Cho M trên đường thẳng AB với
và
. Nếu
với
thì tọa độ của M là:
Vì M nằm trên AB và nên khi xét theo tọa độ vecto 2 điểm A và B, ta có:
Cho M trên đường thẳng AB với
và
. Nếu
với
thì tọa độ của M là:
Vì M nằm trên AB và nên khi xét theo tọa độ vecto 2 điểm A và B, ta có:
Cho số phức
. Tính |z|
Ta có
Trong không gian với hệ tọa độ
, đường thẳng đi qua điểm
và song song với trục
có phương trình tham số là:
Gọi là đường thẳng cần tìm.
Ta có nên
có vectơ chỉ phương là
.
Do đó .
Trong không gian với hệ tọa độ
, cho hai mặt phẳng ![]()
. Chọn khẳng định đúng.
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Ta có
⇒ .
Một vật chuyển động với gia tốc
. Vận tốc ban đầu của vật là
. Hỏi vận tốc của vật là bao nhiêu sau khi chuyển động với gia tốc đó được
.
Ta có:
Do khi bắt đầu tăng tốc nên
Suy ra
Vận tốc của vật khi chuyển động với gia tốc đó được 2s là .
Trong không gian
, cho hai đường thẳng cắt nhau ![]()
. Trong mặt phẳng
, hãy viết phương trình đường phân giác
của góc nhọn tạo bởi ![]()
Hai đường thẳng đã cho cùng đi qua điểm I(−1; 2; −1) và có các vectơ chỉ phương tương ứng là
Ta có , suy ra góc giữa hai vectơ
và
là góc tù.
Lại có
Kết hợp hai điều này, ta suy ra d có một vectơ chỉ phương là
Tóm lại, đường thẳng cần tìm đi qua điểm I(−1; 2; −1) và có một vectơ chỉ phương là
Vậy phương trình đường thẳng d là:
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Hàm số
có đạo hàm liên tục trên tập số thực và
;
. Hàm số
là:
Ta có:
Theo bài ra ta có:
Vậy .
Phần thực của số phức
là:
Ta có:
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Số phức
bằng:
Ta có:
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Cho hình lăng trụ ABCDEF.
Gọi M, N, G, H, I, J, K lần lượt là trung điểm của DE, DF, AE, CE, CD, BC, BE.
Có nhận xét gì về bộ ba vecto
?
Bằng nhau || Đồng phẳng || Bằng nhau và đồng phẳng || bằng nhau và đồng phẳng || bằng nhau, đồng phẳng
Cho hình lăng trụ ABCDEF.
Gọi M, N, G, H, I, J, K lần lượt là trung điểm của DE, DF, AE, CE, CD, BC, BE.
Có nhận xét gì về bộ ba vecto ?
Bằng nhau || Đồng phẳng || Bằng nhau và đồng phẳng || bằng nhau và đồng phẳng || bằng nhau, đồng phẳng

Theo giả thiết đề bài đã cho, M và N lần lượt là trung điểm của DE và DF
Suy ra, MN là đường trung bình trong tam giác DEF:
Tương tự: và
Vậy
đồng phẳng và bằng nhau.
Có bao nhiêu số phức z thỏa mãn
và ![]()
Ta có:
Cho
với a, b, c là các số hữu tỉ. Mệnh đề nào sau đây đúng.
Ta có
Tính
Đặt
Suy ra
Vậy
Như vậy, ta được:
Suy ra ta có: hay
Trong không gian với hệ trục tọa độ
, cho tứ diện
có
. Trên các cạnh
lần lượt lấy các điểm
sao cho
. Viết phương trình mặt phẳng
biết tứ diện
có thể tích nhỏ nhất.
Trong không gian với hệ trục tọa độ , cho tứ diện
có
. Trên các cạnh
lần lượt lấy các điểm
sao cho
. Viết phương trình mặt phẳng
biết tứ diện
có thể tích nhỏ nhất.
Một ô tô đang chuyển động đều với vận tốc
thì người lái đạp phanh; từ thời điểm đó ô tô chuyển động chậm dần đều với vận tốc
(trong đó
là thời gian tính bằng giây, kể từ lúc đạp phanh). Hỏi trong thời gian
giây cuối (tính đến khi xe dừng hẳn) thì ô tô đi được quãng đường bằng bao nhiêu?
Khi dừng hẳn
Khi đó trong 8s trước khi dừng hẳn vật di chuyển được (bao gồm 2s trước khi đạp phanh):
Trong không gian
, cho điểm
và mặt phẳng
. Mặt phẳng
đi qua
và song song với mặt phẳng
có phương trình là:
Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là
Phương trình mặt phẳng (Q) là:
Tìm một nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Xác định tích phân
?
Ta có:
Trong không gian
, cho điểm
. Tính độ dài đoạn thẳng
?
Ta có:
Tìm nguyên hàm của hàm số ![]()
Ta có:
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Cho hình lập phương
có cạnh
. Gọi
là trung điểm của
. Tính tích vô hướng
?
Hình vẽ minh họa
Ta có:
Ta có: hay
Do đó
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Từ gốc O vẽ OH vuông góc với mặt phẳng (P); gọi
lần lượt là các góc tạo bởi vector pháp tuyến của (P) với ba trục Ox, Oy, Oz. Phương trình của (P) là (
):
Theo đề bài, ta có:
Gọi
Ta có:
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Cho hàm số
là một nguyên hàm của hàm số
. Phát biểu nào sau đây đúng?
Ta có .
Tích phân
bằng:
Ta có:
.
Trong không gian
, cho các điểm
. Đường thẳng nào dưới đây vuông góc với mặt phẳng
?
Ta có
là 1 VTPT của mặt phẳng (ABC).
Do đó đường thẳng vuông góc với mặt phẳng (ABC) có VTPT cùng phương với vectơ (−2; −1; 1).
Dựa vào các đáp án ta thấy ở đáp án D đường thẳng có 1 VTPT là (−2; 1; 1) cùng phương với (−2; −1; 1).
Cho hàm số
có đạo hàm trên khoảng
thỏa mãn
và
. Giá trị tích phân
bằng:
Từ giả thiết ta có:
Lấy nguyên hàm hai vế của (*) suy ra
Vì nên
Đặt
Theo công thức tích phân từng phần ta được:
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho hình vẽ:

Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:
Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:
.
Cho 3 mặt phẳng
. Mặt phẳng
chứa giao tuyến của
,vuông góc với
có phương trình tổng quát:
Mặt phẳng thuộc chùm mặt phẳng
nên phương trình có dạng:
Vì vuông góc với
nên ta được:
Vậy ta có phương trình là :
Trong không gian
, cho điểm
thuộc mặt phẳng
. Mệnh đề nào dưới đây đúng?
Ta có điểm thuộc mặt phẳng
nên:
Cho số phức
. Tìm số phức
?
Ta có:
Cho hai đường thẳng (d1 ):
và ![]()
Xét VTTĐ của (d1 ) và (d2 )? Tìm câu đúng ?
Chuyển đường thẳng (d1 ) và (d2 ) về dạng tham số :
có vectơ chỉ phương
và qua
.
có vectơ chỉ phương
và hệ phương trình
vô nghiệm.
.
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Một vật chuyển động chậm dần đều với vận tốc
. Hỏi trong
trước khi dừng hẳn, vật di chuyển động được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Cho hàm số y = f(x) có đạo hàm trên [1; 2] thỏa mãn f(1) = 4 và
. Giá trị của f(2) là:
Chọn f(x) = ax3 + bx2 + cx + d
Ta có:
Vậy => f(x) = 20
Cho F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tìm F(x).
Theo bài ra ta có:
=>
Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc
. Đi được
người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc
. Tính quãng đường đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.
Vận tốc vật đạt được sau 5s là:
Ta có:
Do khi bắt đầu tăng tốc
Vật dừng hẳn khi
Khi đó quãng đường đi được bằng
Viết phương trình tham số của đường thẳng (d) qua I (-1, 5, 2) và song song với trục x'Ox:
Theo đề bài, ta có (d) // x’Ox nên (d) có vecto chỉ phương là
Như vậy, (d) qua I (-1, 5, 2) và nhận làm 1 VTCP có PTTS là:
(d):
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Ta có:
Xét phương trình hoành độ giao điểm với trục hoành ta có:
Ta lại có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Tìm nguyên hàm của hàm số
??
Đặt
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là: