Đề thi HK2 Toán 12 Đề 1

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 50 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Vận dụng cao

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Đáp án là:

    Cho các số phức z thỏa mãn \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|. Tìm giá trị nhỏ nhất của biểu thức P = \left| {z + 3 - 2i} ight|.

    3 || ba || Ba

    Gọi M(x; y) là điểm biểu diễn số phức z trong mặt phẳng phức.

    \left| {{z^2} + 4} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight| \Leftrightarrow \left| {z - 2i} ight|.\left| {z + 2i} ight| = \left| {\left( {z - 2i} ight)\left( {z - 1 + 2i} ight)} ight|

    \Leftrightarrow \left[ \begin{array}{l}z = 2i\\\left| {z + 2i} ight| = \left| {z - 1 + 2i} ight|\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}x = 0;\;y = 2\\x = \frac{1}{2};\;y \in \mathbb R\end{array} ight.

    Vậy M= (0; 2) hoặc M \in d:x = \frac{1}{2}.

    Gọi I(-3;2) thì P=IM. Khi đó I{M_{\min }} = 3 hoặc I{M_{\min }} = d(I;d) = \frac{7}{2}.

    Vậy {P_{\min }} = 3.

  • Câu 2: Vận dụng cao

    Trong không gian hệ tọa độ Oxyz, cho điểm A(1;4;5), B(3;4;0), C(2;-1;0) và mặt phẳng (P): 3x-3y-2z-12=0. Gọi M(a; b; c) thuộc (P) sao cho MA^2+MB^2+3MC^2 đạt giá trị nhỏ nhất. Tính tổng a+b+c.

    Giả sử I(x;y;z) là điểm thỏa mãn \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\vec{0} .

    Khi đó \overrightarrow{IA}(1-x;4-y;5-z), \overrightarrow{IB}(3-x;4-y;-z), \overrightarrow{IC}(2-x;-1-y;-z) ;

    \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=(10-5x;5-5y;5-5z); ;

    \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0} \Rightarrow \left\{\begin{matrix} x=2 \\ y=1 \\ z=1 \end{matrix}ight. \Rightarrow I (2;1;1);

    MA^2+MB^2+3MC^2 = \overrightarrow{MA}^2+\overrightarrow{MB}^2+3\overrightarrow{MC}^2

    = (\overrightarrow{MI}+\overrightarrow{IA})^2+(\overrightarrow{MI}+\overrightarrow{IB})^2+3(\overrightarrow{MI}+\overrightarrow{IC})^2

    =5MI^2+2\vec{MI}(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC})+IA^2+IB^2+IC^2

    =5MI^2+IA^2+IB^2+IC^2   (vì \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\vec{0})

    Vì I cố định nên MA^2+MB^2+3MC^2 đạt giá trị nhỏ nhất khi MI nhỏ nhất, khi đó M là hình chiếu vuông góc của I lên (P) .

    Gọi \triangle là đường thẳng qua I và vuông góc với (P)

    Phương trình đường thẳng \triangle:\left\{\begin{matrix} x=2+3t \\ y=1-3t \\ z=1-2t \end{matrix}ight..

    Tọa độ của M là nghiệm hệ phương trình:

     \left\{\begin{matrix} x=2+3t \\ 1-3t \\ z=1-2t \\3x-3y-2z-12=0 \end{matrix}ight. \Leftrightarrow\left\{\begin{matrix} t=\dfrac{1}{2} \\ x=\dfrac{7}{2} \\ y=\dfrac{-1}{2} \\ z=0\end{matrix}ight.

    \Rightarrow M(\frac{7}{2};\frac{-1}{2};0)  \Rightarrow a+b+c=3.

  • Câu 3: Nhận biết

    Cho số phức z = {\left( {2i} ight)^4} - \frac{{{{\left( {1 + i} ight)}^6}}}{{5i}}. Số phức \overline {5z + 3i} là số phức nào sau đây?

     Ta tính được z = \frac{{88}}{5} \Rightarrow 5z + 3i = 88 + 3i

  • Câu 4: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, cho hình bình hành ABCD. Biết A(2;1; - 3),B(0; - 2;5)C(1;1;3). Diện tích hình bình hành ABCD là:

    Ta có: \overrightarrow{AB} = ( - 2; -
3;8),\overrightarrow{AC} = ( - 1;0;6)

    \Rightarrow \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack = ( - 18;4; -
3)

    Suy ra diện tích ABCD là:

    S_{ABCD} = \left| \left\lbrack
\overrightarrow{AB},\overrightarrow{AC} ightbrack ight| =
\sqrt{349}

  • Câu 5: Thông hiểu

    Cho số phức z = a + bi. Số phức {z^2} có phần ảo là:

    Ta có: {z^2} = {\left( {a + bi} ight)^2} = {a^2} - {b^2} + 2abi

  • Câu 6: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1; - 2; - 1),B(1;4;3). Độ dài của đoạn AB

    Ta có:

    \overrightarrow{AB} = (0;6;4) khi đó độ dài đoạn AB bằng:

    \left| \overrightarrow{AB} ight| =
\sqrt{0^{2} + 6^{2} + 4^{2}} = \sqrt{56} = 2\sqrt{13}

  • Câu 7: Thông hiểu

    Giả sử \int_{}^{}\frac{(2x + 3)dx}{x(x +
1)(x + 2)(x + 3) + 1} = - \frac{1}{g(x)} + C với C là hằng số. Tổng các nghiệm của phương trình g(x) = 0 bằng:

    Ta có: \int_{}^{}\frac{(2x + 3)dx}{x(x +
1)(x + 2)(x + 3) + 1} = \int_{}^{}\frac{(2x + 3)dx}{\left( x^{2} + 3x +
2 ight)\left( x^{2} + 3x ight) + 1}

    Đặt t = x^{2} + 3x \Rightarrow dt = (2x +
3)dx

    \int_{}^{}\frac{dt}{(t + 2)t + 1} =
\int_{}^{}\frac{dt}{(t + 1)^{2}} = - \frac{1}{t + 1} + C = -
\frac{1}{x^{2} + 3x + 1} + C

    \Rightarrow g(x) = x^{2} + 3x +
1

    Theo định lí Vi – et ta thấy phương trình g(x) = 0 có hai nghiệm x_{1};x_{2}x_{1} + x_{2} = - 3.

  • Câu 8: Nhận biết

    Cho số phức z  thỏa mãn z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}}. Viết z dưới dạng z = a + bi, \, \, a,b \in \mathbb{R}. Khi đó tổng a+b có giá trị bằng bao nhiêu?

     z = {\left( {\frac{{1 - i}}{{1 + i}}} ight)^{2024}} = {\left( { - i} ight)^{2024}} = {\left( {{i^4}} ight)^{506}} = 1

  • Câu 9: Thông hiểu

    Có bao nhiêu số phức z thỏa mãn \left| {\frac{{z + 1}}{{i - z}}} ight| = 1\left| {\frac{{z - i}}{{2 + z}}} ight| = 1

    Ta có:  \left\{ \begin{array}{l}\left| {\dfrac{{z + 1}}{{i - z}}} ight| = 1\\\left| {\dfrac{{z - i}}{{2 + z}}} ight| = 1\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}\left| {z + 1} ight| = \left| {i - z} ight|\\\left| {z - i} ight| = \left| {2 + z} ight|\end{array} ight.

    \Leftrightarrow \left\{ \begin{array}{l}x =  - y\\4x + 2y =  - 3\end{array} ight. \Leftrightarrow \left\{ \begin{array}{l}x =  - \frac{3}{2}\\y = \frac{3}{2}\end{array} ight.

    \Rightarrow z =  - \frac{3}{2} + \frac{3}{2}i

  • Câu 10: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho phương trình đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = - 1 + 3t \\
z = 2 - t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Trong các điểm có tọa độ dưới đây, điểm nào thuộc đường thẳng \Delta?

    Thay tọa độ các điểm và phương trình đường thẳng ∆, ta thấy:

    \left\{ \begin{matrix}
- 1 = 1 + 2t \\
- 4 = - 1 + 3t \\
3 = 2 - t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 \Rightarrow M( - 1; -
4;3) \in \Delta.

  • Câu 11: Nhận biết

    Số phức liên hợp của số phức 3 - 4i là:

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {3 - 4i}  = 3 - ( - 4i) = 3 + 4i

  • Câu 12: Nhận biết

    Họ nguyên hàm của hàm số f(x) = 4x\left(
1 + \ln x ight) là:

    Ta có: \left\{ \begin{gathered}
  u = 1 + \ln x \hfill \\
  dv = 4xdx \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  du = \frac{1}{x}dx \hfill \\
  v = 2{x^2} \hfill \\ 
\end{gathered}  ight.

    Khi đó \int_{}^{}{f(x)dx} =
\int_{}^{}{4x\left( 1 + \ln x ight)dx} = \left( 1 + \ln x
ight)2x^{2} - \int_{}^{}{2xdx}

    = \left( 1 + \ln x ight)2x^{2} - x^{2}
+ C = x^{2}(1 + 2lnx) + C

  • Câu 13: Nhận biết

    Giá trị tích phân I =
\int_{1}^{2}{\frac{1}{x^{6}}dx} bằng:

    Ta có:

    I = \int_{1}^{2}{\frac{1}{x^{6}}dx} =
\int_{1}^{2}{x^{- 6}dx} = \left. \ \frac{x^{- 5}}{- 5} ight|_{1}^{2} =
\frac{31}{125}

  • Câu 14: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 15: Vận dụng cao

    Cho hai đường thẳng chéo nhau \left( d ight):\left\{ \begin{array}{l}x = 2 + t\\y = 1 - t\\z = 2t\end{array} ight.\left( d' ight):\left\{ \begin{array}{l}x + 2z - 2 = 0\\y - 3 = 0\end{array} ight.

    Mặt phẳng song song và cách đều và có phương trình tổng quát:

    Phương trình (d) cho biết A(2, 1, 0) \in (d) và (d) có vectơ chỉ phương \overrightarrow a  = \left( {1, - 1,2} ight)

    Chuyển (\triangle ) về dạng tham số \left\{ \begin{array}{l}x = 2 - 2t\\y = 3\\z = t\end{array} ight. để có B(2, 3, 0) \in (\triangle ) và vectơ chỉ phương \overrightarrow b  = \left( { - 2,0,1} ight) .

    Gọi I là trung điểm AB  thì I (2, 2, 0), M(x, y, z) bất kỳ \in (P) .

    \left[ {\overrightarrow a ,\overrightarrow b } ight].\overrightarrow {IM}  = 0 \Leftrightarrow x + 5y + 2z - 12 = 0là phương trình của mặt phẳng (P).

  • Câu 16: Thông hiểu

    Trong không gian Oxyz, gọi (P) là mặt phẳng chứa trục Ox và vuông góc với mặt phẳng (Q):x + y + z - 3 = 0. Phương trình mặt phẳng (P) là:

    Ta có: (Q) có một vectơ pháp tuyến là \overrightarrow{n}(1;1;1).

    Từ giả thiết, ta suy ra (P) có một vectơ pháp tuyến là \left\lbrack
\overrightarrow{n};\overrightarrow{i} ightbrack = (0;1; -
1).

    Do (P) đi qua gốc tọa độ O nên phương trình của (P) là y - z = 0.

  • Câu 17: Thông hiểu

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm của phương trình {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 trên tập

    số phức tính tổng: S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}}.

    Ta có: {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 \Leftrightarrow \left( {z - 1} ight)\left( {z + 2} ight)\left( {{z^2} - 2z + 2} ight) = 0 (1)

    Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:

    \left[ \begin{array}{l}{z_1} = 1\\{z_2} =  - 2\\{z_3} = 1 + i\\{z_4} = 1 - i\end{array} ight.

    Thay và biểu thức ta có: 

    S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}} = 1 + \frac{1}{4} + \frac{1}{{{{\left( {1 - i} ight)}^2}}} + \frac{1}{{{{\left( {1 + i} ight)}^2}}} = \frac{5}{4}

  • Câu 18: Vận dụng cao

    Biết I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {x\cos 2xdx}  = a\pi \sqrt 3  + b\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sin 2xdx}, a và b là các số hữu tỉ. Giá trị của \frac{a}{b} là:

     Biết I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {x\cos 2xdx}  = a\pi \sqrt 3  + b\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sin 2xdx}. Giá trị của \frac{a}{b} là:

    Ta có: 

    I = \int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {x\cos 2xdx}  = \left. {\left( {\frac{1}{2}x\sin 2x} ight)} ight|_{\frac{\pi }{6}}^{\frac{\pi }{2}} - \frac{1}{2}\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sin 2xdx}  =  - \frac{{\pi \sqrt 3 }}{{24}} - \frac{1}{2}\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{2}} {\sin 2xdx}

    \Rightarrow \left\{ \begin{gathered}  a =  - \frac{1}{{24}} \hfill \\  b =  - \frac{1}{2} \hfill \\ \end{gathered}  ight. \Rightarrow \frac{a}{b} = \frac{1}{{12}}

  • Câu 19: Vận dụng

    Trong không gian với hệ tọa độ Oxyz có bao nhiêu mặt phẳng song song với mặt phẳng (Q):x + y + z + 3 = 0, cách điểm M(3;2;1) một khoảng bằng 3\sqrt{3} biết rằng tồn tại một điểm X(a;b;c) trên mặt phẳng đó thỏa mãn a + b + c < - 2?

    Mặt phẳng song song với (Q) có dạng (P):x
+ y + z + m = 0,(m eq 3)

    d\left( M,(P) ight) = \frac{|3 + 2 + 1
+ m|}{\sqrt{3}} = 3\sqrt{3} \Leftrightarrow \left\lbrack \begin{matrix}
m = 3(ktm) \\
m = - 15 \\
\end{matrix} ight.

    Với m = −15 thì với mọi X(a;b;c) \in
(P) ta có a + b + c - 15 = 0
\Leftrightarrow a + b + c = 15 > - 2

    Do đó không có mặt phẳng nào thỏa mãn đề bài

  • Câu 20: Nhận biết

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = ( -
3;4;0)\overrightarrow{b} =
(5;0;12). Tính \cos\left(
\overrightarrow{a};\overrightarrow{b} ight)?

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 15}{\sqrt{( -
3)^{2} + 4^{2} + 0^{2}}.\sqrt{5^{2} + 0^{2} + 12^{2}}} = -
\frac{3}{13}

  • Câu 21: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho hình thang ABCD vuông tại AB. Biết rằng tọa độ các điểm A(1;2;1),B(2;0; - 1),C(6;1;0),D(a;b;c) và hình thang ABCD có diện tích bằng 6\sqrt{2}. Tính giá trị biểu thức a+b+c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 22: Thông hiểu

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

    Đáp án là:

    Gọi z_1 và  z_2 là hai nghiệm phức của phương trình: 2\left( {1 + i} ight){z^2} - 4\left( {2 - i} ight)z - 5 - 3i = 0 . Tính {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2}.

    9 || chín || Chín

     Ta có \Delta ' = 4{\left( {2 - i} ight)^2} + 2\left( {1 + i} ight)\left( {5 + 3i} ight) = 16.

    Vậy phương trình có hai nghiệm phức lần lượt là:

    {z_1} = \frac{3}{2} - \frac{5}{2}i,\,\,\,{z_2} =  - \frac{1}{2} - \frac{1}{2}i.

    Do đó  {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} =9.

  • Câu 23: Nhận biết

    Tìm nguyên hàm của hàm của hàm số f\left( x ight) = \frac{1}{{5x - 2}}

     \int {\left[ {\frac{1}{{5x - 2}}} ight]dx}  = \frac{1}{5}\int {\frac{{d\left( {5x - 2} ight)}}{{5x - 2}}}  = \frac{1}{5}\ln \left| {5x - 2} ight| + C

  • Câu 24: Thông hiểu

    Số phức z = 1 + i + {\left( {1 + i} ight)^2} + {\left( {1 + i} ight)^3} + ... + {\left( {1 + i} ight)^{20}} là số phức nào sau đây?

     z = \left( {1 + i} ight)\frac{{1 - {{\left( {1 + i} ight)}^{20}}}}{{1 - \left( {1 + i} ight)}} =  - 1025 + 1025i

  • Câu 25: Nhận biết

    Cho hàm số y = f(x) là một nguyên hàm của hàm số y =
x^{5}.Phát biểu nào sau đây đúng?

    Ta có \left(
\frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}
ight)\mathbf{'}\mathbf{=}\mathbf{x}^{\mathbf{5}}

    Vậy đáp án cần tìm là: \frac{\mathbf{1}}{\mathbf{6}}\mathbf{x}^{\mathbf{6}}\mathbf{+
C}.

  • Câu 26: Vận dụng

    Tính diện tích hình phẳng giới hạn bởi y = \left| {2{x^2} - 4x} ight|;y = x + 3

     Xét phương trình hoành độ giao điểm ta có:

    \begin{matrix}  \left| {2{x^2} - 4x} ight| = x + 3 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {\left\{ {\begin{array}{*{20}{l}}  {2{x^2} - 4x \geqslant 0} \\   {2{x^2} - 4x = x + 3} \end{array}} ight.} \\   {\left\{ {\begin{array}{*{20}{l}}  {2{x^2} - 4x \leqslant 0} \\   { - \left( {2{x^2} - 4x} ight) = x + 3} \end{array}} ight.} \end{array}} ight. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x =  - \dfrac{1}{2}} \\   {x = 3} \end{array}} ight. \hfill \\ \end{matrix}

    Diện tích hình phẳng cần tính là:

    \begin{matrix}  S = \int_{ - \dfrac{1}{2}}^3 | |2{x^2} - 4x| - x - 3|{\text{d}}x \hfill \\   = \left| {\int_{ - \dfrac{1}{2}}^0 {\left( {2{x^2} - 5x - 3} ight)} {\text{d}}x} ight| + \left| {\int_0^2 {\left( { - 2{x^2} + 3x - 3} ight)} {\text{d}}x} ight| + \left| {\int_2^3 {\left( {2{x^2} - 5x - 3} ight)} {\text{d}}x} ight| \hfill \\   = \dfrac{{19}}{{24}} + \dfrac{{16}}{3} + \dfrac{{17}}{6} = \dfrac{{215}}{{24}}({\text{dvdt}}) \hfill \\ \end{matrix}

  • Câu 27: Nhận biết

    Nghiệm của phương trình: {z^2} + 4z + 7 = 0  là:

     Ta có: \Delta ' = {2^2} - 7 =  - 3 = 3{i^2}

    \Rightarrowcác căn bậc hai của \triangle '  là \pm i\sqrt 3

    Vậy nghiệm của phương trình là: z =  - 2 + \sqrt 3 i,\,\,\,z =  - 2 - \sqrt 3 i

  • Câu 28: Thông hiểu

    Cho a là số thực dương. Biết rằng F(x) là một nguyên hàm của hàm số f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{x} ightbrack thỏa mãn F\left( \frac{1}{a} ight) = 0F(2018) = e^{2018}. Mệnh đề nào sau đây đúng?

    Ta có:

    f(x) = e^{x}\left\lbrack \ln(ax) +
\frac{1}{2} ightbrack= \left( e^{x} ight)'\ln(ax) +e^{x}\left\lbrack \ln(ax) ightbrack'= \left\{ e^{x}\left\lbrack \ln(ax)
ightbrack ight\}'

    \Rightarrow
\int_{\frac{1}{a}}^{2018}{f(x)}dx = F(2018) - F\left( \frac{1}{a}
ight)\Leftrightarrow \left. \ \left(
e^{x}\left\lbrack \ln(ax) ightbrack ight)
ight|_{\frac{1}{a}}^{2018} = e^{2018}

    \Leftrightarrow \ln(2018a) = 1
\Leftrightarrow a = \frac{e}{2018}

    Vậy a \in \left( \frac{1}{2018};1
ight).

  • Câu 29: Nhận biết

    Một vật chuyển động chậm dần với vận tốc v(t) = 150 - 15t(m/s). Hỏi rằng trong 5s trước khi dừng hẳn vật di chuyển được bao nhiêu mét?

    Khi dừng hẳn v(t) = 150 - 15t = 0
\Rightarrow t = 10(s)

    Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:

    S = \int_{0}^{10}{v(t)dt} =
\int_{0}^{10}{(150 - 15t)dt} = \frac{375}{2}m.

  • Câu 30: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, gọi (\alpha) là mặt phẳng song song với mặt phẳng (\beta):2x - 4y + 4z + 3 = 0 và cách điểm A(2; - 3;4) một khoảng k = 3. Phương trình mặt phẳng (\alpha) là:

    (\alpha)//(\beta) suy ra (\alpha):2x - 4y + 4z + m = 0;(m eq
3)

    Theo giả thiết ta có: d\left( A;(\alpha)
ight) = k = 3

    \Leftrightarrow \frac{|32 + m|}{6} = 3
\Leftrightarrow \left\lbrack \begin{matrix}
m = - 14 \\
m = - 50 \\
\end{matrix} ight.

    Vậy x - 2y + 2z - 25 = 0 hoặc x - 2y + 2z - 7 = 0.

  • Câu 31: Nhận biết

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 32: Nhận biết

    Số phức liên hợp của số phức 5 - 3i là

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {5 - 3i}  = 5 - ( - 3i) = 5 + 3i

  • Câu 33: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng d_{1}:\frac{x - 1}{1} = \frac{y + 2}{1} = \frac{z- 3}{- 1},d_{2}:\frac{x}{1} = \frac{y - 1}{2} = \frac{z - 6}{3} chéo nhau. Viết phương trình đường vuông góc chung của d_{1},d_{2}.

    Đường thẳng d_{1},d_{2} lần lượt có vectơ chỉ phương là \overrightarrow{u_{1}} = (1;1; -
1),\overrightarrow{u_{2}} = (1;2;3)

    Giả sử ∆ giao với d_{1},d_{2} lần lượt tại \left\{ \begin{matrix}
A(1 + s; - 2 + s;3 - s) \\
B(t;1 + 2t;6 + 3t) \\
\end{matrix} ight., khi đó ta có \overrightarrow{AB} = ( - 1 - s + t;3 - s + 2t;3 +
s + 3t)

    Do ∆ là đường vuông góc chung, suy ra:

    \left\{ \begin{matrix}
\overrightarrow{u_{1}}.\overrightarrow{AB} = 0 \\
\overrightarrow{u_{2}.}\overrightarrow{AB} = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
1( - 1 - s + t) + 1(3 - s + 2t) - 1(3 + s + 3t) = 0 \\
1( - 1 - s + t) + 2(3 - s + 2t) + 3(3 + s + 3t) = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}- 3s = 1 \\14t = - 14 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}s = - \dfrac{1}{3} \\t = - 1 \\\end{matrix} ight.

    Đường vuông góc chung của d_{1},d_{2} nhận \overrightarrow{AB} = \left( -
\frac{5}{3};\frac{4}{3}; - \frac{1}{3} ight) làm VTCP và đi qua điểm B( - 1; - 1;3)

    Vậy ta có phương trình đường thẳng: \frac{x + 1}{5} = \frac{y + 1}{- 1} = \frac{z -
3}{1}

  • Câu 34: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}2x^{2} + x;\ \ \ x \geq 0 \\x.\sin x;\ \ \ \ x \leq 0 \\\end{matrix} ight.. Tính tích phân \int_{- \pi}^{1}{f(x)dx}?

    Ta có:

    \int_{- \pi}^{1}{f(x)dx} = \int_{-\pi}^{0}{(x.\sin x)dx} + \int_{0}^{1}{\left( 2x^{2} + xight)dx}

    = - \int_{- \pi}^{0}{xd\left( \cos xight)} + \left. \ \left( \frac{2}{3}x^{3} + \frac{1}{2}x^{2} ight)ight|_{0}^{1}

    = \left. \ \left( - x\cos x ight)
ight|_{- \pi}^{0} + \left. \ \left( \frac{2}{3}x^{3} +
\frac{1}{2}x^{2} ight) ight|_{0}^{1}

    = \pi + \frac{7}{6} + \left. \ \left(
\sin x ight) ight|_{- \pi}^{0} = \pi + \frac{7}{6}

  • Câu 35: Nhận biết

    Tìm số phức z trong phương trình sau: (1 + z)(2 + 3i) = 1 + i

     Ta có (1 + z)(2 + 3i) = 1 + i

    \begin{array}{l} \Leftrightarrow 1 + z = \dfrac{{1 + i}}{{2 + 3i}}\\ \Leftrightarrow 1 + z = \dfrac{{5 - i}}{{13}}\;\\ \Leftrightarrow z =  - \dfrac{8}{{13}} - \dfrac{1}{{13}}i\;\;\;\end{array}

  • Câu 36: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = 1 + t \\
z = 3t \\
\end{matrix}\ (t \in \mathbb{R}) ight. và hai điểm A(5;0;2),B(2; - 5;3). Tìm điểm M thuộc \Delta sao cho \bigtriangleup ABM vuông tại A.

    Điểm M thuộc đường thẳng \Delta nên M(
- 1 + 3t;1 + t;3t).

    Ta có \overrightarrow{AM} = (3t - 6;t +
1;3t - 2)\overrightarrow{AB} =
( - 3; - 5;1).

    Tam giác ABM vuông tại M khi và chỉ khi

    \overrightarrow{AB}\bot\overrightarrow{AM}
\Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{AM} =
0

    \Leftrightarrow - 3(3t - 6) - 5(t + 1) +
3t - 2 = 0 \Leftrightarrow t = 1

    Khi đó tọa độ điểm M(2;2;3).

  • Câu 37: Nhận biết

    Cho hình chóp S.ABC có đường thẳng SA vuông góc với đáy (ABC), SA =
2a. Khoảng cách từ điểm S đến đường thẳng AB bằng:

    SA vuông góc với đáy (ABC) nên SA\bot AB \Rightarrow d(S,AB) = SA =
2a

  • Câu 38: Thông hiểu

    Tính tích phân A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \dfrac{\pi}{3}ight)}dx} bằng

    Ta có:

    A =\int_{0}^{\frac{\pi}{2}}{\frac{1}{\cos^{2}\left( x - \frac{\pi}{3}ight)}dx} = \left. \ \tan\left( x - \frac{\pi}{3} ight)ight|_{0}^{\frac{\pi}{2}}

    = \tan\frac{\pi}{6} - \tan\left( -
\frac{\pi}{3} ight) = \frac{4\sqrt{3}}{3}

  • Câu 39: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = 4\cos^{2}x - 5 thỏa mãn F(\pi) = 0. Tìm F(x)?

    Ta có: F(x) = \int_{}^{}{\left( 4\cos^{2}x- 5 ight)dx} \Leftrightarrow F(x) = \int_{}^{}{(2\cos2x -3)dx}

    \Leftrightarrow F(x) = \sin2x - 3x +C

    Lại có F(\pi) = 0 \Leftrightarrow - 3\pi
+ C = 0 \Leftrightarrow C = 3\pi

    Vậy F(x) = - 3x + \sin2x +3\pi.

  • Câu 40: Thông hiểu

    Trong không gian với hệ toạ độ Oxyz, cho tam giác ABC có phương trình đường phân giác trong góc A\frac{x}{1} = \frac{y - 6}{- 4} = \frac{z - 6}{-
3}. Biết rằng điểm M(0;5;3) thuộc đường thẳng AB và điểm N(1;1;0) thuộc đường thẳng AC. Vectơ nào sau đây là vectơ chỉ phương của đường thẳng AC.

    Hình chiếu H của M trên đường phân giác trong góc A có tọa độ: H\left( \frac{1}{2};4;\frac{9}{2}
ight)

    M’ là điểm đối xứng của M qua H. Từ đây ta tìm được tọa độ M’(1; 3; 6).

    Vectơ chỉ phương của đường thẳng AC chính là vecto \overrightarrow{NM'} = (0;2;6).

    Suy ra, đường thẳng AC có một vectơ chỉ phương là (0; 1; 3)

  • Câu 41: Vận dụng

    Biết F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}}. Hỏi đồ thị của hàm số y = F(x) có bao nhiêu điểm cực trị?

    F(x) là nguyên hàm của hàm số f(x) = \frac{x - \cos x}{x^{2}} nên suy ra F'(x) = f(x) = \frac{x - \cos
x}{x^{2}}

    Ta có: F'(x) = 0 \Leftrightarrow
\frac{x - \cos x}{x^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x - \cos x = 0 \\
x \in \lbrack - 1;1brack\backslash\left\{ 0 ight\} \\
\end{matrix} ight.\ (1)

    Xét hàm số g(x) = x - \cos x trên \lbrack - 1;1brack, ta có: g'(x) = 1 + \sin x \geq 0;\forall x \in
\lbrack - 1;1brack suy ra hàm số g(x) đồng biến trên \lbrack - 1;1brack.

    Vậy phương trình g(x) = x - \cos x = 0 có nhiều nhất một nghiệm trên \lbrack -
1;1brack (2)

    Mặt khác ta có hàm số g(x) = x - \cos
x liên tục trên (0;1)\left\{ \begin{matrix}
g(0) = 0 - cos0 = - 1 < 0 \\
g(1) = 1 - cos1 > 0 \\
\end{matrix} ight. nên g(0)g(1)
< 0.

    Suy ra tồn tại x_{0} \in
(0;1) sao cho g\left( x_{0} ight)
= 0 (3)

    Từ (1); (2); (3) suy ra phương trình F'(x) = 0 có nghiệm duy nhất x_{0} eq 0.

    Đồng thời vì x_{0} là nghiệm bội lẻ nên F'(x) đổi dấu qua x = x_{0}

    Vậy đồ thị hàm số y = F(x) có một điểm cực trị.

  • Câu 42: Thông hiểu

    Trong không gian Oxyz, cho tọa độ các điểm A(1;2;0),B(2;1;1),C(0;3; -
1). Cho các khẳng định sau:

    (I) BC = 2AB.

    (II) B \in AC.

    (III) Ba điểm A;B;C tạo thành một tam giác.

    (IV) Ba điểm A;B;C thẳng hàng.

    Trong các khẳng định trên, có bao nhiêu khẳng định đúng.

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;1) \\
\overrightarrow{AC} = ( - 1;1; - 1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{AC} = -
\overrightarrow{AB} nên A là trung điểm của BC và ba điểm A;B;C thẳng hàng.

    Vậy có 2 khẳng định sai và 2 khẳng định đúng.

  • Câu 43: Thông hiểu

    Tìm các căn bậc hai của số phức z = 5 + 12i

     Giả sử m + ni (m; n \in R) là căn bậc hai của z

    Ta có: {(m + ni)^2} = 5 + 12i

    \Leftrightarrow {m^2} + 2mni + {n^2}{i^2} = 5 + 12i \Leftrightarrow {m^2} + 2mni - {n^2} = 5 + 12i

    \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5 \hfill \\  2mn = 12 \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  {m^2} - {n^2} = 5(1) \hfill \\  m = \frac{6}{n}(2) \hfill \\ \end{gathered}  ight.

    Thay (2) vào (1) ta có: {\left( {\frac{6}{n}} ight)^2} - {n^2} = 5 \Leftrightarrow 36 - {n^4} = 5{n^2}

    \Leftrightarrow {n^4} + 5{n^2} - 36 = 0 \Leftrightarrow {n^2} = 4;{n^2} =  - 9(loai)

    \left[ \begin{gathered}  n = 2 \Rightarrow m = 3 \hfill \\  n =  - 2 \Rightarrow m =  - 3 \hfill \\ \end{gathered}  ight.

    Vậy z có hai căn bậc hai là 3+2i và -3-2i.

  • Câu 44: Thông hiểu

    Cho số phức z = 2 + i. Tính |z|

     Ta có \left| z ight| = \sqrt {{2^2} + {1^2}}  = \sqrt 5

  • Câu 45: Thông hiểu

    Cho phương trình {z^2} - 2z + 3 = 0 có hai nghiệm {z_1},{z_2} là . Giá trị của w = z_1^2 + z_2^2 + {z_1}{z_2} là?

    1 || Một || một

    Đáp án là:

    Cho phương trình {z^2} - 2z + 3 = 0 có hai nghiệm {z_1},{z_2} là . Giá trị của w = z_1^2 + z_2^2 + {z_1}{z_2} là?

    1 || Một || một

    Ta có:

    {z^2} - 2z + 3 = 0 \Leftrightarrow \left[ \begin{array}{l}z = 1 + \sqrt 2 i\\z = 1 - \sqrt 2 i\end{array} ight.

    Suy ra:  w = z_1^2 + z_2^2 + {z_1}{z_2}

    = {\left( {1 + \sqrt 2 i} ight)^2} + {\left( {1 - \sqrt 2 i} ight)^2} + \left( {1 + \sqrt 2 i} ight)\left( {1 - \sqrt 2 i} ight) = 1

  • Câu 46: Nhận biết

    Tìm công thức tính thể tích V của khối tròn xoay được tao ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a;x = b;\left( {a < b} ight) xung quanh trục Ox.

    Ta có : V =
\pi\int_{a}^{b}{f^{2}(x)}dx.

  • Câu 47: Vận dụng cao

    Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức f\left( 1 ight) + g\left( 1 ight) = 4;g\left( x ight) =  - xf'\left( x ight);f\left( x ight) =  - xg'\left( x ight). Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {g\left( x ight) =  - xf'\left( x ight)} \\   {f\left( x ight) =  - xg'\left( x ight)} \end{array}} ight. \hfill \\   \Rightarrow f\left( x ight) + g\left( x ight) =  - x\left[ {f'\left( x ight) + g'\left( x ight)} ight] \hfill \\   \Rightarrow \dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}} = \dfrac{{ - 1}}{x} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow \int\limits_1^4 {\dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}}dx = \int\limits_1^4 {\dfrac{{ - 1}}{x}dx} }  \hfill \\   \Leftrightarrow \int\limits_1^4 {\dfrac{{d\left[ {f\left( x ight) + g\left( x ight)} ight]}}{{f\left( x ight) + g\left( x ight)}} = } \left. {\ln \left| x ight|} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( x ight) + g\left( x ight)} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| - \ln \left| {f\left( 1 ight) + g\left( 1 ight)} ight| =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| = 0 \hfill \\   \Rightarrow f\left( 4 ight) + g\left( 4 ight) = 1 \hfill \\ \end{matrix}

     

  • Câu 48: Nhận biết

    Tìm nguyên hàm F(t) =
\int_{}^{}txdt.

    Ta có:

    F(t) = \int_{}^{}txdt = x\int_{}^{}tdt =
x.\frac{t^{2}}{2} + C

  • Câu 49: Nhận biết

    Tìm họ nguyên hàm của hàm số  f\left( x ight) = 3{x^2} + 1

     Ta có:

    \int {\left( {3{x^2} + 1} ight)dx}  = \int {3{x^2}dx}  + \int {1.dx}  = {x^3} + x + C

  • Câu 50: Vận dụng

    Gọi và là hai nghiệm phức của phương trình {z^2} + 2z + 10 = 0. Giá trị của biểu thức A = {\left| {{z_1}} ight|^2} + {\left| {{z_2}} ight|^2} là:

    Ta có:

    {z^2} + 2z + 10 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} =  - 1 + 3i\\{z_2} =  - 1 - 3i\end{array} ight.

    Suy ra  A = {\left| { - 1 + 3i} ight|^2} + {\left| { - 1 - 3i} ight|^2} = 20

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 204 lượt xem
Sắp xếp theo