Đề thi HK2 Toán 12 Đề 1

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 50 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Nhận biết

    Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = \cos x,y = 0,x = 0,x = \pi quay xung quanh Ox.

    Thể tích vật thể bằng:

    V = \pi\int_{0}^{\pi}{\left( \cos xight)^{2}dx} = \frac{\pi}{2}\int_{0}^{\pi}{(1 + \cos2x)dx} = \pi\left.\ \left( x + \frac{1}{2}\sin2x ight) ight|_{1}^{\pi} =\frac{\pi^{2}}{2}.

  • Câu 2: Nhận biết

    Trong không gian Oxyz, đường thẳng d:\frac{x + 3}{1} = \frac{y - 1}{- 1}
= \frac{z - 5}{2} có một vectơ chỉ phương là:

    Đường thẳng (P) có một vectơ chỉ phương là: \overrightarrow{u_{4}} = ( - 1;\
1;\  - 2)

  • Câu 3: Thông hiểu

    Một ô tô xuất phát với vận tốc {v_1}\left( t ight) = 2t + 12\left( {m/s} ight) sau khi đi được một khoảng thời gian {t_1} thì bất ngờ phanh gấp với vận tốc {v_2}\left( t ight) = 24 - 6t\left( {m/s} ight) và đi thêm được một khoảng thời gian {t_2} nữa thì dừng lại. Hỏi từ khi xuất phát đến lúc dừng lại thì ô tô đã đi được bao nhiêu mét?

     Ta có: {v_2}\left( 0 ight) = 24\left( {m/s} ight) do đó khi gặp chướng ngại vật vật có vận tốc là 24\left( {m/s} ight)

    => {v_1}\left( t ight) = 2t + 12 = 24 \Rightarrow t = 6\left( s ight)

    Vật dừng lại khi {v_2}\left( t ight) = 24 - 6t = 0 \Rightarrow {t_2} = 4\left( s ight)

    Quãng đường vật đi được là

    S = \int\limits_0^6 {{v_1}\left( t ight)d\left( t ight) + } \int\limits_0^4 {{v_2}\left( t ight)d\left( t ight)}  = \int\limits_0^6 {\left( {2t + 12} ight)d\left( t ight) + } \int\limits_0^4 {\left( {24 - 6t} ight)d\left( t ight)}  = 156\left( m ight)

  • Câu 4: Thông hiểu

    Biết \int_{1}^{2}{\left\lbrack 4f(x) - 2x
ightbrack dx} = 1. Khi đó \int_{1}^{2}{f(x)dx} bằng:

    Ta có:

    \int_{1}^{2}{\left\lbrack 4f(x) - 2x
ightbrack dx} = 1 \Leftrightarrow 4\int_{1}^{2}{f(x)dx} -
2\int_{1}^{2}{xdx} = 1

    \Leftrightarrow 4\int_{1}^{2}{f(x)dx} -
2\left. \ .x^{2} ight|_{1}^{2} = 1 \Leftrightarrow
4\int_{1}^{2}{f(x)dx} = 4 \Leftrightarrow \int_{1}^{2}{f(x)dx} =
1

  • Câu 5: Vận dụng cao

    Trong không gian Oxyz, cho mặt phẳng (P): x-2y+2z-5=0 và hai điểm A(-3;0;1), B(1;-1;3). Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

     khoảng cách nhỏ nhất

    Gọi (Q) là mặt phẳng qua A và song song (P).

    Ta có: (-3-2.0+2.1-5)(1+2.1+2.3-5) < 0 \Rightarrow A, B nằm về hai phía với (P).

    Gọi H là hình chiếu vuông góc của B lên (Q) \Rightarrow BH cố định và d(B,(Q))=BH.

    Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay d//(P) .

    Ta có: BK \geq BH \Leftrightarrow d(B, d) \geq d(B, d) \Rightarrow d (B, d)bé nhất bằng BH  khi K trùng với điểm H.

    Gọi \vec{n} là VTPT của (ABH) \Rightarrow \vec{n}=[\vec{n_p}, \vec{AB}]=(-2;6;7)

    Ta có đường thẳng d cần lập qua  A, H và có VTCP là \vec{u_d}=[\vec{n},\vec{n_P}]=(26; 11; -2)

    Vậy phương trình đường thẳng d cần lập là: \dfrac{x+3}{26}=\dfrac{y}{11}=\dfrac{z-1}{-2}

  • Câu 6: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|. Tính \left| {M - mi} ight|

     Ta có P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{z^4} + {{\overline z }^4} + 4} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{{\left( {{z^2} + {{\overline z }^2}} ight)}^2} + 2} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {{z^2} + {{\overline z }^2}} ight)^2} + 2 - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {\left| {{z^2} + {{\overline z }^2}} ight| - 1} ight)^2} + 1

    Vì \left\{ \begin{array}{l}{z^2} + {\overline z ^2} \in \mathbb{R} \\ - 2 \le {z^2} + {\overline z ^2} \le 2\end{array} ight.  nên {P_{{m{max}}}} = 2; {P_{{m{min}}}} = 1.

    Suy ra  \left| {M - mi} ight| = \sqrt 5

  • Câu 7: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = \frac{x
- 1}{x^{2}}?

    Ta có: f(x) = \frac{x - 1}{x^{2}} =
\frac{1}{x} - \frac{1}{x^{2}} \Rightarrow F(x) = \ln|x| + \frac{1}{x} +
C

  • Câu 8: Nhận biết

    Trong không gian hệ trục tọa độ Oxyz, điểm nào dưới đây thuộc trục Oy?

    Điểm A(x;y;z) \in Oy \Leftrightarrow
\left\{ \begin{matrix}
x = 0 \\
z = 0 \\
\end{matrix} ight.. Suy ra trong bốn điểm đã cho điểm T(0; - 3;0) \in Oy.

  • Câu 9: Nhận biết

    Phương trình tổng quát của mặt phẳng đi qua A(2,-1,3),  B (3, 1, 2) và song song với vectơ \overrightarrow a  = \left( {3, - 1, - 4} ight) là:

    Theo đề bài, ta có: \overrightarrow {AB}  = \left( {1,2, - 1} ight);\left[ {\overrightarrow {AB} \overrightarrow {,a} } ight] = \overrightarrow n  = \left( { - 9,1, - 7} ight)

    Chọn \overrightarrow n  = \left( {9, - 1,7} ight) làm 1 vectơ pháp tuyến.

    Phương trình mặt phẳng cần tìm có dạng : 9x - y + 7z + D = 0

    Mà mp lại qua A nên 9.2 - ( - 1) + 7.3 + D = 0 \Leftrightarrow D =  - 40

    Phương trình cần tìm là: 9x - y + 7z - 40 = 0.

  • Câu 10: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình sau: (z^2 + z)^2 + 4(z^2 + z) -12 = 0 là?

     Đặt t = z^2 + z, khi đó phương trình đã cho có dạng:

    t^2 + 4t – 12 = 0 \Leftrightarrow\left[ \begin{array}{l}t =  - 6\\t = 2\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}{z^2} + z - 6 = 0\\{z^2} + z - 2 = 0\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{{ - 1 + \sqrt {23} i}}{2}\\z = \dfrac{{ - 1 - \sqrt {23} i}}{2}\\z = 1\\z =  - 2\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm có tổng là

    \frac{{ - 1 + \sqrt {23} i}}{2} + \frac{{ - 1 - \sqrt {23} i}}{2} + 1 - 2 =  - 1 + 1 - 2 =  - 2

  • Câu 11: Thông hiểu

    Số phức z thỏa mãn z = 1 + 2i + 3{i^2} + 4{i^3} + ... + 18{i^{19}}. Khẳng định nào sau đây là khẳng định đúng?

    Ta có:  z - iz = 1 + i + ... + {i^{19}} - 18{i^{20}} = 1.\frac{{1 - {i^{20}}}}{{1 - i}} - 18{i^{20}} =  - 18

    \Rightarrow z = \frac{{ - 18}}{{1 - i}} =  - 9 - 9i

  • Câu 12: Thông hiểu

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Đáp án là:

    Một ô tô đang chạy đều với vận tốc x m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số v(t) = - 5t + 20 m/s, trong đó t là thời gian tính bằng giây kể từ lúc đạp phanh.

    a) Khi xe dừng hẳn thì vận tốc bằng 0 m/s. Đúng||Sai

    b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là 5s. Sai||Đúng

    c) \int_{}^{}{( - 5t + 20)dt} = \frac{-
5t^{2}}{2} + 20t + C. Đúng||Sai

    d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là 400m. Sai||Đúng

    Khi xe dừng hẳn thì vận tốc bằng 0m/s.

    Khi xe dừng hẳn thì v(t) = 0m/s nên 0 = - 5t + 20 \Leftrightarrow t =
4s.

    Nguyên hàm của hàm số vận tốc \int_{}^{}{( - 5t + 20)dt = \frac{- 5t^{2}}{2} +
20t + C}, C\mathbb{\in
R}.

    Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là

    \int_{0}^{4}{( - 5t + 20)dt} = \left. \
\left( \frac{- 5t^{2}}{2} + 20t ight) ight|_{0}^{4} =
40m.

  • Câu 13: Nhận biết

    Trong \mathbb C, phương trình 2x^2+x+1=0 có nghiệm là:

     Ta có: \Delta  = {b^2} - 4ac = {1^2} - 4.2.1 =  - 7 = 7{i^2} < 0 nên phương trình có hai nghiệm phức là: {x_{1,2}} = \frac{{ - 1 \pm i\sqrt 7 }}{4}

  • Câu 14: Nhận biết

    Họ các nguyên hàm của hàm số f(x) = \sin
x + 1 là:

    Ta có: \int_{}^{}{\left( \sin x + 1
ight)dx} = - \cos x + x + C

  • Câu 15: Nhận biết

    Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm A(1;1;2)B(2; - 1;0) là:

    Ta có \overrightarrow{AB} = (1, - 2, -
2)

    Phương trình đường thẳng AB đi qua B(2; -
1;0) nhận vectơ \overrightarrow{AB} làm vectơ chỉ phương nên có phương trình là: \frac{x - 2}{- 1} =
\frac{y + 1}{2} = \frac{z}{2}.

  • Câu 16: Thông hiểu

    Trong không gian cho điểm O và bốn điểm A;B;C;D không thẳng hàng. Điều kiện cần và đủ để A;B;C;D tạo thành hình bình hành là:

    Để A;B;C;D tạo thành hình bình thành thì \left\lbrack \begin{matrix}
\overrightarrow{AB} = \overrightarrow{CD} \\
\overrightarrow{AC} = \overrightarrow{BD} \\
\end{matrix} ight..

    Khi đó:

    \overrightarrow{OA} +
\overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OB} = \overrightarrow{OD} -
\overrightarrow{OC}

    \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{CD}

    \overrightarrow{OA} + \overrightarrow{OB}
+ \overrightarrow{OC} + \overrightarrow{OD} =
\overrightarrow{0}, O là trọng tâm tứ giác (hoặc tứ diện) ABCD. (Loại).

    \overrightarrow{OA} +
\frac{1}{2}\overrightarrow{OB} = \overrightarrow{OC} +
\frac{1}{2}\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OC} = \frac{1}{2}\overrightarrow{OD} -
\frac{1}{2}\overrightarrow{OB}

    \Leftrightarrow \overrightarrow{CA} =
\frac{1}{2}\overrightarrow{BD} (Loại)

    \overrightarrow{OA} +
\frac{1}{2}\overrightarrow{OC} = \overrightarrow{OB} +
\frac{1}{2}\overrightarrow{OD}

    \Leftrightarrow \overrightarrow{OA} -
\overrightarrow{OB} = \frac{1}{2}\overrightarrow{OD} -
\frac{1}{2}\overrightarrow{OC}

    \Leftrightarrow \overrightarrow{BA} =
\frac{1}{2}\overrightarrow{CD} (loại)

    Vậy đáp án cần tìm là \overrightarrow{OA}
+ \overrightarrow{OC} = \overrightarrow{OB} +
\overrightarrow{OD}.

  • Câu 17: Nhận biết

    Phần thực, phần ảo của số phức z thỏa mãn \overline z  = \frac{5}{{1 - 2i}} - 3i lần lượt là?

    Ta có:

    \overline z  = \frac{5}{{1 - 2i}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{{\left( {1 - 2i} ight)\left( {1 + 2i} ight)}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{5} - 3i = 1 - i

    \Rightarrow z = 1 + i

    Phần thực, phần ảo của z lần lượt là 1;1.

  • Câu 18: Thông hiểu

    Tính diện tích S_{D} của hình phẳng D được giới hạn bởi các đường y = \left| \frac{\ln x}{x} ight|, trục hoành và các đường thẳng x =
\frac{1}{e};x = 2?

    Diện tích hình phẳng cần tìm là:

    S_{D} = \int_{\frac{1}{e}}^{2}{\left|
\frac{\ln x}{x} ight|dx} = \int_{\frac{1}{e}}^{1}{\left| \frac{\ln
x}{x} ight|dx} + \int_{1}^{2}{\left| \frac{\ln x}{x}
ight|dx}

    = - \int_{\frac{1}{e}}^{1}{\frac{\ln
x}{x}dx} + \int_{1}^{2}{\frac{\ln x}{x}dx}

    = - \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{\frac{1}{e}}^{1} + \left. \ \frac{\left( \ln x
ight)^{2}}{2} ight|_{1}^{2}

    = \frac{1}{2} + \frac{\ln^{2}2}{2} =\frac{1}{2}\left( 1 + \ln^{2}2 ight)

  • Câu 19: Vận dụng

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 20: Vận dụng

    Thiết diện của vật thể cắt bởi mặt phẳng \left( P ight) vuông góc với trục Ox tại điểm có hoành độ x;\left( {0 \leqslant x \leqslant 1} ight) là một hình chữ nhật có độ dài hai cạnh x\ln \left( {{x^2} + 1} ight). Tính thể tích của vật thể nằm giữa hai mặt phẳng x = 0x=1.

    Do thiết diện là hình chữ nhật nên diện tích của thiết diện là  S\left( x ight) = x.\ln \left( {{x^2} + 1} ight)

    Ta có thể tích cần tính là:

    \begin{matrix}  V = \int\limits_0^1 {x\ln \left( {{x^2} + 1} ight)dx}  = \dfrac{1}{2}\int\limits_0^1 {\ln \left( {{x^2} + 1} ight)d\left( {{x^2} + 1} ight)}  \hfill \\   = \left. {\frac{1}{2}.\left( {{x^2} + 1} ight)\ln \left( {{x^2} + 1} ight)} ight|_0^1 - \dfrac{1}{2}\int\limits_0^1 {\left( {{x^2} + 1} ight)d\left( {\ln \left( {{x^2} + 1} ight)} ight)}  \hfill \\   = \ln 2 - \frac{1}{2}\int\limits_0^1 {2xd\left( x ight) = \ln 2 - \dfrac{1}{2}}  \hfill \\ \end{matrix}

  • Câu 21: Thông hiểu

    Cho tứ diện ABCDA(0;1; - 1),B(1;1;2),C(1; -
1;0),D(0;0;1). Tính độ dài đường cao AH của tứ diện ABCD?

    Ta có:

    \overrightarrow{BA} = ( - 1;0; -
3),\overrightarrow{BC} = (0; - 2; - 2),\overrightarrow{BD} = ( - 1; - 1;
- 1)

    \left\lbrack
\overrightarrow{BC},\overrightarrow{BD} ightbrack = (0; - 2; - 2)
\Rightarrow \left\lbrack \overrightarrow{BC},\overrightarrow{BD}
ightbrack.\overrightarrow{BA} = 6

    V_{ABCD} = \frac{1}{3}AH.S_{BCD}
\Rightarrow AH = \frac{3V_{ABCD}}{S_{BCD}} = \frac{3}{\sqrt{2}} =
\frac{3\sqrt{2}}{2}.

  • Câu 22: Vận dụng cao

    Trong không gian Oxyz, cho điểm P(1;1;2). Mặt phẳng (\alpha) đi qua P cắt các trục Ox,Oy, Oz lần lượt tại A,B,C khác gốc tọa độ sao cho T = \frac{R_{1}^{2}}{S_{1}^{2}} +
\frac{R_{2}^{2}}{S_{2}^{2}} + \frac{R_{3}^{2}}{S_{3}^{2}} đạt giá trị nhỏ nhất, trong đó S_{1},S_{2},S_{3} lần lượt là diện tích các tam giác OAB,OBC,OCAR_{1},R_{2},R_{3} lần lượt là diện tích các tam giác PAB,PBC,PCA. Điểm M nào dưới đây thuộc (\alpha) ?

    Ta có \overrightarrow{OP} = (1;1;2)
\Rightarrow OP = \sqrt{6}. Lại có d(P,(Oxy)) = 2, d(P,(Oxz)) = 1d(P,(Oyz)) = 1.

    Đặt d = d(O,(ABC)), ta có

    V_{P.OAB} = V_{O.PAB}

    \Leftrightarrow d(P,(Oxy)) \cdot
S_{\bigtriangleup OAB} = d(O,(ABC)) \cdot S_{\bigtriangleup
PAB}

    \Leftrightarrow 2S_{1} =
dR_{1}

    \Leftrightarrow \frac{R_{1}}{S_{1}} =
\frac{2}{d}

    Tương tự, ta có \frac{R_{2}}{S_{2}} =
\frac{1}{d}\frac{R_{3}}{S_{3}}
= \frac{1}{d}.

    Khi đó T = \frac{R_{1}^{2}}{S_{1}^{2}} +
\frac{R_{2}^{2}}{S_{2}^{2}} + \frac{R_{3}^{2}}{S_{3}^{2}} =
\frac{6}{d^{2}} \geq \frac{6}{OP^{2}} = 1.

    Dấu "=" xảy ra khi và chỉ khi d =
OP hay OP\bot(ABC).

    Từ đó suy ra (\alpha) nhận \overrightarrow{OP} = (1;1;2) làm vectơ pháp tuyến.

    Do đó (\alpha) có phương trình 1(x - 1) + 1(y - 1) + 2(z - 2) = 0
\Leftrightarrow x + y + 2z - 6 = 0.

    Vậy M(4;0;1) là điểm thuộc (\alpha).

  • Câu 23: Vận dụng

    Trong không gian Oxyz, cho bốn điểm A(2;0;0),B(0;3;0),C(0;0;3)D\left( 1;1;\frac{1}{2} ight). Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm O,A,B,C,D?

    Hình vẽ minh họa

    Ta có mặt phẳng (ABC): \frac{x}{2} +
\frac{y}{3} + \frac{z}{3} = 1.

    Suy ra D\left( 1;1;\frac{1}{2}
ight) thuộc mặt phẳng (ABC).

    Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.

    Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là C_{4}^{2} = 6.

    Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm O,A,B,C,D1 + 6 = 7.

  • Câu 24: Vận dụng

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

    Đáp án là:

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

     Dễ thấy rằng z=0 không thoả mãn z^2+z+1=0.

    Do đó ta có z^2+z+1=0

    \Leftrightarrow z+\dfrac{1}{z}=-1 \Rightarrow z^2+\dfrac{1}{z^2}=-1

    Ta cũng có z^3+\dfrac{1}{z^3}=(z+\dfrac{1}{z})^3-3z.\dfrac{1}{z}.(z+\dfrac{1}{z})=2

    z^4+\dfrac{1}{z^4}=(z^2+\dfrac{1}{z^2})^2-2=-1

    Vậy P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 =30.

  • Câu 25: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai vectơ \overrightarrow{m} = (4;3;1),\overrightarrow{n} =
(0;0;1). Gọi \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack (tích có hướng của hai vectơ \overrightarrow{m}\overrightarrow{n}. Biết \left| \overrightarrow{p} ight| = 15, tìm tọa độ vectơ \overrightarrow{p}.

    Ta thấy \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0)

    \overrightarrow{p} là vectơ cùng hướng với vectơ \left\lbrack
\overrightarrow{m},\overrightarrow{n} ightbrack = (3; -
4;0) nên \overrightarrow{p} = (3k;
- 4k;0),k\mathbb{\in R};k > 0.

    Mặt khác \left| \overrightarrow{p}
ight| = 15 \Leftrightarrow \sqrt{9k^{2} + 16k^{2} + 0} = 15
\Rightarrow k = 3

    Vậy \overrightarrow{p} = (9; -
12;0).

  • Câu 26: Vận dụng cao

    Cho đồ thị hàm số y = f\left( x ight) có đồ thị f'\left( x ight) trên \left[ { - 3;2} ight] như hình vẽ. Tính giá trị của f\left( { - 1} ight) + f\left( 1 ight). Biết phần cong của đồ thị là mộ phần của parabol y = a{x^2} + bx + cf\left( { - 3} ight) = 0.

    Tính giá trị của biểu thức

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho đồ thị hàm số y = f\left( x ight) có đồ thị f'\left( x ight) trên \left[ { - 3;2} ight] như hình vẽ. Tính giá trị của f\left( { - 1} ight) + f\left( 1 ight). Biết phần cong của đồ thị là mộ phần của parabol y = a{x^2} + bx + cf\left( { - 3} ight) = 0.

    Tính giá trị của biểu thức

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 27: Thông hiểu

    Cho hai số phức {z_1} = 1 - i;{z_2} = 3 + 2i. Phần thực và phần ảo của số phức {z_1},{z_2} tương ứng bằng:

     Ta có: {z_1}.{z_2} = \left( {1 - i} ight)\left( {3 + 2i} ight) = 5 - i

  • Câu 28: Nhận biết

    Hàm số nào sau đây là một nguyên hàm của hàm số f(x) = 25^{x}?

    Vì: \left( \frac{25^{x}}{ln25}
ight)' = \frac{1}{ln25}.25^{x}.ln25 = 25^{x}

  • Câu 29: Nhận biết

    Cho các hàm số f(x)F(x) liên tục trên \mathbb{R} thỏa mãn F'(x) = f(x) với \forall x\mathbb{\in R}. Tính I = \int_{0}^{1}{f(x)dx}, biết rằng F(0) = 2;F(1) = 5?

    Ta có: I = \int_{0}^{1}{f(x)dx} = F(1) -
F(0) = 3.

  • Câu 30: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 2022 - 2023i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 31: Thông hiểu

    Có bao nhiêu số phức z thỏa mãn \left| {\frac{{z + 1}}{{i - z}}} ight| = 1\left| {\frac{{z - i}}{{2 + z}}} ight| = 1

    Ta có:  \left\{ \begin{array}{l}\left| {\dfrac{{z + 1}}{{i - z}}} ight| = 1\\\left| {\dfrac{{z - i}}{{2 + z}}} ight| = 1\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\left| {z + 1} ight| = \left| {i - z} ight|\\\left| {z - i} ight| = \left| {2 + z} ight|\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x =  - y\\4x + 2y =  - 3\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{3}{2}\\y = \frac{3}{2}\end{array} ight.

    \Rightarrow z =  - \frac{3}{2} + \frac{3}{2}i

  • Câu 32: Thông hiểu

    Trong không gian với hệ trục toạ độ Oxyz, tìm tất cả giá trị tham số m để đường thẳng d:\frac{x - 1}{1} = \frac{y}{2} = \frac{z -
1}{1} song song với mặt phẳng (P):2x + y - m^{2}z + m = 0.

    Ta có:

    d qua điểm M(1; 0; 1) và có VTCP là \overrightarrow{u} = (1;2;1)

    (P) có VTPT là \overrightarrow{n} =
\left( 2;1; - m^{2} ight)

    Vì d // (P) nên \overrightarrow{u}\bot\overrightarrow{n}
\Rightarrow \overrightarrow{u}.\overrightarrow{n} = 0 \Leftrightarrow m
= \pm 2

    Với m = 2, (P): 2x + y − 4z + 2 = 0 ⇒ M ∈ (P) (loại).

    Với m = −2, (P): 2x + y − 4z − 2 = 0\Rightarrow M otin (P) (thỏa mãn).

  • Câu 33: Thông hiểu

    Cho tam giác ABC có A\left( {1,2, - 3} ight);\,\,B\left( {2, - 1,4} ight);\,\,\,C\left( {3, - 2,5} ight).

    Viết phương trình chính tắc của cạnh AB.

    (AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:  \overrightarrow {AB}  = \left( {1, - 3,7} ight)

    (AB) đi qua A (1, 2, -3) và nhận vecto \overrightarrow {AB}  = \left( {1, - 3,7} ight) làm 1 VTCP có phương trình chính tắc là:

     \begin{array}{l}AB:x - 1 = \frac{{y - 2}}{{ - 3}} = \frac{{z + 3}}{7}\\ \Leftrightarrow {m{ }}x - 2 = \frac{{y + 1}}{{ - 3}} = \frac{{z - 4}}{7}\\ \Leftrightarrow \,\,x - 1 = \frac{{2 - y}}{3} = \frac{{z + 3}}{7}\end{array}

  • Câu 34: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm M(0;1;3),N(10;6;0) và mặt phẳng (P):x - 2y + 2z - 10 = 0. Biết rằng tồn tại điểm I( - 10;a;b) thuộc (P) sao cho |IM - IN| đạt giá trị lớn nhất. Tính T = a + b.

    Thay tọa độ điểm M và N vào vế trái phương trình mặt phẳng (P), ta có (0 - 2 + 3 - 10).(10 - 12 - 10) >
0 nên hai điểm M, N nằm cùng phía đối với mặt phẳng (P).

    Khi đó ta có |IM - IN| \leq MN và đẳng thức xảy ra khi I = MN \cap
(P)

    Phương trình tham số của đường thẳng MN là \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
\end{matrix} ight.

    Tọa độ giao điểm của MN và (P) là nghiệm hệ phương trình

    \left\{ \begin{matrix}
x = 10t \\
y = 1 + 5t \\
z = 3 - 3t \\
x - 2y + 2z - 10 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = - 10 \\
y = - 4 \\
z = 6 \\
\end{matrix} ight.

    Vậy T = a + b = 2

  • Câu 35: Thông hiểu

    Kí hiệu z_0 là nghiệm phức có phần ảo dương của phương trình 4{z^2} - 16z + 17 = 0. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w = i{z_0}?

     Ta có:

    4{z^2} - 16z + 17 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 2 + \dfrac{1}{2}i\\z = 2 - \dfrac{1}{2}i\end{array} ight.

    \Rightarrow w = i{z_0} =  - \frac{1}{2} + 2i

  • Câu 36: Nhận biết

    Gọi (D) là hình phẳng giới hạn bởi các đường y = \frac{x}{4};y = 0;x = 1;x
= 4. Tính thể tích vật thể tròn xoay tạo thành khi quay hình (D) quanh trục Ox?

    Thể tích vật thể tròn xoay tạo thành khi quay hình (D) quanh trục Ox

    V = \pi\int_{1}^{4}{\left( \frac{x}{4}
ight)^{2}dx} = \left. \ \frac{\pi x^{3}}{48} ight|_{1}^{4} =
\frac{21\pi}{16}.

  • Câu 37: Thông hiểu

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

    Đáp án là:

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

     Ta có \Delta ' = 4{\left( {2 - i} ight)^2} + 2\left( {1 + i} ight)\left( {5 + 3i} ight) = 16.

    Vậy phương trình có hai nghiệm phức lần lượt là:

    {z_1} = \frac{3}{2} - \frac{5}{2}i,\,\,\,{z_2} =  - \frac{1}{2} - \frac{1}{2}i.

    Do đó  {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} =9.

  • Câu 38: Nhận biết

    Nghiệm của phương trình: {z^2} - (3i + 8)z + 11\,.i + 13 = 0  là 

     Ta có: \Delta  = {(3i + 8)^2} - 4(11.i + 13) = 4i + 3.

    Giả sử m+ni \,\,(m; n \in \mathbb R)  là căn bậc hai của \triangle.

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 3 + 4i \Leftrightarrow {m^2} + 2mni - {n^2} = 3 + 4i

    \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3\\2mn = 4\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3 \,\,  (1)\ = \dfrac{2}{m}\,\,\,\, \,\,\,\,  (2)\end{array} ight.

    Thay (2) vào (1) ta có:

    {m^2} - {\left( {\frac{2}{m}} ight)^2} = 3 \Leftrightarrow {m^4} - 3{m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\,\,\,\,\,\,\,\,(TM)\\{m^2} =  - 1\,\,\,\,\,\,\,(L{m{)}}\end{array} ight.

    \Rightarrow \left[ \begin{array}{l}m = 2 \Rightarrow n = 1\\m =  - 2 \Rightarrow n =  - 1\end{array} ight.

    Vậy \triangle có hai căn bậc hai là  2+i  và -2-i.

    Do đó nghiệm của phương trình là:

    \left[ \begin{array}{l}z = \dfrac{{3i + 8 + i + 2}}{2} = 2i + 5\\z = \dfrac{{3i + 8 - i - 2}}{2} = i + 3\end{array} ight.

  • Câu 39: Nhận biết

    Trong không gian với hệ toạ độ Oxyz, phương trình nào sau đây là phương trình tổng quát của mặt phẳng

    Phương trình tổng quát của mặt phẳng là : 2x + y = 0.

  • Câu 40: Nhận biết

    Xét số phức z thỏa mãn: \left( {1 + 2i} ight)\left| z ight| = \frac{{\sqrt {10} }}{z} - 2 + i. Mệnh đề nào dưới đây đúng?

     Giả sử: z = x + yi{\text{ }},\left( {x,y \in \mathbb{R}} ight)\left| z ight| = c{\text{ }}\left( {c > 0} ight), thay vào đẳng thức ta có:

    \left( {1 + 2i} ight)c = \frac{{\sqrt {10} }}{{x + yi}} = 2 + i

    \Leftrightarrow \left( {1 + 2i} ight)c = \frac{{\sqrt {10} \left( {x - yi} ight)}}{{{c^2}}} - 2 + i

    \Leftrightarrow c - \frac{{x\sqrt {10} }}{{{c^2}}} + 2 + i\left( {2c + \frac{{y\sqrt {10} }}{{{c^2}}} - 1} ight) = 0

    \Rightarrow \left\{ \begin{gathered}  c - \frac{{x\sqrt {10} }}{{{c^2}}} + 2 = 0 \hfill \\  2c + \frac{{y\sqrt {10} }}{{{c^2}}} - 1 = 0 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  c + 2 = \frac{{x\sqrt {10} }}{{{c^2}}} \hfill \\   - 2c + 1 = \frac{{y\sqrt {10} }}{{{c^2}}} \hfill \\ \end{gathered}  ight.

    \Rightarrow {\left( {c + 2} ight)^2} + {\left( {2c - 1} ight)^2} = \frac{{10\left( {{x^2} + {y^2}} ight)}}{{{c^4}}} = \frac{{10}}{{{c^2}}}

    \Leftrightarrow \left[ \begin{gathered}  c = 1\left( {t/m} ight) \hfill \\  c =  - 1\left( {{\text{ko }}t/m} ight) \hfill \\ \end{gathered}  ight. \Leftrightarrow \left| z ight| = 1

    Do đó ta có: \frac{1}{2} < \left| z ight| < \frac{3}{2}

  • Câu 41: Thông hiểu

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 42: Nhận biết

    Số phức 5 + 6i có phần thực bằng 

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 43: Vận dụng cao

    Biết F\left( x ight) = \left( {a{x^2} + bx + c} ight)\sqrt {2x - 3} là một nguyên hàm của hàm số f\left( x ight) = \frac{{20{x^2} - 30x + 11}}{{\sqrt {2x - 3} }} trên khoảng \left( {\frac{3}{2}; + \infty } ight). Giá trị của biểu thức T = a + b + c bằng

     \begin{matrix}  f\left( x ight) = F'\left( x ight)\left[ {\left( {a{x^{u2}} + bx + c} ight)\sqrt {2x - 3} } ight]' = \dfrac{{5a{x^2} + x\left( {3b - 6a} ight) + c - 3b}}{{\sqrt {2x - 3} }} \hfill \\   \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {5a = 20} \\   {3b - 6a =  - 30} \\   {c - 3b = 11} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {a = 4} \\   {b =  - 2} \\   {c = 5} \end{array}} ight. \Rightarrow T = 7 \hfill \\ \end{matrix}

  • Câu 44: Nhận biết

    Họ nguyên hàm của hàm số f(x) =
\frac{1}{x} + \sin x là:

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}{\left( \frac{1}{x} + \sin x ight)dx} = \ln|x| - \cos x +
C.

  • Câu 45: Nhận biết

    Tìm nguyên hàm F(t) =
\int_{}^{}txdt.

    Ta có:

    F(t) = \int_{}^{}txdt = x\int_{}^{}tdt =
x.\frac{t^{2}}{2} + C

  • Câu 46: Nhận biết

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 47: Vận dụng

    Cho hàm số f(x) thỏa mãn f(1) = 3x\left\lbrack 4 - f'(x) ightbrack = f(x) -
1 với mọi x > 0. Tính f(2)?

    Ta có:

    x\left\lbrack 4 - f'(x)
ightbrack = f(x) - 1

    \Leftrightarrow f(x) + xf'(x) = 4x +
1

    \Leftrightarrow \left( xf(x)
ight)' = 4x + 1

    \Leftrightarrow xf(x) =
\int_{}^{}{\left( xf(x) ight)'dx} = \int_{}^{}{(4x +
1)dx}

    \Leftrightarrow \int_{}^{}{(4x + 1)dx} =
2x^{2} + x + C

    Với x = 1 \Rightarrow 1.f(1) = 3 + C
\Leftrightarrow 3 = 3 + C \Rightarrow C = 0

    Do đó xf(x) = 2x^{2} + x

    Vậy 2f(2) = 2.2^{2} + 2 \Rightarrow f(2)
= 5

  • Câu 48: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 49: Thông hiểu

    Cho hàm số F(x) là một nguyên hàm của f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight). Khi đó số điểm cực trị của hàm số F(x) là:

    Ta có: F(x) là một nguyên hàm của hàm số f(x) = 2019^{x}\left( 4 - x^{2}
ight)\left( x^{2} - 3x + 2 ight)

    \Rightarrow F'(x) = 2019^{x}\left( 4
- x^{2} ight)\left( x^{2} - 3x + 2 ight) = 2019^{x}(x - 2)^{2}(x +
2)(1 - x)

    \Rightarrow F'(x) = 0
\Leftrightarrow 2019^{x}(x - 2)^{2}(x + 2)(1 - x) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
x = 2 \\
\end{matrix} ight.. Do x = -
2;x = 1 là nghiệm bội 1 còn x =
2 là nghiệm bội 2 nên hàm số F(x) có hai điểm cực trị.

  • Câu 50: Thông hiểu

    Tìm phần thực, phần ảo của số phức z thỏa mãn \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}}

     Ta có: \left( {\frac{z}{2} - i} ight)\left( {1 - i} ight) = {(1 + i)^{3979}} \Leftrightarrow \frac{z}{2} - i = \frac{{{{(1 + i)}^{3980}}}}{2}

    \Leftrightarrow \frac{z}{2} - i = {2^{1989}}.{i^{1990}} \Leftrightarrow z =  - {2^{1990}} + 2i

     Vậy số phức có phần thực là -2^{1990} và phần ảo là 2.

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 211 lượt xem
Sắp xếp theo