Luyện tập Khảo sát và vẽ đồ thị một số hàm số cơ bản CTST

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tìm khoảng chứa tham số m theo yêu cầu

    Biết đường thẳng y = (3m - 1)x + 6m +
3 cắt đồ thị hàm số y = x^{3} -
3x^{2} + 1 tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại. Khi có m thuộc khoảng nào sau đây?

    Hướng dẫn:

    Phương trình hoành độ giao điểm là

    (2m - 1)x + 6m + 3 = x^{3} - 3x^{2} +
1

    \Leftrightarrow x^{3} - 3x^{2} - (3m -
1)x - 6m - 2 = 0(*)

    Xét hàm số g(x) = x^{3} - 3x^{2} - (3m -
1)x - 6m - 2\left( C_{m} ight)

    g'(x) = 3x^{2} - 6x - 3m + 1
\Rightarrow g''(x) = 6x - 6

    \Rightarrow g''(x) = 0
\Leftrightarrow x = 1

    Đồ thị \left( C_{m} ight) có điểm uốn là I(1; - 9m - 3)

    Để đường thẳng y = (3m - 1)x + 6m +
3 cắt đồ thị hàm số y = x^{3} -
3x^{2} + 1 tại ba điểm phân biệt sao cho một giao điểm cách đều hai giao điểm còn lại

    \Leftrightarrow \left\{ \begin{matrix}\Delta' = ( - 3)^{2} - 3( - 3m + 1) > 0 \\I \in Ox \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{2}{3} \\m = \dfrac{1}{3} \\\end{matrix} ight.\  \Leftrightarrow m \in ( - 1;0)

  • Câu 2: Thông hiểu
    Tính giá trị của hàm số tại một điểm

    Biết rằng đồ thị hàm số y = f(x) = ax^{4}
+ bx^{2} + c có hai điểm cực trị là A(0;2)B(2; - 14). Khi đó giá trị của hàm số y = f(x) tại x = 3 bằng:

    Hướng dẫn:

    Ta có: y = f(x) = ax^{4} + bx^{2} + c
\Rightarrow y' = 4ax^{3} + 2bx

    Đồ thị hàm số y = f(x) = ax^{4} + bx^{2}
+ c có hai điểm cực trị là A(0;2)B(2; - 14) nên ta có

    \left\{ \begin{matrix}
y(0) = 2 \\
y(2) = - 14 \\
y'(2) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
16a + 4b + c = - 14 \\
32a + 4b = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
c = 2 \\
b = - 8 \\
a = 1 \\
\end{matrix} ight.

    Suy ra y = f(x) = x^{4} - 8x^{2} + 2
\Rightarrow f(3) = 11.

  • Câu 3: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm số nghiệm của phương trình 2f\left(\frac{\sin x + \cos x}{\sqrt{2}} ight) + 3 = 0 trên đoạn \left\lbrack - \frac{3\pi}{4};\frac{7\pi}{4}ightbrack?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tìm số nghiệm của phương trình 2f\left(\frac{\sin x + \cos x}{\sqrt{2}} ight) + 3 = 0 trên đoạn \left\lbrack - \frac{3\pi}{4};\frac{7\pi}{4}ightbrack?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 4: Thông hiểu
    Xác định số nghiệm của phương trình

    Hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Phương trình \left| f\left( 2x^{2} + 3
ight) - 2 ight| = 5 có bao nhiêu nghiệm?

    Hướng dẫn:

    Gọi g(x) = f\left( 2x^{2} + 3 ight) -
2 ta có: g'(x) =
4x.f'\left( 2x^{2} + 3 ight)

    Suy ra g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
2x^{2} + 3 = - 1 \\
2x^{2} + 3 = 3 \\
\end{matrix} ight.\  \Leftrightarrow x = 0

    Ta có bảng biến thiên

    \left| g(x) ight| = 5
\Leftrightarrow \left\lbrack \begin{matrix}
g(x) = 5 \\
g(x) = - 5 \\
\end{matrix} ight. từ bảng biến thiên ta thấy phương trình có ba nghiệm.

  • Câu 5: Nhận biết
    Xác định hàm số

    Tìm hàm số tương ứng với đồ thị hàm số trong hình vẽ dưới đây?

    Hướng dẫn:

    Dựa vào đồ thị hàm số suy ra đồ thị của hàm số bậc 4 trùng phương và nhánh cuối của đồ thị hàm số đi lên nên hệ số a > 0.

    Đồ thị hàm số cắt trục Oy tại gốc tọa độ nên c = 0

    Vậy hàm số tương ứng đồ thị đã cho là y =x^{4} - 2x^{2}.

  • Câu 6: Thông hiểu
    Định điều kiện tham số m

    Cho hàm số y = x^{4} - (3m + 2)x^{2} +
3m có đồ thị \left( C_{m}
ight). Xác định tất cả các giá trị thực của tham số m để \left(
C_{m} ight) cắt đường thẳng y = -
1 tại bốn điểm phân biệt?

    Hướng dẫn:

    Phương trình hoành độ giao điểm là nghiệm của phương trình:

    x^{4} - (3m + 2)x^{2} + 3m = -
1

    \Leftrightarrow x^{4} - (3m + 2)x^{2} +
3m + 1 = 0

    \Leftrightarrow \left( x^{2} - 1
ight)^{2} - 3m\left( x^{2} - 1 ight) = 0

    \Leftrightarrow \left( x^{2} - 1
ight)\left( x^{2} - 3m - 1 ight) = 0

    \Leftrightarrow \left\lbrack
\begin{matrix}
x^{2} - 1 = 0 \\
x^{2} - 3m - 1 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = \pm 1 \\
x^{2} = 3m + 1 \\
\end{matrix} ight.

    Đồ thị \left( C_{m} ight) cắt y = - 1 tại bốn điểm phân biệt khi và chỉ khi x^{2} = 3m + 1 có hai nghiệm phân biệt khác \pm 1

    Khi đó ta có: \left\{ \begin{matrix}3m + 1 > 0 \\3m + 1 eq 1 \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m > - \dfrac{1}{3} \\m eq 0 \\\end{matrix} ight..

  • Câu 7: Thông hiểu
    Xác định hàm phân thức

    Tìm hàm số tương ứng với đồ thị được cho trong hình vẽ sau?

    Hướng dẫn:

    Dựa vào đồ thị đã cho trong hình vẽ ta thấy đường tiệm cận ngang của đồ thị là y = - 1 và đường tiệm cận đứng của đồ thị là x = - 1.

    Đồ thị hàm số đi qua điểm (1;1) nên hàm số cần tìm là y = \frac{- x + 1}{x +
1}.

  • Câu 8: Nhận biết
    Chọn đáp án chính xác

    Đồ thị sau đây là của hàm số nào?

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy tiệm cận ngang của đồ thị hàm số là y = 2 và tiệm cận đứng của đồ thị hàm số x = - 1.

    Đồ thị hàm số cắt trục tung tại điểm A(0;1)

    Vậy hàm số cần tìm là y = \frac{2x + 1}{x
+ 1}.

  • Câu 9: Nhận biết
    Xác định giao điểm

    Đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm:

    Hướng dẫn:

    Ta có: x = 0 \Rightarrow y = 0^{4} -
0^{2} - 2 = - 2

    Vậy đồ thị hàm số y = x^{4} - x^{2} -
2 cắt trục tung tại điểm (0; -
2).

  • Câu 10: Nhận biết
    Tìm tọa độ tâm đối xứng

    Tọa độ tâm đối xứng của đồ thị hàm số y =
x^{3} - 3x + 2 là:

    Hướng dẫn:

    Ta có: y = x^{3} - 3x + 2 \Rightarrow
\left\{ \begin{matrix}
y' = 3x^{2} - 3 \\
y'' = 6x \\
\end{matrix} ight.

    y'' = 0 \Leftrightarrow x = 0
\Rightarrow y = 2

    Tọa độ tâm đối xứng của đồ thị hàm số là (0;2)

  • Câu 11: Thông hiểu
    Tìm m để hàm số có ba nghiệm phân biệt

    Cho đồ thị hàm số y = f(x):

    Có bao nhiêu giá trị nguyên của tham số m để phương trình f(x) + 2m - 1 = 0 có ba nghiệm phân biệt?

    Hướng dẫn:

    Ta có: f(x) + 2m - 1 = 0 \Leftrightarrow
f(x) = 1 - 2m

    Để phương trình có ba nghiệm ta phải có -
2 < 1 - 2m < 2 \Leftrightarrow - \frac{1}{2} < m <
\frac{3}{2}

    Vậy có 2 giá trị nguyên của tham số m thỏa mãn yêu cầu đề bài.

  • Câu 12: Thông hiểu
    Định m để phương trình có ba nghiệm

    Cho hàm số y = f(x) liên tục trên tập số thực và có bảng biến thiên như sau:

    Hỏi có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) - m + 2 = 0 có đúng ba nghiệm phân biệt?

    Hướng dẫn:

    Ta có:

    2f(x) - m + 2 = 0 \Leftrightarrow 2f(x)
= m - 2 \Leftrightarrow f(x) = \frac{m - 2}{2}

    Để phương trình có ba nghiệm phân biệt

    \Leftrightarrow \left\lbrack\begin{matrix}f(x) = - 1 \\f(x) = \dfrac{3}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}\dfrac{m - 2}{2} = - 1 \\\dfrac{m - 2}{2} = \dfrac{3}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}m = 0 \\m = 5 \\\end{matrix} ight.

    Vậy có đúng một giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 13: Nhận biết
    Xác định số nghiệm của phương trình

    Cho hàm số y = f(x) có đồ thị là đường cong như hình vẽ:

    Tìm số nghiệm của phương trình 2f(x) - 3
= 0?

    Hướng dẫn:

    Ta có: 2f(x) - 3 = 0 \Leftrightarrow f(x)
= \frac{3}{2}

    Số nghiệm của phương trình bằng số giao điểm của hàm số y = f(x) và đường thẳng y = \frac{3}{2}

    Quan sát đồ thị hàm số ta thấy hai đồ thị hàm số cắt nhau tại 3 điểm nên phương trình có ba nghiệm.

  • Câu 14: Vận dụng
    Ghi đáp án vào ô trống

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Tịnh tiến liên tiếp đồ thị hàm số y =\frac{- 5}{x + 2} theo trục Oy lên hai đơn vị và theo trục Ox sang trái 3 đơn vị ta được đồ thị hàm số y = g(x). Hỏi có bao nhiêu điểm trên đồ thị hàm số y = g(x) có các tọa độ đều là số nguyên?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 15: Thông hiểu
    Tìm tất cả đường thẳng thỏa mãn yêu cầu

    Cho hàm số y = \frac{3x - 2}{x} có đồ thị (C). Có tất cả bao nhiêu đường thẳng cắt (C) tại hai điểm phân biệt mà hoành độ và tung độ của giao điểm này đều là các số nguyên?

    Hướng dẫn:

    Ta có:y = 3 - \frac{2}{x}. Vì M \in (C) có tọa độ nguyên khi x \in U(2) \Rightarrow x \in \left\{ - 2; -
1;1;2 ight\}

    Các điểm thuộc (C) có tọa độ nguyên thuộc tập B = \left\{ ( -
1;5),(1;1),(2;2),( - 2;4) ight\}

    Mỗi cặp hai điểm thuộc tập B xác định một đường thẳng cắt (C) tại hai điểm có tọa độ nguyên do đó số đường thẳng cần tìm là C_{4}^{2} =
6 (đường thẳng)

  • Câu 16: Nhận biết
    Xác định hàm số tương ứng với hình vẽ

    Đồ thị hàm số nào có dạng đường trong như trong hình vẽ dưới đây?

    Hướng dẫn:

    Dựa vào hình dáng đồ thị suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - 2x^{4} + 4x^{2} + 1.

  • Câu 17: Vận dụng
    Xác định số cặp điểm thỏa mãn yêu cầu

    Cho hàm số y = x^{3} + x^{2} - 4 có đồ thị (C). Hỏi có bao nhiêu cặp điểm A;B \in (C) sao cho ba điểm O;A;B thẳng hàng và OA - 2OB = 0 với O là gốc tọa độ?

    Hướng dẫn:

    Gọi d là đường thẳng đi qua ba điểm O, A, B khi đó d có phương trình y =
k.x

    Khi đó hoành độ của O, A, B là nghiệm của phương trình x^{3} + x^{2} - 4 = kx

    Giả sử A\left( x_{1};kx_{1}
ight),B\left( x_{2};kx_{2} ight) khi đó ta có: \left\{ \begin{matrix}
{x_{1}}^{3} + {x_{1}}^{2} - 4 = kx_{1} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    Do OA - 2OB = 0 nên \overrightarrow{OA} = \pm 2\overrightarrow{OB}
\Rightarrow x_{1} = \pm 2kx_{2}

    TH1: x_{1} = 2kx_{2} \Rightarrow \left\{
\begin{matrix}
8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow 6{x_{2}}^{3} + 2{x_{2}}^{2}
+ 4 = 0 \Rightarrow x_{2} = - 1

    Khi đó A( - 2; - 8),B( - 1; -
4).

    TH2: x_{1} = - 2kx_{2} \Rightarrow
\left\{ \begin{matrix}
- 8{x_{2}}^{3} + 4{x_{2}}^{2} - 4 = - 2kx_{2} \\
{x_{2}}^{3} + {x_{2}}^{2} - 4 = kx_{2} \\
\end{matrix} ight.

    \Rightarrow - 6{x_{2}}^{3} +
6{x_{2}}^{2} - 12 = 0 \Rightarrow x_{2} = - 1

    Khi đó A(2;8),B( - 1; - 4).

    Vậy có 2 cặp A; B thỏa mãn.

  • Câu 18: Vận dụng cao
    Chọn kết luận đúng

    Đồ thị của hàm số y = x^{4} - 2(m +
1)x^{2} + 2m + 1 (với m là tham số) cắt trục hoành tại bốn điểm phân biệt có hoành độ lập thành một cấp số cộng. Kết luận nào sau đây đúng?

    Hướng dẫn:

    Phương trình hoành độ giao điểm y = x^{4}
- 2(m + 1)x^{2} + 2m + 1 = 0\ \ (1)

    Đặt t = x^{2};t \geq 0. Phương trình trở thành t^{2} - 2(m + 1)t + 2m + 1 =
0\ \ \ (2)

    Phương trình (1) có 4 nghiệm phân biệt khi và chỉ khi phương trình (2) có hai nghiệm dương phân biệt, nghĩa là \Leftrightarrow \left\{ \begin{matrix}
\Delta' > 0 \\
S > 0 \\
P > 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
(m + 1)^{2} - (2m + 1) > 0 \\
m + 1 > 0 \\
2m + 1 > 0 \\
\end{matrix} ight.

    \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - 1 \\m > - \dfrac{1}{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}m eq 0 \\m > - \dfrac{1}{2} \\\end{matrix} ight.

    Gọi x_{1};x_{2};x_{3};x_{4};\left( x_{1} < x_{2} < x_{3} < x_{4}
ight) là nghiệm cỉa phương trình (1) và t_{1};t_{2};\left( t_{1} < t_{2}
ight) là nghiệm của phương trình (2)

    Theo giả thiết ta có:

    x_{4} - x_{3} = x_{3} - x_{2} = x_{2} -
x_{1}

    \Leftrightarrow x_{4} - x_{3} = x_{3} -
x_{2}

    \Leftrightarrow \sqrt{t_{2}} -
\sqrt{t_{1}} = \sqrt{t_{1}} + \sqrt{t_{1}} \Leftrightarrow t_{2} =
9t_{1} > 0

    Ta có hệ:

    \left\{ \begin{matrix}t_{1} + t_{2} = 2(m + 1) \\t_{1}.t_{2} = 2m + 1 \\t_{1} = 9t_{2} \\\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}t_{1} = \dfrac{m}{5} + \dfrac{1}{5} \\t_{2} = \dfrac{9m}{5} + \dfrac{9}{5} \\t_{1}.t_{2} = 2m + 1 \\\end{matrix} ight.

    \Leftrightarrow \left( \dfrac{m}{5} +\dfrac{1}{5} ight)\left( \dfrac{9m}{5} + \dfrac{9}{5} ight) = 2m + 1\Leftrightarrow \left\lbrack \begin{matrix}m = 4 \\m = - \dfrac{4}{9} \\\end{matrix} ight.

    Vậy m \in (2;6)

  • Câu 19: Nhận biết
    Chọn đáp án chính xác

    Hàm số tương ứng với đồ thị trong hình vẽ dưới đây là:

    Hướng dẫn:

    Từ đồ thị ta thấy đây là đồ thị hàm số bậc ba có dạng y = ax^{3} + bx^{2} + cx + d với a < 0 nên hàm số tương ứng là y = - x^{3} + 3x.

  • Câu 20: Thông hiểu
    Chọn hàm số tương ứng với hình vẽ

    Cho hình vẽ:

    Biết rằng đường trong trong hình vẽ trên là đồ thị của một trong các hàm số nào dưới đây, đó là hàm số nào?

    Hướng dẫn:

    Đây là đồ thị hàm số bậc ba có dạng y =
ax^{3} + bx^{2} + cx + d với hệ số a > 0

    Đồ thị hàm số cắt trục hoành tại điểm (3;0) nên hàm số thích hợp là y = x^{3} - 5x^{2} + 6x.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 3 lượt xem
Sắp xếp theo