Trong không gian
, viết phương trình mặt phẳng
biết
đi qua hai điểm
và vuông góc với mặt phẳng
.
Ta có và
có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Do đó, có phương trình là
.
Trong không gian
, viết phương trình mặt phẳng
biết
đi qua hai điểm
và vuông góc với mặt phẳng
.
Ta có và
có một vectơ pháp tuyến là
Mặt phẳng có một vectơ pháp tuyến là
Do đó, có phương trình là
.
Trong không gian
, cho tam giác
vuông tại
,
,
, đường thẳng
có phương trình
, đường thẳng
nằm trong mặt phẳng
. Biết rằng đỉnh
có cao độ âm. Tìm hoành độ của đỉnh
.
Hình vẽ minh họa:
Tọa độ điểm B là nghiệm của hệ phương trình
Do C ∈ BC nên
Theo giả thiết nên:
Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).
Gọi . Do
nên:
Vậy đáp án cần tìm là .
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Tìm nguyên hàm của hàm số
?
Ta có:
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Cho hàm số
liên tục trên
và
. Xác định giá trị của
?
Ta có:
Xác định giá trị của tham số
thỏa mãn
?
Ta có:
Vậy đáp án .
Tìm nguyên hàm của hàm số ![]()
Ta có:
Tính diện tích hình phẳng giới hạn bởi các đường thẳng
?
Hình vẽ minh họa
Ta có:
Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng
Diện tích hình giới hạn là
Trong không gian
, cho điểm
. Gọi
là mặt phẳng thay đổi qua
và cắt các trục
lần lượt tại
với
. Khi diện tích tam giác
nhỏ nhất, hãy tính giá trị của tích
?
Trong không gian , cho điểm
. Gọi
là mặt phẳng thay đổi qua
và cắt các trục
lần lượt tại
với
. Khi diện tích tam giác
nhỏ nhất, hãy tính giá trị của tích
?
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Trong không gian với hệ tọa độ
, cho hai điểm
. Phương trình nào sau đây là phương trình chính tắc của đường thẳng đi qua hai điểm
và
?
Ta có là vectơ chỉ phương của đường thẳng
. Phương trình chính tắc của đường thẳng
là:
.
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Trong không gian với hệ tọa độ
, cho ba điểm
. Gọi
là mặt phẳng đi qua
sao cho tổng khoảng cách từ
và
đến
lớn nhất, biết rằng
không cắt đoạn
. Khi đó vectơ pháp tuyến của mặt phẳng
là:
Kiểm tra : Mặt phẳng (P) có phương trình 2x − 2y − z − 1 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại .
Kiểm tra : Mặt phẳng (P) có phương trình x+ 2z −3 = 0.
Thay tọa độ B, C vào (P) ta thấy B ∈ (P) nên loại .
Kiểm tra : Mặt phẳng (P) có phương trình −x + 2y − z + 2 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về 2 phía (P) nên loại .
Kiểm tra v: Mặt phẳng (P) có phương trình x − 2z + 1 = 0.
Thay tọa độ B, C vào (P) ta thấy B, C nằm về cùng phía (P) nên chọn .
Biết
và
là ba nghiệm của phương trình
,
trong đó
là nghiệm có phần ảo dương. Phần ảo của số phức
bằng:
Xét phương trình là phương trình bậc ba với hệ số thực nên luôn có một nghiệm thực là
.
Do đó phương trình tương đương với:
.
Nên là hai nghiệm phức của phương trình bậc hai với hệ số thực (1).
Suy ra .
Khi đó : .
Vậy phần ảo của là
.
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Tìm nguyên hàm của hàm số
?
Ta có:
Trong không gian với hệ tọa độ
, cho hai đường thẳng
và đường thẳng
. Viết phương trình đường thẳng
đi qua
, đồng thời vuông góc với cả hai đường thẳng
và
.
Đường thẳng và
có vectơ chỉ phương lần lượt là
Gọi là vectơ chỉ phương của đường thẳng ∆.
Do
Mà ∆ đi qua do đó ∆ có phương trình là
.
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Tính diện tích hình phẳng giới hạn bởi các đường
và trục hoành?
Phương trình hoành độ giao điểm
Khi đó diện tích hình phẳng theo yêu cầu bài toán là:
.
Cho hàm số
biết
,
liên tục trên
và
. Tính
?
Ta có:
Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
Cho
và mặt phẳng
. Mặt phẳng
song song với mặt phẳng
và
cách điểm
một khoảng bằng
. Phương trình mặt phẳng
là:
Vì
Mà
Vậy .
Tích phân
có giá trị là:
Ta có:
Đặt
Đổi cận
Xét
Đặt
Đổi cận
Xét
Đặt
Đổi cận
Biết rằng
và
, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:
Ta có:
, với
Họ các nguyên hàm của hàm số
là:
Ta có:
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Biết
và
là hai nghiệm phức của phương trình:
. Khi đó
bằng:
Ta có:
Áp dụng hệ thức Viet ta có:
Suy ra ta có:.
Cho số phức z thỏa mãn
. Giá trị của
là:
Với
Với
Cho hàm số
xác định trên tập số thực thỏa mãn
và
. Tính
biết rằng
?
Vì nên ta có:
Cho
Do đó
Tính diện tích hình phẳng giới hạn bởi hai đồ thị
và
?
Phương trình hoành độ giao điểm
Diện tích hình giới hạn là
Viết phương trình tham số của đường thẳng ![]()
Theo đề bài, đường thẳng d là giao của 2 mặt phẳng, ta gọi 2 mặt phẳng (P) và (Q) tương ứng lần lượt là:
Mp (P) và (Q) có 2 vecto pháp tuyến tương ứng là:
Từ đây ta suy ra vecto chỉ phương của đường thẳng (d) là tích có hướng của 2 VTPT:
Cho y = 0, ta có:
Đường thẳng (d) đi qua A( 1, 0, 2) và nhận vecto (1,2,4) làm 1 VTCP có PTTS là:
Xác định tích phân
?
Ta có:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho bốn điểm
và
. Câu nào sau đây đúng? ABDC là:
Ta có
Do đó cùng phương
ABDC là hình thang.
Trong không gian
, cho ba mặt phẳng
lần lượt có phương trình là
. Mệnh đề nào dưới đây đúng?
Mặt phẳng (P) có một vectơ pháp tuyến là và mặt phẳng (R) có một vectơ pháp tuyến là
Do nên vectơ
không cùng phương với vectơ
.
Vậy mặt phẳng (R) cắt mặt phẳng (P).
Cho số phức
. Tìm số phức
?
Ta có:
Giả sử
với
là hằng số. Tổng các nghiệm của phương trình
bằng:
Ta có:
Đặt
Theo định lí Vi – et ta thấy phương trình có hai nghiệm
và
.
Trong không gian với hệ trục tọa độ
, cho ba vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
Vậy
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Trong không gian hệ trục tọa độ
, cho hai điểm
. Tìm tọa độ điểm
sao cho
?
Gọi tọa độ độ điểm .
Ta có:
Lại có:
Vậy đáp án cần tìm là: .
Ba mặt phẳng
cắt nhau tại điểm
. Chọn kết luận đúng?
Tọa độ điểm là nghiệm của hệ phương trình
Biết luôn có hai số
để
là một nguyên hàm của hàm số
và thỏa mãn
. Khẳng định nào sau đây là đúng và đầy đủ nhất?
Do . Vì luôn có hai số
để
là một nguyên hàm của hàm số
nên
không phải là hàm hằng.
Từ giả thiết
Lấy nguyên hàm hai vế với vi phân ta được:
với C là hằng số.
TH1: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
TH2: ta có:
Đồng nhất hệ số ta có:
Loại do điều kiện
. Do đó
Vậy khẳng định đúng và đầy đủ nhất là .
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng
đi qua
và có vectơ chỉ phương
cắt
tại điểm
. Điểm
thay đổi trong
sao cho
luôn nhìn đoạn
dưới góc
. Khi độ dài
lớn nhất, đường thẳng
đi qua điểm nào trong các điểm sau?
Hình vẽ minh họa
Phương trình
Đường thẳng d cắt P tại .
Gọi H là hình chiếu của A lên (P).
Ta có:
Vì nên MB ⊥ MH suy ra
.
Do đó: MB lớn nhất bằng BH khi
Vậy MB đi qua B, nhận là vectơ chỉ phương.
Phương trình do đó MB đi qua điểm
.
Cho số phức z thỏa mãn
. Môđun của số phức
là:
Ta có:
Tìm tổng các nghiệm của phương trình F(x) = x, biết F(x) là một nguyên hàm của hàm số
thỏa mãn F(2) = 0
Ta có: F(2) = 0 => C = 2
=>
Xét phương trình F(x) = x ta có:
Vậy tổng các nghiệm của phương trình đã cho bằng
Trong không gian hệ trục tọa độ
cho
. Khi đó tọa độ
với hệ
là:
Ta có:
Lại có
Họ nguyên hàm của hàm số
là:
Ta có:
Cho số phức
. Phần thực và phần ảo của số phức
lần lượt là:
Ta có:
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.