Đề thi HK2 Toán 12 Đề 1

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 50 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 1 + i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 2: Thông hiểu

    Gọi F(x) là một nguyên hàm của hàm số f\left( x ight) = \cos 5x.\cos x thỏa mãn F\left( {\frac{\pi }{5}} ight) = 0. Tính F\left( {\frac{\pi }{6}} ight).

     \begin{matrix}  \cos 5x + \cos x = \dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight) \hfill \\  \int {\cos 5x.\cos xdx}  = \int {\dfrac{1}{2}\left( {\cos 6x + \cos 4x} ight)} dx = \dfrac{1}{2}.\dfrac{{\sin 6x}}{6} + \dfrac{1}{2}\dfrac{{\sin 4x}}{4} + C \hfill \\  F\left( {\dfrac{\pi }{3}} ight) = 0 \Rightarrow C = \dfrac{{\sqrt 3 }}{6} \hfill \\  F\left( {\dfrac{\pi }{6}} ight) = \dfrac{{\sqrt 3 }}{8} \hfill \\ \end{matrix}

  • Câu 3: Vận dụng cao

    Cho parabol (P):y = x^{2} và hai điểm A;B thuộc (P) sao cho AB = 2. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB.

    Hình vẽ minh họa

    Gọi A\left( a;a^{2} ight)(P):y = x^{2} là hai điểm thuộc (P) sao cho AB = 2.

    Không mất tính tổng quát giả sử a < b.

    Theo giả thiết ta có AB = 2 nên

    (b - a)^{2} + \left( b^{2} - a^{2}ight)^{2} = 4

    \Leftrightarrow (b - a)^{2}\left\lbrack1 + (b + a)^{2} ightbrack = 4

    Phương trình đường thẳng đi qua hai điểm A và B là y = (b + a)x - ab

    Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:

    S = \int_{a}^{b}{\left\lbrack (a + b)x -ab - x^{2} ightbrack dx}

    = \left. \ \left\lbrack (a +b)\frac{x^{2}}{2} - abx - \frac{x^{3}}{3} ightbrack ight|_{a}^{b}= \frac{(b - a)^{3}}{6}

    Mặt khác (b - a)^{2}\left\lbrack 1 + (b +a)^{2} ightbrack = 4 nên |b -a| \leq 2 do 1 + (b + a)^{2} \geq1

    Suy ra S = \frac{(b - a)^{3}}{6} \leq\frac{2^{3}}{6}

    Vậy S_{\max} = \frac{4}{3} dấu bằng xảy ra khi và chỉ khi a = − b = ±1.

  • Câu 4: Thông hiểu

    Cho số phức z thỏa mãn điều kiện \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i. Môđun của số phứcw = 1 + 2z + {z^2} có giá trị là

    10

    Đáp án là:

    Cho số phức z thỏa mãn điều kiện \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i. Môđun của số phứcw = 1 + 2z + {z^2} có giá trị là

    10

    Ta có: \left( {2 + i} ight)z + \frac{{1 - i}}{{1 + i}} = 5 - i  \Leftrightarrow \left( {2 + i} ight)z + \frac{{{{\left( {1 - i} ight)}^2}}}{{\left( {1 + i} ight)\left( {1 - i} ight)}} = 5 - i

    \Leftrightarrow \left( {2 + i} ight)z + \frac{{ - 2i}}{2} = 5 - i

    \Leftrightarrow \left( {2 + i} ight)z = 5 \Leftrightarrow z = \frac{5}{{2 + i}} = 2 - i

    \Rightarrow w = 1 + 2z + {z^2} = {\left( {1 + z} ight)^2} = {\left( {3 - i} ight)^2} = 8 - 6i

    \Leftrightarrow \left| w ight| = \sqrt {{8^2} + {{\left( { - 6} ight)}^2}}  = 10

  • Câu 5: Thông hiểu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(3; - 1;5),B(m;2;7). Tìm giá trị tham số m để AB
= 7?

    Theo bài ra ta có:

    AB = 7 \Leftrightarrow \sqrt{(m - 3)^{2}
+ 3^{2} + 2^{2}} = 7

    \Leftrightarrow (m - 3)^{2} = 36
\Leftrightarrow \left\lbrack \begin{matrix}
m - 3 = 6 \\
m - 3 = - 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 3 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m = 9 \\
m = - 3 \\
\end{matrix} ight..

  • Câu 6: Vận dụng cao

    Trong không gian Oxyz cho mặt phẳng (P):2x + y + z - 3 = 0 và hai điểm A(m;1;0),B(1; - m;2). Gọi E;F lần lượt là hình chiếu của A;B lên mặt phẳng (P). Biết EF = \sqrt{5}. Tổng tất cả các giá trị của tham số m là

    Hình vẽ minh họa

    Xét trường hợp m = 1. Khi đó cả A;B đều thuộc (P). Trong trường hợp này EF = AB = 2\sqrt{2} (loại).

    Khi m eq 1. Ta tính toán các đại lượng:

    d\left( A;(P) ight) = \frac{|2m -
2|}{\sqrt{6}};d\left( B;(P) ight) = \frac{|1 -
m|}{\sqrt{6}}

    Từ đó suy ra A;B khác phía với (P) và d\left( A;(P) ight) = 2d\left(
B;(P) ight)

    Gọi H là giao điểm của AB với (P).

    Theo Thales ta có:

    EH = \frac{2\sqrt{5}}{3};AH =
\frac{2}{3}AB = \frac{2}{3}\sqrt{(1 - m)^{2} + (m + 1)^{2} +
2^{2}}

    Áp dụng định lý Pythagore cho tam giác AEH ta có:

    AE^{2} + EH^{2} = AH^{2}

    \Leftrightarrow \frac{(2m - 2)^{2}}{6} +
\left( \frac{2\sqrt{5}}{3} ight)^{2} = \frac{4}{9}\left\lbrack (1 -
m)^{2} + (m + 1)^{2} + 4 ightbrack

    \Leftrightarrow \frac{3\left( 4m^{2} -
8m + 4 ight)}{18} + \frac{40}{18} = \frac{8\left( 2m^{2} + 6
ight)}{18}

    \Leftrightarrow 4m^{2} + 24m - 4 =
0

    Phương trình này có hai nghiệm và tổng hai nghiệm đó bằng: - \frac{24}{4} = - 6.

  • Câu 7: Thông hiểu

    Tìm các số thực x, y thoả mãn:

    3x + y + 5xi = 2y – 1 +(x – y)i

    Theo giả thiết: 3x + y + 5xi = 2y – 1 +(x – y)i

    => (3x + y) + (5x)i = (2y – 1) +(x – y)i

    =>\left\{ \begin{gathered}  3x + y = 2y - 1 \hfill \\  5x = x - y \hfill \\ \end{gathered}  ight.

    => \left\{ \begin{gathered}  x =  - \frac{1}{7} \hfill \\  y = \frac{4}{7} \hfill \\ \end{gathered}  ight.

  • Câu 8: Thông hiểu

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm của phương trình {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 trên tập

    số phức tính tổng: S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}}.

    Ta có: {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 \Leftrightarrow \left( {z - 1} ight)\left( {z + 2} ight)\left( {{z^2} - 2z + 2} ight) = 0 (1)

    Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:

    \left[ \begin{array}{l}{z_1} = 1\\{z_2} =  - 2\\{z_3} = 1 + i\\{z_4} = 1 - i\end{array} ight.

    Thay và biểu thức ta có: 

    S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}} = 1 + \frac{1}{4} + \frac{1}{{{{\left( {1 - i} ight)}^2}}} + \frac{1}{{{{\left( {1 + i} ight)}^2}}} = \frac{5}{4}

  • Câu 9: Nhận biết

    Cho số phức z thỏa mãn z + \frac{{2{{\left( {2 - i} ight)}^3}\overline z }}{{1 + i}} + {\left( {4 + i} ight)^5} = 422 + 1088i . Khẳng định nào sau đây là khẳng định đúng?

     Gọi z = x + yi,x,y \in \mathbb{R} tìm được z = 1 - 2i.

    Tính mô đun ta được  \left| z ight| = \sqrt 5.

  • Câu 10: Thông hiểu

    Biết rằng F(x) = \left( ax^{2} + bx + c
ight)e^{- x} là một nguyên hàm của hàm số f(x) = \left( 2x^{2} - 5x + 2 ight)e^{-
x} trên \mathbb{R}. Giá trị của biểu thức f\left( F(0)
ight) bằng:

    Ta có: \left( F(x) ight)' =
\left\lbrack \left( ax^{2} + bx + c ight)e^{- x}
ightbrack'

    = \left\lbrack - ax^{2} + (2a - b)x + b
- c ightbrack e^{- x}

    = \left( 2x^{2} - 5x + 2 ight)e^{-
x} suy ra \left\{ \begin{matrix}a = - 2 \\2a - b = - 5 \\b - c = 2 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = - 2 \\b = 1 \\c = - 1 \\\end{matrix} ight.\Rightarrow F(x) = \left( 2x^{2} + x - 1ight)e^{- x}

    \Rightarrow F(0) = - 1 \Rightarrow
f\left( F(0) ight) = f( - 1) = 9e

  • Câu 11: Thông hiểu

    Một người có mảnh đất hình tròn có bán kính 5m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây 6m vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một người có mảnh đất hình tròn có bán kính 5m. Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được 100 nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây 6m vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 12: Nhận biết

    Xác định giá trị của tham số a thỏa mãn \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = a^{3} + 2?

    Ta có: \int_{0}^{a}{\left( 3x^{2} + 2
ight)dx} = \left. \ \left( x^{3} + 2x ight) ight|_{0}^{a} = a^{3}
+ 2a

    \Rightarrow \int_{0}^{a}{\left( 3x^{2} +
2 ight)dx} = a^{3} + 2 \Leftrightarrow a^{3} + 2a = a^{3} + 2
\Leftrightarrow a = 1

    Vậy đáp án a = 1.

  • Câu 13: Vận dụng cao

    Cho F(x) là một nguyên hàm của hàm số f\left( x ight) = {e^{{x^2}}}\left( {{x^3} - 4x} ight). Hàm số F\left( {{x^2} + x} ight) có bao nhiêu điểm cực trị?

     \begin{matrix}  \left[ {F\left( {{x^2} + x} ight)} ight]\prime    \hfill \\   = \left( {2x + 1} ight)f\left( {{x^2} + x} ight) \hfill \\   = \left( {2x + 1} ight){e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}.\left[ {{{\left( {{x^2} + x} ight)}^3} - 4\left( {{x^2} + x} ight)} ight] \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).\left( {{x^2} + x} ight)\left( {{x^2} + x + 2} ight)\left( {{x^2} + x - 2} ight) \hfill \\   = {e^{{{\left[ {\left( {{x^2} + x} ight)} ight]}^2}}}\left( {2x + 1} ight).x\left( {x + 1} ight)\left( {{x^2} + x + 2} ight)\left( {x + 2} ight)\left( {x - 1} ight) \hfill \\ \end{matrix}

    => \left[ {F\left( {{x^2} + x} ight)} ight]' = 0 có 5 nghiệm đơn

    => Hàm số F\left( {{x^2} + x} ight) có 5 điểm cực trị

  • Câu 14: Nhận biết

    Nếu \int_{0}^{1}{f(x)dx} =
2;\int_{1}^{2}{f(x)dx} = 4. Khi đó \int_{0}^{2}{f(x)dx} bằng:

    Ta có: \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx} = 2 + 4 = 6.

  • Câu 15: Nhận biết

    Nghiệm của phương trình: {z^2} - (3i + 8)z + 11\,.i + 13 = 0  là 

     Ta có: \Delta  = {(3i + 8)^2} - 4(11.i + 13) = 4i + 3.

    Giả sử m+ni \,\,(m; n \in \mathbb R)  là căn bậc hai của \triangle.

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 3 + 4i \Leftrightarrow {m^2} + 2mni - {n^2} = 3 + 4i

    \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3\\2mn = 4\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3 \,\,  (1)\ = \dfrac{2}{m}\,\,\,\, \,\,\,\,  (2)\end{array} ight.

    Thay (2) vào (1) ta có:

    {m^2} - {\left( {\frac{2}{m}} ight)^2} = 3 \Leftrightarrow {m^4} - 3{m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\,\,\,\,\,\,\,\,(TM)\\{m^2} =  - 1\,\,\,\,\,\,\,(L{m{)}}\end{array} ight.

    \Rightarrow \left[ \begin{array}{l}m = 2 \Rightarrow n = 1\\m =  - 2 \Rightarrow n =  - 1\end{array} ight.

    Vậy \triangle có hai căn bậc hai là  2+i  và -2-i.

    Do đó nghiệm của phương trình là:

    \left[ \begin{array}{l}z = \dfrac{{3i + 8 + i + 2}}{2} = 2i + 5\\z = \dfrac{{3i + 8 - i - 2}}{2} = i + 3\end{array} ight.

  • Câu 16: Nhận biết

    Trong không gian Oxyz cho hai điểm A(2;0; - 1),B(1;1;0)(\alpha) là mặt phẳng trung trực của đoạn thẳng AB. Vectơ nào sau đây là một vectơ pháp tuyến của (\alpha)?

    Do (\alpha) là mặt phẳng trung trực của đoạn thẳng AB nên (\alpha) nhận \overrightarrow{AB} = ( - 1;1;1) làm vectơ pháp tuyến.

    Suy ra \overrightarrow{n}(1; - 1; - 1) =
- \overrightarrow{AB} cũng là vectơ pháp tuyến của (α).

  • Câu 17: Vận dụng

    Cho đường tròn \left( C ight):{x^2} + {y^2} = 8 và parabol \left( P ight):{y^2} = 2x. \left( P ight) cắt \left( C ight) thành hai phần. Tìm tỉ số diện tích của hai phần đó.

    Hoành độ giao điểm của (P) và (C) là: 2x = 8 - {x^2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2} \\   {x =  - 4\left( L ight)} \end{array}} ight.

    Xét giao điểm thuộc góc phần tư thứ nhất, với x = 2 \Rightarrow y = 2

    Gọi S2 là phần có diện tích nhỏ hơn, S1 là phần còn lại

    Ta có:

    \begin{matrix}  {S_2} = 2\int\limits_0^2 {\left[ {\sqrt {8 - {y^2}}  - \dfrac{{{y^2}}}{2}} ight]} dy \hfill \\   = 2\int\limits_0^2 {\sqrt {8 - {y^2}} } dy - \int\limits_0^2 {{y^2}} dy \hfill \\   = 2I - \left. {\dfrac{{{y^3}}}{3}} ight|_0^2 = 2I - \dfrac{8}{3} \hfill \\ \end{matrix}

    Đặt y = 2\sqrt 2 \sin t \Rightarrow dy = 2\sqrt 2 \cos tdt

    \begin{matrix}  I = \int_0^2 {\sqrt {8 - {y^2}} } dy = \int_0^{\frac{\pi }{4}} {\sqrt {8 - 8{{\sin }^2}t} } .2\sqrt 2 \cos tdt \hfill \\   = 8\int_0^{\frac{\pi }{4}} {\sqrt {1 - {{\sin }^2}t} } .\cos tdt = 8\int_0^{\frac{\pi }{4}} {{{\cos }^2}} tdt \hfill \\   = 4\int_0^{\frac{\pi }{4}} {(1 + \cos 2t)} dt = \left. {4\left[ {t + \frac{1}{2}\sin 2t} ight]} ight|_0^{\frac{\pi }{4}} = \pi  + 2 \hfill \\ \end{matrix}

    Khi đó {S_2} = 2\pi  + \frac{4}{3}

    Diện tích hình tròn {S_2} = \pi {\left( {2\sqrt 2 } ight)^2} = 8\pi

    \begin{matrix}  {S_1} = 8\pi  - \left( {2\pi  + \dfrac{4}{3}} ight) = 6\pi  - \dfrac{4}{3} \hfill \\   \Rightarrow \dfrac{{{S_1}}}{{{S_2}}} = \dfrac{{9\pi  - 2}}{{3\pi  + 2}} \hfill \\ \end{matrix}

  • Câu 18: Thông hiểu

    Diện tích hình phẳng được gạch chéo trong hình bên bằng

    Dựa và hình vẽ ta có diện tích hình phẳng được gạch chéo trong hình bên là:

    \int_{- 1}^{2}{\left\lbrack \left( -
x^{2} + 2 ight) - \left( x^{2} - 2x - 2 ight) ightbrack dx} =
\int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4 ight)dx}.

  • Câu 19: Nhận biết

    Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a;x = b;\left( {a < b} ight) xung quanh trục Ox.

    Ta có : V =
\pi\int_{a}^{b}{f^{2}(x)}dx.

  • Câu 20: Vận dụng cao

    Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân

    giác trong góc A là \frac{x}{1}=\frac{y-6}{-4}=\frac{z-6}{-3}.  Biết rằng điểm M(0; 5; 3) thuộc đường thẳng AB và điểm N(1;1;0)thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?

    Giả sử , A(t; 6-4t; 6-3t), ta có:

    \vec{u_d}=(1; -4; -3),

    \vec{AM}=(-t;4t-1;-3+3t)

    \vec{AN}=(1-t;-5+4t;3t-6)

    Theo bài ra: Vì d là đường phân giác của góc A nên:

    \left | \cos(\vec{u_d}, \vec{AM}) ight |= \left | \cos(\vec{u_d}, \vec{AN}) ight |

    \Leftrightarrow \dfrac{\left | 26t-13 ight |}{\sqrt{26t^2 -26t+10} } =\dfrac{\left | 26t-39 ight |}{\sqrt{26t^2 -78t+62} }

    \Leftrightarrow \dfrac{\left | 2t-1 ight |}{\sqrt{13t^2 -13t+5} } =\dfrac{\left | 2t-3 ight |}{\sqrt{13t^2 -39t+31} }

    Từ đây ta bình phương 2 vế được:

    (4t^2-4t+1)(13t^2-39t+31)=(4t^2-12t+9)(13t^2-13t+5)

    \Leftrightarrow 14t=14

    \Leftrightarrow t=1

    \Rightarrow A(1;2;3)\Rightarrow \vec{AN}=(0; -1; -3)

    Vậy một véc tơ chỉ phương của AC  là  \vec{u}(0;1;3).

  • Câu 21: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng (\alpha):x + y = 0\ ,(\alpha'):2x - y + z - 15= 0. Tìm tọa độ giao điểm I của đường thẳng dd', biết đường thẳng d' có phương trình \left\{ \begin{matrix}x = 1 - t \\y = 2 + 2t \\z = 3 \\\end{matrix} ight.

    Tọa độ giao điểm I của d và d’ thỏa mãn hệ phương trình:

    \left\{ \begin{matrix}x + y = 0 \\2x - y + z - 15 = 0 \\x = 1 - t \\y = 2 + 2t \\z = 3 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}1 - t + 2 + 2t = 0 \\2(1 - t) - (2 + 2t) + 3 - 15 = 0 \\x = 1 - t \\y = 2 + 2t \\z = 3 \\\end{matrix} ight.\Leftrightarrow \left\{ \begin{matrix}t = - 3 \\x = 4 \\y = - 4 \\z = 3 \\\end{matrix} ight.\  \Rightarrow I(4; - 4;3)

  • Câu 22: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho phương trình đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng \Delta?

    Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:

    \left\{ \begin{matrix}
- 1 = 1 + 2t \\
- 4 = - 1 + 3t \\
3 = 2 - t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 \Rightarrow M( - 1; -
4;3) \in \Delta.

  • Câu 23: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 24: Thông hiểu

    Cho số phức z =  - 1 + 3i. Phần thực và phần ảo của số phức w = 2i - 3\overline z lần lượt là:

     Ta có: w = 2i - 3\overline z  = 2i - 3\left( { - 1 - 3i} ight) = 11i + 3

  • Câu 25: Vận dụng

    Tìm tổng các giá trị của số thực a sao cho phương trình {z^2} + 3z + {a^2} - 2a = 0 có nghiệm phức z_0 thỏa mãn \left| {{z_{m{o}}}} ight| = 2

    4 || Bốn || bốn

    Đáp án là:

    Tìm tổng các giá trị của số thực a sao cho phương trình {z^2} + 3z + {a^2} - 2a = 0 có nghiệm phức z_0 thỏa mãn \left| {{z_{m{o}}}} ight| = 2

    4 || Bốn || bốn

     Ta có với mọi a \in \mathbb R thì phương trình {z^2} + 3z + {a^2} - 2a = 0 luôn có nghiệm phức.

    {z_1} = \frac{{ - 3 + i\sqrt {\left| { - 4{a^2} + 8a + 9} ight|} }}{2}{z_2} = \frac{{ - 3 - i\sqrt {\left| { - 4{a^2} + 8a + 9} ight|} }}{2}.

    Suy ra \left| {{z_1}} ight| = \left| {{z_2}} ight| = \sqrt {\frac{3}{4} + \frac{{\left| { - 4{a^2} + 8a + 9} ight|}}{4}}.

     

    \left| {{z_{m{o}}}} ight| = 2 \Rightarrow \sqrt {\frac{3}{4} + \frac{{\left| { - 4{a^2} + 8a + 9} ight|}}{4}}  = 2

    \Leftrightarrow \frac{9}{4} + \frac{{\left| { - 4{a^2} + 8a + 9} ight|}}{4} = 4 \Leftrightarrow \left| { - 4{a^2} + 8a + 9} ight| = 7

    \Leftrightarrow \left[ \begin{array}{l} - 4{a^2} + 8a + 9 = 7\\ - 4{a^2} + 8a + 9 =  - 7\end{array} ight. \Leftrightarrow \left[ \begin{array}{l} - 4{a^2} + 8a + 2 = 0{m{        }}\left( 1 ight)\\ - 4{a^2} + 8a + 16 = 0{m{      }}\left( 2 ight)\end{array} ight.

    Từ (1) ta có  {a_1} + {a_2} = 2, từ (2) ta có {a_3} + {a_4} = 2.

    Vậy tổng {a_1} + {a_2} + {a_3} + {a_4} = 4.

  • Câu 26: Vận dụng

    Cho hai điểm A\left( { - 2,3, - 1} ight),B\left( {1, - 2, - 3} ight) và mặt phẳng \left( \beta  ight):3x - 2y + z + 9 = 0. Mặt phẳng (\alpha) chứa hai điểm A,B và vuông góc với mặt phẳng (\beta) có phương trình:

    Theo đề bài, ta có: A\left( { - 2,3, - 1} ight),B\left( {1, - 2, - 3} ight) ; \left( \beta  ight):3x - 2y + z + 9 = 0.

    Suy ra \overrightarrow {AB}  = \left( {3, - 5, - 2} ight); (\beta) có vectơ pháp tuyến \overrightarrow n  = \left( {3, - 2,1} ight)

    Ta có \left[ {\overrightarrow {AB} ,\overrightarrow n } ight] = \left( { - 9, - 9,9} ight) cùng phương với vectơ \overrightarrow p  = \left( {1,1, - 1} ight)

    Chọn \vec{p} làm 1 vectơ pháp tuyến cho mặt phẳng (\alpha) .

    Phương trình mặt phẳng (\alpha) có dạng: x + y - z + D = 0

    A \in \left( \alpha  ight) \Leftrightarrow  - 2 + 3 + 1 + D = 0 \Leftrightarrow D =  - 2

    Mặt phẳng :(\alpha): x + y - z - 2 = 0

  • Câu 27: Thông hiểu

    Trong không gian Oxyz, cho mặt phẳng (P) đi qua điểm M(2; - 4;1) và chắn trên các trục tọa độ Ox,Oy,Oz theo ba đoạn có độ dài đại số lần lượt là a;b;c. Phương trình tổng quát của mặt phẳng (P) khi a;b;c theo thứ tự tạo thành một cấp số nhân có công bội bằng 2 là:

    Do giả thiết suy ra \left\{
\begin{matrix}
a,b,c eq 0\  \\
b = 2a,c = 2b \\
\end{matrix} ight..

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c) khi đó phương trình mặt phẳng\frac{x}{a} + \frac{y}{b} +
\frac{z}{c} = 1.

    Do M thuộc (P) nên \frac{2}{a} -
\frac{4}{b} + \frac{1}{c} = 1 \Leftrightarrow \frac{2}{a} - \frac{4}{2a}
+ \frac{1}{4a} = 1 \Leftrightarrow a = \frac{1}{4}

    Suy ra b = \frac{1}{2};c = 1 do đó phương trình mặt phẳng (P):4x + 2y + z -
1 = 0.

  • Câu 28: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x - 8\sin x\cos x thỏa mãn F(\pi) = 2?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(2x - 8\sin x\cos x ight)dx}

    = \int_{}^{}{(2x - 4\sin2x)dx} = x^{2} +2\cos2x + C

    Theo bài ra ta có: F(\pi) =
2

    \Rightarrow \pi^{2} + 2 + C = 2
\Leftrightarrow C = - \pi^{2}

    Vậy F(x) = x^{2} + 2\cos2x -\pi^{2}

  • Câu 29: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y = 3x^{2} -
1. Phát biểu nào sau đây đúng?

    Ta có \int_{}^{}{\left( 3x^{2} - 1
ight)dx = x^{3} - x + C}.

  • Câu 30: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 31: Vận dụng cao

    Cho số phức z thoả mãn |z+\overline{z}|+ |z-\overline{z}|=|z^2| . Giá trị lớn nhất của biểu thức P=|z-5-2i| bằng?

    Đặt z=a+bi \,(a,b \in \mathbb R).

    Từ giả thiết |z+\overline{z}|+ |z-\overline{z}|=|z^2|

    \Leftrightarrow 2|a|+2|b|=a^2+b^2\Leftrightarrow(|a|-1)^2+(|b|-1)^2=2   (1).

    Ta có P=|z-5-2i| =\sqrt{ (a-5)^2+(b-2)^2}= \sqrt {2|a|+2|b|-10a-4b+29}.

    Dễ thấy P lớn nhất khi a, b \leq 0.

    Khi đó P=\sqrt {-12a-6b+29}=\sqrt{6[-2(a+1)-(b+1)]+47}

    Do a, b \leq 0 nên từ (1) ta có (a+1)^2+(b+1)^2=2.

    Suy ra P=\sqrt{6[-2(a+1)-(b+1)]+47} \leq \sqrt {6\sqrt{(2^2+1^2)[(a+1)^2+(b+1)^2]+47}}

    =\sqrt {47+6\sqrt{10}}==\sqrt {2} +3\sqrt 5

    Dấu = xảy ra khi \left\{\begin{matrix} (a+1)^2+(b+1)^2=2 \\ \dfrac{a+1}{2} =\dfrac{b+1}{1} \\ a+1, b+1 <0 \end{matrix}ight.  \Leftrightarrow \left\{\begin{matrix} a=-1-\dfrac{2\sqrt{10}}{5} \\ b=-1-\dfrac{\sqrt{10}}{5}\end{matrix}ight..

  • Câu 32: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}} là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\frac{e^{x}}{\left( e^{x} + 1 ight)^{2}}dx} =
\int_{}^{}\frac{d\left( e^{x} + 1 ight)}{\left( e^{x} + 1 ight)^{2}}
= - \frac{1}{e^{x} + 1} + C.

  • Câu 33: Thông hiểu

    Cho hàm số f(x) = x^{4} - 5x^{2} +4. Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y =f(x) và trục hoành. Mệnh đề nào sau đây sai?

    Phương trình hoành độ giao điểm:

    x^{4} - 5x^{2} + 4 = 0 \Leftrightarrow\left\lbrack \begin{matrix}x^{2} = 1 \\x^{2} = 4 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}x = 1 \\x = - 1 \\x = 2 \\x = - 2 \\\end{matrix} ight.

    Diện tích hình phẳng cần tìm là:

    S = \int_{- 2}^{2}{\left| f(x)ight|dx} = 2\int_{0}^{2}{\left| f(x) ight|dx}

    = 2\int_{0}^{1}{\left| f(x) ight|dx} +2\int_{1}^{2}{\left| f(x) ight|dx}

    = 2\left| \int_{0}^{1}{f(x)dx} ight| +2\left| \int_{1}^{2}{f(x)dx} ight| ((do trong khoảng (0; 1) và (1; 2) phương trình f(x) = 0 vô nghiệm)

    Vậy mệnh đề sai là: S = 2\left|\int_{0}^{2}{f(x)dx} ight|.

  • Câu 34: Thông hiểu

    Có bao nhiêu số phức z thỏa mãn \left| {\frac{{z + 1}}{{i - z}}} ight| = 1\left| {\frac{{z - i}}{{2 + z}}} ight| = 1

    Ta có:  \left\{ \begin{array}{l}\left| {\dfrac{{z + 1}}{{i - z}}} ight| = 1\\\left| {\dfrac{{z - i}}{{2 + z}}} ight| = 1\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\left| {z + 1} ight| = \left| {i - z} ight|\\\left| {z - i} ight| = \left| {2 + z} ight|\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x =  - y\\4x + 2y =  - 3\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{3}{2}\\y = \frac{3}{2}\end{array} ight.

    \Rightarrow z =  - \frac{3}{2} + \frac{3}{2}i

  • Câu 35: Thông hiểu

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

    Đáp án là:

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

     Ta có \Delta ' = 4{\left( {2 - i} ight)^2} + 2\left( {1 + i} ight)\left( {5 + 3i} ight) = 16.

    Vậy phương trình có hai nghiệm phức lần lượt là:

    {z_1} = \frac{3}{2} - \frac{5}{2}i,\,\,\,{z_2} =  - \frac{1}{2} - \frac{1}{2}i.

    Do đó  {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} =9.

  • Câu 36: Nhận biết

    Cho hình phẳng (H) giới hạn bởi các đường y = 2x - x^{2};y = 0. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:

    Ta có: 2x - x^{2} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
x = 2 \\
\end{matrix} ight.

    Theo công thức thể tích giới hạn bởi các đường ta có:

    V = \pi\int_{0}^{2}{\left( 2x - x^{2}
ight)^{2}dx}

  • Câu 37: Nhận biết

    Nguyên hàm của hàm số f(x) = \sqrt{3x +
2} là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\sqrt{3x
+ 2}dx} = \int_{}^{}{(3x + 2)^{\frac{1}{2}}dx}

    = \frac{(3x + 2)^{1 + \frac{1}{2}}}{1 +\dfrac{1}{2}}.\frac{1}{3} + C = \frac{2}{9}.(2x + 3).\sqrt{3x + 2} +C

  • Câu 38: Nhận biết

    Nguyên hàm của hàm số f(x) =
2^{2x}.3^{x}.7^{x} là:

    Ta có: \int_{}^{}{\left(2^{2x}.3^{x}.7^{x} ight)dx =}\int_{}^{}{\left( 84^{x} ight)dx}=\frac{84^{x}}{\ln84} + C

  • Câu 39: Thông hiểu

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian Oxyz, cho điểm M(3;2;1). Mặt phẳng (P) đi qua M và cắt các trục tọa độ Ox,Oy,Oz lần lượt tại các điểm A,B,C không trùng với gốc tọa độ O sao cho M là trực tâm tam giác ABC. Viết phương trình mặt phẳng nào song song với mặt phẳng (P)?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 40: Nhận biết

    Xét số phức z thỏa mãn: \left( {1 + 2i} ight)\left| z ight| = \frac{{\sqrt {10} }}{z} - 2 + i. Mệnh đề nào dưới đây đúng?

     Giả sử: z = x + yi{\text{ }},\left( {x,y \in \mathbb{R}} ight)\left| z ight| = c{\text{ }}\left( {c > 0} ight), thay vào đẳng thức ta có:

    \left( {1 + 2i} ight)c = \frac{{\sqrt {10} }}{{x + yi}} = 2 + i

    \Leftrightarrow \left( {1 + 2i} ight)c = \frac{{\sqrt {10} \left( {x - yi} ight)}}{{{c^2}}} - 2 + i

    \Leftrightarrow c - \frac{{x\sqrt {10} }}{{{c^2}}} + 2 + i\left( {2c + \frac{{y\sqrt {10} }}{{{c^2}}} - 1} ight) = 0

    \Rightarrow \left\{ \begin{gathered}  c - \frac{{x\sqrt {10} }}{{{c^2}}} + 2 = 0 \hfill \\  2c + \frac{{y\sqrt {10} }}{{{c^2}}} - 1 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  c + 2 = \frac{{x\sqrt {10} }}{{{c^2}}} \hfill \\   - 2c + 1 = \frac{{y\sqrt {10} }}{{{c^2}}} \hfill \\ \end{gathered}  ight.

    \Rightarrow {\left( {c + 2} ight)^2} + {\left( {2c - 1} ight)^2} = \frac{{10\left( {{x^2} + {y^2}} ight)}}{{{c^4}}} = \frac{{10}}{{{c^2}}}

    \Leftrightarrow \left[ \begin{gathered}  c = 1\left( {t/m} ight) \hfill \\  c =  - 1\left( {{\text{ko }}t/m} ight) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left| z ight| = 1

    Do đó ta có: \frac{1}{2} < \left| z ight| < \frac{3}{2}

  • Câu 41: Nhận biết

    Cho hình lăng trụ tam giác ABC.A'B'C'. Đặt \overrightarrow{AA'} =
\overrightarrow{a};\overrightarrow{AB} =
\overrightarrow{b};\overrightarrow{AC} =
\overrightarrow{c};\overrightarrow{BC} = \overrightarrow{d}. Trong các mệnh đề sau, mệnh đề nào đúng?

    Ta có: \overrightarrow{d} =
\overrightarrow{BC} = \overrightarrow{AC} - \overrightarrow{AB} =
\overrightarrow{c} - \overrightarrow{b}

    Do đó \overrightarrow{b} -
\overrightarrow{c} + \overrightarrow{d} =
\overrightarrow{0}

  • Câu 42: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(1;0;1),B( - 1;2;1). Viết phương trình đường thẳng \Delta đi qua tâm đường tròn ngoại tiếp tam giác OAB và vuông góc với mặt phẳng (OAB).

    Tam giác OAB vuông tại O nên tâm đường tròn ngoại tiếp là trung điểm AB có tọa độ I(0; 1; 1).

    Mặt phẳng (OAB) có véc-tơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = ( - 2; -
2;2).

    Suy ra đường thẳng ∆ có \overrightarrow{u} = (1;1; - 1) và đi qua I(0; 1; 1).

    Vậy phương trình đường thẳng ∆ là \Delta:\left\{ \begin{matrix}
x = t \\
y = 1 + t \\
z = 1 - t \\
\end{matrix} ight..

  • Câu 43: Vận dụng

    Trong không gian với hệ toạ độ Oxyz, cho bốn đường thẳng \left( d_{1} ight):\frac{x - 3}{1} = \frac{y +1}{- 2} = \frac{z + 1}{1},\left( d_{2} ight):\frac{x}{1} = \frac{y}{-2} = \frac{z - 1}{1},\left( d_{3} ight):\frac{x - 1}{2} = \frac{y +1}{1} = \frac{z - 1}{1},\left( d_{4} ight):\frac{x}{1} = \frac{y -1}{- 1} = \frac{z - 1}{1}. Số đường thẳng trong không gian cắt cả bốn đường thẳng trên là:

    Kiểm tra vị trí tương đối giữa hai đường thẳng ta thấy (d1) // (d2); (d4) cắt (d2), (d3).

    Gọi (P) là mặt phẳng chứa (d1) và (d2); (Q) là mặt phẳng chứa (d3) và (d4).

    Gọi (∆) là đường thẳng cắt cả 4 đường thẳng trên.

    Ta thấy, (∆) cắt cả (d1), (d2) suy ra (∆) ⊂ (P).

    (∆) cắt cả (d3),(d4) suy ra (∆) ⊂ (Q).

    Mà (d2), (d4) có điểm chung nên (∆) là giao tuyến của (P) và (Q), do đó có duy nhất một đường thẳng thỏa mãn.

  • Câu 44: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 2022 - 2023i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 45: Nhận biết

    Trong không gian Oxyz, cho mặt phẳng (P):2x - 2y + z + 5 = 0. Tính khoảng cách từ điểm M( - 1;2; - 3) đến mặt phẳng (P)?

    Khoảng cách từ điểm M đến mặt phẳng (P) là:

    d\left( M;(P) ight) = \frac{| - 2 - 4
- 3 + 5|}{\sqrt{9}} = \frac{4}{3}

  • Câu 46: Nhận biết

    Trong không gian Oxyz, điểm nào sau đây thuộc mặt phẳng (Oxy)?

    Do điểm thuộc mặt phẳng (Oxy) nên điểm đó có tọa độ dạng (x;y;0)

    Suy ra điểm (2;2;0) là đáp án cần tìm.

  • Câu 47: Vận dụng

    Cho hàm số f(x) xác định trên \mathbb{R}\backslash \left\{ 1 ight\} thỏa mãn f'\left( x ight) = \frac{1}{{x - 1}};f\left( 0 ight) = 2017;f\left( 2 ight) = 2018. Giá trị của biểu thức T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] là bao nhiêu?

     \begin{matrix}  f\left( x ight) = \int {f'\left( x ight)dx}  = \int {\dfrac{1}{{x - 1}}dx}  \hfill \\   = \ln \left| {x - 1} ight| + C = \left\{ {\begin{array}{*{20}{c}}  {\ln \left( {x - 1} ight) + {C_1}{\text{ khi x  >  1}}} \\   {\ln \left( {1 - x} ight) + {C_2}{\text{ khi x  <  1}}} \end{array}} ight. \hfill \\ \end{matrix}

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {f\left( 0 ight) = 2017 \Rightarrow \ln \left( {1 - 0} ight) + {C_2} = 2017} \\   {f\left( 2 ight) = 2018 \Rightarrow \ln \left( {2 - 1} ight) + {C_1} = 2018} \end{array}} ight. \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {{C_2} = 2017} \\   {{C_1} = 2018} \end{array}} ight.

    Khi đó

    \begin{matrix}  T = \left[ {f\left( 3 ight) - 2018} ight].\left[ {f\left( { - 1} ight) - 2017} ight] \hfill \\   = \left[ {\ln \left( {3 - 1} ight) + 2018 - 2018} ight].\left[ {\ln \left( {1 - \left( { - 1} ight)} ight) + 2017 - 2017} ight] \hfill \\   = \ln 2.\ln 2 = {\ln ^2}2 \hfill \\ \end{matrix}

  • Câu 48: Vận dụng

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho tứ diện ABCD và các điểm M;N xác định bởi \overrightarrow{AM} = 2\overrightarrow{AB} -3\overrightarrow{AC};\overrightarrow{DN} = \overrightarrow{DB} +x\overrightarrow{DC}. Tìm giá trị x để \overrightarrow{AD};\overrightarrow{BC};\overrightarrow{MN} đồng phẳng?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 49: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

  • Câu 50: Thông hiểu

    Số nghiệm của phương trình: (z^2 + 3z +6)^2 + 2z(z^2 + 3z +6) – 3z^2 = 0 là?

     Đặt t = z^2 + 3z +6 phương trình đã cho có dang:

    t^2 +2zt – 3z^2 = 0 \Leftrightarrow (t – z)(t+3z) = 0 \Leftrightarrow\left[ \begin{array}{l}t = z\\t =  - 3z\end{array} ight.

    + Với t = z \Leftrightarrow z^2 + 3z +6 –z = 0  \Leftrightarrow  z^2 + 2z + 6 = 0  \Leftrightarrow\left[ \begin{array}{l}z =  - 1 + \sqrt 5 i\\z =  - 1 - \sqrt 5 i\end{array} ight.

    + Với t = -3z \Leftrightarrow  z^2 + 3z +6 +3z = 0 \Leftrightarrow z^2 + 6z + 6 = 0 \Leftrightarrow\left[ \begin{array}{l}z =  - 3 + \sqrt 3 \\z =  - 3 - \sqrt 3 \end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 210 lượt xem
Sắp xếp theo