Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Trong không gian với hệ trục tọa độ Oxyz , cho điểm A(3; -1; 0) và đường thẳng d: . Mặt phẳng
chứa d sao cho khoảng cách từ A đến lớn nhất có phương trình là:
Gọi H là hình chiếu vuông góc của A lên , K là hình chiếu vuông góc của A lên d.
Ta có: cố định và
Suy ra lớn nhất bằng AK khi
.
Ta có (d): qua M(2; -1; 1) , có VTCP
.
Gọi (P) là mặt phẳng qua A và chứa có VTPT .
Mặt phẳng có một VTPT là
và
qua M (2; -1; 1) có phương trình:
Xét phương trình trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Trong không gian , cho đường thẳng
và mặt phẳng
. Góc giữa đường thẳng
và mặt phẳng
bằng
Ta có:
∆ có vectơ chỉ phương là
(α) có vectơ pháp tuyến là
.
Trong không gian , cho tọa độ ba điểm
. Tọa độ trọng tâm
của tam giác
là:
Tọa độ trọng tâm G của tam giác ABC bằng:
Vậy trọng tâm G tìm được là .
Họ các nguyên hàm của hàm số là:
Ta có:
Cho số phức . Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Đường thẳng (d): có phương trình tham số là:
Ta có đường thẳng (d) qua A ( 2, -1, 4) và có vectơ chỉ phương là có phương trình tham số là:
=> (d)
Cho hàm có đạo hàm liên tục trên
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
(phần gạch chéo trong hình vẽ):
Diện tích hình bằng:
Diện tích phần gạch chéo là:
.
Kí hiệu là hai nghiệm phức của phương trình
. Tính
Phương trình có hai nghiệm
.
Khi đó
Cho hai đường thẳng và
lần lượt có vectơ chỉ phương là
và
. Nếu
là góc giữa hai đường thẳng
và
thì:
Do góc giữa hai đường thẳng bằng hoặc bù với góc giữa hai vectơ chỉ phương của chúng nên đáp án cần tìm là .
Xác định phần ảo của số phức .
Phần ảo của số phức z = 18 - 12i là -12
Gọi là đường thẳng tùy ý đi qua điểm
và có hệ số góc âm. Giả sử
cắt các trục
lần lượt tại
. Quay tam giác
quanh trục
thu được một khối tròn xoay có thể tích là
. Giá trị nhỏ nhất của
bằng
Hình vẽ minh họa
Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d:
Mà M(1; 1) ∈ d nên
Từ (1) suy ra d có hệ số góc là ; theo giả thiết ta có
Nếu mẫu thuẫn với (2) suy ra
Mặt khác từ (2) suy ra kết hợp với a > 0, b > 0 suy ra a > 1.
Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao và bán kính đường tròn đáy
Thể tích khối nón là
Suy ra V đạt giá trị nhỏ nhất khi đạt giá trị nhỏ nhất.
Xét hàm số trên khoảng
Ta có bảng biến thiên như sau:
Vậy giá trị nhỏ nhất của V bằng
Đặt với
là tham số thực. Tìm giá trị của tham số
để
?
Ta có:
Do .
Hàm số có nguyên hàm là:
Ta có:
Cho F(x) là nguyên hàm của hàm số thỏa mãn
. Tìm tập nghiệm S của phương trình
Đặt
Ta có:
Số phức z thỏa mãn: là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Cho ba điểm . Cho 3 mệnh đề sau:
MĐ 1: A, B, C thẳng hàng
MĐ 2: AB song song với
MĐ 3: AB cắt
Mệnh đề đúng là?
Ta có:
thẳng hàng
Vậy MĐ 1 Đúng!
Giả sử AB và (xOy) có điểm chung và
cùng phương
Vậy MĐ 2 sai, MĐ 3 đúng!
Trong không gian , cho ba mặt phẳng
lần lượt có phương trình là
. Mệnh đề nào dưới đây đúng?
Mặt phẳng (P) có một vectơ pháp tuyến là và mặt phẳng (R) có một vectơ pháp tuyến là
Do nên vectơ
không cùng phương với vectơ
.
Vậy mặt phẳng (R) cắt mặt phẳng (P).
Cho . Giá trị của x và y bằng:
Ta có:
Trong không gian với hệ tọa độ , cho hai mặt phẳng
. Mặt phẳng
vuông góc với cả
và
đồng thời cắt trục
tại điểm có hoành độ bằng
. Phương trình của mặt phẳng
là:
Ta có: (P) có vectơ pháp tuyến , (Q) có vectơ pháp tuyến
.
Vì mặt phẳng (α) vuông góc với cả (P) và (Q) nên (α) có một vectơ pháp tuyến là
Vì mặt phẳng (α) cắt trục Ox tại điểm có hoành độ bằng 3 nên (α) đi qua điểm M(3; 0; 0).
Vậy (α) đi qua điểm M(3; 0; 0) và có vectơ pháp tuyến nên (α) có phương trình
.
Tính góc của hai đường thẳng và
.
Theo đề bài, ta có (d’) và (d) có vec-tơ chỉ phương lần lượt là:
Áp dụng công thức cosin của góc giữa 2 đường thẳng, ta có:
Nếu . Khi đó
bằng:
Ta có: .
Cho hàm số có đạo hàm liên tục trên
và có đồ thị như hình vẽ:
Tính tích phân ?
Ta có:
Cho hàm số y = f(x) xác định trên thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Số phức là số phức nào sau đây?
Cho F(x) là một nguyên hàm của hàm số thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Số phức z thỏa mãn . Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Trong không gian với hệ tọa độ , cho hai điểm
. Phương trình mặt phẳng
đi qua
và vuông góc với đường thẳng
là:
Ta có: là vectơ pháp tuyến của mặt phẳng
Phương trình mặt phẳng là:
Trong không gian, với hệ tọa độ , cho các điểm
. Mặt phẳng
đi qua
, trực tâm
của tam giác
và vuông góc với mặt phẳng
có phương trình là
Ta có:
Gọi tọa độ trực tâm khi đó
Theo đề bài ta có
Gọi là VTPT của mặt phẳng
ta có:
Phương trình mặt phẳng (P) đi qua A(0; 1; 2) có một VTPT là là
Vậy .
Cho hàm số đồng biến và có đạo hàm cấp hai trên đoạn
và thỏa mãn
với
. Biết rằng
khi đó tích phân
bằng:
Ta có:
Theo bài ra ta có:
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Tìm họ nguyên hàm của hàm số
Ta có:
Diện tích hình phẳng giới hạn bởi hai đồ thị được cho bởi công thức nào sau đây?
Ta có:
Với
Với
Ta có:
Trong các khẳng định sau, khẳng định nào sai?
Ta có: nên khẳng định
sai.
Cho hai vectơ và
với
và
.Tìm m để
và
vuông góc.
Điều kiện để
vuông góc
Với
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Tìm nguyên hàm của hàm số ?
Ta có:
Tìm nguyên hàm .
Ta có:
Hàm số nào dưới đây là họ nguyên hàm của hàm số ?
Ta có:
Vậy đáp án cần tìm là: .
Cho số phức . Số phức
là số phức nào sau đây?
Ta tính được
Trong không gian , cho các điểm
và
. Mặt phẳng
đi qua các điểm
sao cho khoảng cách từ điểm
đến
gấp hai lần khoảng cách từ điểm
đến
. Hỏi có bao nhiêu mặt phẳng
thỏa mãn đề bài?
Gọi là vectơ pháp tuyến của
. Khi đó
.
Do đó
Khoảng cách từ điểm B đến gấp hai lần khoảng cách từ điểm A đến
(luôn đúng)
Vậy có vô số mặt phẳng .
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
PT sau có số nghiệm là :
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Cho số phức z thoả mãn . Giá trị lớn nhất của biểu thức
bằng?
Đặt .
Từ giả thiết
(1).
Ta có
.
Dễ thấy P lớn nhất khi .
Khi đó
Do nên từ (1) ta có
.
Suy ra
Dấu = xảy ra khi
.
Viết phương trình tổng quát của mặt phẳng (P) qua giao tuyến của hai mặt phẳng và vuông góc với mặt phẳng
Theo đề bài, qua giao tuyến của hai mặt phẳng
nên
có dạng là
Chọn làm vectơ pháp tuyến của
, ta có:
Trong , phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Trong không gian với hệ tọa độ , cho mặt phẳng
và điểm
. Viết phương trình đường thẳng qua
và vuông góc với
.
Mặt phẳng có vectơ pháp tuyến là
nên đường thẳng cần tìm có vectơ chỉ phương là
.
Vậy phương trình đường thẳng đi qua và vuông góc với
là:
Tìm số phức trong phương trình sau:
Ta có