Họ nguyên hàm của hàm số là:
Ta có:
Họ nguyên hàm của hàm số là:
Ta có:
Xét hình phẳng giới hạn bởi các đường như hình vẽ (phần gạch sọc).
Diện tích hình phẳng được tính theo công thức
Ta có:
Trong không gian với hệ tọa độ , cho hai vectơ
. Gọi
là vectơ cùng hướng với vectơ
(tích có hướng của hai vectơ
và
. Biết
, tìm tọa độ vectơ
.
Ta thấy
Vì là vectơ cùng hướng với vectơ
nên
.
Mặt khác
Vậy .
Cho hàm số có đạo hàm
với
. Chọn kết luận đúng?
Ta có:
Ta có:
Vậy .
Tính diện tích hình phẳng được giới hạn bởi đồ thị hàm số , trục hoành và các đường thẳng
Diện tích S của hình phẳng trên là:
Ta có:
=>
Trong không gian với hệ trục tọa độ , cho điểm
. Khẳng định nào sau đây đúng?
Vì tọa độ điểm có
nên
.
Trong không gian với hệ trục tọa độ , cho hai điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Gọi
Ta có:
Theo bài ra ta có:
Vậy điểm E có tọa độ là .
Trong không gian hệ trục tọa độ , cho tam giác
có tọa các điểm
và tam giác đó nhận điểm
làm trọng tâm. Xác định giá trị biểu thức
?
Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:
Hàm số có một nguyên hàm là
. Tìm nguyên hàm của hàm số
?
Ta có:
Trong không gian , cho tọa độ ba điểm
. Tọa độ trọng tâm
của tam giác
là:
Tọa độ trọng tâm G của tam giác ABC bằng:
Vậy trọng tâm G tìm được là .
Cho tứ diện có
. Gọi
là góc giữa
và
. Chọn khẳng định đúng?
Hình vẽ minh họa
Ta có:
Mặt khác
Do đó:
Vậy
Bán kính đáy hình trụ bằng 4 cm, chiều cao bằng 6cm. Độ dài đường chéo của thiết diện qua trục bằng:
Thiết diện qua trục của một hình trụ là một hình chữ nhật có hai cạnh lần lượt bằng đường kính đáy và chiều cao của hình trụ.
Vậy hai cạnh của hình chữ nhật là 8 cm và 6 cm.
Do đó độ đài đường chéo:
Họ các nguyên hàm của hàm số là:
Ta có:
Cho giá trị của tích phân ,
.
Giá trị của là:
Ta có:
Cho hàm số có đạo hàm với mọi
và
. Giá trị của
bằng:
Ta có:
Một vật chuyển động chậm dần đều với vận tốc . Hỏi rằng trong
trước khi dừng hẳn vật di chuyển được bao nhiêu mét?
Khi dừng hẳn:
Khi đó trong trước khi dừng hẳn vật di chuyển được:
Cho hàm số . Tính
Ta có:
.
Đặt với
là tham số thực. Tìm giá trị của tham số
để
?
Ta có:
Do .
Cho hai điểm và vectơ
. Mặt phẳng chứa hai điểm A, B và song song với vectơ
có phương trình:
Theo đề bài, ta có:
Như vậy, và
sẽ là cặp vectơ chỉ phương của
Chọn làm vectơ pháp tuyến của
Phương trình mặt phẳng có dạng
Mặt khác, vì điểm nên thay tọa độ điểm A vào phương trình mặt phẳng
được:
Vậy có phương trình là:
Tính tích phân ?
Ta có:
Xác định hàm số f(x) biết rằng
Mà
Vậy hàm số cần tìm là
Tìm nguyên hàm của hàm số ?
Ta có:
Tìm nguyên hàm của hàm số
thỏa mãn
?
Ta có:
Theo bài ra ta có:
Vậy .
Cho một hình trụ có bán kính đáy bằng R và có chiều cao bằng . Diện tích xung quanh và diện tích toàn phần của hình lần lượt có giá trị là:
Diện tích xung quanh của hình trụ: (đvdt).
Diện tích toàn phần của hình trụ:
(đvdt).
Hàm số là nguyên hàm của
. Hỏi hàm số
có bao nhiêu điểm cực trị?
TXĐ:
Ta có:
Phương trình có 1 nghiệm đơn
và một nghiệm kép
nên hàm số
có 1 điểm cực trị.
Giá trị tích phân bằng:
Ta có:
Cho tam giác ABC với . Viết phương trình tổng quát của mặt phẳng
vuông góc với mặt phẳng
song song phân giác ngoài AF của góc A?
Một vecto chỉ phương của là
Ta có :
Vecto chỉ phương thứ hai
Suy ra vecto pháp tuyến của là
Mp đi qua
và nhận vecto
làm 1 VTPT có phương trình là:
Trong không gian với hệ tọa độ , cho hai điểm
. Độ dài của đoạn
là
Ta có:
khi đó độ dài đoạn
bằng:
Tìm họ các nguyên hàm của hàm số ?
Ta có:
Tìm nguyên hàm của hàm số
, biết rằng đồ thị hàm số
có điểm cực tiểu nằm trên trục hoành?
Ta có:
Mà
Do đó hàm số đạt cực tiểu tại x = 1
Mặt khác đồ thị hàm số có cực tiểu nằm trên trục hoành nên ta có điểm cực tiểu là
Suy ra
Do đó
Trong không gian , mặt phẳng
. Một véc tơ pháp tuyến của
có tọa độ là?
Mặt phẳng có VTPT là:
Cho hàm số thỏa mãn
và
. Mệnh đề nào sau đây đúng?
Ta có:
.
Theo bài ra ta có:
Vậy .
Trong không gian với hệ toạ độ , phương trình nào sau đây là phương trình tổng quát của mặt phẳng
Phương trình tổng quát của mặt phẳng là : .
Cạnh bên của một hình nón bằng 2a. Thiết diện qua trục của nó là một tam giác cân có góc ở đỉnh bằng . Diện tích toàn phần của hình nón là:
Gọi S là đỉnh, O là tâm của đáy, thiết diện qua trục là SAB.
Theo giả thiết, ta có và
.
Trong tam giác SAO vuông tại O, ta có
Vậy diện tích toàn phần:
(đvdt).
Một vận động viên đua xe đang chạy với vận tốc thì anh ta tăng tốc với vận tốc
, trong đó
là khoảng thời gian tính bằng giây kể từ lúc tăng tốc, hỏi quãng đường xe của anh ta đi được trong thời gian
kể từ lúc bắt đầu tăng tốc là bao nhiêu?
Ta có:
Do khi bắt đầu tăng tốc
Khi đó quãng đường xe đi được sau 10 giây kể từ khi ô tô bắt đầu tăng tốc bằng
Cho hình trụ có hai đáy là hai hình tròn (O) và (O’), chiều cao và bán kính đáy R. Một hình nón có đỉnh là O’ và đáy là hình tròn (O;R). Tỉ số diện tích xung quanh của hình trụ và hình nón bằng:
Diện tích xung quanh của hình trụ:
(đvdt).
Kẻ đường sinh O’M của hình nón, suy ra
.
Diện tích xung quanh của hình nón: (đvdt).
Vậy .
Trong không gian , cho bốn điểm
. Hai điểm
lần lượt nằm trên đoạn BC và BD sao cho
và
. Phương trình mặt phẳng
có dạng
. Tính
?
Trong không gian , cho bốn điểm
. Hai điểm
lần lượt nằm trên đoạn BC và BD sao cho
và
. Phương trình mặt phẳng
có dạng
. Tính
?
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Cho hình phẳng giới hạn bởi các đường
và
, với
. Tìm
để diện tích hình phẳng
gấp hai lần diện tích hình phẳng được kẻ sọc ở hình vẽ bên (Kết quả được làm tròn đến hàng phần trăm)
Đáp án: 0,59
Gọi là diện tích hình phẳng
. Lúc dó
, trong đó
là diện tích phần gạch sọc ở bên phải
và
là diện tích phần gạch ca rô trong hình vẽ bên.
Gọi là các giao diếm có hoành độ dương của đường thẳng
và đồ thị hàm số
, trong đó
và
.
Thco yêu cầu bài toán .
.
.
Công thức diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
Diện tích hình phẳng giới hạn bởi đồ thị hàm số ,
liên tục trên đoạn
và hai đường thẳng
,
là
.
Một hình nón có bán kính đáy R, góc ở đỉnh là . Một thiết diện qua đỉnh nón chắn trên đáy một cung có số đo
. Diện tích của thiết diện là:
Vì góc ở đỉnh là nên thiết diện qua trục SAC là tam giác đều cạnh 2R.
Suy ra đường cao của hình nón là .
Tam giác SAB là thiết diện qua đỉnh, chắn trên đáy cung AB có số đo bằng nên IAB là tam giác vuông cân tại I, suy ra
.
Gọi M là trung điểm của AB thì và
.
Trong tam giác vuông SIM, ta có
Vậy (đvdt).