Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Trong các mệnh đề sau, mệnh đề nào đúng?
Ta có: thỏa mãn biểu thức
(với
duy nhất) của định lí về các vectơ đồng phẳng.
Vậy đáp án đúng là: “Nếu thì bốn điểm
đồng phẳng.”
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Trong không gian với hệ tọa độ
, gọi
là mặt phẳng chứa đường thẳng
và vuông góc với mặt phẳng
. Hỏi giao tuyến của
và
đi qua điểm nào dưới đây?
Ta có:
Suy ra
Khi đó giao tuyến thỏa hệ
Thay các phương án vào hệ, ta nhận phương án .
Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số ![]()
Cắt một vật thể bởi hai mặt phẳng vuông góc với trục
tại
và
. Một mặt phẳng tùy ý vuông góc với trục
tại điểm có hoành độ
(
) cắt vật thể đó theo thiết diện là một hình chữ nhật có độ dài hai cạnh là
và
. Tính thể tích của phần vật thể giới hạn bởi hai mặt phẳng trên
Diện tích thiết diện là:
Thể tích vật thể là:
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Trong không gian
, hãy tính
và
lần lượt là khoảng cách từ điểm
đến mặt phẳng
và mặt phẳng
?
Do mặt phẳng có phương trình y = 0 nên
Do mặt phẳng (P) có phương trình 3x − 4z + 5 = 0 nên
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Trong không gian với hệ tọa độ
, cho đường thẳng
và điểm
. Hình chiếu vuông góc của A trên (∆) là điểm nào dưới đây?
Đường thẳng (∆) đi qua M(−1; −4; 0), có vectơ chỉ phương
Phương trình tham số của đường thẳng
Gọi P là hình chiếu vuông góc của A trên (∆).
Khi đó
Ta có . Vì
nên
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Tìm nguyên hàm của hàm số
là
Ta có:
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Cho số phức z thỏa mãn
. Môđun của số phức
là:
Ta có:
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Họ nguyên hàm của hàm số
là:
Ta có:
Khi đó
Biết rằng
và
, a và b là các số hữu tỉ. Thương số giữa a và b có giá trị là:
Ta có:
, với
Trong không gian
có điểm
. Tính độ dài
?
Ta có:
Suy ra
Vậy đáp án cần tìm là .
Cho điểm P(-3 , 1, -1) và đường thẳng (d): ![]()
Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:
Chuyển (d) về dạng tham số :
Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: , cho qua P tính được D=7 .
Ta có (Q): .
Thế x, y, z theo t từ phương trình của (d) vào phương trình (Q) được
Giao điểm I của (d) và (Q) là I (1, -3, 1) .
Vì I là trung điểm của PP’ nên .
Giá trị tích phân
bằng:
Ta có:
Cho số phức
. Tìm phần thực a và phần ảo b của z.
Ta có
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể kiểm tra bằng máy tính, dễ dàng thu được kết quả như cách trên
Cho a, b là các số hữu tỉ thỏa mãn
![]()
Tính giá trị biểu thức M = a + b.
=>
=>
Cho hàm số
liên tục trên
, có đồ thị hàm số
như sau:

Mệnh đề nào dưới đây là đúng?
Theo ý nghĩa hình học của tích phân thì là diện tích hình thang cong
.
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Cho số phức
. Tính |z|
Ta có
Trong không gian
, cho hai điểm
. Mặt phẳng đi qua
và vuông góc với đường thẳng
là:
Gọi (α) là mặt phẳng đi qua và vuông góc với đường thẳng
.
Do (α) vuông góc với AB nên vectơ pháp tuyến của mặt phẳng (α) là
Vậy phương trình mặt phẳng (α) là:
Nguyên hàm của hàm số
là:
Ta có:
Trong không gian
, cho điểm
. Gọi
là mặt phẳng đi qua điểm
và cách gốc tọa độ
một khoảng cách lớn nhất, khi đó mặt phẳng
cắt các trục tọa độ tại các điểm
. Tính thể tích
của khối chóp
.
Trong không gian , cho điểm
. Gọi
là mặt phẳng đi qua điểm
và cách gốc tọa độ
một khoảng cách lớn nhất, khi đó mặt phẳng
cắt các trục tọa độ tại các điểm
. Tính thể tích
của khối chóp
.
Trong không gian với hệ tọa độ
, cho các điểm
. Tìm tọa độ điểm H sao cho tứ giác
lập thành hình thang cân với hai đáy
.
Ta có là trung điểm AB.
Gọi (α) là mặt phẳng trung trực của AB
Gọi d là đường thẳng qua C và song song AB
Gọi I là hình chiếu của C lên (α).
Tọa độ I là nghiệm của hệ phương trình:
Do ABCH là hình thang cân nên H và C đối xứng nhau qua mp(α).
⇒ I là trung điểm CH
Thể tích khối tròn xoay khi quay hình phẳng
giới hạn bởi các đường
quanh trục
có kết quả có dạng
với
là các số nguyên dương và
là phân số tối giản. Khi đó giá trị của
bằng:
Phương trình hoành độ giao
Thể tích cần tính
Suy ra .
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Họ nguyên hàm của hàm số
là:
Ta có:
.
Cho hình phẳng
giới hạn bởi đồ thị hàm số
và các đường thẳng
. Thể tích
của khối tròn xoay sinh ra khi cho hình phẳng
quay quanh trục?
Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng quay quanh trục
là:
.
Một chất điểm chuyển động trên đường thẳng nằm ngang (chiều dương hướng sang phải) với gia tốc phụ thuộc thời gian
là
. Biết vận tốc ban đầu bằng
, hỏi trong 6 giây đầu tiên, thời điểm nào chất điểm ở xa nhất về phía bên phải?
Vận tốc của vật được tính theo công thức
=> Quãng đường vật di chuyển được tính theo công thức:
Ta có:
Cho số phức thỏa mãn điều kiện
.
Tìm giá trị nhỏ nhất của ![]()
1 || Một || một
Cho số phức thỏa mãn điều kiện .
Tìm giá trị nhỏ nhất của
1 || Một || một
Đặt
Ta có
.
TH1: (1)
TH2: .
Đặt .
.
(2)
Từ (1) và (2) , suy ra .
Tìm một nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Cho
. Với
, khẳng định nào sau đây đúng?
Xét , đặt t = ax + b
=>
=>
Cho tứ diện
. Gọi
lần lượt là trung điểm của
và
là trung điểm của
. Khẳng định nào sau đây sai?
Hình vẽ minh họa
Vì lần lượt là trung điểm của
suy ra
Mà là trung điểm của
Khi đó
Vậy khẳng định sai là: .
Trong hệ trục tọa độ
cho elip
có phương trình
. Hình phẳng
giới hạn bởi nửa elip nằm trên trục hoành và trục hoành. Quay hình
xung quanh trục
ta được khối tròn xoay, tính thể tích khối tròn xoay đó?
Ta có: với
Khi đó thể tích cần tìm là:
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Phương trình
có tập nghiệm là:
Dễ thấy là nghiệm của
Nên
Giải (*), ta được:
Vậy có hai căn bậc hai là: và
Do đó nghiệm của pt là
Vậy PT có 3 nghiệm là
Trong không gian
, cho điểm
. Gọi
là mặt phẳng thay đổi qua
và cắt các trục
lần lượt tại
với
. Khi diện tích tam giác
nhỏ nhất, hãy tính giá trị của tích
?
Trong không gian , cho điểm
. Gọi
là mặt phẳng thay đổi qua
và cắt các trục
lần lượt tại
với
. Khi diện tích tam giác
nhỏ nhất, hãy tính giá trị của tích
?
Cho hai vectơ
và
với
và
.Tìm m để
và
vuông góc.
Điều kiện để
vuông góc
Với
Trong không gian
, phương trình đường thẳng
đi qua hai điểm
là:
Ta có là một vectơ chỉ phương của đường thẳng
.
đi qua điểm
, nên có phương trình là:
.
Trong không gian với hệ trục tọa độ
, cho hình hộp chữ nhật
có điểm
trùng với gốc tọa độ
,
. Gọi
là trung điểm của cạnh
. Giá trị của tỉ số
để hai mặt phẳng
và
vuông góc với nhau bằng bao nhiêu?
Trong không gian với hệ trục tọa độ , cho hình hộp chữ nhật
có điểm
trùng với gốc tọa độ
,
. Gọi
là trung điểm của cạnh
. Giá trị của tỉ số
để hai mặt phẳng
và
vuông góc với nhau bằng bao nhiêu?
Phương trình tổng quát của mặt phẳng
qua điểm
và có cặp vectơ chỉ phương
là:
Vectơ pháp tuyến của là tích có hướng của 2 vecto chỉ phương
có thể thay thế bởi
Phương trình có dạng
Vậy