Tất cả các giá trị của tham số để hàm số
có ba điểm cực trị phân biệt là:
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi .
Tất cả các giá trị của tham số để hàm số
có ba điểm cực trị phân biệt là:
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số đa cho có ba điểm cực trị khi và chỉ khi .
Cho hàm số có
. Có bao nhiêu giá trị nguyên của
để
?
Ta có: suy ra hàm số
đồng biến trên
Suy ra
Vậy có tất cả 21 giá trị nguyên của .
Cho hàm số . Mệnh đề nào dưới đây là mệnh đề sai?
Vì nên đồ thị hàm số luôn nghịch biến trên các khoảng
.
Vậy mệnh đề sai là: "Hàm số đồng biến trên ".
Điểm cực tiểu của đồ thị hàm số thuộc đường thẳng nào sau đây?
Ta có: . Do đó
Vì là điểm cực tiểu của hàm số nên điểm
là điểm cực tiểu của đồ thị hàm số.
Nhận thấy thuộc đường thẳng
.
Vậy điểm cực tiểu của đồ thị hàm số thuộc đường thẳng
.
Cho hàm số có đạo hàm
. Hàm số
đồng biến trên khoảng nào dưới đây?
Ta có:
Ta có bảng xét dấu:
Từ bảng xét dấu của suy ra hàm số đồng biến trên khoảng
.
Tìm giá trị tham số để đồ thị hàm số
có ba điểm cực trị
sao cho trục
chia tam giác
thành một tam giác và một hình thang biết rằng tỉ lệ diện tích tam giác nhỏ được chia ra và diện tích hình thang bằng
?
Ta có:
Hàm số có ba điểm cực trị khi và chỉ khi có ba nghiệm phân biệt
Khi đồ thị hàm số có ba điểm cực trị là
,
,
Ta có: , B và C đối xứng với nhau qua
suy ra tam giác
cân tại
Hình vẽ minh họa
Trục hoành chia tam giác thành một tam giác và một hình thang
Kết hợp với điều kiện ta được
Khi đó gọi D; E lần lượt là giao điểm của Ox và các cạnh AB; AC. Gọi K là giao điểm của BC và Oy
Ta có:
Mà
Vì
.
Hàm số có đạo hàm
, với
. Hỏi hàm số
có bao nhiêu điểm cực trị?
Ta có:
Bảng biến thiên
Từ bảng biến thiên của hàm số ta thấy hàm số
có đúng một cực trị.
Hàm số nào sau đây không có điểm cực trị?
Các hàm số ;
;
đều có một điểm cực trị.
Xét hàm số ta có:
nên hàm số không có cực trị.
Cho hàm số có đạo hàm
trên khoảng
. Đồ thị hàm số
như hình vẽ:
Hàm số nghịch biến trên khoảng nào trong các khoảng sau?
Quan sát hình vẽ ta thấy:
và
Vậy hàm số nghịch biến trên khoảng
.
Gọi là tập hợp các giá trị thực của tham số
để hàm số
nghịch biến trên một đoạn có độ dài bằng
. Khi đó tổng tất cả các giá trị của các phần tử trong tập hợp
bằng:
Ta có:
Gọi là nghiệm của phương trình (*) ta có bảng biến thiên:
Hàm số y nghịch biến trên một khoảng có độ dài bằng 3 khi và chỉ khi phương trình (*) có hai nghiệm phân biệt thỏa mãn
(*) có hai nghiệm phân biệt
Suy ra
Vậy tổng tất cả các phần tử của tập S bằng 8.
Xác định hàm số đồng biến trên ?
Xét hàm số ta có:
Suy ra hàm số đồng biến trên
.
Cho hàm số với
là tham số. Tìm tất cả các giá trị của
để hàm số
đạt cực đại tại
?
Hàm số đạt cực đại tại
Vậy đáp án cần tìm là .
Có bao nhiêu giá trị nguyên của tham số để hàm số
có hai cực tiểu và một cực đại?
Hàm số có ba điểm cực trị khi và chỉ khi
.
Để hàm số có hai cực tiểu và một cực đại thì đồ thị hàm số
có dạng
Ta có: . Đồ thị nhánh ngoài của hàm số hướng lên nên hàm số có hệ số
Khi đó để thỏa mãn yêu cầu bài toán ta có:
Vì m là số nguyên nên có 2 giá trị nguyên của m thỏa mãn yêu cầu bài toán.
Cho đồ thị hàm số như hình vẽ:
Hỏi hàm số nghịch biến trên khoảng nào dưới đây?
Theo đồ thị hàm số ta có hàm số đồng biến trên khoảng
và
khi đó:
Mặt khác
Do hàm số nghịch biến nên
Vậy hàm số nghịch biến trên khoảng
.
Gọi là ba điểm cực trị của đồ thị hàm số
. Tính diện tích tam giác
?
Ta có:
Ba điểm cực trị của hàm số là
Tam giác có điểm
, hai điểm
đối xứng nhau qua trục tung nên tam giác
cân tại
. Trung điểm
của
thuộc trục
và là chân đường cao hạ từ
của tam giác, suy ra:
Vậy diện tích tam giác ABC bằng .
Cho hàm số với m là tham số, khi đó có bao nhiêu giá trị nguyên của m để hàm số nghịch biến trên khoảng
?
Tập xác định
Ta có:
Hàm số nghịch biến trên khi và chỉ khi
Mà
Vậy có tất cả 6 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.
Cho hàm số liên tục và có đạo hàm trên
, biết
có đồ thị như hình vẽ:
Điểm cực đại của hàm số đã cho là:
Dựa vào đồ thị hàm số ta có:
Khi đó ta có bảng xét dấu như sau:
Dựa vào bảng xét dấu suy ra điểm cực đại của hàm số là
.
Cho hàm số liên tục trên
và có đạo hàm
. Khẳng định nào sau đây đúng?
Ta có: do đó hàm số
nghịch biến trên
Do
Cho hàm số có đạo hàm
với mọi
. Xác định số điểm cực đại của hàm số đã cho?
Ta có:
. Ta có bảng xét dấu:
Quan sát bảng xét dấu ta có: đổi dấu từ dương sang âm tại
.
Vậy hàm số có một điểm cực đại tại .
Gọi là tập hợp tất cả các giá trị nguyên của tham số
để hàm số
có một cực trị. Xác định số phần tử của tập
?
Để hàm số có một cực trị thì
Vậy có 7 giá trị nguyên thỏa mãn yêu cầu bài toán.