Bài tập cuối chương 4 Nguyên hàm. Tích phân CTST

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Ghi đáp án vào ô trống

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một mảnh vườn hình elip có trục lớn bằng 100m, trục nhỏ bằng 80m được chia thành hai phần bởi một đoạn thẳng nối hai đỉnh liên tiếp của elip. Phần nhỏ hơn trồng cây con và phần lớn hơn trồng rau. Biết lợi nhuận thu được là 200 mỗi m^{2} trồng cây con và 4000 mỗi m^{2} trồng rau. Hỏi thu nhập từ cả mảnh vườn là bao nhiêu? (Kết quả làm tròn đến hàng nghìn).

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu
    Chọn đáp án chính xác

    Biết \int_{- 1}^{0}{\frac{3x^{2} + 5x -
1}{x - 2}dx} = a\ln\frac{2}{3} + b. Khi đó P = a + 2b có giá trị bằng:

    Hướng dẫn:

    Ta có:

    I = \int_{- 1}^{0}{\frac{3x^{2} + 5x -
1}{x - 2}dx} = \int_{- 1}^{0}{(3x + 11)dx} + \int_{- 1}^{0}{\frac{21}{x
- 2}dx}

    = \left. \ \left( 3.\frac{x^{2}}{2} +11x ight) ight|_{- 1}^{0} + \left. \ \left( 21\ln|x - 2| ight)ight|_{- 1}^{0}= \frac{19}{2} + 21\ln\frac{2}{3}\Rightarrow \left\{ \begin{matrix}a = 21 \\b = \dfrac{19}{2} \\\end{matrix} ight.\  \Rightarrow P = a + 2b = 40

  • Câu 3: Thông hiểu
    Xác định số cực trị của hàm số

    Hàm số F(x) là nguyên hàm của f(x) = (1 - x)\ln\left( x^{2} + 1
ight). Hỏi hàm số F(x) có bao nhiêu điểm cực trị?

    Hướng dẫn:

    TXĐ: D\mathbb{= R}

    Ta có: F'(x) = f(x) = (1 -
x)\ln\left( x^{2} + 1 ight)

    \Rightarrow F'(x) = 0
\Leftrightarrow (1 - x)\ln\left( x^{2} + 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
1 - x = 0 \\
\ln\left( x^{2} + 1 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x^{2} + 1 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 0 \\
\end{matrix} ight.

    Phương trình F'(x) = 0 có 1 nghiệm đơn x = 1 và một nghiệm kép x = 0 nên hàm số F(x) có 1 điểm cực trị.

  • Câu 4: Thông hiểu
    Chọn đáp án đúng

    Một ô tô bắt đầu chuyển động nhanh dần đều với vận tốc v_{1}(t) = 7t(m/s). Đi được 5s người lái xe phát hiện chướng ngại vật và phanh gấp, ô tô tiếp tục chuyển động chậm dần đều với gia tốc a = - 70\left( m/s^{2} ight). Tính quãng đường đi được của ô tô từ lúc bắt đầu chuyển bánh cho đến khi dừng hẳn.

    Hướng dẫn:

    Vận tốc vật đạt được sau 5s là: v_{0} =
7.5 = 35(m/s)

    Ta có: v_{2}(t) = \int_{}^{}{a(t)dt} =
\int_{}^{}{- 70dt} = - 70t + C

    Do khi bắt đầu tăng tốc v_{0} = 35(m/s)
\Rightarrow v_{(t = 0)} = 35 \Rightarrow C = 35

    \Rightarrow v_{2}(t) = - 70t +
35

    Vật dừng hẳn khi v_{2}(t) = - 70t + 35 =
0 \Rightarrow t_{2} = \frac{1}{2}(s)

    Khi đó quãng đường đi được bằng

    S = \int_{0}^{5}{v_{1}(t)dt} +
\int_{0}^{\frac{1}{2}}{v_{2}(t)dt}

    = \int_{0}^{5}{7tdt} +
\int_{0}^{\frac{1}{2}}{( - 70t + 35)dt} = 96,25(m)

  • Câu 5: Nhận biết
    Xác định giá trị S đúng nhất

    Một vật chuyển động với vận tốc v(t) =
\frac{6}{5} + \frac{t^{2} + 4}{t + 3}(m/s). Tính quãng đường vật đó đi được trong 4 giây đầu (làm tròn kết quả đến chữ số thập phân thứ hai).?

    Hướng dẫn:

    Quãng đường vật đó đi được trong 4 giây đầu là:

    S = \int_{0}^{4}{v(t)dt} = \int_{0}^{4}{\left(
\frac{6}{5} + \frac{t^{2} + 4}{t + 3} ight)dt} \approx
11,81(m).

  • Câu 6: Nhận biết
    Tính tích phân

    Tích phân \int_{0}^{1}\frac{dx}{2x +
5} bằng:

    Hướng dẫn:

    Ta có: \int_{0}^{1}\frac{dx}{2x + 5} =
\frac{1}{2}\int_{0}^{1}\frac{d(2x + 5)}{2x + 5}

    = \left. \ \frac{1}{2}\ln(2x + 5)
ight|_{0}^{1} = \frac{1}{2}\ln\frac{7}{5}

  • Câu 7: Vận dụng
    Chọn đáp án chính xác

    Cho hàm số y = f(x) có đạo hàm trên khoảng (0; + \infty) thỏa mãn f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack và f(1) = 0. Giá trị tích phân D = \int_{1}^{5}{f(x)dx} bằng:

    Hướng dẫn:

    Từ giả thiết ta có:

    f(x) = x.\ln\left\lbrack\frac{x^{3}}{xf'(x) - f(x)} ightbrack

    \Leftrightarrow \frac{f(x)}{x} =
\ln\left\lbrack \frac{x^{3}}{xf'(x) - f(x)}
ightbrack

    \Leftrightarrow e^{\frac{f(x)}{x}} =
\frac{x^{3}}{xf'(x) - f(x)}

    \Leftrightarrow \frac{xf'(x) -
f(x)}{x^{2}}.e^{\frac{f(x)}{x}} = x

    \Leftrightarrow \left\lbrack
\frac{f(x)}{x} ightbrack'.e^{\frac{f(x)}{x}} = x(*)

    Lấy nguyên hàm hai vế của (*) suy ra e^{\frac{f(x)}{x}} = \frac{x^{2}}{2} +
C

    f(1) = 0 \Rightarrow C =
\frac{1}{2} nên e^{\frac{f(x)}{x}}
= \frac{x^{2}}{2} + \frac{1}{2} \Rightarrow f(x) = x\ln\frac{x^{2} +
1}{2};\forall x \in (0; + \infty)

    D = \int_{1}^{5}{f(x)dx} =\int_{1}^{5}{x.\ln\frac{x^{2} + 1}{2}dx}(**)

    Đặt \left\{ \begin{matrix}u = \ln\dfrac{x^{2} + 1}{2} \\dv = xdx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{2x}{x^{2} + 1}dx \\v = \dfrac{x^{2} + 1}{2} \\\end{matrix} ight.

    Theo công thức tích phân từng phần ta được:

    D = \left. \ \left( \frac{x^{2} +1}{2}.\ln\frac{x^{2} + 1}{2} ight) ight|_{1}^{5} - \int_{1}^{5}{xdx}= 13\ln13 - \left. \ \frac{x^{2}}{2} ight|_{1}^{5} = 13\ln13 -12

  • Câu 8: Nhận biết
    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi các đường y = x^{3}, trục hoành, x = 1x =
3 bằng

    Hướng dẫn:

    Diện tích hình giới hạn là S =
\int_{1}^{3}{\left| x^{3} ight|dx} = \left| \int_{3}^{3}{x^{3}dx}
ight| = \left| \left. \ \left( \frac{x^{4}}{4} ight) ight|_{1}^{3}
ight| = 20

  • Câu 9: Nhận biết
    Tính thể tích khối tròn xoay

    Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = \cos x,y = 0,x = 0,x = \pi quay xung quanh Ox.

    Hướng dẫn:

    Thể tích vật thể bằng:

    V = \pi\int_{0}^{\pi}{\left( \cos xight)^{2}dx} = \frac{\pi}{2}\int_{0}^{\pi}{(1 + \cos2x)dx} = \pi\left.\ \left( x + \frac{1}{2}\sin2x ight) ight|_{1}^{\pi} =\frac{\pi^{2}}{2}.

  • Câu 10: Vận dụng
    Viết phương trình tiếp tuyến

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ 0
ight\} thỏa mãn f(x) + xf'(x)
= 3x^{2}f(2) = 8. Phương trình tiếp tuyến của đồ thị hàm số y
= f(x) tại giao điểm với trục hoành là:

    Hướng dẫn:

    Ta có: f(x) + xf'(x) =
3x^{2}

    \Leftrightarrow (x)'f(x) +
xf'(x) = 3x^{2}

    \Leftrightarrow \left( xf'(x)
ight)' = 3x^{2}

    Lấy nguyên hàm hai vế ta được:

    \int_{}^{}{\left( xf'(x)
ight)'dx} = \int_{}^{}{3x^{2}dx} \Leftrightarrow xf(x) = x^{3} +
C

    Lại có f(2) = 8 \Rightarrow 2f(2) = 8 + C
\Leftrightarrow 2.8 = C + 8 \Leftrightarrow C = 8

    Từ đó suy ra xf(x) = x^{3} + 8
\Leftrightarrow f(x) = \frac{x^{3} + 8}{x}

    Xét phương trình hoành độ giao điểm \frac{x^{3} + 8}{x} = 0 \Leftrightarrow x = -
2

    Ta có: f'(x) = \frac{2x^{3} -
8}{x^{2}} \Rightarrow f'( - 2) = - 6;f( - 2) = 0

    Phương trình tiếp tuyến tại giao điểm với trục hoành là

    y = f'( - 2)(x + 2) + f( -
2)

    \Leftrightarrow y = - 6(x + 2)
\Rightarrow y = - 6x - 12

  • Câu 11: Thông hiểu
    Tính giá trị tích phân

    Cho hàm số y = f(x) liên tục, luôn dương trên \lbrack 0;3brack và thỏa mãn I = \int_{0}^{3}{f(x)dx} =
4. Khi đó giá trị của tích phân K =
\int_{0}^{3}{\left( e^{1 + \ln f(x)} + 4 ight)dx} là:

    Hướng dẫn:

    Ta có:

    K = \int_{0}^{3}{\left( e^{1 + \ln f(x)}
+ 4 ight)dx} = \int_{0}^{3}{\left\lbrack e.e^{\ln f(x)} ightbrack
dx} + \int_{0}^{3}{4dx}

    = e\int_{0}^{3}{f(x)dx} +
\int_{0}^{3}{4dx} = 4e + 12

  • Câu 12: Thông hiểu
    Tính diện tích hình (H)

    Cho hình phẳng (H) giới hạn bởi đường parabol (P):y = x^{2} - x + 2 và tiếp tuyến của đồ thị hàm số y = x^{2} +
1 tại điểm có tọa độ (1;2). Diện tích của hình (H) là:

    Hướng dẫn:

    Xét hàm số y = x^{2} + 1 trên \mathbb{R}. Ta có: y' = 2x

    Khi đó phương trình tiếp tuyến tại điểm (1;2) của đồ thị hàm số y = x^{2} + 1

    y = y'(1)(x - 1) + 2 \Leftrightarrow
y = 2x

    Gọi ∆ là đường thẳng có phương trình y =
2x. Xét phương trình tương giao của (P) và ∆

    x^{2} - x + 2 = 2x \Leftrightarrow x^{2}
- 3x + 2 = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
\end{matrix} ight.

    Gọi S là diện tích hình phẳng (H) khi đó

    S = \int_{1}^{2}{\left| \left( x^{2} - x
+ 2 ight) - 2x ight|dx} = \int_{1}^{2}{\left| x^{2} - 3x + 2
ight|dx}

    x^{2} - 3x + 2 \leq 0;\forall x \in
\lbrack 1;2bracknên

    S = - \int_{1}^{2}{\left( x^{2} - 3x + 2
ight)dx}

    = - \left. \ \left( \frac{x^{3}}{3} -
\frac{3x^{2}}{2} + 2x ight) ight|_{1}^{2} = - \left( \frac{2}{3} -
\frac{5}{6} ight) = \frac{1}{6}

  • Câu 13: Thông hiểu
    Tính giá trị biểu thức S

    Cho biết \int_{1}^{2}{\ln\left( 9 - x^{2}
ight)dx} = aln5 + bln2 + c với a;b;c\mathbb{\in Z}. Tính S = |a| + |b| + |c|?

    Hướng dẫn:

    Xét trên đoạn \lbrack 1;2brack ta có:

    \ln\left( 9 - x^{2} ight) = \ln(3 - x)
+ \ln(3 + x)

    Xét I_{1} = \int_{1}^{2}{\ln(3 -
x)dx}. Đặt \left\{ \begin{matrix}u = \ln(3 - x) \\dv = dx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x - 3}dx \\v = x \\\end{matrix} ight.

    \Rightarrow I_{1} = \left. \ x\ln(3 - x)
ight|_{1}^{2} - \int_{1}^{2}{\frac{x}{x - 3}dx}

    \Rightarrow I_{1} = \left. \ x\ln(3 - x)ight|_{1}^{2} - \left. \ \left\lbrack x + 3\ln(3 - x) ightbrackight|_{1}^{2} = 2\ln2 - 1

    Xét I_{2} = \int_{1}^{2}{\ln(3 +
x)dx}. Đặt \left\{ \begin{matrix}u = \ln(3 + x) \\dv = dx \\\end{matrix} ight.\  \Rightarrow \left\{ \begin{matrix}du = \dfrac{1}{x + 3}dx \\v = x \\\end{matrix} ight.

    \Rightarrow I_{2} = \left. \ x\ln(3 + x)
ight|_{1}^{2} - \int_{1}^{2}{\frac{x}{x + 3}dx}

    \Rightarrow I_{2} = \left. \ x\ln(3 + x)ight|_{1}^{2} - \left. \ \left\lbrack x + 3\ln(3 + x) ightbrackight|_{1}^{2} = 5\ln5 - 8\ln2 - 1

    Vậy \int_{1}^{2}{\ln\left( 9 - x^{2}ight)dx} = I_{1} + I_{2} = 5\ln5 - 6\ln2 - 2 \Rightarrow S =13.

  • Câu 14: Vận dụng cao
    Xác định thể tích V

    Cho vật thể có mặt đáy là hình tròn có bán kính bằng 1 như hình vẽ:

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1)thì được thiết diện là một tam giác đều. Tính thể tích V của vật thể đó.?

    Hướng dẫn:

    Khi cắt vật thể bởi mặt phẳng vuông góc với trục Ox tại điểm có hoành độ x;( - 1 \leq x \leq 1) thì được thiết diện là một tam giác đều có cạnh bằng 2\sqrt{1 - x^{2}}

    Do đó, diện tích của thiết diện: S(x) =\frac{\left( 2\sqrt{1 - x^{2}} ight)^{2}\sqrt{3}}{4} = \sqrt{3}\left(1 - x^{2} ight)

    V = \int_{- 1}^{1}{S(x)dx} = \int_{-1}^{1}{\left\lbrack \sqrt{3}\left( 1 - x^{2} ight) ightbrackdx}

    = \sqrt{3}\left. \ \left( x -\frac{x^{3}}{3} ight) ight|_{- 1}^{1} =\frac{4\sqrt{3}}{3}

  • Câu 15: Thông hiểu
    Tính giá trị biểu thức

    Biết rằng F(x) liên tục trên \mathbb{R} là một nguyên hàm của hàm số f(x) = \left\{ \begin{matrix}
\sin x + \cos x\ \ \ khi\ x \geq 0 \\
2(x + 1)\ \ \ khi\ x < 0 \\
\end{matrix} ight.F(\pi) +
F( - 1) = 1. Giá trị biểu thức T =
F(2\pi) + F( - 5) bằng:

    Hướng dẫn:

    Ta có: F(x) = \int_{}^{}{f(x)dx} =
\left\{ \begin{matrix}
x\sin x + C_{1}\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + C_{2}\ \ khi\ x < 0 \\
\end{matrix} ight.

    F(\pi) + F( - 1) = 1 \Rightarrow \left(
\pi\sin\pi + C_{1} ight) + \left( 1 - 2 + C_{2} ight) = 1
\Rightarrow C_{1} + C_{2} = 2(*)

    Vì hàm số F(x) liên tục trên \mathbb{R} nên liên tục tại x = 0 tức là

    \lim_{x ightarrow 0^{+}}F(x) = \lim_{x
ightarrow 0^{-}}F(x) = F(0)

    \Leftrightarrow C_{1} =
C_{2}(**). Từ (*) và (**) suy ra C_{1} = C_{2} = 1

    Do đó F(x) = \left\{ \begin{matrix}
x\sin x + 1\ \ \ khi\ x \geq 0 \\
x^{2} + 2x + 1\ \ khi\ x < 0 \\
\end{matrix} ight.

    T = F(2\pi) + F( - 5) = 17

  • Câu 16: Thông hiểu
    Xác định giá trị tham số k

    Cho hình thang cong (H) giới hạn bởi các đường y = \frac{1}{x};y = 0;x = 1;x
= 5. Đường thẳng x = k;1 < k
< 5 chia (H) thành hai phần có diện tích S_{1}S_{2} (hình vẽ bên).

    Tính giá trị k để S_{1} = 2S_{2}?

    Hướng dẫn:

    Ta có: \frac{1}{x} > 0;x >
1 do đó ta được:

    S_{1} = \int_{1}^{k}{\frac{1}{x}dx} =
\left. \ \ln x ight|_{1}^{k} = \ln k

    S_{2} = \int_{k}^{5}{\frac{1}{x}dx} =
\left. \ \ln x ight|_{k}^{5} = ln5 - \ln k

    Theo bài ra ta có:

    S_{1} = 2S_{2}

    \Leftrightarrow \ln k = 2\left( ln5 - \ln
k ight) \Leftrightarrow k = \sqrt[3]{25}.

  • Câu 17: Nhận biết
    Xác định nguyên hàm của hàm số

    Tìm nguyên hàm F(x) của hàm số f(x) = 2x + 3\sqrt{x} thỏa mãn F(1) = 0?

    Hướng dẫn:

    Ta có:

    F(x) = \int_{}^{}{f(x)dx =
\int_{}^{}{\left( 2x + 3\sqrt{x} ight)dx}}

    \Rightarrow F(x) = \int_{}^{}{(2x)dx} +
6\int_{}^{}{\left( \sqrt{x} ight)^{2}d\left( \sqrt{x}
ight)}

    \Rightarrow F(x) = x^{2} + 2\sqrt{x^{3}}
+ C

    Theo bài ra ta có: F(1) = 0
\Leftrightarrow 3 + C = 0 \Leftrightarrow C = - 3

    Vậy x^{2} + 2\sqrt{x^{3}} -
3.

  • Câu 18: Nhận biết
    Chọn đáp án đúng

    Tìm họ các nguyên hàm của hàm số f(x) =\sin5x.\cos x?

    Hướng dẫn:

    Ta có:

    \int_{}^{}{(\sin5x.\cos x)dx} =\frac{1}{2}\int_{}^{}{(\sin6x + \sin4x)dx}

    = - \frac{\cos4x}{8} - \frac{\cos6x}{12} +C

  • Câu 19: Thông hiểu
    Tính giá trị biểu thức

    Cho a;b là các số hữu tỉ thỏa mãn \int_{}^{}\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} = a(x + 2)\sqrt{x + 2} + b(x + 1)\sqrt{x + 1} +
C. Tính giá trị biểu thức H = 3a +
b?

    Hướng dẫn:

    Ta có:

    I = \int_{}^{}{\frac{dx}{\sqrt{x + 2} +
\sqrt{x + 1}} =}\int_{}^{}{\frac{\sqrt{x + 2} - \sqrt{x + 1}}{x + 2 - x
+ 1}dx}

    = \int_{}^{}{\left( \sqrt{x + 2} -
\sqrt{x + 1} ight)dx}

    \Rightarrow I = \frac{2}{3}(x +
2)\sqrt{x + 2} - \frac{2}{3}(x + 1)\sqrt{x + 1} + C

    \Rightarrow a = \frac{2}{3};b = -
\frac{2}{3} \Rightarrow H = \frac{4}{3}

  • Câu 20: Nhận biết
    Tính tích phân

    Cho hàm số f(x) liên tục trên đoạn \left\lbrack 0;\frac{\pi}{2}
ightbrack\int_{0}^{\frac{\pi}{2}}{f(x)dx} = 5. Tính tích phân I =
\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2sinx ightbrack
dx}?

    Hướng dẫn:

    Ta có:

    I =\int_{0}^{\frac{\pi}{2}}{\left\lbrack f(x) + 2\sin x ightbrack dx} =\int_{0}^{\frac{\pi}{2}}{f(x)dx} +\int_{0}^{\frac{\pi}{2}}{2\sin xdx}

    = 5 - \left. \ 2\cos xight|_{0}^{\frac{\pi}{2}} = 7

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 3 lượt xem
Sắp xếp theo