Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên
và thỏa mãn f(1) = 1,
. Mệnh đề nào sau đây đúng?
Ta có: và
=>
=>
Mà f(1) = 1 => và
Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên
và thỏa mãn f(1) = 1,
. Mệnh đề nào sau đây đúng?
Ta có: và
=>
=>
Mà f(1) = 1 => và
Trong không gian hệ trục tọa độ
, cho hai vectơ
cùng phương. Tìm cặp số thực
?
Ta có hai vectơ cùng phương
Vậy .
Số phức
có phần thực là?
2
Số phức có phần thực là?
2
Ta có:
Vậy phần thực của số phức
Trong không gian
, gọi
là mặt phẳng chứa trục
và vuông góc với mặt phẳng
. Phương trình mặt phẳng
là:
Ta có: (Q) có một vectơ pháp tuyến là .
Từ giả thiết, ta suy ra có một vectơ pháp tuyến là
.
Do (P) đi qua gốc tọa độ O nên phương trình của (P) là .
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Xác định nguyên hàm
của hàm số
?
Ta có:
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Cho các số phức z thỏa mãn
. Tìm giá trị nhỏ nhất của biểu thức
.
3 || ba || Ba
Cho các số phức z thỏa mãn . Tìm giá trị nhỏ nhất của biểu thức
.
3 || ba || Ba
Gọi là điểm biểu diễn số phức z trong mặt phẳng phức.
Có
Vậy hoặc
.
Gọi thì
. Khi đó
hoặc
.
Vậy
Cho hàm số
liên tục trên đoạn
có đồ thị gồm hai đoạn thẳng và nửa đường tròn như hình vẽ:

Tính giá trị
?
Hình vẽ minh họa
Dựa vào đồ thị ta có: suy ra phương trình đường thẳng
Phương trình đường tròn :
Điểm nên phương trình đường thẳng
là:
Vậy
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Trong không gian với hệ tọa độ
, cho đường thẳng
. Gọi
là hình chiếu vuông góc của
trên mặt phẳng tọa độ
. Viết phương trình đường thẳng
.
Ta có: d đi qua M(2; −3; 1) và có vectơ chỉ phương
Mặt phẳng (Oxz) có vectơ pháp tuyến và có phương trình y = 0.
Suy ra
Gọi H là hình chiếu vuông góc của M trên Oxz ⇒ H(2; 0; 1).
Suy ra d' là đường thẳng qua H(2; 0; 1) và nhận vectơ làm vectơ chỉ phương.
Vậy phương trình đường thẳng cần tìm là .
Trong không gian với hệ tọa độ cho các điểm
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua 3 trong 5 điểm
?
Mặt phẳng có phương trình là:
, do đó
.
Lại có A là trung điểm BD.
Ta có chứa các điểm O, A, B, D;
chứa các điểm O, B, C;
chứa các điểm O, A, C;
chứa các điểm A, B, C, D;
chứa các điểm O, C ,D.
Vậy có mặt phẳng phân biệt thỏa mãn bài toán.
Tích phân
. Giá trị nguyên của a là:
Ta có:
Đặt
Đổi cận
Theo đề bài:
Cho hai số phức
và
. Tìm phần ảo b của số phức
.
Ta có:
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Xác định nguyên hàm của hàm số
?
Ta có: .
Trong không gian
, phương trình của mặt phẳng
đi qua điểm
, đồng thời vuông góc với hai mặt phẳng
là:
Ta có lần lượt là vectơ pháp tuyến của các mặt phẳng
.
Do mặt phẳng vuông góc với hai mặt phẳng
nên
là một vectơ pháp tuyến của
.
Từ đó suy ra mặt phẳng có phương trình
.
Trong không gian
, cho bốn điểm
và
. Có tất cả bao nhiêu mặt phẳng phân biệt đi qua ba trong năm điểm
?
Hình vẽ minh họa
Ta có mặt phẳng (ABC): .
Suy ra thuộc mặt phẳng (ABC).
Số mặt phẳng qua ba trong bốn điểm A, B, C, D là 1.
Số mặt phẳng qua điểm O và hai trong bốn điểm A, B, C, D là .
Vậy số mặt phẳng phân biệt đi qua ba trong năm điểm là
.
Cho số phức
. Tính |z|
Ta có
Cho hình phẳng
giới hạn bởi các đường
. Thể tích vật thể tròn xoay có được khi
quay quanh trục
bằng:
Gọi là thể tích khối tròn xoay cần tính. Ta có:
Diện tích hình phẳng giới hạn bởi các đường
, trục hoành;
và
bằng:
Hoành độ giao điểm của đồ thị hàm số và trục hoành là nghiệm của phương trình:
Diện tích hình phẳng giới hạn bởi các đường là:
Cho 3 vectơ
đều khác
. Ba vectơ
đồng phẳng khi và chỉ khi:
Ta có: theo điều kiện để 3 vectơ nên suy ra này sai.
Theo điều kiện đồng phẳng, nếu cùng vuông góc với
và
vuông góc với thì giá của
cùng song song với (P) . Suy ra đáp án này đúng.
Từ đây ta loại tiếp được đáp án: Cả 3 điều kiện trên thỏa mãn
Nếu xét tiếp đáp án:
thì khi có và cùng nằm trong mặt phẳng (Q) và có giá vuông góc (Q) nên sẽ nằm trong mặt phẳng vuông góc với mặt phẳng chứa và là mặt phẳng (Q).
Suy ra chúng không đồng phẳng.
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Ta có:
Xác định nguyên hàm
của hàm số
?
Ta có:
Trong không gian
, đường thẳng
có một vectơ chỉ phương là:
Đường thẳng có một vectơ chỉ phương là:
Cho hàm số
là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Tính tích phân
?
Ta có:
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Cho hình lập phương
; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Cho hình lập phương ; đáy là hình vuông cạnh
. Trên cạnh
lần lượt lấy các điểm
sao cho
. Tính số đo góc giữa hai đường thẳng
và
.
Diện tích S của hình phẳng giới hạn bởi đường cong
, trục hoành và hai đường thẳng
là
Phương trình hoành độ giao điểm
Khi đó:
Cho điểm
và đường thẳng
. Gọi A' là điểm đối xứng của A qua
. Tọa độ điểm A' là:
Đưa phương trình về dạng tham số:
Gọi (P) là mặt phẳng qua A và vuông góc với .
Phương trình mp (P) có dạng , qua A nên D = -2
Phương trình (P) là:
Thế x, y, z từ phương trình vào phương trình (P) được t=1
I là trung điểm của AA' nên:
.
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Trong không gian với hệ trục tọa độ
, cho điểm
. Khẳng định nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho F(x) là nguyên hàm của hàm số
thỏa mãn
. Tìm tập nghiệm S của phương trình ![]()
Đặt
Ta có:
Trong không gian
, hãy tính
và
lần lượt là khoảng cách từ điểm
đến mặt phẳng
và mặt phẳng
?
Do mặt phẳng có phương trình y = 0 nên
Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên
Trong không gian với hệ tọa độ
, gọi
là mặt phẳng chứa đường thẳng
và vuông góc với mặt phẳng
. Hỏi giao tuyến của
và
đi qua điểm nào dưới đây?
Ta có:
Suy ra
Khi đó giao tuyến thỏa hệ
Thay các phương án vào hệ, ta nhận phương án .
Gọi
là diện tích hình phẳng giới hạn bởi đồ thị hàm số
và trục hoành như hình vẽ:

Mệnh đề nào sau đây sai?
Phương trình hoành độ giao điểm của đồ thị hàm số và trục hoành là:
Từ hình vẽ ta thấy
Do đó
Vậy mệnh đề sai là:
Biết
. Khi đó
tương ứng bằng
Ta có:
Xác định giá trị của tham số
thỏa mãn
?
Ta có:
Vậy đáp án .
Cho hình hộp chữ nhật ABCD.EFGH có AB = a; AD = b; AE = c trong hệ trục Oxyz sao cho A trùng với
lần lượt trùng với Ox, Oy, Oz . Gọi M, N, P lần lượt là trung điểm của BC, EF, DH. Viết phương trình tổng quát của đường thẳng MN.
Theo đề bài, ta biểu diễn được tọa độ các trung điểm M và N theo a, b, c lần lượt là:
(MN) là đường thẳng đi qua M và nhận vecto là 1 VTCP có PT là:
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Trong không gian với hệ tọa độ
, cho đường thẳng
. Vectơ nào dưới đây là vectơ chỉ phương của
?
Ta có: suy ra vectơ chỉ phương của đường thẳng d là
Tìm nguyên hàm
.
Ta có:
Tích phân
bằng:
Ta có:
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .