Bài tập cuối chương 2 Tọa độ của vectơ trong không gian

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Chọn khẳng định đúng

    Biết \overrightarrow{c} =
(x;y;z) khác \overrightarrow{0} và vuông góc với cả hai vectơ \overrightarrow{a} =
(1;3;4);\overrightarrow{b} = ( - 1;2;3). Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Theo đề bài ta có: \overrightarrow{c} =
(x;y;z) khác \overrightarrow{0} và vuông góc với cả hai vectơ \overrightarrow{a} =
(1;3;4);\overrightarrow{b} = ( - 1;2;3) nên

    \left\{ \begin{matrix}
\overrightarrow{a}.\overrightarrow{c} = 0 \\
\overrightarrow{b}.\overrightarrow{c} = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x + 3y + 4z = 0 \\
- x + 2y + 3z = 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}x + 3y + 4z = 0 \\5y + 7z = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}x + 3y + 4.\dfrac{- 5}{7}y = 0 \\z = - \dfrac{5}{7}y \\\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
7x + y = 0 \\
5y + 7z = 0 \\
\end{matrix} ight.

    Vậy khẳng định đúng là 7x + y =
0

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho \overrightarrow{a} = - \overrightarrow{i} +
2\overrightarrow{j} - 3\overrightarrow{k}. Tọa độ vectơ \overrightarrow{a} là:

    Hướng dẫn:

    Ta có: \overrightarrow{i} =
(1;0;0);\overrightarrow{j} = (0;1;0);\overrightarrow{k} =
(0;0;1)

    Theo bài ra ta có: \overrightarrow{a} = -
\overrightarrow{i} + 2\overrightarrow{j} - 3\overrightarrow{k} suy ra tọa độ vectơ \overrightarrow{a} = ( -
1;2; - 3).

  • Câu 3: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz cho ba điểm A( - 2;3;1),B(2;1;0),C( - 3; - 1;1). Tìm tất cả các điểm D sao cho ABCD là hình thang có đáy AD và tam giác ABC bằng \frac{1}{3} diện tích tứ giác ABCD?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Vận dụng
    Xác định tọa độ điểm C’

    Trong không gian hệ trục tọa độ Oxyz, cho hình hộp ABCD.A'B'C'D' có tọa độ các điểm A( -
3;0;0),B(0;2;0),D(0;0;1),A'(1;2;3). Tìm tọa độ điểm C'?

    Hướng dẫn:

    Theo quy tắc hình hộp ta có:

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AA'} =
\overrightarrow{AC'}

    Lại có \left\{ \begin{matrix}
\overrightarrow{AB} = (3;2;0) = 3\overrightarrow{i} +
2\overrightarrow{j} + 0.\overrightarrow{k} \\
\overrightarrow{AD} = (3;0;1) = 3.\overrightarrow{i} +
0.\overrightarrow{j} + 1.\overrightarrow{k} \\
\overrightarrow{AA'} = (4;2;3) = 4.\overrightarrow{i} +
2\overrightarrow{j} + 3\overrightarrow{k} \\
\end{matrix} ight.

    \Rightarrow \overrightarrow{AC'} =
10.\overrightarrow{i} + 4.\overrightarrow{j} +
4.\overrightarrow{k}A( -
3;0;0)

    \Rightarrow C'(7;4;4)

    Suy ra C'(7;4;4)

  • Câu 5: Nhận biết
    Tính tổng ba vectơ

    Cho hình hộp ABCD.EFFH. Tính tổng \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE}?

    Hướng dẫn:

    Hình vẽ minh họa

    \overrightarrow{AB} +
\overrightarrow{AD} + \overrightarrow{AE} = \overrightarrow{AC} +
\overrightarrow{AE} = \overrightarrow{AG}

  • Câu 6: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, cho tọa độ ba điểm A(1;2;3),B(2;1;5),C(2;4;2). Góc giữa hai đường thẳng ABAC

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
\overrightarrow{AB} = (1; - 1;2) \\
\overrightarrow{AC} = (1;2; - 1) \\
\end{matrix} ight..

    \Rightarrow \cos\left(
\overrightarrow{AB};\overrightarrow{AC} ight) =
\frac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|} =
\frac{1}{2}

    \Rightarrow \left(
\overrightarrow{AB};\overrightarrow{AC} ight) = (AB;AC) =
60^{0}

  • Câu 7: Thông hiểu
    Tìm m thỏa mãn yêu cầu

    Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm A(3; - 1;5),B(m;2;7). Tìm giá trị tham số m để AB
= 7?

    Hướng dẫn:

    Theo bài ra ta có:

    AB = 7 \Leftrightarrow \sqrt{(m - 3)^{2}
+ 3^{2} + 2^{2}} = 7

    \Leftrightarrow (m - 3)^{2} = 36
\Leftrightarrow \left\lbrack \begin{matrix}
m - 3 = 6 \\
m - 3 = - 6 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 3 \\
\end{matrix} ight.

    Vậy đáp án cần tìm là \left\lbrack
\begin{matrix}
m = 9 \\
m = - 3 \\
\end{matrix} ight..

  • Câu 8: Vận dụng
    Ghi đáp án vào ô trống

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có tọa độ các đỉnh A(1;2; - 1),B(2; - 1;3),C( - 4;7;5). Gọi D(a;b;c) là chân đường phân giác trong của góc B trong tam giác ABC. Tính giá trị biểu thức W = a + b + 2c?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 9: Thông hiểu
    Chọn mệnh đề đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho ba vectơ \overrightarrow{a} = (1;1;0), \overrightarrow{b} = (2; - 1; - 2)\overrightarrow{c} = ( - 3;0;2). Chọn mệnh đề đúng?

    Hướng dẫn:

    Ta có: \overrightarrow{a} +
\overrightarrow{b} + \overrightarrow{c} = \overrightarrow{0} là mệnh đề đúng.

  • Câu 10: Nhận biết
    Chọn phát biểu sai

    Trong không gian Oxyz, cho hai vectơ \overrightarrow{a} = (2;1; - 3)\overrightarrow{b} = ( - 4; - 2;6). Phát biểu nào sau đây sai?

    Hướng dẫn:

    Dễ thấy \overrightarrow{b} =
2\overrightarrow{a} từ đo suy ra hai vectơ \overrightarrow{a}\overrightarrow{b} ngược hướng và \left| \overrightarrow{b} ight| = 2\left|
\overrightarrow{a} ight|.

    Lại có \overrightarrow{a}.\overrightarrow{b} = 2.( - 4) +
1.( - 2) + ( - 3).6 = - 28 eq 0

    Vậy phát biểu sai là: \overrightarrow{a}.\overrightarrow{b} =
0.

  • Câu 11: Nhận biết
    Xác định mệnh đề đúng

    Cho tứ diện ABCD. Điểm N xác định bởi công thức \overrightarrow{AN} = \overrightarrow{AB} +
\overrightarrow{AC} - \overrightarrow{AD}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có:

    \overrightarrow{AN} =
\overrightarrow{AB} + \overrightarrow{AC} -
\overrightarrow{AD}

    \Leftrightarrow \overrightarrow{AN} -
\overrightarrow{AB} = \overrightarrow{AC} - \overrightarrow{AD}
\Leftrightarrow \overrightarrow{BN} = \overrightarrow{AD}

    Vậy N là đỉnh thứ tư của hình bình hành CDBN.

  • Câu 12: Thông hiểu
    Chọn khẳng định đúng

    Cho tứ diện ABCDAC = \frac{3}{2}AD;\widehat{CAB} = \widehat{DAB} =
60^{0};CD = AD. Gọi \varphi là góc giữa ABCD. Chọn khẳng định đúng?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \cos(AB;CD) = \frac{\left|
\overrightarrow{AB}.\overrightarrow{CD} ight|}{\left|
\overrightarrow{AB} ight|.\left| \overrightarrow{CD} ight|} =
\frac{\left| \overrightarrow{AB}.\overrightarrow{CD}
ight|}{AB.CD}

    Mặt khác \overrightarrow{AB}.\overrightarrow{CD} =
\overrightarrow{AB}.\left( \overrightarrow{AD} - \overrightarrow{AC}
ight) = \overrightarrow{AB}.\overrightarrow{AD} -
\overrightarrow{AB}.\overrightarrow{AC}

    = \left| \overrightarrow{AB}ight|.\left| \overrightarrow{AD} ight|.\cos\left(\overrightarrow{AB};\overrightarrow{AD} ight) - \left|\overrightarrow{AB} ight|.\left| \overrightarrow{AC} ight|\cos\left(\overrightarrow{AB};\overrightarrow{AC} ight)

    = AB.AD.\frac{1}{2} -
AB.\frac{3}{2}.AD.\frac{1}{2} = - \frac{1}{4}AB.AD = -
\frac{1}{4}AB.CD

    Do đó: \cos(AB;CD) = \frac{\left| -\dfrac{1}{4}AB.CD ight|}{AB.CD} = \dfrac{1}{4}

    Vậy \cos\varphi =
\frac{1}{4}

  • Câu 13: Thông hiểu
    Tính tích vô hướng hai vectơ

    Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a. Tính tích vô hướng \overrightarrow{AC}.\overrightarrow{B'C'}?

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có: \overrightarrow{AC} =
\overrightarrow{B'C'} nên \left(
\overrightarrow{AC};\overrightarrow{B'C'} ight) = \left(
\overrightarrow{AC};\overrightarrow{AD} ight) = \widehat{CAD} =
45^{0}

    Suy ra \overrightarrow{AC}.\overrightarrow{B'C'}= \left| \overrightarrow{AC} ight|.\left|\overrightarrow{B'C'} ight|.\cos\left(\overrightarrow{AC};\overrightarrow{B'C'} ight)

    =a\sqrt{2}.a.\cos45^{0} =a^{2}

  • Câu 14: Thông hiểu
    Tìm khẳng định sai

    Cho tứ diện ABCD. Trên các cạnh AD;BC lần lượt lấy các điểm M;N sao cho AM = 3MD;BN = 3NC. Gọi P;Q lần lượt là trung điểm của AD;BC. Khẳng định nào sau đây sai?

    Hướng dẫn:

    Hình vẽ minh họa

    M;N lần lượt là trung điểm của PD;QC

    \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} đồng phẳng sai vì \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AC} +
\overrightarrow{CN} \\
\overrightarrow{MN} = \overrightarrow{MD} + \overrightarrow{DB} +
\overrightarrow{BN} \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}
\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AC} +
\overrightarrow{CN} \\
3\overrightarrow{MN} = 3\overrightarrow{MD} + 3\overrightarrow{DB} +
3\overrightarrow{BN} \\
\end{matrix} ight.

    \Rightarrow 4\overrightarrow{MN} =
\overrightarrow{AC} - 3\overrightarrow{DB} +
\frac{1}{2}\overrightarrow{BC} suy ra \overrightarrow{BD};\overrightarrow{AC};\overrightarrow{MN} không đồng phẳng.

  • Câu 15: Nhận biết
    Tìm tọa độ hình chiếu

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là:

    Hướng dẫn:

    Hình chiếu vuông góc của điểm A(2; -
1;0) trên mặt phẳng (Oxz) là điểm có tọa độ (2;0;0).

  • Câu 16: Vận dụng cao
    Tìm điều kiện của các hệ số a; b; c

    Cho hình chóp S.ABC. Lấy các điểm A';B';C' lần lượt thuộc các tia SA;SB;SC sao cho \frac{SA}{SA'} = a;\frac{SB}{SB'} =
b;\frac{SC}{SC'} = c trong đó a;b;c là các hệ số biến thiên. Để mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC thì tổng các hệ số bằng bao nhiêu?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi G là trọng tâm tam giác ABC suy ra \overrightarrow{GA} + \overrightarrow{GB} +
\overrightarrow{GC} = \overrightarrow{0}

    Khi đó 3\overrightarrow{GS} +
\overrightarrow{SA} + \overrightarrow{SB} + \overrightarrow{SC} =
\overrightarrow{0}\overrightarrow{SA} =
a\overrightarrow{SA'};\overrightarrow{SB} =
b\overrightarrow{SB'};\overrightarrow{SC} =
c\overrightarrow{SC'}

    Suy ra 3\overrightarrow{SG} =
a\overrightarrow{SA'} + b\overrightarrow{SB'} +
c\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'}

    Vì mặt phẳng (A'B'C') đi qua trọng tâm của tam giác ABC suy ra \overrightarrow{GA'};\overrightarrow{GB'};\overrightarrow{GC'} đồng phẳng.

    Do đó tồn tại ba số l;m;n sao cho l^{2} + m^{2} + n^{2} eq 0) và l\overrightarrow{GA'} +
m\overrightarrow{GB'} + n\overrightarrow{GC'} =
\overrightarrow{0}

    \Leftrightarrow l\left(
\overrightarrow{GS} + \overrightarrow{SA'} ight) + m\left(
\overrightarrow{GS} + \overrightarrow{SB'} ight) + n\left(
\overrightarrow{GS} + \overrightarrow{SC'} ight) =
\overrightarrow{0}s

    \Leftrightarrow (l + m +
n)\overrightarrow{SG} = l\overrightarrow{SA'} +
m\overrightarrow{SB'} + n\overrightarrow{SC'}

    \Leftrightarrow \overrightarrow{SG} =
\frac{l}{l + m + n}\overrightarrow{SA'} + \frac{m}{l + m +
n}\overrightarrow{SB'} + \frac{n}{l + m +
n}\overrightarrow{SC'}

    \Leftrightarrow
\frac{a}{3}\overrightarrow{SA'} +
\frac{b}{3}\overrightarrow{SB'} +
\frac{c}{3}\overrightarrow{SC'} = \frac{l}{l + m +
n}\overrightarrow{SA'} + \frac{m}{l + m + n}\overrightarrow{SB'}
+ \frac{n}{l + m + n}\overrightarrow{SC'}

    Suy ra \frac{a}{3} + \frac{b}{3} +
\frac{c}{3} = \frac{l}{l + m + n} + \frac{m}{l + m + n} + \frac{n}{l + m
+ n} = 1

    \Rightarrow a + b + c = 3

  • Câu 17: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, cho hai điểm A(2; - 4;3)B(2;2;7). Trung điểm của đoạn thẳng AB có tọa độ là:

    Hướng dẫn:

    Gọi M\left( x_{M};y_{M};z_{M}
ight) là trung điểm của đoạn thẳng AB, ta có:

    \left\{ \begin{matrix}x_{M} = \dfrac{x_{A} + x_{B}}{2} = \dfrac{2 + 2}{2} = 2 \\y_{M} = \dfrac{y_{A} + y_{B}}{2} = \dfrac{- 4 + 2}{2} = - 1 \\z_{M} = \dfrac{z_{A} + z_{B}}{2} = \dfrac{3 + 7}{2} = 5 \\\end{matrix} ight.\  \Rightarrow M(2; - 1;5)

    Vậy tọa độ trung điểm của AB là: (2; -
1;5).

  • Câu 18: Thông hiểu
    Xác định tọa độ điểm C

    Trong không gian Oxyz, cho hình bình hành hình bình hành. Biết các điểm A(1;0;1),B(2;1;2),D(1; - 1;1). Xác định tọa độ điểm C?

    Hướng dẫn:

    Giả sử điểm C(x;y;z) ta có ABCD là hình bình hành nên \overrightarrow{DC} =
\overrightarrow{AB}

    \Leftrightarrow \left\{ \begin{matrix}
x - 1 = 1 \\
y + 1 = 1 \\
z - 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
y = 0 \\
z = 2 \\
\end{matrix} ight.. Vậy tọa độ điểm C(2;0;2).

  • Câu 19: Nhận biết
    Chọn mệnh đề đúng

    Cho hai điểm phân biệt A;B và một điểm O bất kì. Hãy xét xem mệnh đề nào sau đây là đúng?

    Hướng dẫn:

    Mệnh đề đúng: “Điểm M thuộc đường thẳng AB khi và chỉ khi \overrightarrow{OM} = k\overrightarrow{OA} + (1 -
k).\overrightarrow{OB}”.

  • Câu 20: Thông hiểu
    Tính giá trị biểu thức

    Trong không gian hệ trục tọa độ Oxyz, cho tam giác ABC có tọa các điểm A(1; - 3;3),B(2; - 4;5),C(a; - 2;b) và tam giác đó nhận điểm G(1;c;3) làm trọng tâm. Xác định giá trị biểu thức P = a
+ b + c?

    Hướng dẫn:

    Vì tam giác ABC nhận điểm G làm trọng tâm nên ta có hệ phương trình:

    \left\{ \begin{matrix}\dfrac{1 + 2 + a}{3} = 1 \\\dfrac{- 3 - 4 - 2}{3} = c \\\dfrac{3 + 5 + b}{3} = 3 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}a = 0 \\b = 1 \\c = - 3 \\\end{matrix} ight.\  \Rightarrow P = a + b + c = - 2

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 9 lượt xem
Sắp xếp theo