Luyện tập Ứng dụng hình học của tích phân KNTT

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Tính thể tích nước

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có một cốc thủy tinh hình trụ, bán kính trong lòng đáy cốc là 6cm, chiều cao trong lòng cốc là 10cm đang đựng một lượng nước.

    Tính thể tích lượng nước trong cốc, biết khi nghiêng cốc nước vừa lúc nước chạm miệng cốc thì đáy mực nước trùng với đường kính đáy.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 2: Thông hiểu
    Tìm tham số m thỏa mãn điều kiên

    Đặt S là diện tích của hình phẳng giới hạn bởi đồ thị hàm số y = \frac{x^{2} - 2x}{x - 1}, đường thẳng y = x - 1 và các đường thẳng x = m;x = 2m;(m > 1). Giá trị của m sao cho S = ln3

    Hướng dẫn:

    Diện tích cần tìm chính là tích phân:

    S = \int_{m}^{2m}{\left| \frac{x^{2} -
2x}{x - 1} - (x - 1) ight|dx}

    Ta có:

    S = \int_{m}^{2m}{\left| \frac{x^{2} -
2x}{x - 1} - (x - 1) ight|dx} = \int_{m}^{2m}{\left| \frac{- 1}{x - 1}
ight|dx}

    = \int_{m}^{2m}{\frac{1}{|x - 1|}dx} =
\int_{m}^{2m}{\frac{1}{x - 1}dx};(m > 1)

    = \left. \ \left\lbrack \ln|x - 1|
ightbrack ight|_{m}^{2m} = \ln\frac{2m - 1}{m - 1}

    Do đó S = ln3 \Leftrightarrow \ln\frac{2m
- 1}{m - 1} = ln3 \Leftrightarrow m = 2

    Vậy m = 2 là giá trị cần tìm.

  • Câu 3: Vận dụng cao
    Tính giá trị biểu thức

    Cho hàm số y = \frac{1}{2}x^{2} có đồ thị (P). Xét các điểm A;B \in (P) sao cho tiếp tuyến tại AB của (P) vuông góc với nhau, diện tích hình phẳng giới hạn bởi (P) và đường thẳng AB bằng \frac{9}{4}. Gọi x_{1};x_{2} lần lượt là hoành độ của AB. Giá trị của \left( x_{1} + x_{2} ight)^{2} bằng:

    Hướng dẫn:

    Hình vẽ minh họa

    Ta có:y = \frac{1}{2}x^{2} có TXĐ: D\mathbb{= R}

    y' = x

    Giả sử A\left(
x_{1};\frac{1}{2}{x_{1}}^{2} ight),B\left(
x_{2};\frac{1}{2}{x_{2}}^{2} ight) \in (P)x_{1} eq x_{2}

    Phương trình tiếp tuyến tại điểm A của (P) là y = x_{1}\left( x - x_{1} ight) +
\frac{1}{2}{x_{1}}^{2}

    \Rightarrow y = x_{1}x -
\frac{1}{2}{x_{1}}^{2}\ \ \ \left( d_{1} ight)

    Phương trình tiếp tuyến tại điểm B của (P) là y = x_{2}\left( x - x_{2} ight) +
\frac{1}{2}{x_{2}}^{2}

    \Rightarrow y = x_{2}x -
\frac{1}{2}{x_{2}}^{2}\ \ \ \left( d_{2} ight)

    \left( d_{1} ight)\bot\left( d_{2}
ight) nên ta có: x_{1}x_{2} = - 1
\Leftrightarrow x_{2} = - \frac{1}{x_{1}}

    Phương trình đường thẳng AB

    \dfrac{x - x_{1}}{x_{2} - x_{1}} =\dfrac{y - \dfrac{1}{2}{x_{1}}^{2}}{\dfrac{1}{2}{x_{2}}^{2} -\dfrac{1}{2}{x_{1}}^{2}}

    \Leftrightarrow \frac{1}{2}\left( x -
x_{1} ight)\left( {x_{2}}^{2} - {x_{1}}^{2} ight) = \left( y -
\frac{1}{2}{x_{1}}^{2} ight)\left( x_{2} - x_{1} ight)

    \Leftrightarrow \left( x - x_{1}
ight)\left( x_{2} + x_{1} ight) = 2y - {x_{1}}^{2}

    \Leftrightarrow \left( x_{2} + x_{1}
ight)x - 2y - x_{1}x_{2} = 0

    \Leftrightarrow y =
\frac{1}{2}\left\lbrack \left( x_{2} + x_{1} ight)x - x_{1}x_{2}
ightbrack = \frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)x +
1 ightbrack

    Do đó diện tích hình phẳng giới hạn bởi AB, (P) là:

    S =
\frac{1}{2}\int_{x_{1}}^{x_{2}}{\left\lbrack \left( x_{1} + x_{2}
ight)x + 1 - x^{2} ightbrack dx}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left. \ \left\lbrack \left( x_{1} + x_{2}
ight)\frac{x^{2}}{2} + x - \frac{x^{3}}{3} ightbrack
ight|_{x_{1}}^{x_{2}}

    \Leftrightarrow \frac{9}{4} =
\frac{1}{2}\left\lbrack \left( x_{1} + x_{2} ight)\left(
\frac{{x_{2}}^{2}}{2} - \frac{{x_{1}}^{2}}{2} ight) + \left( x_{2} -
x_{1} ight) - \frac{{x_{2}}^{3} - {x_{1}}^{3}}{3}
ightbrack

    \Leftrightarrow 27 = - 3\left(
x_{1}{x_{2}}^{2} - {x_{1}}^{3} + {x_{2}}^{3} - {x_{1}}^{2}x_{2} ight)
+ 6\left( x_{2} - x_{1} ight) - 2{x_{2}}^{3} +
2{x_{1}}^{3}

    \Leftrightarrow 27 = - 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight) + 6\left( x_{2} - x_{1} ight)

    \Leftrightarrow 27 = 3\left( x_{2} -
x_{1} ight) + \left( x_{2} - x_{1} ight)\left( {x_{1}}^{2} +
{x_{2}}^{2} - 1 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( {x_{1}}^{2} + {x_{2}}^{2} + 2 ight)

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)\left( x_{2} - x_{1} ight)^{2}

    \Leftrightarrow 27 = \left( x_{2} -
x_{1} ight)^{3} \Leftrightarrow x_{2} - x_{1} = 3

    Thay x_{2} = - \frac{1}{x_{1}} ta có:

    - \frac{1}{x_{1}} - x_{1} = 3
\Leftrightarrow - 1 - {x_{1}}^{2} - 3x_{1} = 0

    \Leftrightarrow \left\lbrack\begin{matrix}x_{1} = \dfrac{- 3 - \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{2}{3 +\sqrt{5}} \\x_{1} = \dfrac{- 3 + \sqrt{5}}{2} \Rightarrow x_{2} = \dfrac{- 2}{- 3 +\sqrt{5}} \\\end{matrix} ight.

    \Rightarrow \left( x_{1} + x_{2}
ight)^{2} = 5

  • Câu 4: Thông hiểu
    Tính thể tích tròn xoay

    Tính thể tích của vật thể giới hạn bởi hai mặt phẳng x = 0;x = 3 biết rằng thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x;(0 \leq x \leq 3) là hình chữ nhật có kích thước là x2\sqrt{9 - x^{2}}?

    Hướng dẫn:

    Thiết diện của vật thể bị cắt bởi mặt phẳng vuông góc với Ox tại điểm có hoành độ x;(0 \leq x \leq 3) là hình chữ nhật có kích thước là x2\sqrt{9 - x^{2}}

    Diện tích thiết diện được xác định theo hàm là: S(x) = 2x\sqrt{9 - x^{2}}

    ⇒ Thể tích vật thể tròn xoay: V =
\int_{0}^{3}{2x\sqrt{9 - x^{2}}}dx = 18

  • Câu 5: Vận dụng cao
    Tính giá trị thể tích nhỏ nhất

    Gọi d là đường thẳng tùy ý đi qua điểm M(1;1) và có hệ số góc âm. Giả sử d cắt các trục Ox;Oy lần lượt tại A;B. Quay tam giác OAB quanh trục Oy thu được một khối tròn xoay có thể tích là V. Giá trị nhỏ nhất của V bằng

    Hướng dẫn:

    Hình vẽ minh họa

    Giả sử A(a; 0), B(0; b). Phương trình đường thẳng d: \frac{x}{a} + \frac{y}{b} = 1 \Rightarrow d:x = -\frac{b}{a}x + b\ \ \ (1)

    Mà M(1; 1) ∈ d nên \frac{1}{a} +\frac{1}{b} = 1 \Rightarrow a + b = 2ab\ \ (2)

    Từ (1) suy ra d có hệ số góc là k = -\frac{b}{a}; theo giả thiết ta có -\frac{b}{a} < 0 \Rightarrow ab > 0

    Nếu a < 0;b < 0 \Rightarrow a + b< 0 mẫu thuẫn với (2) suy ra a> 0;b > 0

    Mặt khác từ (2) suy ra b = \frac{a}{a -1} kết hợp với a > 0, b > 0 suy ra a > 1.

    Khi quay ∆OAB quanh trục Oy, ta được hình nón có chiều cao h = b và bán kính đường tròn đáy r = a

    Thể tích khối nón là V = \frac{1}{3}\pir^{2}h = \frac{1}{3}\pi a^{2}b = \frac{1}{3}\pi\frac{a^{3}}{a -1}

    Suy ra V đạt giá trị nhỏ nhất khi \frac{a^{3}}{a - 1} đạt giá trị nhỏ nhất.

    Xét hàm số f(x) = \frac{x^{3}}{x - 1} =x^{2} + x + 1 + \frac{1}{x - 1} trên khoảng (1; + \infty)

    f'(x) = 2x + 1 - \frac{1}{(x -1)^{2}} = \frac{x^{2}(2x - 3)}{(x - 1)^{2}}

    f'(x) = 0 \Rightarrow \left\lbrack\begin{matrix}x = 0 \\x = \frac{3}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    Vậy giá trị nhỏ nhất của V bằng \frac{1}{3}\pi.f\left( \frac{3}{2} ight) =\frac{9\pi}{4}

  • Câu 6: Vận dụng
    Tính giá trị biểu thức

    Cho (H) là hình phẳng giới hạn bởi parabol y =
\frac{\sqrt{3}}{2}x^{2} và nửa elip có phương trình y = \frac{1}{2}\sqrt{4 - x^{2}} (với - 2 \leq x \leq 2) và trục hoành (phần tô đậm trong hình vẽ).

    Gọi S là diện tích của, biết S = \frac{a\pi + b\sqrt{3}}{c} (với a;b;c\mathbb{\in R}). Tính P = a + b + c?

    Hướng dẫn:

    Hoành độ giao điểm của hai đồ thị: \frac{\sqrt{3}}{2}x^{2} = \frac{1}{2}\sqrt{4 -
x^{2}} \Leftrightarrow x = \pm 1

    Do tính chất đối xứng của đồ thị nên

    S = 2\left(
\frac{\sqrt{3}}{2}\int_{0}^{1}{x^{2}dx} +
\frac{1}{2}\int_{1}^{2}{\sqrt{4 - x^{2}}dx} ight) = 2\left( S_{1} +
S_{2} ight)

    S_{1} =
\frac{\sqrt{3}}{2}\int_{0}^{1}{x^{2}dx} =
\frac{\sqrt{3}}{6}

    S_{2} = \frac{1}{2}\int_{1}^{2}{\sqrt{4 -
x^{2}}dx}. Đặt x = 2\sin t\Rightarrow dx = 2\cos tdt

    Đổi cận \left\{ \begin{matrix}x = 1 \Rightarrow t = \dfrac{\pi}{6} \\x = 2 \Rightarrow t = \dfrac{\pi}{2} \\\end{matrix} ight.

    Với t \in \left\lbrack\frac{\pi}{6};\frac{\pi}{2} ightbrack \Rightarrow \cos t \geq 0\Rightarrow \sqrt{4 - x^{2}} = 2\sqrt{\cos^{2}t} = 2\cos t

    S_{2} =\frac{1}{2}\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{4\cos^{2}tdt} =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{2\cos^{2}tdt}

    =\int_{\frac{\pi}{6}}^{\frac{\pi}{2}}{(1 + \cos2t)dt} = \left. \ \left( t+ \frac{1}{2}\sin2t ight) ight|_{\frac{\pi}{6}}^{\frac{\pi}{2}} =\frac{\pi}{3} - \frac{\sqrt{3}}{4}

    Suy ra S = \frac{4\pi - \sqrt{3}}{6}
\Rightarrow a = 4;b = - 1;c = 6

    Vậy P = a + b + c = 9

  • Câu 7: Thông hiểu
    Tính thể tích khối tròn xoay

    Tính thể tích khối tròn xoay sinh bởi Elip (E): \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1 quay quanh trục hoành?

    Hướng dẫn:

    Xét (E)a^{2} = 4 \Rightarrow a = 2. Do đó hai đỉnh thuộc trục lớn có tọa độ ( -
2;0),(2;0)

    \frac{x^{2}}{4} + \frac{y^{2}}{1} = 1
\Rightarrow y^{2} = 1 - \frac{x^{2}}{4}

    Do đó thể tích khối tròn xoay là V_{Ox} =
\pi\int_{- 2}^{2}{y^{2}dx} = \pi\int_{- 2}^{2}{\left( 1 -
\frac{x^{2}}{4} ight)dx} = \frac{8\pi}{3}

  • Câu 8: Thông hiểu
    Tính diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi đồ thị (C) của hàm số y = - 2x^{3} + x^{2} + x + 5 và đồ thị (C') của hàm số y = x^{2} - x + 5?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    - 2x^{3} + x^{2} + x + 5 = x^{2} - x +
5

    \Leftrightarrow - 2x^{3} + 2x = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = 1 \\
x = - 1 \\
\end{matrix} ight.

    Diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{1}{\left| 2x^{3} - 2x
ight|dx}

    = \left| \int_{- 1}^{0}{\left( 2x^{3} -
2x ight)dx} ight| + \left| \int_{0}^{1}{\left( 2x^{3} - 2x
ight)dx} ight|

    = 1

  • Câu 9: Nhận biết
    Chọn khẳng định đúng

    Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = \sqrt{- e^{x} +
4x}, trục hoành và hai đường thẳng x = 1;x = 2. Gọi V là thể tích của khối tròn xoay thu được khi quay hình (H) xung quanh trục hoành. Chọn khẳng định đúng trong các khẳng định sau đây?

    Hướng dẫn:

    Áp dụng công thức thể tích khối tròn xoay ta có:

    V = \pi\int_{a}^{b}{\left\lbrack f(x)
ightbrack^{2}dx}

    Khi đó áp dụng vào bài toán ta được:

    V = \pi\int_{1}^{2}{\left\lbrack \sqrt{-
e^{x} + 4x} ightbrack^{2}dx} = \pi\int_{1}^{2}{\left( 4x - e^{x}
ight)dx} .

  • Câu 10: Thông hiểu
    Tính diện tích hình phẳng (H)

    Cho hàm y = f(x) có đạo hàm liên tục trên \lbrack 1;3brack. Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số y = f'(x) và đường thẳng y = x (phần gạch chéo trong hình vẽ):

    Diện tích hình (H) bằng:

    Hướng dẫn:

    Diện tích phần gạch chéo là:

    S = \int_{1}^{2}{\left\lbrack f'(x)
- x ightbrack dx} - \int_{2}^{3}{\left\lbrack f'(x) - x
ightbrack dx}

    = \left. \ \left\lbrack f(x) -
\frac{x^{2}}{2} ightbrack ight|_{1}^{2} - \left. \ \left\lbrack
f(x) - \frac{x^{2}}{2} ightbrack ight|_{2}^{3}

    = 2f(2) - f(1) - f(3) + 1.

  • Câu 11: Nhận biết
    Chọn công thức thích hợp với hình vẽ

    Cho hình vẽ:

    Diện tích hình phẳng bôi đậm trong hình vẽ được xác định theo công thức:

    Hướng dẫn:

    Dựa vào đồ thị hàm số ta thấy công thức tính diện tích hình phẳng cần tìm là:

    S = \int_{- 1}^{2}{\left( - x^{2} + 3 -
x^{2} + 2x + 1 ight)dx} = \int_{- 1}^{2}{\left( - 2x^{2} + 2x + 4
ight)dx}.

  • Câu 12: Nhận biết
    Chọn khẳng đính đúng

    Kí hiệu S là diện tích hình phẳng giới hạn bởi đồ thị hàm số y = f(x), trục hoành, đường thẳng x = a;x = b như hình vẽ sau:

    Hỏi khẳng định nào dưới đây là khẳng định đúng?

    Hướng dẫn:

    Dựa vào hình biểu diễn hình phẳng giới hạn bởi đồ thị hàm số y = f(x) trục hoành, đường thẳng x = a;x = b ta có: S = - \int_{a}^{c}{f(x)dx} +
\int_{c}^{b}{f(x)dx}.

  • Câu 13: Nhận biết
    Tính diện tích hình phẳng

    Diện tích hình phẳng giới hạn bởi các đường y = (x + 2)^{2};y = 0;x = 1;x = 3 bằng:

    Hướng dẫn:

    Gọi S là diện tích hình phẳng cần tìm. Khi đó

    S = \int_{1}^{3}{(x + 2)^{2}dx} = \left.
\ \frac{1}{3}(x + 2)^{3} ight|_{1}^{3} = \frac{98}{3}

  • Câu 14: Thông hiểu
    Tính diện tích hình phẳng (H)

    Cho hình phẳng (H) giới hạn bởi Parabol y = \frac{x^{2}}{12} và đường cong có phương trình y = \sqrt{4 -
\frac{x^{2}}{4}} như hình vẽ:

    Diện tích của hình phẳng (H) bằng:

    Hướng dẫn:

    Phương trình hoành độ giao điểm:

    \frac{x^{2}}{12} = \sqrt{4 -
\frac{x^{2}}{4}} \Leftrightarrow x = \pm 2\sqrt{3}

    Diện tích hình phẳng (H) bằng:

    S = 2\int_{0}^{2\sqrt{3}}{\left\lbrack
\sqrt{4 - \frac{x^{2}}{4}} - \frac{x^{2}}{12} ightbrack
dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} - \frac{1}{6}\int_{0}^{2\sqrt{3}}{x^{2}dx}

    = \int_{0}^{2\sqrt{3}}{\sqrt{16 -
x^{2}}dx} + \frac{4\sqrt{3}}{3}

    Đặt x = 4\sin t

    \Rightarrow\int_{0}^{2\sqrt{3}}{\sqrt{16 - x^{2}}dx} =\int_{0}^{\frac{\pi}{3}}{16\cos^{2}tdt} = \frac{8\pi}{3} +2\sqrt{3}

    \Rightarrow S = \frac{8\pi +
2\sqrt{3}}{3}

  • Câu 15: Nhận biết
    Tìm thể tích khối tròn xoay

    Cho hình phẳng (H) giới hạn bởi đồ thị hàm số y = \frac{1}{x} và các đường thẳng y = 0;x = 1;x = 4. Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng (H) quay quanh trục?

    Hướng dẫn:

    Thể tích V của khối tròn xoay sinh ra khi cho hình phẳng (H) quay quanh trục Ox là:

    V = \pi\int_{1}^{4}{\left( \frac{1}{x}
ight)^{2}dx} = \pi\left. \ \left( - \frac{1}{x^{4}} ight)
ight|_{1}^{4} = \pi\left( - \frac{1}{4} + 1 ight) =
\frac{3\pi}{4}.

  • Câu 16: Thông hiểu
    Tìm diện tích hình phẳng

    Tính diện tích hình phẳng giới hạn bởi các đường y = x\sin2x;y = 2x;x = \frac{\pi}{2}?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    x\sin2x = 2x \Leftrightarrow \left\lbrack\begin{matrix}x = 0 \\\sin2x = 2(L) \\\end{matrix} ight.

    Diện tích hình phẳng là:

    S = \int_{0}^{\frac{\pi}{2}}{\left|
x\sin x - 2x ight|dx} = \left| \int_{0}^{\frac{\pi}{2}}{\left( x\sin x
- 2x ight)dx} ight|

    = \left| \left. \ \left(\frac{1}{4}\sin2x - \frac{1}{2}x\cos2x - x^{2} ight)ight|_{0}^{\frac{\pi}{2}} ight| = \frac{\pi^{2}}{4} -\frac{\pi}{4}

  • Câu 17: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục trên \lbrack a;bbrack, có đồ thị hàm số y = f'(x) như sau:

    Mệnh đề nào dưới đây là đúng?

    Hướng dẫn:

    Theo ý nghĩa hình học của tích phân thì \int_{a}^{b}{f'(x)dx} là diện tích hình thang cong ABMN.

  • Câu 18: Nhận biết
    Tính thể tích khối tròn xoay

    Thể tích khối tròn xoay sinh ra khi quay hình phẳng giới hạn bởi đồ thị các hàm số y = x^{2} - 2;y = 0;x = - 1;x
= 2 quanh trục Ox bằng

    Hướng dẫn:

    Ta có:

    V = \pi\int_{- 1}^{2}{\left( x^{2} - 2x
ight)^{2}dx} = \pi\int_{- 1}^{2}{\left( x^{4} - 4x^{3} + 4x^{2}
ight)dx}

    = \pi\left. \ \left( \frac{x^{5}}{5} -
x^{4} + \frac{4x^{3}}{3} ight) ight|_{- 1}^{2} =
\frac{18\pi}{5}

  • Câu 19: Vận dụng
    Tính tích phân

    Cho hai hàm số f(x) = ax^{3} + bx +
c;g(x) = bx^{3} + ax + c;(a > 0) có đồ thị như hình vẽ:

    Gọi S_{1};S_{2} là diện tích hình phẳng được gạch trong hình vẽ. Khi S_{1} + S_{2} = 3 thì \int_{0}^{1}{f(x)dx} bằng bao nhiêu?

    Hướng dẫn:

    Phương trình hoành độ giao điểm

    (a - b)x^{3} + (b - a)x = 0

    \Leftrightarrow (a - b)\left( x^{3} - x
ight) = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 1 \\
x = - 1 \\
x = 0 \\
\end{matrix} ight.

    Ký hiệu S_{3} là diện tích hình phẳng như hình vẽ:

    Ta có:

    S_{1} = \int_{- 1}^{0}{\left\lbrack f(x)
- g(x) ightbrack dx} = (a - b)\int_{- 1}^{0}{\left( x^{3} - x
ight)dx} = \frac{1}{4}(a - b)

    S_{2} = - \int_{- 1}^{0}{g(x)dx} = -
\int_{- 1}^{0}{\left( bx^{3} + ax + c ight)dx} = - \left( \frac{b}{4}
+ \frac{a}{2} + c ight)

    Vì vậy S_{1} + S_{2} = 3 \Leftrightarrow
\frac{1}{4}(a - b) - \left( \frac{b}{4} + \frac{a}{2} + c ight) =
3

    \Leftrightarrow a + 2b + 4c = -
12

    \Rightarrow \int_{0}^{1}{f(x)dx} =
\int_{0}^{1}{\left( ax^{3} + bx + c ight)dx} = \frac{a}{4} +
\frac{b}{2} + c = \frac{a + 2b + 4c}{4} = - 3

  • Câu 20: Thông hiểu
    Tính thể tích khối tròn xoay

    Gọi (H) là hình phẳng giới hạn bởi các đường y^{2} = 4xy = x (với 0
\leq x \leq 4) được minh họa bằng hình vẽ bên (phần tô đậm):

    Cho (H) quay quanh trục Ox, thể tích khối tròn xoay tạo thành bằng bao nhiêu?

    Hướng dẫn:

    Ta có: y^{2} = 4x \Rightarrow y =
2\sqrt{x};(y \geq 0)

    Thể tích khối tròn xoay cần tính là

    V = \pi\int_{0}^{4}{\left( 2\sqrt{x}
ight)^{2}dx} - \pi\int_{0}^{4}{x^{2}dx}

    = \left. \ 2\pi x^{2} ight|_{0}^{4} -
\frac{\pi}{3}.\left. \ x^{3} ight|_{0}^{4} =
\frac{32\pi}{3}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (10%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 3 lượt xem
Sắp xếp theo