Luyện tập Đường tiệm cận của đồ thị hàm số KNTT

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Tìm đồ thị hàm số có tiệm cận đứng

    Trong các hàm số sau, đồ thị của hàm số nào có tiệm cận đứng?

    Hướng dẫn:

    Xét hàm số y =
\frac{1}{\sqrt{x}}

    Tập xác định D = (0; +
\infty)

    \lim_{x ightarrow
0^{+}}\frac{1}{\sqrt{x}} = + \infty suy ra x = 0 là tiệm cận đứng của hàm số.

  • Câu 2: Thông hiểu
    Chọn đáp án thích hợp

    Đồ thị của hàm số nào trong bốn hàm số sau có đường tiệm ngang?

    Hướng dẫn:

    Ta có:

    y = \frac{x}{1 + \sqrt{x}} không có tiệm cận ngang vì \lim_{x ightarrow +
\infty}\frac{x}{1 + \sqrt{x}} = + \infty

    y = x^{3} - 3x không có tiệm cận ngang vì \lim_{x ightarrow \pm
\infty}\left( x^{3} - 3x ight) = \pm \infty

    y = \log_{2}x không có tiệm cận ngang vì \lim_{x ightarrow + \infty}\left(\log_{2}x ight) = + \infty

    y = x + \sqrt{x^{2} + 4} có tiệm cận ngang vì \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  + \infty } \left( {x + \sqrt {{x^2} + 4} } ight) =  + \infty  \hfill \\
  \mathop {\lim }\limits_{x \to  - \infty } \left( {x + \sqrt {{x^2} + 4} } ight) = 0 \hfill \\ 
\end{gathered}  ight.

  • Câu 3: Thông hiểu
    Tìm m thỏa mãn yêu cầu bài toán

    Cho hàm số y = \frac{(2m + 1)x^{2} +
3}{\sqrt{x^{4} + 1}} với m là tham số. Tìm giá trị của m để đường tiệm cận ngang của đồ thị hàm số đi qua điểm A(1; - 3)?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 2m + 1 suy ra d:y = 2m + 1 là tiệm cận ngang của đồ thị hàm số đã cho.

    Do A(1; - 3) \in d \Leftrightarrow 2m + 1
= - 3 \Leftrightarrow m = - 2

  • Câu 4: Vận dụng
    Tìm số tiệm cận của đồ thị hàm số

    Cho hàm số y = f(x) xác định trên \mathbb{R}\left\{ - 1;2
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Số đường tiệm cận của đồ thị hàm số y =
\frac{1}{f(x) - 1} bằng:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy f(x) - 1
= 0 có 4 nghiệm phân biệt nên đồ thị hàm số y = \frac{1}{f(x) - 1} có 4 đường tiệm cận đứng.

    Ngoài ra \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - \infty } \frac{1}{{f\left( x ight) - 1}} = 0 \hfill \\
  \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{f\left( x ight) - 1}} =  - \frac{1}{2} \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số y = \frac{1}{f(x) - 1} có hai đường tiệm cận ngang.

    Vậy số đường tiệm cận của đồ thị hàm số y
= \frac{1}{f(x) - 1} bằng 6.

  • Câu 5: Thông hiểu
    Xác định tham số m thỏa mãn yêu cầu

    Tất cả các giá trị của tham số m để đồ thị hàm số y = \frac{x + 1}{x^{2} + 4x
+ m} có duy nhất một đường tiệm cận là:

    Hướng dẫn:

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow - \infty}y = 0 nên đồ thị hàm số luôn có một đường tiệm cận ngang là y =
0.

    Vậy để đồ thị hàm số y = \frac{x +
1}{x^{2} + 4x + m} có duy nhất một đường tiệm cận thì đồ thị hàm số không có đường tiệm cận đứng, hay phương trình x^{2} + 4x + m vô nghiệm

    \Leftrightarrow \Delta' < 0 \Leftrightarrow
4 - m < 0 \Leftrightarrow m > 4

  • Câu 6: Thông hiểu
    Tìm tiệm cận của đồ thị hàm số

    Số đường tiệm cận của đồ thị hàm số y =
\frac{\sqrt{x - 1}}{x^{2} - 2x} là:

    Hướng dẫn:

    Điều kiện xác định x \geq 1;x eq
2

    Ta có: \lim_{x ightarrow + \infty}y =
\lim_{x ightarrow + \infty}\frac{\sqrt{x - 1}}{x^{2} - 2x} =
0 suy ra y = 0 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{\sqrt{x - 1}}{x^{2} - 2x} = + \infty nên đồ thị hàm số có 1 tiệm cận đứng x =
2.

    Vậy đồ thị hàm số có 2 đường tiệm cận.

  • Câu 7: Nhận biết
    Tìm tổng các đường tiệm cận theo yêu cầu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Tổng số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số đã cho là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta thấy

    Tiệm cận ngang là y = 3

    Tiệm cận đứng là x = -1 và x = 1

    Vậy tổng các đường tiệm cận cần tìm bằng 3.

  • Câu 8: Thông hiểu
    Xác định m thỏa mãn yêu cầu

    Biết đồ thị hàm số y = \frac{(2m -
n)x^{2} + mx + 1}{x^{2} + mx + n - 6} (với m,n là tham số) nhận trục hoành và trục tung làm hai đường tiệm cận. Tính tổng m +
n?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{(2m - n)x^{2} + mx + 1}{x^{2} + mx + n - 6} = 2m -
n suy ra y = 2m - n là tiệm cận ngang của đồ thị hàm số.

    Suy ra 2m
- n = 0.

    Đồ thị hàm số nhận trục tung x =
0 là tiệm cận đứng nên phương trình x^{2} + mx + n - 6 = 0 có một nghiệm bằng 0 hay n
- 6 = 0

    Theo giả thiết ta có: \left\{
\begin{matrix}
2m - n = 0 \\
n - 6 = 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
m = 3 \\
n = 6 \\
\end{matrix} ight.\  \Rightarrow m + n = 9

  • Câu 9: Vận dụng cao
    Tìm số nguyên m để đồ thị hàm số có tiệm cận ngang

    Cho hàm số y = f(x) liên tục trên tập số thực và \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 1;\mathop {\lim }\limits_{x \to  -  + } f\left( x ight) =  + \infty. Có bao nhiêu giá trị nguyên của tham số m thuộc [-2020; 2020] để đồ thị hàm số g\left( x ight) = \frac{{\sqrt {{x^2} + 3x}  + x}}{{\sqrt {2f\left( x ight) - {f^2}\left( x ight)}  + m}} có tiệm cận ngang nằm bên dưới đường thẳng y = -1.

    Hướng dẫn:

    Điều kiện \left\{ {\begin{array}{*{20}{c}}  {x \leqslant  - 3;x \geqslant 0} \\   {0 \leqslant f\left( x ight) \leqslant 2} \\   {\sqrt {2f\left( x ight) - {f^2}\left( x ight)}  + m e 0} \end{array}} ight.

    Do \mathop {\lim }\limits_{x \to  - \infty } f\left( x ight) = 1 \Rightarrow \mathop {\lim }\limits_{x \to  - \infty } \sqrt {2f\left( x ight) - {f^2}\left( x ight)}  = \sqrt {\mathop {\lim }\limits_{x \to  - \infty } \left[ {2f\left( x ight) - {f^2}\left( x ight)} ight]}  = 1

    \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + 3x}  + x} ight) = \mathop {\lim }\limits_{x \to  + \infty } \frac{3}{{ - \left( {\sqrt {1 - \dfrac{3}{x}}  + 1} ight)}} =  - \frac{3}{2}

    Từ đó \mathop {\lim }\limits_{x \to  - \infty } g\left( x ight) =  - \frac{3}{{2m + 2}},\left( {m e  - 1} ight)

    Khi đó hàm số g(x) có tiệm cận ngang là đường thẳng y = \frac{{ - 3}}{{2m + 2}}

    Để tiệm cận ngang tìm được ở trên nằm dưới đường thẳng y = - thì \frac{{ - 3}}{{2m + 2}} <  - 1 \Rightarrow  - 1 < m < \frac{1}{2}

    m \in \mathbb{Z} \Rightarrow m = 0

  • Câu 10: Vận dụng
    Ghi đáp án vào ô trống

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Cho hàm số y = \frac{x + 1}{\sqrt{ax^{2}+ 1}} có đồ thị (C). Tìm giá trị a để đồ thị hàm số có đường tiệm cận và đường tiệm cận đó cách đường tiếp tuyến của (C) một khoảng bằng \sqrt{2} - 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 11: Nhận biết
    Chọn đáp án chính xác

    Tìm tất cả các đường tiệm cận đứng và tiệm cận ngang của đồ thị hàm số y = \frac{\sqrt{9x^{2} + 6x + 4}}{x +
2}?

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow - 2^{+}}y = +
\infty suy ra x = - 2 là tiệm cận ngang của hàm số.

    \lim_{x ightarrow + \infty}y =
3;\lim_{x ightarrow - \infty}y = - 3 suy ra y = 3;y = - 3 là hai tiệm cận ngang của hàm số.

  • Câu 12: Nhận biết
    Xác định số đường tiệm cận ngang

    Số đường tiệm cận ngang của đồ thị hàm số y = \frac{x}{\sqrt{x^{2} + 1}} bằng:

    Hướng dẫn:

    Ta có:

    \lim_{x ightarrow + \infty}y = \lim_{x
ightarrow + \infty}\left( \frac{x}{\sqrt{x^{2} + 1}} ight) =
1 suy ra y = 1 là một tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow - \infty}y = \lim_{x
ightarrow - \infty}\left( \frac{x}{\sqrt{x^{2} + 1}} ight) = -
1 suy ra y = - 1 là một tiệm cận ngang của đồ thị hàm số.

    Vậy tổng số đường tiệm cận ngang của đồ thị hàm số đã cho bằng 2.

  • Câu 13: Nhận biết
    Xác định tất cả các khẳng định sai

    Cho hàm số y =
f(x) có bảng biến thiên như sau:

    Có bao nhiêu khẳng định sai trong các khẳng định dưới đây?

    (i) Đồ thị hàm số có ba đường tiệm cận.

    (ii) Hàm số có cực tiểu tại x =
2.

    (iii) Hàm số nghịch biến trên mỗi khoảng ( - \infty; - 1);(1; + \infty).

    (iv) Hàm số xác định trên \mathbb{R}.

    Hướng dẫn:

    Do \lim_{x ightarrow - \infty}f(x) = -
1;\lim_{x ightarrow + \infty}f(x) = 2 nên đồ thị hàm số có hai đường tiệm cận ngang; \lim_{x
ightarrow 1^{\pm}}f(x) = \pm \infty nên đồ thị hàm số có một tiệm cận đứng. Do đó đồ thị hàm số có ba đường tiệm cận nên (i) đúng.

    Hàm số có cực tiểu tại x = 2 đúng nên (ii) đúng.

    Hàm số nghịch biến trên ( - \infty; -
1);(1;2) nên (iii) sai.

    Hàm số không xác định tại x = 1 nên (iv) sai.

    Vậy có 2 khẳng định sai.

  • Câu 14: Nhận biết
    Xác định tiệm cận ngang

    Tìm tiệm cận ngang của đồ thị hàm số y =
\frac{x}{x^{2} - 1}?

    Hướng dẫn:

    Ta có: \lim_{x ightarrow \pm
\infty}\frac{x}{x^{2} - 1} = 0

    Do đó tiệm cận ngang của đồ thị hàm số y
= \frac{x}{x^{2} - 1}y =
0.

  • Câu 15: Nhận biết
    Chọn đáp án đúng

    Cho đồ thị hàm số y = f(x) có đồ thị như hình sau:

    Đồ thị hàm số trên có đường tiệm cận đứng là:

    Hướng dẫn:

    Dựa vào đồ thị hàm số, đường tiệm cận đứng của đồ thị hàm số đã cho là x = - 1.

  • Câu 16: Nhận biết
    Tìm tất cả các đường tiệm cận của hàm số

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Đồ thị hàm số đã cho có tất cả bao nhiêu đường tiệm cận?

    Hướng dẫn:

    Dựa vào bảng biến thiên ta có: \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to  - {2^ + }} f\left( x ight) =  - \infty  \hfill \\
  \mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) =  + \infty  \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho có hai tiệm cận đứng là x = - 2x = 0.

    \lim_{x ightarrow + \infty}y =
0 nên đồ thị hàm số đã cho có một tiệm cận ngang là y = 0

    Vậy đồ thị hàm số đã cho có 3 đường tiệm cận.

  • Câu 17: Thông hiểu
    Xác định các đường tiệm cận

    Số đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số y = \frac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} -
2} là:

    Hướng dẫn:

    Điều kiện xác định \left\{ \begin{matrix}
2 - x \geq 0 \\
\sqrt{x^{2} + 3} - 2 eq 0 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
\sqrt{x^{2} + 3} eq 2 \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
x \leq 2 \\
x eq \pm 1 \\
\end{matrix} ight.

    Ta có: \lim_{x ightarrow -\infty}\left( \dfrac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} - 2} ight) =\lim_{x ightarrow - \infty}\left( \dfrac{- \sqrt{\dfrac{2}{x^{2} -\dfrac{1}{x}}} - 1}{- \sqrt{1 + \dfrac{3}{x}} - \dfrac{2}{x}} ight) =1 nên y = 1 là tiệm cận ngang của đồ thị hàm số.

    \lim_{x ightarrow 1}\frac{\sqrt{2 - x}
- x}{\sqrt{x^{2} + 3} - 2} = \lim_{x ightarrow 1}\frac{\left( 2 - x -
x^{2} ight)\left( \sqrt{x^{2} + 3} + 2 ight)}{\left( x^{2} - 2
ight)\left( \sqrt{2 - x} + x ight)}

    = \lim_{x ightarrow 1}\frac{(2 -
x)\left( \sqrt{x^{2} + 3} + 2 ight)}{(x + 2)\left( \sqrt{2 - x} + x
ight)} = - 3 suy ra x =
1 là tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 1^{-}}\frac{\sqrt{2 -x} - x}{\sqrt{x^{2} + 3} - 2} = + \infty;\lim_{x ightarrow1^{+}}\frac{\sqrt{2 - x} - x}{\sqrt{x^{2} + 3} - 2} = - \infty suy ra x = - 1 là tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số đã cho có hai đường tiệm cận.

  • Câu 18: Thông hiểu
    Tìm số đường tiệm cận đứng của đồ thị hàm số

    Cho hàm số y = f(x) có đồ thị như hình vẽ:

    Hỏi đồ thị hàm số g(x) =
\frac{2020}{2f(x) + 1} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    Số đường tiệm cận đứng là số nghiệm của phương trình f(x) = - \frac{1}{2}

    Nhìn vào đồ thị ta thấy phương trình trên có 4 nghiệm tương ứng với 4 đường tiệm cận đứng.

  • Câu 19: Thông hiểu
    Xác định số đường tiệm cận đứng

    Đồ thị hàm số y = \frac{x - 3}{x^{2} + x
- 2} có bao nhiêu đường tiệm cận đứng?

    Hướng dẫn:

    Ta có: y = \frac{x - 3}{x^{2} + x - 2} =
\frac{x - 3}{(x - 1)(x + 2)}

    \lim_{x ightarrow 1^{+}}y = \lim_{x
ightarrow 1^{+}}\frac{x - 3}{(x - 1)(x + 2)} = - \infty suy ra x = 1 là đường tiệm cận đứng của đồ thị hàm số.

    \lim_{x ightarrow 2^{+}}y = \lim_{x
ightarrow 2^{+}}\frac{x - 3}{(x - 1)(x + 2)} = + \infty suy ra x = - 2 là đường tiệm cận đứng của đồ thị hàm số.

    Vậy đồ thị hàm số đã cho có 2 đường tiệm cận đứng.

  • Câu 20: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Từ bảng biến thiên của hàm số y =
f(x) ta có: \lim_{x ightarrow -
\infty}f(x) = - \infty;\lim_{x ightarrow + \infty}f(x) = +
\infty nên đồ thị hàm số đã cho không có tiệm cận ngang.

    \left\{ \begin{gathered}
  \mathop {\lim }\limits_{x \to {0^ + }} f\left( x ight) = 4;\mathop {\lim }\limits_{x \to {0^ - }} f\left( x ight) = 4 \hfill \\
  \mathop {\lim }\limits_{x \to {3^ - }} f\left( x ight) =  - 1;\mathop {\lim }\limits_{x \to {3^ + }} f\left( x ight) =  - 1 \hfill \\ 
\end{gathered}  ight. nên đồ thị hàm số đã cho không có tiệm cận đứng.

    Vậy đồ thị hàm số đã cho không có tiệm cận.

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (45%):
    2/3
  • Vận dụng (10%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 4 lượt xem
Sắp xếp theo