Tìm số phức z thỏa mãn ![]()
Ta có
Tìm số phức z thỏa mãn ![]()
Ta có
Trong không gian
, cho điểm
. Tính độ dài đoạn thẳng
?
Ta có:
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Biết luôn có hai số
để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Trong không gian
, cho đường thẳng
vuông góc với mặt phẳng
. Một vectơ chỉ phương của
là:
Mặt phẳng (α) có một vectơ pháp tuyến là .
Đường thẳng vuông góc với mặt phẳng (α) nên có vectơ chỉ phương là
.
Trong không gian với hệ tọa độ
, cho bốn điểm
. Tính khoảng cách từ điểm
đến mặt phẳng
.
Ta có
Mặt phẳng đi qua
và nhận
là vectơ pháp tuyến có phương trình tổng quát là
.
Khoảng cách từ điểm đến mặt phẳng
là:
.
Tính tích phân
?
Ta có:
Cho số phức
. Khẳng định nào sau đây là khẳng định sai?
Ta có: .
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Cho số phức
. Số phức
là số phức nào sau đây?
Ta có:
Suy ra
.
Tìm nguyên hàm của hàm số
?
Ta có:
Trong không gian với hệ tọa độ
, cho mặt phẳng
, véc tơ nào trong các vectơ được cho dưới đây là một vectơ pháp tuyến của
?
Ta có phương trình mặt phẳng nên có một vectơ pháp tuyến của mặt phẳng
là:
Mặt khác cùng phương với
Do đó là một vectơ pháp tuyến của
.
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Tính diện tích hình phẳng giới hạn bởi ![]()
Xét phương trình hoành độ giao điểm ta có:
Diện tích hình phẳng cần tính là:
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Trong không gian với hệ tọa độ
, cho đường thẳng
. Mặt phẳng (P) chứa đường thẳng
và tạo với trục tung góc lớn nhất. Biết rằng phương trình (P) có dạng là
. Tính tổng ![]()
Hình vẽ minh họa
Đường thẳng d đi qua điểm M(1; −2; 0), có véc-tơ chỉ phương
Gọi ∆ là đường thẳng đi qua M và song song với trục Oy.
Phương trình tham số của
Lấy điểm N(1; 2; 0) ∈ ∆.
Gọi H, K lần lượt là hình chiếu vuông góc của N lên mặt phẳng (P) và đường thẳng d.
Khi đó
Lại có:
Vậy lớn nhất khi và chỉ khi H trùng với K
Suy ra (P) đi qua d và vuông góc với mặt phẳng (Q), ((Q) là mặt phẳng chứa d và song song với Oy).
Vectơ pháp tuyến của (Q) là
Vectơ pháp tuyến của (P) là
Phương trình mặt phẳng (P) là
Vậy
Cho số phức z thoả mãn
. Giá trị lớn nhất của biểu thức
bằng?
Đặt .
Từ giả thiết
(1).
Ta có
.
Dễ thấy P lớn nhất khi .
Khi đó
Do nên từ (1) ta có
.
Suy ra
Dấu = xảy ra khi
.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Trong không gian
, mặt phẳng
có một vectơ pháp tuyến là:
Mặt phẳng có một vectơ pháp tuyến là:
.
Tích phân
bằng:
Ta có:
.
Cho hàm số
. Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành. Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm:
Diện tích hình phẳng cần tìm là:
((do trong khoảng (0; 1) và (1; 2) phương trình
vô nghiệm)
Vậy mệnh đề sai là: .
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Cho
và
, khi đó
bằng:
Ta có:
Tìm tọa độ giao điểm của đường thẳng
và mặt phẳng
?
Gọi I là giao điểm của d và (P).
Ta có
Suy ra
Cho tứ diện ABCD có
. Mặt phẳng chứa BC và song song với AD có phương trình :
Theo đề bài, từ các điểm , ta tính được các vecto tương ứng là:
cùng phương với
Chọn làm vectơ pháp tuyến cho mặt phẳng chứa BC và song song với AD.
Phương trình (P) có dạng:
Mặt khác, điểm
Vậy phương trình .
Trong không gian với hệ tọa độ
, cho tứ diện đều
có
với
. Tính
?
Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).
Ta có:
Đường thẳng đi qua G vuông góc với (ABC) có phương trình
Do đó
Mà
Vì
Cho
với
. Tính
?
Ta có:
Vậy
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Đường thẳng (d):
có phương trình tham số là:
Ta có đường thẳng (d) qua A ( 2, -1, 4) và có vectơ chỉ phương là có phương trình tham số là:
=> (d)
Cho số phức
. Tính |z|
Ta có
Trong không gian với hệ tọa độ
, cho điểm
, phương trình mặt phẳng
qua điểm
và cắt ba tia
lần lượt tại
sao cho
nhỏ nhất. Tính
.
Mặt phẳng cắt ba trục tọa độ lần lượt tại
với
.
Do đi qua điểm
nên:
Mà OA + OB + OC = a + b + c nên OA + OB + OC nhỏ nhất khi a + b + c nhỏ nhất và bằng 36.
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Trong không gian với hệ tọa độ
, cho hai mặt phẳng ![]()
. Mặt phẳng
vuông góc với cả
và
đồng thời cắt trục
tại điểm có hoành độ bằng
. Phương trình của mặt phẳng
là:
Ta có: (P) có vectơ pháp tuyến , (Q) có vectơ pháp tuyến
.
Vì mặt phẳng (α) vuông góc với cả (P) và (Q) nên (α) có một vectơ pháp tuyến là
Vì mặt phẳng (α) cắt trục Ox tại điểm có hoành độ bằng 3 nên (α) đi qua điểm M(3; 0; 0).
Vậy (α) đi qua điểm M(3; 0; 0) và có vectơ pháp tuyến nên (α) có phương trình
.
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Trong không gian hệ trục tọa độ
, cho các điểm
. Biết rằng tứ giác
là hình bình hành, khi đó tọa độ điểm
là:
Giả sử điểm ta có
là hình bình hành nên
. Vậy tọa độ điểm
Cho đồ thị hàm số
có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Cho đồ thị hàm số có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Cho hai hàm số
và
. Biết
là các số thực để
là một nguyên hàm của
. Tính
?
Từ giả thiết ta có:
Đồng nhất hai vế ta có: .
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí
cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ
với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).

a) Vị trí của khinh khí cầu thứ hai có tọa độ là
. Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá
km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ
. Đúng||Sai
Xét tính đúng sai của mỗi khẳng định.
Hai chiếc khinh khí cầu cùng bay lên từ cùng một địa điểm. Chiếc thứ nhất nằm tại vị trí cách điểm xuất phát
km về phía bắc và
km về phía tây, đồng thời cách mặt đất
km. Chiếc thứ hai nằm tại vị trí
cách điểm xuất phát
km về phía nam và
km về phía đông, đồng thời cách mặt đất
km.
Chọn hệ trục toạ độ với gốc
đặt tại điểm xuất phát của hai kinh khí cầu, mặt phẳng
trùng với mặt đất, trục
hướng về phía bắc, trục
hướng về phía tây và trục
hướng thẳng đứng lên trời. Đơn vị đo lấy theo kilomet (các kết quả làm tròn đến hàng phần mười).
a) Vị trí của khinh khí cầu thứ hai có tọa độ là . Sai||Đúng
b) Hai khinh khí cầu cách nhau không quá km. Đúng||Sai
c) Khinh khí cầu thứ nhất ở gần điểm xuất phát hơn khinh khí cầu thứ hai. Sai||Đúng
d) Giả sử một chiếc Flycam được điều khiển xuất phát cùng địa điểm với hai khinh khí cầu và bay thẳng đến vị trí nằm chính giữa hai khinh khí cầu, đồng thời hai khinh khí cầu và chiếc flycam này thẳng hàng với nhau. Khoảng cách bay này của flycam cũng là khoảng cách bay tối đa của flycam. Trong trường hợp này, nếu chiếc flycam này xuất phát từ cùng địa điểm với hai khinh khí cầu sẽ không bay được đến vị trí có tọa độ . Đúng||Sai
a) Sai
Vì hướng nam ngược với hướng bắc, hướng đông ngược với hướng tây nên chiếc khinh khí cầu thứ hai có tọa độ là .
b) Đúng
Chiếc khinh khí cầu thứ nhất có tọa độ là .
Khoảng cách giữa hai chiếc khinh khí cầu là
c) Sai
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ nhất là:
Khoảng cách từ điểm xuất phát đến khinh khí cầu thứ hai là:
Vậy khinh khí cầu thứ hai ở gần điểm xuất phát hơn.
d) Đúng
Vị trí của chiếc flycam là
.
Khoảng cách bay của flycam là:
Khoảng cách từ vị trí flycam xuất phát đến điểm có tọa độ là
Vậy flycam không đến được vị trí có tọa độ .
Trong không gian
, cho điểm
. Tìm tọa độ của
là.
Ta có:
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số
và đồ thị hàm số
?
Phương trình hoành độ giao điểm
Khi đó ta có:
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và
. Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Cho hình phẳng
giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Cho hàm số
là một nguyên hàm của
trên khoảng
thỏa mãn
. Xác định công thức
?
Ta có: (vì
)
Mà
Vậy .
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là