Trong không gian hệ trục tọa độ , cho
và
là điểm đối xứng cới điểm
qua
. Khi đó
bằng:
Gọi là hình chiếu của M trên
ta có
. Do
đối xứng với
qua
, khi đó
là trung điểm của
Suy ra từ đó
.
Trong không gian hệ trục tọa độ , cho
và
là điểm đối xứng cới điểm
qua
. Khi đó
bằng:
Gọi là hình chiếu của M trên
ta có
. Do
đối xứng với
qua
, khi đó
là trung điểm của
Suy ra từ đó
.
Trong không gian tọa độ , góc giữa hai vectơ
và
là:
Ta có:
Trong không gian với hệ trục tọa độ , cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ , cho tam giác
có tọa độ các đỉnh
. Gọi
là chân đường phân giác trong của góc
trong tam giác
. Tính giá trị biểu thức
?
Trong không gian hệ trục tọa độ , cho tọa độ ba điểm
thẳng hàng. Khi đó giá trị của biểu thức
là:
Ta có: . Vì A; B; C thẳng hàng nên
cùng phương
Trong không gian hệ trục tọa độ , cho hai vectơ
và
. Xác định tích vô hướng
?
Ta có: nên
Trong không gian , cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian với hệ trục tọa độ , cho hai điểm
. Biết
là tâm đường tròn nội tiếp tam giác
. Tính giá trị biểu thức
?
Hình vẽ minh họa
Ta có:
Gọi D là chân đường phân giác kẻ từ O ta có:
. Do đó
Ta có:
Trong không gian với hệ trục tọa độ , cho các điểm
. Mệnh đề nào sau đây sai?
Hình vẽ minh họa
Ta có: suy ra
và
không vuông góc với nhau.
Vậy mệnh đề sai là: “”.
Trong không gian , cho vectơ
. Hãy chọn vectơ cùng phương với
?
Ta có: cùng phương với
khi
. Khi đó đáp án cần tìm là
(vì
).
Trong không gian hệ trục tọa độ , cho hình hộp
biết
. Xác định tọa độ B’?
Hình vẽ minh họa
Giả sử điểm
Gọi
Suy ra . Vì
là hình hộp nên
Trong không gian hệ trục tọa độ , cho các điểm
. Gọi
lần lượt là hình chiếu của
lên mặt phẳng
. Khi đó độ dài đoạn thẳng
bằng:
Vì lần lượt là hình chiếu của
lên mặt phẳng
nên
suy ra
.
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Cho tứ diện và các điểm
xác định bởi
. Tìm giá trị
để
đồng phẳng?
Xác định tọa độ trọng tâm của tam giác
, biết rằng
?
Tọa độ trọng tâm G của tam giác được xác định như sau:
Trong không gian với hệ trục tọa độ , cho hai vectơ
. Tìm tọa độ vectơ
?
Ta có: . Khi đó
.
Vậy
Trong không gian với hệ trục tọa độ , cho hai điểm
và
. Xác định tọa độ trung điểm
của
?
Ta có: I là trung điểm của AB nên tọa độ điểm I là:
Vậy đáp án đúng là: .
Trong không gian , cho vectơ
. Khi đó tọa độ vectơ
là:
Ta có:
Trong không gian , cho
. Tọa độ vectơ
là:
Ta có:
Trong không gian hệ trục tọa độ , cho tam giác
có tọa các điểm
. Tính số đo góc
?
Ta có:
Trong không gian , cho tọa độ các điểm
. Cho các khẳng định sau:
(I) .
(II) .
(III) Ba điểm tạo thành một tam giác.
(IV) Ba điểm thẳng hàng.
Trong các khẳng định trên, có bao nhiêu khẳng định đúng.
Ta có: nên
là trung điểm của
và ba điểm
thẳng hàng.
Vậy có 2 khẳng định sai và 2 khẳng định đúng.
Trong không gian hệ trục tọa độ , cho ba điểm
. Tìm điểm
sao cho
đạt giá trị nhỏ nhất?
Vì suy ra
. Ta có:
Theo bài ra:
Vậy nhỏ nhất bằng
khi
. Hay