Bài tập cuối chương 5 Phương trình mặt phẳng, đường thẳng, mặt cầu trong không gian

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Trong không gian Oxyz, viết phương trình mặt phẳng (P) biết (P) đi qua hai điểm M(0; - 1;0),N( - 1;1;1) và vuông góc với mặt phẳng (Oxz).

    Hướng dẫn:

    Ta có \overrightarrow{MN} = ( -
1;2;1)(Oxz) có một vectơ pháp tuyến là \overrightarrow{j}\  =
(0;1;0)

    Mặt phẳng (P) có một vectơ pháp tuyến là \overrightarrow{n} = \left\lbrack
\overrightarrow{MN};\overrightarrow{j} ightbrack = ( - 1;0; -
1)

    Do đó, (P) có phương trình là - 1(x - 0) + 0(y + 1) - 1(z - 0) = 0
\Leftrightarrow x + z = 0.

  • Câu 2: Nhận biết
    Tính bán kính mặt cầu

    Trong không gian Oxyz, cho mặt cầu (S):(x - 5)^{2} + (y - 1)^{2} + (z +
2)^{2} = 9. Tính bán kính R của (S)?

    Hướng dẫn:

    Bán kính mặt cầu là: R = \sqrt{9} =
3

  • Câu 3: Vận dụng
    Tính độ dài đoạn thẳng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 3 = 0 và mặt cầu (S) tâm I(5;
- 3;5), bán kính R =
2\sqrt{5}. Từ một điểm A thuộc mặt phẳng (P) kẻ một đường thẳng tiếp xúc với mặt cầu (S) tại B. Tính OA biết AB =
4.

    Hướng dẫn:

    Hình vẽ minh họa

    Khoảng cách từ điểm I đến mặt phẳng (P) là

    d\left( I;(P) ight) = \frac{\left| 5 -
2.( - 3) + 2.5 - 3 ight|}{3} = 6

    Vì AB tiếp xúc với (S) tại B nên tam giác AIB vuông tại B, do đó ta có:

    IA = \sqrt{IB^{2} + AB^{2}} =
\sqrt{R^{2} + AB^{2}} = 6 = d\left( I;(P) ight)

    Đường thẳng IA đi qua I(5; −3; 5) có vectơ chỉ phương là \overrightarrow{u} = (1; - 2;2) nên có phương trình là: \left\{ \begin{matrix}
x = 5 + t \\
y = - 3 - 2t \\
z = 5 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Do A = IA ∩ (P) nên 5 + t − 2(−3 − 2t) + 2(5 + 2t) − 3 = 0 ⇔ t = −2

    Vậy A(3; 1; 1) nên OA =
\sqrt{11}.

  • Câu 4: Thông hiểu
    Viết phương trình mặt cầu

    Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;1;2),B(3;2; - 3). Mặt cầu (S) có tâm I
\in Ox và đi qua hai điểm A;B có phương trình là:

    Hướng dẫn:

    Ta có: I \in Ox \Rightarrow
I(a;0;0)

    \Rightarrow \left\{ \begin{matrix}
\overrightarrow{IA} = (1 - a;1;2) \\
\overrightarrow{IB} = (3 - a;2; - 3) \\
\end{matrix} ight.

    (S) đi qua hai điểm A;B nên

    IA = IB \Leftrightarrow \sqrt{(1 -
a)^{2} + 5} = \sqrt{(3 - a)^{2} + 13}

    \Leftrightarrow 4a = 16 \Leftrightarrow
a = 4 \Rightarrow I(4;0;0)

    \Rightarrow R = IA =
\sqrt{14}

    Vậy phương trình mặt cầu cần tìm là: (S):x^{2} + y^{2} + z^{2} - 8x + 2 =
0.

  • Câu 5: Nhận biết
    Tìm khoảng cách từ A đến (Oxy)

    Trong không gian với hệ trục tọa độ Oxyz, khoảng cách từ A( - 2;1; - 6) đến mặt phẳng (Oxy)

    Hướng dẫn:

    Khoảng cách từ điểm A đến mặt phẳng (Oxy):z = 0 là:

    d\left( A;(Oxy) ight) = \frac{| -
6|}{\sqrt{1}} = 6

  • Câu 6: Nhận biết
    Viết phương trình tham số của đường thẳng

    Trong không gian Oxyz, cho đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{a} = (4; - 6;2). Phương trình tham số của đường thẳng \Delta

    Hướng dẫn:

    đường thẳng \Delta đi qua điểm M(2;0; - 1) và có vectơ chỉ phương \overrightarrow{u} = (2; - 3;1) nên có phương trình tham số \left\{
\begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 1 + t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight).

  • Câu 7: Nhận biết
    Xác định phương trình mặt phẳng

    Trong không gian Oxyz, viết phương trình của mặt phẳng (P) đi qua điểm M( - 3; - 2;3) và vuông góc với trục Ox.

    Hướng dẫn:

    Vì mặt phẳng (P) vuông góc với Ox nên có một vectơ pháp tuyến là vectơ \overrightarrow{i} =
(1;0;0).

    Phương trình tổng quát của mặt phẳng (P) là

    1\left( x - ( - 3) ight) + 0\left( y -
( - 2) ight) + 0(z - 3) = 0

    \Leftrightarrow x + 3 = 0.

  • Câu 8: Thông hiểu
    Tìm tọa độ điểm M

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \Delta:\left\{ \begin{matrix}
x = - 1 + 3t \\
y = 1 + t \\
z = 3t \\
\end{matrix}\ (t \in \mathbb{R}) ight. và hai điểm A(5;0;2),B(2; - 5;3). Tìm điểm M thuộc \Delta sao cho \bigtriangleup ABM vuông tại A.

    Hướng dẫn:

    Điểm M thuộc đường thẳng \Delta nên M(
- 1 + 3t;1 + t;3t).

    Ta có \overrightarrow{AM} = (3t - 6;t +
1;3t - 2)\overrightarrow{AB} =
( - 3; - 5;1).

    Tam giác ABM vuông tại M khi và chỉ khi

    \overrightarrow{AB}\bot\overrightarrow{AM}
\Leftrightarrow \overrightarrow{AB} \cdot \overrightarrow{AM} =
0

    \Leftrightarrow - 3(3t - 6) - 5(t + 1) +
3t - 2 = 0 \Leftrightarrow t = 1

    Khi đó tọa độ điểm M(2;2;3).

  • Câu 9: Nhận biết
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho đường thẳng d:\left\{ \begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 3 + 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Vectơ nào dưới đây là vectơ chỉ phương của d?

    Hướng dẫn:

    Ta có: d:\left\{ \begin{matrix}
x = 2 + 2t \\
y = - 3t \\
z = - 3 + 5t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight) suy ra vectơ chỉ phương của đường thẳng d là \overrightarrow{u} = (2; - 3;5)

  • Câu 10: Vận dụng cao
    Tính tổng S

    Biết rằng có n mặt phẳng với phương trình tương ứng là \left( P_{i} ight):x + a_{i}y + b_{i}z + c_{i} =0,(i = 1,2,...n) đi qua M(1;2;3) (nhưng không đi qua O) và cắt các trục tọa độ Ox,Oy,Oz theo thứ tự tại A,B,C sao cho hình chóp O.ABC là hình chóp đều. Tính tổng S = a_{1} + a_{2} + ... +
a_{n}.

    Hướng dẫn:

    Giả sử A(a;0;0),B(0;b;0),C(0;0;c), với a,b,c eq 0. Khi đó trọng tâm của tam giác ABC là G\left(
\frac{a}{3};\frac{b}{3};\frac{c}{3} ight) mặt phẳng (Pi) có dạng \frac{x}{a} +
\frac{y}{b} + \frac{z}{c} = 1 \Leftrightarrow x + \frac{a}{b}y +
\frac{a}{c}z - a = 0.

    Theo bài ra (Pi) đi qua M(1; 2; 3) nên ta có: 1 + \frac{2a}{b} + \frac{3a}{c} - a = 0\ \ \
(1)

    Mặt khác, vì O.ABC là hình chóp đều nên tam giác ABC đều nên:

    AB = BC = AC

    \Leftrightarrow \sqrt{a^{2} + b^{2}} =
\sqrt{a^{2} + c^{2}} = \sqrt{b^{2} + c^{2}}

    \Leftrightarrow a^{2} = b^{2} =
c^{2} kết hợp với (1) ta có các trường hợp sau:

    a = b = c ⇒ a = 1 + 2 + 3 = 6 nên (P_1): x + y + z − 6 = 0

    a = b = −c ⇒ a = 1 + 2 − 3 = 0 không thỏa yêu cầu.

    a = −b = c ⇒ a = 1 − 2 + 3 = 2 nên (P_2): x − y + z − 2 = 0

    a = −b = −c ⇒ a = 1 − 2 − 3 = −5 nên (P_3): x − y − z + 5 = 0

    −a = −b = c ⇒ a = 1 + 2 − 3 = 0, không thỏa yêu cầu

    −a = b = −c ⇒ a = 1 − 2 + 3 = 2 nên (P): x − y + z − 2 = 0 trùng với (P2)

    −a = b = c ⇒ a = 1 − 2 − 3 = −5 nên (P): x − y − z + 5 = 0 trùng với (P3)

    −a = −b = −c ⇒ a = 1 + 2 + 3 = 6 nên (P): x + y + z − 6 = 0 trùng với (P1)

    Vậy S = a_1 + a_2 + a_3 = 1 − 1 − 1 = −1.

  • Câu 11: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (\alpha) cắt các trục tọa độ tại A,B,C. Biết trọng tâm của tam giác ABCG( -
1; - 3;2). Mặt phẳng (\alpha) song song với mặt phẳng nào sau đây?

    Hướng dẫn:

    Gọi A(a;0;0),B(0;b;0),C(0;0;c) là giao điểm với ba trục tọa độ.

    Do G là trọng tâm tam giác ABC nên \left\{ \begin{matrix}
x_{A} + x_{B} + x_{C} = 3x_{G} \\
y_{A} + y_{B} + y_{C} = 3y_{G} \\
z_{A} + z_{B} + z_{C} = 3z_{G} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
a = - 3 \\
b = - 9 \\
c = 6 \\
\end{matrix} ight.

    Vậy phương trình mặt phẳng (\alpha)\frac{x}{- 3} + \frac{y}{- 9} + \frac{z}{6} =
1 \Leftrightarrow 6x + 2y - 3z + 18
= 0

    Vậy mặt phẳng song song với (\alpha) trong các đáp án đã cho là 6x + 2y - 3z - 1 = 0.

  • Câu 12: Thông hiểu
    Tìm tọa độ của điểm M

    Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(1;4;2),B( - 1;2;4) và đường thẳng \Delta:\left\{ \begin{matrix}
x = 1 - t \\
y = - 2 + t \\
z = 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight). Điểm M \in \Delta mà tổng MA^{2} + MB^{2} có giá trị nhỏ nhất có tọa độ là:

    Hướng dẫn:

    M \in \Delta nên ta có tọa độ điểm M(1 - t; - 2 + t;2t).

    Ta có:

    MA^{2} + MB^{2} = ( - t)^{2} + (t -
6)^{2} + (2t - 2)^{2} + (2 - t)^{2} + (t - 4)^{2} + (2t - 4)^{2}

    = 12t^{2} - 48t + 76 = 12(t - 2)^{2} +
28 \geq 28

    Vậy giá trị nhỏ nhất của MA^{2} +
MB^{2}28 khi t = 2 \Rightarrow M( - 1;0;4).

  • Câu 13: Thông hiểu
    Tính khoảng cách từ điểm đến mặt phẳng

    Trong không gian với hệ tọa độ Oxyz, cho bốn điểm A( - 1; - 2;1),B( - 4;2; - 2), C( - 1; - 1; - 2),D( - 5; - 5;2). Tính khoảng cách từ điểm D đến mặt phẳng (ABC).

    Hướng dẫn:

    Ta có \overrightarrow{\ AB} = ( - 3;4; -
3),\overrightarrow{AC} = (0;1; - 3)

    \Rightarrow \left\lbrack
\overrightarrow{\ AB};\overrightarrow{AC} ightbrack = ( - 9; - 9; -
3)

    Mặt phẳng (ABC) đi qua A( - 1; - 2;1) và nhận \overrightarrow{n} = (3;3;1) là vectơ pháp tuyến có phương trình tổng quát là 3x +
3y + z + 8 = 0.

    Khoảng cách từ điểm D đến mặt phẳng (ABC) là:

    d = d\left( D;(ABC) ight) = \frac{| -
15 - 15 + 2 + 8|}{\sqrt{3^{2} + 3^{2} + 1^{2}}} =
\frac{20}{\sqrt{19}}.

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Trong không gian Oxyz, phương trình nào dưới đây là phương trình của mặt phẳng đi qua điểm E(1;2;3) và song song với mặt phẳng (Oxy)?

    Hướng dẫn:

    Mặt phẳng (Oxy) có phương trình là z = 0 nên có một vectơ pháp tuyến là \overrightarrow{k} =
(0;0;1).

    Phương trình của mặt phẳng cần tìm có dạng

    0(x - 1) + 0(y - 2) + 1(z - 3) = 0
\Leftrightarrow z = 3.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Trong không gian với hệ trục tọa độ Oxyz, cho điểm H(2;1;2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P), số đo góc giữa mặt phẳng (P) và mặt phẳng (Q):x + y - 11 = 0 bằng bao nhiêu?

    Hướng dẫn:

    H(2;1;2) là hình chiếu vuông góc của gốc tọa độ O xuống mặt phẳng (P) nên mặt phẳng (P) có vectơ pháp tuyến \overrightarrow{n_{(P)}} = \overrightarrow{OH} =
(2;1;2).

    Mặt phẳng (Q) có vectơ pháp tuyến \overrightarrow{n_{(Q)}} =
(1;1;0).

    Gọi \varphi là số đo góc giữa mặt phẳng (P) và mặt phẳng (Q), ta có:

    \cos\varphi = \frac{\left|
\overrightarrow{n_{(P)}}.\overrightarrow{n_{(Q)}} ight|}{\left|
\overrightarrow{n_{(P)}} ight|.\left| \overrightarrow{n_{(Q)}}
ight|} = \frac{1}{\sqrt{2}}

    \Rightarrow \varphi =
45^{0}

  • Câu 16: Vận dụng
    Chọn kết quả chính xác

    Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x - 2y + 2z - 5 = 0 và hai điểm A(−3; 0; 1), B(1; −1; 3). Trong các đường thẳng đi qua A và song song với (P), đường thẳng nào cách B một khoảng cách nhỏ nhất?

    Hướng dẫn:

    Hình vẽ minh họa

    Gọi d là đường thẳng cần tìm.

    Gọi (Q) là mặt phẳng qua A(−3; 0; 1) và song song với (P): x − 2y + 2z − 5 = 0.

    ⇒ (Q): x − 2y + 2z + 1 = 0d ⊂ (Q).

    Gọi H, K lần lượt là hình chiếu của B lên d và (Q) thì BH > BK.

    Do đó d(B; d) nhỏ nhất khi và chỉ khi H ≡ K.

    Đường thẳng BK đi qua B(1; −1; 3) và vuông góc với (Q) \Rightarrow BK:\left\{ \begin{matrix}
x = 1 + t \\
y = - 1 - 2t \\
z = 3 + 2t \\
\end{matrix} ight.\ ;\left( t\mathbb{\in R} ight)

    Lại có: K = BK \cap (Q) \Rightarrow K =
\left( \frac{- 1}{9};\frac{11}{9};\frac{7}{9} ight)

    Đường thẳng d qua A và nhận \overrightarrow{AK} = \left(
\frac{26}{9};\frac{11}{9};\frac{- 2}{9} ight) làm vectơ chỉ phương nên đường thẳng cần tìm là: \frac{x +
3}{26} = \frac{y}{11} = \frac{z - 1}{- 2}.

  • Câu 17: Nhận biết
    Tính góc giữa hai mặt phẳng

    Trong không gian Oxyz cho hai mặt phẳng (P):8x - 4y - 8z - 11 =0,(Q):\sqrt{2}x - \sqrt{2}y + 7 = 0. Góc giữa hai mặt phẳng (P);(Q) bằng:

    Hướng dẫn:

    Ta có: (P):8x - 4y - 8z - 11 = 0 có 1 vectơ pháp tuyến là \overrightarrow{n_{1}} = (8; - 4; -
8)

    (Q):\sqrt{2}x - \sqrt{2}y + 7 =
0 có 1 vectơ pháp tuyến là \overrightarrow{n_{2}} = \left( \sqrt{2}; -
\sqrt{2};0 ight)

    Khi đó:

    \cos\left( (P);(Q) ight) = \cos\left(
\overrightarrow{n_{1}};\overrightarrow{n_{2}} ight)

    = \frac{\left| 8.\sqrt{2} + 4.\sqrt{2} -
8.0 ight|}{\sqrt{8^{2} + ( - 4)^{2} + ( - 8)^{2}}.\sqrt{\left(
\sqrt{2} ight)^{2} + \left( - \sqrt{2} ight)^{2} + 0}} =
\frac{1}{\sqrt{2}}

    \Rightarrow \left( (P);(Q) ight) =
45^{0}

  • Câu 18: Vận dụng
    Viết phương trình mặt phẳng (P)

    Trong không gian Oxyz, cho mặt cầu (S):x^{2} + y^{2} + z^{2} - 2x + 6y - 4z
- 2 = 0 và mặt phẳng (α) : x + 4y + z − 11 = 0. Viết phương trình mặt phẳng (P), biết (P) song song với giá của vectơ \overrightarrow{v} = (1;6;2), vuông góc với (α) và tiếp xúc với (S).

    Hướng dẫn:

    Mặt cầu (S) có tâm I(1; −3; 2) và bán kính R = 4.

    Vectơ pháp tuyến của (α) là \overrightarrow{n_{(\alpha)}} =
(1;4;1)

    Theo giả thiết, suy ra (P) có vectơ pháp tuyến là \overrightarrow{n_{(P)}} = \left\lbrack
\overrightarrow{v};\overrightarrow{n_{(\alpha)}} ightbrack = (2; -
1;2)

    Phương trình của mặt phẳng (P) có dạng 2x − y + 2z + D = 0

    Vì (P) tiếp xúc với mặt cầu (S) nên ta có:

    d\left( I;(P) ight) = R
\Leftrightarrow \frac{|2 + 3 + 4 + D|}{\sqrt{2^{2} + 1^{2} + 2^{2}}} =
4

    \Leftrightarrow |9 + D| = 12
\Leftrightarrow \left\lbrack \begin{matrix}
D = 3 \\
D = - 21 \\
\end{matrix} ight.

    Vậy có 2 mặt phẳng thỏa yêu cầu bài toán có phương trình là: \left\lbrack \begin{matrix}
(P):2x - y + 2z + 3 = 0 \\
(P):2x - y + 2z - 21 = 0 \\
\end{matrix} ight.

  • Câu 19: Thông hiểu
    Tính góc tạo bởi đường thẳng và mặt phẳng

    Trong không gian với hệ trục Oxyz, cho mặt phẳng (P):x + 2y - 2z + 3 = 0 và đường thẳng \Delta:\frac{x - 1}{2} = \frac{y + 3}{- 2} =
\frac{z + 1}{1}. Côsin của góc tạo bởi đường thẳng \Delta và mặt phẳng (P)

    Hướng dẫn:

    Ta có: \overrightarrow{u} = (2; -
2;1),\overrightarrow{n_{(P)}} = (1;2; - 2)

    Khi đó \sin\widehat{\left( \Delta;(P)
ight)} = \frac{\left| \overrightarrow{u}.\overrightarrow{n_{(P)}}
ight|}{\left| \overrightarrow{u} ight|.\left|
\overrightarrow{n_{(P)}} ight|} = \frac{4}{9}

    \cos\widehat{\left( \Delta;(P)
ight)} > 0 nên \cos\widehat{\left( \Delta;(P) ight)} = \sqrt{1
- sin^{2}\widehat{\left( \Delta;(P) ight)}} =
\frac{\sqrt{65}}{9}

  • Câu 20: Vận dụng cao
    Chọn đáp án đúng

    Trong không gian với hệ toạ độ Oxyz, cho điểm S(0;0;1), Hai điểm M(m;0;0),N(0;n;0) thay đổi sao cho m + n = 1m > 0,n > 0. Mặt phẳng (SMN) luôn tiếp xúc với một mặt cầu cố định đi qua P(1;1;1) có bán kính là

    Hướng dẫn:

    Phương trình (SMN):\frac{x}{m} +\frac{y}{n} + z = 1. Gọi I(a;b;c)R là tâm và bán kính mặt cầu cố định trong đề bài, phương trình mặt cầu là (x -a)^{2} + (y - b)^{2} + (z - c)^{2} = R^{2}.

    Ta có khoảng cách từ I đên (SMN)d = \dfrac{\left| \dfrac{a}{m} +\dfrac{b}{n} + c - 1 ight|}{\sqrt{\dfrac{1}{m^{2}} + \dfrac{1}{n^{2}} +1}} = R

    \ m + n = 1 \Rightarrow\frac{1}{m^{2}} + \frac{1}{n^{2}} + 1

    = \frac{m^{2} + n^{2} +m^{2}n^{2}}{m^{2}n^{2}} = \frac{1 - 2mn +m^{2}n^{2}}{m^{2}n^{2}}

    \Rightarrow d = \frac{|an + bm + cmn -mn|}{1 - mn} = R

    Nếu an + bm + cmn - mn = R(1 -mn)

    \Leftrightarrow a(1 - m) + bm + cm(1 -m) - m(1 - m) = R - Rm(1 - m)

    \Leftrightarrow m^{2}(R + c - 1) + m(a -b - c - R + 1) - a + R = 0

    Đẳng thức đúng với mọi m \in(0;1) nên R + c - 1 = a - b - c - R+ 1 = - a + R hay a = b = R,c = 1 -R, thay vào phương trình mặt cầu ta có R = 1.

    Nếu an + bm + cmn − mn = −R(1 − mn)

    \Leftrightarrow m^{2}( - R + c - 1) +m(a - b - c + R + 1) - a - R = 0

    Đẳng thức đúng với mọi m ∈ (0; 1) nên R+c−1 = a−b−c−R+1 = −a+R hay a = b = −R, c = 1+R thay vào phương trình mặt cầu ta có R = −1 không thỏa mãn.

    Vậy R = 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 10 lượt xem
Sắp xếp theo