Trong không gian với hệ tọa độ , cho hai điểm
và
. Có tất cả bao nhiêu giá trị thực của tham số m để phương trình
là phương trình của một mặt cầu (S) sao cho qua hai điểm
có duy nhất một mặt phẳng cắt mặt cầu (S) đó theo giao tuyến là một đường tròn có bán kính bằng 1.
Ta có:
Suy ra (*) là phương trình mặt cầu
Khi đó, mặt cầu (S) có tâm và bán kính
Gọi (P) là mặt phẳng đi qua A, B.
Theo giả thiết (P) cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính r = 1.
Mặt khác, khoảng cách từ tâm I đến mặt phẳng (P) là
Ta có: suy ra
là một vectơ chỉ phương của đường thẳng
Suy ra đường thẳng là:
Để có duy nhất mặt phẳng (P) thỏa mãn bài thì
TH1. Mặt phẳng (P) đi qua điểm I và
Ta có
+ Với (loại).
+ Với m = −2 ⇒ ⇒ m = −2 (thỏa mãn).
TH2. Mặt phẳng (P) cách I một khoảng lớn nhất ⇔ d lớn nhất ⇔ d = d(I, AB). (*)
Khi đó
Vậy có 2 giá trị tham số m thỏa mãn yêu cầu.