Gọi và là hai nghiệm phức của phương trình
. Giá trị của biểu thức
là:
Ta có:
Suy ra
Gọi và là hai nghiệm phức của phương trình
. Giá trị của biểu thức
là:
Ta có:
Suy ra
Trong không gian
, cho tọa độ các vectơ
;
và
. Mệnh đề nào sau đây sai?
Ta có: suy ra “
” là mệnh đề sai.
Cho số phức
. Tính |z|
Ta có
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là
, chiều cao trong lòng cốc là
đang đựng một lượng nước.

Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là , chiều cao trong lòng cốc là
đang đựng một lượng nước.
Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Trong không gian
, phương trình đường thẳng
đi qua hai điểm
là:
Ta có là một vectơ chỉ phương của đường thẳng
.
đi qua điểm
, nên có phương trình là:
.
Cho hai đường thẳng 
Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).
Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP
Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :
Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :
Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Trong không gian
, cho bốn điểm
và
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm
?
Hình vẽ minh họa
Ta có mặt phẳng (ABC): .
Suy ra thuộc mặt phẳng (ABC).
Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.
Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là .
Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm là
.
Biết rằng có n mặt phẳng với phương trình tương ứng là ![]()
đi qua
(nhưng không đi qua O) và cắt các trục tọa độ
theo thứ tự tại
sao cho hình chóp
là hình chóp đều. Tính tổng
.
Giả sử , với
. Khi đó trọng tâm của tam giác ABC là
mặt phẳng (Pi) có dạng
.
Theo bài ra (Pi) đi qua M(1; 2; 3) nên ta có:
Mặt khác, vì O.ABC là hình chóp đều nên tam giác ABC đều nên:
kết hợp với (1) ta có các trường hợp sau:
nên
không thỏa yêu cầu.
nên
nên
, không thỏa yêu cầu
nên
trùng với (P2)
nên
trùng với (P3)
nên
trùng với (P1)
Vậy .
Cho hình hộp chữ nhật ABCD.EFGH có
trong hệ trục Oxyz sao cho A trùng với
lần lượt trùng với Ox, Oy, Oz. Gọi M, N, P lần lượt là trung điểm BC, EF, DH. Tính khoảng cách giữa NP và CG.
Ta biểu diễn các điểm N, P, C, G theo a, b, c được:
Từ đó, ta tính được các vecto tương ứng:
Để tính khoảng cách giữa NP và CG, ta cần tính tích có hướng và tích độ dài giữa chúng rồi áp dụng CT tính khoảng cách:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Gọi ∆’ là đường thẳng đối xứng với đường thẳng ∆ qua (Oxy). Tìm một vectơ chỉ phương của đường thẳng ∆’.
Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm A(4; 11; 0).
Ta thấy B(1; 2; 3) ∈ ∆ và B’(1; 2; −3) là điểm đối xứng của điểm B qua mặt phẳng (Oxy).
Đường thẳng ∆’ đi qua các điểm A, B’.
Ta có , từ đó suy ra
là một vectơ chỉ phương của đường thẳng ∆’.
Giá trị của tích phân
. Biểu thức có giá trị
là:
Giá trị của tích phân . Biểu thức
có giá trị là:
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Trong không gian
, cho hình bình hành
với
. Diện tích hình bình hành
bằng:
Gọi là diện tích hình bình hành
khi đó
Mà
Vậy diện tích hình bình hành bằng 2.
Cho hình hộp
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
đúng vì
đúng vì
đúng vì
sai vì
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Tích phân
bằng:
Ta có:
Tìm phần thực, phần ảo của số phức z thỏa mãn ![]()
Ta có:
Vậy số phức có phần thực là và phần ảo là 2.
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Trong không gian với hệ tọa độ
, cho hai mặt phẳng
và
. Tính khoảng cách giữa hai mặt phẳng (α) và (β)?
Ta thấy (α) và (β) song song với nhau nên với A(0; 2; 0) ∈ (α).
.
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Trong không gian
, cho tam giác
vuông tại
,
,
, đường thẳng
có phương trình
, đường thẳng
nằm trong mặt phẳng
. Biết rằng đỉnh
có cao độ âm. Tìm hoành độ của đỉnh
.
Hình vẽ minh họa:
Tọa độ điểm B là nghiệm của hệ phương trình
Do C ∈ BC nên
Theo giả thiết nên:
Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).
Gọi . Do
nên:
Vậy đáp án cần tìm là .
Cho hàm số
liên tục và dương trên
, hình phẳng giới hạn bởi các đường
, trục hoành và
có diện tích bằng 5. Tính tích phân 
Ta có:
Đặt ta được:
=>
Cho
và
. Tính
?
Ta có và
. Tính:
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Cho các số phức z thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
.
3 || ba || Ba
Cho các số phức z thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức
.
3 || ba || Ba
Gọi là điểm biểu diễn số phức z trong mặt phẳng phức.
Có
Vậy hoặc
.
Gọi thì
. Khi đó
hoặc
.
Vậy
Gọi (H) là hình phẳng giới hạn bởi các đường
và
(với
) được minh họa bằng hình vẽ bên (phần tô đậm):

Cho
quay quanh trục
, thể tích khối tròn xoay tạo thành bằng bao nhiêu?
Ta có:
Thể tích khối tròn xoay cần tính là
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Cho
với
là các số hữu tỉ. Giá trị của biểu thức
bằng:
Ta có:
Suy ra
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số ![]()
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Cho hàm số
là một nguyên hàm của
. Khi đó số điểm cực trị của hàm số
là:
Ta có: là một nguyên hàm của hàm số
. Do
là nghiệm bội 1 còn
là nghiệm bội 2 nên hàm số
có hai điểm cực trị.
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Nguyên hàm của hàm số
là:
Ta có:
.
Cho hàm số
có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Cho
là miền hình phẳng giới hạn bởi các đường
và đồ thị của hai hàm số
. Gọi V là thể tích của vật thể tròn xoay khi quay
quanh Ox. Mệnh đề nào dưới đây đúng?
Thể tích của khối tròn xoay cần tính là:
Biết
. Khi đó
bằng:
Ta có:
Trong không gian
, cho hai vectơ
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án cần tìm là .
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Nếu
thì
bằng:
Ta có:
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Mặt khác
=>
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Trong không gian với hệ trục tọa độ
, cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a)
. Đúng||Sai
b) Ba điểm
thẳng hàng. Sai||Đúng
c) Điểm
là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm
trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
Trong không gian với hệ trục tọa độ , cho
, với
là hai vectơ đơn vị trên hai trục tọa độ
, hai điểm
.
a) . Đúng||Sai
b) Ba điểm thẳng hàng. Sai||Đúng
c) Điểm là điểm đối xứng của với
qua
. Khi đó
. Đúng||Sai
d) Điểm trên mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Khi đó
. Đúng||Sai
a) Đúng: Vì nên
.
b) Sai: Ta có .
Vì nên
không cùng phương suy ra
không thẳng hàng.
c) Đúng
Vì là điểm đối xứng với
qua
nên
là trung điểm của
.
Ta có suy ra
.
Do đó . Vậy
.
d) Đúng. Gọi là điểm thỏa mãn
.
Ta có:
Do không thay đổi nên
nhỏ nhất khi
nhỏ nhất hay
là hình chiếu của điểm
trên mặt phẳng
.
Do đó suy ra
.
Vậy .
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Cho số phức
. Số phức
bằng:
Ta có:
Cho hai mặt phẳng
và
. Với
cho biết
và cặp vectơ chỉ phương
. Với
cho PTTQ
. Phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của
và
, qua điểm
là:
Trước tiên, ta cần đưa phương trình về dạng tổng quát.
Theo đề bài, ta có và cặp vectơ chỉ phương
nên vecto pháp tuyến của mp
là tích có hướng của 2 vecto chỉ phương.
Ta có .
Chọn làm vectơ pháp tuyến cho
thì phương trình tổng quát của
có dạng
.
Vậy phương trình
Để tìm phương trình tổng quát của mặt phẳng (P) chứa giao tuyến của và
ta xét chùm mặt phẳng :
Mặt khác, ta có
Thế vào (*) ta được: