Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Trong không gian
, một vectơ pháp tuyến của mặt phẳng
là:
Mặt phẳng trên đi qua các điểm
Do đó vectơ pháp tuyến của mặt phẳng cùng phương với .
Ta có
Vậy chọn một vectơ pháp tuyến của mặt phẳng đó là .
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Cho hai điểm phân biệt
và một điểm
bất kì. Hãy xét xem mệnh đề nào sau đây là đúng?
Mệnh đề đúng: “Điểm thuộc đường thẳng
khi và chỉ khi
”.
Cho hình phẳng
giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Trong không gian
, cho mặt phẳng
. Tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm M đến mặt phẳng (P) là:
Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số
,
liên tục trên đoạn
và hai đường thẳng
,
là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
.
Cho hàm số
thỏa mãn
và
với mọi
. Tính
?
Ta có:
Với
Do đó
Vậy
Một ô tô xuất phát với vận tốc
sau khi đi được một khoảng thời gian
thì bất ngờ phanh gấp với vận tốc
và đi thêm được một khoảng thời gian
nữa thì dừng lại. Hỏi từ khi xuất phát đến lúc dừng lại thì ô tô đã đi được bao nhiêu mét?
Ta có: do đó khi gặp chướng ngại vật vật có vận tốc là
=>
Vật dừng lại khi
Quãng đường vật đi được là
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
Số phức z thỏa mãn:
là:
Ta áp dụng các quy tắc thực hiện phép tính, có:
Ngoài ra ta có thể sử dụng lệnh CALC trong máy tính để thử các phương án.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho số phức
và
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Vậy là khẳng định đúng.
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là
và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Trong không gian với hệ toạ độ Oxyz, đài kiểm soát không lưu sân bay có toạ độ O(0; 0; 0), mỗi đơn vị trên trục ứng với 1 km. Máy bay bay trong phạm vi cách đài kiểm soát 417 km sẽ hiển thị trên màn hình ra đa. Một máy bay đang ở vị trí A(– 688; – 185; 8), chuyển động theo đường thẳng d có vectơ chỉ phương là và hướng về đài kiểm soát không lưu. Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất. Tính khoảng cách máy bay và đài kiểm soát tại vị trí H ? (Kết quả làm tròn đến chữ số thập phân thứ hai).
Đáp án: 294,92 km.
Gọi H là vị trí mà máy bay bay gần đài kiểm soát không lưu nhất.
Khi đó, khoảng OH phải ngắn nhất, điều này xảy ra khi và chỉ khi OH ⊥ d.
Vì H ∈ d nên H( -688 + 91t ; -185 +75t; 8)
Ta có
OH ⊥ d ⟺ (- 688 + 91t).91 + (- 185 +75t).75 +8.0 =0
⟺13906t - 76483 = 0 ⟺
Suy ra
Khoảng cách giữa máy bay và đài kiểm soát không lưu lúc đó là:
Cho số phức
. Tính |z|
Ta có
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Một ô tô đang chạy đều với vận tốc
thì người lái xe đạp phanh. Từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
. Biết từ khi đạp phanh đến lúc dừng hẳn thì ô tô di chuyển được
. Tìm
?
Khi dừng hẳn
Quãng đường xe đi được từ khi đạp phanh đến lúc dừng hẳn là:
Trong không gian
, cho tam giác
vuông tại
,
,
, đường thẳng
có phương trình
, đường thẳng
nằm trong mặt phẳng
. Biết rằng đỉnh
có cao độ âm. Tìm hoành độ của đỉnh
.
Hình vẽ minh họa:
Tọa độ điểm B là nghiệm của hệ phương trình
Do C ∈ BC nên
Theo giả thiết nên:
Mặt khác đỉnh C có cao độ âm nên C(3; 4; −3).
Gọi . Do
nên:
Vậy đáp án cần tìm là .
Trong không gian với hệ tọa đô
, cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các tia
lần lượt tại các điểm
sao cho thể tích tứ diện
nhỏ nhất.
đi qua điểm nào dưới đây?
Gọi với
Phương trình mặt phẳng
Vì
Áp dụng bất đẳng thức Cauchy ta có:
Thể tích tứ diện là
Đẳng thức xảy ra khi
Phương trình mặt phẳng là
Mặt phẳng đi qua điểm
.
Trong không gian
, phương trình đường thẳng
đi qua hai điểm
là:
Ta có là một vectơ chỉ phương của đường thẳng
.
đi qua điểm
, nên có phương trình là:
.
Trong không gian với hệ tọa độ
, cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tỉ số
bằng
Ta có:
Trong không gian với hệ tọa độ
, cho hai điểm
. Độ dài của đoạn
là
Ta có:
khi đó độ dài đoạn
bằng:
Biết
là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Cho tứ diện
trọng tâm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Vì G là trọng tâm tứ diện ABCD nên suy ra:
Suy ra mệnh đề sai là .
bằng
Ta có .
Cho hàm số
, ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Hai đường thẳng
và
với cắt nhau tại M có tọa độ là :
Để (d’) cắt (d) tại
Nguyên hàm của hàm số
là
Ta có: .
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Gọi (H) là hình phẳng xác định bởi
và trục hoành. Tính thể tích khối tròn xoay khi quay hình (H) quanh trục Ox.
Hình vẽ minh họa:

Tọa độ giao điểm của (C) và trục hoành là (1; 0) và (2; 0)
Tọa độ giao điểm của (C) và (D) là (0; 2) và (4; 6)
Dễ thấy
Thể tích cần tìm là:
Cho tam giác ABC có
. Phương trình tổng quát của đường cao AH.
Theo đề bài, ta tính được:
Mp (ABC) có 2 VTCP là nên vecto pháp tuyến của (ABC) chính là tích có hướng của 2 VTCP trên. Ta có:
Vì AH là đường cao của tam giác ABC nên ta có .
Mặt khác nên ta viết được vecto chỉ phương của đường thẳng AH là tích có hướng của 2 vecto pháp tuyến
Từ đây, ta có phương trình chính tắc của
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Trong không gian với hệ tọa độ
, cho hai điểm
. Đường thẳng
đi qua tâm đường tròn nội tiếp tam giác
và vuông góc với mặt phẳng
. Hỏi
đi qua điểm nào dưới đây?
Ta có:
Gọi I là tâm đường tròn nội tiếp tam giác .
Phương trình đường thẳng
Đường thẳng ∆ đi qua điểm M(1; −1; 1).
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Cho hàm số
có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Cho số phức thỏa mãn điều kiện
.
Tìm giá trị nhỏ nhất của ![]()
1 || Một || một
Cho số phức thỏa mãn điều kiện .
Tìm giá trị nhỏ nhất của
1 || Một || một
Đặt
Ta có
.
TH1: (1)
TH2: .
Đặt .
.
(2)
Từ (1) và (2) , suy ra .
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Cho hàm số
có đạo hàm và liên tục trên đoạn
với
. Đặt
. Tìm giá trị nhỏ nhất của
?
Gọi sao cho
. Ta có:
Mà
Suy ra
Dấu bằng xảy ra khi và chỉ khi .
Vậy giá trị nhỏ nhất của đạt được bằng
khi
.
Tìm nguyên hàm của hàm số ![]()
Ta có:
Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số
quanh trục
bằng
Ta có:
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Tìm họ nguyên hàm của hàm số ![]()
Ta có:
Tích phân
bằng:
Ta có:
.
Cho a, b, c là các số thực và
. Giá trị của
bằng:
Cách 1: Ta có
và
.
Ta có
Cách 2: Chọn .
Ta có
Thử lại các đáp án với ta thấy chỉ có đáp án
thỏa mãn.
Trong không gian
, cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Một vật chuyển động với vận tốc ban đầu là
và gia tốc
. Hỏi sau khi chuyển động với gia tốc đó được 2 giây thì vận tốc của vật là bao nhiêu?
Ta có:
Do khi bắt đầu tăng tốc nên
Vận tốc của vật khi chuyển động với gia tốc đó được là
Cho hình hộp chữ nhật
có
. Mặt phẳng
thay đổi và luôn đi qua
, mặt phẳng
cắt các tia
lần lượt tại
(khác
). Tính tổng
sao cho thể tích khối tứ diện
nhỏ nhất.
Hình vẽ minh họa
Chọn hệ trục tọa độ sao cho
Khi đó .
Phương trình mặ phẳng
Vì
Thể tích khối đa diện AEFG là:
Do dó thể tích khối tứ diện AEFG nhỏ nhất bằng 27 khi và chỉ khi:
Khi đó