Bài tập cuối chương 1 Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Tìm tất cả các giá trị của tham số m để hàm số y
= \frac{mx + 4}{x + m} nghịch biến trên khoảng ( - \infty;1)?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - m ight\}

    Ta có: y' = \frac{m^{2} - 4}{(x +
m)^{2}}

    Theo yêu cầu bài toán: \Leftrightarrow
y' < 0;\forall x \in ( - \infty;1)

    \Leftrightarrow \left\{ \begin{matrix}
- m otin ( - \infty;1) \\
m^{2} - 4 < 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m \leq - 1 \\
- 2 < m < 2 \\
\end{matrix} ight.\  \Leftrightarrow - 2 < m \leq - 1

    Vậy đáp án cần tìm là m \in ( - 2; -
1brack.

  • Câu 2: Thông hiểu
    Tìm m để hàm số có duy nhất một cực tiểu

    Cho hàm số y = x^{4} + 2(m - 2)x +
1 với m là tham số. Gọi S là tập hợp tất cả các giá trị nguyên của tham số m \in \lbrack -
20;20brack để hàm số đã cho có duy nhất một cực tiểu. Hỏi tập S có bao nhiêu phần tử?

    Hướng dẫn:

    Điều kiện để hàm số y = x^{4} + 2(m - 2)x
+ 1 có duy nhất một cực tiểu là a =
1 > 0 và phương trình y' =
0 có duy nhất một nghiệm.

    y' = 4x^{3} + 4(m - 2)x

    y' = 0 \Leftrightarrow 4x^{3} + 4(m
- 2)x = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 2 - m(*) \\
\end{matrix} ight.

    Để phương trình y' = 0 có duy nhất một nghiệm thì phương trình (*) vô nghiệm hoặc có nghiệm duy nhất x = 0.

    \Leftrightarrow 2 - m \leq 0
\Leftrightarrow m \geq 2

    Mặt khác \left\{ \begin{matrix}
m\mathbb{\in Z} \\
m \in \lbrack - 20;20brack \\
\end{matrix} ight.\  \Rightarrow m \in \left\{ 2;3;....20
ight\}

    Vậy có tất cả 19 giá trị nguyên của tham số m thỏa mãn yêu cầu bài toán.

  • Câu 3: Vận dụng
    Chọn đáp án đúng

    Cho hàm số y =
f(x) xác định trên y =
f(x) và có đạo hàm f'(x) = (2 -
x)(x + 3)g(x) + 2021 trong đó g(x)
< 0;\forall x\mathbb{\in R}. Hàm số y = f(1 - x) + 2021x + 2022 đồng biến trên khoảng nào?

    Hướng dẫn:

    Ta có:

    y' = - f'(1 - x) +
2021

    y' = - \left\lbrack (1 + x)(4 -
x)g(1 - x) + 2021 ightbrack + 2021

    y' = (x + 1)(x - 4).g(1 - x)
\Rightarrow y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = - 1 \\
x = 4 \\
\end{matrix} ight.

    g(x) < 0;\forall x\mathbb{\in
R} nên y' > 0;\forall x \in
( - 1;4)

    Suy ra hàm số đồng biến trên ( -
1;4).

  • Câu 4: Thông hiểu
    Tìm các tiệm cận của đồ thị hàm số

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x} có bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 0;3 ight\}

    f(x) = \frac{x^{2} - 3x + 1}{x^{2} -
3}

    \lim_{x ightarrow 0^{+}}f(x) = \lim_{x
ightarrow 0^{+}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = -
\infty

    \lim_{x ightarrow 0^{-}}f(x) = \lim_{x
ightarrow 0^{-}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = +
\infty

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận đứng là đường thẳng x = 0

    \lim_{x ightarrow 3^{+}}f(x) = \lim_{x
ightarrow 3^{+}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = +
\infty

    \lim_{x ightarrow 3^{-}}f(x) = \lim_{x
ightarrow 3^{-}}\frac{x^{2} - 3x + 1}{x^{2} - 3x} = -
\infty

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận đứng là đường thẳng x = 3

    \lim_{x ightarrow \pm \infty}f(x) =
\lim_{x ightarrow \pm \infty}\frac{x^{2} - 3x + 1}{x^{2} - 3x} =
1

    Đồ thị hàm số f(x) = \frac{x^{2} - 3x +
1}{x^{2} - 3x}có tiệm cận ngang là đường thẳng y = 1.

  • Câu 5: Nhận biết
    Chọn đáp án đúng

    Hàm số nào dưới dây nghịch biến trên khoảng ( - \infty; + \infty)?

    Hướng dẫn:

    Xét hàm số y = - 2x + 1y' = - 2 < 0;\forall x\mathbb{\in
R} nên hàm số y = - 2x + 1 nghịch biến trên khoảng ( - \infty; +
\infty).

  • Câu 6: Thông hiểu
    Chọn đáp án chính xác

    Cho hàm số y = f(x) = ax^{3} + bx^{2} +
cx + d có đồ thị cắt trục Ox tại ba điểm phân biệt. Hỏi số cực trị của hàm số y = \left| f(x) ight| bằng bao nhiêu?

    Hướng dẫn:

    Vì đồ thị hàm số y = f(x) = ax^{3} +
bx^{2} + cx + d cắt trục hoành tại ba điểm phân biệt nên hàm số có 2 điểm cực trị giả sử đồ thị của hàm số đó như sau:

    Số điểm cực trị của hàm số là 2

    Số nghiệm bội lẻ của phương trình là 3

    Khi đó số điểm cực trị của hàm số y =
\left| f(x) ight| là 2 + 3 = 5

  • Câu 7: Nhận biết
    Chọn khẳng định đúng

    Cho hàm số y =
\frac{2x + 1}{x - 1}. Khẳng định nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 1 ight\}

    Ta có: y = \frac{2x + 1}{x - 1}
\Rightarrow y' = \frac{- 3}{(x - 1)^{2}} < 0;\forall x \in
D

    Suy ra hàm số nghịch biến trên tập xác định

    Hay hàm số nghịch biến trên các khoảng (
- \infty;1),(1; + \infty).

  • Câu 8: Thông hiểu
    Tìm m để phương trình có ít nhân hai nghiệm

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} và có bảng biến thiên như hình vẽ:

    Tìm giá trị của tham số thực m để phương trình f(x) = m có ít nhất hai nghiệm thực phân biệt?

    Hướng dẫn:

    Phương trình f(x) = m có ít nhất hai nghiệm thực phân biệt khi và chỉ khi đường thẳng y = m cắt đồ thị hàm số y = f(x) tại ít nhất hai điểm phân biệt

    \Leftrightarrow - 1 \leq m \leq
3

  • Câu 9: Nhận biết
    Chọn hàm số tương ứng với đồ thị

    Quan sát hình vẽ sau:

    Xác định hàm số tương ứng với đồ thị hàm số trong hình vẽ đã cho?

    Hướng dẫn:

    Đồ thị hàm số có tiệm cận ngang y =\frac{1}{2} và tiệm cận đứng là x =1 nên hàm số tương ứng là y =\frac{x + 1}{2x - 2}.

  • Câu 10: Nhận biết
    Tìm giá trị biểu thức T

    Gọi M;m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = f(x)
= \frac{2x - 1}{x + 2} trên đoạn \lbrack 0;2brack. Giá trị biểu thức T = 2m + 4M là:

    Hướng dẫn:

    Ta có: y' = \frac{5}{(x + 2)^{2}}
> 0;\forall x eq - 2 nên hàm số đồng biến trên \lbrack 0;2brack

    \Rightarrow \left\{ \begin{matrix}\max_{\lbrack 0;2brack}y = f(2) = \dfrac{3}{4} \\\min_{\lbrack 0;2brack}y = f(0) = - \dfrac{1}{2} \\\end{matrix} ight.\  \Rightarrow T = 2m + 4M = 2.

  • Câu 11: Thông hiểu
    Tìm các khẳng định đúng

    Cho hàm số y = f(x) có đạo hàm liên tục trên \mathbb{R} và có đồ thị hàm số y = f'(x) như sau:

    Xét hàm số g(x) = f\left( x^{2} - 3
ight) và các mệnh đề sau:

    (i) Hàm số g(x) có ba điểm cực trị.

    (ii) Hàm số g(x) đạt cực tiểu tại x = 0.

    (iii) Hàm số g(x) đạt cực đại tại x = 2.

    (iv) Hàm số g(x) đồng biến trên khoảng ( - 2;0).

    (v) Hàm số g(x) nghịch biến trên khoảng ( - 1;1).

    Có bao nhiêu mệnh đề đúng trong các mệnh đề đã cho?

    Hướng dẫn:

    Ta có: g'(x) = 2x.f'\left( x^{2}
- 3 ight)

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 0 \\
f'\left( x^{2} - 3 ight) = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} - 3 = - 2 \\
x^{2} - 3 = 1 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x^{2} = 1 \\
x^{2} = 4 \\
\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \pm 1 \\
x = \pm 2 \\
\end{matrix} ight.

    Từ đồ thị ta nhận thấy x = \pm 1 là nghiệm kép nên ta có bảng biến thiên

    Dựa vào bảng biến thiên ta có hàm số g(x) ta thấy hàm số có 3 cực trị và đồng biến trên khoảng ( - 2;0).

    Vậy có tất cả 2 mệnh đề đúng.

  • Câu 12: Thông hiểu
    Tính tổng các nghiệm phương trình

    Tính tổng tất cả các nghiệm của phương trình x^{6} + 2020x^{2} = (5x - 6)^{3} - 2020(6 -
5x) là:

    Hướng dẫn:

    Xét hàm số f(t) = t^{3} + 2020t
\Rightarrow f'(t) = 3t^{2} + 2020 > 0;\forall t\mathbb{\in
R}

    Nên hàm số y = f(t) đồng biến trên \mathbb{R}

    Phương trình x^{6} + 2020x^{2} = (5x -
6)^{3} - 2020(6 - 5x) có dạng

    f\left( x^{2} ight) = f(5x - 6)
\Leftrightarrow x^{2} = 5x - 6 \Leftrightarrow \left\lbrack
\begin{matrix}
x = 2 \\
x = 3 \\
\end{matrix} ight.

    Vậy tổng tất cả các nghiệm bằng 5.

  • Câu 13: Nhận biết
    Xác định các đường tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ - 1
ight\} liên tục trên mỗi khoảng xác định và có bảng biến thiên như sau:

    Hỏi đồ thị hàm số đã cho có bao nhiêu đường tiệm cận đứng và tiệm cận ngang?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy:

    \lim_{x ightarrow - 1^{+}}y = -
\infty suy ra x = - 1 là tiệm cận đứng.

    \lim_{x ightarrow - \infty}y =
2 suy ra y = 2 là tiệm cận ngang

    \lim_{x ightarrow - \infty}y = -
1 suy ra y = - 1 là tiệm cận ngang

    Vậy đồ thị hàm số đã cho có tất cả ba đường tiệm cận.

  • Câu 14: Nhận biết
    Tính giá trị của biểu thức

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 1;4brack và có đồ thị như hình vẽ:

    Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 1;4brack. Khi đó giá trị của biểu thức S = M + m bằng bao nhiêu?

    Hướng dẫn:

    Từ đồ thị hàm số y = f(x) liên tục trên \lbrack - 1;4brack

    \Rightarrow \left\{ \begin{matrix}
M = 3 \\
m = - 1 \\
\end{matrix} ight.\  \Rightarrow S = M + m = 2

  • Câu 15: Thông hiểu
    Tìm điều kiện của m để hàm số có ba nghiệm

    Hàm số y = f(x) có bảng biến thiên như sau:

    Phương trình f(x) = m có ba nghiệm thực phân biệt khi và chỉ khi:

    Hướng dẫn:

    Số nghiệm của phương trình f(x) =
m bằng số giao điểm của hai đồ thị hàm số \left\{ \begin{matrix}
y = f(x) \\
y = m \\
\end{matrix} ight..

    Dựa vào bảng biến thiên ta có phương trình f(x) = m có ba nghiệm thực phân biệt khi và chỉ khi - 2 < m < 2.

  • Câu 16: Nhận biết
    Xác định hàm số

    Đồ thị của hàm số nào có dạng như hình vẽ sau đây?

    Hướng dẫn:

    Ta thấy hình vẽ là đồ thị của hàm bậc ba có hệ số a > 0 nên hàm số cần tìm là y = x^{3} - 3x - 1.

  • Câu 17: Vận dụng cao
    Tìm min và max của hàm số

    Cho hai số thực x, y thỏa mãn x \geqslant 0;y \geqslant 0 và x + y = 1. Giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} lần lượt là:

    Hướng dẫn:

    Ta có: 

    P = \frac{x}{{y + 1}} + \frac{y}{{x + 1}} = \frac{{x\left( {x + 1} ight) + y\left( {y + 1} ight)}}{{\left( {x + 1} ight)\left( {y + 1} ight)}} = \frac{{{{\left( {x + y} ight)}^2} - 2xy + 1}}{{xy + x + y + 1}} = \frac{{2 - 2xy}}{{2 + xy}}

    Đặt t = xy ta được P = \frac{{2 - 2t}}{{2 + t}}

    x \geqslant 0;y \geqslant 0 \Rightarrow t \geqslant 0

    Mặt khác 1 = x + y \geqslant 2\sqrt {xy}  \Leftrightarrow xy \leqslant \frac{1}{4} \Rightarrow t \leqslant \frac{1}{4}

    Khi đó bài toán trở thành tìm giá trị lớn nhất của hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} trên \left[ {0;\frac{1}{4}} ight]

    Xét hàm số g\left( t ight) = \frac{{2 - 2t}}{{2 + t}} xác định và liên tục trên \left[ {0;\frac{1}{4}} ight]

    Ta có: g'\left( t ight) = \frac{{ - 6}}{{{{\left( {2 + t} ight)}^2}}} < 0,\forall t \in \left( {0;\frac{1}{4}} ight)

    => Hàm số g(t) nghịch biến trên đoạn \left[ {0;\frac{1}{4}} ight]

    => \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( {\dfrac{1}{4}} ight) = \dfrac{2}{3}} \\   {\mathop {\max }\limits_{\left[ {0;\frac{1}{4}} ight]} g\left( t ight) = g\left( 0 ight) = 1} \end{array}} ight.

  • Câu 18: Thông hiểu
    Chọn mệnh đề đúng

    Biết rằng giá trị nhỏ nhất của hàm số f(x) = \frac{mx + 5}{x - m} trên đoạn \lbrack 0;1brack bằng - 7. mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Ta có: y' = - \frac{m^{2} + 5}{(x -m)^{2}} < 0;\forall x eq m \Rightarrow \Delta' = m^{2} + 2m -3

    Suy ra hàm số luôn nghịch biến trên các khoảng ( - \infty;m)(m; + \infty)

    Vì hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack nên m otin \lbrack 0;1brack

    Hàm số có giá trị nhỏ nhất trên đoạn \lbrack 0;1brack bằng - 7 nên suy ra

    \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  f\left( 1 ight) = \frac{{m + 5}}{{1 - m}} =  - 7 \hfill \\ \end{gathered}  ight. \hfill \\ \end{gathered}  ight. \Leftrightarrow \left[ \begin{gathered}  \left\{ \begin{gathered}  m > 1 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {TM} ight) \hfill \\  \left\{ \begin{gathered}  m < 0 \hfill \\  m = 2 \hfill \\ \end{gathered}  ight.\left( {KTM} ight) \hfill \\ \end{gathered}  ight.

    \Leftrightarrow m = 2 \in(0;2brack

  • Câu 19: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số f(x) liên tục trên \lbrack - 1;3brack và có đồ thị như hình vẽ:

    Giá trị lớn nhất của hàm số y = g(x) =f\left( 3\left| \cos x ight| - 1 ight) bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 20: Nhận biết
    Xác định phương trình các đường tiệm cận

    Cho hàm số y = f(x) có đồ thị như sau:

    Đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số lần lượt là:

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy đồ thị đã cho có đường tiệm cận đứng là x = 1 và đường tiệm cận ngang là y = 1.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (10%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 12 lượt xem
Sắp xếp theo