Luyện tập Xác suất có điều kiện KNTT

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Tìm xác suất có điều kiện

    Một gia đình có 2 đứa trẻ. Biết rằng có ít nhất 1 đứa trẻ là con gái. Xác suất để một đứa trẻ là trai hoặc gái là bằng nhau. Hỏi xác suất hai đứa trẻ đều là con gái là bao nhiêu?

    Hướng dẫn:

    Giới tính cả 2 đứa trẻ là ngẫu nhiên và không liên quan đến nhau.

    Do gia đình có 2 đứa trẻ nên sẽ có thể xảy ra 4 khả năng: (trai, trai), (gái, gái), (gái, trai), (trai, gái).

    Gọi A là biến cố “Cả hai đứa trẻ đều là con gái” Gọi B là biến cố “Có ít nhất một đứa trẻ là con gái”

    Ta có: P(A) = \frac{1}{4};P(B) =
\frac{3}{4}

    Do nếu xảy ra A thì đương nhiên sẽ xảy ra B nên ta có:

    P(A \cap B) = P(A) =
\frac{1}{4}

    Suy ra, xác suất để cả hai đứa trẻ đều là con gái khi biết ít nhất có một đứa trẻ là gái là: P\left( A|B ight) =\dfrac{P(A \cap B)}{P(B)} = \dfrac{\dfrac{1}{4}}{\dfrac{3}{4}} =\dfrac{1}{3}.

  • Câu 2: Thông hiểu
    Tính xác suất của biến cố

    Trong một kỳ thi, có 60\% học sinh đã làm đúng bài toán đầu tiên và 40\% học sinh đã làm đúng bài toán thứ hai. Biết rằng có 20\% học sinh làm đúng cả hai bài toán. Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là bao nhiêu?

    Hướng dẫn:

    Gọi biến cố A: "học sinh đã làm đúng bài toán đầu tiên"

    \Rightarrow P(A) =
60\% = 0,6

    Biến cố B: "học sinh đã làm đúng bài toán thứ hai”

    \Rightarrow P(B) = 40\% =
0,4

    Biến cố A \cap B: "học sinh làm đúng cả hai bài toán"

    \Rightarrow P(A \cap
B) = 20\% = 0,2

    Xác suất để một học sinh làm đúng bài toán thứ hai biết rằng học sinh đó đã làm đúng bài toán đầu tiên là:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)} = \frac{0,2}{0,6} = \frac{1}{3} \approx 0,333

  • Câu 3: Nhận biết
    Tính xác suất của biến cố B

    Hộp thứ nhất chứa 3 viên bi đen và 2 viên bi trắng. Hộp thứ hai chứa 4 viên bi đen và 5 viên bi trắng. Các viên bi có cùng kích thước và khối lượng. Bạn Mai lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất bỏ vào hộp thứ hai, sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

    Gọi A: "Viên bi lấy ra lần thứ nhất là bi đen"

    Và B: "Viên bi lấy ra lần thứ hai là bi trắng".

    Biết rằng biến cố A xảy ra, tính xác suất của biến cố B?

    Hướng dẫn:

    Nếu biến cố A xảy ra thì bạn Mai lấy viên bi đen từ hộp thứ nhất bỏ vào hộp thứ hai.

    Khi đó hộp thứ hai có 5 viên bi đen và 5 viên bi trắng.

    Do đó, xác suất của biến cố B là: P(B) =
\frac{1}{2}.

  • Câu 4: Vận dụng
    Tính xác suất người không nhiễm bệnh

    Để phát hiện ra người nhiễm bệnh, người ta tiến hành xét nghiệm tất cả mọi người của nhóm người (trong đó 91\% người không nhiễm bệnh). Biết rằng đối với người nhiễm bệnh thì xác suất xét nghiệm có kết quả dương tính là 85\%, nhưng đối với người không nhiễm bệnh thì xác suất xét nghiệm có phản ứng dương tính là 7\%. Tính xác suất để người được chọn ra không nhiễm bệnh và không có phản ứng dương tính.

    Hướng dẫn:

    Gọi A: “Người được chọn ra không nhiễm bệnh”.

    Và B: “Người được chọn ra có phản ứng dương tính”

    Theo bài ta có: P(A) = 0,91;P\left( B|A
ight) = 0,07;P\left( B|\overline{A} ight) = 0,85

    P\left( \overline{A} ight) = 1 - P(A)
= 0,09

     

    P\left( \overline{B}|\overline{A}
ight) = 1 - P\left( B|\overline{A} ight) = 1 - 0,85 =
0,15

    Ta có sơ đồ hình cây như sau:

    Vậy P\left( A\overline{B} ight) =
0,91.0,93 = 0,8463

  • Câu 5: Nhận biết
    Xác định đáp án đúng

    Cho hai biến cố AB là hai biến cố độc lập, với P(A) = 0,2024;P(B) = 0,2025. Tính P\left( A|B ight)?

    Hướng dẫn:

    Hai biến cố AB là hai biến cố độc lập nên P\left( A|B ight) = P(A) = 0,2024.

  • Câu 6: Thông hiểu
    Xét tính đúng sai của các phương án

    Ông Bình hằng ngày đi làm bằng xe máy hoặc xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4. Nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7. Xét một tuần mà thứ Hai ông Bình đi làm bằng xe buýt.

    Gọi A là biến cố: “Thứ Ba, ông Bình đi làm bằng xe máy” và B là biến cố: “Thứ Tư, ông Bình đi làm bằng xe máy”.

    a) Xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là \frac{7}{10}. Sai||Đúng

    b) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy là \frac{3}{10}. Đúng||Sai

    c) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt là \frac{4}{10}. Đúng||Sai

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là \frac{9}{25}. Đúng||Sai

    Đáp án là:

    Ông Bình hằng ngày đi làm bằng xe máy hoặc xe buýt. Nếu hôm nay ông đi làm bằng xe buýt thì xác suất để hôm sau ông đi làm bằng xe máy là 0,4. Nếu hôm nay ông đi làm bằng xe máy thì xác suất để hôm sau ông đi làm bằng xe buýt là 0,7. Xét một tuần mà thứ Hai ông Bình đi làm bằng xe buýt.

    Gọi A là biến cố: “Thứ Ba, ông Bình đi làm bằng xe máy” và B là biến cố: “Thứ Tư, ông Bình đi làm bằng xe máy”.

    a) Xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là \frac{7}{10}. Sai||Đúng

    b) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông An đi làm bằng xe máy là \frac{3}{10}. Đúng||Sai

    c) Xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt là \frac{4}{10}. Đúng||Sai

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là \frac{9}{25}. Đúng||Sai

    Từ giả thiết của bài toán ta có sơ đồ hình cây như sau:

    a) Dựa vào sơ đồ cây ta có xác suất để thứ Ba, ông Bình đi làm bằng xe buýt là 0,6 (nhánh O\overline{A}).

    b) Dựa vào sơ đồ cây ta có xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba, ông Bình đi làm bằng xe máy là 0,3 = \frac{3}{10} (nhánh \overline{A}B).

    c) Dựa vào sơ đồ cây ta có xác suất để thứ Tư, ông Bình đi làm bằng xe máy nếu thứ Ba ông Bình đi làm bằng xe buýt 0,4 = \frac{4}{10} (nhánh AB)

    d) Xác suất để thứ Tư trong tuần đó, ông Bình đi làm bằng xe máy nếu thứ Hai ông Bình đi làm bằng xe buýt là:

    P(B) = 0,4.0,3 + 0,6.0,4 =
0,36(nhánh OAB và nhánh O\overline{A}B).

  • Câu 7: Thông hiểu
    Xác định tính đúng sai của từng phương án

    Cho hai biến cố AB, với P\left( \overline{A} ight) = 0,4;P(B) = 0,8;P(A
\cap B) = 0,4.

    a) P(A) = 0,6;P\left( \overline{B}
ight) = 0,2 Đúng||Sai

    b) P\left( A|B ight) =
\frac{1}{2} Đúng||Sai

    c) P\left( \overline{B}|A ight) =
\frac{2}{3} Sai|| Đúng

    d) P\left( \overline{A} \cap B ight) =
\frac{3}{5} Sai|| Đúng

    Đáp án là:

    Cho hai biến cố AB, với P\left( \overline{A} ight) = 0,4;P(B) = 0,8;P(A
\cap B) = 0,4.

    a) P(A) = 0,6;P\left( \overline{B}
ight) = 0,2 Đúng||Sai

    b) P\left( A|B ight) =
\frac{1}{2} Đúng||Sai

    c) P\left( \overline{B}|A ight) =
\frac{2}{3} Sai|| Đúng

    d) P\left( \overline{A} \cap B ight) =
\frac{3}{5} Sai|| Đúng

    a) Ta có: \left\{ \begin{matrix}
P\left( \overline{A} ight) = 0,4 \Rightarrow P(A) = 1 - 0,4 = 0,6 \\
P(B) = 0,8 \Rightarrow P\left( \overline{B} ight) = 1 - 0,8 = 0,2 \\
P(A \cap B) = 0,4 \\
\end{matrix} ight.

    b) P\left( A|B ight) = \frac{P(A \cap
B)}{P(B)} = \frac{0,4}{0,8} = \frac{1}{2}

    c) P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight) = 1 - \frac{P(A \cap B)}{P(A)} = 1 - \frac{0,4}{0,6}
= \frac{1}{3}

    d) P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,8 - 0,4 = 0,4

  • Câu 8: Nhận biết
    Tính xác suất

    Cho hai biến cố AB, với P(A) =
0,8;P(B) = 0,65;P\left( A \cap \overline{B} ight) = 0,55. Tính P(A \cap B)?

    Hướng dẫn:

    Ta có:

    P\left( A \cap \overline{B} ight) +
P(A \cap B) = P(A)

    \Rightarrow P(A \cap B) = P(A) - P\left(
A \cap \overline{B} ight) = 0,8 - 0,55 = 0,25.

  • Câu 9: Vận dụng cao
    Tính xác suất bắn trúng

    Cuối tuần M đến sân chơi để bắn cung, biết khoảng cách bắn tên thay đổi liên tục và khả năng bạn M bắn trúng bia tỉ lệ nghịch với khoảng cách bắn. M bắn lần đầu ở khoảng cách 20m với xác suất trúng bia là 0,5, nếu bị trượt M bắn tiếp mũi tên thứ hai ở khoảng cách 30m, nếu lại trượt M bắn mũi tên thứ ba ở khoảng cách 40m. Tính xác suất để M bắn trúng bia?

    Hướng dẫn:

    Gọi A là biến cố “M bắn trúng bia ở lần thứ nhất”

    Gọi B là biến cố “M bắn trúng bia ở lần thứ hai”

    Gọi C là biến cố “M bắn trúng bia ở lần thứ ba”

    Ta có: P(A) = 0,5

    Vì xác suất bắn trúng bia trong mỗi lần bắn tỷ lệ nghịch với khoảng cách bắn nên ta có:

    \left\{ \begin{matrix}P\left( B|\overline{A} ight) = \dfrac{20.0,5}{30} = \dfrac{1}{3} \\P\left( C|\overline{A}.\overline{B} ight) = \dfrac{20.0,5}{40} =\dfrac{1}{4} \\\end{matrix} ight.

    Ta có sơ đồ cây như sau:

    Xác suất để M bắn trúng bia là:

    P(A) + P\left( \overline{A}B ight) +
P\left( \overline{A}\overline{B}C ight) = 0,5 + 0,5.\frac{1}{3} +
0,5.\frac{2}{3}.\frac{1}{4} = 0,75

  • Câu 10: Thông hiểu
    Chọn đáp án đúng

    Cho hai biến cố A;BP(A) = 0,2;P(B) = 0,6;P\left( A|B ight) =
0,3. Xác định P\left( \overline{A}B
ight)?

    Hướng dẫn:

    Theo công thức tính xác suất có điều kiện ta có:

    P\left( A|B ight) = \frac{P(AB)}{P(B)}\Rightarrow P(AB) = P\left( A|B ight)P(B) = 0,3.0,6 =0,18

    \overline{A}BAB là hai biến cố xung khắc và \overline{A}B \cup AB = B nên theo tính chất của xác suất ta có:

    P\left( \overline{A}B ight) + P(AB) =
P(B)

    \Rightarrow P\left( \overline{A}B
ight) = P(B) - P(AB) = 0,6 - 0,18 = 0,42

  • Câu 11: Thông hiểu
    Tính xác suất có điều kiện

    Một hộp chứa 4 quả bóng được đánh số từ 1 đến 4. Bạn Hoa lấy ngẫu nhiên một quả bóng, bỏ ra ngoài, rồi lấy tiếp một quả bóng nữa.

    Xét các biến cố:

    A: "Quả bóng lấy ra lần đầu có số chẵn"

    B: "Quả bóng lấy ra lần hai có số lẻ".

    Tính xác suất có điều kiện P\left( B|A
ight)?

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}n(\Omega) = 12 \(A) = 6 \Rightarrow P(A) = \dfrac{6}{12} = \dfrac{1}{2} \(A \cap B) = 4 \Rightarrow P(A \cap B) = \dfrac{4}{12} = \dfrac{1}{3} \\\end{matrix} ight.

    Vậy P\left( B|A ight) = \dfrac{P(A \cap B)}{P(A)} = \dfrac{\dfrac{1}{3}}{\dfrac{1}{2}} = \dfrac{2}{3}

  • Câu 12: Thông hiểu
    Ghi lời giải bài toán vào chỗ trống

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Có 40 phiếu kiểm tra, mỗi phiếu có một câu hỏi, biết rằng có 13 câu hỏi lý thuyết (gồm 5 câu mức độ khó và 8 câu mức độ dễ) và 27 câu hỏi bài tập (gồm 12 câu mức độ khó và 15 câu mức độ dễ). Lấy ngẫu nhiên ra một phiếu. Tìm xác suất rút được câu hỏi lý thuyết mức độ khó.

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Vận dụng
    Xác định số kẹo ban đầu

    Trong một túi có một số viên kẹo cùng loại, chỉ khác màu, trong đó có 6 viên kẹo màu trắng, còn lại là kẹo màu xanh. Bạn T lấy ngẫu nhiên 1 viên kẹo từ trong túi, không trả lại. Sau đó T lại lấy ngẫu nhiên thêm 1 viên kẹo khác từ trong túi. Hỏi ban đầu trong túi có bao nhiêu viên kẹo? Biết rằng xác suất T lấy được cả hai viên kẹo màu trắng là \frac{1}{3}.

    Hướng dẫn:

    Gọi A là biến cố “T lấy được viên kẹo màu trắng ở lần thứ nhất”

    Gọi B là biến cố “T lấy được viên kẹo màu trắng ở lần thứ hai”.

    Ta có xác suất để T lấy được cả hai viên kẹo màu trắng là: \frac{1}{3}

    Gọi số kẹo ban đầu trong túi là: n (viên)

    Điều kiện n \in \mathbb{N}^{*};n eq1

    Ta có: P(A) = \frac{6}{n};P\left( B|Aight) = \frac{5}{n - 1}

    Theo công thức nhân xác suất, ta có:

    P(AB) = P(A).P\left( B|A ight) =\frac{6}{n}.\frac{5}{n - 1} = \frac{30}{n^{2} - n}

    P(AB) = \frac{1}{3}

    \Rightarrow \frac{30}{n^{2} - n} =\frac{1}{3} \Leftrightarrow n^{2} - n = 90 \Leftrightarrow \left\lbrack\begin{matrix}n = - 9(ktm) \\n = 10(tm) \\\end{matrix} ight.

    Vậy ban đầu trong túi có 10 viên kẹo.

  • Câu 14: Nhận biết
    Chọn đáp án đúng

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{A} \cap B ight)?

    Hướng dẫn:

    Cách 1: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B)

    P\left( \overline{A}|B ight) = 1 -
P\left( A|B ight) = 1 - \frac{P(A \cap B)}{P(B)} = 1 - \frac{0,3}{0,7}
= \frac{4}{7}

    Do đó: P\left( \overline{A} \cap B
ight) = P\left( \overline{A}|B ight).P(B) = \frac{4}{7}.0,7 = 0,4 =
\frac{2}{5}

    Cách 2: Ta có:

    P\left( \overline{A} \cap B ight) +
P(A \cap B) = P(B)

    \Rightarrow P\left( \overline{A} \cap B
ight) = P(B) - P(A \cap B) = 0,7 - 0,3 = 0,4.

  • Câu 15: Thông hiểu
    Chọn đáp án đúng

    Một công ty xây dựng đấu thầu 2 dự án độc lập. Khả năng thắng thầu của các dự án 1 là 0,6 và dự án 2 là 0,7. Xác suất công ty thắng thầu đúng 1 dự án là:

    Hướng dẫn:

    Gọi A là biến cố ”Thắng thầu dự án 1″

    Gọi B là biến cố “Thắng thầu dự án 2″

    Theo đề bài ta có: \left\{ \begin{matrix}
P(A) = 0,6 \Rightarrow P\left( \overline{A} ight) = 0,4 \\
P(B) = 0,3 \Rightarrow P\left( \overline{B} ight) = 0,7 \\
\end{matrix} ight. với 2 biến cố A; B độc lập.

    Gọi C là biến cố “Thắng thầu đúng 1 dự án” khi đó ta có:

    P(C) = P\left( A \cap \overline{B} +
\overline{A} \cap B ight)

    = P\left( A \cap \overline{B} ight) +
P\left( \overline{A} \cap B ight)

    = P(A)P\left( \overline{B} ight) +
P\left( \overline{A} ight)P(B)

    = 0,6.0,3 + 0,4.0,7 = 0,46

  • Câu 16: Nhận biết
    Tìm giá trị xác suất

    Cho hai biến cố AB, với P(A) =
0,6;P(B) = 0,7;P(A \cap B) = 0,3. Tính P\left( \overline{B}|A ight)?

    Hướng dẫn:

    Ta có:

    P\left( \overline{B}|A ight) = 1 -
P\left( B|A ight)

    = 1 - \frac{P(A \cap B)}{P(A)} = 1 -
\frac{0,3}{0,6} = \frac{1}{2}.

  • Câu 17: Thông hiểu
    Tính xác suất có điều kiện

    Trong hộp có 20 nắp chai Cocacola trong đó có 2 nắp ghi “Chúc mừng bạn đã trúng thưởng”. Bạn A được chọn lên rút thăm lần lượt hai nắp chai, xác suất để cả hai nắp đều trúng thưởng là:

    Hướng dẫn:

    Gọi A là biến cố “nắp đầu trúng thưởng”

    Gọi B là biến cố “nắp thứ hai trúng thưởng”

    Ta đi tìm giá trị P(A \cap
B)

    Khi bạn rút thăm lần đầu thì trong hộp có 20 nắp trong đó có 2 nắp trúng do đó: P(A) = \frac{2}{20} =
\frac{1}{10}

    Khi biến cố A đã xảy ra thì còn lại 19 nắp trong đó có 1 nắp trúng thưởng, do đó: P\left( B|A ight) =
\frac{1}{19}

    Ta có:

    P\left( B|A ight) = \frac{P(A \cap
B)}{P(A)}

    \Rightarrow P(A \cap B) = P\left( B|A
ight).P(A) = \frac{1}{19}.\frac{1}{10} = \frac{1}{190}.

  • Câu 18: Thông hiểu
    Ghi lời giải bài toán vào chỗ trống

    Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Một bình đựng 50 viên bi kích thước, chất liệu như nhau, trong đó có 30 viên bi xanh và 20 viên bi trắng. Lấy ngẫu nhiên ra một viên bi, rồi lại lấy ngẫu nhiên ra một viên bi nữa. Tính xác suất để lấy được một viên bi xanh ở lần thứ nhất và một viên bi trắng ở lần thứ hai?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 19: Nhận biết
    Tính xác suất của biến cố

    Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

    Hướng dẫn:

    Gọi A là biến cố “con xúc xắc thứ nhất xuất hiện mặt 4 chấm”.

    Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

    Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì thì lần thứ hai xuất hiện 2 chấm thì tổng hai lần xuất hiện là 6 chấm thì P\left( B|A ight) = \frac{1}{6}.

  • Câu 20: Nhận biết
    Xác định phần tử của biến cố

    Một hộp chứa 5 quả bóng gồm 2 quả màu đỏ (đánh số 1 và 2), 2 quả màu xanh (đánh số 3 và 4) và 1 quả màu vàng (đánh số 5). Lấy ngẫu nhiên hai quả bóng liên tiếp không hoàn lại.

    Xét các biến cố A: "Quả bóng lấy ra đầu tiên có màu đỏ"

    B: "Tổng số của hai quả bóng lấy ra là số lẻ"

    Xác định B|A là biến cố B khi biết A đã xảy ra?

    Hướng dẫn:

    Khi A đã xảy ra, nghĩa là quả bóng đầu tiên lấy ra có màu đỏ (số 1 hoặc 2).

    Do đó, không gian mẫu mới là

    \Omega' = A = \left\{
(1;2),(1;3),(1;4),(1;5),(2;1),(2;3),(2;4),(2;5) ight\}

    Biến cố B khi biết A đã xảy ra là:

    B|A = A \cap B = \left\{
(1;2),(1;4),(2;1),(2;3),(2;5) ight\}

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (50%):
    2/3
  • Vận dụng (10%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 28 lượt xem
Sắp xếp theo