Một vật thể nằm giữa hai mặt phẳng và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Một vật thể nằm giữa hai mặt phẳng và thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với trục hoành tại điểm có hoành độ
là một hình tròn có diện tích bằng
. Thể tích của vật thể là?
Ta có:
Viết công thức tính thể tích của phần vật thể bị giới hạn bởi hai mặt phẳng vuông góc với trục
tại các điểm
, có diện tích thiết diện cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ
là
.
Thể tích của vật thể đã cho là: .
Cho hình phẳng giới hạn bởi các đường
. Thể tích vật thể tròn xoay có được khi
quay quanh trục
bằng:
Gọi là thể tích khối tròn xoay cần tính. Ta có:
Trong không gian , cho vật thể
giới hạn bởi hai mặt phẳng có phương trình
và
với
. Gọi
là diện tích thiết diện của
bị cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ là
, với
. Biết hàm số
liên tục trên đoạn
, khi đó thể tích
của vật thể
được cho bởi công thức:
Vì là diện tích thiết diện của
bị cắt bởi mặt phẳng vuông góc với trục
tại điểm có hoành độ là
, với
ta có:
không phải là
.
Một người có mảnh đất hình tròn có bán kính . Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Một người có mảnh đất hình tròn có bán kính . Người này tính trồng cây trên mảnh đất đó, biết mỗi mét vuông trồng cây thu hoạch được
nghìn đồng. Tuy nhiên, cần có khoảng trống để dựng chòi và đồ dùng nên người này căng sợi dây
vào hai đầu mút dây nằm trên đường tròn xung quanh mảnh đất. Hỏi người này sau khi thu hoạch thu được bao nhiêu tiền? (Tính theo đơn vị nghìn đồng và bỏ số thập phân).
Cho đồ thị của hàm số như sau:
Diện tích hình phẳng (phần tô đậm trong hình vẽ) được xác định bởi công thức:
Dựa vào hình vẽ ta được: .
Cho hình phẳng giới hạn bởi các đường
. Quay (H) quanh trục hoành tạo thành khối tròn xoay có thể tích là:
Ta có:
Theo công thức thể tích giới hạn bởi các đường ta có:
Tính diện tích của hình phẳng
được giới hạn bởi các đường
, trục hoành và các đường thẳng
?
Diện tích hình phẳng cần tìm là:
Trong hệ trục tọa độ cho elip
có phương trình
. Hình phẳng
giới hạn bởi nửa elip nằm trên trục hoành và trục hoành. Quay hình
xung quanh trục
ta được khối tròn xoay, tính thể tích khối tròn xoay đó?
Ta có: với
Khi đó thể tích cần tìm là:
Cho hình giới hạn bởi các đường
, trục hoành. Quay hình phẳng
quanh trục
ta được khối tròn xoay có thể tích là:
Phương trình hoành độ giao điểm của là:
Khi đó .
Kí hiệu là hình phẳng giới hạn bởi đồ thị
với trục hoành (
). Quay hình
xung quanh trục hoành ta thu được khối tròn xoay có thể tích
. Tìm
?
Phương trình hoành độ giao điểm
Trường hợp 1: Với thì thể tích khối tròn xoay là:
Trường hợp 2: Với thì thể tích khối tròn xoay là:
Vậy .
Cho hàm số liên tục trên
. Gọi
là hình phẳng giới hạn bởi hai đồ thị
và các đường thẳng
. Diện tích hình
được tính theo công thức?
Ta có diện tích hình (H) được tính bằng công thức .
Cho hình vẽ:
Diện tích của hình phẳng được giới hạn bởi đồ thị hàm số
, trục hoành và hai đường thẳng
(phần tô đậm trong hình vẽ) tính theo công thức:
Áp dụng công thức tính diện tích hình phẳng ta có:
Vậy đáp án cần tìm là: .
Hình phẳng giới hạn bởi đồ thị hàm số liên tục trên đoạn
, trục Ox và hai đường thẳng
có diện tích là:
Công thức tính diện tích cần tìm là: .
Cho hàm số liên tục trên
và có đồ thị
là đường cong như hình vẽ:
Diện tích hình phẳng giới hạn bởi đồ thị , trục hoành và hai đường thẳng
(phần tô đen) là:
Dựa vào hình vẽ ta thấy thì
Vậy
Xét hình phẳng giới hạn bởi đồ thị hàm số
, trục hoành và đường thẳng
. Gọi
. Tính giá trị của tham số
để đoạn thẳng
chia
thành hai phần có diện tích bằng nhau?
Ta có đồ thị hàm số tiếp xúc với trục hoành tại
.
Gọi S là diện tích hình phẳng giới hạn bởi đồ thị hàm số , trục hoành và đường thẳng
.
Gọi S1 là diện tích hình phẳng giới hạn bởi đồ thị hàm số , đoạn thẳng
và trục hoành.
Gọi S2 là diện tích của tam giác .
Theo bài ra ta có:
Vậy
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số và đường thẳng
?
Xét các phương trình hoành độ giao điểm:
Diện tích S của hình phẳng (H) là:
Trong không gian với hệ tọa độ , cho khối cầu
, mặt phẳng
có phương trình
cắt khối cầu
thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu
.
Trong không gian với hệ tọa độ , cho khối cầu
, mặt phẳng
có phương trình
cắt khối cầu
thành hai phần. Tính thể tích của phần không chứa tâm của mặt cầu
.
Tính diện tích hình phẳng giới hạn bởi các đường cong và các đường thẳng
?
Hình vẽ minh họa
Với khi đó
Diện tích hình phẳng ta được:
Cho parabol và hai điểm
thuộc
sao cho
. Tìm giá trị lớn nhất của diện tích hình phẳng giới hạn bởi parabol
và đường thẳng
.
Hình vẽ minh họa
Gọi và
là hai điểm thuộc (P) sao cho AB = 2.
Không mất tính tổng quát giả sử a < b.
Theo giả thiết ta có AB = 2 nên
Phương trình đường thẳng đi qua hai điểm A và B là
Gọi S là diện tích hình phẳng giới hạn bởi parabol (P) và đường thẳng AB ta có:
Mặt khác nên
do
Suy ra
Vậy dấu bằng xảy ra khi và chỉ khi a = − b = ±1.