Số phức
bằng:
Ta có:
Số phức
bằng:
Ta có:
Cho
và
. Hãy xác định tọa độ của
?
Ta có:
Trong không gian
, cho hai điểm
. Biết mặt phẳng
đi qua điểm
và cách
một khoảng lớn nhất. Phương trình mặt phẳng
là
Hình vẽ minh họa
Gọi H là hình chiếu vuông góc của B lên (P), suy ra d(B, (P)) = AH.
Ta có BH ≤ AB.
Dấu “=” xảy ra ⇔ H ≡ A
⇒ BHmax = AB khi AB ⊥ (P).
Ta có:
Phương trình tổng quát của mặt phẳng đi qua
và song song với vectơ
là:
Theo đề bài, ta có:
Chọn làm 1 vectơ pháp tuyến.
Phương trình mặt phẳng cần tìm có dạng :
Mà mp lại qua A nên
Phương trình cần tìm là: .
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành,
và
bằng
Diện tích hình giới hạn là
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Cho hai số phức
. Môđun của số phức
là:
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Tìm nguyên hàm của hàm số
?
Ta có:
Giá trị của
bằng
Ta có:
Trong không gian với hệ tọa độ
, cho mặt phẳng
và
với
là tham số thực. Tổng các giá trị của m để
và
vuông góc nhau bằng bao nhiêu?
Ta có:
có vectơ pháp tuyến
có véc-tơ pháp tuyến
(P) và (Q) vuông góc với nhau khi và chỉ khi
Điều này tương đương với
.
Cho hình lăng trụ tam giác
. Đặt
. Trong các mệnh đề sau, mệnh đề nào đúng?
Ta có:
Do đó
Một ô tô đang chuyển động đều với vận tốc
thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
(trong đó
là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian
giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?
Khi dừng hẳn
Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):
Gọi
lần lượt là trung điểm của các cạnh
của tứ diện
. Gọi
là trung điểm của đoạn
và
là một điểm bất kì trong không gian. Tìm giá trị thực của
thỏa mãn đẳng thức vectơ
?
Hình vẽ minh họa
Vì lần lượt là trung điểm của các cạnh
nên ta có:
.
Mặt khác (vì I là trung điểm của MN) suy ra
Theo bài ra ta có:
Hàm số
là nguyên hàm của
. Hỏi hàm số
có bao nhiêu điểm cực trị?
TXĐ:
Ta có:
Phương trình có 1 nghiệm đơn
và một nghiệm kép
nên hàm số
có 1 điểm cực trị.
Tìm nguyên hàm của hàm số ![]()
Ta có:
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Cho số phức
, giá trị của số phức
là?
Ta có:
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính
.
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Nguyên hàm của hàm số
là:
Ta có:
Cho hàm số
có đạo hàm liên tục trên
,
và thỏa mãn hệ thức
với
. Giá trị của
là:
Ta có:
Mặt khác
Vậy
Vì .
Cho hai đường thẳng: ![]()
và mặt phẳng
.
Hình chiếu của
theo phương của
lên mặt phẳng
có phương trình tổng quát:
Vectơ chỉ phương của Vectơ chỉ phương của
Phương trình của mặt phẳng chứa và có phương của
có dạng:
Điểm A (7, 3, 9) thuộc mặt phẳng này
=> D = -53
Giao tuyến của mặt phẳng này với mặt phẳng là hình chiếu của
theo phương của
lên
:
Trong không gian với hệ tọa độ
, cho mặt phẳng
có phương trình dạng
,
và có
. Để mặt phẳng
đi qua điểm
và cách gốc tọa độ
một khoảng lớn nhất thì đẳng thức nào sau đây đúng?
Mặt phẳng (P) đi qua điểm suy ra
.
Khi đó:
Đẳng thức xảy ra khi và chỉ khi:
Từ đó tìm được hoặc
.
Vậy .
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Cho hàm số
liên tục trên
thỏa mãn
và
. Tính tích phân
?
Ta có: .
Ta có:
Đặt . Đổi cận
do đó:
Ta có:
Đặt . Đổi cận
do đó:
.
Vậy
Trong không gian tọa độ
, góc giữa hai vectơ
và
là:
Ta có:
Trong không gian
, cho đường thẳng
và hai điểm
. Gọi
là đường thẳng đi qua điểm
và cắt đường thẳng
sao cho khoảng cách từ điểm
đến đường thẳng
là nhỏ nhất. Phương trình đường thẳng
là:
Gọi . Khi đó
Ta có
Khoảng cách từ B đến d được tính như sau:
Xét hàm số ta có:
Bảng biến thiên
Dựa vào bảng biến thiên ta có: nhỏ nhất khi
đạt giá trị nhỏ nhất bằng
tại
Suy ra
Khi đó vectơ là vectơ chỉ phương của đường thẳng
Vậy phương trình đường thẳng cần tìm là: .
Cho
là hình phẳng giới hạn bởi đường cong
và đường thẳng
. Tính thể tích
của vật thể tròn xoay do hình phẳng
quay quanh trục hoành.
Phương trình hoành độ giao điểm là:
Thể tích cần tính là:
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là
, chiều cao trong lòng cốc là
đang đựng một lượng nước.

Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là , chiều cao trong lòng cốc là
đang đựng một lượng nước.
Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.
Trong không gian với hệ tọa độ
, cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tỉ số
bằng
Ta có:
Trong không gian
, tìm phương trình mặt phẳng
cắt ba trục
lần lượt tại ba điểm
?
Phương trình mặt phẳng :
Số phức có phần thực bằng 1 và phần ảo bằng 3 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Cho đường thẳng
có một vec-tơ chỉ phương là:
Ta có vectơ pháp tuyến của hai mặt phẳng
và
lần lượt là
Ta có vectơ chỉ phương của (D) là tích có hướng của 2 vecto pháp tuyến của 2 mặt phẳng:
Trong không gian với hệ tọa độ
, cho đường thẳng
và hai điểm
. Tìm điểm
thuộc
sao cho
vuông tại
.
Điểm thuộc đường thẳng
nên
.
Ta có và
.
Tam giác vuông tại
khi và chỉ khi
Khi đó tọa độ điểm .
Tìm họ nguyên hàm của hàm số ![]()
Ta có:
Cho hàm số
có đạo hàm dương và liên tục trên
thỏa mãn
và
. Tích phân
là:
Áp dụng BĐT Cauchy-Schwarz:
Dấu "=" xảy ra khi chỉ khi
Cho hai hàm số
và
liên tục trên
và thỏa mãn
. Gọi
là thể tích của khối tròn xoay sinh ra khi quay quanh
hình phẳng
giới hạn bởi các đường:
. Khi đó
được tính bởi công thức nào sau đây?
Ta cần nhớ lại công thức sau: Cho hai hàm số liên tục trên
. Khi đó thể tích của vật thể tròn xoay giới hạn bởi
(với
) và hai đường thẳng
khi quay quanh trục
là
.
Trong không gian với hệ tọa độ
, cho đường thẳng
. Gọi ∆’ là đường thẳng đối xứng với đường thẳng ∆ qua (Oxy). Tìm một vectơ chỉ phương của đường thẳng ∆’.
Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm A(4; 11; 0).
Ta thấy B(1; 2; 3) ∈ ∆ và B’(1; 2; −3) là điểm đối xứng của điểm B qua mặt phẳng (Oxy).
Đường thẳng ∆’ đi qua các điểm A, B’.
Ta có , từ đó suy ra
là một vectơ chỉ phương của đường thẳng ∆’.
Cho hàm số
liên tục trên đoạn
và
là một nguyên hàm của
. Biết rằng
. Xác định tích phân
?
Ta có: .
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Phần thực của số phức
là:
Ta có:
Biết
là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi