Đề thi HK2 Toán 12 Đề 1

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 50 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Có bao nhiêu số phức z thỏa mãn \left| {\frac{{z + 1}}{{i - z}}} ight| = 1\left| {\frac{{z - i}}{{2 + z}}} ight| = 1

    Ta có:  \left\{ \begin{array}{l}\left| {\dfrac{{z + 1}}{{i - z}}} ight| = 1\\\left| {\dfrac{{z - i}}{{2 + z}}} ight| = 1\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\left| {z + 1} ight| = \left| {i - z} ight|\\\left| {z - i} ight| = \left| {2 + z} ight|\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x =  - y\\4x + 2y =  - 3\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{3}{2}\\y = \frac{3}{2}\end{array} ight.

    \Rightarrow z =  - \frac{3}{2} + \frac{3}{2}i

  • Câu 2: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d là giao tuyến của hai mặt phẳng (\alpha):x + 3y - 5z + 6 = 0(\beta):x - y + 3z - 6 = 0. Phương trình tham số của d là:

    Nhận thấy A(1;1;2),B(2; - 1;1) đều thuộc (α) và (β) nên chúng cũng thuộc đường thẳng d.

    Ta có \overrightarrow{AB} = (1; - 2; -
1) là một vectơ chỉ phương của d.

    Khi đó phương trình tham số của d là: \left\{
\begin{matrix}
x = 1 + t \\
y = 1 - 2t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 3: Thông hiểu

    Biết rằng f'(x) = x\sqrt{1 +
x^{2}}3f(0) = 4. Tìm hàm số f(x)?

    Ta có: f(x) = \int_{}^{}{f'(x)dx} =
\int_{}^{}{x\sqrt{1 + x^{2}}dx}

    = \frac{1}{2}\int_{}^{}{\left( 1 + x^{2}
ight)^{\frac{1}{2}}d\left( 1 + x^{2} ight)} = \frac{\left( \sqrt{1 +
x^{2}} ight)^{3}}{3} + C

    3f(0) = 4 \Leftrightarrow
3\frac{\left( \sqrt{1 + 0^{2}} ight)^{3}}{3} + 3C = 4 \Leftrightarrow
C = 1

    Vậy f(x) = \frac{\left( \sqrt{1 + x^{2}}
ight)^{3}}{3} + 1

  • Câu 4: Nhận biết

    Vật thể B giới hạn bởi mặt phẳng có phương trình x = 0x = 2. Cắt vật thể B với mặt phẳng vuông góc với trục Ox tại điểm có hoành độ bằng x;(0 \leq x \leq 2) ta được thiết diện có diện tích bằng x^{2}(2 - x). Thể tích của vật thể B:

    Thể tích của vật thể B là:

    V = \int_{0}^{2}{x^{2}(2 - x)dx} =
\int_{0}^{2}{\left( 2x^{2} - x^{3} ight)dx} = \frac{4}{3}

  • Câu 5: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
e^{x}\left( 2017 - \frac{2018e^{- x}}{x^{5}} ight)?

    Ta có: \int_{}^{}\left\lbrack e^{x}\left(
2017 - \frac{2018e^{- x}}{x^{5}} ight) ightbrack dx =
\int_{}^{}\left( 2017e^{x} - \frac{2018}{x^{5}} ight)dx

    = 2017e^{x} + \frac{504,5}{x^{4}} +
C

  • Câu 6: Vận dụng

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{IA} + (2k - 1)\overrightarrow{IB}+ k\overrightarrow{IC} + \overrightarrow{ID} =\overrightarrow{0}?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MN. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{IA} + (2k - 1)\overrightarrow{IB}+ k\overrightarrow{IC} + \overrightarrow{ID} =\overrightarrow{0}?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;4;2),B( - 1;2;4) và đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + t \\
z = 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm M \in \Delta mà tổng MA^{2} + MB^{2} có giá trị nhỏ nhất có tọa độ là:

    M \in \Delta nên ta có tọa độ điểm M(1 - t; - 2 + t;2t).

    Ta có:

    MA^{2} + MB^{2} = ( - t)^{2} + (t -
6)^{2} + (2t - 2)^{2} + (2 - t)^{2} + (t - 4)^{2} + (2t - 4)^{2}

    = 12t^{2} - 48t + 76 = 12(t - 2)^{2} +
28 \geq 28

    Vậy giá trị nhỏ nhất của MA^{2} +
MB^{2}28 khi t = 2 \Rightarrow M( - 1;0;4).

  • Câu 8: Nhận biết

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

    Đáp án là:

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

     Ta có: z = \frac{{7 - 17i}}{{5 - i}} = \frac{{\left( {7 - 17i} ight)\left( {5 + i} ight)}}{{\left( {5 - i} ight)\left( {5 + i} ight)}} = \frac{{52 - 78i}}{{26}} = 2 - 3i

    Vậy phần thực của số phức z=2

  • Câu 9: Nhận biết

    Nguyên hàm của hàm số f(x) = \sqrt{3x +
2} là:

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\sqrt{3x
+ 2}dx} = \int_{}^{}{(3x + 2)^{\frac{1}{2}}dx}

    = \frac{(3x + 2)^{1 + \frac{1}{2}}}{1 +\dfrac{1}{2}}.\frac{1}{3} + C = \frac{2}{9}.(2x + 3).\sqrt{3x + 2} +C

  • Câu 10: Vận dụng

    Cho hàm số y = f(x) thỏa mãn f'(x).f^{2}(x) = x^{2}f(2) = 2. Phương trình tiếp tuyến của đồ thị hàm số g(x) = f(x) + x^{2} tại điểm có hoành độ bằng 3 là:

    Ta có: f'(x).f^{2}(x) =
x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{f'(x).f^{2}(x)dx} =
\int_{}^{}{x^{2}dx}

    \Leftrightarrow
\int_{}^{}{f^{2}(x)df(x)} = \frac{x^{3}}{3} + C

    \Leftrightarrow \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} + C. Theo bài ra ta có: f(2) = 2 \Rightarrow \frac{f^{3}(2)}{3} =
\frac{2^{3}}{3} + C \Rightarrow C = 0

    Suy ra \frac{f^{3}(x)}{3} =
\frac{x^{3}}{3} \Leftrightarrow f(x) = x

    Vậy g(x) = x^{2} + x \Rightarrow
g'(x) = 2x + 1

    Ta có: g'(3) = 7;g(3) =
12

    Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ bằng 3 là:

    y = g'(3)(x - 3) + g(3)

    \Leftrightarrow y = 7(x - 3) + 12
\Leftrightarrow y = 7x - 9

  • Câu 11: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 12: Vận dụng

    Xét phương trình {z^3} = 1 trên tập số phức. Tập nghiệm của phương trình là:

     Ta có:

    {z^3} = 1 \Leftrightarrow \left( {z - 1} ight)\left( {{z^2} + z + 1} ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z^2} + z + 1 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z =  - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\end{array} ight.

    Suy ra: S = \left\{ {1; - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i} ight\}

  • Câu 13: Vận dụng

    Với giá trị nào của thì hai mặt phẳng sau song song:

    \left( P ight):(m - 2)x - 3my + 6z - 6 = 0;\,\,\,\,\,\left( Q ight):(m - 1)x + 2y + (3 - m)z + 5 = 0

    Áp dụng điều kiện để 2 mp song song, ta xét:

    {A_1}{B_2} - {A_2}{B_1} = \left( {m - 2} ight)2 + \left( {m - 1} ight)3m = 3{m^2} - m - 4 = 0

    \Leftrightarrow m =  - 1,m = \frac{4}{3}

    {B_1}{C_2} - {B_2}{C_1} =  - 3m\left( {3 - m} ight) - 2.6 = 3{m^2} - 9m - 12 = 0

    \Leftrightarrow m =  - 1,m = 4

    {C_1}{A_2} - {C_1}{A_1} = 6\left( {m - 1} ight) - \left( {3 - m} ight)\left( {m - 2} ight) = {m^2} + m = 0

    \Leftrightarrow m =  - 1,m = 0

    Với m=-1 thoả mãn cả 3 điều kiện trên \Rightarrow \left( P ight)//\left( Q ight)

  • Câu 14: Thông hiểu

    Trong không gian Oxyz, gọi (P) là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Ta có: (Q) có một vectơ pháp tuyến là \overrightarrow{n}(1;1;1).

    Từ giả thiết, ta suy ra (P) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n};\overrightarrow{i} ightbrack = (0;1; -
1).

    Do (P) đi qua gốc tọa độ O nên phương trình của (P) là y - z = 0.

  • Câu 15: Thông hiểu

    Cho số phức z thỏa mãn z = 1 + i + {i^2} + {i^3} + ... + {i^{2022}}. Khi đó phần thực và phần ảo của z lần lượt là?

     Ta có: z = 1 + i\frac{{1 - {i^{2022}}}}{{1 - i}} = i

    Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.

  • Câu 16: Nhận biết

    Trong không gian Oxyz, cho hai mặt phẳng (P):2x + 4y + 3z - 5 = 0(Q):mx - ny - 6z + 2\  = \ 0. Giá trị của m, n sao cho (P)//(Q)

    Ta có: (P) có vectơ chỉ phương \overrightarrow{u_{(P)}} = (2;4;3), (Q) có vectơ chỉ phương \overrightarrow{u_{(Q)}} = (m; - n; -
6)

    Để hai mặt phẳng song song thì \overrightarrow{u_{(P)}} =
k\overrightarrow{u_{(Q)}} \Leftrightarrow \left\{ \begin{matrix}
m = 2k \\
- n = 4k \\
- 6 = 3k \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
k = - 2 \\
m = - 4 \\
n = 8 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là: m = - 4;n =
8.

  • Câu 17: Thông hiểu

    Tính diện tích S của hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x + 1}{x - 2} và các trục tọa độ.

    Đồ thị hàm số đã cho cắt hai trục Ox tại điểm A(−1; 0) và cắt trục Oy tại điểm B\left( 0; - \frac{1}{2}
ight), do đó diện tích cần tìm là

    S = \int_{- 1}^{0}{\left| \frac{x + 1}{x
- 2} ight|dx} = \left| \int_{- 1}^{0}{\left( 1 + \frac{3}{x - 2}
ight)dx} ight|

    = \left| \left. \ \left( x + 3\ln|x - 2|ight) ight|_{- 1}^{0} ight| = 3\ln\frac{3}{2} - 1

  • Câu 18: Nhận biết

    Trong các khẳng định sau, khẳng định nào sai?

    Ta có: \int_{a}^{b}{f(x)dx} = -
\int_{b}^{a}{f(x)dx} nên khẳng định \int_{a}^{b}{f(x)dx} =
\int_{b}^{a}{f(x)dx} sai.

  • Câu 19: Vận dụng cao

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Đáp án là:

    Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm A(100;50;100) và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là B(50;100;50),C(150;100;100). Máy bay sẽ bay qua điểm W của đường màu BC để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm W(a;b;c), hãy tính giá trị biểu thức T = a + b -
2c.

    Đáp án: 50

    Ta có: \overrightarrow{BC} =
(100;0;50)

    Đường thẳng (BC) đi qua điểm B có VTCP \overrightarrow{u} = (2;0;1)có dạng (BC):\left\{ \begin{matrix}
x = 50 + 2t \\
y = 100 \\
z = 50 + t \\
\end{matrix} ight.

    Điểm W \in (BC) \Rightarrow W(50 +
2t;100;50 + t) \overrightarrow{AW} = (2t - 50;50;t -
50)

    Ta có: \overrightarrow{AW}.\overrightarrow{BC} =
0

    \Rightarrow 2(2t - 50) + (t - 50) = 0
\Rightarrow t = 30

    Vậy H(110;100;80) \Rightarrow a + b - 2c
= 50.

  • Câu 20: Thông hiểu

    Biết rằng \int_{}^{}{\frac{1}{x^{3} -
x}dx = a\ln\left| (x - 1)(x + 1) ight| + b\ln|x| + C}. Tính giá trị biểu thức H = 2a + b?

    Ta có:

    \frac{1}{x^{3} - x} = \frac{A}{x} +
\frac{B}{x - 1} + \frac{D}{c + 1}

    = \frac{A\left( x^{2} - 1 ight) + Bx(x
+ 1) + Dx(x - 1)}{x^{3} - x}

    = \frac{(A + B + D)x^{2} + (B - D)x -
A}{x^{3} - x}

    \Rightarrow \left\{ \begin{matrix}A + B + D = 0 \\B - D = 0 \\- A = 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}A = - 1 \\B = \dfrac{1}{2} \\D = \dfrac{1}{2} \\\end{matrix} ight.

    Khi đó \int_{}^{}{\frac{1}{x^{3} - x}dx}
= \int_{}^{}{\left\lbrack \frac{- 1}{x} + \frac{1}{2(x - 1)} +
\frac{1}{2(x + 1)} ightbrack dx}

    = \frac{1}{2}\ln\left| (x - 1)(x + 1)
ight| - \ln|x| + C

    Suy ra a = \frac{1}{2};b = - 1
\Rightarrow H = 0.

  • Câu 21: Thông hiểu

    Cho số phức {z_1} = 1 - i,{z_2} = 3 + 2i. Tìm số phức z thỏa mãn \overline z .{z_1} + {z_2} = 0.

     Ta có: \overline z  = \frac{{ - {z_2}}}{{{z_1}}} = \frac{{ - 3 - 2i}}{{1 - i}} =  - \frac{1}{2} - \frac{5}{2}i \Rightarrow z =  - \frac{1}{2} + \frac{5}{2}i

  • Câu 22: Vận dụng cao

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

    Đáp án là:

    Cho số phức thỏa mãn điều kiện \left| {{z^2} - 2z + 5} ight| = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|.

    Tìm giá trị nhỏ nhất của \left| {z - 2 + 2i} ight|

    1 || Một || một

     Đặt {m{w}} = z - 2 + 2i

    Ta có = \left| {(z - 1 + 2i)(z + 3i - 1)} ight|

    \Leftrightarrow \left| {(z - 1 + 2i)} ight|.\left| {(z - 1 - 2i)} ight|=\left| {(z - 1 + 2i)} ight|.\left| {(z + 3i - 1)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z - 1 + 2i = 0\\\left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|\end{array} ight..

    TH1: z = 1 - 2i \Rightarrow {m{w}} =  - 1 \Rightarrow \left| {m{w}} ight| = 1  (1)

    TH2: \left| {z - 1 - 2i} ight| = \left| {z + 3i - 1} ight|.

    Đặt z=a+bi; a, b \in \mathbb R.

    \Rightarrow {(a - 1)^2} + {(b - 2)^2} = {(a - 1)^2} + {(b + 3)^2}\Leftrightarrow b = \frac{{ - 1}}{2}.

    \Rightarrow z = a - \frac{1}{2}i  \Rightarrow \left| {m{w}} ight| = \sqrt {{{(a - 2)}^2} + \frac{9}{4}}  \ge \frac{3}{2}    (2)

    Từ (1) và (2) , suy ra \min |w| = 1.

  • Câu 23: Nhận biết

    Trong không gian Oxyz, viết phương trình của mặt phẳng (P) đi qua điểm M( - 3; - 2;3) và vuông góc với trục Ox.

    Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ \overrightarrow{i} =
(1;0;0).

    Phương trình tổng quát của mặt phẳng (P) là

    1\left( x - ( - 3) ight) + 0\left( y -
( - 2) ight) + 0(z - 3) = 0

    \Leftrightarrow x + 3 = 0.

  • Câu 24: Thông hiểu

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 25: Nhận biết

    Xác định phần ảo của số phức z = 18 - 12i.

     Phần ảo của số phức z = 18 - 12i là -12

  • Câu 26: Vận dụng cao

    Biết {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = a{I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {b{x^3} + c{x^{\frac{1}{3}}}} ight)} ight|_0^1, a b là các số hữu tỉ. Giá trị của a + b + c là:

     Biết {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = a{I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {b{x^3} + c{x^{\frac{1}{3}}}} ight)} ight|_0^1. Giá trị của a + b + c là:

    Ta có:

    {I_1} = \int\limits_0^{\frac{\pi }{4}} {\left( {1 + {{\tan }^2}x} ight)dx}  = \int\limits_0^{\frac{\pi }{4}} {\frac{1}{{{{\cos }^2}x}}dx}  = ... = \int\limits_0^1 {tdt}  = 1 , với t = \tan x

    {I_2} = \int\limits_0^1 {\left( {{x^2} + \sqrt x } ight)} dx = \left. {\left( {\frac{1}{3}{x^3} + \frac{2}{3}{x^{\frac{1}{3}}}} ight)} ight|_0^1

    \Rightarrow a = 1,b = \frac{1}{3},c = \frac{2}{3} \Rightarrow a + b + c = 2

  • Câu 27: Thông hiểu

    Diện tích hình phẳng giới hạn bởi hai đồ thị y = x^{2} + |x|;y = x^{2} + 1 được cho bởi công thức nào sau đây?

    Ta có: y = x^{2} + |x| = \left\{\begin{matrix}x^{2} + x;\ \ x \geq 0 \\x^{2} - x;\ \ x \leq 0 \\\end{matrix} ight.

    Với x \geq 0 \Rightarrow x^{2} + x =x^{2} + 1 \Leftrightarrow x = 1

    Với x \leq 0 \Rightarrow x^{2} - x =x^{2} + 1 \Leftrightarrow x = - 1

    Ta có:

    S = \left| \int_{- 1}^{0}{( - x - 1)dx}ight| + \left| \int_{0}^{1}{(x - 1)dx} ight|

  • Câu 28: Nhận biết

    Hàm số f(x) = x^{3} + \sin x là một nguyên hàm của hàm số nào sau đây?

    Ta có: F'(x) = 3x^{2} + \cos
x

  • Câu 29: Nhận biết

    Cho hai số phức {z_1} = 1 - 3i{z_2} =  - 2 - 5i. Tìm phần ảo b của số phức z = {z_1} - {z_2}

     Ta có:

    \begin{matrix}  z = {z_1} - {z_2} \hfill \\ = \left( {1 - 3i} ight) - \left( { - 2 - 5i} ight) \hfill \\ = 1 - 3i + 2 + 5i \hfill \\= (1 + 2) + ( - 3 + 5)i \hfill \\  \,\,\,\, = 3 + 2i \hfill \\ \end{matrix}

  • Câu 30: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

  • Câu 31: Thông hiểu

    Đường thẳng (d): \frac{{x - 2}}{3} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 4}}{4}có phương trình tham số là:

    Ta có đường thẳng (d) qua A ( 2, -1, 4) và có vectơ chỉ phương là \overrightarrow a  = \left( {3, - 2,4} ight) =  - \left( { - 3,2, - 4} ight) có phương trình tham số là:

    => (d) \left\{ \begin{array}{l}x = 2 - 3m\\y =  - 1 + 2m\\z = 4 - 4m\end{array} ight.\,\,;m \in \mathbb{R}  

  • Câu 32: Thông hiểu

    Số nghiệm của phương trình: (z^2 + 3z +6)^2 + 2z(z^2 + 3z +6) – 3z^2 = 0 là?

     Đặt t = z^2 + 3z +6 phương trình đã cho có dang:

    t^2 +2zt – 3z^2 = 0 \Leftrightarrow (t – z)(t+3z) = 0 \Leftrightarrow\left[ \begin{array}{l}t = z\\t =  - 3z\end{array} ight.

    + Với t = z \Leftrightarrow z^2 + 3z +6 –z = 0  \Leftrightarrow  z^2 + 2z + 6 = 0  \Leftrightarrow\left[ \begin{array}{l}z =  - 1 + \sqrt 5 i\\z =  - 1 - \sqrt 5 i\end{array} ight.

    + Với t = -3z \Leftrightarrow  z^2 + 3z +6 +3z = 0 \Leftrightarrow z^2 + 6z + 6 = 0 \Leftrightarrow\left[ \begin{array}{l}z =  - 3 + \sqrt 3 \\z =  - 3 - \sqrt 3 \end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm.

  • Câu 33: Thông hiểu

    Trong các khẳng định sau đây, khẳng định nào đúng?

    Ta có: x^{4} - x^{2} + 1 = \left( x^{2} -
\frac{1}{2} ight)^{2} + \frac{3}{4} > 0;\forall x\mathbb{\in
R}

    Do \int_{- 1}^{2018}{\left| x^{4} - x^{2}
+ 1 ight|^{3}dx} = \int_{- 1}^{2018}{\left( x^{4} - x^{2} + 1
ight)^{3}dx}

  • Câu 34: Nhận biết

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

  • Câu 35: Nhận biết

    Tính tích phân I = \int_{0}^{1}{(2x +
1)e^{x}dx} bằng cách đặt u = 2x +
1;dv = e^{x}dx. Công thức nào dưới đây chính xác?

    Đặt \left\{ \begin{matrix}
u = 2x + 1 \\
dv = e^{x}dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du = 2dx \\
v = e^{x} \\
\end{matrix} ight.

    Suy ra I =
\int_{0}^{1}{(2x + 1)e^{x}dx} = \left. \ \left\lbrack (2x + 1)e^{x}
ightbrack ight|_{0}^{1} - 2\int_{0}^{1}{e^{x}dx}

  • Câu 36: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (1;2;3);\overrightarrow{b} =
(2;2; - 1);\overrightarrow{c} = (4;0; - 4). Tọa độ vectơ \overrightarrow{d} = \overrightarrow{a} -
\overrightarrow{b} + 2\overrightarrow{c} là:

    Ta có:

    \overrightarrow{d} = \overrightarrow{a}
- \overrightarrow{b} + 2\overrightarrow{c} = \left( 1 - 2 + 2.4;2 - 2 +
2.0;3 + 1 + 2.( - 4) ight) = (7;0; - 4)

    Vậy \overrightarrow{d}(7;0; -
4)

  • Câu 37: Nhận biết

    Nghiệm của phương trình: {z^2} - (3i + 8)z + 11\,.i + 13 = 0  là 

     Ta có: \Delta  = {(3i + 8)^2} - 4(11.i + 13) = 4i + 3.

    Giả sử m+ni \,\,(m; n \in \mathbb R)  là căn bậc hai của \triangle.

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 3 + 4i \Leftrightarrow {m^2} + 2mni - {n^2} = 3 + 4i

    \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3\\2mn = 4\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}{m^2} - {n^2} = 3 \,\,  (1)\ = \dfrac{2}{m}\,\,\,\, \,\,\,\,  (2)\end{array} ight.

    Thay (2) vào (1) ta có:

    {m^2} - {\left( {\frac{2}{m}} ight)^2} = 3 \Leftrightarrow {m^4} - 3{m^2} - 4 = 0 \Leftrightarrow \left[ \begin{array}{l}{m^2} = 4\,\,\,\,\,\,\,\,(TM)\\{m^2} =  - 1\,\,\,\,\,\,\,(L{m{)}}\end{array} ight.

    \Rightarrow \left[ \begin{array}{l}m = 2 \Rightarrow n = 1\\m =  - 2 \Rightarrow n =  - 1\end{array} ight.

    Vậy \triangle có hai căn bậc hai là  2+i  và -2-i.

    Do đó nghiệm của phương trình là:

    \left[ \begin{array}{l}z = \dfrac{{3i + 8 + i + 2}}{2} = 2i + 5\\z = \dfrac{{3i + 8 - i - 2}}{2} = i + 3\end{array} ight.

  • Câu 38: Vận dụng cao

    Cho hàm số f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} biết rằng đồ thị hàm số F(x) có điểm cực tiểu nằm trên trục hoành. Chọn công thức đúng của 3e^2F(x)?

     Ta có:

    F\left( x ight) = \int {\left( {{x^2} - 1} ight){e^{{x^3} - 3x}}dx = \frac{1}{3}\int {{e^{{x^3} - 3x}}d\left( {{x^3} - 3x} ight) = \frac{1}{3}{e^{{x^3} - 3x}} + C} }

    F'\left( x ight) = f\left( x ight) = \left( {{x^2} - 1} ight){e^{{x^3} - 3x}} = 0 \Rightarrow x =  \pm 1

    \begin{matrix}  F''\left( x ight) = 2x.{e^{{x^3} - 3x}} + \left( {{x^2} - 1} ight)\left( {3{x^2} - 3} ight){e^{{x^3} - 3x}} \hfill \\  F''\left( 1 ight) > 0;F''\left( { - 1} ight) < 0 \hfill \\ \end{matrix}

    Do đó hàm số đạt cực tiểu tại x = 1

    Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là A(0; 1)

    => F\left( 1 ight) = 0 \Rightarrow \frac{1}{3}{e^{ - 2}} + C = 0 \Rightarrow C =  - \frac{1}{{3{e^2}}}

    => F\left( x ight) = \frac{{{e^{{x^3} - 3x + 2}} - 1}}{{3{e^2}}} Hay  3e^2F(x) = e^{{x^3} - 3x + 2} - 1

  • Câu 39: Nhận biết

    Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = \sqrt{- e^{x} +
4x}, trục hoành và hai đường thẳng x = 1;x = 2. Gọi V là thể tích của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?

    Áp dụng công thức thể tích khối tròn xoay ta có:

    V = \pi\int_{a}^{b}{\left\lbrack f(x)
ightbrack^{2}dx}

    Khi đó áp dụng vào bài toán ta được:

    V = \pi\int_{1}^{2}{\left\lbrack \sqrt{-
e^{x} + 4x} ightbrack^{2}dx} = \pi\int_{1}^{2}{\left( 4x - e^{x}
ight)dx} .

  • Câu 40: Nhận biết

    Tính góc của hai vectơ \overrightarrow a  = \,\left( { - 4,2,4} ight);\,\,\,\,\,\overrightarrow b  = \,\left( {2\sqrt 2 , - 2\sqrt 2 ,0} ight)

     Áp dụng công thức tính góc giữa 2 vecto, ta có:

    \cos \left( {\widehat {\overrightarrow a ;\overrightarrow b }} ight) = \frac{{\overrightarrow a .\overrightarrow b }}{{\left| {\overrightarrow a } ight|.\left| {\overrightarrow b } ight|}} = \frac{{x.x' + y.y'}}{{\sqrt {{x^2} + {y^2}} .\sqrt {x{'^2} + y{'^2}} }}

    Thay số suy ra được:

    \cos \left( {\widehat {\overrightarrow a ;\overrightarrow b }} ight) = \frac{{ - 8\sqrt 2  - 4\sqrt 2  + 0}}{{\sqrt {36} .\sqrt {16} }} = \frac{{ - \sqrt 2 }}{2} \Rightarrow \left( {\widehat {\overrightarrow a ;\overrightarrow b }} ight) = {135^0}

  • Câu 41: Thông hiểu

    Cho hình lập phương ABCD.A'B'C'D'. Phân tích vectơ \overrightarrow{AC'} theo các vectơ \overrightarrow{AB};\overrightarrow{AD};\overrightarrow{AA'}?

    Ta có phép cộng vectơ đối với hình vuông ABCD: \overrightarrow{AB} + \overrightarrow{AD} =
\overrightarrow{AC}

    Khi đó ta có: \overrightarrow{AC'} =
\overrightarrow{AC} + \overrightarrow{AA'} =
\overrightarrow{AA'} + \overrightarrow{AB} +
\overrightarrow{AD}

  • Câu 42: Nhận biết

    Nguyên hàm của hàm số f\left( x ight) = {2^x} + {e^x} là:

     Ta có: \int {\left( {{2^x} + {e^x}} ight)dx}  = \int {{2^x}dx}  + \int {{e^x}dx}  = \frac{{{2^x}}}{{\ln 2}} + {e^x} + C

  • Câu 43: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình sau: (z^2 + z)^2 + 4(z^2 + z) -12 = 0 là?

     Đặt t = z^2 + z, khi đó phương trình đã cho có dạng:

    t^2 + 4t – 12 = 0 \Leftrightarrow\left[ \begin{array}{l}t =  - 6\\t = 2\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}{z^2} + z - 6 = 0\\{z^2} + z - 2 = 0\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{{ - 1 + \sqrt {23} i}}{2}\\z = \dfrac{{ - 1 - \sqrt {23} i}}{2}\\z = 1\\z =  - 2\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm có tổng là

    \frac{{ - 1 + \sqrt {23} i}}{2} + \frac{{ - 1 - \sqrt {23} i}}{2} + 1 - 2 =  - 1 + 1 - 2 =  - 2

  • Câu 44: Thông hiểu

    Kí hiệu z_0 là nghiệm phức có phần ảo dương của phương trình 4{z^2} - 16z + 17 = 0. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức w = i{z_0}?

     Ta có:

    4{z^2} - 16z + 17 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_0} = 2 + \dfrac{1}{2}i\\z = 2 - \dfrac{1}{2}i\end{array} ight.

    \Rightarrow w = i{z_0} =  - \frac{1}{2} + 2i

  • Câu 45: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 46: Thông hiểu

    Số phức liên hợp của số phức 2022i - 2023

     \overline z = \overline {a + bi} = a - bi

    \Rightarrow \overline z  = \overline {2022i - 2023}  = \overline { - 2023 + 2022i}  =  - 2023 - 2022i

  • Câu 47: Vận dụng

    Trong không gian Oxyz, cho đường thẳng d:\frac{x + 1}{2} = \frac{y}{1} =
\frac{z - 2}{- 1} và hai điểm A( -
1;3;1),B(0;2; - 1). Gọi C(m;n;p) là điểm thuộc đường thẳng d sao cho diện tích tam giác ABC bằng 2\sqrt{2}. Giá trị của tổng m + n + p bằng:

    Phương trình tham số của đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
x = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Vì C thuộc d nên tọa độ của C có dạng C(
- 1 + 2t;t;2 - t)

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1; - 2) \\
\overrightarrow{AC} = (2t;t - 3;1 - t) \\
\end{matrix} ight.

    Suy ra \left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack = (3t - 7; - 3t -
1;3t - 3)

    Diện tích tam giác ABC là

    S_{\Delta ABC} = \frac{1}{2}\left\lbrack
\overrightarrow{AB};\overrightarrow{AC} ightbrack =
\frac{1}{2}\sqrt{(3t - 7)^{2} + ( - 3t - 1)^{2} + (3t -
3)^{2}}

    Theo bài ra ta có

    S_{\Delta ABC} = 2\sqrt{2}
\Leftrightarrow \frac{1}{2}\sqrt{27t^{2} - 54t + 59} =
2\sqrt{2}

    \Leftrightarrow 27t^{2} - 54t + 59 = 32
\Leftrightarrow (t - 1)^{2} = 0 \Leftrightarrow t = 1

    Với t = 1 thì C (1; 1; 1) nên m = 1;n =
1;p = 1

    Vậy giá trị của tổng m + n + p =
3

  • Câu 48: Vận dụng

    Cho đường tròn \left( C ight):{x^2} + {y^2} = 8 và parabol \left( P ight):{y^2} = 2x. \left( P ight) cắt \left( C ight) thành hai phần. Tìm tỉ số diện tích của hai phần đó.

    Hoành độ giao điểm của (P) và (C) là: 2x = 8 - {x^2} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2} \\   {x =  - 4\left( L ight)} \end{array}} ight.

    Xét giao điểm thuộc góc phần tư thứ nhất, với x = 2 \Rightarrow y = 2

    Gọi S2 là phần có diện tích nhỏ hơn, S1 là phần còn lại

    Ta có:

    \begin{matrix}  {S_2} = 2\int\limits_0^2 {\left[ {\sqrt {8 - {y^2}}  - \dfrac{{{y^2}}}{2}} ight]} dy \hfill \\   = 2\int\limits_0^2 {\sqrt {8 - {y^2}} } dy - \int\limits_0^2 {{y^2}} dy \hfill \\   = 2I - \left. {\dfrac{{{y^3}}}{3}} ight|_0^2 = 2I - \dfrac{8}{3} \hfill \\ \end{matrix}

    Đặt y = 2\sqrt 2 \sin t \Rightarrow dy = 2\sqrt 2 \cos tdt

    \begin{matrix}  I = \int_0^2 {\sqrt {8 - {y^2}} } dy = \int_0^{\frac{\pi }{4}} {\sqrt {8 - 8{{\sin }^2}t} } .2\sqrt 2 \cos tdt \hfill \\   = 8\int_0^{\frac{\pi }{4}} {\sqrt {1 - {{\sin }^2}t} } .\cos tdt = 8\int_0^{\frac{\pi }{4}} {{{\cos }^2}} tdt \hfill \\   = 4\int_0^{\frac{\pi }{4}} {(1 + \cos 2t)} dt = \left. {4\left[ {t + \frac{1}{2}\sin 2t} ight]} ight|_0^{\frac{\pi }{4}} = \pi  + 2 \hfill \\ \end{matrix}

    Khi đó {S_2} = 2\pi  + \frac{4}{3}

    Diện tích hình tròn {S_2} = \pi {\left( {2\sqrt 2 } ight)^2} = 8\pi

    \begin{matrix}  {S_1} = 8\pi  - \left( {2\pi  + \dfrac{4}{3}} ight) = 6\pi  - \dfrac{4}{3} \hfill \\   \Rightarrow \dfrac{{{S_1}}}{{{S_2}}} = \dfrac{{9\pi  - 2}}{{3\pi  + 2}} \hfill \\ \end{matrix}

  • Câu 49: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(1; - 6;1) và mặt phẳng (P):x + y + 7 = 0. Điểm B thay đổi thuộc Oz; điểm C thay đổi thuộc mặt phẳng (P). Biết rằng tam giác ABC có chu vi nhỏ nhất. Tọa độ điểm B là:

    Hình vẽ minh họa

    Gọi B1 là điểm đối xứng với B qua (P).

    P_{ABC} = AB + BC + CA = AB + B_{1}C +
CA \geq AB + AB_{1}

    Gọi M là hình chiếu của A lên trục Oz, M1 là điểm đối xứng của M qua (P)

    AB + AB_{1} \geq AM + AB_{1} \geq AM +
AM_{1} (hằng số).

    Vậy PABC nhỏ nhất khi B ≡ M và C là giao điểm của AM1 với (P).

    Từ đó suy ra tọa độ của điểm B là (0; 0; 1).

  • Câu 50: Nhận biết

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 204 lượt xem
Sắp xếp theo