Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Trong không gian
, cho hai đường thẳng
và
, (với
là tham số). Tìm
để hai đường thẳng
và
cắt nhau
Ta có:
đi qua điểm M1(1; 2; 3) và có vectơ chỉ phương
đi qua điểm M2(1; m; −2) và có vectơ chỉ phương
Ta có:
và
cắt nhau
Cho số phức
. Tính |z|
Ta có
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình mặt phẳng
đi qua
và vuông góc với đường thẳng
là:
Ta có: là vectơ pháp tuyến của mặt phẳng
Phương trình mặt phẳng là:
Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức
. Kết luận nào sau đây đúng?
Ta có:
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính khoảng cách
từ gốc toạ độ
đến mặt phẳng
?
Phương trình tổng quát của mặt phẳng có dạng:
Khoảng cách từ gốc tọa độ đến
là:
Trong không gian với hệ trục tọa độ
cho
. Gọi
là vectơ thỏa mãn
. Tìm tọa độ
?
Giả sử , khi đó:
Cho hai số phức
và
. Tìm phần ảo b của số phức
.
Ta có:
Cho
là hình phẳng giới hạn bởi đường cong
và đường thẳng
. Tính thể tích
của vật thể tròn xoay do hình phẳng
quay quanh trục hoành.
Phương trình hoành độ giao điểm là:
Thể tích cần tính là:
Cho hàm số
liên tục trên đoạn
và
là một nguyên hàm của
. Biết rằng
. Xác định tích phân
?
Ta có: .
Trong không gian
, cho hai đường thẳng cắt nhau ![]()
. Trong mặt phẳng
, hãy viết phương trình đường phân giác
của góc nhọn tạo bởi ![]()
Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là
Ta có , suy ra góc giữa hai vectơ
và
là góc tù.
Lại có
Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là
Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là
Vậy phương trình đường thẳng d là:
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Tìm nguyên hàm của hàm số
??
Đặt
Trong hệ trục tọa độ Oxy, cho parabol
và hai đường thẳng
(mô tả như hình vẽ). Gọi
là diện tích hình phẳng giới hạn bới và đường thẳng
(phần tô màu đen);
là diện tích hình phẳng giới hạn bới parabol
và đường thẳng
(phần gạch chéo). Với điều kiện nào sau đây của
thì
?

Phương trình hoành độ giao điểm của và đường thẳng
là:
Phương trình hoành độ giao điểm của và đường thẳng
là:
Diện tích hình phẳng giới hạn bởi và
là:
Diện tích hình phẳng giới hạn bởi và
là:
Khi đó:
Cho hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự
, khác 0 và
thỏa mãn đẳng thức
. Hỏi ba điểm O, A, B tạo thành tam giác gì? (O là gốc tọa độ) ? Chọn phương án đúng và đầy đủ nhất.
Hai điểm A, B là hai điểm biểu diễn hình học số phức theo thứ tự .
Theo giả thiết suy ra: và
.
Ta có:
.
Xét
.
Vậy hay tam giác
là tam giác đều.
Trong không gian
cho điểm
. Mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
. Tính khoảng cách từ điểm
đến mặt phẳng
.
Trong không gian cho điểm
. Mặt phẳng
đi qua điểm
và cắt các trục
lần lượt tại các điểm
sao cho
là trực tâm của tam giác
. Tính khoảng cách từ điểm
đến mặt phẳng
.
Cho lăng trụ tam giác
. Đặt
. Gọi điểm
sao cho
,
là trọng tâm tứ diện
. Biểu diễn vectơ
qua các vectơ
. Đáp án nào dưới đây đúng?
Ta có G là trọng tâm của tứ diện nên
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Tìm nguyên hàm
.
Ta có:
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Cho hai đường thẳng trong không gian Oxyz:
,
. Với
. Gọi
và
. (D) và (d) cắt nhau khi và chỉ khi:
Để xét điều kiện (D) và (d) cắt nhau ta cẩn kiểm tra rằnng (D) và d cùng nằm trong 1 mặt phẳng hay ta có:
và (d) cùng nằm trong một mặt phẳng
Để (D) và d cắt nhau, ta sẽ xét tỉ số sau:
và (d) cắt nhau.
Tìm nguyên hàm
của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có: nên
là một nguyên hàm của hàm số
.
Ba mặt phẳng
cắt nhau tại điểm A. Tọa độ của điểm A đó là:
Tọa độ giao điểm của ba mặt phẳng là nghiệm của hệ phương trình :
Giải (1),(2) tính theo
được
.
Thế vào phương trình (3) được , từ đó có
Vậy .
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Trong không gian
, biết mặt phẳng
đi qua điểm
và cắt các tia dương
lần lượt tại ba điểm
khác gốc tọa độ
, sao cho
đạt giá trị nhỏ nhất. Khẳng định nào sau đây đúng?
Vì mặt phẳng cắt các tia dương của trục
nên ta có
Ta có
Khi đó, áp dụng bất đẳng thức Bunhiacopxki ta có:
Dấu bằng xảy ra khi:
Suy ra độ dài ba cạnh theo thứ tự lập thành một cấp số cộng.
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Tìm nguyên hàm của hàm của hàm số ![]()
Chọn khẳng định đúng trong các khẳng định sau?
Đặt . Đổi cận
Ta có: .
Vậy khẳng định đúng .
Xét hình phẳng
giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?

Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho số phức z thỏa mãn
. Tìm giá trị lớn nhất của biểu thức
.
Gọi .
Ta có:
.
Ta có:
Xét hàm số
.
Hàm số liên tục trên và với
ta có:
Ta có:
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Trong không gian
, điểm nào sau đây thuộc mặt phẳng
?
Do điểm thuộc mặt phẳng nên điểm đó có tọa độ dạng
Suy ra điểm là đáp án cần tìm.
Tìm nguyên hàm của hàm số ![]()
Cho tứ diện
có
. Tính độ dài đường cao của tứ diện
kẻ từ đỉnh
?
Phương trình mặt phẳng là:
Khoảng cách từ đỉnh D đến mặt phẳng (ABC) là
.
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Tìm tọa độ giao điểm của đường thẳng
và mặt phẳng
?
Gọi I là giao điểm của d và (P).
Ta có
Suy ra
Cho điểm P(-3 , 1, -1) và đường thẳng (d): ![]()
Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:
Chuyển (d) về dạng tham số :
Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: , cho qua P tính được D=7 .
Ta có (Q): .
Thế x, y, z theo t từ phương trình của (d) vào phương trình (Q) được
Giao điểm I của (d) và (Q) là I (1, -3, 1) .
Vì I là trung điểm của PP’ nên .
Diện tích hình phẳng giới hạn bởi hai đường
và
bằng:
Xét phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Một chất điểm đang chuyển động với vận tốc
thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian
kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc nên
Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Một chiếc máy bay di chuyển với vận tốc là
. Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Trong không gian cho tứ diện đều
. Khẳng định nào sau đây sai?
Tứ diện đều nên
không thể vuông góc với
.
Vậy khẳng định sai là: “”.
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Cho hàm số
biết
,
liên tục trên
và
. Tính
?
Ta có:
Nguyên hàm của hàm số
là:
Ta có: