Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
biết rằng mỗi đơn vị dài trên các trục tọa độ là
?
Ta có:
Do mỗi đơn vị trên trục là 2 cm nên
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và hai đường thẳng
biết rằng mỗi đơn vị dài trên các trục tọa độ là
?
Ta có:
Do mỗi đơn vị trên trục là 2 cm nên
Một biển quảng cáo có dạng hình elip với bốn đỉnh như hình vẽ:
Người ta chia elip bởi Parabol có đỉnh , trục đối xứng
và đi qua các điểm
. Sau đó sơn phần tô đậm với giá 200 nghìn đồng/m2 và trang trí đèn led phần còn lại với giá 500 nghìn đồng/m2. Hỏi kinh phí sử dụng gần nhất với giá trị nào dưới đây? Biết rằng
Chọn hệ trục tọa độ Oxy sao cho O là trung điểm của A1A2. Tọa độ các đỉnh A1(−2; 0), A2(2; 0), B1(0; −1), B2(0; 1)
Phương trình đường Elip
Ta có:
Parabol (P) có đỉnh B1(0; −1) và trục đối xứng là Ox nên (P) có phương trình , (a > 0), đi qua M; N
Diện tích phần tô đậm
Đặt
Đổi cận
Diện tích hình Elip là
Suy ra diện tích phần còn lại là:
Kinh phí sử dụng là đồng.
Diện tích nhỏ nhất giới hạn bởi parabol và đường thẳng
là:
Hoành độ giao điểm của đồ thị hai hàm số là nghiệm của phương trình
Vì nên phương trình luôn có 2 nghiệm phân biệt
với
Ta có: .
Diện tích hình phẳng giới hạn bởi (P) và (d) là:
Vậy diện tích nhỏ nhất giới hạn bởi parabol và đường thẳng
là
.
Tính thể tích của vật thể sinh ra khi quay quanh trục
hình phẳng giới hạn bởi đồ thị hàm số
, đường thẳng
và trục hoành?
Thể tích V của vật thể là:
Một khối cầu có bán kính , người ta cắt bỏ
phần bằng
mặt phẳng song song và vuông góc với bán kính, hai mặt phẳng đó đều cách tâm của khối cầu
để làm một chiếc lu đựng nước. Tính thể tích nước mà chiếc lu chứa được (coi độ dày của bề mặt không đáng kể).
Hình vẽ minh họa
Đặt trục tọa độ như hình vẽ. Thể tích cái được tính bằng cách cho đường tròn có phương trình quay quanh trục Ox.
Thể tích cái lu bằng;
Cho hàm số có đồ thị
. Các tiếp tuyến với đồ thị tại
và tại
cắt nhau tại
. Tính diện tích hình phẳng giới hạn bởi cung
của
và hai tiếp tuyến
?
Tập xác định
Tiếp tuyến tại O(0; 0) là OB:
Tiếp tuyến tại A(3; 3) là AB:
Suy ra
Diện tích hình giới hạn là
Cho đồ thị hàm số như hình vẽ:
Diện tích của hình phẳng được giới hạn bởi đồ thị hàm số
và trục
(phần gạch sọc) được tính bởi công thức
Từ đồ thị hàm số ta thấy
Do đó:
Diện tích hình phẳng giới hạn bởi các đường là
. Tính giá trị
?
Diện tích hình phẳng cần tìm là:
Đặt
Đổi cận . Khi đó:
hay
Cho đường cong . Xét điểm
có hoành độ dương thuộc
, tiếp tuyến của
tại
tạo với
một hình phẳng có diện tích bằng
. Hoành độ điểm
thuộc khoảng nào dưới đây??
Ta có: có
Phương trình tiếp tuyến d của (C) tại A là
Gọi S là diện tích của hình phẳng giới hạn bởi tiếp tuyến d và (C)
Vậy
Cho hình (H) giới hạn bởi đồ thị hàm số , cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).
Biết thể tích của khối tròn xoay tạo thành khi quay quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Cho hình (H) giới hạn bởi đồ thị hàm số , cung tròn có phương trình
(với
) và trục hoành (phần tô đậm trong hình vẽ).
Biết thể tích của khối tròn xoay tạo thành khi quay quanh trục hoành là
, trong đó
và
là các phân số tối giản. Tính
?
Thể tích khối tròn xoay khi quay hình phẳng giới hạn bởi các đường
quanh trục
có kết quả có dạng
với
là các số nguyên dương và
là phân số tối giản. Khi đó giá trị của
bằng:
Phương trình hoành độ giao
Thể tích cần tính
Suy ra .
Vật thể giới hạn bởi mặt phẳng có phương trình
và
. Cắt vật thể
với mặt phẳng vuông góc với trục
tại điểm có hoành độ bằng
ta được thiết diện có diện tích bằng
. Thể tích của vật thể
:
Thể tích của vật thể B là:
Diện tích hình phẳng giới hạn bởi các đường , trục hoành,
và
bằng
Hình vẽ minh họa
Phương trình hoành độ giao điểm
Diện tích hình giới hạn là
Tính thể tích của vật thể tròn xoay thu được khi quay hình phẳng giới hạn bởi các đường
quay quanh
.
Xét phương trình hoành độ giao điểm:
Thể tích khối tròn xoay cần tính là:
Gọi là hình phẳng giới hạn bởi các đường
. Tính thể tích vật thể tròn xoay tạo thành khi quay hình
quanh trục
?
Thể tích vật thể tròn xoay tạo thành khi quay hình quanh trục
là
.
Tính diện tích hình phẳng giới hạn bởi các đường và các đường thẳng
như hình vẽ:
Phương trình hoành độ giao điểm
Xét
Xét
Diện tích hình phẳng là:
Công thức tính diện tích S của hình phẳng giới hạn bởi hai đồ thị hàm số liên tục trên đoạn
và hai đường thẳng
là
Ta có hình phẳng giới hạn bởi là
.
Tính diện tích hình phẳng giới hạn bởi các đường thẳng ?
Hình vẽ minh họa
Ta có:
Từ đó ta thấy phương trình hoành độ không có nghiệm nào thuộc khoảng
Diện tích hình giới hạn là
Cho hình phẳng giới hạn bởi đường cong
, trục hoành và các đường thẳng
. Khối tròn xoay tạo thành khi quay
quanh trục hoành có thể tích V bằng bao nhiêu?
Ta có:
.
Xét hình phẳng giới hạn bởi các đường như hình vẽ (phần gạch sọc).
Diện tích hình phẳng được tính theo công thức
Ta có: