Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Kí hiệu
là nghiệm phức có phần ảo dương của phương trình
. Trên mặt phẳng tọa độ, điểm nào dưới đây là điểm biểu diễn của số phức
?
Ta có:
Cho hai số phức
. Tìm môđun của số phức
.
Ta có:
Cho số phức z thoả mãn
. Giá trị lớn nhất của biểu thức
bằng?
Đặt .
Từ giả thiết
(1).
Ta có
.
Dễ thấy P lớn nhất khi .
Khi đó
Do nên từ (1) ta có
.
Suy ra
Dấu = xảy ra khi
.
Tìm nguyên hàm của hàm số ![]()
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Cho
. Giá trị của x và y bằng:
Ta có:
Trong không gian với hệ toạ độ
, phương trình nào sau đây là phương trình tổng quát của mặt phẳng
Phương trình tổng quát của mặt phẳng là : .
Trong không gian
, cho ba điểm
. Điểm
thuộc tia
sao cho độ dài đường cao xuất phát từ đỉnh D của tứ diện
bằng
có tọa độ là
Ta có D thuộc tia nên
với
.
Tính
Mặt phẳng : có vectơ pháp tuyến
và đi qua điểm
.
Ta có
Vậy .
Cho hình lập phương
. Hãy xác định góc giữa cặp vectơ
và
?
Hình vẽ minh họa
Vì (
là hình vuông) nên
Gọi
là hình chiếu của
lên đường thẳng
. Đẳng thức nào dưới đây đúng?
Vì
(d) có vtcp
Suy ra . Vậy
Hàm số
có một nguyên hàm F(x). Biết đồ thị hàm số y = F(x) đi qua điểm B(2; 10). Giá trị F(-2) là:
Hàm số đi qua B(2; 10) =>
=>
=>
Số phức
có phần thực bằng
Số phức z = a + bi có b được gọi là phần thực.
Tính tích phân
?
Ta có:
Trong không gian
, cho điểm
và mặt phẳng
. Điểm
thay đổi thuộc
; điểm
thay đổi thuộc mặt phẳng
. Biết rằng tam giác
có chu vi nhỏ nhất. Tọa độ điểm
là:
Hình vẽ minh họa
Gọi B1 là điểm đối xứng với B qua (P).
Gọi M là hình chiếu của A lên trục Oz, M1 là điểm đối xứng của M qua (P)
(hằng số).
Vậy PABC nhỏ nhất khi B ≡ M và C là giao điểm của AM1 với (P).
Từ đó suy ra tọa độ của điểm B là .
Hàm số nào sau đây là một nguyên hàm của hàm số
?
Vì:
PT sau có số nghiệm là : ![]()
3 || ba || Ba
PT sau có số nghiệm là :
3 || ba || Ba
Ta có:
Vậy phương trình đã cho có 3 nghiệm.
Trong không gian Oxyz, đường thẳng (d) qua
và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Trong không gian Oxyz, đường thẳng (d) qua và có một vectơ chỉ phương
với
có phương trình chính tắc là:
Tìm các số thực x, y thoả mãn:
![]()
Theo giả thiết:
=>
=>
Trong không gian
, cho vật thể
giới hạn bởi hai mặt phẳng có phương trình
và
với
. Gọi
là diện tích thiết diện của
bị cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ là
, với
. Biết hàm số
liên tục trên đoạn
, khi đó thể tích
của vật thể
được cho bởi công thức:
Vì là diện tích thiết diện của
bị cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ là
, với
ta có:
không phải là
.
Trong không gian
, cho ba điểm
. Tọa độ chân đường phân giác của góc
trong tam giác
là:
Ta có:
Gọi là chân đường phân giác kẻ từ
lên
của tam giác
.
Suy ra
Ta có:
Tính diện tích hình phẳng giới hạn bởi hai đồ thị
và
?
Phương trình hoành độ giao điểm
Diện tích hình giới hạn là
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Cho điểm
và đường thẳng
. Gọi A' là điểm đối xứng của A qua
. Tọa độ điểm A' là:
Đưa phương trình về dạng tham số:
Gọi (P) là mặt phẳng qua A và vuông góc với .
Phương trình mp (P) có dạng , qua A nên D = -2
Phương trình (P) là:
Thế x, y, z từ phương trình vào phương trình (P) được t=1
I là trung điểm của AA' nên:
.
Biết rằng
nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Tìm nguyên hàm của hàm số
?
Ta có:
Giá trị của
là?
Ta có:
(Áp dụng công thức: )
Cho hàm số
có đạo hàm trên
thỏa mãn
với
ta có:
. Tính tích phân
?
Ta có:
Lấy nguyên hàm hai vế ta được:
Theo bài ra ta có:
Vì nên nhận
Vậy
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số
,
liên tục trên đoạn
và hai đường thẳng
,
là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
.
Tìm tọa độ trung điểm
của đoạn thẳng
. Biết tọa độ hai điểm
và
.
Ta có: M là trung điểm của AB nên tọa độ điểm M là:
Vậy đáp án đúng là: .
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Trong không gian
, xét mặt phẳng
đi qua điểm
đồng thời cắt các tia
lần lượt tại
sao cho tứ diện
có thể tích nhỏ nhất. Giao điểm của đường thẳng
với
có toạ độ là:
Gọi
Theo giả thiết, ta có là các số dương.
Phương trình mặt phẳng (P) là
(P) đi qua điểm A (2; 1; 3) nên
Ta có:
. Dấu bằng xảy ra khi và chỉ khi
Vậy
Tọa độ giao điểm của d và (P) là nghiệm của hệ: .
Vậy đáp án cần tìm là: .
Gọi F(x) là một nguyên hàm của hàm số
, F(x) thỏa mãn F(X) + F(-2) = 0,5. Tính F(2) + F(-3)
Ta có:
=>
=>
=>
Khi đó:
Theo bài ra ta có: F(x) + F(-2) = 0,5
=>
=>
=>
Trong không gian hệ trục tọa độ
, cho
và
là điểm đối xứng cới điểm
qua
. Khi đó
bằng:
Gọi là hình chiếu của M trên
ta có
. Do
đối xứng với
qua
, khi đó
là trung điểm của
Suy ra từ đó
.
Trong không gian với hệ tọa độ
, cho điểm
và mặt phẳng
. Đường thẳng đi qua
đồng thời song song với
và mặt phẳng
có phương trình là:
Ta có: . Gọi
là đường thẳng đi qua
đồng thời song song với (P) và mặt phẳng (Oxy).
Khi đó:
Vậy .
Cho số phức
. Số phức
có phần ảo là:
Ta có:
Một ô tô đang chạy với vận tốc
thì người lái hãm phanh. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc
trong đó
là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?
Khi vật dừng hẳn thì
Quãng đường vật đi được trong khoảng thời gian trên là:
bằng
Ta có .
Cho số phức
, giá trị của số phức
là?
Ta có:
Nghiệm của phương trình:
là
Ta có: .
Giả sử là căn bậc hai của
.
Ta có:
Thay (2) vào (1) ta có:
Vậy có hai căn bậc hai là
và
.
Do đó nghiệm của phương trình là:
Trong mặt phẳng tọa độ
, cho hình thang
với
. Quay hình thang
xung quanh trục
thì thể tích khối tròn xoay tạo thành bằng bao nhiêu??
Phương trình các cạnh của hình thang là:
Ta thấy là hình thang vuông có
nên khối tròn xoay cần tính là
Số phức có phần thực bằng 3 và phần ảo bằng 4 là
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Trong không gian với hệ tọa độ
, cho các điểm
. Mặt phẳng
đi qua
, trực tâm
của tam giác
và vuông góc với mặt phẳng
có phương trình là:
Ta có
Phương trình mặt phẳng (ABC) là: .
Phương trình mặt phẳng qua B và vuông góc với AC là: .
Phương trình mặt phẳng qua C và vuông góc với AB là: .
Giao điểm của ba mặt phẳng trên là trực tâm H của tam giác ABC nên .
Mặt phẳng (P) đi qua A, H nên
Mặt phẳng (P) ⊥ (ABC) nên .
Vậy là một vectơ pháp tuyến của (P).
Chọn nên phương trình mặt phẳng (P) là
.
Tìm số phức
trong phương trình sau: ![]()
Ta có
Nguyên hàm của hàm số
là:
Ta có:
Trong không gian với hệ toạ độ
, cho ba điểm
. Tính khoảng cách
từ gốc toạ độ
đến mặt phẳng
?
Phương trình tổng quát của mặt phẳng có dạng:
Khoảng cách từ gốc tọa độ đến
là:
Cho các hàm số
và
liên tục trên
và số
tùy ý. Trong các khẳng định sau, khẳng định nào sai?
Khẳng định sai là:
Trong không gian với hệ tọa độ
, cho điểm
và vectơ
. Viết phương trình mặt phẳng
đi qua điểm
và có vectơ pháp tuyến
.
Phương trình tổng quát của mặt phẳng (P) có dạng:
Tìm nguyên hàm của hàm số ![]()
Ta có: