Trong không gian
, mặt phẳng
đi qua điểm
, đồng thời vuông góc với giá của vectơ
có phương trình là:
Mặt phẳng nhận vectơ
làm vectơ pháp tuyến và đi qua điểm
nên có phương trình là
.
Trong không gian
, mặt phẳng
đi qua điểm
, đồng thời vuông góc với giá của vectơ
có phương trình là:
Mặt phẳng nhận vectơ
làm vectơ pháp tuyến và đi qua điểm
nên có phương trình là
.
Cho hàm số
liên tục và dương trên
, hình phẳng giới hạn bởi các đường
, trục hoành và
có diện tích bằng 5. Tính tích phân 
Ta có:
Đặt ta được:
=>
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Giá trị của
bằng
Ta có:
Cho hàm số
là một nguyên hàm của
trên khoảng
thỏa mãn
. Xác định công thức
?
Ta có: (vì
)
Mà
Vậy .
Giá trị của tích phân
. Biểu thức có giá trị
là:
Giá trị của tích phân . Biểu thức
có giá trị là:
Ta có:
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Trong không gian với hệ tọa độ
, cho điểm
và vectơ
. Viết phương trình mặt phẳng
đi qua điểm
và có vectơ pháp tuyến
.
Phương trình tổng quát của mặt phẳng (P) có dạng:
Tính diện tích
của hình phẳng giới hạn bởi đồ thị hai hàm số
và
?
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Hình vẽ minh hoạ
Diện tích S cần tìm là:
Cho hàm số
thỏa mãn
và
. Biết
với
. Giá trị của biểu thức
là:
Tính
Đặt khi đó:
Tính .
Đặt khi đó
Mà
Trong không gian
, cho tam giác
vuông tại
,
,
, đường thẳng
có phương trình
, đường thẳng
nằm trong mặt phẳng
. Biết rằng đỉnh
có cao độ âm. Tìm hoành độ của đỉnh
.
Hình vẽ minh họa:
Tọa độ điểm B là nghiệm của hệ phương trình
Do C ∈ BC nên
Theo giả thiết nên:
Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).
Gọi . Do
nên:
Vậy đáp án cần tìm là .
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Cho số phức
. Tìm số phức
?
Ta có:
Nguyên hàm của hàm số
là:
Ta có:
Một ô tô đang chạy với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc
, trong đó
là khoảng thời gian tính bằng giây, kể từ lúc bắt đầu đạp phanh. Tính quãng đường ô tô di chuyển được trong 8 giây cuối cùng.
Khi xe dừng hẳn thì vận tốc bằng 0.
Nên thời gian kể từ lúc đạp phanh đến lúc ô tô dừng hẳn là
Quãng đường ô tô đi được từ lúc đạp phanh đến lúc ô tô dừng hẳn là
Như vậy trong 8 giây cuối thì có 3 giây ô tô ði với vận tốc và 5 s ô tô chuyển động chậm dần đều.
Quãng đường ô tô đi được trong 3 giây trước khi đạp phanh là
Vậy trong 8 giây cuối ô tô đi được quang đường
Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên
và thỏa mãn f(1) = 1,
. Mệnh đề nào sau đây đúng?
Ta có: và
=>
=>
Mà f(1) = 1 => và
Tìm tọa độ giao điểm của đường thẳng
và mặt phẳng
?
Gọi I là giao điểm của d và (P).
Ta có
Suy ra
Trong không gian Oxyz cho vectơ
và
. Gọi
lần lượt là ba góc tạo bởi
với ba trục
. Ta có:
Áp dụng công thức hình chiếu vecto trên trục, ta có ngay được:
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Nguyên hàm của hàm số
là:
Ta có:
Diện tích hình phẳng giới hạn bởi các đường
bằng:
Gọi S là diện tích hình phẳng cần tìm. Khi đó
Cho ba vectơ
. Điều kiện nào sau đây không kết luận được ba vectơ đó đồng phẳng?
Hai vectơ còn lại có thể không cùng phương nên ba vectơ có thể không đồng phẳng.
Cho số phức z thoả mãn
. Giá trị lớn nhất của biểu thức
bằng?
Đặt .
Từ giả thiết
(1).
Ta có
.
Dễ thấy P lớn nhất khi .
Khi đó
Do nên từ (1) ta có
.
Suy ra
Dấu = xảy ra khi
.
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
Tìm nguyên hàm của hàm số
?
Ta có:
Cho
. Giá trị của x và y bằng:
Ta có:
Trong không gian với hệ tọa độ
, cho ba điểm
. Mặt phẳng
đi qua ba điểm
có phương trình tổng quát
. Biết
, tìm giá trị của
?
Do nên mặt phẳng
có phương trình
Do đi qua các điểm
nên ta có hệ:
Vậy .
Trong không gian với hệ toạ độ
, cho điểm
, đường thẳng
và mặt phẳng
. Viết phương trình đường thẳng
qua
vuông góc với d và song song với
.
Đường thẳng có vec tơ chỉ phương
.
Mặt phẳng có vec tơ pháp tuyến
.
Đường thẳng ∆ vuông góc với nên vectơ chỉ phương
Đường thẳng ∆ song song với (P) nên
Ta có
Suy ra vec tơ chỉ phương của đường thẳng ∆ là
Vậy phương trình đường thẳng ∆ là .
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Trong không gian
, cho tam giác
có
, đường trung tuyến kẻ từ B và đường cao kẻ từ C lần lượt có phương trình
. Biết
, khi đó
bằng
Hình vẽ minh họa
Giả sử đường cao là ta có vectơ chỉ phương của CH là
.
B thuộc đường trung tuyến nên
.
Suy ra
Vì nên
.
Vậy .
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm
và
?
Ta có là vectơ chỉ phương của đường thẳng
. Phương trình chính tắc của đường thẳng
là:
.
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Biết
khác
và vuông góc với cả hai vectơ
. Khẳng định nào sau đây đúng?
Theo đề bài ta có: khác
và vuông góc với cả hai vectơ
nên
Vậy khẳng định đúng là
Trong không gian với hệ trục tọa độ
, cho ba mặt phẳng ![]()
![]()
. Một đường thẳng d thay đổi cắt ba mặt phẳng
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Trong không gian với hệ trục tọa độ , cho ba mặt phẳng
. Một đường thẳng d thay đổi cắt ba mặt phẳng
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Tìm nguyên hàm của hàm số ![]()
Ta có:
Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với ![]()
Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là:
Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận làm 1 VTPT. Ta có VTPT của
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Họ nguyên hàm của hàm số
là:
Ta có:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho đồ thị hàm số
như hình vẽ:

Diện tích
của hình phẳng được giới hạn bởi đồ thị hàm số
và trục
(phần gạch sọc) được tính bởi công thức
Từ đồ thị hàm số ta thấy
Do đó:
Gọi và là hai nghiệm phức của phương trình
. Giá trị của biểu thức
là:
Ta có:
Suy ra
Cho tứ giác ABCD có
. Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng
.
Tỷ số thể tích hai khối AMNE và ABCD:
M chia cạnh BA theo tỷ số -2
Vecto pháp tuyến của
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí
cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ
với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

a) Vị trí của khinh khí cầu thứ hai có tọa độ là
. Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá
km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ
. Đúng||Sai
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).
a) Vị trí của khinh khí cầu thứ hai có tọa độ là . Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ . Đúng||Sai
a) Sai
Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là .
b) Đúng
Chiếc khinh khí cầu thứ nhất có tọa độ là .
Khoảng cách giữa hai chiếc khinh khí cầu là
c) Sai
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:
Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.
d) Đúng
Vị trí của chiếc flycam là
.
Khoảng cách bay của flycam là:
Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ là
Vậy flycam không đến được vị trí có tọa độ .
Một vật chuyển động chậm dần với vận tốc
. Hỏi rằng trong
trước khi dừng hẳn vật di chuyển được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.