Luyện tập Tính đơn điệu và cực trị của hàm số CTST

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tính tổng các phần tử của tập S

    Gọi S là tập hợp các giá trị thực của tham số m để hàm số y = \frac{1}{3}x^{3} - \frac{1}{2}mx^{2} + 2mx -
3m + 4 nghịch biến trên một đoạn có độ dài bằng 3. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp S bằng:

    Hướng dẫn:

    Ta có: y' = x^{2} - mx +
2m

    \Leftrightarrow y' = 0
\Leftrightarrow x^{2} - mx + 2m = 0(*)

    Gọi x_{1};x_{2} là nghiệm của phương trình (*) ta có bảng biến thiên:

    Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt x_{1};x_{2} thỏa mãn \left| x_{1} - x_{2} ight| = 3

    (*) có hai nghiệm phân biệt \Leftrightarrow \Delta = m^{2} - 8m > 0
\Leftrightarrow \left\lbrack \begin{matrix}
m < 0 \\
m > 8 \\
\end{matrix} ight.\ (**)

    \left| x_{1} - x_{2} ight| = 3
\Leftrightarrow \left( x_{1} - x_{2} ight)^{2} = 9 \Leftrightarrow
\left( x_{1} + x_{2} ight)^{2} - 4x_{1}.x_{2} = 9

    \Leftrightarrow m^{2} - 8m - 9 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
m = 9 \\
m = - 1 \\
\end{matrix} ight.\ \left( tm(**) ight)

    Suy ra S = \left\{ 9; - 1
ight\}

    Vậy tổng tất cả các phần tử của tập S bằng 8.

  • Câu 2: Vận dụng
    Xác định tham số m thỏa mãn yêu cầu

    Có bao nhiêu giá trị nguyên của tham số m để hàm số y
= mx^{4} + (m - 3)x^{2} + 2021 có hai cực tiểu và một cực đại?

    Hướng dẫn:

    Hàm số y = ax^{4} + bx^{2} + c;(a eq
0) có ba điểm cực trị khi và chỉ khi a.b < 0.

    Để hàm số y = f(x) có hai cực tiểu và một cực đại thì đồ thị hàm số y =
f(x) có dạng

    Ta có: \lim_{x ightarrow + \infty}f(x)
= + \infty. Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số a > 0

    Khi đó để thỏa mãn yêu cầu bài toán ta có:

    \left\{ \begin{matrix}
a > 0 \\
ab < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m > 0 \\
m(m - 3) < 0 \\
\end{matrix} ight.\  \Leftrightarrow 0 < m < 3

    Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.

  • Câu 3: Nhận biết
    Chọn mệnh đề sai

    Cho hàm số y =\frac{2x + 1}{x - 3}. Mệnh đề nào dưới đây là mệnh đề sai?

    Hướng dẫn:

    f'(x) = \frac{- 7}{(x - 3)^{2}}< 0;\forall x \in D nên đồ thị hàm số luôn nghịch biến trên các khoảng ( - \infty;3),(3; +\infty).

    Vậy mệnh đề sai là: "Hàm số đồng biến trên \mathbb{R}\backslash\left\{ 3 ight\}".

  • Câu 4: Thông hiểu
    Tính diện tích tam giác

    Gọi A;B;C là ba điểm cực trị của đồ thị hàm số y = \frac{1}{2}x^{4} - x^{2} -
1. Tính diện tích tam giác ABC?

    Hướng dẫn:

    Ta có: y' = 2x^{3} - 2x;y' = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Ba điểm cực trị của hàm số là A(0; -
1),B\left( 1; - \frac{3}{2} ight),C\left( - 1; - \frac{3}{2}
ight)

    Tam giác ABC có điểm A \in Oy, hai điểm B;C đối xứng nhau qua trục tung nên tam giác ABC cân tại A. Trung điểm H\left( 0; - \frac{3}{2} ight) của BC thuộc trục Oy và là chân đường cao hạ từ A của tam giác, suy ra:

    S_{ABC} = \frac{1}{2}AH.BC =
\frac{1}{2}\left| y_{A} - y_{B} ight|.\left| x_{B} - x_{C}
ight|

    = \frac{1}{2}.\left| - 1 + \frac{3}{2}
ight|.2 = \frac{1}{2}

    Vậy diện tích tam giác ABC bằng \frac{1}{2}.

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Điểm cực tiểu của đồ thị hàm số y = x^{3}
- 3x + 4 thuộc đường thẳng nào sau đây?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 3. Do đó y' = 0 \Leftrightarrow 3x^{2} - 3 = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    x = 1 là điểm cực tiểu của hàm số nên điểm A(1;2) là điểm cực tiểu của đồ thị hàm số.

    Nhận thấy A(1;2) thuộc đường thẳng y = x + 1.

    Vậy điểm cực tiểu của đồ thị hàm số y =
x^{3} - 3x + 4 thuộc đường thẳng y
= x + 1.

  • Câu 6: Thông hiểu
    Tìm số giá trị nguyên của tham số m

    Cho hàm số y = \frac{mx + 9}{4x +
m} với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng (0;4)?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ \frac{- m}{4} ight\}

    Ta có: y' = \frac{m^{2} - 36}{(4x +
m)^{2}}

    Hàm số nghịch biến trên (0;4) khi và chỉ khi

    \left\{ \begin{matrix}
m^{2} - 36 < 0 \\
- \frac{m}{4} otin (0;4) \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
- 6 < m < 6 \\
\left\lbrack \begin{matrix}
m \geq 0 \\
m \leq - 16 \\
\end{matrix} ight.\  \\
\end{matrix} ight.\  \Leftrightarrow 0 \leq m < 6

    m\mathbb{\in Z \Rightarrow}m \in
\left\{ 0;1;2;...;5 ight\}

    Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 7: Nhận biết
    Chọn đáp án đúng

    Hàm số nào sau đây không có điểm cực trị?

    Hướng dẫn:

    Các hàm số y = x^{2} + x - 1; y = x^{2} + 3x - 1; y = x^{4} + 2x^{2} - 1 đều có một điểm cực trị.

    Xét hàm số y = x^{3} + 6x + 3 ta có: y' = 3x^{2} + 6 > 0;\forall
x\mathbb{\in R} nên hàm số không có cực trị.

  • Câu 8: Nhận biết
    Tìm khoảng nghịch biến của hàm số

    Cho hàm số y =
f(x) có đạo hàm f'(x) trên khoảng ( - \infty; + \infty). Đồ thị hàm số y = f'(x) như hình vẽ:

    Hàm số y = f(x) nghịch biến trên khoảng nào trong các khoảng sau?

    Hướng dẫn:

    Quan sát hình vẽ ta thấy:

    y = f'(x) \Rightarrow f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.f'(x)
\leq 0 \Leftrightarrow 0 \leq x \leq 3

    Vậy hàm số y = f(x) nghịch biến trên khoảng (0;3).

  • Câu 9: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có đạo hàm y' = - x^{2} - 1;\forall x\mathbb{\in
R}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = - x^{2} - 1;\forall
x\mathbb{\in R \Rightarrow}f'(x) < 0;\forall x\mathbb{\in
R} do đó hàm số y = f(x) nghịch biến trên \mathbb{R}

    Do 0 < 2020 \Rightarrow f(0) >
f(2020)

  • Câu 10: Thông hiểu
    Tìm số điểm cực đại của hàm số

    Cho hàm số y = f(x) có đạo hàm f'(x) = (x + 2)^{2}(x - 1)^{3}\left(
x^{2} - 4 ight)\left( x^{2} - 1 ight) với mọi x\mathbb{\in R}. Xác định số điểm cực đại của hàm số đã cho?

    Hướng dẫn:

    Ta có: f'(x) = (x + 2)^{2}(x -
1)^{3}\left( x^{2} - 4 ight)\left( x^{2} - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = \pm 2 \\
x = \pm 1 \\
\end{matrix} ight. . Ta có bảng xét dấu:

    Quan sát bảng xét dấu ta có: f'(x) đổi dấu từ dương sang âm tại x = - 1.

    Vậy hàm số có một điểm cực đại tại x = -
1.

  • Câu 11: Thông hiểu
    Tìm khoảng đồng biến của hàm số

    Cho hàm số f(x) có đạo hàm f'(x) = (x - 1)^{3}(2 - x)(x -
3)^{3}. Hàm số f(x) đồng biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Ta có:

    f'(x) = (x - 1)^{3}(2 - x)(x -
3)^{3}

    \Rightarrow f'(x) = 0
\Leftrightarrow (x - 1)^{3}(2 - x)(x - 3)^{3} = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \\
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Ta có bảng xét dấu:

    Từ bảng xét dấu của f'(x) suy ra hàm số đồng biến trên khoảng (1;2).

  • Câu 12: Vận dụng cao
    Tìm m thỏa mãn yêu cầu

    Tìm giá trị tham số m để đồ thị hàm số y = x^{4} - 2(m + 1)x^{2} + 2m +
3 có ba điểm cực trị A;B;C sao cho trục Ox chia tam giác ABC thành một tam giác và một hình thang biết rằng tỉ lệ diện tích tam giác nhỏ được chia ra và diện tích hình thang bằng \frac{4}{5}?

    Hướng dẫn:

    Ta có: y' = 4x^{2} - 4(m +
1)x

    y' = 0 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 0 \\
x^{2} = m + 1 \\
\end{matrix} ight.

    Hàm số có ba điểm cực trị khi và chỉ khi y' = 0 có ba nghiệm phân biệt \Leftrightarrow m > - 1

    Khi m > - 1 đồ thị hàm số có ba điểm cực trị là A(0;2m + 3), B\left( - \sqrt{m + 1}; - m^{2} + 2
ight), C\left( \sqrt{m + 1}; -
m^{2} + 2 ight)

    Ta có: A \in Oy, B và C đối xứng với nhau qua Oy suy ra tam giác ABC cân tại A

    Hình vẽ minh họa

    Trục hoành chia tam giác ABC thành một tam giác và một hình thang \Rightarrow \left\{ \begin{matrix}
2m + 3 > 0 \\
- m^{2} + 2 < 0 \\
\end{matrix} ight.

    \Rightarrow \left\{ \begin{gathered}
  m >  - \dfrac{3}{2} \hfill \\
  \left[ \begin{gathered}
  m > \sqrt 2  \hfill \\
  m <  - \sqrt 2  \hfill \\ 
\end{gathered}  ight. \hfill \\ 
\end{gathered}  ight. \Rightarrow \left\{ \begin{gathered}
  m > \sqrt 2  \hfill \\
   - \dfrac{3}{2} < m <  - \sqrt 2  \hfill \\ 
\end{gathered}  ight.

    Kết hợp với điều kiện m > - 1 ta được m > \sqrt{2}

    Khi đó gọi D; E lần lượt là giao điểm của Ox và các cạnh AB; AC. Gọi K là giao điểm của BC và Oy

    Ta có:

    \frac{S_{ADE}}{S_{ABC}} = \left(
\frac{OA}{AK} ight)^{2} = \left( \frac{y_{A}}{y_{A} - y_{B}}
ight)^{2} = \left( \frac{2m + 3}{m^{2} + 2m + 1}
ight)^{2}

    \frac{S_{ADE}}{S_{ABC}} = \frac{4}{9}
\Leftrightarrow \left( \frac{2m + 3}{m^{2} + 2m + 1} ight)^{2} =
\frac{4}{9}

    m > \sqrt{2} \Leftrightarrow
\frac{2m + 3}{m^{2} + 2m + 1} = \frac{2}{3}

    \Leftrightarrow 2m^{2} - 2m - 7 = 0\Leftrightarrow \left\lbrack \begin{matrix}m = \dfrac{1 + \sqrt{15}}{2} \\m = \dfrac{1 - \sqrt{15}}{2} \\\end{matrix} ight.\  \Rightarrow m = \dfrac{1 +\sqrt{15}}{2}.

  • Câu 13: Thông hiểu
    Tìm m để hàm số có 1 cực trị

    Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để hàm số y = x^{4} - \left( m^{2} - 9 ight)x^{2} +
2021 có một cực trị. Xác định số phần tử của tập S?

    Hướng dẫn:

    Để hàm số có một cực trị thì - \left(
m^{2} - 9 ight) \geq 0 \Leftrightarrow m^{2} - 9 \leq 0
\Leftrightarrow - 3 \leq m \leq 3

    Vậy có 7 giá trị nguyên thỏa mãn yêu cầu bài toán.

  • Câu 14: Thông hiểu
    Tìm các giá trị nguyên của x thỏa mãn yêu cầu

    Cho hàm số y = f(x)f'(x) > 0;\forall x\mathbb{\in R}. Có bao nhiêu giá trị nguyên của x để f(22x) > f\left( x^{2}
ight)?

    Hướng dẫn:

    Ta có: f'(x) > 0;\forall
x\mathbb{\in R} suy ra hàm số f(x) đồng biến trên \mathbb{R}

    Suy ra f(22x) > f\left( x^{2} ight)
\Leftrightarrow 22x > x^{2} \Leftrightarrow 0 < x <
22

    Vậy có tất cả 21 giá trị nguyên của x.

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Xác định hàm số đồng biến trên ( - \infty; + \infty)?

    Hướng dẫn:

    Xét hàm số y = x^{3} + 3x ta có:

    y' = 3x^{2} + 3 > 0;\forall x \in
( - \infty; + \infty)

    Suy ra hàm số y = x^{3} + 3x đồng biến trên ( - \infty; +
\infty).

  • Câu 16: Thông hiểu
    Tìm đáp án thích hợp

    Cho đồ thị hàm số y = f(x) như hình vẽ:

    Hỏi hàm số y = - 3f(x - 2) nghịch biến trên khoảng nào dưới đây?

    Hướng dẫn:

    Theo đồ thị hàm số ta có hàm số y =
f(x) đồng biến trên khoảng ( -
\infty;0)(2; + \infty) khi đó:

    \Leftrightarrow f'(x) \geq 0;\forall
x \in ( - \infty;0) \cup (2; + \infty)

    Mặt khác y = - 3f(x - 2) \Leftrightarrow
y' = - 3f'(x - 2)

    Do hàm số y = - 3f(x - 2) nghịch biến nên

    \Leftrightarrow y' \leq 0
\Leftrightarrow - 3f'(x - 2) \leq 0

    \Leftrightarrow f'(x - 2) \geq 0
\Leftrightarrow \left\lbrack \begin{matrix}
x - 2 \leq 0 \\
x - 2 \geq 2 \\
\end{matrix} ight.

    \Leftrightarrow x \in ( -
\infty;2brack \cup \lbrack 4; + \infty)

    Vậy hàm số y = - 3f(x - 2) nghịch biến trên khoảng ( -
\infty;1).

  • Câu 17: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = f(x) = x^{3} - 3mx^{2} +
3\left( m^{2} - 1 ight)x với m là tham số. Tìm tất cả các giá trị của m để hàm số f(x) đạt cực đại tại x_{0} = 1?

    Hướng dẫn:

    Hàm số đạt cực đại tại x_{0} =
1

    \Leftrightarrow \left\{ \begin{matrix}
f'(1) = 0 \\
f''(1) < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3 - 6m + 3m^{2} - 3 = 0 \\
6 - 6m < 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
\left\lbrack \begin{matrix}
m = 0 \\
m = 2 \\
\end{matrix} ight.\  \\
m > 1 \\
\end{matrix} ight.\  \Leftrightarrow m = 2

    Vậy đáp án cần tìm là m = 2.

  • Câu 18: Thông hiểu
    Xác định điểm cực đại của hàm số

    Cho hàm số y = f(x) liên tục và có đạo hàm trên \mathbb{R}, biết y = f'(x) có đồ thị như hình vẽ:

    Điểm cực đại của hàm số y = f(x) đã cho là:

    Hướng dẫn:

    Dựa vào đồ thị hàm số y =
f'(x) ta có: f'(x) = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = - 3 \\
x = - 2 \\
x = 1 \\
x = 3 \\
\end{matrix} ight.

    Khi đó ta có bảng xét dấu f'(x) như sau:

    Dựa vào bảng xét dấu suy ra điểm cực đại của hàm số y = f(x)x
= - 2.

  • Câu 19: Nhận biết
    Định điều kiện tham số m

    Tất cả các giá trị của tham số m để hàm số y = x^{4} + (2020 - m)x^{2} +
1 có ba điểm cực trị phân biệt là:

    Hướng dẫn:

    Hàm số y = ax^{4} + bx^{2} + c có ba điểm cực trị khi và chỉ khi a.b <
0.

    Để hàm số đa cho có ba điểm cực trị khi và chỉ khi 2020 - m < 0 \Leftrightarrow m >
2020.

  • Câu 20: Nhận biết
    Tìm số cực trị của hàm số

    Hàm số y = f(x) có đạo hàm f'(x) = (x - 2)\left( x^{2} - 3 ight)\left(
x^{4} - 9 ight), với \forall
x\mathbb{\in R}. Hỏi hàm số y =
f(x) có bao nhiêu điểm cực trị?

    Hướng dẫn:

    Ta có: f'(x) = 0 \Leftrightarrow (x -
2)\left( x^{2} - 3 ight)\left( x^{4} - 9 ight) = 0

    \Leftrightarrow (x - 2)\left( x +
\sqrt{3} ight)^{2}\left( x - \sqrt{3} ight)^{2}\left( x^{2} + 3
ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 \\
x = - \sqrt{3} \\
x = \sqrt{3} \\
\end{matrix} ight.

    Bảng biến thiên

    Từ bảng biến thiên của hàm số y =
f(x) ta thấy hàm số y =
f(x) có đúng một cực trị.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (10%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 21 lượt xem
Sắp xếp theo