Tìm họ nguyên hàm của hàm số
?
Ta có:
Tìm họ nguyên hàm của hàm số
?
Ta có:
Trong không gian với hệ tọa độ
, cho mặt phẳng
đi qua điểm
và vuông góc với hai mặt phẳng
và
. Phương trình của mặt phẳng
là
Ta có các vectơ pháp tuyến của (P) và (Q) là
Theo giả thiết mặt phẳng (α) vuông góc với (P) và (Q) do đó
Suy ra, phương trình mặt phẳng (α) có dạng
Hay
Tính tổng
?
Ta có:
.
Do đó
.
Mặt khác:
.
Đặt .
Đổi cận và
. Khi đó
Cho điểm P(-3 , 1, -1) và đường thẳng (d): ![]()
Điểm P' đối xứng với P qua đường thẳng (d) có tọa độ:
Chuyển (d) về dạng tham số :
Gọi (Q) là Mặt phẳng có vectơ chỉ phương của (d) có dạng: , cho qua P tính được D=7 .
Ta có (Q): .
Thế x, y, z theo t từ phương trình của (d) vào phương trình (Q) được
Giao điểm I của (d) và (Q) là I (1, -3, 1) .
Vì I là trung điểm của PP’ nên .
Giá trị tích phân
bằng:
Ta có:
Gọi
là diện tích hình phẳng giới hạn bởi các đường
. Mệnh đề nào dưới đây đúng?
Ta có:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Biết rằng
là một nguyên hàm của hàm số
trên
. Giá trị của biểu thức
bằng:
Ta có:
suy ra
Cho
và
. Tính
?
Ta có và
. Tính:
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z lần lượt là?
Ta có:
Vậy số phức z có phần thực bằng 0 và phần ảo bằng 1.
Trong không gian với hệ trục tọa độ
, cho hình bình hành
. Biết
và
. Diện tích hình bình hành
là:
Ta có:
Suy ra diện tích ABCD là:
Cho số phức z thỏa mãn
. Viết z dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Họ nguyên hàm của hàm số
là:
Ta có:
Nghiệm của phương trình:
là:
Ta có:
các căn bậc hai của
là
Vậy nghiệm của phương trình là:
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Cho số phức
. Tìm phần thực và phần ảo của số phức
.
Ta có nên suy ra phần thực a = -6; phần ảo b = 3.
Cho số phức z thỏa mãn
. Tìm
.
Gọi , với
.
Theo giả thiết ta có suy ra
và
,
.
Ta có
Xét hàm số trên
.
Ta có .
Ta có .
Vậy .
Do đó khi
và
.
Xét phương trình
trên tập số phức. Tập nghiệm của phương trình là:
Ta có:
Suy ra:
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Trong không gian
, cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Tìm một nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
. Theo bài ra ta có:
Vậy là đáp án cần tìm.
Cho đường tròn
và parabol
.
cắt
thành hai phần. Tìm tỉ số diện tích của hai phần đó.
Hoành độ giao điểm của (P) và (C) là:
Xét giao điểm thuộc góc phần tư thứ nhất, với
Gọi S2 là phần có diện tích nhỏ hơn, S1 là phần còn lại
Ta có:
Đặt
Khi đó
Diện tích hình tròn
Phần thực của số phức
là:
Ta có:
Tìm nguyên hàm của hàm số 
Đặt
=>
=>
Trong không gian với hệ tọa độ
, cho điểm
và hai mặt phẳng
. Viết phương trình đường thẳng
đi qua
và song song với hai mặt phẳng
?
Ta có:
Do đường thẳng d song song với hai mặt phẳng (P) và (Q) nên d có vectơ chỉ phương là .
Vậy phương trình đường thẳng d là
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Cho hàm số y = f(x) xác định trên
thỏa mãn
. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:
Ta có:
Lấy nguyên hàm hai vế ta được:
Mặt khác
=>
Xét phương trình hoành độ giao điểm
Ta có:
Phương trình tiếp tuyến tại giao điểm với trục hoành là:
Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành, đường thẳng
như hình vẽ sau:

Hỏi khẳng định nào dưới đây là khẳng định đúng?
Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số trục hoành, đường thẳng
ta có:
.
Cho bốn điểm
và
. Câu nào sau đây đúng? ABDC là:
Ta có
Do đó cùng phương
ABDC là hình thang.
Hàm số
là một nguyên hàm của hàm số nào sau đây?
Ta có:
Một ô tô đang chạy với vận tốc
thì tăng tốc chuyển động nhanh dần với gia tốc
. Tính quãng đường mà ô tô đi được sau
giây kể từ khi ôtô bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc
Khi đó quãng đường xe đi được sau 6 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Trong không gian
, đường thẳng
không đi qua điểm nào dưới đây?
Ta có nên điểm
không thuộc đường thẳng
.
Trong không gian với hệ trục tọa độ
, cho hình vuông
biết
và điểm D có cao độ âm. Mặt phẳng
đi qua gốc tọa độ O. Khi đó đường thẳng d là trục của đường tròn ngoại tiếp hình vuông
có phương trình là:
Ta có:
Mặt phẳng (ABCD) đi qua điểm A và nhận
làm vectơ pháp tuyến nên có phương trình y = 0.
Giả sử . Ta có:
Vì D có cao độ âm nên D(1; 0; −3). Khi đó, tâm I của hình vuông ABCD có tọa độ I(−1; 0; −1).
Trục của đường tròn ngoại tiếp hình vuông ABCD đi qua I(−1; 0; −1) và nhận làm vectơ chỉ phương nên có phương trình
.
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Với giá trị nào của
thì diện tích của hình phẳng giới hạn bởi hai đồ thị
và
bằng
?
Xét phương trình hoành độ giao điểm .
Khi đó diện tích hình phẳng giới hạn bởi hai đồ thị trên được tính bởi
.
Phương trình sau có tập nghiệm trên trường số phức là: ![]()
Ta có
Vậy phương trình có 4 nghiệm:
Cho số phức z thỏa mãn điều kiện
. Môđun của số phức
có giá trị là
10
Cho số phức z thỏa mãn điều kiện . Môđun của số phức
có giá trị là
10
Ta có:
Cho
. Tính
.
Ta có:
Tìm tọa độ giao điểm của hai đường thẳng:
Theo đề bài, ta biến đổi được (b) có dạng:
Thay x, y, z vào phương trình x+2y+z =9 , ta có:
=> Tọa độ giao điểm của (a) và (b): A (0, - 4, - 1)
Trong không gian
, cho ba điểm
với
là những số thực dương sao cho
. Tính
sao cho khoảng cách từ
đến mặt phẳng
là lớn nhất
Phương trình mặt phẳng
Xét ta có:
Dấu "=" xảy ra khi và chỉ khi
⇒ , khi đó
.
Trong không gian với hệ tọa độ
; cho điểm
. Viết phương trình mặt phẳng
?
Ta có:
Vậy
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi
là điểm nằm trên mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Trong không gian với hệ trục tọa độ , cho bốn điểm
. Gọi
là điểm nằm trên mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường
. Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là
giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường . Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Do nên quãng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Ta có:
với
là hằng số.
Khi đó, ta gọi hàm số .
Do nên
. Suy ra
.
Xe ô tô dừng hẳn khi hay
. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.
Ta có xe ô tô đang chạy với tốc độ .
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: .
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: .
Do nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.
Cho hình hộp
. Tính tổng
?
Hình vẽ minh họa
Trong không gian hệ trục tọa độ
, cho lăng trụ tam giác
có tọa độ các điểm
. Xác định tọa độ điểm
?
Hình vẽ minh họa
Gọi tọa độ điểm
Vì là hình lăng trụ nên
Vậy tọa độ .
Trong không gian
, cho hai vectơ
và
. Tính
?
Ta có: