Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường
quay xung quanh
.
Thể tích vật thể bằng:
.
Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường
quay xung quanh
.
Thể tích vật thể bằng:
.
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Một ô tô xuất phát với vận tốc
sau khi đi được một khoảng thời gian
thì bất ngờ phanh gấp với vận tốc
và đi thêm được một khoảng thời gian
nữa thì dừng lại. Hỏi từ khi xuất phát đến lúc dừng lại thì ô tô đã đi được bao nhiêu mét?
Ta có: do đó khi gặp chướng ngại vật vật có vận tốc là
=>
Vật dừng lại khi
Quãng đường vật đi được là
Biết
. Khi đó
bằng:
Ta có:
Trong không gian Oxyz, cho mặt phẳng
và hai điểm
. Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

Gọi (Q) là mặt phẳng qua A và song song (P).
Ta có: nằm về hai phía với (P).
Gọi H là hình chiếu vuông góc của B lên (Q) BH cố định và
.
Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay .
Ta có: bé nhất bằng BH khi K trùng với điểm H.
Gọi là VTPT của (ABH)
Ta có đường thẳng d cần lập qua A, H và có VTCP là
Vậy phương trình đường thẳng d cần lập là:
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Tìm nguyên hàm của hàm số
?
Ta có:
Trong không gian hệ trục tọa độ
, điểm nào dưới đây thuộc trục
?
Điểm . Suy ra trong bốn điểm đã cho điểm
.
Phương trình tổng quát của mặt phẳng đi qua
và song song với vectơ
là:
Theo đề bài, ta có:
Chọn làm 1 vectơ pháp tuyến.
Phương trình mặt phẳng cần tìm có dạng :
Mà mp lại qua A nên
Phương trình cần tìm là: .
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Một ô tô đang chạy đều với vận tốc
m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
s. Sai||Đúng
c)
. Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là
m. Sai||Đúng
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Khi xe dừng hẳn thì vận tốc bằng m/s.
Khi xe dừng hẳn thì m/s nên
s.
Nguyên hàm của hàm số vận tốc ,
.
Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là
m.
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Họ các nguyên hàm của hàm số
là:
Ta có:
Trong không gian
, phương trình đường thẳng đi qua hai điểm
và
là:
Ta có
Phương trình đường thẳng AB đi qua nhận vectơ
làm vectơ chỉ phương nên có phương trình là:
.
Trong không gian cho điểm
và bốn điểm
không thẳng hàng. Điều kiện cần và đủ để
tạo thành hình bình hành là:
Để tạo thành hình bình thành thì
.
Khi đó:
, O là trọng tâm tứ giác (hoặc tứ diện) ABCD. (Loại).
(Loại)
(loại)
Vậy đáp án cần tìm là .
Phần thực, phần ảo của số phức z thỏa mãn
lần lượt là?
Ta có:
Phần thực, phần ảo của z lần lượt là 1;1.
Tính diện tích
của hình phẳng
được giới hạn bởi các đường
, trục hoành và các đường thẳng
?
Diện tích hình phẳng cần tìm là:
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Tìm tọa độ điểm
?
Theo quy tắc hình hộp ta có:
Lại có
mà
Suy ra
Thiết diện của vật thể cắt bởi mặt phẳng
vuông góc với trục
tại điểm có hoành độ
là một hình chữ nhật có độ dài hai cạnh
và
. Tính thể tích của vật thể nằm giữa hai mặt phẳng
và
.
Do thiết diện là hình chữ nhật nên diện tích của thiết diện là
Ta có thể tích cần tính là:
Cho tứ diện
có
. Tính độ dài đường cao
của tứ diện
?
Ta có:
.
Trong không gian
, cho điểm
. Mặt phẳng
đi qua
cắt các trục
,
lần lượt tại
khác gốc tọa độ sao cho
đạt giá trị nhỏ nhất, trong đó
lần lượt là diện tích các tam giác
và
lần lượt là diện tích các tam giác
. Điểm
nào dưới đây thuộc
?
Ta có . Lại có
,
và
.
Đặt , ta có
Tương tự, ta có và
.
Khi đó .
Dấu "=" xảy ra khi và chỉ khi hay
.
Từ đó suy ra nhận
làm vectơ pháp tuyến.
Do đó có phương trình
.
Vậy là điểm thuộc
.
Trong không gian
, cho bốn điểm
và
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm
?
Hình vẽ minh họa
Ta có mặt phẳng (ABC): .
Suy ra thuộc mặt phẳng (ABC).
Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.
Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là .
Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm là
.
Gọi
là số phức thoả mãn
.
Giá trị của biểu thức
là?
30 || Ba mươi || ba mươi
Gọi là số phức thoả mãn
.
Giá trị của biểu thức là?
30 || Ba mươi || ba mươi
Dễ thấy rằng z=0 không thoả mãn .
Do đó ta có
Ta cũng có
và
Vậy .
Trong không gian với hệ tọa độ
, cho hai vectơ
. Gọi
là vectơ cùng hướng với vectơ
(tích có hướng của hai vectơ
và
. Biết
, tìm tọa độ vectơ
.
Ta thấy
Vì là vectơ cùng hướng với vectơ
nên
.
Mặt khác
Vậy .
Cho đồ thị hàm số
có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Cho đồ thị hàm số có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Cho các hàm số
và
liên tục trên
thỏa mãn
với
. Tính
, biết rằng
?
Ta có: .
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Trong không gian với hệ trục toạ độ
, tìm tất cả giá trị tham số
để đường thẳng
song song với mặt phẳng
.
Ta có:
qua điểm
và có VTCP là
(P) có VTPT là
Vì d // (P) nên
Với (loại).
Với (thỏa mãn).
Cho tam giác ABC có
.
Viết phương trình chính tắc của cạnh AB.
(AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:
(AB) đi qua A (1, 2, -3) và nhận vecto làm 1 VTCP có phương trình chính tắc là:
Trong không gian với hệ tọa độ
, cho hai điểm
và mặt phẳng
. Biết rằng tồn tại điểm
thuộc
sao cho
đạt giá trị lớn nhất. Tính
.
Thay tọa độ điểm M và N vào vế trái phương trình mặt phẳng (P), ta có nên hai điểm M, N nằm cùng phía đối với mặt phẳng (P).
Khi đó ta có và đẳng thức xảy ra khi
Phương trình tham số của đường thẳng MN là
Tọa độ giao điểm của MN và (P) là nghiệm hệ phương trình
Vậy
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Gọi
là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Trong không gian với hệ toạ độ
, phương trình nào sau đây là phương trình tổng quát của mặt phẳng
Phương trình tổng quát của mặt phẳng là : .
Xét số phức z thỏa mãn:
. Mệnh đề nào dưới đây đúng?
Giả sử: và
, thay vào đẳng thức ta có:
Do đó ta có:
Cho
. Giá trị của x và y bằng:
Ta có:
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Biết
là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Họ nguyên hàm của hàm số
là:
Ta có: .
Tìm nguyên hàm
.
Ta có:
Một vật chuyển động với vận tốc
. Tính quãng đường vật đó đi được trong
giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?
Quãng đường vật đó đi được trong 4 giây đầu là:
.
Cho hàm số
thỏa mãn
và
với mọi
. Tính
?
Ta có:
Với
Do đó
Vậy
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho hàm số
là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.