Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
Gọi
là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
Tìm số phức
trong phương trình sau: ![]()
Ta có
Phương trình nào dưới đây nhận hai số phức
và
là nghiệm ?
Ta có và
.
Suy ra là nghiệm của phương trình
.
Trong không gian
, cho tam giác
với
. Đường trung tuyến xuất phát từ đỉnh
của tam giác
nhận vectơ nào dưới đây làm một véc-tơ chỉ phương?
Gọi là trung điểm của
, suy ra tọa độ điểm
.
Đường trung tuyến xuất phát từ đỉnh có vectơ chỉ phương là
.
Phần thực của số phức
là:
Ta có:
Cho số phức
. Số phức
là số phức nào sau đây?
Ta có:
Suy ra
.
Cho số phức
thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Cho số phức thỏa mãn
. Viết
dưới dạng
. Khi đó tổng
có giá trị bằng bao nhiêu?
10
Ta có:
Suy ra .
Số phức liên hợp của số phức 3 - 2i là
=
= a – bi
Cho hàm số f(x) xác định trên
thỏa mãn
. Giá trị của biểu thức
là bao nhiêu?
Ta có:
Khi đó
Cho 3 vectơ
đều khác
. Ba vectơ
đồng phẳng khi và chỉ khi:
Áp dụng Điều kiện để 3 vecto đồng phẳng là:
Trong không gian
, đường thẳng đi qua hai điểm
và
có phương trình tham số là:
Ta có:
Đường thẳng đi qua hai điểm A(1; 2; −3) và B(2; −3; 1) có phương trình tham số là
Với t = −2, ta được M(3; −8; 5) thuộc đường thẳng AB. Khi đó, đường thẳng AB có phương trình tham số .
Tìm các căn bậc hai của số phức ![]()
Giả sử m + ni (m; n R) là căn bậc hai của z
Ta có:
Thay (2) vào (1) ta có:
Vậy z có hai căn bậc hai là 3+2i và -3-2i.
Tìm nguyên hàm của hàm số
?
Ta có:
Tính diện tích S của hình phẳng giới hạn bởi các đường
?
Phương trình hoành độ giao điểm
Do đó, diện tích hình phẳng giới hạn bởi các đường
Phần thực và phần ảo của số phức liên hợp của số phức
là:
Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.
Nguyên hàm của hàm số
là:
Ta có:
.
Cho tam giác ABC có
. Phương trình tổng quát của đường cao AH.
Theo đề bài, ta tính được:
Mp (ABC) có 2 VTCP là nên vecto pháp tuyến của (ABC) chính là tích có hướng của 2 VTCP trên. Ta có:
Vì AH là đường cao của tam giác ABC nên ta có .
Mặt khác nên ta viết được vecto chỉ phương của đường thẳng AH là tích có hướng của 2 vecto pháp tuyến
Từ đây, ta có phương trình chính tắc của
Cho số phức z thỏa mãn
. Khi đó phần thực và phần ảo của z là
Ta có:
Cho hàm số
là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Họ nguyên hàm của hàm số
là:
Đặt
Cho hàm số
có đạo hàm trên
thỏa mãn
với
ta có:
. Tính tích phân
?
Ta có:
Lấy nguyên hàm hai vế ta được:
Theo bài ra ta có:
Vì nên nhận
Vậy
Trong không gian
, mặt phẳng
có phương trình là
Mặt phẳng đi qua điểm
và nhận
là một véc-tơ pháp tuyến nên phương trình của mặt phẳng
là
.
Trong không gian hệ trục tọa độ
, cho hình hộp
có tọa độ các điểm
. Giả sử điểm
. Tính giá trị biểu thức
?
Gọi điểm
Ta có:
Mà
Suy ra suy ra
Vậy
Cho hàm số y = f(x) liên tục, f(x) nhận giá trị dương trên
và thỏa mãn f(1) = 1,
. Mệnh đề nào sau đây đúng?
Ta có: và
=>
=>
Mà f(1) = 1 => và
Trong không gian Oxyz cho tam giác ABC, biết
.
Diện tích tam giác ABC bằng?
Áp dụng công thức ,
ta có
Suy ra .
Trong không gian
, cho
. Tọa độ vectơ
là:
Ta có:
Theo bài ra ta có: suy ra tọa độ vectơ
.
Tìm nguyên hàm của hàm số
?
Ta có:
Nguyên hàm của hàm số
là:
Ta có:
Cho số phức
thỏa mãn
. Tính ![]()
Giả sử:
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể kiểm tra bằng máy tính, dễ dàng thu được kết quả như cách trên
Số phức z thỏa mãn
. Khẳng định nào sau đây là khẳng định đúng?
Ta có:
Cho biết
với
. Tính
?
Xét trên đoạn ta có:
Xét . Đặt
Xét . Đặt
Vậy .
Trong không gian
, cho điểm
. Mặt phẳng
đi qua
cắt các trục
,
lần lượt tại
khác gốc tọa độ sao cho
đạt giá trị nhỏ nhất, trong đó
lần lượt là diện tích các tam giác
và
lần lượt là diện tích các tam giác
. Điểm
nào dưới đây thuộc
?
Ta có . Lại có
,
và
.
Đặt , ta có
Tương tự, ta có và
.
Khi đó .
Dấu "=" xảy ra khi và chỉ khi hay
.
Từ đó suy ra nhận
làm vectơ pháp tuyến.
Do đó có phương trình
.
Vậy là điểm thuộc
.
Kí hiệu
là hai nghiệm phức của phương trình
. Tính ![]()
Phương trình có hai nghiệm
.
Khi đó
Cho hình phẳng
được giới hạn bởi đồ thị các hàm số ![]()
. Tính diện tích hình phẳng
?
Cho hình phẳng được giới hạn bởi đồ thị các hàm số
. Tính diện tích hình phẳng
?
Cho phương trình
có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Cho phương trình có hai nghiệm
là . Giá trị của
là?
1 || Một || một
Ta có:
Suy ra:
Cho hai điểm
và vectơ
. Mặt phẳng chứa hai điểm A, B và song song với vectơ
có phương trình:
Theo đề bài, ta có:
Như vậy, và
sẽ là cặp vectơ chỉ phương của
Chọn làm vectơ pháp tuyến của
Phương trình mặt phẳng có dạng
Mặt khác, vì điểm nên thay tọa độ điểm A vào phương trình mặt phẳng
được:
Vậy có phương trình là:
Cho
và đặt
. Khẳng định nào sau đây sai?
Ta có:
Đặt
Đổi cận từ đó ta có:
Vậy khẳng định sai là: .
Cho hàm số
liên tục trên
thỏa mãn
. Giá trị của biểu thức
bằng
Ta có:
Trong không gian
, cho đường thẳng
và hai điểm
. Gọi
là đường thẳng đi qua điểm
và cắt đường thẳng
sao cho khoảng cách từ điểm
đến đường thẳng
là nhỏ nhất. Phương trình đường thẳng
là:
Gọi . Khi đó
Ta có
Khoảng cách từ B đến d được tính như sau:
Xét hàm số ta có:
Bảng biến thiên
Dựa vào bảng biến thiên ta có: nhỏ nhất khi
đạt giá trị nhỏ nhất bằng
tại
Suy ra
Khi đó vectơ là vectơ chỉ phương của đường thẳng
Vậy phương trình đường thẳng cần tìm là: .
Gọi
là bốn nghiệm phức của phương trình
. Tổng
bằng:
Ta có:
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC có phương trình đường phân
giác trong góc A là
. Biết rằng điểm
thuộc đường thẳng AB và điểm
thuộc đường thẳng AC. Véc tơ nào sau đây là véc tơ chỉ phương của đường thẳng AC?
Giả sử , , ta có:
Theo bài ra: Vì d là đường phân giác của góc A nên:
Từ đây ta bình phương 2 vế được:
Vậy một véc tơ chỉ phương của AC là .
Cho
là nghiệm của phương trình sau:
.
Tính ![]()
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Cho là nghiệm của phương trình sau:
.
Tính
M=2023 || 2023 || hai nghìn không trăm hai mưới ba
Ta có:
Theo định nghĩa hai số phức bằng nhau, ta được:
Từ hệ trên, rõ ràng và
.
Đặt , hệ
Vì
Cho
là hình phẳng giới hạn bởi đường cong
và đường thẳng
. Tính thể tích
của vật thể tròn xoay do hình phẳng
quay quanh trục hoành.
Phương trình hoành độ giao điểm là:
Thể tích cần tính là:
Trong không gian
, cho mặt phẳng
. Tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm M đến mặt phẳng (P) là:
Cho hai điểm
và mặt phẳng
Mặt phẳng
chứa hai điểm A,B và vuông góc với mặt phẳng
có phương trình:
Theo đề bài, ta có: ;
Suy ra ;
có vectơ pháp tuyến
Ta có cùng phương với vectơ
Chọn làm 1 vectơ pháp tuyến cho mặt phẳng
.
Phương trình mặt phẳng có dạng:
Mặt phẳng :
Gọi
và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Gọi và
là hai nghiệm phức của phương trình:
. Tính
.
9 || chín || Chín
Ta có .
Vậy phương trình có hai nghiệm phức lần lượt là:
.
Do đó .
Tích phân
có giá trị là:
Tích phân có giá trị là:
Ngoài ra ta có thể sử dụng máy tính cầm tay nhập trực tiếp biểu thức và tính ra kết quả.
Biết
và
là ba nghiệm của phương trình
,
trong đó
là nghiệm có phần ảo dương. Phần ảo của số phức
bằng:
Xét phương trình là phương trình bậc ba với hệ số thực nên luôn có một nghiệm thực là
.
Do đó phương trình tương đương với:
.
Nên là hai nghiệm phức của phương trình bậc hai với hệ số thực (1).
Suy ra .
Khi đó : .
Vậy phần ảo của là
.
Trong không gian với hệ trục tọa độ
, cho hai mặt phẳng
và
. Tìm
để hai mặt phẳng
và
song song với nhau.
Mặt phẳng có vectơ pháp tuyến
Mặt phẳng có vectơ pháp tuyến
Để thì
Vậy không tồn tại giá trị m thỏa mãn yêu cầu bài toán.