Một chiếc máy bay di chuyển với vận tốc là . Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Một chiếc máy bay di chuyển với vận tốc là . Hỏi quãng đường máy bay đi được từ giây thứ
đến giây thứ
bằng bao nhiêu?
Quãng đường máy bay đi được từ giây thứ 4 đến giây thứ 10 là:
Tìm họ các nguyên hàm của hàm số ?
Ta có:
Một hình nón có bán kính đáy R, góc ở đỉnh là . Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo
. Diện tích của thiết diện là:
Vì góc ở đỉnh là nên thiết diện qua trục SAC là tam giác đều cạnh 2R.
Suy ra đường cao của hình nón là .
Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng nên IAB là tam giác vuông cân tại I, suy ra
.
Gọi M là trung điểm của AB thì và
.
Trong tam giác vuông SIM, ta có
Vậy (đvdt).
Biết rằng . Mệnh đề nào sau đây đúng?
Ta có:
Khi đó
Suy ra suy ra
.
Tại một nơi không có gió, một chiếc khí cầu đang đứng yên ở độ cao so với mặt đất đã được phi công cài đặt cho nó chế độ chuyển động đi xuống. Biết rằng, khí cầu đã chuyển động theo phương thẳng đứng với vận tốc tuân theo quy luật
, trong đó
(phút) là thời gian tính từ lúc bắt đầu chuyển động,
được tính theo đơn vị mét/phút
. Nếu như vậy thì khi bắt đầu tiếp đất vận tốc
của khí cầu là:
Khi bắt đầu tiếp đất vật chuyển động được quãng đường là
Ta có: (với
là thời điểm vật tiếp đất)
Cho (Do
)
Khi đó vận tốc của vật là: .
Trong không gian hệ trục tọa độ , cho các điểm
. Gọi
là điểm sao cho
là trọng tâm tam giác
. Tính tổng các tọa độ của điểm
?
Đặt . Vì
là trọng tâm tam giác
nên
Một ô tô xuất phát với vận tốc sau khi đi được một khoảng thời gian
thì bất ngờ phanh gấp với vận tốc
và đi thêm được một khoảng thời gian
nữa thì dừng lại. Hỏi từ khi xuất phát đến lúc dừng lại thì ô tô đã đi được bao nhiêu mét?
Ta có: do đó khi gặp chướng ngại vật vật có vận tốc là
=>
Vật dừng lại khi
Quãng đường vật đi được là
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Tích tất cả giá trị của để góc tạo bởi đường thẳng
và đường thẳng
bằng
là:
Đáp án: -4||- 4
Gọi là góc giữa hai đường thẳng đã cho.
Đường thẳng có vectơ chỉ phương là
.
Đường thẳng có vectơ chỉ phương là
.
Ta có:
Vậy tích tất cả các giá trị của tham số a bằng -4.
Trong không gian với hệ trục tọa độ , cho ba mặt phẳng
. Một đường thẳng d thay đổi cắt ba mặt phẳng
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Trong không gian với hệ trục tọa độ , cho ba mặt phẳng
. Một đường thẳng d thay đổi cắt ba mặt phẳng
lần lượt tại
. Tìm giá trị nhỏ nhất của
.
Tìm nguyên hàm của hàm số
Ta có:
Hàm số nào sau đây là một nguyên hàm của hàm số ?
Vì:
Trong không gian với hệ tọa độ , cho hai mặt phẳng
lần lượt có phương trình là
và cho điểm
. Tìm phương trình mặt phẳng
đi qua điểm
và đồng thời vuông góc với hai mặt phẳng
?
Ta có:
Do vuông góc với
nên
Chọn
Hơn nữa đi qua
nên có phương trình là:
Cho tứ diện và điểm
thỏa mãn
(
là trọng tâm của tứ diện). Gọi
là giao điểm của
và mặt phẳng
. Khẳng định nào sau đây đúng?
Hình vẽ minh họa
Vì là giao điểm của
và mặt phẳng
suy ra
là trọng tâm tam giác
suy ra
Theo bài ra ta có:
Cho hàm số thỏa mãn
và
với mọi
. Tính
?
Ta có:
Với
Do đó
Vậy
Gọi là một nguyên hàm của hàm số
, thỏa mãn
. Tính giá trị biểu thức
?
Ta có:
là một nguyên hàm của hàm số
, ta có:
mà
Trong không gian , cho vectơ
. Khi đó tọa độ vectơ
là:
Ta có:
Anh A xuất phát từ D, chuyển động thẳng với vận tốc biến thiên theo thời gian bởi quy luật trong đó
(giây) là khoảng thời gian tính từ lúc anh A bắt đầu chuyển động. Từ trạng thái nghỉ, anh B cũng xuất phát từ D, chuyển động thẳng cùng hướng với anh A nhưng chậm hơn
giây so với anh A và có gia tốc bằng
(
là hằng số). Sau khi anh B xuất phát được
giây thì đuổi kịp anh A. Vận tốc của anh B tại thời điểm đuổi kịp anh A bằng bao nhiêu?
Quãng đường anh A đi được cho đến khi hai người gặp nhau là:
Vận tốc của anh B tại thời điểm tính từ lúc anh B xuất phát là:
Quãng đường anh B đi được cho đến khi hai người gặp nhau là:
Vậy vận tốc của anh B tại thời điểm đuổi kịp anh A là:
Hình nón có đường sinh và hợp với đáy góc
. Diện tích toàn phần của hình nón bằng:
Theo giả thiết, ta có
và
.
Suy ra:
.
Vậy diện tích toàn phần của hình nón bằng: (đvdt).
Hàm số là một nguyên hàm của hàm số nào sau đây?
Ta có:
Cho hình nón có đỉnh S, đường cao SO = h, đường sinh SA. Nội tiếp hình nón là một hình chóp đỉnh S, đáy là hình vuông ABCD cạnh a. Nửa góc ở đỉnh của hình nón có tan bằng:
Nửa góc ở đỉnh của hình nón là góc .
Hình vuông ABCD cạnh a nên suy ra:
Trong tam giác vuông SOA, ta có .
Gọi là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Một vật chuyển động chậm dần với vận tốc . Hỏi rằng trong
trước khi dừng hẳn vật di chuyển được bao nhiêu mét?
Khi dừng hẳn
Khi đó trong 5s trước khi dừng hẳn vật di chuyển được:
.
Họ nguyên hàm của hàm số là:
Ta có:
.
Trong không gian với hệ tọa độ , viết phương trình mặt phẳng đi qua ba điểm
và
.
Ta có:
Mặt phẳng đi qua điểm
và nhận
làm vectơ pháp tuyến có phương trình là:
Một tấm nhôm hình chữ nhật có hai kích thước là a và 2a (a là độ dài có sẵn). Người ta cuốn tấm nhôm đó thành một hình trụ. Nếu hình trụ được tạo thành có chu vi đáy bằng 2a thì thể tích của nó bằng:
Gọi bán kính đáy là R.
Hình trụ có chu vi đáy bằng 2a nên ta có .
Suy ra hình trụ này có đường cao .
Vậy thể tích khối trụ (đvtt).
Trong không gian Oxyz cho tam giác ABC có G là trọng tâm của tam giác, biết .
Tìm tọa độ trọng tâm G của tam giác ABC đã cho?
Ta có nên suy ra được tọa độ điểm B và C tương ứng theo hệ sau là:
Vì G là trọng tâm của tam giác ABC nên ta có tọa độ điểm G là nghiệm của hệ:
Tính tích phân ?
Đặt . Ta có:
suy ra
.
Cho hình vẽ:
Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:
Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:
.
Trong không gian , tính khoảng cách từ điểm
đến mặt phẳng
?
Khoảng cách từ điểm đến mặt phẳng
là:
Trong không gian với hệ tọa độ , cho hai mặt phẳng
. Mặt phẳng
vuông góc với cả
và
đồng thời cắt trục
tại điểm có hoành độ bằng
. Phương trình của mặt phẳng
là:
Ta có: (P) có vectơ pháp tuyến , (Q) có vectơ pháp tuyến
.
Vì mặt phẳng (α) vuông góc với cả (P) và (Q) nên (α) có một vectơ pháp tuyến là
Vì mặt phẳng (α) cắt trục Ox tại điểm có hoành độ bằng 3 nên (α) đi qua điểm M(3; 0; 0).
Vậy (α) đi qua điểm M(3; 0; 0) và có vectơ pháp tuyến nên (α) có phương trình
.
Diện tích hình phẳng H được giới hạn bởi hai đồ thị và
được tính theo công thức
Phương trình hoành độ giao điểm của và
là:
Vậy diện tích hình phẳng được giới hạn bởi hai đồ thị
và
được tính theo công thức
.
Vật thể giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Trong không gian với hệ trục tọa độ , cho các điểm
. Có bao nhiêu điểm
cách đều các mặt phẳng
?
Ta có
Ta có:
Ta có:
Gọi điểm cách đều các mặt phẳng
Từ
Từ
Từ
Từ (1), (3), (5) suy ra , b khác 0 tùy ý.
Như vậy có vô số điểm cách đều bốn mặt phẳng
Cho hàm số là một nguyên hàm của
, biết rằng
. Khi đó giá trị
là:
Ta có:
Mà . Vậy với
thì
Vậy .
Trong không gian Oxyz, cho điểm và vectơ
. Viết phương trình mặt phẳng
qua A và nhận vectơ
làm vectơ pháp tuyến.
Phương trình mặt phẳng có dạng:
.
Biết rằng và
. Tìm hàm số
?
Ta có:
Mà
Vậy
Một khu vườn được quy hoạch để trồng hoa hồng được giới hạn bởi parabol và nửa đường tròn bán kính (phần tô màu trong hình vẽ). Hỏi số tiền tối thiểu để trồng kín hoa trong vườn? Biết mỗi mét vuông trồng hoa cần ít nhất 300.000 đồng.
Nửa đường tròn có phương trình
Xét parabol có trục đối xứng
nên có phương trình dạng
cắt
tại điểm
=>
cắt
tại điểm
thuộc
=>
Phương trình là:
Diện tích miền phẳng (phần tô màu trong hình là:
Xét đặt
=>
Ta có:
Khi đó ta có:
Số tiền trồng hoa tối thiểu là: đồng
Cho hàm số có một nguyên hàm là
;
. Khẳng định nào sau đây đúng?
Ta có:
Ta được
Biết rằng . Tính giá trị biểu thức
?
Ta có:
Khi đó
Suy ra
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng . Diện tích toàn phần của hình nón là:
Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).