Cho hình hộp
. Tính tổng
?
Hình vẽ minh họa
Cho hình hộp
. Tính tổng
?
Hình vẽ minh họa
Cho hình chóp
có đáy là hình thoi cạnh
,
, mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi
lần lượt là trung điểm các cạnh
và
là giao điểm của
với
. Khoảng cách từ trung điểm
của đoạn thẳng
đến mặt phẳng
bằng bao nhiêu?
Cho hình chóp có đáy là hình thoi cạnh
,
, mặt bên
là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi
lần lượt là trung điểm các cạnh
và
là giao điểm của
với
. Khoảng cách từ trung điểm
của đoạn thẳng
đến mặt phẳng
bằng bao nhiêu?
Trong không gian với hệ tọa độ
, vectơ
là vectơ chỉ phương của đường thẳng nào sau đây?
Đường thẳng có một vectơ chỉ phương là
cùng phương với vectơ
. Vậy
là một vectơ chỉ phương của đường thẳng
Trong không gian
, cho mặt phẳng
đi qua điểm
và chắn trên các trục tọa độ
theo ba đoạn có độ dài đại số lần lượt là
. Phương trình tổng quát của mặt phẳng
khi
theo thứ tự tạo thành một cấp số nhân có công bội bằng
là:
Do giả thiết suy ra .
Giả sử khi đó phương trình mặt phẳng
.
Do M thuộc (P) nên
Suy ra do đó phương trình mặt phẳng
.
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Gọi F(x) là một nguyên hàm của hàm số
thỏa mãn
. Tính giá trị của biểu thức ![]()
Ta có:
=>
Cho số phức
. Số phức
là số phức nào sau đây?
Ta có:
Suy ra
.
Trong không gian với hệ tọa độ
, cho ba điểm
. Viết phương trình mặt phẳng đi qua ba điểm
.
Ta có:
Mặt phẳng có một vectơ pháp tuyến là
Từ đó phương trình mặt phẳng là
.
Tìm nguyên hàm
của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Cho hai số phức
và
. Tìm số phức ![]()
Ta có:
Trong
, phương trình
có nghiệm là:
Ta có: nên phương trình có hai nghiệm phức là:
Trong không gian
, mặt phẳng
. Một véc tơ pháp tuyến của
có tọa độ là?
Mặt phẳng có VTPT là:
Một ô tô đang dừng và bắt đầu chuyển động theo một đường thẳng với gia tốc
, trong đó
là khoảng thời gian tính bằng giây kể từ lúc ô tô bắt đầu chuyển động. Hỏi quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là bao nhiêu mét?
Ta có:
Khi đó do ban đầu ô tô đang dừng nên
Quãng đường ô tô đi được kể từ lúc bắt đầu chuyển động đến khi vận tốc của ô tô đạt giá trị lớn nhất là: .
Cho hàm số
có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Cho hàm số
là một nguyên hàm của hàm số
.Phát biểu nào sau đây đúng?
Ta có
Vậy đáp án cần tìm là: .
Tính tổng tất cả các nghiệm của phương trình sau:
là?
Đặt , khi đó phương trình đã cho có dạng:
Vậy phương trình đã cho có 4 nghiệm có tổng là
Cho số phức
. Phần thực của số phức
là?
Ta có:
Vậy phần thực là .
Cho hai hàm số
có đồ thị như hình vẽ:

Gọi
là diện tích hình phẳng được gạch trong hình vẽ. Khi
thì
bằng bao nhiêu?
Phương trình hoành độ giao điểm
Ký hiệu là diện tích hình phẳng như hình vẽ:
Ta có:
Vì vậy
Trong không gian
, cho hai vectơ
. Vectơ
có tọa độ là:
Ta có:
Vậy đáp án cần tìm là
Tìm số phức
trong phương trình sau: ![]()
Ta có
Trong không gian
, cho đường thẳng
và hai điểm
. Gọi
là đường thẳng đi qua điểm
và cắt đường thẳng
sao cho khoảng cách từ điểm
đến đường thẳng
là nhỏ nhất. Phương trình đường thẳng
là:
Gọi . Khi đó
Ta có
Khoảng cách từ B đến d được tính như sau:
Xét hàm số ta có:
Bảng biến thiên
Dựa vào bảng biến thiên ta có: nhỏ nhất khi
đạt giá trị nhỏ nhất bằng
tại
Suy ra
Khi đó vectơ là vectơ chỉ phương của đường thẳng
Vậy phương trình đường thẳng cần tìm là: .
Số nghiệm của phương trình:
là?
Đặt phương trình đã cho có dang:
+ Với
+ Với
Vậy phương trình đã cho có 4 nghiệm.
Biết
là nguyên hàm của hàm số
. Hỏi đồ thị của hàm số
có bao nhiêu điểm cực trị?
Vì là nguyên hàm của hàm số
nên suy ra
Ta có:
Xét hàm số trên
, ta có:
suy ra hàm số
đồng biến trên
.
Vậy phương trình có nhiều nhất một nghiệm trên
(2)
Mặt khác ta có hàm số liên tục trên
và
nên
.
Suy ra tồn tại sao cho
(3)
Từ (1); (2); (3) suy ra phương trình có nghiệm duy nhất
.
Đồng thời vì là nghiệm bội lẻ nên
đổi dấu qua
Vậy đồ thị hàm số có một điểm cực trị.
Trong không gian với hệ tọa độ
cho điểm
và mặt phẳng
, m là tham số. Gọi là hình chiếu vuông góc của điểm trên . Tính khi khoảng cách từ điểm đến lớn nhất ?
Ta có
Xét hàm số
Ta lập bảng biến thiên cho hàm số trên, được:

Qua bảng biến thiên, ta thấy hàm số đạt GTLN khi
Đường thẳng qua A và vuông góc với (P) có phương trình là
Ta có
Biết
và
, a và b là các số hữu tỉ. Giá trị của a + b + c là:
Biết và
. Giá trị của a + b + c là:
Ta có:
, với
Cho số phức
. Số phức
là số phức nào sau đây?
Ta tính được
Cho
. Giá trị của x và y bằng:
Ta có:
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Tìm nghiệm của phương trình sau trên tập số phức
:
(1)
Kiểm tra nghiệm ta dễ dàng nhận xét
không là nghiệm của phương trình đã cho vậy
.
Chia hai vế PT (1) cho z2 ta được : (2)
Đặt . Khi đó
Phương trình (2) có dạng : (3)
Vậy PT (3) có 2 nghiệm:
Với , ta có
(4)
Có
Vậy PT(4) có 2 nghiệm :
;
Do đó PT đã cho có 4 nghiệm :
Cho số phức z thỏa mãn
, gọi
lần lượt là giá trị nhỏ nhất, giá trị lớn nhất của
. Tính ![]()
Ta có
Vì nên
.
Suy ra
Một vật chuyển động với vận tốc
có gia tốc
. Vận tốc ban đầu của vật là
. Tính vận tốc của vật sau
giây, (làm tròn kết quả đến hàng đơn vị).
Vận tốc của vật là:
Do vận tốc ban đầu của vật là
Vận tốc của vật sau 10s là
Họ các nguyên hàm của hàm số
là:
Ta có:
Cho hai đường thẳng 
Viết phương trình tổng quát của mặt phẳng (P) qua (d’)và song song với (d’’).
Vì (P) đi qua (d’) nên (P) nhận VTCP của (d’) làm 1 VTCP
Vì (P) song song với (d’’) nên (P) có VTCP thứ hai là :
Từ đây, ta suy ra VTPT của (P) chính là tích có hướng của 2 VTCP và :
Lấy điểm A(3,1,-2) trên đường thẳng (d’) mà (d’) nằm trong (P) nên ta có được A cũng phải thuộc (P):
Giá trị của tích phân
gần nhất với giá trị nào sau đây?
Ta có:
Cho hình vẽ:

Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:
Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:
.
Biết
là một nguyên hàm của hàm số
trên khoảng
. Giá trị của biểu thức T = a + b + c bằng
Tính thể tích
của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
:
Thể tích của khối tròn xoay được sinh ra khi xoay hình phẳng giới hạn bởi các đường
và hai đường thẳng
quanh trục
là:
.
Gọi
là hình chiếu của
lên đường thẳng
. Đẳng thức nào dưới đây đúng?
Vì
(d) có vtcp
Suy ra . Vậy
Cho 2 đường thẳng
và 
Mặt phẳng (P) chứa (d) và song song với
có phương trình tổng quát :
Phương trình (d) cho và vectơ chỉ phương của (d) là:
Phương trình cho vectơ chỉ phương của
là :
Gọi là điểm bất kỳ thuộc mặt phẳng (P) thì :
Câu hỏi này cho ta thấy mối quan hệ giữa đường thẳng và mặt phẳng, từ 2 đường thảng ta có thể viết PT được của 1 mp.
Trong không gian, cho hình lập phương
. Góc giữa hai vectơ
và
bằng
Hình vẽ minh họa
Ta có: . Do đó,
Vì nên tam giác
là tam giác đều.
Suy ra
Vậy
Giá trị của b và c để phương trình
nhận
làm nghiệm là?
Do là nghiệm của phương trình đã cho nên:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể kiểm tra bằng máy tính, dễ dàng thu được kết quả như cách trên
Trong không gian với hệ tọa độ
, cho hai mặt phẳng ![]()
. Chọn khẳng định đúng.
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Ta có
⇒ .
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Xác định phần ảo của số phức
.
Phần ảo của số phức z = 18 - 12i là -12
Cho tam giác
vuông tại
và có hai đỉnh
nằm trên mặt phẳng
. Gọi
là hình chiếu vuông góc của đỉnh
lên
. Trong các mệnh đề sau, mệnh đề nào đúng?
Nếu A nằm trên (P) tức A’ trùng với A thì tam giác A’BC có góc A vuông, nếu A không nằm trên (P) thì
suy ra góc
là góc tù.
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường
. Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là
giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Một xe ô tô đang chạy với vận tốc
thì người lái xe bất ngờ phát hiện chướng ngại vật trên đường cách đó
. Người lái xe phản ứng một giây, sau đó đạp phanh khẩn cấp. Kể từ thời điểm này, ô tô chuyển động chậm dần đều với tốc độ
, trong đó
là thời gian tính bằng giây kể từ lúc đạp phanh. Gọi
là quảng đường xe ô tô đi được trong
(giây) kể từ lúc đạp phanh.
a) Quảng đường mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Đúng||Sai
b) Quãng đường . Đúng||Sai
c) Thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là giây. Sai||Đúng
d) Xe ô tô đó không va vào chướng ngại vật ở trên đường. Đúng||Sai
Do nên quãng đường
mà xe ô tô đi được trong thời gian
(giây) là một nguyên hàm của hàm số
. Ta có:
với
là hằng số.
Khi đó, ta gọi hàm số .
Do nên
. Suy ra
.
Xe ô tô dừng hẳn khi hay
. Vậy thời gian kể từ lúc đạp phanh đến khi xe ô tô dừng hẳn là 2 giây.
Ta có xe ô tô đang chạy với tốc độ .
Do đó, quãng đường xe ô tô còn di chuyển được kể từ lúc đạp phanh đến khi xe dừng hẳn là: .
Vậy quãng đường xe ô tô đã di chuyển kể từ lúc người lái xe phát hiện chướng ngại vật trên đường đến khi xe ô tô dừng hẳn là: .
Do nên xe ô tô đã dừng hẳn trước khi va chạm với chướng ngại vật trên đường.
Một chất điểm dạng chuyển động với vận tốc
thì tăng tốc với gia tốc
. Tính quãng đường chất điểm đó đi được trong khoảng thời gian 3s kể từ lúc bắt đầu tăng tốc.
Ta có:
Do khi bắt đầu tăng tốc nên
Khi đó quãng đường xe đi được sau 3 giây kể từ khi ô tô tăng tốc bằng:
Họ nguyên hàm của hàm số
là:
Ta có:
.
Cho số phức
. Tìm số phức
?
Ta có: