Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Biết rằng
. Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra .
Cho hàm số
thỏa mãn
và
với mọi
. Tính
?
Ta có:
Với
Do đó
Vậy
Cho tam giác ABC có
. Gọi BD và BE lần lượt là phân giác trong và phân giác ngoài của góc B với D và E là chân của hai phân giác này trên AC. Tính tọa độ của D.
Theo đề bài, ta có: .
Áp dụng kiến thức: Bình phương tích vô hướng bằng bình phương độ dài, được:
Mặt khác, D chia đoạn AC theo tỉ số
Tọa đô của D là:
.
Số phức
là số phức nào sau đây?
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Biết rằng
và
, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:
Ta có:
, với
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Giá trị của tích phân
. Biểu thức
có giá trị là:
Giá trị của tích phân . Biểu thức
có giá trị là:
Ta có:
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Nguyên hàm của hàm số
là:
Ta có:
Viết phương trình tổng quát của mặt phẳng trung trực (P) của đoạn AB với ![]()
Vì I là trung điểm của đoạn AB nên ta có tọa độ điểm I là:
Mặt khác, ta lại có (P) là mặt phẳng trung trực của đoạn AB nên (P) nhận làm 1 VTPT. Ta có VTPT của
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Trong không gian
, cho hai điểm
và
. Trung điểm
của
có tọa độ là:
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Biết tích phân
trong đó
là các số nguyên. Tính giá trị biểu thức
?
Ta có:
Khi đó
Một vật chuyển động chậm dần đều với vận tốc
. Hỏi trong
trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Trong không gian với hệ tọa độ
cho
và mặt phẳng
. Mặt phẳng
chứa
và vuông góc với mặt phẳng
. Tìm phương trình mặt phẳng
.
Ta có
Do mặt phẳng Q chứa A, B và vuông góc với mặt phẳng (P)
Do đó .
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Tìm tất cả các giá trị thực của tham số
thỏa mãn
?
Ta có:
Nguyên hàm của hàm số
là:
Ta có:
.
Trong không gian
, cho điểm
. Mệnh đề nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Trong không gian Oxyz, cho mặt phẳng
và hai điểm
. Trong các đường thẳng đi qua A và song song (P), đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất có phương trình là:

Gọi (Q) là mặt phẳng qua A và song song (P).
Ta có: nằm về hai phía với (P).
Gọi H là hình chiếu vuông góc của B lên (Q) BH cố định và
.
Gọi K là hình chiếu vuông góc của B lên bất kì qua A và nằm trong (Q) hay .
Ta có: bé nhất bằng BH khi K trùng với điểm H.
Gọi là VTPT của (ABH)
Ta có đường thẳng d cần lập qua A, H và có VTCP là
Vậy phương trình đường thẳng d cần lập là:
Trong không gian với hệ toạ độ
, cho tam giác
có phương trình đường phân giác trong góc
là
. Biết rằng điểm
thuộc đường thẳng
và điểm
thuộc đường thẳng
. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng
.
Hình chiếu H của M trên đường phân giác trong góc A có tọa độ:
M’ là điểm đối xứng của M qua H. Từ đây ta tìm được tọa độ M’(1; 3; 6).
Vectơ chỉ phương của đường thẳng AC chính là vecto .
Suy ra, đường thẳng AC có một vectơ chỉ phương là (0; 1; 3)
Trong không gian với hệ tọa độ
, cho hai đường thẳng chéo nhau ![]()
. Viết phương trình đường vuông góc chung của
.
Đường thẳng lần lượt có vectơ chỉ phương là
Gọi ∆ là đường vuông góc chung giữa và
, suy ra ∆ có vectơ chỉ phương
Giả sử ∆ giao với lần lượt tại
, khi đó ta có
Do ∆ là đường vuông góc chung, suy ra:
Từ đó suy ra đường thẳng ∆ có véc tơ chỉ phương và đi qua điểm
.
Vậy ta có phương trình đường thẳng:
Hình phẳng giới hạn bởi đồ thị hàm số
liên tục trên đoạn
, trục Ox và hai đường thẳng
có diện tích là:
Công thức tính diện tích cần tìm là: .
Cho
là miền hình phẳng giới hạn bởi các đường
và đồ thị của hai hàm số
. Gọi V là thể tích của vật thể tròn xoay khi quay
quanh Ox. Mệnh đề nào dưới đây đúng?
Thể tích của khối tròn xoay cần tính là:
Cho hình phẳng
được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Cho hình phẳng được giới hạn bởi hai đường
. Tính thể tích khối tròn xoay tạo thành do
quay quanh trục
?
Để theo dõi hành trình của một chiếc một chiếc máy bay, ta có thể lập hệ toạ độ Oxyz có gốc O trùng với vị trí của trung tâm kiểm soát không lưu, mặt phẳng (Oxy) trùng với mặt đất với trục Ox hướng về phía tây, trục Oy hướng về phía nam và trục Oz hướng thẳng đứng lên trời. Sau khi cất cánh và đạt độ cao nhất định, chiếc máy bay duy trì hướng bay về phía nam với tốc độ không đổi là 890 km/h trong nửa giờ. Xác định toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó đối với hệ toạ độ đã chọn, biết rằng đơn vị đo trong không gian Oxyz được lấy theo km.

Quãng đường máy bay bay được với vận tốc 890km/h trong nửa giờ là:
Vì máy bay duy trì hướng bay về phía nam nên toạ độ của vectơ biểu diễn độ dịch chuyển của chiếc máy bay trong nửa giờ đó với hệ toạ độ đã chọn là (0;445;0).
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Trong không gian với hệ tọa độ
, cho điểm
và hai mặt phẳng
. Dường thẳng đi qua
và song song với hai mặt phẳng
có phương trình là
Gọi là đường thẳng cần tìm.
Mặt phẳng có một véc-tơ pháp tuyến là
và
có một vectơ pháp tuyến là
. Ta có
.
Khi đó, đi qua điểm
và nhận véc-tơ
làm vec-tơ chỉ phương. Phương trình đường thẳng
là
Với thì điểm
thuộc
. Viết lại phương trình đường thẳng
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Trong không gian với hệ trục tọa độ
, cho hình hộp chữ nhật
có điểm
trùng với gốc tọa độ
,
. Gọi
là trung điểm của cạnh
. Giá trị của tỉ số
để hai mặt phẳng
và
vuông góc với nhau bằng bao nhiêu?
Trong không gian với hệ trục tọa độ , cho hình hộp chữ nhật
có điểm
trùng với gốc tọa độ
,
. Gọi
là trung điểm của cạnh
. Giá trị của tỉ số
để hai mặt phẳng
và
vuông góc với nhau bằng bao nhiêu?
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Nguyên hàm của hàm số
là:
Ta có:
Trong không gian với hệ tọa độ
, cho các điểm
và điểm
thay đổi trên mặt phẳng tọa độ
. Tìm giá trị lớn nhất của
?
Thay tọa độ của A, B vào phương trình mặt phẳng (Oxy): z = 0, ta có
⇒ A, B nằm về hai phía của (Oxy).
Gọi A’ là điểm đối xứng của A qua (Oxy).
Khi đó ta có:
Suy ra lớn nhất bằng A’B khi và chỉ khi M là giao điểm của A’B và (Oxy).
Ta có .
Trong không gian với hệ tọa độ
, cho phương trình đường thẳng
. Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng
?
Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:
.
Gọi
là diện tích hình phẳng giới hạn bởi các đường
. Mệnh đề nào dưới đây đúng?
Ta có:
Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Trong không gian
, cho
. Nếu ba vectơ
đồng phẳng thì:
Ta có:
Ba vectơ đồng phẳng
Họ nguyên hàm của hàm số
là:
Đặt
Trong không gian
, mặt phẳng
có một vectơ pháp tuyến là:
Mặt phẳng có một vectơ pháp tuyến là:
.
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Cho số phức
. Tính |z|
Ta có