Trong không gian với hệ trục tọa độ , cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ , cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ , cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ , cho các điểm
. Có tất cả bao nhiêu điểm
trong không gian thỏa mãn
và
?
Trong không gian với hệ trục tọa độ , cho các điểm
. Xác định tọa độ điểm
sao cho
?
Ta có:
Mà
Vậy đáp án cần tìm là: hoặc
Trong không gian với hệ trục tọa độ , cho hình hộp
có
. Tọa độ trọng tâm tam giác
là
Hình vẽ minh họa
Gọi I là trung điểm của đoạn BD’ suy ra
Gọi là trọng tâm tam giác
Ta có: với
Do đó:
Vậy tọa độ trọng tâm tam giác cần tìm là
Trong không gian với hệ trục tọa độ , cho ba vectơ
. Tọa độ vectơ
là:
Ta có:
Vậy
Trong không gian , cho hai điểm
và
. Trung điểm của đoạn thẳng
có tọa độ là:
Gọi là trung điểm của đoạn thẳng
, ta có:
Vậy tọa độ trung điểm của AB là: .
Trong không gian , cho các điểm
. Tích
bằng:
Ta có: . Khi đó
.
Trong không gian , cho các điểm
đối xứng nhau qua mặt phẳng
. Tính giá trị biểu thức
?
Gọi H là hình chiếu của M trên mặt phẳng suy ra H(0; 6; 1)
Do M’ đối xứng với M qua nên MM’ nhận H làm trung điểm suy ra M’(2; 6; 1) suy ra a = 2; b = 6; c = 1
Vậy .
Trong không gian với hệ trục tọa độ , cho ba điểm
. Tìm giá trị của tham số
để tam giác
vuông tại
?
Ta có: .
Tam giác MNP vuông tại N
Vậy đáp án cần tìm là .
Trong không gian với hệ trục tọa độ , cho hai điểm
. Tìm tọa độ điểm
thỏa mãn đẳng thức
?
Gọi
Ta có:
Theo bài ra ta có:
Vậy điểm E có tọa độ là .
Trong không gian , cho tọa độ ba điểm
. Tọa độ trọng tâm
của tam giác
là:
Tọa độ trọng tâm G của tam giác ABC bằng:
Vậy trọng tâm G tìm được là .
Biết rằng và
. Tính
?
Ta có:
Trong không gian , cho hai vectơ
và
. Xác định giá trị tham số
để
?
Ta có:
Vậy m = 2 là giá trị cần tìm.
Trong không gian với hệ trục tọa độ , cho hai điểm
. Biết
là tâm đường tròn nội tiếp tam giác
. Tính giá trị biểu thức
?
Hình vẽ minh họa
Ta có:
Gọi D là chân đường phân giác kẻ từ O ta có:
. Do đó
Ta có:
Trong không gian , cho hai vectơ
và
. Khẳng định nào sau đây sai?
Ta có: suy ra “
” là khẳng định sai.
Trong không gian hệ trục tọa độ , cho các vectơ
. Đẳng thức nào dưới đây đúng?
Đặt
Vậy là đẳng thức đúng.
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho hình thang
vuông tại
và
. Biết rằng tọa độ các điểm
và hình thang
có diện tích bằng
. Tính giá trị biểu thức
?
Trong không gian với hệ trục tọa độ cho
. Gọi
là vectơ thỏa mãn
. Tìm tọa độ
?
Giả sử , khi đó:
Trong không gian , cho tọa độ ba điểm
. Tính cosin góc
?
Ta có: .
Trong không gian , cho hai vectơ
và
. Tính
?
Ta có:
Trong không gian hệ trục tọa độ , cho hình hộp
có tọa độ các điểm
với
. Độ dài đoạn thẳng
là:
Hình vẽ minh họa
Ta có:
Theo quy tắc hình hộp ta có:
Suy ra
Vậy độ dài AC’ bằng .