Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức
. Kết luận nào sau đây đúng?
Ta có:
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Trong không gian với hệ tọa độ
, cho đường thẳng
là giao tuyến của hai mặt phẳng
và
. Phương trình tham số của
là:
Nhận thấy đều thuộc (α) và (β) nên chúng cũng thuộc đường thẳng
.
Ta có là một vectơ chỉ phương của
.
Khi đó phương trình tham số của là:
.
Chọn khẳng định đúng trong các khẳng định sau?
Đặt . Đổi cận
Ta có: .
Vậy khẳng định đúng .
Một ô tô đang chạy đều với vận tốc
m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng
m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là
s. Sai||Đúng
c)
. Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là
m. Sai||Đúng
Một ô tô đang chạy đều với vận tốc m/s thì người lái xe đạp phanh. Từ thời điểm đó, ô tô chuyển động chậm dần đều với vận tốc thay đổi theo hàm số
m/s, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh.
a) Khi xe dừng hẳn thì vận tốc bằng m/s. Đúng||Sai
b) Thời gian từ lúc người lái xe đạp phanh cho đến khi xe dừng hẳn là s. Sai||Đúng
c) . Đúng||Sai
d) Quãng đường từ lúc đạp phanh cho đến khi xe đừng hẳn là m. Sai||Đúng
Khi xe dừng hẳn thì vận tốc bằng m/s.
Khi xe dừng hẳn thì m/s nên
s.
Nguyên hàm của hàm số vận tốc ,
.
Quãng đường từ lúc đạ phanh cho đến khi xe dừng hẳn là
m.
Trong không gian với hệ tọa độ
, cho ba điểm
. Mặt phẳng
đi qua ba điểm
có phương trình tổng quát
. Biết
, tìm giá trị của
?
Do nên mặt phẳng
có phương trình
Do đi qua các điểm
nên ta có hệ:
Vậy .
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có: nên
là một nguyên hàm của hàm số
.
Tìm nguyên hàm của hàm số
bằng:
Trong không gian hệ trục tọa độ
, cho hình hộp
. Biết
. Tọa độ điểm
là:
Hình vẽ minh họa
Ta có:
Trong không gian với hệ tọa độ
, điểm nào sau đây không thuộc mặt phẳng
?
Dễ thấy điểm không thuộc mặt phẳng
.
Trong không gian
, cho hai đường thẳng song song
và
. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.
Lấy .
Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.
Phương trình đường thẳng cần tìm là:
Hình phẳng giới hạn bởi đồ thị hàm số
liên tục trên đoạn
, trục Ox và hai đường thẳng
có diện tích là:
Công thức tính diện tích cần tìm là: .
Cho hai mặt phẳng
và
. Với
cho biết
và cặp vectơ chỉ phương
. Với
cho PTTQ
. Phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của
và
, qua điểm
là:
Trước tiên, ta cần đưa phương trình về dạng tổng quát.
Theo đề bài, ta có và cặp vectơ chỉ phương
nên vecto pháp tuyến của mp
là tích có hướng của 2 vecto chỉ phương.
Ta có .
Chọn làm vectơ pháp tuyến cho
thì phương trình tổng quát của
có dạng
.
Vậy phương trình
Để tìm phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của và
ta xét chùm mặt phẳng :
Mặt khác, ta có
Thế vào (*) ta được:
Nguyên hàm của hàm số
là:
Ta có:
Cho hai hàm số
có đạo hàm trên
thỏa mãn
và
. Giá trị
bằng:
Chọn
Từ đó suy ra
Vậy
Cho hàm số
liên tục trên đoạn
. Gọi
là hình phẳng giới hạn bởi đồ thị
, trục hoành, hai đường thẳng
(như hình vẽ bên).

Giả sử
là diện tích của hình phẳng
. Chọn công thức đúng?
Dựa vào đồ thị hình vẽ ta thấy:
+ Đồ thị cắt trục hoành tại điểm
+ Trên đoạn , đồ thị ở phía dưới trục hoành nên
+ Trên đoạn , đồ thị ở phía trên trục hoành nên
Do đó:
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho các số phức
. Khẳng định nào trong các khẳng định sau là khẳng định đúng?
![]()
![]()
![]()
Áp dụng tính chất số phức, ta có:
- Môđun của 1 thương hai số phức thì bằng thương của từng môđun
- Môđun của 1 tích hai số phức thì bằng tích của từng môđun
Vậy khẳng địn (I) và (II) là đúng.
Cho số phức
. Số phức
bằng:
Ta có:
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Ta có:
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Cho hình (H) giới hạn bởi đồ thị hàm số
, cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).

Biết thể tích của khối tròn xoay tạo thành khi quay
quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Cho hình (H) giới hạn bởi đồ thị hàm số , cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).
Biết thể tích của khối tròn xoay tạo thành khi quay quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Trong không gian
, cho các điểm
. Đường thẳng nào dưới đây vuông góc với mặt phẳng
?
Ta có
là 1 VTPT của mặt phẳng (ABC).
Do đó đường thẳng vuông góc với mặt phẳng (ABC) có VTPT cùng phương với vectơ (−2; −1; 1).
Dựa vào các đáp án ta thấy ở đáp án D đường thẳng có 1 VTPT là (−2; 1; 1) cùng phương với (−2; −1; 1).
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn
và
. Tìm số phần tử của S.
2 || Hai || hai
Gọi S là tập hợp tất cả các giá trị thực của tham số m để tồn tại duy nhất số phức z thỏa mãn và
. Tìm số phần tử của S.
2 || Hai || hai
Điều kiện: .
Đặt .
Theo giả thiết .
là đường tròn tâm O(0; 0), bán kính
.
Mặt khác
là đường tròn tâm
, bán kính
.
Để tồn tại duy nhất số phức z thì và
tiếp xúc ngoài hoặc trong.
TH1: và
tiếp xúc ngoài khi và chỉ khi
.
TH2: và
tiếp xúc trong khi và chỉ khi
.
Vậy .
Trong các khẳng định sau đây, khẳng định nào đúng?
Ta có:
Do
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Trong không gian
, cho tam giác
vuông tại
,
,
, đường thẳng
có phương trình
, đường thẳng
nằm trong mặt phẳng
. Biết rằng đỉnh
có cao độ âm. Tìm hoành độ của đỉnh
.
Hình vẽ minh họa:
Tọa độ điểm B là nghiệm của hệ phương trình
Do C ∈ BC nên
Theo giả thiết nên:
Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).
Gọi . Do
nên:
Vậy đáp án cần tìm là .
Cho hình hộp chữ nhật
có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cho hình hộp chữ nhật có
và
. Gọi
và
lần lượt là trung điểm của cạnh
và
. Khoảng cách giữa hai đường thẳng
và
bằng bao nhiêu? (Kết quả làm tròn đến hàng phần trăm)
Đáp án: 2,43
Cách 1. Gọi là trung điểm
,
,
,
.
Ta có .
Lại có .
Mặt khác .
Dễ thấy
.
Suy ra với
;
.
Vậy .
Cách 2. Đặt các trục ,
và
vào hình như sau
Ta có ,
,
và
.
Ta có ,
và
.
Khi đó :
.
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Trong không gian
, hãy viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với đường thẳng
.
Mặt phẳng (P) đi qua điểm và có một véc-tơ pháp tuyến là
nên có phương là:
.
Cho số phức
. Tính |z|
Ta có
Cho số phức
, giá trị của số phức
là?
Ta có:
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Viết phương trình tổng quát của mặt phẳng
cắt hai trục
và
tại và tạo với mặt phẳng
một góc
.
Gọi là giao điểm của
và trục
Vecto pháp tuyến của là:
Vecto pháp tuyến của là:
Gọi là góc tạo bởi và
Vậy có hai mặt phẳng:
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Gọi
là hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
. Gọi
là thể tích của khối tròn xoay thu được khi quay hình
xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?
Áp dụng công thức thể tích khối tròn xoay ta có:
Khi đó áp dụng vào bài toán ta được:
.
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể kiểm tra bằng máy tính, dễ dàng thu được kết quả như cách trên
Cho hàm số
có đạo hàm
liên tục trên
;
. Tính giá trị
?
Ta có:
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Bác Tư làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Tính số tiền bác Tư phải trả.
Đáp án: 6750000 đồng.
Gọi phương trình parabol .
Do tính đối xứng của parabol nên ta có thể chọn hệ trục tọa độ Oxy sao cho ( P) có đỉnh I ∈ Oy (như hình vẽ)
Ta có hệ phương trình:
Vậy
Dựa vào đồ thị, diện tích cửa parabol là:
Số tiền phải trả là đồng.
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Tìm họ nguyên hàm của hàm số ![]()
Ta có:
Mặt phẳng
và đường thẳng
:
Theo đề bài, ta có vecto pháp tuyến của
Đường thẳng (d) được cho dưới dạng hệ của hai mặt phẳng: và
cũng có 2 VTPT lần lượt
Như vậy, VTCP của (d) sẽ là tích có hướng của 2 VTPT:
và tọa độ của A không thỏa mãn phương trình của (P).
Vậy (d) // (P) .
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian
, cho bốn điểm
và
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm
?
Hình vẽ minh họa
Ta có mặt phẳng (ABC): .
Suy ra thuộc mặt phẳng (ABC).
Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.
Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là .
Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm là
.