Trong không gian với hệ tọa độ
, cho tứ diện đều
có
với
. Tính
?
Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).
Ta có:
Đường thẳng đi qua G vuông góc với (ABC) có phương trình
Do đó
Mà
Vì
Trong không gian với hệ tọa độ
, cho tứ diện đều
có
với
. Tính
?
Gọi G là trọng tâm tam giác ABC, suy ra G(2; 0; 3).
Ta có:
Đường thẳng đi qua G vuông góc với (ABC) có phương trình
Do đó
Mà
Vì
Trong không gian với hệ tọa độ
, cho ba điểm
. Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng
?
Ta có:
Vậy là đáp án cần tìm.
Cho
là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Ba mặt phẳng
cắt nhau tại điểm
. Chọn kết luận đúng?
Tọa độ điểm là nghiệm của hệ phương trình
Gọi
là hình chiếu của
lên đường thẳng
. Đẳng thức nào dưới đây đúng?
Vì
(d) có vtcp
Suy ra . Vậy
Số phức liên hợp của số phức
là
=
= a - bi
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Họ nguyên hàm của hàm số
là:
Ta có:
Cho hình lập phương
có cạnh bằng
(tham khảo hình vẽ).

Các khẳng định sau đúng hay sai?
a)
. Đúng||Sai
b)
. Đúng||Sai
c)
. Đúng||Sai
d)
. Sai||Đúng
Cho hình lập phương có cạnh bằng
(tham khảo hình vẽ).
Các khẳng định sau đúng hay sai?
a) . Đúng||Sai
b) . Đúng||Sai
c) . Đúng||Sai
d) . Sai||Đúng
a) Vì là hình bình hành nên
.
b) Vì là hình hộp nên
.
c) Vì nên
.
d) Tam giác vuông tại
nên
.
Ta có
.
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Một học sinh đi học từ nhà đến trường bằng xe đạp với vận tốc thay đổi theo thời gian được tính bởi công thức
. Biết rằng sau khi đi được 1 phút thì quãng đường học sinh đó đi được là
. Biết quãng đường từ nhà đến trường là
. Hỏi thời gian học sinh đó đi đến trường là bao nhiêu phút?
Ta có:
Vì
Để học sinh đó đến trường thì
Vậy đáp án cần tìm là phút.
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Cho hàm số
có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Cho số phức
. Tìm số phức
?
Ta có:
Trong không gian
, cho vectơ
. Khi đó tọa độ vectơ
là:
Ta có:
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Tìm họ nguyên hàm của hàm số ![]()
Ta có:
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Tích phân
, với
có giá trị là:
Ta có:
Trong không gian
, đường thẳng đi qua hai điểm
và
có phương trình tham số là:
Ta có:
Đường thẳng đi qua hai điểm A(1; 2; −3) và B(2; −3; 1) có phương trình tham số là
Với t = −2, ta được M(3; −8; 5) thuộc đường thẳng AB. Khi đó, đường thẳng AB có phương trình tham số .
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Cho F(x) là một nguyên hàm của hàm số
. Hàm số
có bao nhiêu điểm cực trị?
=> có 5 nghiệm đơn
=> Hàm số có 5 điểm cực trị
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Cho đường thẳng
và parabol
(
là tham số thực). Gọi
lần lượt là diện tích của hai hình phẳng được tô đậm và gạch chéo trong hình vẽ bên. Khi
thì
thuộc khoảng nào dưới đây?

Phương trình hoành độ giao điểm của của hai đồ thị:
Theo giả thiết, phương trình có hai nghiệm phân biệt
Khi đó, phương trình có hai nghiệm thỏa mãn:
Diện tích hình phẳng:
Diện tích hình phẳng:
Theo giả thiết ta có:
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Trong không gian
,cho hai đường thẳng
và
. Khoảng cách giữa hai đường thẳng
và
là:
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Đường thẳng đi qua điểm
và có vectơ chỉ phương
Khoảng cách giữa hai đường thẳng và
là:
Tìm họ nguyên hàm của hàm số ![]()
Giá trị tích phân
bằng:
Ta có:
Trong không gian với hệ tọa độ
, cho hai điểm
. Độ dài của đoạn
là
Ta có:
khi đó độ dài đoạn
bằng:
Tính tích phân
?
Ta có:
.
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Trong không gian, với hệ tọa độ
, cho các điểm
. Mặt phẳng
đi qua
, trực tâm
của tam giác
và vuông góc với mặt phẳng
có phương trình là
Ta có:
Gọi tọa độ trực tâm khi đó
Theo đề bài ta có
Gọi là VTPT của mặt phẳng
ta có:
Phương trình mặt phẳng (P) đi qua A(0; 1; 2) có một VTPT là là
Vậy .
Trong không gian cho hình hộp
. Hỏi bốn vectơ nào có giá cùng thuộc một mặt phẳng?
Hình vẽ minh họa
Từ hình vẽ ta thấy các vectơ có giá cùng thuộc một mặt phẳng
.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Biết rằng
. Mệnh đề nào sau đây đúng?
Ta có:
Khi đó
Suy ra suy ra
.
Tích phân
có giá trị là:
Ta có: và
Xét
Đặt
Đổi cận
Xét
Đặt
Đổi cận
Tìm nguyên hàm của hàm số
?
Ta có:
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Trong không gian với hệ tọa độ
, cho bốn điểm
,
và M thay đổi sao cho hình chiếu của M lên mặt phẳng
nằm trong tam giác ABC và các mặt phẳng
hợp với mặt phẳng
các góc bằng nhau. Tính giá trị nhỏ nhất của OM.
Hình vẽ minh họa
Gọi H là hình chiếu của M lên mặt phẳng (ABC).
Giả thiết suy ra H là tâm đường tròn nội tiếp tam giác ABC nên thỏa mãn
Ta có , suy ra
Phương trình đường thẳng MH nhận làm vectơ chỉ phương nên MH là:
Khi đó:
Cho số phức z thỏa mãn
. Môđun của số phức
là:
Ta có:
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Thể tích khối tròn xoay khi quay hình phẳng
giới hạn bởi các đường
quanh trục
có kết quả có dạng
với
là các số nguyên dương và
là phân số tối giản. Khi đó giá trị của
bằng:
Phương trình hoành độ giao
Thể tích cần tính
Suy ra .
Nguyên hàm của hàm số
là:
Ta có:
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Cho
và
. Điểm
sao cho
và đoạn
bằng 3 lần khoảng cách từ
đến
. Khẳng định nào sau đây đúng?
Ta có:
.
Trong không gian với hệ tọa độ
, cho mặt phẳng
cắt các trục tọa độ tại
. Biết trọng tâm của tam giác
là
. Mặt phẳng
song song với mặt phẳng nào sau đây?
Gọi là giao điểm với ba trục tọa độ.
Do G là trọng tâm tam giác ABC nên
Vậy phương trình mặt phẳng là
Vậy mặt phẳng song song với trong các đáp án đã cho là
.
Cho
là một nguyên hàm của hàm số
. Khi đó hiệu số
bằng:
Theo định nghĩa tích phân ta có:
suy ra
.