Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Cho hình vẽ:

Diện tích của hình phẳng
được giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
(phần tô đậm trong hình vẽ) tính theo công thức:
Áp dụng công thức tính diện tích hình phẳng ta có:
Vậy đáp án cần tìm là: .
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính giá trị của biểu thức ![]()
Ta có:
=>
Gọi
là các nghiệm của phương trình
. Tính giá trị biểu thức ![]()
Ta có phương trình
Suy ra:
Vì (1)
Mà ;
.
Vậy từ .
Trong không gian tọa độ
, cho hai mặt phẳng
và
. Tìm
để
vuông góc với
?
Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là .
Cho hàm số
liên tục trên
thỏa mãn điều kiện
với
và
với
. Tính giá trị
?
Cho hàm số liên tục trên
thỏa mãn điều kiện
với
và
với
. Tính giá trị
?
Trong không gian với hệ tọa độ
; cho bốn điểm ![]()
. Tính thể tích tứ diện
.
Theo giả thiết ta có: suy ra
Vậy thể tích tứ diện là:
Trong không gian hệ tọa độ Oxyz, cho điểm
và mặt phẳng
. Gọi
thuộc
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Giả sử là điểm thỏa mãn
.
Khi đó ,
,
;
;
;
(vì
)
Vì I cố định nên đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên
.
Gọi là đường thẳng qua I và vuông góc với
Phương trình đường thẳng .
Tọa độ của M là nghiệm hệ phương trình:
.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian với hệ tọa độ
, cho phương trình đường thẳng
. Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng
?
Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:
.
Biết rằng hàm số
có
và đồ thị hàm số
cắt trục tung tại điểm có tung độ bằng
. Hàm số
là:
Theo lí thuyết
Ta có:
Khi đó có dạng
Theo đề ta có:
Vậy hàm số là .
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Giá trị của tích phân
bằng:
Ta có: .
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Trong không gian với hệ tọa độ
, cho hai đường thẳng ![]()
chéo nhau. Viết phương trình đường vuông góc chung của
.
Đường thẳng lần lượt có vectơ chỉ phương là
Giả sử ∆ giao với lần lượt tại
, khi đó ta có
Do ∆ là đường vuông góc chung, suy ra:
Đường vuông góc chung của nhận
làm VTCP và đi qua điểm
Vậy ta có phương trình đường thẳng:
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Trong không gian với hệ tọa độ
, cho mặt phẳng
và đường thẳng
. Viết phương trình đường thẳng
nằm trong mặt phẳng
cắt đồng thời vuông góc với
?
Giao điểm I của d và (α) là nghiệm của hệ phương trình:
Mặt phẳng (α) có một vectơ pháp tuyến , đường thẳng d có một vectơ chỉ phương
Khi đó đường thẳng ∆ có một vectơ chỉ phương là
Đường thẳng ∆ qua điểm I (2; 4; −2) và có một vectơ chỉ phương nên có phương trình chính tắc:
Cho hàm số
liên tục trên đoạn
và
. Tính tích phân
?
Ta có:
Trong không gian
, cho điểm
. Tìm tọa độ hình chiếu M lên trục
.
Tọa độ hình chiếu của điểm M trên trục Ox là
Trong không gian với hệ tọa độ
, cho bốn điểm
,
và M thay đổi sao cho hình chiếu của M lên mặt phẳng
nằm trong tam giác ABC và các mặt phẳng
hợp với mặt phẳng
các góc bằng nhau. Tính giá trị nhỏ nhất của OM.
Hình vẽ minh họa
Gọi H là hình chiếu của M lên mặt phẳng (ABC).
Giả thiết suy ra H là tâm đường tròn nội tiếp tam giác ABC nên thỏa mãn
Ta có , suy ra
Phương trình đường thẳng MH nhận làm vectơ chỉ phương nên MH là:
Khi đó:
Giá trị của tích phân
gần nhất với giá trị nào sau đây?
Ta có:
Trong không gian hệ trục tọa độ
, cho các điểm
và mặt phẳng
. Tìm hoành độ
của điểm
thuộc mặt phẳng (P) sao cho
đạt giá trị nhỏ nhất.
Trong không gian hệ trục tọa độ , cho các điểm
và mặt phẳng
. Tìm hoành độ
của điểm
thuộc mặt phẳng (P) sao cho
đạt giá trị nhỏ nhất.
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là
và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.
Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.
Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)
Ta có
OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0
⟺13906t - 76483 = 0 ⟺
Suy ra
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Cho hàm số
xác định trên
thỏa mãn
và
. Phương trình tiếp tuyến của đồ thị hàm số
tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Lại có
Từ đó suy ra
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là
Tính
?
Áp dụng công thức
Suy ra
Trong không gian với hệ trục tọa độ
, cho tọa độ ba điểm
. Thể tích tứ diện
bằng:
Ta có: . Dễ thấy tứ diện
vuông tại
nên
Vậy đáp án đúng là: .
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
. Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được
. Tìm
?
Khi dừng hẳn
Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:
Họ các nguyên hàm của hàm số
là:
Ta có:
Cho hàm số
liên tục trên
và có một nguyên hàm là hàm số
. Mệnh đề nào sau đây đúng?
Theo định nghĩa tích phân ta có: .
Họ nguyên hàm của hàm số
là:
Ta có: .
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
bằng
Ta có .
Trong không gian
, viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với trục
.
Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ .
Phương trình tổng quát của mặt phẳng (P) là
.
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Trong không gian với hệ tọa độ
, cho đường thẳng
và điểm
. Hình chiếu vuông góc của A trên (∆) là điểm nào dưới đây?
Đường thẳng (∆) đi qua M(−1; −4; 0), có vectơ chỉ phương
Phương trình tham số của đường thẳng
Gọi P là hình chiếu vuông góc của A trên (∆).
Khi đó
Ta có . Vì
nên
Cho hàm số
liên tục trên
. Gọi
là hình phẳng giới hạn bởi hai đồ thị
và các đường thẳng
. Diện tích hình
được tính theo công thức?
Ta có diện tích hình (H) được tính bằng công thức .
Trong không gian với hệ trục tọa độ
cho các điểm
. Phương trình mặt phẳng đi qua
và vuông góc với
là:
Ta có:
Vậy phương trình mặt phẳng đi qua và vuông góc với
là:
Xét hình phẳng
giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?

Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Trong không gian hệ trục tọa độ
cho
. Khi đó tọa độ
với hệ
là:
Ta có:
Lại có
Cho hai số phức
và
. Tìm số phức ![]()
Ta có: