Tính diện tích hình phẳng giới hạn bởi ![]()
Xét phương trình hoành độ giao điểm ta có:
Diện tích hình phẳng cần tính là:
Tính diện tích hình phẳng giới hạn bởi ![]()
Xét phương trình hoành độ giao điểm ta có:
Diện tích hình phẳng cần tính là:
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho hàm số
là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Trong không gian
cho mặt phẳng
. Một vectơ pháp tuyến của mặt phẳng
là:
Một vectơ pháp tuyến của mặt phẳng là:
.
Cho hai số phức
. Môđun của số phức
là:
Ta có:
Cho đường thẳng
và mặt phẳng
. Mặt phẳng (P) qua d và tạo với
một góc nhỏ nhất. Một véc tơ pháp tuyến của (P) là:

Gọi ;
H là hình chiếu vuông góc của B lên ; K là hình chiếu của H lên
.
Suy ra: cố định;
.
Mà (vì
)
Suy ra nhỏ nhất bằng
khi
.
Khi đó và có một VTCP
.
Vậy (P) có một VTPT là .
Trong không gian
, cho tam giác
với
. Đường trung tuyến xuất phát từ đỉnh
của tam giác
nhận vectơ nào dưới đây làm một véc-tơ chỉ phương?
Gọi là trung điểm của
, suy ra tọa độ điểm
.
Đường trung tuyến xuất phát từ đỉnh có vectơ chỉ phương là
.
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Tính diện tích hình phẳng giới hạn bởi đồ thị
của hàm số
và đồ thị
của hàm số
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng cần tìm là:
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường
quay xung quanh
.
Thể tích vật thể bằng:
.
Tìm nguyên hàm của hàm số
bằng:
Diện tích hình phẳng giới hạn bởi hai đường
và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Trong không gian
, góc giữa hai mặt phẳng
và
bằng:
Ta có: góc giữa hai mặt phẳng và
bằng:
.
Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Trong không gian
, xét mặt phẳng
đi qua điểm
đồng thời cắt các tia
lần lượt tại
sao cho tứ diện
có thể tích nhỏ nhất. Giao điểm của đường thẳng
với
có toạ độ là:
Gọi
Theo giả thiết, ta có là các số dương.
Phương trình mặt phẳng (P) là
(P) đi qua điểm A (2; 1; 3) nên
Ta có:
. Dấu bằng xảy ra khi và chỉ khi
Vậy
Tọa độ giao điểm của d và (P) là nghiệm của hệ: .
Vậy đáp án cần tìm là: .
Thể tích của khối tròn xoay sinh ra khi cho hình phẳng giới hạn bởi parabol
và đường thẳng
xoay quanh trục
tính bởi công thức nào sau đây?
Hình vẽ minh họa
Ta có và
cắt nhau tại hai điểm
và
Suy ra thể tích khối tròn xoay đã cho bằng thể tích khối tròn xoay
trừ đi thể tích khối tròn xoay
. Trong đó:
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
được sinh ra khi quay hình phẳng giới hạn bởi các đường
, trục Ox, x = 0, x = 1.
Vậy thể tích khối tròn xoay đã cho bằng .
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
lần lượt có phương trình là
và cho điểm
. Tìm phương trình mặt phẳng
đi qua điểm
và đồng thời vuông góc với hai mặt phẳng
?
Ta có:
Do vuông góc với
nên
Chọn
Hơn nữa đi qua
nên có phương trình là:
Trong không gian với hệ trục tọa độ
, mặt phẳng
đi qua hai điểm
cắt các tia
lần lượt tại
sao cho
nhỏ nhất, với
là trọng tâm tam giác
. Biết
, hãy tính
.
Gọi với
.
Khi đó phương trình của .
Vì nên
. Kết hợp với điều kiện
suy ra
và
.
Cũng từ trên ta có .
Trọng tâm của tam giác
có tọa độ
.
Xét hàm số với
.
Ta có .
Bảng biến thiên
đạt giá trị nhỏ nhất khi và chỉ khi
đạt giá trị nhỏ nhất. Điều này xảy ra khi
; lúc đó
và
.
Vậy
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Phân tích vectơ
theo ba vectơ không đồng phẳng
![]()
Ta có 3 vecto không đồng phẳng. Khi đó luôn có :
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Trong không gian với hệ toạ độ
, cho điểm
, đường thẳng
và mặt phẳng
. Viết phương trình đường thẳng
qua
vuông góc với d và song song với
.
Đường thẳng có vec tơ chỉ phương
.
Mặt phẳng có vec tơ pháp tuyến
.
Đường thẳng ∆ vuông góc với nên vectơ chỉ phương
Đường thẳng ∆ song song với (P) nên
Ta có
Suy ra vec tơ chỉ phương của đường thẳng ∆ là
Vậy phương trình đường thẳng ∆ là .
Cho hình lập phương
. Phân tích vectơ
theo các vectơ
?
Ta có phép cộng vectơ đối với hình vuông :
Khi đó ta có:
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Cho số phức thỏa mãn điều kiện
.
Tìm giá trị nhỏ nhất của ![]()
1 || Một || một
Cho số phức thỏa mãn điều kiện .
Tìm giá trị nhỏ nhất của
1 || Một || một
Đặt
Ta có
.
TH1: (1)
TH2: .
Đặt .
.
(2)
Từ (1) và (2) , suy ra .
Tìm nguyên hàm của hàm số
?
Ta có:
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Phần thực của số phức
là:
Ta có:
Trong không gian
, cho mặt phẳng
đi qua điểm
và chắn trên các trục tọa độ
theo ba đoạn có độ dài đại số lần lượt là
. Phương trình tổng quát của mặt phẳng
khi
theo thứ tự tạo thành một cấp số nhân có công bội bằng
là:
Do giả thiết suy ra .
Giả sử khi đó phương trình mặt phẳng
.
Do M thuộc (P) nên
Suy ra do đó phương trình mặt phẳng
.
Cho hàm số
là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Trong không gian
. Cho
với
. Biết mặt phẳng
qua điểm
và thể tích tứ diện
đạt giá trị nhỏ nhất. Khi đó phương trình
:
Phương trình mặt phẳng
Vì
Áp dụng bất đẳng thức Cauchy ta có:
Thể tích tứ diện là
Đẳng thức xảy ra khi
Phương trình mặt phẳng là
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Trong không gian với hệ tọa độ
,cho đường thẳng
. Phương trình nào dưới đây là phương trình chính tắc của đường thẳng
?
Đường thẳng đi qua điểm
và nhận
làm vectơ chỉ phương.
Phương trình chính tắc của
Biết
và
, a và b là các số hữu tỉ. Giá trị của a + b + c là:
Biết và
. Giá trị của a + b + c là:
Ta có:
, với
Tìm số phức
trong phương trình sau: ![]()
Ta có
Số phức
có phần thực là?
2
Số phức có phần thực là?
2
Ta có:
Vậy phần thực của số phức
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Cho
là miền hình phẳng giới hạn bởi các đường
và đồ thị của hai hàm số
. Gọi V là thể tích của vật thể tròn xoay khi quay
quanh Ox. Mệnh đề nào dưới đây đúng?
Thể tích của khối tròn xoay cần tính là:
Cho tứ diện
có
. Phương trình tổng quát của mặt phẳng chứa AC và song song với BD là:
Theo đề bài, ta có các vecto là
Có thể chọn làm một vectơ pháp tuyến cho mặt phẳng.
Phương trình mặt phẳng này có dạng .
Mặt khác, điểm A thuộc mặt phẳng nên ta thay tọa độ điểm A vào phương trình đường thẳng trên:
Vậy phương trình cần tìm .
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.