Cho bốn điểm
và
. Câu nào sau đây đúng? ABDC là:
Ta có
Do đó cùng phương
ABDC là hình thang.
Cho bốn điểm
và
. Câu nào sau đây đúng? ABDC là:
Ta có
Do đó cùng phương
ABDC là hình thang.
Cho
là một nguyên hàm của hàm số
trên khoảng
thỏa mãn
. Giá trị của biểu thức
bằng:
Ta có:
Suy ra mà
.Hay
Ta có:
Cho hai số phức
và
. Tìm phần ảo b của số phức
.
Ta có:
Cho đường cong (C)
. Xét điểm A có hoành độ dương thuộc (C), tiếp tuyến của (C) tại A tạo với (C) một hình phẳng có diện tích bằng 27. Hoành độ điểm A thuộc khoảng nào dưới đây?
Ta có:
Ta có:
Phương trình tiếp tuyến d của (C) tại A là
Ta có phương trình hoành độ giao điểm d và (C) là:
Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C).
Ta có:
Tính diện tích hình phẳng giới hạn bởi các đường
?
Phương trình hoành độ giao điểm
Diện tích hình phẳng là:
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Tính tổng
?
Ta có:
.
Do đó
.
Mặt khác:
.
Đặt .
Đổi cận và
. Khi đó
Biết
. Khi đó
có giá trị bằng:
Ta có:
Một chiếc máy bay di chuyển với vận tốc là
. Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Cho tam giác ABC có
.
Viết phương trình chính tắc của cạnh AB.
(AB) là đường thẳng đi qua A và B nên có 1 vecto chỉ phương:
(AB) đi qua A (1, 2, -3) và nhận vecto làm 1 VTCP có phương trình chính tắc là:
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số
,
liên tục trên đoạn
và hai đường thẳng
,
là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
.
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Trong không gian
, tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm đến mặt phẳng
là:
Số phức nào dưới đây là số thuần ảo?
Số phức z = a + bi có a = 0 được gọi là số thuần ảo hay là số ảo.
Trong không gian hệ trục tọa độ
, cho hai điểm
. Tìm tọa độ điểm
sao cho
?
Gọi tọa độ độ điểm .
Ta có:
Lại có:
Vậy đáp án cần tìm là: .
Trong không gian
, cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: do đó
Vậy đáp án cần tìm là .
Thể tích hình khối do hình phẳng giới hạn bởi các đường thẳng
quay quanh
.
Tung độ giao điểm
Cho 3 vectơ
đều khác
. Ba vectơ
đồng phẳng khi và chỉ khi:
Ta có: theo điều kiện để 3 vectơ nên suy ra này sai.
Theo điều kiện đồng phẳng, nếu cùng vuông góc với
và
vuông góc với thì giá của
cùng song song với (P) . Suy ra đáp án này đúng.
Từ đây ta loại tiếp được đáp án: Cả 3 điều kiện trên thỏa mãn
Nếu xét tiếp đáp án:
thì khi có và cùng nằm trong mặt phẳng (Q) và có giá vuông góc (Q) nên sẽ nằm trong mặt phẳng vuông góc với mặt phẳng chứa và là mặt phẳng (Q).
Suy ra chúng không đồng phẳng.
Tích phân
bằng:
Ta có:
.
Tìm tổng các giá trị của số thực a sao cho phương trình
có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Tìm tổng các giá trị của số thực a sao cho phương trình có nghiệm phức
thỏa mãn
.
4 || Bốn || bốn
Ta có với mọi thì phương trình
luôn có nghiệm phức.
và
.
Suy ra .
Từ (1) ta có , từ (2) ta có
.
Vậy tổng .
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
Cho
. Với
, khẳng định nào sau đây đúng?
Xét , đặt t = ax + b
=>
=>
Tìm nguyên hàm của hàm số
.
Ta có
Trong không gian
, cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Cho
là một nguyên hàm của hàm số
. Khi đó hiệu số
bằng:
Theo định nghĩa tích phân ta có:
suy ra
.
Trong không gian Oxyz, mặt phẳng
đi qua điểm
và vuông góc với trục Ox có phương trình là:
Ta có: .
Phương trình mặt phẳng đi qua và vuông góc với trục Ox có phương trình là:
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Trong không gian với hệ tọa độ
, cho 2 đường thẳng ![]()
. Tìm tất cả giá trị thực của
để
vuông góc với
?
Vectơ chỉ phương của lần lượt là:
.
Để thì
Tìm tọa độ giao điểm của đường thẳng
và mặt phẳng
?
Gọi I là giao điểm của d và (P).
Ta có
Suy ra
Tìm số phức
trong phương trình sau: ![]()
Ta có
Cho số phức
. Số phức
là số phức nào sau đây?
Ta có:
Suy ra
.
Cho hình hộp chữ nhật
có
. Mặt phẳng
thay đổi và luôn đi qua
, mặt phẳng
cắt các tia
lần lượt tại
(khác
). Tính tổng
sao cho thể tích khối tứ diện
nhỏ nhất.
Hình vẽ minh họa
Chọn hệ trục tọa độ sao cho
Khi đó .
Phương trình mặ phẳng
Vì
Thể tích khối đa diện AEFG là:
Do dó thể tích khối tứ diện AEFG nhỏ nhất bằng 27 khi và chỉ khi:
Khi đó
Họ nguyên hàm của hàm số
là:
Ta có: .
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi (L) là tập hợp tất cả các điểm M trong không gian thỏa mãn đẳng thức
. Biết rằng (L) là một đường tròn, đường tròn đó có bán kính r bằng bao nhiêu?
Gọi M(x; y; z) là tập hợp các điểm thỏa mãn yêu cầu bài toán.
Ta có
Từ giả thiết
Suy ra quỹ tích điểm M là đường tròn giao tuyến của mặt cầu tâm và mặt cầu tâm
Dễ thấy
Họ các nguyên hàm của hàm số
là:
Ta có:
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Nguyên hàm của hàm số
là
Ta có: .
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho số phức z thoả mãn
. Giá trị lớn nhất của biểu thức
bằng?
Đặt .
Từ giả thiết
(1).
Ta có
.
Dễ thấy P lớn nhất khi .
Khi đó
Do nên từ (1) ta có
.
Suy ra
Dấu = xảy ra khi
.
Trong không gian với hệ tọa độ
, cho các điểm
. Phương trình mặt phẳng
nào dưới đây đi qua
, gốc tọa độ
và cách đều hai điểm
và
?
Vì đi qua O nên phương trình mặt phẳng
có dạng
.
Vì A ∈ (P) và B, C cách đều (P) nên
Chọn a = −6, ta có b = 3, suy ra c = ±4.
Vậy có hai mặt phẳng thỏa mãn là hoặc
.
Trong không gian
, cho ba điểm
. Điểm
thuộc tia
sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện
bằng
có tọa độ là
Ta có D thuộc tia nên
với
.
Tính
Mặt phẳng : có vectơ pháp tuyến
và đi qua điểm
.
Ta có
Vậy .
Trong không gian với hệ toạ độ
, cho điểm
và đường thẳng
. Gọi
là mặt phẳng chứa
sao cho khoảng cách từ điểm
đến
là lớn nhất. Khoảng cách từ gốc tọa độ
đến
bằng:
Gọi K là hình chiếu vuông góc của A trên d và H là hình chiếu vuông góc của A trên (P) thì d(A,(P)) = AH ≤ AK không đổi.
Vậy d(A,(P)) lớn nhất khi và chỉ khi H ≡ K, khi đó (P) là mặt phẳng chứa d và vuông góc với AK.
Ta tìm được .