Đề thi giữa học kì 2 Toán 10 Chân trời sáng tạo (Đề 5)

Mô tả thêm: Đề thi giữa HK2 Toán 10 được biên soạn gồm các câu hỏi trắc nghiệm chia thành 4 mức độ từ nhận biết đến vận dụng cao bám sát chương trình sách Chân trời sáng tạo.
  • Thời gian làm: 90 phút
  • Số câu hỏi: 40 câu
  • Số điểm tối đa: 40 điểm
Mua gói để Làm bài
Trước khi làm bài bạn hãy
  • 1 Ôn tập kiến thức đã nêu trong phần Mô tả thêm
  • 2 Tìm không gian và thiết bị phù hợp để tập trung làm bài
  • 3 Chuẩn bị sẵn dụng cụ cần dùng khi làm bài như bút, nháp, máy tính
  • 4 Căn chỉnh thời gian làm từng câu một cách hợp lý
  • Câu 1: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho hai vectơ \overrightarrow{a} = ( - 2; - 1)\overrightarrow{b} = (4; - 3). Tính cosin của góc giữa hai vectơ \overrightarrow{a}\overrightarrow{b}.

    Ta có: \cos\left(
\overrightarrow{a};\overrightarrow{b} ight) =
\frac{\overrightarrow{a}.\overrightarrow{b}}{\left| \overrightarrow{a}
ight|.\left| \overrightarrow{b} ight|} = \frac{- 5}{\sqrt{5}.5} =
\frac{- \sqrt{5}}{5}.

  • Câu 2: Thông hiểu

    Cho \overrightarrow{u} = (3; - 2),\ \overrightarrow{v}
= (1;6). Khẳng định nào sau đây là đúng?

    Ta có \overrightarrow{u} +
\overrightarrow{v} = (4;4)\overrightarrow{u} - \overrightarrow{v} = (2; -
8).

    Xét tỉ số \frac{4}{- 4} eq
\frac{4}{4}\overset{}{ightarrow}\overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) không cùng phương. Loại \overrightarrow{u} +
\overrightarrow{v}\overrightarrow{a} = ( - 4;4) ngược hướng.

    Xét tỉ số \frac{3}{1} eq \frac{-
2}{6}\overset{}{ightarrow}\overrightarrow{u},\
\overrightarrow{v} không cùng phương. Loại \overrightarrow{u},\ \overrightarrow{v} cùng phương.

    Xét tỉ số \frac{2}{6} = \frac{- 8}{- 24}
= \frac{1}{3} > 0\overset{}{ightarrow}\overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng. Chọn \overrightarrow{u} -
\overrightarrow{v}\overrightarrow{b} = (6; - 24) cùng hướng.

  • Câu 3: Thông hiểu

    Cho hai đường thẳng (\Delta):x + \sqrt{3}y - 6 = 0(\Delta)':\sqrt{3}x - y + 7 = 0. Tính góc hợp bởi hai đường thẳng đã cho?

    Ta có:

    Vectơ pháp tuyến của đường thẳng (\Delta):x + \sqrt{3}y - 6 = 0 là: \overrightarrow{n_{\Delta}} = \left( 1;\sqrt{3}
ight)

    Vectơ pháp tuyến của đường thẳng (\Delta)':\sqrt{3}x - y + 7 = 0 là: \overrightarrow{n_{\Delta}} = \left(
1;\sqrt{3} ight)

    Ta có: \overrightarrow{n_{\Delta}}.\overrightarrow{n_{\Delta}}
= 0 \Rightarrow (\Delta)\bot(\Delta')

    Vậy góc hợp bởi hai đường thẳng bằng 90^{0}.

  • Câu 4: Thông hiểu

    Trong hệ tọa độ Oxy, cho ba điểm A(1;1),\ B(3;2),\ C(6;5). Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành.

    Gọi D(x;y). Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (2;1) \\
\overrightarrow{DC} = (6 - x;5 - y) \\
\end{matrix} ight.\ .

    Tứ giác ABCD là hình bình hành \Leftrightarrow \overrightarrow{AB} =
\overrightarrow{DC}

    \overset{}{ightarrow}\left\{\begin{matrix}2 = 6 - x \\1 = 5 - y \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x = 4 \\y = 4 \\\end{matrix} ight.\ \overset{}{ightarrow}D(4;4).

  • Câu 5: Nhận biết

    Số cách lấy một chiếc bút trong hộp gồm 4 chiếc bút bi và 6 chiếc bút máy bằng:

    Áp dụng quy tắc cộng ta có số cách lấy một chiếc bút là:

    4 + 6 = 10 cách.

  • Câu 6: Vận dụng

    Cho hai đường thẳng \left( d_{1} ight):x + my + 2m - 1 = 0\left( d_{2} ight):\left\{
\begin{matrix}
x = m + 2y \\
y = - 5 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) với m là tham số. Tìm giá trị của tham số m để hai đường thẳng tạo với nhau một góc bằng nửa góc vuông?

    VTPT của hai đường thẳng \left( d_{1}
ight);\left( d_{2} ight) lần lượt là \overrightarrow{n_{1}} =
(1;m);\overrightarrow{n_{2}} = (1; - 2)

    Để hai đường thẳng tạo với nhau một góc bằng 45^{0} thì

    \cos\left( \left( d_{1} ight);\left(
d_{2} ight) ight) = cos45^{0} = \frac{\sqrt{2}}{2}

    \Leftrightarrow \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight) =
\frac{\sqrt{2}}{2} \Leftrightarrow \frac{\left| 1.1 + m.( - 2)
ight|}{\sqrt{m^{2} + 1}.\sqrt{1^{2} + ( - 2)^{2}}} =
\frac{\sqrt{2}}{2}

    \Leftrightarrow \frac{|2m -
1|}{\sqrt{m^{2} + 1}.\sqrt{5}} = \frac{\sqrt{2}}{2} \Leftrightarrow
\frac{(2m - 1)^{2}}{5\left( m^{2} + 1 ight)} =
\frac{1}{2}

    \Leftrightarrow 2(2m - 1)^{2} = 5\left(
m^{2} + 1 ight) \Leftrightarrow 3m^{2} - 8m - 3 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}m = 3 \\m = - \dfrac{1}{3} \\\end{matrix} ight.

    Vậy \left\lbrack \begin{matrix}m = 3 \\m = - \dfrac{1}{3} \\\end{matrix} ight..

  • Câu 7: Vận dụng

    Nghiệm của bất phương trình f(x) = x^{2} - 3x - 2 - \frac{8}{x^{2} - 3x} >
0

    Ta có: f(x) = \frac{(x^{2} - 3x)^{2} -
2(x^{2} - 3x) - 8}{x^{2} - 3x} = \frac{(x^{2} - 3x + 2)(x^{2} - 3x -
4)}{x^{2} - 3x}

    Bảng xét dấu

    f(x) > 0 ⇔ x ∈ (−∞;−1) ∪ (0;1) ∪ (2;3) ∪ (4;+∞)

  • Câu 8: Vận dụng cao

    Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD\frac{AB}{BC} = 2. Gọi trung điểm các cạnh AB;BC lần lượt là M,N. Điểm E\left( \frac{16}{3};1 ight) là tọa độ giao điểm của BNAC, phương trình đường thẳng CM:x - 3y + 1 = 0. Xác định tọa độ điểm C, biết hoành độ điểm C nhỏ hơn 3?

    Hình vẽ minh họa

    Từ giả thiết ta có: BM = CN = BC =
MN nên BMNC là hình vuông, do đó BN\bot CM

    Gọi \left\{ \begin{matrix}
I = BN \cap CM \\
J = AC \cap BD \\
\end{matrix} ight. thì J là trung điểm của MN

    Khi đó E là trọng tâm tam giác CNM khi đó \overrightarrow{IB} = -
3\overrightarrow{IE}

    Phương trình đường thẳng BE đi qua E và vuông góc CM là 3x + y - 17 = 0

    Khi đó tọa độ điểm I là nghiệm của hệ phương trình:

    \left\{ \begin{matrix}
x - 3y + 1 = 0 \\
3x + y - 17 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 5 \\
y = 2 \\
\end{matrix} ight.\  \Leftrightarrow I(5;2)

    Do \overrightarrow{IB} = -
3\overrightarrow{IE} \Rightarrow B(4;5)

    Gọi C(3c - 1;c) ta có:

    IC = IB = \sqrt{10} \Leftrightarrow (3c
- 6)^{2} + (c - 2)^{2} = 10

    \Leftrightarrow \left\lbrack
\begin{matrix}
c = 1 \\
c = 3 \\
\end{matrix} ight.\  \Rightarrow C(2;1) (vì x_{C} < 3).

  • Câu 10: Thông hiểu

    Tìm tập xác định D của hàm số y = \sqrt{x^{2} + 2x + 3} + \frac{1}{\sqrt{5 -
2x}}.

    Hàm số xác định khi và chỉ khi \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\ .

    Phương trình x2 + 2x + 3 = 0 ⇔ x ∈ ⌀5 - 2x = 0 \Leftrightarrow x =
\frac{5}{2}.

    Bảng xét dấu

    Dựa vào bảng xét dấu ta thấy \left\{
\begin{matrix}
x^{2} + 2x + 3 \geq 0 \\
5 - 2x > 0 \\
\end{matrix} ight.\  \Leftrightarrow x \in \left( \  -
\infty;\frac{5}{2} ight).

    Vậy tập xác định của hàm số là D = \left(
\  - \infty;\frac{5}{2} ight).

  • Câu 11: Thông hiểu

    Số nghiệm của phương trình:\left( \sqrt{x - 4} - 1 ight)\left( x^{2} - 7x +6 ight) = 0

    Điều kiện xác định của phương trình x ≥ 4.

    Phương trình tương đương với \left\lbrack\begin{matrix}\sqrt{x - 4} = 1 \\x^{2} - 7x + 6 = 0 \\\end{matrix} ight. \Leftrightarrow \left\lbrack \begin{matrix}x = 5 \\x = 1 \\x = 6 \\\end{matrix} ight..

    Kết hợp điều kiện suy ra \left\lbrack\begin{matrix}x = 5 \\x = 6 \\\end{matrix} ight..

    Vậy phương trình có hai nghiệm.

  • Câu 12: Nhận biết

    Biết phương trình \sqrt{7x + 1} = 2\sqrt{x + 4} có nghiệm duy nhất là x = x_{0} . Hãy chọn khẳng định đúng.

    ĐK x \in \left\lbrack - \frac{1}{7}; +
\infty ight)

    \sqrt{7x + 1} = 2\sqrt{x + 4}\Leftrightarrow 7x + 1 = 4(x + 4)\Leftrightarrow x = 5(TM)  \Rightarrow x_{0} = 5 \in (4;6).

  • Câu 13: Nhận biết

    Hệ số của x^{2} trong khai triển (2x + 3)^{5} là:

    Ta có số hạng tổng quát: T_{k + 1} =C_{5}^{k}.(2x)^{5 - k}.3^{k} = C_{5}^{k}.2^{5 - k}.x^{5 -k}.3^{k}

    Số hạng chứa x^{2} nên 5 - k = 2 \Rightarrow k = 3

    Vậy hệ số của x^{2} trong khai triển đã cho là: C_{5}^{3}.2^{2}.3^{3}.

  • Câu 14: Nhận biết

    Dấu của tam thức bậc 2: f(x) = –x2+ 5x – 6 được xác định như sau:

    f(x) = - x^{2} + 5x - 6 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Dựa vào bảng xét dấu, ta chọn đáp án f(x) > 0với  2< x < 3 f(x) < 0với x < 2 ∨ x > 3 .

  • Câu 15: Nhận biết

    Điểm nào sau đây không thuộc đường thẳng \left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight. ?

    Gọi d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = 3 - 5t \\
\end{matrix} ight.\ .M( - 1;3)\overset{x = - 1,\ y = 3 ightarrow
d}{ightarrow}\left\{ \begin{matrix}
- 1 = - 1 + 2t \\
3 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 0 ightarrow M \in
d.

    N(1; - 2)\overset{x = 1,\ y = - 2
ightarrow d}{ightarrow}\left\{ \begin{matrix}
1 = - 1 + 2t \\
- 2 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = 1 ightarrow N \in
d.

    P(3;1)\overset{x = 3,\ y = 1 ightarrow d}{ightarrow}\left\{ \begin{matrix}3 = - 1 + 2t \\1 = 3 - 5t \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t = 2 \\t = \dfrac{2}{5} \\\end{matrix} ight.\  ightarrow P\in d.

    Chọn P(3;1).

    Q( - 3;8)\overset{x = - 3,\ y = 8
ightarrow d}{ightarrow}\left\{ \begin{matrix}
- 3 = - 1 + 2t \\
8 = 3 - 5t \\
\end{matrix} ight.\  \Leftrightarrow t = - 1 ightarrow Q \in
d.

  • Câu 16: Thông hiểu

    Câu lạc bộ cầu lông gồm 12 tay vợt nam và 9 tay vợt nữ. Hỏi có bao nhiêu cách lập đội đôi nam nữ từ câu lạc bộ để tham gia giải đấu giao lưu các trường?

    Có 12 cách chọn 1 tay vợt nam

    Ứng với mỗi cách chọn 1 tay vợt nam ta có 9 cách chọn một tay vợt nữ

    Theo quy tắc nhân ta có: 9.12 = 108 cách chọn một đôi nam nữ tham gia giải đấu.

  • Câu 17: Thông hiểu

    Các giá trị m để tam thức f(x)=x^{2}-(m+2)x+8m+1 đổi dấu 2 lần là:

     Để f(x) đổi dấu 2 lần thì \Delta >0.

    Ta có: (m+2)^2-4 (8m+1)>0 \Leftrightarrow m^2-28m>0 \Leftrightarrow m<0 hoặc m>28.

     

  • Câu 18: Vận dụng

    Trong hệ tọa độ Oxy, cho bốn điểm A(3; - 2),\ B(7;1),\ C(0;1),\ D( - 8; -
5). Khẳng định nào sau đây đúng?

    Ta có \left\{ \begin{matrix}
\overrightarrow{AB} = (4;3) \\
\overrightarrow{CD} = ( - 8; - 6) \\
\end{matrix} ight.\ \overset{}{ightarrow}\overrightarrow{CD} = -
2\overrightarrow{AB}\overset{}{ightarrow}\overrightarrow{AB},\
\overrightarrow{CD} ngược hướng.

  • Câu 19: Thông hiểu

    Phương trình tham số của đường thẳng đi qua hai điểm M( - 1;2),N(2;3) là:

    Vectơ chỉ phương: \overrightarrow{u} =
\overrightarrow{MN} = (3;1)

    Đường thẳng đi qua điểm N(2;3) và có vectơ chỉ phương \overrightarrow{u} =
(3;1) nên có phương trình tham số là: \Delta:\left\{ \begin{matrix}
x = 2 + 3t \\
y = 3 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

  • Câu 20: Nhận biết

    Cho tam giác ABCcân tại A, \widehat{A} = 120^{o} AB = a. Tính \overrightarrow{BA}.\overrightarrow{CA}.

    Ta có \overrightarrow{BA}.\overrightarrow{CA} =
BA.CA.cos120^{o} = - \frac{1}{2}a^{2}.

  • Câu 21: Thông hiểu

    Cho tam giác ABCA(1;2),B( -
1;1),C(5; - 1).Tính \cos A.

    Ta có \overrightarrow{AB} = ( - 2; -
1),\overrightarrow{AC} = (4; -
3) suy ra

    \cos A =\frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB.AC}= \frac{( - 2).4 +( - 1).( - 3)}{\sqrt{( - 2)^{2} + ( - 1)^{2}}.\sqrt{4^{2} + ( - 3)^{2}}}= \frac{- 5}{\sqrt{5}\sqrt{25}}= - \frac{1}{\sqrt{5}}.

  • Câu 22: Nhận biết

    Cho tập M gồm 10 phần tử. Số tập con gồm 4 phần tử của M là:

    Số tập con gồm 4 phần tử của M là số cách chọn 4 phần tử bất kì trong 10 phần tử của M.

    Do đó số tập con gồm 4 phần tử của MC_{10}^{4}.

  • Câu 23: Nhận biết

    Số nghiệm của phương trình \sqrt{8-x^{2}}=\sqrt{x+2}

    Điều kiện: \left\{ {\begin{array}{*{20}{c}}  {8 - {x^2} \geqslant 0} \\   {x + 2 \geqslant 0} \end{array}} ight.

    Phương trình tương đương:

    \begin{gathered}  \sqrt {8 - {x^2}}  = \sqrt {x + 2}  \hfill \\   \Leftrightarrow 8 - {x^2} = x + 2 \hfill \\   \Leftrightarrow  - {x^2} - x + 6 = 0 \hfill \\   \Leftrightarrow \left[ {\begin{array}{*{20}{c}}  {x = 2} \\   {x =  - 3} \end{array}} ight. \hfill \\ \end{gathered}

    Kết hợp điều kiện ta được: x=2 thỏa mãn điều kiện

    Vậy phương trình đã cho có một nghiệm.

  • Câu 24: Thông hiểu

    Một nhóm học sinh gồm 6 nam và 4 nữ. Cần chọn ra một nhóm 5 người gồm cả nam và nữ đi trực nhật. Hỏi có bao nhiêu cách chọn nếu số bạn nữ luôn nhiều hơn số bạn nam.

    Trường hợp 1: 4 nữ, 1 nam

    Chọn 4 nữ từ 4 nữ và 1 nam từ 6 nam, có: C_4^4.C_6^1 = 6 (cách).

    Trường hợp 2: 3 nữ, 2 nam, có: C_4^3.C_6^2 = 60 (cách).

    Vậy có 6+60=66 (cách).

  • Câu 25: Thông hiểu

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng:

    Điều kiện n \geq 2,n\mathbb{\in
N}

    Ta có:

    A_{n}^{2} - 3C_{n}^{2} = 15 -
5n

    \Leftrightarrow \frac{n!}{(n - 2)!} -
3.\frac{n!}{2!(n - 2)!} = 15 - 5n

    \Leftrightarrow n(n - 1) - \frac{3n(n -
1)}{2} = 15 - 5n

    \Leftrightarrow - n^{2} + 11n - 30 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
n = 5 \\
n = 6 \\
\end{matrix} ight.\ (tm)

    Tổng tất cả các giá trị của tham số n\mathbb{\in N} thỏa mãn A_{n}^{2} - 3C_{n}^{2} = 15 - 5n bằng 11.

  • Câu 26: Nhận biết

    Có tất cả bao nhiêu cách xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách?

    Mỗi cách sắp xếp 6 quyển sách khác nhau vào một hàng ngang trên giá sách là một hoán vị của 6 phần tử. Vậy số cách sáp xếp là 6!.

  • Câu 27: Nhận biết

    Tìm khẳng định đúng trong các khẳng định sau?

    Tam thức bậc 2 là biểu thức f(x) có dạng  ax2bx + c (a≠0).

    f(x) = 3x2 − 5 là tam thức bậc 2 với a = 3, b = 0, c =  − 5.

  • Câu 28: Nhận biết

    Cho hai số tự nhiên k,x sao cho 0
\leq k \leq n. Chọn khẳng định đúng sau đây?

    Khẳng định đúng là: C_{x}^{k} =
\frac{x!}{k!(x - k)!}.

  • Câu 29: Nhận biết

    Xác định vị trí tương đối của hai đường thẳng (d):2x + y - 4 = 0(d'):2x + y + 7 = 0?

    Ta có: \frac{a}{a'} =
\frac{b}{b'} eq \frac{c}{c'} suy ra hai đường thẳng (d) và (d’) song song với nhau.

  • Câu 30: Nhận biết

    Khai triển biểu thức \left( x^{2} - 5y ight)^{5} ta được:

    Ta có:

    \left( x^{2} - 5y
ight)^{5}

    = C_{5}^{0}.\left( x^{2} ight)^{5} +
C_{5}^{1}\left( x^{2} ight)^{4}.( - 5y) + C_{5}^{2}.\left( x^{2}
ight)^{3}.( - 5y)^{2}

    + C_{5}^{3}.\left( x^{2} ight)^{2}.( -
5y)^{3} + C_{5}^{4}.\left( x^{2} ight)^{1}.( - 5y)^{4} +
C_{5}^{5}.\left( x^{2} ight)^{0}.( - 5y)^{5}

    =x^{10} - 25x^{8}y + 250x^{6}y^{2} -1250x^{4}y^{3} + 3125x^{2}y^{4} - 3125y^{5}

  • Câu 31: Vận dụng cao

    Giả sử phương trình đường thẳng (\Delta):ax + by + c = 0 với a,b \in \mathbb{N}^{*}\frac{b}{a} là phân số tối giản. Biết rằng đường thẳng (\Delta) đi qua điểm A(1;2) và cách điểm B( - 2;3) một khoảng bằng \frac{4\sqrt{2}}{\sqrt{5}}. Khi đó giá trị biểu thức Q = 3a + 2b + 1 là:

    Ta có:

    d\left( (\Delta);B ight) =
\frac{4\sqrt{2}}{\sqrt{5}}

    \Leftrightarrow \frac{\left| a( - 2 - 1)
+ b(3 - 2) ight|}{\sqrt{a^{2} + b^{2}}} =
\frac{8}{\sqrt{10}}

    \Leftrightarrow \sqrt{10}.| - 3a + b| =
8\sqrt{a^{2} + b^{2}}

    \Leftrightarrow 10\left( 9a^{2} - 6ab +
b^{2} ight) = 64\left( a^{2} + b^{2} ight)

    \Leftrightarrow 13a^{2} - 30ab - 27b^{2}
= 0(*)

    Với b = 0 thì (*) \Leftrightarrow 13a^{2} = 0 \Leftrightarrow a
= 0 (loại do a^{2} + b^{2} >
0)

    Xét b eq 0 thì (*) \Leftrightarrow 13\left( \frac{a}{b}
ight)^{2} - 30\left( \frac{a}{b} ight) - 27 = 0

    \Leftrightarrow \left\lbrack\begin{matrix}\dfrac{a}{b} = - \dfrac{9}{13}(ktm) \\\dfrac{a}{b} = 3(tm) \\\end{matrix} ight.

    Với \frac{a}{b} = 3 thì ta chọn a = 3;b = 1 \Rightarrow (\Delta):3x + y - 5
= 0

    Vậy Q = 3a + 2b + 1 = 12

  • Câu 32: Thông hiểu

    Biến đổi biểu thức \left( 2 + \sqrt{3} ight)^{5} - \left( 2 -
\sqrt{3} ight)^{4} dưới dạng a +
b\sqrt{3};\left( a,b\mathbb{\in Z} ight). Tính giá trị biểu thức M = a - 2b + 500?

    Ta có:

    \left( 2 + \sqrt{3} ight)^{5} - \left(
2 - \sqrt{3} ight)^{4} = 265 - 265\sqrt{3}

    \Rightarrow \left\{ \begin{matrix}
a = 265 \\
b = 265 \\
\end{matrix} ight.\  \Rightarrow M = 235

  • Câu 33: Thông hiểu

    Trong mặt phẳng tọa độ Oxy, cho vectơ \overrightarrow{a} = (9;3). Vectơ nào sau đây không vuông góc với vectơ \overrightarrow{a}?

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.1 +
3.( - 3) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{1}} nên đáp án \overrightarrow{v_{1}} = (1; - 3) đúng.

    \overrightarrow{a}.\overrightarrow{v_{2}} = 9.2 +
3.( - 6) = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{2}} nên đáp án \overrightarrow{v_{2}} = (2; - 6) đúng.

    \overrightarrow{a}.\overrightarrow{v_{3}} = 9.1 +
3.3 = 18 eq 0 nên đáp án \overrightarrow{v_{3}} = (1;3) sai.

    \overrightarrow{a}.\overrightarrow{v_{1}} = 9.( -
1) + 3.3 = 0 \Rightarrow
\overrightarrow{a}\bot\overrightarrow{v_{4}} nên đáp án \overrightarrow{v_{4}} = ( - 1;3) đúng.

  • Câu 34: Thông hiểu

    Có thể lập được bao nhiêu số tự nhiên lẻ có ba chữ số đôi một khác nhau?

    Gọi số tự nhiên có ba chữ số có dạng \overline{abc};(a eq 0)

    c \in \left\{ 1;3;5;7;9 ight\} => Có 5 cách.

    a eq 0,a eq c => Có 8 cách.

    b eq a,d => Có 8 cách.

    => Số các số được tạo thành là: 5.8.8
= 320 số.

  • Câu 35: Nhận biết

    Trong mặt phẳng tọa độ Oxy cho tọa độ hai điểm A( - 1;3),B(2; - 1). Tính tọa độ vecto \overrightarrow{AB}?

    Ta có: A( - 1;3),B(2; - 1)

    \Rightarrow \overrightarrow{AB} = \left(
- 2 - ( - 1); - 1 - 3 ight) = (3; - 4)

    Vậy \overrightarrow{AB} = (3; -
4).

  • Câu 36: Nhận biết

    Trong hệ trục tọa độ \left( O;\overrightarrow{i};\overrightarrow{j}
ight), tọa độ vecto \overrightarrow{i} + \overrightarrow{j} là:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{i} = (1;0) \\
\overrightarrow{j} = (0;1) \\
\end{matrix} ight.\  \Rightarrow \overrightarrow{i} +
\overrightarrow{j} = (1;1)

  • Câu 37: Nhận biết

    Một vectơ chỉ phương của đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) là:

    Đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 3 - 3t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) có một vectơ chỉ phương là: \overrightarrow{u_{\Delta}} = (2; -
3)

  • Câu 38: Nhận biết

    Trong mặt phẳng tọa độ Oxy, cho đường thẳng d:x - 2y + 3 = 0. Hãy chỉ ra một vectơ pháp tuyến của đường thẳng d?

    Ta có: Vectơ pháp tuyến của đường thẳng \Delta là: \overrightarrow{n}(1; - 2).

  • Câu 39: Thông hiểu

    Khoảng cách từ điểm M(2;0) đến đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 + 3t \\
y = 2 + 4t \\
\end{matrix} ight. bằng:

    \Delta:\left\{ \begin{matrix}
x = 1 + 3t \\
y = 2 + 4t \\
\end{matrix} ight.\  ightarrow \Delta:4x - 3y + 2 = 0 ightarrow
d(M;\Delta) = \frac{|8 + 0 + 2|}{\sqrt{16 + 9}} = 2.

  • Câu 40: Vận dụng

    Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; - \ 1)B(3;2). Tìm M thuộc trục tung sao cho MA^{2} + MB^{2} nhỏ nhất.

    M \in Oy \Rightarrow
M(0;b).

    Ta có: \overrightarrow{MA} = (1; - 1 - b)
\Rightarrow \left|
\overrightarrow{MA} ight| = \sqrt{1^{2} + ( - 1 - b)^{2}}

    Ta có: \overrightarrow{MB} = (3;2 - b)
\Rightarrow \left|
\overrightarrow{MB} ight| = \sqrt{3^{2} + (2 - b)^{2}}

    MA^{2} + MB^{2} = 1 + 1 + 2b + b^{2} + 9 + 4 - 4b + b^{2} = 2b^{2} - 2b + 15 = 2\left\lbrack \left( b - \frac{1}{2} ight)^{2}
+ \frac{29}{4} ightbrack \geq
\frac{29}{2}

    Suy ra MA^{2} + MB^{2} nhỏ nhất khi và chỉ khi b = \frac{1}{2} \Rightarrow
M\left( 0;\frac{1}{2} ight).

Chúc mừng Bạn đã hoàn thành bài!

Đề thi giữa học kì 2 Toán 10 Chân trời sáng tạo (Đề 5) Kết quả
  • Thời gian làm bài: 00:00:00
  • Số câu đã làm: 0
  • Điểm tạm tính: 0
  • 5 lượt xem
Sắp xếp theo