Xác định giá trị của tham số
thỏa mãn
?
Ta có:
Vậy đáp án .
Xác định giá trị của tham số
thỏa mãn
?
Ta có:
Vậy đáp án .
Cho mặt phẳng
qua điểm
và chắn trên ba trục tọa độ
theo ba đoạn có số đo đại số a, b, c. Viết phương trình tổng quát của
khi a, b, c tạo thành một cấp số nhân có công bội bằng 2.
Theo đề bài, ta có a, b, c là cấp số nhân với công bội q=2
Phương trình của
(P) qua
Tìm tất cả các giá trị thực của tham số
để tồn tại tích phân
?
Tích phân tồn tại khi và chỉ khi hàm số
liên tục trên
hoặc
Mà hàm số liên tục trên các khoảng
Nên hàm số liên tục trên
hoặc
khi và chỉ khi
.
Thể tích hình khối do hình phẳng giới hạn bởi các đường thẳng
quay quanh
.
Tung độ giao điểm
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số
?
Ta có: là một nguyên hàm của hàm số
nên
Hay
Xét , đặt
Khi đó
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Trong không gian
cho mặt phẳng
và hai điểm
. Gọi
lần lượt là hình chiếu của
lên mặt phẳng (P). Biết
. Tổng tất cả các giá trị của tham số m là
Hình vẽ minh họa
Xét trường hợp m = 1. Khi đó cả đều thuộc (P). Trong trường hợp này
(loại).
Khi . Ta tính toán các đại lượng:
Từ đó suy ra khác phía với (P) và
Gọi H là giao điểm của AB với (P).
Theo Thales ta có:
Áp dụng định lý Pythagore cho tam giác AEH ta có:
Phương trình này có hai nghiệm và tổng hai nghiệm đó bằng: .
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Phần thực của số phức
là:
Ta có:
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Trong không gian
, cho các điểm
. Đường thẳng nào dưới đây vuông góc với mặt phẳng
?
Ta có
là 1 VTPT của mặt phẳng (ABC).
Do đó đường thẳng vuông góc với mặt phẳng (ABC) có VTPT cùng phương với vectơ (−2; −1; 1).
Dựa vào các đáp án ta thấy ở đáp án D đường thẳng có 1 VTPT là (−2; 1; 1) cùng phương với (−2; −1; 1).
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Cho hình hộp
. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ ![]()
Hình vẽ minh họa
Ta có:
.
Vậy .
bằng
Ta có .
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm
và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Ta có:
Đường thẳng (BC) đi qua điểm B có VTCP có dạng
Điểm và
Ta có:
Vậy
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho số phức
. Số phức
bằng:
Ta có:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Tìm tất cả các giá trị thực của tham số
thỏa mãn
?
Ta có:
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Họ nguyên hàm của hàm số
là:
Ta có: .
Cho
. Giá trị của x và y bằng:
Ta có:
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Xác định tọa độ trọng tâm
của tam giác
, biết rằng
?
Tọa độ trọng tâm G của tam giác được xác định như sau:
Trong không gian
, cho điểm
thuộc mặt phẳng
. Mệnh đề nào dưới đây đúng?
Ta có điểm thuộc mặt phẳng
nên:
Trong không gian với hệ tọa độ
cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các trục tọa độ tại
sao cho
là trực tâm tam giác
. Hãy viết trình mặt phẳng
.
Hình vẽ minh họa
Ta có:
Chứng minh tương tự BC ⊥ OH.
Do đó
Suy ra .
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Tích phân
có giá trị là:
Tích phân có giá trị là:
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Trong không gian với hệ trục tọa độ
, cho đường thẳng
có phương trình tham số là
Gọi vectơ chỉ phương của đường thẳng
, ta chọn
Giả sử , chọn
suy ra phương trình tham số d là:
.
Tốc độ tăng trưởng bán kính của thân cây được tính bằng công thức
, trong đó
là thời gian khảo sát (tính theo năm), là thời điểm đầu khảo sát,
là bán kính của thân cây tại thời điểm
và
. Tính bán kính của thân cây sau 20 năm kể từ lúc bắt đầu khảo sát, biết rằng bán kính cây tại thời điểm bắt đầu khảo sát là 5cm.
Ta có:
Từ giả thiết ta có:
=>
Sau 5 năm bán kính thân cây bằng
Trong không gian toạ độ
, phương trình nào sau đây là phương trình tổng quát của mặt phẳng?
PTTQ của mặt phẳng có dạng , với
nên ta chọn
.
Trong hệ tọa độ
, cho mặt phẳng
và ba điểm
. Điểm M ∈ (α) sao cho
đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?
Xét điểm I(a; b; c) thỏa mãn:
Khi đó
Khi đó:
Do đó đạt giá trị nhỏ nhất thì M là hình chiếu của I trên mặt phẳng
.
Do là hình chiếu của I trên mặt phẳng
nên ta có:
Vậy .
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Tích phân
có giá trị là:
Ta có:
Xét
Đặt
Hình chiếu vuông góc của điểm
trên mặt phẳng
là:
Hình chiếu vuông góc của điểm trên mặt phẳng
là điểm có tọa độ
.
Cho hình hộp chữ nhật OABC.DEFG có
. Gọi L là tâm hình hộp. Biểu thị vectơ
theo ba vectơ
và
?

Vì I là tâm hình hộp theo giả thiết nên I là trung điểm đường chéo OF. Từ đây, suy ra
Cho hàm số
có một nguyên hàm là
thỏa mãn
và
liên túc trên
. Giá trị biểu thức
bằng:
Ta có:
Vì hàm số liên tục trên
nên liên tục tại
tức là
Do đó
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Biết
là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Trong không gian với hệ tọa độ
; cho bốn điểm ![]()
. Tính thể tích tứ diện
.
Theo giả thiết ta có: suy ra
Vậy thể tích tứ diện là:
Tìm tọa độ giao điểm của hai đường thẳng:
Theo đề bài, ta biến đổi được (b) có dạng:
Thay x, y, z vào phương trình x+2y+z =9 , ta có:
=> Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)