Phần thực của số phức
là:
Ta có:
Phần thực của số phức
là:
Ta có:
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Gọi
là số phức thoả mãn
.
Giá trị của biểu thức
là?
30 || Ba mươi || ba mươi
Gọi là số phức thoả mãn
.
Giá trị của biểu thức là?
30 || Ba mươi || ba mươi
Dễ thấy rằng z=0 không thoả mãn .
Do đó ta có
Ta cũng có
và
Vậy .
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua
đồng thời song song với
và mặt phẳng
có phương trình là:
Ta có: . Gọi
là đường thẳng đi qua
đồng thời song song với (P) và mặt phẳng (Oxy).
Khi đó:
Vậy .
Trong không gian, cho hình chóp
với
là trọng tâm của tam giác
Khi đó
bằng.
Do là trọng tâm của tam giác
nên
.
Áp dụng quy tắc ba điểm, ta có:
.
Cho
là một nguyên hàm của hàm số
. Tìm nguyên hàm của hàm số ![]()
Ta có: F(x) là một nguyên hàm của hàm số nên:
Hay
Xét
Đặt
Khi đó
Trong không gian Oxyz, cho điểm
và vectơ
. Viết phương trình mặt phẳng
qua A và nhận vectơ
làm vectơ pháp tuyến.
Phương trình mặt phẳng có dạng:
.
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Cho tứ giác ABCD có
. Viết phương trình tổng quát của mặt phẳng (Q) song song với mặt phẳng (BCD) và chia tứ diện thành hai khối AMNF và MNFBCD có tỉ số thể tích bằng
.
Tỷ số thể tích hai khối AMNE và ABCD:
M chia cạnh BA theo tỷ số -2
Vecto pháp tuyến của
Cho hàm
có đạo hàm liên tục trên
. Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
và đường thẳng
(phần gạch chéo trong hình vẽ):

Diện tích hình
bằng:
Diện tích phần gạch chéo là:
.
Xác định nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy
Trong không gian với hệ tọa độ
, cho mặt phẳng
cắt các trục tọa độ tại
. Biết trọng tâm của tam giác
là
. Mặt phẳng
song song với mặt phẳng nào sau đây?
Gọi là giao điểm với ba trục tọa độ.
Do G là trọng tâm tam giác ABC nên
Vậy phương trình mặt phẳng là
Vậy mặt phẳng song song với trong các đáp án đã cho là
.
Cho
và
. Tính
?
Ta có và
. Tính:
Tính tích phân
?
Đặt . Ta có:
suy ra
.
Tìm tất cả các giá trị thực của tham số
thỏa mãn
?
Ta có:
Cho số phức z thỏa mãn
. Tìm
.
Gọi , với
.
Theo giả thiết ta có suy ra
và
,
.
Ta có
Xét hàm số trên
.
Ta có .
Ta có .
Vậy .
Do đó khi
và
.
Một chất điểm dạng chuyển động với vận tốc
thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3s kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc nên
Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô tăng tốc bằng:
Trong không gian
, cho điểm
. Tìm tọa độ hình chiếu M lên trục
.
Tọa độ hình chiếu của điểm M trên trục Ox là
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số
liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Trong không gian với hệ trục tọa độ
, cho tứ diện
với
. Tìm tất cả các giá trị thực của
để thể tích khối tứ diện
bằng
.
Ta có:
Lại có:
Khi đó ta có:
Theo đề ta có:
Cho số phức
, giá trị của số phức
là?
Ta có:
Cho hàm số
có đạo hàm và liên tục trên
. Biết rằng đồ thị hàm số
như hình bên. Lập hàm số
. Mệnh đề nào sau đây đúng?

Hình vẽ minh họa:

Đặt
Gọi là đồ thị của hàm số
Từ đồ thị ta thấy
Ta thấy
=> sai
=> đúng
Cho hình phẳng
được giới hạn bởi đồ thị các hàm số ![]()
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính
.
Họ nguyên hàm của hàm số
là:
Ta có:
Trong các khẳng định sau, khẳng định nào sai?
Ta có: nên khẳng định
sai.
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Cho tam giác
vuông tại
và có hai đỉnh
nằm trên mặt phẳng
. Gọi
là hình chiếu vuông góc của đỉnh
lên
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì
suy ra góc
là góc tù.
Hàm số
có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng
. Trong các vectơ sau, vectơ nào là vectơ chỉ phương của đường thẳng (d)?
Phương trình chính tắc của đường thẳng có dạng:
với
.
Vectơ chỉ phương .
Cho hai số phức
. Môđun của số phức
là:
Ta có:
Trong không gian với hệ tọa độ
, cho ba điểm
. Gọi
là mặt phẳng đi qua
sao cho tổng khoảng cách từ
và
đến mặt phẳng
lớn nhất, biết rằng
không cắt đoạn
. Khi đó pháp tuyến của mặt phẳng
:
Hình vẽ minh họa
Lấy M là trung điểm của đoạn BC, suy ra .
Gọi lần lượt là khoảng cách từ
đến mặt phẳng (P), từ đó suy ra
.
Xét tam giác vuông , ta có
, từ đó suy ra để tổng khoảng cách từ B và C đến mặt phẳng (P) thì MM’ phải lớn nhất, điều này có nghĩa là M’ trùng với A hay MA ⊥ (P).
Từ đó suy ra vectơ pháp tuyến của mặt phẳng (P) là:
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có:
Số phức
là số phức nào sau đây?
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Tính góc của hai đường thẳng
và
.
Theo đề bài, ta có (d’) và (d) có vec-tơ chỉ phương lần lượt là:
Áp dụng công thức cosin của góc giữa 2 đường thẳng, ta có:
Cho tứ diện đều
. Mệnh đề nào sau đây sai?
Vì tứ diện là tứ diện đều nên có các cặp cạnh đối vuông góc
Suy ra
Vậy mệnh đề chưa chính xác là: .
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Trong không gian
, cho ba điểm
. Phương trình nào dưới đây là phương trình mặt phẳng
?
Phương trình đoạn chắn của mặt phẳng là:
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm
và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Trong không gian chọn hệ trục tọa độ cho trước, đơn vị trên mỗi trục tính theo kilômét. Máy bay điều khiển xuất phát phải đi qua điểm và bay với vận tốc không đổi về vạch đích trong không trung được xác định bởi 1 đường màu từ hai drone (máy bay không người lái) cố định toạ độ là
. Máy bay sẽ bay qua điểm
của đường màu
để thời gian về đích là nhanh nhất. Giả sử toạ độ điểm
, hãy tính giá trị biểu thức
.
Đáp án: 50
Ta có:
Đường thẳng (BC) đi qua điểm B có VTCP có dạng
Điểm và
Ta có:
Vậy
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Tìm nguyên hàm của hàm số
bằng:
Biết
là một nguyên hàm của hàm số
trên khoảng
. Gọi
là một nguyên hàm của
thỏa mãn
. Giá trị của
bằng:
Ta có:
Do đó
Suy ra
Nên
Vậy
Từ đó
Vậy
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho hình phẳng
giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích
là:
Thể tích cần tính là:
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Trong không gian
, cho điểm
và hai đường thẳng
và
. Gọi
là đường thẳng đi qua điểm
, cắt đường thẳng
và vuông góc với đường thẳng
. Đường thẳng
đi qua điểm nào trong các điểm dưới đây?
Gọi
có một vectơ chỉ phương
.
Do nên
Ta có:
Suy ra đường thẳng đi qua
.
Hàm số
có nguyên hàm là:
Ta có: