Đề thi giữa HK2 Toán 11 Chân trời sáng tạo năm học 2023 – 2024 (Đề 1)

Mô tả thêm: Đề thi giữa học kì 2 Toán 11 được biên soạn chuẩn ma trận đề thi gồm 40 các câu hỏi trắc nghiệm bám sát chương trình sách Chân trời sáng tạo, giúp bạn học củng cố kiến thức chuẩn bị cho kì thi sắp tới
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Thông hiểu

    Cho hàm số f(x) = \left\{ \begin{matrix}\dfrac{3 - \sqrt{4 - x}}{4}\ \ \ \ khi\ x eq 0 \\\dfrac{1}{4}\ \ \ \ khi\ x = 0 \\\end{matrix} ight.. Tính f'(0)?

    Ta có:

    \lim_{x ightarrow 0}\frac{f(x) -f(0)}{x - 0}

    = \lim_{x ightarrow 0}\dfrac{\dfrac{3 -\sqrt{4 - x}}{4} - \dfrac{1}{4}}{x}

    = \lim_{x ightarrow 0}\frac{2 -\sqrt{4 - x}}{4x}

    = \lim_{x ightarrow 0}\frac{\left( 2 -\sqrt{4 - x} ight)\left( 2 + \sqrt{4 - x} ight)}{4x\left( 2 +\sqrt{4 - x} ight)}

    = \lim_{x ightarrow0}\frac{x}{4x\left( 2 + \sqrt{4 - x} ight)}

    = \lim_{x ightarrow 0}\frac{1}{4\left(2 + \sqrt{4 - x} ight)} = \frac{1}{16}

  • Câu 2: Nhận biết

    Cho hàm số y =
f(x) xác định bởi công thức f(x) =
\frac{2x}{x - 1}. Tính đạo hàm của hàm số đã cho?

    Ta có:f(x) = \frac{2x}{x -
1}

    \Rightarrow f'(x) =
\frac{(2x)'(x - 1) - (x - 1)'(2x)}{(x - 1)^{2}}

    \Rightarrow f'(x) = \frac{2(x - 1) -
2x}{(x - 1)^{2}} = \frac{- 2}{(x - 1)^{2}}

  • Câu 3: Nhận biết

    Viết phương trình tiếp tuyến của đường cong y = x^{3} tại điểm (-1; -1)

    Ta tính được k = y'( - 1) =3

    Ta có: \left\{ \begin{matrix}x_{0} = - 1 \\y_{0} = - 1 \\k = 3 \\\end{matrix} ight.

    Suy ra phương trình tiếp tuyến

    y + 1 = 3(x + 1)

    \Rightarrow y = 3x + 2

  • Câu 4: Nhận biết

    Cho f là hàm số liên tục tại x0. Đạo hàm của f tại x0 là:

    Đạo hàm của f tại x0 là: \lim_{h ightarrow 0}\frac{f\left(x_{0} + h ight) - f(x)}{h} (nếu tồn tại giới hạn).

  • Câu 5: Nhận biết

    Rút gọn biểu thức: D = x^{\frac{2}{5}}.\sqrt[6]{x} với x > 0 ta được kết quả là:

    Ta có: D = x^{\frac{2}{5}}.\sqrt[6]{x} =
x^{\frac{2}{5}}.x^{\frac{1}{6}} = x^{\frac{2}{5} + \frac{1}{6}} =
x^{\frac{17}{30}}.

  • Câu 6: Vận dụng

    Biết đồ thị hàm số y = f(x) đối xứng với đồ thị hàm số y = \log_{a}x;\ (0 < a eq 1) qua điểm I(2;2). Giá trị của f\left( 4 - a^{2018} ight) là:

    Gọi M\left( x;\log_{a}x ight) là điểm thuộc đồ thị hàm số y =\log_{a}x thì điểm đối xứng với M qua IM'\left( 4 - x;4 - \log_{a}x ight) thuộc đồ thị hàm số y = f(x)

    => f(4 - x) = 4 \log_{a}x

    \Rightarrow f\left( 4 - a^{2018} ight)= 4 - \log_{a}^{2018} = - 2014

  • Câu 7: Nhận biết

    Hàm số nào sau đây phù hợp với hình vẽ:

    Ta có: y(1) = 0 và hàm số đồng biến trên (0; + \infty) nên chỉ có hàm số y = \log_{\sqrt{6}}x thỏa mãn.

  • Câu 8: Thông hiểu

    Cho a và b là hai số dương bất kì. Mệnh đề nào dưới đây sai?

    Ta có:

    \log_{2}(3ab)^{3} = 3.\left( \log_{3}3 +\log_{3}a + \log_{3}b ight)

    = 3.\left( 1 + \log_{3}a + \log_{3}bight)

    = 3 + 3\log_{3}ab

    = 3 + \log_{3}(ab)^{3}

    Vậy mệnh đề sai là: \log_{2}(3ab)^{3} =\left( 1 + \log_{3}a + \log_{3}b ight)^{3}

  • Câu 9: Thông hiểu

    Có bao nhiêu giá trị nguyên của tham số m trên đoạn \lbrack -
2018;2018brack để hàm số y =
\ln\left( x^{2} - 2x - m + 1 ight) có tập xác định \mathbb{R}?

    Hàm số y = \ln\left( x^{2} - 2x - m + 1
ight) xác định trên \mathbb{R} khi và chỉ khi

    x^{2} - 2x - m + 1 > 0;\forall x \in
\mathbb{R}

    \Leftrightarrow \left\{ \begin{matrix}
a > 0 \\
\Delta' < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
1 > 0 \\
1 + m - 1 < 0 \\
\end{matrix} ight.\  \Rightarrow m < 0

    Do \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 2018;2018brack \\
\end{matrix} ight.

    \Rightarrow m \in \left\{ - 2018; -
2017;...; - 1 ight\}

    Vậy có 2018 giá trị của m thỏa mãn yêu cầu bài toán.

  • Câu 10: Vận dụng cao

    Anh T đã làm hợp đồng xin vay vốn ngân hàng để kinh doanh với số tiền 200 triệu đồng với lãi suất a%a\% trên một năm. Điều kiện hợp đồng là số tiền lại tháng trước sẽ được tính làm vốn để sinh lãi cho tháng sau. Sau hai năm kinh doanh, anh T đã thanh toán hợp đồng ngân hàng với số tiền làm tròn là 245512000 đồng. Chọn khẳng định đúng về lãi suất ngân hàng?

    Lãi suất mỗi tháng là \frac{a}{12}\%. Theo công thức lãi kép ta có:

    200.\left( 1 + \frac{a}{12}\%
ight)^{24} = 245,512

    \Rightarrow \frac{a}{12}\% =
\sqrt[24]{\frac{245,512}{200}} - 1

    \Rightarrow a \approx 10

    Vậy a \approx 10

  • Câu 11: Nhận biết

    Điều kiện xác định của hàm số y = (2,5)^{x} là:

    Điều kiện xác định của hàm số y =
(2,5)^{x} là x\in\mathbb{ R}

  • Câu 12: Nhận biết

    Tính \log_{x}\sqrt[3]{x} với \forall x > 0;x eq 1?

    Ta có: \log_{x}\sqrt[3]{x} =\log_{x}x^{\frac{1}{3}} = \frac{1}{3}\log_{x}x = \frac{1}{3}

  • Câu 13: Thông hiểu

    Cho hàm số y =
f(x) = \left\{ \begin{matrix}
x^{2} + 1\ \ \ ;\ x \geq 1 \\
2x\ \ \ \ \ \ \ \ ;\ x < 1 \\
\end{matrix} ight.. Mệnh đề nào dưới đây là mệnh đề sai?

    Ta có:

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x ight) - f\left( 1 ight)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 2}}{{x - 1}} = 2 \hfill \\
  \mathop {\lim }\limits_{x \to 1 + } \frac{{f\left( x ight) - f\left( 1 ight)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 1 - 2}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 1} ight) = 2 \hfill \\ 
\end{gathered}  ight.

    Vậy f'\left( 1^{-} ight) =
f'\left( 1^{+} ight) = f'(1) = 2

    Suy ra hàm số có đạo hàm tại x_{0} =
1

    Vậy mệnh đề sai là: ∄f'(1)

  • Câu 14: Nhận biết

    Chọn mệnh đề đúng trong các mệnh đề sau?

    Mệnh đề đúng: “Góc giữa hai mặt phẳng bằng góc giữa hai đường thẳng lần lượt vuông góc với hai mặt phẳng đó.”

    NB

     

    0

  • Câu 15: Thông hiểu

    Biểu thức L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}};(x > 0) viết dưới dạng lũy thừa của một số hữu tỉ là x^{m}. Kết quả nào sau đây đúng?

    Ta có:

    L =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}\sqrt{x}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{2}.x^{\frac{1}{2}}}} =
\sqrt[6]{x^{3}.\sqrt[3]{x^{\frac{5}{2}}}}

    = \sqrt[6]{x^{3}.x^{\frac{5}{6}}} =
\sqrt[6]{x^{\frac{23}{6}}} = x^{\frac{23}{36}} \Rightarrow m =
\frac{23}{36}

  • Câu 16: Vận dụng

    Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, AB = 2a, AD = DC = a; cạnh bên SA = a và vuông góc với đáy. Mặt phẳng (α) qua SD và vuông góc với mặt phẳng (SAC). Tính diện tích (α) của thiết diện tạo bởi (α) với hình chóp đã cho.

    Hình vẽ minh họa:

    Gọi E là trung điểm AB, suy ra AECD là hình vuông nên DE ⊥ AC. (1)

    Mặt khác SA ⊥ (ABCD) => SA ⊥ DE (2)

    Từ (1) và (2) suy ra DE ⊥ (SAC) => (SAD) ⊥ (SAC)

    Ta có: \left\{ \begin{matrix}
(SDE) \supset S \\
(SDE)\bot(SAC) \\
\end{matrix} ight.\  \Rightarrow (\alpha) \equiv (SDE)

    Vậy thiết diện là tam giác SDE.

    Ta có:

    \begin{matrix}
SD = \sqrt{SA^{2} + DA^{2}} = a\sqrt{2} \\
SE = \sqrt{SA^{2} + AE^{2}} = a\sqrt{2} \\
DE = AC = DC\sqrt{2} = a\sqrt{2} \\
\end{matrix}

    Do đó tam giác SDE đều có cạnh a √ 2 nên S_{SDE} = \frac{SD^{2}\sqrt{3}}{4} =
\frac{a^{2}\sqrt{3}}{2}

  • Câu 17: Vận dụng

    Biết rằng các chữ số p khi viết trong hệ thập phân biết p = 2^{759839} - 1 là một số nguyên tố (số nguyên tố lớn nhất được biết cho đến lúc đó. Số p có tất cả bao nhiêu chữ số?

    Ta có:

    \log p < \log 2^{756839} = 756839log2
\approx 227831,2409

    \Rightarrow 10^{227831} \leq p <
10^{227832}

    Vậy p có 227832 chữ số.

  • Câu 18: Thông hiểu

    Cho hình lăng trụ đứng tam giác ABC.A'B'C' có đáy ABC vuông tại a. Giả sử \alpha là góc giữa đường thẳng AC' và mặt phẳng (BCC'B'). Biết rằng AB = a\sqrt{3};AC = AA' = a. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Hạ AH\bot BC ta có: AH\bot(BCC'B')

    \Rightarrow \left(
AC';(BCC'B') ight) = \widehat{AC'H}

    Trong tam giác ABC có:

    \frac{1}{AH^{2}} = \frac{1}{AB^{2}} +
\frac{1}{AC^{2}} = \frac{4}{3a^{2}}

    \Rightarrow AH =
\frac{a\sqrt{3}}{2}

    \Rightarrow \sin\widehat{AC'H} =
\frac{AH}{AC'} = \frac{a\sqrt{3}}{2a\sqrt{2}} =
\frac{\sqrt{6}}{4}

    \Rightarrow \sin\alpha =
\frac{\sqrt{6}}{4}

  • Câu 19: Nhận biết

    Hàm số y = f(x)= \log_{2}\left( x^{2} - 2x ight) có đạo hàm là:

    Ta có:

    y = f(x) = \log_{2}\left( x^{2} - 2xight)

    \Rightarrow y' = \frac{\left( x^{2}- 2x ight)'}{\left( x^{2} - 2x ight)\ln2} = \frac{2x - 2}{\left(x^{2} - 2x ight)\ln2}

  • Câu 20: Thông hiểu

    Cho hình chóp tứ giác đều S.ABCD có đáy là hình vuông ABCD cạnh a. Gọi O là giao điểm hai đường chéo AC;BD. Biết rằng SO = \frac{a\sqrt{2}}{2}. Tính góc giữa hai đường thẳng ABSD?

    Hình vẽ minh họa

    Ta có: AB//CD \Rightarrow (AB;SD) =(CD;SD)

    OD = \frac{1}{2}BD =\frac{a\sqrt{2}}{2}

    SD = \sqrt{SO^{2} + OD^{2}} =\sqrt{\frac{a^{2}}{2} + \frac{a^{2}}{2}} = a

    \Rightarrow SC = SC = CD =a

    Suy ra tam giác SCD đều.

    \Rightarrow \widehat{SCD} =60^{0}

    \Rightarrow (AB;SD) = (CD;SD) =\widehat{SCD} = 60^{0}

  • Câu 21: Thông hiểu

    Cho a =\log_{3}2;b = \log_{3}5. Khi đó \log60 có giá trị là:

    Ta có:

    \log60 =\frac{\log_{3}60}{\log_{3}10}= \frac{\log_{3}2^{2} + \log_{3}3 +\log_{3}5}{\log_{3}2 + \log_{3}5}

    = \frac{\log_{3}2^{2} + 1 +\log_{3}5}{\log_{3}2 + \log_{3}5}= \dfrac{2a + b + 1}{a + b}

  • Câu 22: Vận dụng

    Cho hàm số f(x) = \left\{ \begin{matrix}x^{2} + 1\ \ khi\ x \geq 1 \\ax + b\ \ khi\ x < 1 \\\end{matrix} ight. có đạo hàm tại điểm x = 1 (với a,b\mathbb{\in R}). Giá trị của biểu thức P = 2a - 5b bằng bao nhiêu?

    Hàm số có đạo hàm tại x = 1 khi hai điều sau xảy ra:

    Hàm số phải liên tục tại điểm x = 1:

    \lim_{x ightarrow 1^{+}}f(x) = \lim_{xightarrow 1^{-}}f(x) = f(1)

    \Rightarrow a + b = 2

    \lim_{x ightarrow 1}\frac{f(x) -f(1)}{x - 1} = f'(1)

    \Leftrightarrow f'\left( 1^{+}ight) = f'\left( 1^{-} ight)

    \Leftrightarrow a = 3

    \Rightarrow b = - 1

    Vậy giá trị của biểu thức P = 2a - 5b =11

  • Câu 23: Nhận biết

    Cho hình chóp S.ABCD có tất cả các cạnh bằng nhau. Gọi trung điểm các cạnh SCBC lần lượt là I;J. Xác định cosin góc giữa hai đường thẳng IJCD?

    Hình vẽ minh họa

    Theo giả thiết ta có:

    IJ là đường trung bình của tam giác SBC nên JI//SB

    \left\{ \begin{matrix}
JI//SB \\
CD//AB \\
\end{matrix} ight.\  \Rightarrow (IJ;CD) = (SB;AB) = \widehat{SBA} =
60^{0}

    \Rightarrow \cos(IJ;CD) =
\frac{1}{2}

  • Câu 24: Nhận biết

    Với m là một số thực bất kì, mệnh đề nào dưới đây là mệnh đề sai?

    Theo định nghĩa và các tính chất của lũy thừa ta thấy:

    \sqrt{10^{m}} = \left( \sqrt{10}
ight)^{m}; \sqrt{10^{m}} = \left(
\sqrt{10} ight)^{m}; \left(
10^{m} ight)^{2} = 100^{m} là các mệnh đề đúng.

    Xét mệnh đề \left( 10^{m} ight)^{2} =
(10)^{m^{2}} với m = 1 ta có: \left( 10^{1} ight)^{2} = 100 eq
(10)^{1^{2}} nên mệnh đề sai.

  • Câu 25: Thông hiểu

    Đơn giản biểu thức F =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}};(a >
0) ta được F =
a^{\frac{m}{n}};\left( m,n \in \mathbb{N}^{*} ight)\frac{m}{n} là phân số tối giản. Chọn khẳng định đúng trong các khẳng định dưới đây?

    Ta có:

    F =
\frac{\sqrt[3]{a^{7}}.a^{\frac{11}{3}}}{a^{4}.\sqrt[7]{a^{- 5}}} =
\frac{a^{\frac{7}{3}}.a^{\frac{11}{3}}}{a^{4}.a^{\frac{- 5}{7}}} =
\frac{a^{6}}{a^{\frac{23}{7}}} = a^{6 - \frac{23}{7}} =
a^{\frac{19}{7}}

    \Rightarrow m^{2} - n^{2} =
312

  • Câu 26: Nhận biết

    Trong các mệnh đề sau, mệnh đề nào sau đây sai?

    Mệnh đề “ Hai đường thẳng cùng vuông góc với một đường thẳng thì song song với nhau.”

    Là sai vì hai đường thẳng đó chưa chắc đồng phẳng.

  • Câu 27: Thông hiểu

    Biết đường thẳng y = 6x + m + 1 là tiếp tuyến của đồ thị hàm số y = x^{3} + 3x - 1. Tìm các giá trị của tham số m.

    Ta có: y' = 3x^{2} + 3

    Gọi (C) là đồ thị của hàm số y = x^{3} + 3x - 1 khi đó

    y'(x) = 6 \Leftrightarrow 3x^{2} + 3
= 6

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 1 \Rightarrow y = 3 \\
x = - 1 \Rightarrow y = - 5 \\
\end{matrix} ight.

    Phương trình tiếp tuyến tại điểm M(1;3)y =
6x - 3

    Phương trình tiếp tuyến tại điểm M( - 1;
- 5)y = 6x + 1

    Để đường thẳng y = 6x + m + 1 là tiếp tuyến của (C) thì \left\lbrack \begin{matrix}
m + 1 = - 3 \\
m + 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = - 4 \\
m = 0 \\
\end{matrix} ight..

  • Câu 28: Thông hiểu

    Giải phương trình \log_{2}\left( x^{2} + x + 1 ight) = 2 +\log_{2}x. Gọi S là tổng tất cả các nghiệm của phương trình. Giá trị của S là:

    Điều kiện xác định:

    \left\{ \begin{matrix}
x^{2} + x + 1 > 0 \\
x > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
\forall x\mathbb{\in R} \\
x > 0 \\
\end{matrix} ight.\  \Rightarrow x > 0

    Phương trình đã cho tương đương:

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}4 + \log_{2}x

    \Leftrightarrow \log_{2}\left( x^{2} + x+ 1 ight) = \log_{2}(4x)

    \Leftrightarrow x^{2} + x + 1 =
4x

    \Leftrightarrow x^{2} - 3x + 1 = 0\Leftrightarrow \left\lbrack \begin{matrix}x = \dfrac{3 + \sqrt{5}}{2}(tm) \\x = \dfrac{3 - \sqrt{5}}{2}(tm) \\\end{matrix} ight.

    \Rightarrow S = \frac{3 + \sqrt{5}}{2} +
\frac{3 - \sqrt{5}}{2} = 3

    Vậy S = 3

  • Câu 29: Nhận biết

    Cho tứ diện OABCOA;OB;OC đôi một vuông góc. Khẳng định nào dưới đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
OA\bot OB \\
OA\bot OC \\
\end{matrix} ight.\  \Rightarrow OA\bot(OBC)

  • Câu 30: Nhận biết

    Cho hình chóp S.ABCD có đáy ABCD là hình bình hành và mặt bên SAB là tam giác vuông tại S. Tính số đo góc giữa hai đường thẳng SACD.

    Hình vẽ minh họa

    ABCD là hình bình hành nên CD//AB

    \Rightarrow (SA;CD) = (SA;AB) =
\widehat{SAB} = 45^{0}

  • Câu 31: Thông hiểu

    Cho hình chóp tứ giác S.ABCD có đáy ABCD là hình chữ nhật, cạnh bên SA vuông góc với mặt phẳng đáy. Gọi H,K lần lượt là hình chiếu vuông của A lên SC,SD. Kết luận nào sau đây đúng?

    Hình vẽ minh họa

    Ta có: \left\{ \begin{matrix}
SA\bot CD \\
AD\bot CD \\
\end{matrix} ight.\  \Rightarrow CD\bot(SAD) \Rightarrow CD\bot
AK

    Lại có: SD\bot AK

    \Rightarrow AK\bot(SCD)

  • Câu 32: Nhận biết

    Giải bất phương trình 0,6^{x} > 3 được tập nghiệm là:

    Ta có:

    0,6^{x} > 3 \Leftrightarrow x <
log_{0,6}3

    Vậy tập nghiệm của bất phương trình là x\in \left( - \infty;\log_{0,6}3 ight)

  • Câu 33: Vận dụng

    Rút gọn biểu thức T = \left( \frac{a^{\frac{3}{2}} +
b^{\frac{3}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} +
b^{\frac{1}{2}}} ight).\left( \frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}}
ight).

    Ta có:

    T = \left( \frac{a^{\frac{3}{2}} +
b^{\frac{3}{2}}}{a - b} - \frac{a - b}{a^{\frac{1}{2}} +
b^{\frac{1}{2}}} ight).\left( \frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}}
ight)

    T = \left( \frac{\sqrt{a^{3}} -
\sqrt{b^{3}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} - \frac{a\sqrt{a^{2}} -
\sqrt{b^{2}} - b}{\sqrt{a} + \sqrt{b}} ight).\left( \frac{\sqrt{a} -
\sqrt{b}}{\sqrt{ab}} ight)

    T = \left( \frac{\sqrt{a^{3}} +
\sqrt{b^{3}} - \sqrt{a^{3}} - \sqrt{b^{3}} + \sqrt{a^{2}b} -
\sqrt{ab^{2}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} ight).\left(
\frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}} ight)

    T = \left( \frac{\sqrt{a^{2}b} -
\sqrt{ab^{2}}}{\sqrt{a^{2}} - \sqrt{b^{2}}} ight).\left(
\frac{\sqrt{a} - \sqrt{b}}{\sqrt{ab}} ight) = 1

  • Câu 34: Vận dụng cao

    Cho hai số thực dương x và y thỏa mãn \ln x + \ln y \geq \ln\left( x^{2} + y
ight). Tính giá trị nhỏ nhất của N = x + y?

    Ta có:

    \ln x + \ln y \geq \ln\left( x^{2} + y
ight)

    \Leftrightarrow xy \geq x^{2} +
y

    \Leftrightarrow y(x - 1) \geq
x^{2}

    Nếu 0 < x \leq 1 \Rightarrow y \geq xy
\geq x^{2} + y \Rightarrow 0 \geq x^{2}(ktm)

    Nếu x > 1 thì (x - 1)y \geq x^{2}

    \Leftrightarrow y \geq \frac{x^{2}}{x -
1} \Rightarrow N = x + y \geq x + \frac{x^{2}}{x - 1}

    Xét hàm số f(x) = x + \frac{x^{2}}{x -
1};\ \left( \forall x \in (1; + \infty) ight) ta có:

    f'(x) = \frac{2x^{2} - 4x + 1}{x^{2}
- 2x + 1}

    f'(x) = 0 \Rightarrow \left\lbrack\begin{matrix}x = \dfrac{2 - \sqrt{2}}{2}(ktm) \\x = \dfrac{2 + \sqrt{2}}{2}(tm) \\\end{matrix} ight.

    Lập bảng biến thiên ta suy ra được

    \underset{(1; + \infty)}{\min f(x)} =
f\left( \frac{2 + \sqrt{2}}{2} ight) = 2\sqrt{2} + 3

    Vậy giá trị nhỏ nhất của N = x + y =
2\sqrt{2} + 3.

  • Câu 35: Thông hiểu

    Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng a, SA\bot(ABCD)SA = a\sqrt{6}. Giả sử \alpha = \left( SB;(SAC) ight). Chọn kết luận đúng?

    Hình vẽ minh họa

    Dễ thấy BO\bot(SAC) \Rightarrow \alpha =
\left( SB;(SAC) ight) = \widehat{BSO}

    Ta có: \sin\alpha = \dfrac{BO}{SB} =\dfrac{\dfrac{a\sqrt{2}}{2}}{a\sqrt{7}} =\dfrac{\sqrt{14}}{14}

  • Câu 36: Nhận biết

    Giá trị của biểu thức \log_{2}5.\log_{5}64 là:

    Ta có:

    \log_{2}5.\log_{5}64 = \log_{2}64 =\log_{2}2^{6} = 6

  • Câu 37: Thông hiểu

    Cho hình chóp S.ABCD có đáy ABCD là hình vuông, SA\bot(ABCD), SA = AB = a. Gọi M là trung điểm cạnh SB. Tính (AM,BD)?

    Hình vẽ minh họa

    Xét tam giác SAB vuông tại A có: SB =
\sqrt{SA^{2} + AB^{2}} = a\sqrt{2}

    Gọi E là trung điểm cạnh MC, ta có:

    OE//AM \Rightarrow (AM;BD) =
(OE,BD)OE = \frac{1}{2}AM =
\frac{1}{4}SB = \frac{a\sqrt{2}}{4}

    Lại có: CB\bot AB;SA\bot CB \Rightarrow
CB\bot SB

    Suy ra tam giác SBC vuông tại B.

    Xét tam giá MBC vuông tại B ta có:

    MC = \sqrt{MB^{2} + BC^{2}} =
\sqrt{\frac{1}{4}.2a^{2} + a^{2}} = \frac{a\sqrt{6}}{2}

    BE = \frac{1}{2}MC =
\frac{a\sqrt{6}}{4}

    Xét tam giác EBOcó:

    \cos\widehat{EOB} = \frac{EO^{2} +
OB^{2} - EB^{2}}{2.EO.OB} = \frac{1}{2}

    \Rightarrow \widehat{EOB} = 60^{0}
\Rightarrow OE//AM \Rightarrow (AM;BD) = 60^{0}

  • Câu 38: Thông hiểu

    Cho hình tứ diện OABC có OA, OB, OC đôi một vuông góc. Gọi I là hình chiếu của điểm O trên mặt phẳng (ABC). Điểm I là:

    Ta có: \left\{ {\begin{array}{*{20}{l}}  {AB \bot OI} \\   {AB \bot OC} \end{array}} ight. \Rightarrow AB \bot CI

    Chứng minh tương tự ta được: BC \bot AI

    Vậy I là trực tâm của tam giác ABC.

  • Câu 39: Nhận biết

    Cho phương trình \log_{2}(x - 1) = 3. Kết quả nào dưới đây là nghiệm phương trình đã cho?

    Điều kiện xác định: x > 1

    \log_{2}(x - 1) = 3 \Leftrightarrow x - 1= 2^{3}

    \Leftrightarrow x - 1 = 8
\Leftrightarrow x = 9(tm)

    Vậy phương trình có nghiệm x =
9.

  • Câu 40: Thông hiểu

    Biết \left(
\frac{3 - 2x}{\sqrt{4x - 1}} ight)' = \frac{ax - b}{(4x -
1)\sqrt{4x - 1}};\forall x > \frac{1}{4}. Tính tỉ số \frac{a}{b}?

    Với \forall x >
\frac{1}{4}

    \left( \frac{3 - 2x}{\sqrt{4x - 1}}
ight)' = \frac{(3 - 2x)'\sqrt{4x - 1} - \left( \sqrt{4x - 1}
ight)'(3 - 2x)}{4x - 1}

    = \frac{- 2\sqrt{4x - 1} - \frac{6 -
4x}{\sqrt{4x - 1}}}{4x - 1} = \frac{- 4x - 4}{(4x - 1)\sqrt{4x -
1}}

    \Rightarrow \left\{ \begin{matrix}
a = - 4 \\
b = 4 \\
\end{matrix} ight.\  \Rightarrow \frac{a}{b} = - 1

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa HK2 Toán 11 Chân trời sáng tạo năm học 2023 – 2024 (Đề 1) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 7 lượt xem
Sắp xếp theo