Trong không gian với hệ tọa độ , cho ba điểm
và mặt phẳng
. Điểm
nằm trên mặt phẳng
thỏa mãn
. Tính
?
Ta có
Với , ta có
Với , ta có
Từ (1); (2); (3) ta có hệ phương trình:
Trong không gian với hệ tọa độ , cho ba điểm
và mặt phẳng
. Điểm
nằm trên mặt phẳng
thỏa mãn
. Tính
?
Ta có
Với , ta có
Với , ta có
Từ (1); (2); (3) ta có hệ phương trình:
Trong không gian cho ba điểm
và mặt phẳng
. Gọi
là điểm thuộc mặt phẳng
sao cho
đạt giá trị nhỏ nhất. Tính tổng
.
Gọi G là trọng tâm tam giác ABC ta có:
Lại có
Vì là một hằng số nên S nhỏ nhất khi MG nhỏ nhất, hay M là hình chiếu của G lên (P).
Từ đó ta tìm được và
Cho tứ diện có
. Tính độ dài đường cao
của tứ diện
?
Ta có:
.
Trong không gian , cho ba điểm
với
là những số thực dương sao cho
. Tính
sao cho khoảng cách từ
đến mặt phẳng
là lớn nhất
Phương trình mặt phẳng
Xét ta có:
Dấu "=" xảy ra khi và chỉ khi
⇒ , khi đó
.
Trong không gian với hệ tọa độ , cho hai điểm
. Đường thẳng
cắt mặt phẳng
tại điểm
. Tỉ số
bằng
Ta có:
Trong không gian với hệ tọa độ , cho
. Viết phương trình mặt phẳng trung trực của
.
Mặt phẳng trung trực nhận
làm vectơ pháp tuyến và đi qua trung điểm
của
nên ta có phương trình mặt phẳng
là:
.
Trong không gian cho
. Viết phương trình mặt phẳng
?
Phương trình mặt phẳng là
Trong không gian cho mặt phẳng
. Điểm nào sau đây nằm trên mặt phẳng
?
Ta thấy tọa độ điểm thỏa mãn phương trình mặt phẳng
nên điểm
nằm trên
.
Trong không gian , cho mặt phẳng
đi qua điểm
và cắt các tia
lần lượt tại
sao cho độ dài
theo thứ tự lập thành một cấp số nhân có công bội bằng
. Tính khoảng cách từ gốc tọa độ
đến mặt phẳng
.
Giả sử với
.
Phương trình mặt phẳng có dạng
Ta có đi qua điểm
nên ta có
(∗)
Vì theo thứ tự lập thành một cấp số nhân có công bội bằng 2 nên
.
Thay vào (∗), ta được
Suy ra phương trình mặt phẳng (α) là hay
.
Trong không gian , cho đường thẳng
đi qua điểm
và có véc-tơ chỉ phương là
. Phương trình nào sau đây không phải là của đường thẳng
?
Thay tọa độ điểm M(1; 2; 3) vào các phương trình, dễ thấy M không thỏa mãn phương trình .
Trong không gian với hệ tọa độ , cho ba điểm
. Mặt phẳng
đi qua ba điểm
có phương trình tổng quát
. Biết
, tìm giá trị của
?
Do nên mặt phẳng
có phương trình
Do đi qua các điểm
nên ta có hệ:
Vậy .
Trong không gian với hệ trục tọa độ , cho
. Phương trình mặt phẳng
đi qua
cắt các trục tọa độ
lần lượt tại
(khác
) sao cho
là trực tâm tam giác
là:
Mặt phẳng cắt trục
lần lượt tại
suy ra
là trực tâm của tam giác
và
Phương trình mặt phẳng .
Trong không gian với hệ tọa đô , cho điểm
. Gọi
là mặt phẳng đi qua
và cắt các tia
lần lượt tại các điểm
sao cho thể tích tứ diện
nhỏ nhất.
đi qua điểm nào dưới đây?
Gọi với
Phương trình mặt phẳng
Vì
Áp dụng bất đẳng thức Cauchy ta có:
Thể tích tứ diện là
Đẳng thức xảy ra khi
Phương trình mặt phẳng là
Mặt phẳng đi qua điểm
.
Trong không gian , cho hình chóp
có đáy là hình vuông và
vuông góc với đáy. Biết
, lập phương trình mặt phẳng
.
Dễ dàng chứng minh được là mặt phẳng trung trực của
.
Chọn vectơ pháp tuyến của mặt phẳng là
.
Mặt phẳng đi qua trung điểm
của
và có vtcp
nên có phương trình:
.
Trong không gian , cho điểm
và mặt phẳng
. Mặt phẳng
đi qua
và song song với mặt phẳng
có phương trình là:
Do mặt phẳng (Q) song song với mặt phẳng (P) nên có vectơ pháp tuyến là
Phương trình mặt phẳng (Q) là:
Trong không gian , hãy viết phương trình của mặt phẳng
đi qua điểm
và vuông góc với đường thẳng
.
Mặt phẳng (P) đi qua điểm và có một véc-tơ pháp tuyến là
nên có phương là:
.
Trong không gian với hệ trục tọa độ , cho các điểm
. Có bao nhiêu điểm
cách đều các mặt phẳng
?
Ta có
Ta có:
Ta có:
Gọi điểm cách đều các mặt phẳng
Từ
Từ
Từ
Từ (1), (3), (5) suy ra , b khác 0 tùy ý.
Như vậy có vô số điểm cách đều bốn mặt phẳng
Trong không gian với hệ tọa độ , cho hai mặt phẳng
. Chọn khẳng định đúng.
Hai mặt phẳng có vectơ pháp tuyến lần lượt là
Ta có
⇒ .
Trong không gian , cho hai mặt phẳng
và
. Giá trị của
sao cho
là
Ta có: có vectơ chỉ phương
, (Q) có vectơ chỉ phương
Để hai mặt phẳng song song thì
Vậy đáp án cần tìm là: .
Trong không gian với hệ tọa độ , cho ba điểm
. Vectơ nào dưới đây là vectơ pháp tuyến của mặt phẳng
?
Ta có:
Vậy là đáp án cần tìm.