Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Cho đồ thị hàm số
như hình vẽ và
.

Tính diện tích của phần được gạch chéo theo
.
Từ đồ thị ta suy ra
Do đó, diện tích phần gạch chéo là
.
Cho hàm số
liên tục trên
thỏa mãn
và
. Tính tích phân
?
Ta có: .
Ta có:
Đặt . Đổi cận
do đó:
Ta có:
Đặt . Đổi cận
do đó:
.
Vậy
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và
. Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có: nên
là một nguyên hàm của hàm số
.
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Cho lăng trụ tam giác
. Đặt
. Gọi điểm
sao cho
,
là trọng tâm tứ diện
. Biểu diễn vectơ
qua các vectơ
. Đáp án nào dưới đây đúng?
Ta có G là trọng tâm của tứ diện nên
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Số nghiệm nguyên âm của phương trình:
với
là:
Ta có:
Trong không gian
, cho hai vectơ
và
. Tính tích vô hướng
?
Ta có:
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Cho hình chóp
có đáy là hình vuông
cạnh bằng
và các cạnh bên đều bằng
. Gọi
lần lượt là trung điểm của
và
. Số đo của góc
bằng bao nhiêu?
Hình vẽ minh họa
Do ABCD là hình vuông cạnh a suy ra
suy ra tam giác SAC vuông tại S.
Từ giả thiết ta có MN là đường trung bình của tam giác
Khi đó suy ra
Nếu
. Khi đó
bằng:
Ta có: .
Tính
?
Áp dụng công thức
Suy ra
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Trong không gian với hệ tọa độ
, cho đường thẳng
là giao tuyến của hai mặt phẳng
. Tìm tọa độ giao điểm
của đường thẳng
và
, biết đường thẳng d' có phương trình 
Tọa độ giao điểm I của d và d’ thỏa mãn hệ phương trình:
Trong không gian với hệ tọa độ
, cho tứ diện đều
có
với
. Tính
?
Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).
Ta có:
Đường thẳng đi qua G vuông góc với (ABC) có phương trình
Do đó
Mà
Vì
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Tìm nguyên hàm của hàm số
?
Đặt
Trong không gian với hệ tọa độ
, cho mặt phẳng
và
với
là tham số thực. Tổng các giá trị của m để
và
vuông góc nhau bằng bao nhiêu?
Ta có:
có vectơ pháp tuyến
có véc-tơ pháp tuyến
(P) và (Q) vuông góc với nhau khi và chỉ khi
Điều này tương đương với
.
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Cho hai đường thẳng: ![]()
và mặt phẳng
.
Hình chiếu của
theo phương của
lên mặt phẳng
có phương trình tổng quát:
Vectơ chỉ phương của Vectơ chỉ phương của
Phương trình của mặt phẳng chứa và có phương của
có dạng:
Điểm A (7, 3, 9) thuộc mặt phẳng này
=> D = -53
Giao tuyến của mặt phẳng này với mặt phẳng là hình chiếu của
theo phương của
lên
:
Họ nguyên hàm của hàm số
là:
Ta có: .
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Trong không gian Oxyz, đường thẳng (d) qua
và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Trong không gian Oxyz, đường thẳng (d) qua và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Cho hàm số
liên tục trên
thỏa mãn
. Giá trị của biểu thức
bằng
Ta có:
Họ nguyên hàm của hàm số
là:
Đặt
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, đường thẳng
như hình vẽ sau:

Hỏi khẳng định nào dưới đây là khẳng định đúng?
Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số trục hoành, đường thẳng
ta có:
.
Với giá trị nào của
thì diện tích của hình phẳng giới hạn bởi hai đồ thị
và
bằng
?
Xét phương trình hoành độ giao điểm .
Khi đó diện tích hình phẳng giới hạn bởi hai đồ thị trên được tính bởi
.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho F(x) là một nguyên hàm của hàm số
. Hàm số
có bao nhiêu điểm cực trị?
=> có 5 nghiệm đơn
=> Hàm số có 5 điểm cực trị
Viết công thức tính thể tích
của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục
tại các điểm
, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là
.
Thể tích của vật thể đã cho là: .
Tìm nguyên hàm của hàm của hàm số ![]()
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Trong không gian với hệ tọa độ
, cho mặt phẳng
và hai điểm
. Điểm
sao cho tam giác
có diện tích nhỏ nhất. Tính
.
Trong không gian với hệ tọa độ , cho mặt phẳng
và hai điểm
. Điểm
sao cho tam giác
có diện tích nhỏ nhất. Tính
.
Cho mặt phẳng
qua điểm
và chắn trên ba trục tọa độ
theo ba đoạn có số đo đại số a, b, c. Viết phương trình tổng quát của
khi a, b, c tạo thành một cấp số nhân có công bội bằng 2.
Theo đề bài, ta có a, b, c là cấp số nhân với công bội q=2
Phương trình của
(P) qua
Trong không gian với hệ tọa độ
, cho mặt phẳng
có phương trình dạng
,
và có
. Để mặt phẳng
đi qua điểm
và cách gốc tọa độ
một khoảng lớn nhất thì đẳng thức nào sau đây đúng?
Mặt phẳng (P) đi qua điểm suy ra
.
Khi đó:
Đẳng thức xảy ra khi và chỉ khi:
Từ đó tìm được hoặc
.
Vậy .
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Cho tam giác ABC có ![]()
Viết phương trình tham số của trung tuyến AM ?
Vì AM là trung tuyến nên M là trung điểm của BC. Gọi
Từ tọa độ của B và C, ta tính được tọa độ của M là nghiệm của hệ:
Ta có 1 vecto chỉ phương của (AM) là
(AM) là đường thẳng đi qua A (1,2,-3) và nhận vecto (3,-7,15) làm 1 VTCP có phương trình là:
Cho
là các số hữu tỉ thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
Cho hình phẳng
được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Cho số phức
. Tính |z|
Ta có