Trong không gian
, tìm tọa độ điểm
trên trục
cách đều hai điểm
và
?
Ta có:
Theo bài ra ta có:
.
Trong không gian
, tìm tọa độ điểm
trên trục
cách đều hai điểm
và
?
Ta có:
Theo bài ra ta có:
.
Cho hai số thực
và
. Kí hiệu
là hai điểm biểu diễn hai nghiệm phức của phương trình
trong mặt phẳng phức. Tìm điều kiện của b và c để tam giác
là tam giác vuông (O là gốc tọa độ).
Ta có: . Vì
và
là số thực.
. Vậy ta có:
và
.
Ta có:
;
.
Để tam giác OAB là tam giác vuông tại O
.
Cho số phức
. Tìm số phức z thỏa mãn
.
Ta có:
Cho tam giác ABC có
. Gọi BD và BE lần lượt là phân giác trong và phân giác ngoài của góc B với D và E là chân của hai phân giác này trên AC. Tính tọa độ của D.
Theo đề bài, ta có: .
Áp dụng kiến thức: Bình phương tích vô hướng bằng bình phương độ dài, được:
Mặt khác, D chia đoạn AC theo tỉ số
Tọa đô của D là:
.
Trong không gian với hệ tọa độ
cho hai mặt phẳng
và
. Có bao nhiêu điểm
trên trục
thỏa mãn
cách đều hai mặt phẳng
và
?
Vì nên
Ta có: .
Theo giả thiết:
Vậy có 1 điểm thỏa mãn bài.
Cho hai số phức
. Phần thực và phần ảo của số phức
tương ứng bằng:
Ta có:
Gọi
là bốn nghiệm của phương trình
trên tập
số phức tính tổng:
.
Ta có:
(1)
Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:
Thay và biểu thức ta có:
Trong không gian
, cho điểm
. Tính độ dài đoạn thẳng
?
Ta có:
Trong không gian
, mặt phẳng
có một vectơ pháp tuyến là:
Mặt phẳng có một vectơ pháp tuyến là:
.
Trong không gian với hệ tọa độ
, cho mặt phẳng
. Điểm nào dưới đây không thuộc mặt phẳng
?
Điểm không thuộc mặt phẳng
.
Tìm nguyên hàm của hàm số
bằng:
Ta có:
Giá trị của
bằng
Ta có:
Cho phương trình sau:
. Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Cho phương trình sau: . Tính tổng số tất cả các nghiệm của phương trình?
4 || Bốn || bốn
Do tổng tất cả các hệ số của phương trình bằng 0 nên
có nghiệm
.
Vậy phương trình đã cho có 4 nghiệm và cộng tổng chúng lại ta được 4.
Tích phân
có giá trị là:
Đặt:
Đổi cận
Trong không gian với hệ tọa độ
, cho hai điểm
và đường thẳng
. Điểm
thuộc
là điểm thỏa mãn
đạt giá trị nhỏ nhất. Khi đó
bằng?
Hình vẽ minh họa
Ta có: có một vectơ chỉ phương là
Ta có cùng phương với
Mà đồng phẳng.
Xét mặt phẳng chứa và
. Gọi
là điểm đối xứng của
qua
là mặt phẳng qua
, vuông góc với
.
Khi đó, giao điểm của
với
là trung điểm của
.
có 1 vectơ pháp tuyến
đi qua
có phương trình:
Giả sử
.
Ta có khi và chỉ khi
trùng với
là giao điểm của
và
.
.
Cho hình phẳng
giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Cho đồ thị hàm số
như hình vẽ:

Diện tích
của hình phẳng được giới hạn bởi đồ thị hàm số
và trục
(phần gạch sọc) được tính bởi công thức
Từ đồ thị hàm số ta thấy
Do đó:
Cho hàm số
xác định trên tập số thực thỏa mãn
và
. Tính
biết rằng
?
Vì nên ta có:
Cho
Do đó
Trong không gian với hệ tọa độ
, cho hai đường thẳng:
và ![]()
a) Vectơ có tọa độ
là một vectơ chỉ phương của
. Sai||Đúng
b) Đường thẳng
đi qua điểm
. Đúng||Sai
c) Đường thẳng
đi qua
và vuông góc với
có phương trình tham số là
. Đúng||Sai
d) Góc giữa hai đường thẳng
và
khoảng
. Sai||Đúng
Trong không gian với hệ tọa độ , cho hai đường thẳng:
và
a) Vectơ có tọa độ là một vectơ chỉ phương của
. Sai||Đúng
b) Đường thẳng đi qua điểm
. Đúng||Sai
c) Đường thẳng đi qua
và vuông góc với
có phương trình tham số là
. Đúng||Sai
d) Góc giữa hai đường thẳng và
khoảng
. Sai||Đúng
a) Vectơ có tọa độ là một vectơ chỉ phương của
nên mệnh đề sai
b) Mệnh đề đúng
c) Gọi
nên mệnh đề đúng
d) Góc giữa hai đường thẳng luôn là góc nhọn nên mệnh đề sai
Tính diện tích hình phẳng giới hạn bởi các đường thẳng
?
Hình vẽ minh họa
Ta có:
Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng
Diện tích hình giới hạn là
Cho số phức z thỏa mãn
, gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Cho số phức z thỏa mãn , gọi m, M lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính
.
M-m=1 || 1 || một || Một
Ta có
Vì nên
Suy ra
Trong không gian với hệ tọa độ
, cho đường thẳng
. Gọi ∆’ là đường thẳng đối xứng với đường thẳng ∆ qua (Oxy). Tìm một vectơ chỉ phương của đường thẳng ∆’.
Đường thẳng ∆ cắt mặt phẳng (Oxy) tại điểm A(4; 11; 0).
Ta thấy B(1; 2; 3) ∈ ∆ và B’(1; 2; −3) là điểm đối xứng của điểm B qua mặt phẳng (Oxy).
Đường thẳng ∆’ đi qua các điểm A, B’.
Ta có , từ đó suy ra
là một vectơ chỉ phương của đường thẳng ∆’.
Trong không gian với hệ trục tọa độ
, cho bốn điểm
. Gọi
là điểm nằm trên mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Trong không gian với hệ trục tọa độ , cho bốn điểm
. Gọi
là điểm nằm trên mặt phẳng
sao cho biểu thức
đạt giá trị nhỏ nhất. Tìm tọa độ điểm
?
Cho số phức z thỏa mãn:
. Môđun của số phức
là?
Ta có:
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Tìm số phức
trong phương trình sau: ![]()
Ta có
Thể tích khối tròn xoay khi quay hình phẳng
giới hạn bởi các đường
quanh trục
có kết quả có dạng
với
là các số nguyên dương và
là phân số tối giản. Khi đó giá trị của
bằng:
Phương trình hoành độ giao
Thể tích cần tính
Suy ra .
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân
giác trong góc A là
. Biết rằng điểm
thuộc đường thẳng AB và điểm
thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?
Giả sử , , ta có:
Theo bài ra: Vì d là đường phân giác của góc A nên:
Từ đây ta bình phương 2 vế được:
Vậy một véc tơ chỉ phương của AC là .
Cho hàm số
, ta có:
. Tính giá trị biểu thức
?
Ta có:
nên
đồng nhất 2 biểu thức ta được hệ phương trình
Cho số phức z thỏa mãn
. Môđun của z là:
Giả sử: .
Số phức liên hợp của số phức
là
=
= a - bi
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Giá trị tích phân
bằng:
Ta có:
Trong không gian với hệ toạ độ
, mặt phẳng
đi qua hai điểm
và vuông góc với mặt phẳng
. Tính tổng
.
Từ giả thiết ta có hệ phương trình:
Số phức liên hợp của số phức 3 - 4i là:
=
= a – bi
Biết rằng
nguyên hàm của hàm số
thỏa mãn
. Chọn mệnh đề đúng?
Sử dụng phương pháp đồng nhất thức, ta có:
Suy ra
Khi đó
Mà
Vậy
Trong không gian
, cho hai điểm
và
. Tìm tọa độ vectơ
?
Ta có:
Vậy đáp án đúng là: .
Cho đồ thị hàm số
có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Cho đồ thị hàm số có đồ thị
trên
như hình vẽ. Tính giá trị của
. Biết phần cong của đồ thị là mộ phần của parabol
và
.

Trong không gian
, cho đường thẳng
. Vectơ nào trong các vectơ dưới đây không phải là vectơ chỉ phương của đường thẳng
?
Đường thẳng có 1 vectơ chỉ phương là
. Do đó vectơ
không là vectơ chỉ phương của
.
Tìm họ các nguyên hàm của hàm số
?
Ta có:
Biết rằng trong không gian với hệ tọa độ
có hai mặt phẳng
và
cùng thỏa mãn các điều kiện sau: đi qua hai điểm
đồng thời cắt các trục tọa độ
tại hai điểm cách đều
. Giả sử
có phương trình
và
có phương trình
. Tính giá trị biểu thức
.
Biết rằng trong không gian với hệ tọa độ có hai mặt phẳng
và
cùng thỏa mãn các điều kiện sau: đi qua hai điểm
đồng thời cắt các trục tọa độ
tại hai điểm cách đều
. Giả sử
có phương trình
và
có phương trình
. Tính giá trị biểu thức
.
Số phức
bằng:
Ta có:
Nghiệm của phương trình sau trên trường số phức là:![]()
Do tổng tất cả các hệ số của phương trình bằng 0 nên pt có nghiệm .
Vậy phương trình đã cho có 4 nghiệm:.
Số phức liên hợp của số phức 5 - 3i là
=
= a – bi
Tìm nguyên hàm của hàm của hàm số ![]()
Cho a, b là các số hữu tỉ thỏa mãn
![]()
Tính giá trị biểu thức M = a + b.
=>
=>
Cho số phức
thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Gọi tìm được
.
Tính mô đun ta được .
Họ nguyên hàm của hàm số
là:
Ta có: .
Cho
. Tính
.
Ta có: