Cho số phức
, giá trị của số phức
là?
Ta có:
Cho số phức
, giá trị của số phức
là?
Ta có:
Giá trị của
bằng
Ta có:
Tìm một nguyên hàm của hàm số
?
Ta có:
Đặt
Khi đó .
Trong không gian
, cho điểm
. Phương trình mặt phẳng
cắt trục
lần lượt tại
(không trùng với gốc tọa độ
) sao cho
là tâm đường tròn ngoại tiếp tam giác
?
Trong không gian , cho điểm
. Phương trình mặt phẳng
cắt trục
lần lượt tại
(không trùng với gốc tọa độ
) sao cho
là tâm đường tròn ngoại tiếp tam giác
?
Trong không gian với hệ tọa độ
, tính khoảng cách giữa đường thẳng
và trục
.
Đường thẳng d có vectơ chỉ phương và đi qua điểm
Trục Ox có vectơ chỉ phương và đi qua điểm
Khoảng cách giữa đường thẳng d và trục Ox là:
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Trong không gian với hệ trục tọa độ
, cho ba điểm
và mặt phẳng
. Tìm điểm
sao cho
dạt giá trị nhỏ nhất.
Gọi là điểm sao cho
.
Từ đó:
với là hình chiếu của
trên mặt phẳng
.
Từ đó suy ra dạt giá trị nhỏ nhất khi và chỉ khi
.
Phương trình đường thẳng đi qua và vuông góc với mặt phẳng
là:
.
Tọa độ diểm là nghiệm
của hệ
Suy ra .
Vậy, tọa độ điểm cần tìm là
.
Tìm nguyên hàm của hàm số
??
Đặt
Cho điểm P(-3 , 1, -1) và đường thẳng (d): ![]()
Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:
Chuyển (d) về dạng tham số :
Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: , cho qua P tính được D=7 .
Ta có (Q): .
Thế x, y, z theo t từ phương trình của (d) vào phương trình (Q) được
Giao điểm I của (d) và (Q) là I (1, -3, 1) .
Vì I là trung điểm của PP’ nên .
Trong không gian
, cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Trong không gian , cho
và hai điểm
. Giả sử
là hai điểm thay đổi trong mặt phẳng
sao cho
cùng hướng với
và
. Giá trị lớn nhất của
bằng bao nhiêu?
Cho hàm số
liên tục trên
, có đồ thị hàm số
như sau:

Mệnh đề nào dưới đây là đúng?
Theo ý nghĩa hình học của tích phân thì là diện tích hình thang cong
.
Một chiếc máy bay di chuyển với vận tốc là
. Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Xác định nguyên hàm của hàm số
?
Ta có: .
Tính thể tích
của vật thể sinh ra khi quay quanh trục
hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và trục hoành?
Thể tích V của vật thể là:
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Cho ba vectơ
không đồng phẳng. Xét các vectơ ![]()
![]()
. Khẳng định nào dưới đây đúng?
Giả sử ba vectơ đồng phẳng, khi đó
Ta có:
Khi đó:
Vậy ba vectơ đồng phẳng.
Vậy khẳng định đúng là: “Ba vectơ đồng phẳng”.
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Trong không gian Oxyz, cho điểm
và vectơ
. Viết phương trình mặt phẳng
qua A và nhận vectơ
làm vectơ pháp tuyến.
Phương trình mặt phẳng có dạng:
.
Giá trị của tích phân
gần nhất với giá trị nào sau đây?
Ta có:
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Cho
. Giá trị của x và y bằng:
Ta có:
Cho tứ diện đều
. Mệnh đề nào sau đây sai?
Vì tứ diện là tứ diện đều nên có các cặp cạnh đối vuông góc
Suy ra
Vậy mệnh đề chưa chính xác là: .
Số phức liên hợp của số phức
là
=
= a - bi
Tìm nguyên hàm của hàm số ![]()
Ta có:
Cho hai mặt phẳng
và
. Tìm tham số
để hai mặt phẳng
và
vuông góc với nhau.
Đáp án: 4
Cho hai mặt phẳng và
. Tìm tham số
để hai mặt phẳng
và
vuông góc với nhau.
Đáp án: 4
Ta có:
Để hai mặt phẳng và
vuông góc với nhau thì
.
Cho
là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Tính thể tích
của vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường
quay quanh
.
Xét phương trình hoành độ giao điểm:
Thể tích khối tròn xoay cần tính là:
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Xét số phức z thỏa mãn:
. Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Phương trình nào sau đây là phương trình chính tắc của
?
Đường thẳng d có vectơ chỉ phương và đi qua điểm
. Do đó phương trình chính tắc của
là:
Trong không gian với hệ tọa độ
, cho 2 đường thẳng
:
và điểm
. Đường thẳng
đi qua
, cắt
và vuông góc với
có một vectơ chỉ phương là
. Tính ![]()
Hình vẽ minh họa
Gọi là mặt phẳng chứa
và
.
Lấy .
Mặt phẳng có véc-tơ pháp tuyến vuông góc với các véc-tơ
và
.
Ta có .
Một trong các véc-tơ pháp tuyến của mặt phẳng là
.
Đường thẳng nằm trong mặt phẳng
và vuông góc với
có
Vậy .
Biết
, a và b là các số hữu tỉ. Giá trị của
là:
Biết . Giá trị của
là:
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có: .
Trong không gian với hệ tọa độ
, mặt phẳng
đi qua
và chứa trục
có phương trình là:
Ta có: (P) có cặp véc-tơ chỉ phương
Khi đó véc-tơ pháp tuyến của (P) là , ta chọn
.
Mặt phẳng (P) đi qua và có véc-tơ pháp tuyến
nên có phương trình
hay
.
Thiết diện của vật thể cắt bởi mặt phẳng
vuông góc với trục
tại điểm có hoành độ
là một hình chữ nhật có độ dài hai cạnh
và
. Tính thể tích của vật thể nằm giữa hai mặt phẳng
và
.
Do thiết diện là hình chữ nhật nên diện tích của thiết diện là
Ta có thể tích cần tính là:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Trong không gian với hệ trục tọa độ
, cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ , cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Cho số phức
. Tìm số phức
?
Ta có:
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Trong không gian tọa độ
, cho hai mặt phẳng
và
. Tìm
để
vuông góc với
?
Ta có: (P) vuông góc với (Q) khi và chỉ khi các vectơ pháp tuyến của chúng vuông góc với nhau, tức là .
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Cho F(x) là một nguyên hàm của hàm số
. Hàm số
có bao nhiêu điểm cực trị?
=> có 5 nghiệm đơn
=> Hàm số có 5 điểm cực trị
Biết rằng
liên tục trên
là một nguyên hàm của hàm số
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Biết
và
là ba nghiệm của phương trình
,
trong đó
là nghiệm có phần ảo dương. Phần ảo của số phức
bằng:
Xét phương trình là phương trình bậc ba với hệ số thực nên luôn có một nghiệm thực là
.
Do đó phương trình tương đương với:
.
Nên là hai nghiệm phức của phương trình bậc hai với hệ số thực (1).
Suy ra .
Khi đó : .
Vậy phần ảo của là
.
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Cho M trên đường thẳng AB với
và
. Nếu
với
thì tọa độ của M là:
Vì M nằm trên AB và nên khi xét theo tọa độ vecto 2 điểm A và B, ta có: