Đề thi HK2 Toán 12 Đề 1

Mô tả thêm: Đề thi HK2 Toán 12 được biên soạn giúp bạn học có thêm tài liệu ôn thi, củng cố nội dung kiến thức.
  • Thời gian làm: 50 phút
  • Số câu hỏi: 50 câu
  • Số điểm tối đa: 50 điểm
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
Mua gói để Làm bài
  • Câu 1: Thông hiểu

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Đáp án là:

    Cho tứ diện đều ABCD cạnh a. E là điểm trên đoạn CD sao cho ED = 2CE. Xét tính đúng sai của các khẳng định sau:

    a) Có 6 vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện. Sai||Đúng

    b) Góc giữa hai vectơ \overrightarrow{AB}\overrightarrow{BC} bằng 60^{\circ}. Sai||Đúng

    c) Nếu \overrightarrow{BE} =
m\overrightarrow{BA} + n\overrightarrow{BC} +
p\overrightarrow{BD} thì m + n + p
= \frac{2}{3}. Sai||Đúng

    d) Tích vô hướng \overrightarrow{AD}.\overrightarrow{BE} =
\frac{a^{2}}{6}. Đúng||Sai

    Hình vẽ minh họa

    a) Sai: Các vectơ (khác vectơ \overrightarrow{0}) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện là: \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD},\overrightarrow{BA},\overrightarrow{BC},\overrightarrow{BD},\overrightarrow{CA},\overrightarrow{CB},\overrightarrow{CD},\overrightarrow{DA},\overrightarrow{DB},\overrightarrow{DC}.

    Do đó có 12 vectơ thỏa mãn yêu cầu.

    b) Sai:  (\overrightarrow{AB},\overrightarrow{BC})
= 180^{\circ} - (\overrightarrow{BA},\overrightarrow{BC}) = 180^{\circ}
- ABC = 120^{\circ} 

    c) Sai: \overrightarrow{BE} =\overrightarrow{BC} + \overrightarrow{CE} = \overrightarrow{BC} +\frac{1}{3}\overrightarrow{CD}= \overrightarrow{BC} +\frac{1}{3}(\overrightarrow{BD} - \overrightarrow{BC}) =\frac{2}{3}\overrightarrow{BC} +\frac{1}{3}\overrightarrow{BD}.

    Do đó m = 0,n = \frac{2}{3},p =
\frac{1}{3} suy ra m + n + p =
1.

    d) Đúng: Ta có:

    \overrightarrow{BE} =
\overrightarrow{AE} - \overrightarrow{AB} = (\overrightarrow{AC} +
\overrightarrow{CE}) - \overrightarrow{AB} = \overrightarrow{AC} +
\frac{1}{3}\overrightarrow{CD} - \overrightarrow{AB}

    = \overrightarrow{AC} +
\frac{1}{3}(\overrightarrow{AD} - \overrightarrow{AC}) -
\overrightarrow{AB} = \frac{2}{3}\overrightarrow{AC} +
\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB}

    Suy ra

    \overrightarrow{AD}.\overrightarrow{BE} =\overrightarrow{AD}.\left( \frac{2}{3}\overrightarrow{AC} +\frac{1}{3}\overrightarrow{AD} - \overrightarrow{AB} ight)=\frac{2}{3}.\overrightarrow{AD}.\overrightarrow{AC} +\frac{1}{3}.{\overrightarrow{AD}}^{2} -\overrightarrow{AD}.\overrightarrow{AB}

    = \frac{2}{3}.a.a.\cos 60^{\circ} +\frac{1}{3}a^{2} - a.a.\cos60^{\circ} = \frac{a^{2}}{6}.

  • Câu 2: Nhận biết

    Phương trình {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 có tập nghiệm là:

    Dễ thấy z=-i  là nghiệm của {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0

    Nên {z^3} + 4{z^2} + (4 + i)z + 3 + 3i = 0 \Leftrightarrow \,(z + i)({z^2} + (4 - i)z + 3 - 3i) = 0

    \Leftrightarrow \left[ \begin{array}{l}z + i = 0\\{z^2} + (4 - i)z + 3 - 3i = 0\,\,\,(*)\end{array} ight.

    Giải (*), ta được:

    \Delta  = {(4 - i)^2} - 12 + 12i = 16 - 1 - 8i - 12 + 12i

    = 3 + 4i = 4 + 2.2.i + {i^2} = {(2 + i)^2}

    Vậy có hai căn bậc hai là: 2+i-2-i

    Do đó nghiệm của pt là \left[ \begin{array}{l}z = \dfrac{{ - 4 + i + 2 + i}}{2} =  - 1 + i\\z = \dfrac{{ - 4 + i - 2 - i - 2}}{2} =  - 3\end{array} ight.

    Vậy PT có 3 nghiệm là –i, -3, -1+i.

  • Câu 3: Nhận biết

    Cho hai mặt phẳng \left( \alpha  ight):x + 5y - z + 1 = 0,\left( \beta  ight):2x - y + z + 4 = 0.

    Gọi \varphi là góc nhọn tạo bởi (\alpha)(\beta) thì giá trị đúng của cos \varphi là:

    Theo đề bài đã cho PTTQ , ta suy ra được các vecto pháp tuyến tương ứng là:

    (\alpha) có vectơ pháp tuyến \overrightarrow a  = \left( {1,5, - 2} ight)

    (\beta) có vectơ pháp tuyến \overrightarrow b  = \left( {2, - 1,1} ight)

    Áp dụng công thức tính cosin giữa 2 vecto, ta có:

    \cos \varphi  = \frac{{\left| {1.2 + 5\left( { - 1} ight) + \left( { - 2} ight).1} ight|}}{{\sqrt {{1^2} + {5^2} + {{\left( { - 2} ight)}^2}} .\sqrt {{2^2} + {{\left( { - 1} ight)}^2} + {1^2}} }} = \frac{{\sqrt 5 }}{6}

  • Câu 4: Nhận biết

    Phương trình sau có tập nghiệm trên trường số phức là: z^4 + 2z^2 -3 = 0

     Ta có  z^4 + 2z^2 -3 = 0

    \Leftrightarrow \left[ \begin{array}{l}{z^2} = 1\\{z^2} =  - 3\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

    Vậy phương trình có 4 nghiệm: \left[ \begin{array}{l}z =  \pm 1\\z =  \pm i\sqrt 3 \end{array} ight.

  • Câu 5: Thông hiểu

    Cho các số phức z_1 , z_2. Khẳng định nào trong các khẳng định sau là khẳng định đúng?

    \left( I ight):\left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}.

    \left( {II} ight):\left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|.

    \left( {III} ight):{\left| {{z_1}} ight|^2} = {z_1}^2.

    Áp dụng tính chất số phức, ta có: 

    - Môđun của 1 thương hai số phức thì bằng thương của từng môđun \left| {\frac{{{z_1}}}{{{z_2}}}} ight| = \frac{{\left| {{z_1}} ight|}}{{\left| {{z_2}} ight|}}

    -  Môđun của 1 tích hai số phức thì bằng tích của từng môđun  \left| {{z_1}.{z_2}} ight| = \left| {{z_1}} ight|.\left| {{z_2}} ight|

    Vậy khẳng địn (I) và (II) là đúng.

  • Câu 6: Thông hiểu

    Số phức liên hợp của số phức 2022i - 2023

     \overline z = \overline {a + bi} = a - bi

    \Rightarrow \overline z  = \overline {2022i - 2023}  = \overline { - 2023 + 2022i}  =  - 2023 - 2022i

  • Câu 7: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(2;0;1),B(1;0;0),C(1;1;1) và mặt phẳng (P):x + y + z - 2 = 0. Điểm M(a;b;c) nằm trên mặt phẳng (P) thỏa mãn MA = MB = MC. Tính T = a + 2b + 3c?

    Ta có M(a; b; c) ∈ (P) ⇔ a + b + c − 2 = 0 (1)

    MA^2 = (a − 2)^2 + (b − 0)^2 + (c − 1)^2 = a ^2 + b^ 2 + c^ 2 − 4a − 2c + 5

    MB^2 = (a − 1)^2 + b^ 2 + c ^2 = a^ 2 + b^ 2 + c^ 2 − 2a + 1

    MC^2 = (a − 1)^2 + (b − 1)^2 + (c − 1)^2 = a ^2 + b ^2 + c ^2 − 2a − 2b − 2c + 3

    Với MA = MB, ta có a + c − 2 = 0 (2)

    Với MA = MC, ta có a − b − 1 = 0 (3)

    Từ (1); (2); (3) ta có hệ phương trình:

    \left\{ \begin{matrix}
a + b + c = 2 \\
a + c = 2 \\
a - b = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = 1 \\
b = 0 \\
c = 1 \\
\end{matrix} ight.\  \Rightarrow T = 4

  • Câu 8: Thông hiểu

    Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A( - 1; - 2;1),B( - 4;2; - 2), C( - 1; - 1; - 2),D( - 5; - 5;2). Tính khoảng cách từ điểm D đến mặt phẳng (ABC).

    Ta có \overrightarrow{\ AB} = ( - 3;4; -
3),\overrightarrow{AC} = (0;1; - 3)

    \Rightarrow \left\lbrack
\overrightarrow{\ AB};\overrightarrow{AC} ightbrack = ( - 9; - 9; -
3)

    Mặt phẳng (ABC) đi qua A( - 1; - 2;1) và nhận \overrightarrow{n} = (3;3;1) là vectơ pháp tuyến có phương trình tổng quát là 3x +
3y + z + 8 = 0.

    Khoảng cách từ điểm D đến mặt phẳng (ABC) là:

    d = d\left( D;(ABC) ight) = \frac{| -
15 - 15 + 2 + 8|}{\sqrt{3^{2} + 3^{2} + 1^{2}}} =
\frac{20}{\sqrt{19}}.

  • Câu 9: Thông hiểu

    Trong không gian Oxyz, cho hai điểm A(1;0;1),B( - 1;2;1). Viết phương trình đường thẳng \Delta đi qua tâm đường tròn ngoại tiếp tam giác OAB và vuông góc với mặt phẳng (OAB).

    Tam giác OAB vuông tại O nên tâm đường tròn ngoại tiếp là trung điểm AB có tọa độ I(0; 1; 1).

    Mặt phẳng (OAB) có véc-tơ pháp tuyến \overrightarrow{n} = \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = ( - 2; -
2;2).

    Suy ra đường thẳng ∆ có \overrightarrow{u} = (1;1; - 1) và đi qua I(0; 1; 1).

    Vậy phương trình đường thẳng ∆ là \Delta:\left\{ \begin{matrix}
x = t \\
y = 1 + t \\
z = 1 - t \\
\end{matrix} ight..

  • Câu 10: Thông hiểu

    Cho số phức z =  - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i. Số phức w = 1 + z + {z^2},\left| w ight| bằng:

     Ta có: \left| w ight| = \left| {1 + z + {z^2}} ight| = \left| {1 - \frac{1}{2} + \frac{{\sqrt 3 }}{2}i - \frac{1}{2} - \frac{{\sqrt 3 }}{2}i} ight| = 0

  • Câu 11: Nhận biết

    Cho (H) là hình phẳng giới hạn bởi đường cong \left( C ight):y = {x^2} + 4x và đường thẳng d:y = x. Tính thể tích V của vật thể tròn xoay do hình phẳng (H) quay quanh trục hoành.

    Phương trình hoành độ giao điểm là: - {x^2} + 4x = x \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 0} \\   {x = 3} \end{array}} ight.

    Thể tích cần tính là:

    V = \pi \int\limits_0^3 {\left| {{{\left( {4x - {x^2}} ight)}^2} - {x^2}} ight|dx}  = \frac{{108\pi }}{3}

  • Câu 12: Thông hiểu

    Tính diện tích hình phẳng giới hạn bởi các đường y = x\sin2x;y = 2x;x = \frac{\pi}{2}?

    Phương trình hoành độ giao điểm

    x\sin2x = 2x \Leftrightarrow \left\lbrack\begin{matrix}x = 0 \\\sin2x = 2(L) \\\end{matrix} ight.

    Diện tích hình phẳng là:

    S = \int_{0}^{\frac{\pi}{2}}{\left|
x\sin x - 2x ight|dx} = \left| \int_{0}^{\frac{\pi}{2}}{\left( x\sin x
- 2x ight)dx} ight|

    = \left| \left. \ \left(\frac{1}{4}\sin2x - \frac{1}{2}x\cos2x - x^{2} ight)ight|_{0}^{\frac{\pi}{2}} ight| = \frac{\pi^{2}}{4} -\frac{\pi}{4}

  • Câu 13: Nhận biết

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

  • Câu 14: Nhận biết

    Hàm số y = {x^3} + x có nguyên hàm là:

     Ta có: \int {\left( {{x^3} + x} ight)dx}  = \int {{x^3}dx}  + \int {xdx}  = \frac{1}{4}{x^4} + \frac{1}{2}{x^2} + C

  • Câu 15: Vận dụng cao

    Cho hai đường thẳng: ({d_1}):\frac{{x - 3}}{{ - 7}} = \frac{{y - 1}}{2} = \frac{{z - 1}}{3},({d_2}):\frac{{x - 7}}{1} = \frac{{y - 3}}{2} = \frac{{z - 9}}{{ - 1}}

    và mặt phẳng (\alpha ):x + y + z + 3 = 0 .

    Hình chiếu của ({d_2}) theo phương của ({d_1})  lên mặt phẳng (\alpha ) có phương trình tổng quát:

    Vectơ chỉ phương của ({d_1}):\overrightarrow a  = ( - 7,2,3). Vectơ chỉ phương của ({d_2}):\overrightarrow b  = (1,2, - 1).

    Phương trình của mặt phẳng chứa ({d_2}) và có phương của ({d_1})có dạng: 

    2x + y + 4z + D = 0

    Điểm A (7, 3, 9) thuộc mặt phẳng này 

    => D = -53

    Giao tuyến của mặt phẳng này với mặt phẳng (\alpha ) là hình chiếu của ({d_2}) theo phương của ({d_1}) lên (\alpha ): \left\{ \begin{array}{l}2x + y + 4z - 53 = 0\\x + y + z + 3 = 0\end{array} ight.

  • Câu 16: Nhận biết

    Phần thực và phần ảo của số phức liên hợp của số phức z = 2022 - 2023i là:

     Số phức z = a + bi có a được gọi là phần ảo, b là phần thực.

  • Câu 17: Nhận biết

    Trong không gian với hệ trục tọa độ Oxyz, khoảng cách từ A( - 2;1; - 6) đến mặt phẳng (Oxy)

    Khoảng cách từ điểm A đến mặt phẳng (Oxy):z = 0 là:

    d\left( A;(Oxy) ight) = \frac{| -
6|}{\sqrt{1}} = 6

  • Câu 18: Vận dụng

    Giả sử hàm số f(x) luôn xác định. Tìm họ nguyên hàm của hàm số f\left( x ight) = \frac{1}{{{x^2} + \left( {a + b} ight)x + ab}}

    \begin{matrix}  f\left( x ight) = \dfrac{1}{{{x^2} + \left( {a + b} ight)x + ab}} \hfill \\   \Rightarrow f\left( x ight) = \dfrac{1}{{\left( {x + a} ight)\left( {x + b} ight)}} \hfill \\   \Rightarrow f\left( x ight) = \dfrac{1}{{\left( {b - a} ight)\left( {x + a} ight)}} - \dfrac{1}{{\left( {b - a} ight)\left( {x + b} ight)}} \hfill \\ \end{matrix} 

    \begin{matrix}  \int {f\left( x ight)dx}  = \int {\left[ {\dfrac{1}{{\left( {b - a} ight)\left( {x + a} ight)}} - \dfrac{1}{{\left( {b - a} ight)\left( {x + b} ight)}}} ight]dx}  \hfill \\   = \dfrac{1}{{b - a}}.\int {\left[ {\dfrac{1}{{x + a}} - \dfrac{1}{{x + b}}} ight]dx}  \hfill \\   = \dfrac{1}{{b - a}}.\left[ {\ln \left| {x + a} ight| - \ln \left| {x + b} ight|} ight] + C = \dfrac{1}{{b - a}}\ln \left| {\dfrac{{x + a}}{{x + b}}} ight| + C \hfill \\ \end{matrix}

  • Câu 19: Nhận biết

    Viết phương trình tham số của đường thẳng d qua hai điểm: A\left( { - 1,3, - 2} ight);B\left( {2, - 3,4} ight)

     Đường thẳng d đi qua hai điểm A và B nên VTCP của đường thẳng d chính là \overrightarrow {AB} hay ta có: \overrightarrow {AB}  = \left( {3, - 6,6} ight) = 3\left( {1, - 2,2} ight) =  - 3\left( { - 1,2, - 2} ight)

    \begin{array}{l} \Rightarrow \left( d ight)\left\{ \begin{array}{l}x = 3t - 1\\y = 3 - 6t\\z = 6t - 2\end{array} ight.\,\,;t \in \mathbb{R},\,\\hay\,\,\left( d ight)\left\{ \begin{array}{l}x = 2 + m\\y =  - 3 - 2m\\z = 4 + 2m\end{array} ight.\,\,;m \in \mathbb{R}\\\hay\,\,\left( d ight)\,\left\{ \begin{array}{l}x =  - 1 - \tan t\\y = 3 + 2\tan t\\z =  - 2 - 2\tan t\end{array} ight.\,\,;t \in\mathbb{R}\end{array}

     

  • Câu 20: Nhận biết

    Cho hàm số f(x) liên tục trên Ka;b \in K, F(x) là một nguyên hàm của f(x) trên K. Chọn khẳng định sai trong các khẳng định sau?

    Theo định nghĩa tích phân ta có: \int_{a}^{b}{f(x)dx} = F(b) - F(a).

  • Câu 21: Thông hiểu

    Viết phương trình tham số của đường thẳng (d) qua I (-1, 5, 2) và song song với trục x'Ox:

    Theo đề bài, ta có (d) // x’Ox nên (d) có vecto chỉ phương là \overrightarrow {{e_1}}  = \left( {1,0,0} ight)

    Như vậy, (d) qua I (-1, 5, 2) và nhận làm 1 VTCP \overrightarrow {{e_1}}  = \left( {1,0,0} ight) có PTTS là:

    (d): \left\{ \begin{array}{l}x = t - 1\\y = 5\\z = 2\end{array} ight.\,\,\,;t \in \mathbb{R}

  • Câu 22: Nhận biết

    Xác định nguyên hàm của hàm số f(x) =
3x^{2} + \frac{x}{2}?

    Ta có: \int_{}^{}{f(x)dx} =
\int_{}^{}\left( 3x^{2} + \frac{x}{2} ight)dx = x^{3} +
\frac{x^{2}}{4} + C.

  • Câu 23: Vận dụng

    Trong không gian với hệ tọa độ Oxyz, cho các điểm A(−1; 0; 1), B(1; 1; −1); C(5; 0; −2). Tìm tọa độ điểm H sao cho tứ giác ABCH lập thành hình thang cân với hai đáy AB, CH.

    Ta có \overrightarrow{AB} = (2;1; -
2);M\left( 0;\frac{1}{2};0 ight) là trung điểm AB.

    Gọi (α) là mặt phẳng trung trực của AB \Rightarrow (\alpha):2x + y - 2z - \frac{1}{2} =
0

    Gọi d là đường thẳng qua C và song song AB \Rightarrow d:\left\{ \begin{matrix}
x = 5 + 2t \\
y = t \\
z = - 2 - 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Gọi I là hình chiếu của C lên (α).

    Tọa độ I là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}x = 5 + 2t \\y = t \\z = - 2 - 2t \\2x + y - 2z - \dfrac{1}{2} = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{3}{2} \\z = 1 \\t = - \dfrac{3}{2} \\\end{matrix} ight.\  \Rightarrow I\left( 2; - \dfrac{3}{2};1ight)

    Do ABCH là hình thang cân nên H và C đối xứng nhau qua mp(α).

    ⇒ I là trung điểm CH

    ⇒ H(−1; −3; 4).

  • Câu 24: Vận dụng cao

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash \left\{ 0 ight\} thỏa mãn f\left( x ight) + x'f\left( x ight) = 3{x^2};f\left( 2 ight) = 8. Phương trình tiếp tuyến của đồ thị hàm số y = f(x) tại giao điểm với trục hoành là:

     Ta có:

    \begin{matrix}  f\left( x ight) + x'f\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left( x ight)'f\left( x ight) + xf'\left( x ight) = 3{x^2} \hfill \\   \Leftrightarrow \left[ {xf\left( x ight)} ight]' = 3{x^2} \hfill \\ \end{matrix}

    Lấy nguyên hàm hai vế ta được:

    \begin{matrix}  \int {\left[ {xf\left( x ight)} ight]'dx = \int {3{x^2}dx} }  \hfill \\   \Leftrightarrow xf\left( x ight) = {x^3} + C \hfill \\ \end{matrix}

    Mặt khác f\left( 2 ight) = 8 \Rightarrow 3.f\left( 2 ight) = 8 + C \Rightarrow C = 8

    => xf\left( x ight) = {x^3} + 8 \Rightarrow f\left( x ight) = \frac{{{x^3} + 8}}{x}

    Xét phương trình hoành độ giao điểm \frac{{{x^3} + 8}}{x} = 0 \Rightarrow x =  - 2

    Ta có: f'\left( x ight) = \frac{{2{x^3} - 8}}{{{x^2}}} \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {f'\left( { - 2} ight) =  - 6} \\   {f\left( { - 2} ight) = 0} \end{array}} ight.

    Phương trình tiếp tuyến tại giao điểm với trục hoành là:

    y = f'\left( { - 2} ight)\left( {x + 2} ight) + f\left( { - 2} ight) \Rightarrow y =  - 6x - 12

  • Câu 25: Nhận biết

    Phương trình nào dưới đây nhận hai số phức 1 + \sqrt 2 i  và 1 - \sqrt 2 i là nghiệm ?

     Ta có \left( {1 + \sqrt 2 i} ight) + \left( {1 - \sqrt 2 i} ight) = 2 =\frac{-b}{a} và  \left( {1 + \sqrt 2 i} ight) . \left( {1 - \sqrt 2 i} ight) = 3 =\frac c a.

    Suy ra 1 \pm  \sqrt 2 i là nghiệm của phương trình {z^2} - 2z + 3 = 0.

  • Câu 26: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào đúng?

    Nếu giá của ba vectơ cùng song song với một mặt phẳng thì ba vectơ đó đồng phẳng.

  • Câu 27: Nhận biết

    Nguyên hàm của hàm số f(x) =
2^{2x}.3^{x}.7^{x} là:

    Ta có: \int_{}^{}{\left(2^{2x}.3^{x}.7^{x} ight)dx =}\int_{}^{}{\left( 84^{x} ight)dx}=\frac{84^{x}}{\ln84} + C

  • Câu 28: Nhận biết

    Số phức 5 + 6i có phần thực bằng 

     Số phức z = a + bi có b được gọi là phần thực.

  • Câu 29: Thông hiểu

    Tìm nghiệm của phương trình sau trên tập số phức \mathbb C: {z^4} - {z^3} + \frac{{{z^2}}}{2} + z + 1 = 0 (1)

    Kiểm tra nghiệm z=0 ta dễ dàng nhận xét z=0 không là nghiệm của phương trình đã cho vậy z eq 0.

    Chia hai vế PT (1) cho z2 ta được : ({z^2} + \frac{1}{{{z^2}}}) - (z - \frac{1}{z}) + \frac{1}{2} = 0 (2)

    Đặt t= z - \frac{1}{z} .  Khi đó {t^2} = {z^2} + \frac{1}{{{z^2}}} - 2 \Leftrightarrow {z^2} + \frac{1}{{{z^2}}} = {t^2} + 2

    Phương trình (2) có dạng :t^2-t+\frac{5}{2} = 0 (3)

    \Delta  = 1 - 4.\frac{5}{2} =  - 9 = 9{i^2}

    Vậy PT (3) có 2 nghiệm:    t=\frac{{1 + 3i}}{2};t=\frac{{1 - 3i}}{2} 

    Với  t=\frac{{1 + 3i}}{2},  ta có z - \frac{1}{z} = \frac{{1 + 3i}}{2} \Leftrightarrow 2{z^2} - (1 + 3i)z - 2 = 0(4)

    \Delta  = {(1 + 3i)^2} + 16 = 8 + 6i = 9 + 6i + {i^2} = {(3 + i)^2}

    Vậy PT(4) có 2 nghiệm :

    z=\frac{{(1 + 3i) + (3 + i)}}{4} = 1 + iz= \frac{{(1 + 3i) - (3 + i)}}{4} = \frac{{i - 1}}{2}

    Do đó PT đã cho có 4 nghiệm : z=1+i; z=1-iz=\frac{{i - 1}}{2}; z=\frac{{-i - 1}}{2}

  • Câu 30: Vận dụng

    Xét phương trình {z^3} = 1 trên tập số phức. Tập nghiệm của phương trình là:

     Ta có:

    {z^3} = 1 \Leftrightarrow \left( {z - 1} ight)\left( {{z^2} + z + 1} ight) = 0

    \Leftrightarrow \left[ \begin{array}{l}z = 1\\{z^2} + z + 1 = 0\end{array} ight. \Leftrightarrow \left[ \begin{array}{l}z = 1\\z =  - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i\end{array} ight.

    Suy ra: S = \left\{ {1; - \frac{1}{2} \pm \frac{{\sqrt 3 }}{2}i} ight\}

  • Câu 31: Thông hiểu

    Tìm các số thực x, y thoả mãn:

    3x + y + 5xi = 2y – 1 +(x – y)i

    Theo giả thiết: 3x + y + 5xi = 2y – 1 +(x – y)i

    => (3x + y) + (5x)i = (2y – 1) +(x – y)i

    =>\left\{ \begin{gathered}  3x + y = 2y - 1 \hfill \\  5x = x - y \hfill \\ \end{gathered}  ight.

    => \left\{ \begin{gathered}  x =  - \frac{1}{7} \hfill \\  y = \frac{4}{7} \hfill \\ \end{gathered}  ight.

  • Câu 32: Nhận biết

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

    Đáp án là:

    Số phức z = \frac{{7 - 17i}}{{5 - i}} có phần thực là?

    2

     Ta có: z = \frac{{7 - 17i}}{{5 - i}} = \frac{{\left( {7 - 17i} ight)\left( {5 + i} ight)}}{{\left( {5 - i} ight)\left( {5 + i} ight)}} = \frac{{52 - 78i}}{{26}} = 2 - 3i

    Vậy phần thực của số phức z=2

  • Câu 33: Nhận biết

    Trong không gian Oxyz, cho vectơ \overrightarrow{a} =
(2;3;2);\overrightarrow{b} = (1;1; - 1). Khi đó tọa độ vectơ \overrightarrow{a} -
\overrightarrow{b} là:

    Ta có:

    \overrightarrow{a} - \overrightarrow{b}
= (2 - 1;3 - 1;2 + 1) = (1;2;3)

  • Câu 34: Thông hiểu

    Tìm nguyên hàm của hàm số f\left( x ight) = {e^{ - 2x}} + \frac{1}{{\sqrt x }}

     \begin{matrix}  \int {\left( {{e^{ - 2x}} + \dfrac{1}{{\sqrt x }}} ight)dx}  = \int {{e^{ - 2x}}dx}  + \int {\dfrac{1}{{\sqrt x }}} dx =  - \dfrac{1}{2}\int {{e^{ - 2x}}d\left( { - 2x} ight)}  + 2\int {\dfrac{1}{{2\sqrt x }}} dx \hfill \\   =  - \dfrac{{{e^{ - 2x}}}}{2} + 2\sqrt x  + C =  - \dfrac{1}{{2{e^{2x}}}} + 2\sqrt x  + C \hfill \\ \end{matrix}

  • Câu 35: Thông hiểu

    Gọi {z_1},{z_2},{z_3},{z_4} là bốn nghiệm của phương trình {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 trên tập

    số phức tính tổng: S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}}.

    Ta có: {z^4} - {z^3} - 2{z^2} + 6z - 4 = 0 \Leftrightarrow \left( {z - 1} ight)\left( {z + 2} ight)\left( {{z^2} - 2z + 2} ight) = 0 (1)

    Không mất tính tổng quát ta gọi 4 nghiệm của (1) lần lượt là:

    \left[ \begin{array}{l}{z_1} = 1\\{z_2} =  - 2\\{z_3} = 1 + i\\{z_4} = 1 - i\end{array} ight.

    Thay và biểu thức ta có: 

    S = \frac{1}{{z_1^2}} + \frac{1}{{z_2^2}} + \frac{1}{{z_3^2}} + \frac{1}{{z_4^2}} = 1 + \frac{1}{4} + \frac{1}{{{{\left( {1 - i} ight)}^2}}} + \frac{1}{{{{\left( {1 + i} ight)}^2}}} = \frac{5}{4}

  • Câu 36: Vận dụng cao

    Gọi {z_1},{z_2},{z_3},{z_4} là các nghiệm của phương trình {\left( {\frac{{z - 1}}{{2z - i}}} ight)^4} = 1 . Tính giá trị biểu thức P = \left( {z_1^2 + 1} ight)\left( {z_2^2 + 1} ight)\left( {z_3^2 + 1} ight)\left( {z_4^2 + 1} ight)

     Ta có phương trình

    f\left( z ight) = {\left( {2z - i} ight)^4} - {\left( {z - 1} ight)^4} = 0

    Suy ra: f\left( z ight) = 15\left( {z - {z_1}} ight)\left( {z - {z_2}} ight)\left( {z - {z_3}} ight)\left( {z - {z_4}} ight)

    z_1^2 + 1 = \left( {{z_1} - i} ight)\left( {{z_1} + i} ight) \Rightarrow P = \frac{{f\left( i ight).f\left( { - i} ight)}}{{225}}    (1)

    f\left( i ight) = {i^4} - {\left( {i - 1} ight)^4} = 5;

    f\left( { - i} ight) = {\left( { - 3i} ight)^4} - {\left( {i + 1} ight)^4} = 85.

    Vậy từ \left( 1 ight) \Rightarrow P = \frac{{17}}{9}.

  • Câu 37: Thông hiểu

    Cho \int_{}^{}{\frac{1}{x^{2} - 1}dx} =
a\ln|x - 1| + b\ln|x + 1| + C với a;b là các số hữu tỉ. Khi đó a - b bằng:

    Ta có: \frac{1}{x^{2} - 1} = \frac{1}{(x
- 1)(x + 1)} = \frac{1}{x - 1} - \frac{1}{x + 1}

    \Rightarrow \int_{}^{}{\frac{1}{x^{2} -
1}dx} = \int_{}^{}{\left( \frac{1}{x - 1} - \frac{1}{x + 1} ight)dx} =
\frac{1}{2}\ln|x - 1| - \frac{1}{2}\ln|x + 1| + C

    Suy ra a = \frac{1}{2};b = - \frac{1}{2}
\Rightarrow a - b = 1.

  • Câu 38: Vận dụng cao

    Trong không gian Oxyz, cho điểm A(1; - 6;1) và mặt phẳng (P):x + y + 7 = 0. Điểm B thay đổi thuộc Oz; điểm C thay đổi thuộc mặt phẳng (P). Biết rằng tam giác ABC có chu vi nhỏ nhất. Tọa độ điểm B là:

    Hình vẽ minh họa

    Gọi B1 là điểm đối xứng với B qua (P).

    P_{ABC} = AB + BC + CA = AB + B_{1}C +
CA \geq AB + AB_{1}

    Gọi M là hình chiếu của A lên trục Oz, M1 là điểm đối xứng của M qua (P)

    AB + AB_{1} \geq AM + AB_{1} \geq AM +
AM_{1} (hằng số).

    Vậy PABC nhỏ nhất khi B ≡ M và C là giao điểm của AM1 với (P).

    Từ đó suy ra tọa độ của điểm B là (0; 0; 1).

  • Câu 39: Thông hiểu

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Đáp án là:

    Cho z = x + yi ;\,\, x, y \in \mathbb{Z} là nghiệm của phương trình sau: z^3=18+26i.

    Tính M=x+2020y

    M=2023 || 2023 || hai nghìn không trăm hai mưới ba

    Ta có: (x + yi)^3 = x^3 – 3xy^2 + (3x^2y – y^3)i = 18 + 26i

    Theo định nghĩa hai số phức bằng nhau, ta được: \left\{ \begin{array}{l}{x^3} - 3x{y^2} = 18\\3{x^2}y - {y^3} = 26\end{array} ight.

    Từ hệ trên, rõ ràng x eq 0y eq 0.

    Đặt y= tx , hệ \Rightarrow 18(3x^2y – y^3) = 26(x^3 – 3xy^2 )

    \Rightarrow 18(3t-t^3 ) = 26(1-3t^2)

    \Leftrightarrow 18t^3 – 78t^2 – 54t+26 = 0

    \Leftrightarrow  ( 3t- 1)(3t^2 – 12t – 13) = 0.

    x, y \in \mathbb{Z} \Rightarrow t \in \mathbb{Q} \Rightarrow t = \frac{1}{3} \Rightarrow x = 3 ; y = 1 \mbox{ hay } z = 3 + i.

    \Rightarrow M= x+2020y=3+2020.1=2023

  • Câu 40: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Xét tính đúng sai của các khẳng định sau:

    a) Tọa độ trung điểm của AB\left( \frac{3}{2};\frac{3}{2};4
ight). Đúng||Sai

    b) \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10). Đúng||Sai

    c) Góc giữa hai đường thẳng ABAC bằng 30^{\circ}. Đúng||Sai

    d) Điểm I(a;b;c) nằm trên mặt phẳng (Oxz) thỏa mãn T = |3\overrightarrow{IB} -
\overrightarrow{IC}| đạt giá trị nhỏ nhất. Khi đó a - 2b + 2c = 15. Sai||Đúng

    a) Đúng: Gọi I là trung điểm AB.

    Ta có \left\{ \begin{matrix}
  {x_I} = \dfrac{{{x_A} + {x_B}}}{2} = \dfrac{{1 + 2}}{2} = \dfrac{3}{2} \hfill \\
  {y_I} = \dfrac{{{y_A} + {y_B}}}{2} = \dfrac{{2 + 1}}{2} = \dfrac{3}{2} \hfill \\
  {z_I} = \dfrac{{{z_A} + {z_B}}}{2} = \dfrac{{3 + 5}}{2} = 4 \hfill \\ 
\end{matrix}  ight. \Rightarrow I\left( {\dfrac{3}{2};\dfrac{3}{2};4} ight)

    b) Đúng: Ta có \overrightarrow{OA} +
\overrightarrow{OB} + \overrightarrow{OC} = (5;7;10).

    c) Đúng: Ta có \overrightarrow{AB} = (1;
- 1;2),\overrightarrow{AC} = (1;2; - 1).

    \cos(AB,AC) =\cos(\overrightarrow{AB},\overrightarrow{AC}) =\frac{|\overrightarrow{AB} \cdot\overrightarrow{AC}|}{|\overrightarrow{AB}| \cdot|\overrightarrow{AC}|}

    = \frac{|1 \cdot 1 + ( - 1) \cdot 2 + 2
\cdot ( - 1)|}{\sqrt{1^{2} + ( - 1)^{2} + 2^{2}} \cdot \sqrt{1^{2} +
2^{2} + ( - 1)^{2}}} = \frac{1}{2}

    Suy ra (AB,AC) = 60^{\circ}.

    d) Sai: Gọi K(x;y;z) thỏa mãn 3\overrightarrow{KB} - \overrightarrow{KC} =
\overrightarrow{0}

    \Leftrightarrow \left\{ \begin{matrix}3(2 - x) - (2 - x) = 0 \\3(1 - y) - (4 - y) = 0 \\3(5 - z) - (2 - z) = 0 \\\end{matrix} \Leftrightarrow \left\{ \begin{matrix}x = 2 \\y = - \dfrac{1}{2} \\z = \dfrac{13}{2} \\\end{matrix} ight.\  ight.

    Suy ra K\left( 2; -
\frac{1}{2};\frac{13}{2} ight).

    Khi đó T = |3\overrightarrow{IB} -
\overrightarrow{IC}| = |3\overrightarrow{IK} + 3\overrightarrow{KB} -
\overrightarrow{IK} - \overrightarrow{KC}| = |2\overrightarrow{IK}| =
2IK.

    T đạt giá trị nhỏ nhất khi và chỉ khi I là hình chiếu của K trên (Oxz) suy ra I(2;0;\frac{13}{2} )..

    Suy ra a = 2,b = 0,c =
\frac{13}{2}.

    Vậy a - 2b + 2c = 15.

  • Câu 41: Vận dụng

    Trong không gian với hệ trục tọa độ Oxyz, cho các điểm A(0;1;1),B(1;0;1),C(1;1;0). Có bao nhiêu điểm M cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)?

    Ta có \left\{ \begin{matrix}
\overrightarrow{OA} = (0;1;1);\overrightarrow{OB} = (1;0;1) \\
\overrightarrow{OC} = (1;1;0);\overrightarrow{AB} = (1; - 1;0) \\
\overrightarrow{AC} = (1;\ 0; - 1) \\
\end{matrix} ight.

    Ta có: \left\lbrack
\overrightarrow{OA};\overrightarrow{OB} ightbrack = (1;\ 1; - 1)
\Rightarrow (OAB):x + y - z = 0

    Ta có: \left\lbrack
\overrightarrow{AB};\overrightarrow{OC} ightbrack = ( - 1;1;1)
\Rightarrow (OBC): - x + y + z = 0

    Gọi điểm M(a;b;c) cách đều các mặt phẳng (ABC),(OBC),(OAC),(OAB)

    Từ d\left( M,(OAB) ight) = d\left(
M,(OBC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = c(1) \\
b = c(2) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(OAC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{| - a + b - c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
a = 0(3) \\
b = c(4) \\
\end{matrix} ight.

    Từ d\left( M,(OAB) ight) = d\left(
M,(ABC) ight)

    \Leftrightarrow \frac{|a + b -
c|}{\sqrt{3}} = \frac{|a + b + c|}{\sqrt{3}} \Leftrightarrow
\left\lbrack \begin{matrix}
c = 0(5) \\
a = - b(6) \\
\end{matrix} ight.

    Từ (1), (3), (5) suy ra a = c = 0, b khác 0 tùy ý.

    Như vậy có vô số điểm cách đều bốn mặt phẳng

  • Câu 42: Vận dụng cao

    Cho hàm số y = f(x) có đạo hàm trên \mathbb{R} thỏa mãn f\left( \frac{\pi}{2} ight) = - 1 với \forall x\mathbb{\in R} ta có: f'(x).f(x) - \sin2x = f'(x)\cos x -f(x)\sin x. Tính tích phân I =
\int_{0}^{\frac{\pi}{4}}{f(x)dx}?

    Ta có:

    f'(x).f(x) - \sin2x = f'(x)\cos x- f(x)\sin x

    \Leftrightarrow f'(x).f(x) - \sin2x =\left\lbrack f(x)\cos x ightbrack'

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}\left\lbrack f'(x).f(x) -\sin2x ightbrack dx = \int_{}^{}{\left\lbrack f(x)\cos xightbrack'}dx

    \Leftrightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x + C

    Theo bài ra ta có: f\left( \frac{\pi}{2}
ight) = - 1 \Rightarrow C = 0

    \Rightarrow \frac{f^{2}(x)}{2} +\frac{1}{2}\cos2x = f(x)\cos x

    \Leftrightarrow f^{2}(x) + \cos2x =2f(x)\cos x

    \Leftrightarrow f^{2}(x) - 2f(x)\cos x +\cos^{2}x = \sin^{2}x

    \Leftrightarrow \left\lbrack f(x) - \cos x ightbrack^{2} = \sin^{2}x \Leftrightarrow \left\lbrack\begin{matrix}f(x) - \cos x = \sin x \\f(x) - \cos x = - \sin x \\\end{matrix} ight.

    f\left( \frac{\pi}{2} ight) = -
1 nên nhận f(x) = \cos x - \sin
x

    Vậy I = \int_{0}^{\frac{\pi}{4}}{f(x)dx}
= \int_{0}^{\frac{\pi}{4}}{\left\lbrack \cos x - \sin x ightbrack
dx} = \left. \ \left( \cos x - \sin x ight)
ight|_{0}^{\frac{\pi}{4}} = \sqrt{2} - 1

  • Câu 43: Thông hiểu

    Một ô tô đang chạy với vận tốc 20m/s thì người lái hãm phanh. Sau khi hãm phanh, ô tô chuyển động chậm dần đều với vận tốc v(t) = - 4t + 20(m/s) trong đó t là khoảng thời gian tính bằng giây kể từ lúc bắt đầu hãm phanh. Hỏi từ lúc hãm phanh đến khi dừng hẳn, ô tô còn di chuyển được bao nhiêu mét?

    Khi vật dừng hẳn thì v = 0 \Rightarrow -
4t + 20 = 0 \Rightarrow t = 5(s)

    Quãng đường vật đi được trong khoảng thời gian trên là:

    S(t) = \int_{0}^{5}{v(t)dt} =
\int_{0}^{5}{( - 4t + 20)dt} = 50m

  • Câu 44: Nhận biết

    Phần thực, phần ảo của số phức z thỏa mãn \overline z  = \frac{5}{{1 - 2i}} - 3i lần lượt là?

    Ta có:

    \overline z  = \frac{5}{{1 - 2i}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{{\left( {1 - 2i} ight)\left( {1 + 2i} ight)}} - 3i = \frac{{5\left( {1 + 2i} ight)}}{5} - 3i = 1 - i

    \Rightarrow z = 1 + i

    Phần thực, phần ảo của z lần lượt là 1;1.

  • Câu 45: Vận dụng

    Cho hàm số F(x) là một nguyên hàm của hàm số f(x) = \frac{2\cos x -1}{\sin^{2}x}. Biết rằng giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3}. Chọn mệnh đề đúng trong các mệnh đề sau?

    Ta có:

    F(x) = \int_{}^{}{f(x)dx} =\int_{}^{}{\frac{2\cos x}{\sin^{2}x}dx} -\int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = \int_{}^{}{\frac{2}{\sin^{2}x}d\left(\sin x ight)} - \int_{}^{}{\frac{1}{\sin^{2}x}dx}

    = - \frac{2}{\sin x} + \cot x +
C

    Suy ra F'(x) = f(x) = \frac{2\cos x -1}{\sin^{2}x}

    Trên khoảng (0;\pi) ta có:

    F'(x) = 0 \Leftrightarrow 2\cos x - 1= 0 \Leftrightarrow x = \frac{\pi}{3}

    Ta có bảng biến thiên

    Giá trị lớn nhất của F(x) trên khoảng (0;\pi)\sqrt{3} nên t s có:

    F\left( \frac{\pi}{3} ight) = \sqrt{3}
\Leftrightarrow - \frac{3\sqrt{3}}{3} + C = \sqrt{3} \Leftrightarrow C =
2\sqrt{3}

    Vậy F(x) = - \frac{2}{\sin x} + \cot x +
2\sqrt{3} \Rightarrow F\left( \frac{\pi}{6} ight) = 3\sqrt{3} -
4.

  • Câu 46: Thông hiểu

    Cho số phức z thỏa mãn iz = 2 + i. Khi đó phần thực và phần ảo của z là

     Ta có: z = \frac{{2 + i}}{i} = 1 - 2i

  • Câu 47: Nhận biết

    Cho các hàm số y = f(x)y = g(x) liên tục trên \lbrack a;bbrack và số k tùy ý. Trong các khẳng định sau, khẳng định nào sai?

    Khẳng định sai là: \int_{a}^{b}{x.f(x)dx}
= x\int_{a}^{b}{f(x)dx}

  • Câu 48: Thông hiểu

    Tích phân \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = a - \ln b với a;b\mathbb{\in Z}. Giá trị của a + b bằng:

    Ta có: \int_{0}^{1}{\frac{(x -
1)^{2}}{x^{2} + 1}dx} = \int_{0}^{1}{\left( 1 - \frac{2x}{x^{2} + 1}
ight)dx}

    = \left. \ x ight|_{0}^{1} - \left. \
\ln\left( x^{2} + 1 ight) ight| = 1 - ln2

    \Rightarrow \left\{ \begin{matrix}
a = 1 \\
b = 2 \\
\end{matrix} ight.\  \Rightarrow a + b = 3

  • Câu 49: Nhận biết

    Cho hàm số f(x) liên tục trên tập số thực và thỏa mãn \int_{0}^{6}{f(x)dx}= 7;\int_{3}^{10}{f(x)dx} = 8;\int_{3}^{6}{f(x)dx} = 9. Khi đó giá trị I = \int_{0}^{10}{f(x)dx} bằng:

    Ta có:

    \int_{3}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} + \int_{6}^{10}{f(x)dx}

    \Leftrightarrow \int_{6}^{10}{f(x)dx} =
\int_{3}^{6}{f(x)dx} - \int_{3}^{10}{f(x)dx} = 8 - 9 = 1

    \Rightarrow I = \int_{0}^{6}{f(x)dx} +
\int_{6}^{10}{f(x)dx} = 7 - 1 = 6

  • Câu 50: Nhận biết

    Xác định nguyên hàm F(x) của hàm số f(x) = 2x - 8\sin x\cos x thỏa mãn F(\pi) = 2?

    Ta có:

    \int_{}^{}{f(x)dx} = \int_{}^{}{\left(2x - 8\sin x\cos x ight)dx}

    = \int_{}^{}{(2x - 4\sin2x)dx} = x^{2} +2\cos2x + C

    Theo bài ra ta có: F(\pi) =
2

    \Rightarrow \pi^{2} + 2 + C = 2
\Leftrightarrow C = - \pi^{2}

    Vậy F(x) = x^{2} + 2\cos2x -\pi^{2}

Chúc mừng Bạn đã hoàn thành bài!

Đề thi HK2 Toán 12 Đề 1 Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 204 lượt xem
Sắp xếp theo