Đề thi HK2 Toán 12 Đề 1

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 50 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, điểm M(a;b;c) thuộc mặt phẳng (P):x + y + z - 6 = 0 và cách đều các điểm A(1;6;0),B( - 2;2; - 1),C(5; -
1;3). Tích T = a.b.c bằng

    Do M \in (P)MA^{2} = MB^{2} = MC^{2}, nên ta được hệ:

    \left\{ \begin{matrix}
a + b + c = 6 \\
(a - 1)^{2} + (b - 6)^{2} + c^{2} = (a + 2)^{2} + (b - 2)^{2} + (c +
1)^{2} \\
(a - 1)^{2} + (b - 6)^{2} + c^{2} = (a - 5)^{2} + (b + 1)^{2} + (c -
3)^{2} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
a + b + c = 6 \\
3a + 4b + c = 14 \\
4a - 7b + 3c = - 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
c = 3 \\
\end{matrix} ight.\  \Rightarrow T = 6

  • Câu 2: Thông hiểu

    Viết phương trình tổng quát của mặt phẳng (P) qua M (-2, 1, 3) và song song với mặt phẳng (Q): 2x\,\, + \,\,5y\,\, - \,\,3z\,\, + \,\,7 = \,\,0.

    Vì mp (P) // (Q) nên ta có PTTQ mp (P) sẽ có dạng là:

    \left( P ight):2x + 5y - 3z + D = 0

    Mặt khác, (P) qua M\left( { - 2,1,3} ight) \Rightarrow D = 8

    \Rightarrow \left( P ight):2x + 5y - 3z + 8 = 0

  • Câu 3: Nhận biết

    Hàm số f(x) = x^{3} + \sin x là một nguyên hàm của hàm số nào sau đây?

    Ta có: F'(x) = 3x^{2} + \cos
x

  • Câu 4: Nhận biết

    Tìm nguyên hàm của hàm số f\left( x ight) = {\left( {2x + 1} ight)^{2019}} bằng:

     Ta có:

    \int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]dx}  = \frac{1}{2}\int {\left[ {{{\left( {2x + 1} ight)}^{2019}}} ight]d\left( {2x + 1} ight)}

    = \frac{1}{2}\frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{2020}} + C = \frac{{{{\left( {2x + 1} ight)}^{2020}}}}{{4040}} + C

  • Câu 5: Nhận biết

    Tìm nguyên hàm của hàm số f(x) =
\frac{1}{(2x - 1)^{2}}?

    Ta có: \int_{}^{}{\frac{1}{(2x -1)^{2}}dx} = \int_{}^{}{(2x - 1)^{- 1}dx}

    = - \frac{1}{2}.\frac{1}{2x -2} + C = \frac{1}{2 - 4x} + C

  • Câu 6: Thông hiểu

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Đáp án là:

    Cho phương trình sau: z^4 – 4z^3 +7z^2 – 16z + 12 = 0. Tính tổng số tất cả các nghiệm của phương trình?

    4 || Bốn || bốn

    Do tổng tất cả các hệ số của phương trình z^4 – 4z^3 +7z^2 – 16z + 12 = 0 bằng 0 nên z^4 – 4z^3 +7z^2 – 16z + 12 = 0 có nghiệm z = 1.

    z^4 – 4z^3 +7z^2 – 16z + 12 = 0\Leftrightarrow (z – 1)(z^3 – 3z^2 + 4z – 12) = 0

    \Leftrightarrow (z – 1) (z – 3) (z^2 + 4) = 0

    \Leftrightarrow\left[ \begin{array}{l}z = 1\\z = 3\\{z^2} + 4 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z = 3\\z = 2i\\z =  - 2i\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.

  • Câu 7: Vận dụng

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

    Đáp án là:

    Gọi z là số phức thoả mãn z^2+z+1=0.

    Giá trị của biểu thức P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 là?

    30 || Ba mươi || ba mươi

     Dễ thấy rằng z=0 không thoả mãn z^2+z+1=0.

    Do đó ta có z^2+z+1=0

    \Leftrightarrow z+\dfrac{1}{z}=-1 \Rightarrow z^2+\dfrac{1}{z^2}=-1

    Ta cũng có z^3+\dfrac{1}{z^3}=(z+\dfrac{1}{z})^3-3z.\dfrac{1}{z}.(z+\dfrac{1}{z})=2

    z^4+\dfrac{1}{z^4}=(z^2+\dfrac{1}{z^2})^2-2=-1

    Vậy P=2(z^2+\dfrac{1}{z^2})^2+3(z^3+\dfrac{1}{z^3})^3+4(z^4+\dfrac{1}{z^4})^4 =30.

  • Câu 8: Nhận biết

    Viết công thức tính thể tích V của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục Ox tại các điểm x = a;x = b;a < b, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;(a \leq x \leq b)S(x).

    Thể tích của vật thể đã cho là: V =
\int_{a}^{b}{S(x)dx}.

  • Câu 9: Thông hiểu

    Cho F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x thỏa mãn F(0) = \frac{3}{2}. Chọn khẳng định đúng trong các khẳng định sau?

    Ta có: \int_{}^{}{\left( e^{x} + 2x
ight)dx} = e^{x} + x^{2} + C

    F(x) là một nguyên hàm của hàm số f(x) = e^{x} + 2x suy ra F(x) có dạng e^{x} + x^{2} + C

    Theo bài ra ta có: F(0) = \frac{3}{2}
\Leftrightarrow e^{0} + 0^{2} + C = \frac{3}{2} \Rightarrow C =
\frac{1}{2}

    Vậy F(x) = e^{x} + x^{2} +
\frac{1}{2}.

  • Câu 10: Nhận biết

    Tìm nguyên hàm của hàm số f(x) = \frac{x
- 1}{x^{2}}?

    Ta có: f(x) = \frac{x - 1}{x^{2}} =
\frac{1}{x} - \frac{1}{x^{2}} \Rightarrow F(x) = \ln|x| + \frac{1}{x} +
C

  • Câu 11: Vận dụng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} thỏa mãn f(x) + xf'(x)
= 3x^{2}f(2) = 8. Phương trình tiếp tuyến của đồ thị hàm số y
= f(x) tại giao điểm với trục hoành là:

    Ta có: f(x) + xf'(x) =
3x^{2}

    \Leftrightarrow (x)'f(x) +
xf'(x) = 3x^{2}

    \Leftrightarrow \left( xf'(x)
ight)' = 3x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( xf'(x)
ight)'dx} = \int_{}^{}{3x^{2}dx} \Leftrightarrow xf(x) = x^{3} +
C

    Lại có f(2) = 8 \Rightarrow 2f(2) = 8 + C
\Leftrightarrow 2.8 = C + 8 \Leftrightarrow C = 8

    Từ đó suy ra xf(x) = x^{3} + 8
\Leftrightarrow f(x) = \frac{x^{3} + 8}{x}

    Xét phương trình hoành độ giao điểm \frac{x^{3} + 8}{x} = 0 \Leftrightarrow x = -
2

    Ta có: f'(x) = \frac{2x^{3} -
8}{x^{2}} \Rightarrow f'( - 2) = - 6;f( - 2) = 0

    Phương trình tiếp tuyến tại giao điểm với trục hoành là

    y = f'( - 2)(x + 2) + f( -
2)

    \Leftrightarrow y = - 6(x + 2)
\Rightarrow y = - 6x - 12

  • Câu 12: Nhận biết

    Trong không gian Oxyz, đường thẳng d:\frac{x + 3}{1} = \frac{y - 1}{- 1}
= \frac{z - 5}{2} có một vectơ chỉ phương là:

    Đường thẳng (P) có một vectơ chỉ phương là: \overrightarrow{u_{4}} = ( - 1;\
1;\  - 2)

  • Câu 13: Thông hiểu

    Có bao nhiêu số thực b \in
(\pi;3\pi) sao cho \int_{\pi}^{b}{4\cos2xdx} = 1?

    Ta có:

    \int_{\pi}^{b}{4\cos2xdx} = 1\Leftrightarrow \left. \ 2\sin2x ight|_{\pi}^{b} = 1

    \Leftrightarrow \sin2b = 1\Leftrightarrow \left\lbrack \begin{matrix}b = \dfrac{\pi}{12} + k\pi \\b = \dfrac{5\pi}{12} + k\pi \\\end{matrix} ight.\ ;\left( k\mathbb{\in Z} ight)

    Do b \in (\pi;3\pi) nên có đúng 4 giá trị của b thỏa mãn.

  • Câu 14: Vận dụng cao

    Cho điểm M\left( { - 3,2, - 1} ight) và hai mặt phẳng \left( \alpha  ight):x + 3y - 5z + 3 = 0,\left( \beta  ight):2x - y - 2z - 5 = 0.

    Gọi (P) là mặt phẳng chứa điểm M , vuông góc với cả hai mặt phẳng (\alpha)(\beta) . Phương trình mặt phẳng (P):

     Theo đề bài, ta có:

    \left( \alpha  ight):x + 3y - 5z + 3 = 0 có vectơ pháp tuyến \overrightarrow a  = \left( {1,3, - 5} ight)

    \left( \beta  ight):2x - y - 2z - 5 = 0 có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1, - 2} ight)

    Suy ra tích có hướng giữa 2 vecto là \left[ {\overrightarrow a ,\overrightarrow b } ight] = \overrightarrow n  = \left( {1, - 8, - 7} ight)

    Ta chọn \vec{n} làm vectơ pháp tuyến cho mặt phẳng (P)

    Phương trình (P) có dạng x - 8y - 7z + D = 0

    Mặt khác, ta có M \in \left( \alpha  ight) \Leftrightarrow  - 3 - 16 + 7 + D = 0 \Leftrightarrow D = 12

    Vậy phương trình cần tìm là: (P): x - 8y - 7z + 12 = 0

  • Câu 15: Nhận biết

    Cho z_1 =2-iz_2 = 5+6i. Tính T = z_1 : z_2?

     Ta có z_1 =2-iz_2 = 5+6i. Tính:

     z_1 : z_2 = \frac {2-i}{5+6i}=\frac {(2-i)(5-6i)}{(5+6i)(5-6i)}=\frac{4}{61} - \frac{17}{61}i

  • Câu 16: Vận dụng

    Cho hàm số f(x) thỏa mãn \int_{0}^{3}\left\lbrack 2x\ln(x + 1) + xf'(x)
ightbrack dx = 0f(3) =
1. Biết \int_{0}^{3}{f(x)}dx =\frac{a + b\ln2}{2} với a;b \in
\mathbb{R}^{+}. Giá trị của biểu thức a + b là:

    Tính I = \int_{0}^{3}{2x\ln(x +
1)}dx

    Đặt \left\{ \begin{matrix}u = \ln(x + 1) \\dv = 2xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 1}dx \\v = x^{2} \\\end{matrix} ight. khi đó:

    I = \left. \ x^{2}\ln(x + 1)
ight|_{0}^{3} - \int_{0}^{3}{\frac{x^{2}}{x + 1}dx}

    = 9ln4 - \left. \ \left( \frac{x^{2}}{2}
- x + \ln|x + 1| ight) ight|_{0}^{3} = 16ln2 -
\frac{3}{2}

    Tính J =
\int_{0}^{3}{xf'(x)}dx.

    Đặt \left\{ \begin{matrix}
u_{J} = x \\
dv_{J} = f'(x)dx \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
du_{J} = dx \\
v_{J} = f(x) \\
\end{matrix} ight. khi đó

    J = \int_{0}^{3}{xf'(x)}dx = \left.
\ xf(x) ight|_{0}^{3} - \int_{0}^{3}{f(x)}dx

    \int_{0}^{3}\left\lbrack 2x\ln(x + 1)
+ xf'(x) ightbrack dx = 0

    \Rightarrow I + J = 0 \Rightarrow 16\ln2- \frac{3}{2} + 3 - \int_{0}^{3}{f(x)}dx = 0

    \Rightarrow \int_{0}^{3}{f(x)}dx = 16\ln2+ \frac{3}{2} = \frac{3 + 32\ln2}{2}

    \Rightarrow \left\{ \begin{matrix}
a = 3 \\
b = 32 \\
\end{matrix} ight.\  \Rightarrow a + b = 35

  • Câu 17: Nhận biết

    Cho hàm số F(x) là một nguyên hàm của f(x) = \frac{1}{2x - 1} , biết rằng F(1) = 2. Khi đó giá trị F(2) là:

    Ta có: F(x) = \int_{}^{}\frac{dx}{2x - 1}
= \frac{1}{2}\ln|2x - 1| + C;\left( C\mathbb{\in R} ight)

    F(1) = 2 \Rightarrow C = 2. Vậy với x > \frac{1}{2} thì F(x) = \frac{1}{2}\ln(2x - 1) +
2

    Vậy F(2) = \frac{1}{2}\ln3 +2.

  • Câu 18: Thông hiểu

    Xác định nguyên hàm F(x) của hàm số f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1}?

    Ta có:

    f(x) = \frac{x^{3} + 3x^{2} + 3x -
1}{x^{2} + 2x + 1} = \frac{(x + 1)^{3} - 2}{(x + 1)^{2}} = x + 1 -
\frac{2}{(x + 1)^{2}}

    \Rightarrow F(x) = \frac{x^{2}}{2} + x +
\frac{2}{x + 1} + C

  • Câu 19: Vận dụng cao

    Cho điểm P(-3 , 1, -1)  và đường thẳng (d): \left\{ \begin{array}{l}4x - 3y - 13 = 0\\y - 2z + 5 = 0\end{array} ight.

    Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:

    Chuyển (d) về dạng tham số : \left\{ \begin{array}{l}x =  - \frac{1}{2} + 3t\\y =  - 5 + 4t\\z = 2t\end{array} ight.

    Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: 3x + 4y + 2z + D = 0, cho qua P tính được D=7 .

    Ta có (Q): 3x + 4y + 2z + 7 = 0 .

    Thế x, y, z  theo t từ phương trình của (d) vào phương trình (Q) được t = \frac{1}{2}

    Giao điểm I của (d) và (Q)  là I (1, -3, 1) .

    Vì I là trung điểm của PP’ nên \Rightarrow P'\left( {5, - 7,3} ight).

  • Câu 20: Vận dụng cao

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đáp án là:

    Một cửa hàng bán cá thiết kế một con cá làm biểu tượng cho cửa hàng của mình ở biển quảng cáo như hình bên dưới. Chủ cửa hàng dùng một miếng gỗ mỏng có chiều dài là 4m và chiều rộng 2m. Ông dùng hai parabol có đỉnh là trung điểm của cạnh dài và đi qua hai điểm đầu của cạnh đối diện để tạo thành con cá (phần tô đậm). Tính diện tích con cá (tính cả phần mắt của con cá) theo đơn vị m2 (làm tròn kết quả đến hàng phần trăm).

    Đáp án:  4,32m2.

    Đặt hệ trục tọa độ có gốc O trùng với giao điểm hai đường chéo hình chữ nhật.

    Đồ thị của hàm số y = f(x)nhận trục Oy làm trục đối xứng đi qua hai điểm A(
- 1;0)A(2;1) có dạng hàm số (P_{1}):y = \frac{1}{2}x^{2} -
1.

    Đồ thị của hàm số y = g(x)nhận trục Oy làm trục đối xứng đi qua hai điểm C(1;0)D(2;
- 1) có dạng hàm số (P_{1}):y = -
\frac{1}{2}x^{2} + 1.

    Giao điểm của hai parabol tại x_{1} = -
\sqrt{2};x_{2} = \sqrt{2}

    Do đó, diện tích của con cá là S =
\int_{- \sqrt{2}}^{2}{\left| x^{2} - 2 ight|dx} \approx
4,32m^{2}

  • Câu 21: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

  • Câu 22: Thông hiểu

    Số phức z = 1 + i + {\left( {1 + i} ight)^2} + {\left( {1 + i} ight)^3} + ... + {\left( {1 + i} ight)^{20}} là số phức nào sau đây?

     z = \left( {1 + i} ight)\frac{{1 - {{\left( {1 + i} ight)}^{20}}}}{{1 - \left( {1 + i} ight)}} =  - 1025 + 1025i

  • Câu 23: Nhận biết

    Tính thể tích V của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường y = \sqrt{2x};y = 0 và hai đường thẳng x = 1;x = 2 quanh trục Ox:

    Thể tích V của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường y = \sqrt{2x};y = 0 và hai đường thẳng x = 1;x = 2 quanh trục Ox là:

    V = \pi\int_{1}^{2}{\left( \sqrt{2x}
ight)^{2}dx} = \pi\int_{1}^{2}{x^{2}dx} = \pi\left. \ x^{2}
ight|_{1}^{2} = 3\pi.

  • Câu 24: Thông hiểu

    Trong không gian Oxyz, cho hai đường thẳng song song d:\left\{
\begin{matrix}
x = 2 - t \\
y = 1 + 2t \\
z = 4 - 2t \\
\end{matrix} ight.d':\frac{x - 4}{1} = \frac{y + 1}{- 2} =
\frac{z}{2}. Viết phương trình đường thẳng nằm trong mặt phẳng (d, d’), đồng thời cách đều hai đường thẳng d và d’.

    Lấy M(2;1;4) \in d,N(4; - 1;0) \in
d'.

    Đường thẳng cần tìm đi qua trung điểm của MN, là điểm I(3; 0; 2), và song song với d và d’.

    Phương trình đường thẳng cần tìm là: \frac{x - 3}{1} = \frac{y}{- 2} = \frac{z -
2}{2}

  • Câu 25: Nhận biết

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

    Đáp án là:

    Cho số phức z thỏa mãn \overline z  = \frac{{{{\left( {1 - 2i} ight)}^5}}}{{2 + i}}. Viết z dưới dạng z = a + bi,a,b \in \mathbb{R}. Khi đó tổng a+2b có giá trị bằng bao nhiêu?

    10

     Ta có: \overline z  = 24 + 7i \Rightarrow z = 24 - 7i

    Suy ra a + bi=10.

  • Câu 26: Nhận biết

    Số phức có phần thực bằng 3 và phần ảo bằng 4 là

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 27: Thông hiểu

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm của phương trình {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 trên tập

    số phức tính tổng: S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}}.

    Ta có: {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 \Leftrightarrow \left( {z - 1} ight)\left( {z + 2} ight)\left( {{z^2} - 2z + 2} ight) = 0 (1)

    Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:

    \left[ \begin{array}{l}{z_1} = 1\\{z_2} =  - 2\\{z_3} = 1 + i\\{z_4} = 1 - i\end{array} ight.

    Thay và biểu thức ta có: 

    S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}} = 1 + \frac{1}{4} + \frac{1}{{{{\left( {1 - i} ight)}^2}}} + \frac{1}{{{{\left( {1 + i} ight)}^2}}} = \frac{5}{4}

  • Câu 28: Vận dụng cao

    Cho số phức z thỏa mãn \left| z ight| = 1 , gọi m,M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|. Tính \left| {M - mi} ight|

     Ta có P = \left| {{z^5} + {{\overline z }^3} + 4z} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{z^4} + {{\overline z }^4} + 4} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = \left| {{{\left( {{z^2} + {{\overline z }^2}} ight)}^2} + 2} ight| - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {{z^2} + {{\overline z }^2}} ight)^2} + 2 - 2\left| {{z^2} + {{\overline z }^2}} ight|

    = {\left( {\left| {{z^2} + {{\overline z }^2}} ight| - 1} ight)^2} + 1

    Vì \left\{ \begin{array}{l}{z^2} + {\overline z ^2} \in \mathbb{R} \\ - 2 \le {z^2} + {\overline z ^2} \le 2\end{array} ight.  nên {P_{{m{max}}}} = 2; {P_{{m{min}}}} = 1.

    Suy ra  \left| {M - mi} ight| = \sqrt 5

  • Câu 29: Thông hiểu

    Phần thực của số phức z = 5 + 2i - {\left( {1 + i} ight)^3} là:

    Ta có:

    z = 5 + 2i - {\left( {1 + i} ight)^3} = 5 + 2i + 2 - 2i = 7

  • Câu 30: Nhận biết

    Họ các nguyên hàm của hàm số f(x) = \sin
x + 1 là:

    Ta có: \int_{}^{}{\left( \sin x + 1
ight)dx} = - \cos x + x + C

  • Câu 31: Vận dụng

    Trong không gian Oxyz, xét mặt phẳng (P) đi qua điểm A(2;1;3) đồng thời cắt các tia Ox,Oy,Oz lần lượt tại M,N,P sao cho tứ diện OMNP có thể tích nhỏ nhất. Giao điểm của đường thẳng \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 4 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) với (P) có toạ độ là:

    Gọi M(a;0;0),N(0;b;0),P(0;0;c)

    Theo giả thiết, ta có a;b;c là các số dương.

    Phương trình mặt phẳng (P) là \frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    (P) đi qua điểm A (2; 1; 3) nên \frac{2}{a} + \frac{1}{b} + \frac{3}{c} =
1

    Ta có: \frac{2}{a} + \frac{1}{b} +
\frac{3}{c} \geq 3\sqrt[3]{\frac{2}{a}.\frac{1}{b}.\frac{3}{c}} =
\frac{3\sqrt[3]{6}}{\sqrt[3]{abc}}

    \Leftrightarrow 1 \geq
\frac{3\sqrt[3]{6}}{\sqrt[3]{abc}} \Leftrightarrow \sqrt[3]{abc} \geq
3\sqrt[3]{6} \Leftrightarrow abc \geq 112

    V_{OMNP} = \frac{abc}{6} \geq
27. Dấu bằng xảy ra khi và chỉ khi \left\{ \begin{matrix}
\frac{2}{a} = \frac{1}{b} = \frac{3}{c} \\
\frac{2}{a} + \frac{1}{b} + \frac{3}{c} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
a = 6 \\
b = 3 \\
c = 9 \\
\end{matrix} ight.

    Vậy (P):\frac{x}{6} + \frac{y}{3} +
\frac{z}{9} = 1

    Tọa độ giao điểm của d và (P) là nghiệm của hệ: \left\{ \begin{matrix}
x = 2 + t \\
y = 1 - t \\
z = 4 + t \\
\frac{x}{6} + \frac{y}{3} + \frac{z}{9} = 1 \\
\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}
x = 4 \\
y = - 1 \\
z = 6 \\
t = 2 \\
\end{matrix} ight..

    Vậy đáp án cần tìm là: (4; -
1;6).

  • Câu 32: Nhận biết

    Trong không gian Oxyz, cho ba điểm M(0;1;0),N(2;0;0),P(0;0; - 3). Phương trình nào dưới đây là phương trình mặt phẳng (MNP)?

    Phương trình đoạn chắn của mặt phẳng (MNP) là: \frac{x}{2} + \frac{y}{1} + \frac{z}{- 3} =
1

  • Câu 33: Nhận biết

    Số phức liên hợp của số phức 5 - 3i là

    \overline z = \overline {a + bi} = a – bi

    \Rightarrow \overline z  = \overline {5 - 3i}  = 5 - ( - 3i) = 5 + 3i

  • Câu 34: Thông hiểu

    Cho số phức z thỏa mãn z = 1 + i + {i^2} + {i^3} + ... + {i^{2022}}. Khi đó phần thực và phần ảo của z lần lượt là?

     Ta có: z = 1 + i\frac{{1 - {i^{2022}}}}{{1 - i}} = i

    Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.

  • Câu 35: Nhận biết

    Kí hiệu {z_1},{z_2} là hai nghiệm phức của phương trình 3{z^2} - z + 1 = 0. Tính P = \left| {{z_1}} ight| + \left| {{z_2}} ight|

    Phương trình 3{z^2} - z + 1 = 0 có hai nghiệm {z_{1,2}} = \frac{{1 \pm i\sqrt {11} }}{6}.

    Khi đó P = \left| {{z_1}} ight| + \left| {{z_2}} ight| = \frac{{2\sqrt 3 }}{3}

  • Câu 36: Vận dụng

    Trong không gian Oxyz. Cho A(a;0;0),B(0;b;0),C(0;0;c) với a;b;c > 0. Biết mặt phẳng (ABC) qua điểm I(1;3;3) và thể tích tứ diện O.ABC đạt giá trị nhỏ nhất. Khi đó phương trình (ABC):

    Phương trình mặt phẳng (ABC):\frac{x}{a}
+ \frac{y}{b} + \frac{z}{c} = 1

    I(1;3;3) \in (ABC) \Rightarrow
(ABC):\frac{1}{a} + \frac{3}{b} + \frac{3}{c} = 1

    Áp dụng bất đẳng thức Cauchy ta có:

    1 = \frac{1}{a} + \frac{3}{b} +
\frac{3}{c} \geq \sqrt[3]{\frac{3^{2}}{abc}} \Rightarrow abc \geq
9

    Thể tích tứ diện O.ABCV = \frac{1}{6}abc \geq \frac{3}{2}

    Đẳng thức xảy ra khi \frac{1}{a} =
\frac{3}{b} = \frac{3}{c} = \frac{1}{3} \Rightarrow \left\{
\begin{matrix}
a = 3 \\
b = c = 9 \\
\end{matrix} ight.

    Phương trình mặt phẳng (ABC)\frac{x}{3} + \frac{y}{9} + \frac{z}{9} = 1
\Rightarrow 3x + y + z - 9 = 0

  • Câu 37: Nhận biết

    Tìm tọa độ trung điểm M của đoạn thẳng AB. Biết tọa độ hai điểm A(1;2;3)B(3; - 1;4).

    Ta có: M là trung điểm của AB nên tọa độ điểm M là:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = 3 \\\end{matrix} ight.\  \Rightarrow M(2;1;3)

    Vậy đáp án đúng là: M(2;1;3).

  • Câu 38: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 39: Thông hiểu

    Cho f(x);g(x) là các hàm số liên tục trên \mathbb{R} và thỏa mãn \int_{0}^{1}{f(x)dx} =
3;\int_{0}^{2}{\left\lbrack f(x) - 3g(x) ightbrack dx} = 4\int_{0}^{2}{\left\lbrack 2f(x) + g(x)
ightbrack dx} = 8. Tính tích phân I = \int_{1}^{2}{f(x)dx}?

    Đặt \left\{ \begin{matrix}
\int_{0}^{2}{f(x)dx} = a \\
\int_{0}^{2}{g(x)dx} = b \\
\end{matrix} ight.. Theo giả thiết ta có: \left\{ \begin{matrix}
a - 3b = 4 \\
2a + b = 8 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 4 \\
b = 0 \\
\end{matrix} ight.

    Ta có:

    \int_{0}^{2}{f(x)dx} =
\int_{0}^{1}{f(x)dx} + \int_{1}^{2}{f(x)dx}

    \Rightarrow \int_{1}^{2}{f(x)dx} =
\int_{0}^{2}{f(x)dx} - \int_{0}^{1}{f(x)dx}

    \Rightarrow \int_{1}^{2}{f(x)dx} = 4 - 3
= 1

  • Câu 40: Thông hiểu

    Biết \int_{1}^{e}{\frac{\ln
x}{\sqrt{x}}dx} = a\sqrt{e} + b với a;b\mathbb{\in Z}. Xác định giá trị biểu thức P = ab?

    Đặt \left\{ \begin{matrix}u = \ln x \\dv = \dfrac{dx}{\sqrt{x}} \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{dx}{x} \\v = 2\sqrt{x} \\\end{matrix} ight. khi đó ta có:

    \int_{1}^{e}{\frac{\ln x}{\sqrt{x}}dx} =
\left. \ \left( 2\sqrt{x}\ln x ight) ight|_{e}^{1} -
2\int_{1}^{e}\frac{dx}{x}

    = \left. \ \left( 2\sqrt{x}\ln x ight)
ight|_{e}^{1} - \left. \ \left( 4\sqrt{x} ight) ight|_{e}^{1} = -
2\sqrt{e} + 4

    Vậy \left\{ \begin{matrix}
a = - 2 \\
b = 4 \\
\end{matrix} ight.\  \Rightarrow P = a.b = - 8.

  • Câu 41: Vận dụng

    Gọi M;N lần lượt là trung điểm của các cạnh AC;BD của tứ diện ABCD. Gọi I là trung điểm của đoạn MNP là một điểm bất kì trong không gian. Tìm giá trị thực của k thỏa mãn đẳng thức vectơ \overrightarrow{PI} =
k.\left( \overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}
+ \overrightarrow{PD} ight)?

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của các cạnh AC;BD nên ta có: \left\{ \begin{matrix}
\overrightarrow{IA} + \overrightarrow{IC} = 2\overrightarrow{IM} \\
\overrightarrow{IB} + \overrightarrow{ID} = 2\overrightarrow{IN} \\
\end{matrix} ight..

    Mặt khác \overrightarrow{IM} +
\overrightarrow{IN} = \overrightarrow{0} (vì I là trung điểm của MN) suy ra \overrightarrow{IA} +
\overrightarrow{IB} + \overrightarrow{IC} + \overrightarrow{ID} =
\overrightarrow{0}

    Theo bài ra ta có:

    \overrightarrow{PA} +
\overrightarrow{PB} + \overrightarrow{PC} +
\overrightarrow{PD}

    = 4\overrightarrow{PI} +
\overrightarrow{IA} + \overrightarrow{IB} + \overrightarrow{IC} +
\overrightarrow{ID} = 4\overrightarrow{PI}

    \Rightarrow 4k = 1 \Rightarrow k =
\frac{1}{4}

  • Câu 42: Thông hiểu

    Tìm tọa độ giao điểm của đường thẳng d:\frac{x - 12}{4} = \frac{y - 9}{3} = \frac{z -
1}{1} và mặt phẳng (P):3x + 5y - z
- 2 = 0?

    Gọi I là giao điểm của d và (P).

    Ta có I \in d \Leftrightarrow I(4t +
12;3t + 9;t + 1)

    I \in (P) \Leftrightarrow 3(4t + 12) +
5(3t + 9) - (t + 1) - 2 = 0

    \Leftrightarrow 26t = - 78
\Leftrightarrow t = - 3

    Suy ra I(0;0; - 2)

  • Câu 43: Nhận biết

    Trong không gian Oxyz, cho \overrightarrow{a} = (1;2;3),\overrightarrow{b} =
( - 2;0;1),\overrightarrow{c} = ( - 1;0;1). Tọa độ vectơ \overrightarrow{n} = \overrightarrow{a} +
\overrightarrow{b} + 2\overrightarrow{c} - 3\overrightarrow{i} là:

    Ta có:

    \overrightarrow{n} = \overrightarrow{a}
+ \overrightarrow{b} + 2\overrightarrow{c} -
3\overrightarrow{i}

    \Rightarrow \overrightarrow{n} = (1;2;3)
+ ( - 2;0;1) + 2( - 1;0;1) - 3(1;0;0)

    \Rightarrow \overrightarrow{n} = ( -
6;2;6)

  • Câu 44: Thông hiểu

    Tính tổng tất cả các nghiệm của phương trình sau: (z^2 + z)^2 + 4(z^2 + z) -12 = 0 là?

     Đặt t = z^2 + z, khi đó phương trình đã cho có dạng:

    t^2 + 4t – 12 = 0 \Leftrightarrow\left[ \begin{array}{l}t =  - 6\\t = 2\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}{z^2} + z - 6 = 0\\{z^2} + z - 2 = 0\end{array} ight.

    \Leftrightarrow \left[ \begin{array}{l}z = \dfrac{{ - 1 + \sqrt {23} i}}{2}\\z = \dfrac{{ - 1 - \sqrt {23} i}}{2}\\z = 1\\z =  - 2\end{array} ight.

    Vậy phương trình đã cho có 4 nghiệm có tổng là

    \frac{{ - 1 + \sqrt {23} i}}{2} + \frac{{ - 1 - \sqrt {23} i}}{2} + 1 - 2 =  - 1 + 1 - 2 =  - 2

  • Câu 45: Vận dụng cao

    Cho hai hàm số y = f(x) và y = g(x) không âm, có đạo hàm trên đoạn [1; 4] và thỏa mãn các hệ thức f\left( 1 ight) + g\left( 1 ight) = 4;g\left( x ight) =  - xf'\left( x ight);f\left( x ight) =  - xg'\left( x ight). Kết luận nào sau đây đúng?

    Ta có:

    \begin{matrix}  \left\{ {\begin{array}{*{20}{c}}  {g\left( x ight) =  - xf'\left( x ight)} \\   {f\left( x ight) =  - xg'\left( x ight)} \end{array}} ight. \hfill \\   \Rightarrow f\left( x ight) + g\left( x ight) =  - x\left[ {f'\left( x ight) + g'\left( x ight)} ight] \hfill \\   \Rightarrow \dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}} = \dfrac{{ - 1}}{x} \hfill \\ \end{matrix}

    \begin{matrix}   \Rightarrow \int\limits_1^4 {\dfrac{{f'\left( x ight) + g'\left( x ight)}}{{f\left( x ight) + g\left( x ight)}}dx = \int\limits_1^4 {\dfrac{{ - 1}}{x}dx} }  \hfill \\   \Leftrightarrow \int\limits_1^4 {\dfrac{{d\left[ {f\left( x ight) + g\left( x ight)} ight]}}{{f\left( x ight) + g\left( x ight)}} = } \left. {\ln \left| x ight|} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( x ight) + g\left( x ight)} ight|_1^4 =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| - \ln \left| {f\left( 1 ight) + g\left( 1 ight)} ight| =  - \ln 4 \hfill \\   \Rightarrow \ln \left| {f\left( 4 ight) + g\left( 4 ight)} ight| = 0 \hfill \\   \Rightarrow f\left( 4 ight) + g\left( 4 ight) = 1 \hfill \\ \end{matrix}

     

  • Câu 46: Nhận biết

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;1;2),B(2; - 1;3). Viết phương trình đường thẳng AB?

    Vectơ chỉ phương của đường thẳng AB\overrightarrow{AB} = (1; - 2;1). Suy ra phương trình đường thẳng AB là:

    AB:\frac{x - 1}{1} = \frac{y - 1}{- 2} =
\frac{z - 2}{1}

  • Câu 47: Nhận biết

    Tích phân I =
\int_{0}^{1}{3^{x}dx} bằng:

    Ta có:

    I = \int_{0}^{1}{3^{x}dx} = \left. \frac{3^{x}}{\ln3} ight|_{0}^{1} = \frac{2}{\ln3}

  • Câu 48: Thông hiểu

    Tứ giác MNPQ là hình bình hành biết tọa độ các điểm M(1;2;3),N(2; -
3;1),P(3;1;2). Tìm tọa độ điểm Q?

    Giả sử điểm Q(x;y;z) khi đó \left\{ \begin{matrix}
\overrightarrow{QP} = (x - 3;y - 1;z - 2) \\
\overrightarrow{MN} = ( - 1;5;2) \\
\end{matrix} ight.

    ta có MNPQ là hình bình hành nên \overrightarrow{QP} =
\overrightarrow{MN}

    \Leftrightarrow \left\{ \begin{matrix}
x - 3 = - 1 \\
y - 1 = 5 \\
z - 2 = 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 6 \\
z = 4 \\
\end{matrix} ight.. Vậy tọa độ điểm Q(2;6;4).

  • Câu 49: Thông hiểu

    Cho {\left( {x + 2i} ight)^2} = 3x + yi,\left( {x,y \in \mathbb{R}} ight). Giá trị của x và y bằng:

     Ta có:

    {\left( {x + 2i} ight)^2} = 3x + yi \Leftrightarrow {x^2} - 4 + 4xi = 3x + yi

    \Leftrightarrow \left\{ \begin{gathered}  {x^2} - 4 = 3x \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left\{ \begin{gathered}  \left[ \begin{gathered}  x =  - 1 \hfill \\  x = 4 \hfill \\ \end{gathered}  ight. \hfill \\  4x = y \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  x =  - 1 \hfill \\  y =  - 4 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  x = 4 \hfill \\  y = 16 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight.

  • Câu 50: Thông hiểu

    Cho hai số phức {z_1} = 2 + i,{z_2} = 3 - 4i. Môđun của số phức \left( {{z_1} - {z_2}} ight) là:

     Ta có: \left| {{z_1} - {z_2}} ight| = \left| {2 + i - 3 + 4i} ight| = \left| { - 1 + 5i} ight| = \sqrt {26}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 204 lượt xem
Sắp xếp theo