Số phức
bằng:
Ta có:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Trong không gian
, phương trình nào sau đây là phương trình của mặt phẳng?
Phương trình tổng quát của mặt phẳng là: .
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và
là giao tuyến của hai mặt phẳng
. Vị trí tương đối của hai đường thẳng là:
Xét hệ phương trình
Cho
Cho
Đường thẳng d1 đi qua M (1; 7; 3) và có vectơ chỉ phương
Đường thẳng d2 đi qua A (3; 1; −3) và có vectơ chỉ phương
Ta có
Do đó vị trí tương đối của hai đường thẳng là cắt nhau.
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Suy ra