Luyện tập Khảo sát sự biến thiên và vẽ đồ thị của hàm số KNTT

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Xác định m thỏa mãn yêu cầu

    Cho hàm số f(x) = ax^{3} + bx^{2} + cx +
d;(a eq 0) có đồ thị như hình vẽ:

    Tập hợp các giá trị của tham số m để phương trình f(x + m) = m có đúng ba nghiệm phân biệt là:

    Hướng dẫn:

    Đồ thị hàm số f(x + m) = m có được bằng cách tịnh tiến đồ thị hàm số y =
f(x) sang trái hoặc sang phải theo phương song song với trục hoành |m| đơn vị.

    Suy ra phương trình f(x + m) = m có đúng ba nghiệm phân biệt khi và chỉ khi m
\in ( - 2;2).

  • Câu 2: Nhận biết
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - mx^{2} +
m có đồ thị (C). Tìm tham số m để (C) đi qua điểm M(2;16)?

    Hướng dẫn:

    Ta có: M(2;16) \in (C) \Leftrightarrow 16
= 2^{4} - m.2^{2} + m \Leftrightarrow 3m = 0 \Leftrightarrow m =
0

    Vậy m = 0.

  • Câu 3: Nhận biết
    Chọn đáp án thích hợp

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Xác định hàm số y = f(x)?

    Hướng dẫn:

    Từ bảng biến thiên ta suy ra hàm số cần tìm là hàm số bậc ba

    \lim_{x ightarrow + \infty}f(x) = +
\infty nên đáp án là y = x^{3} -
3x^{2} + 1.

  • Câu 4: Vận dụng
    Chọn khẳng định đúng

    Cho đồ thị hàm số (C):y = \frac{2x + 1}{x
+ 2}. Giả sử M(a;b) \in
(C) có khoảng cách đến đường thẳng d:y = 3x + 6 nhỏ nhất. Chọn khẳng định đúng?

    Hướng dẫn:

    Ta có: M\left( a;\frac{2a + 1}{a + 2}
ight);(a eq - 2)

    Khoảng cách từ M đến đường thẳng (d) bằng:

    d(M;d) = \dfrac{\left| 3a - \dfrac{2a +1}{a + 2} + 6 ight|}{\sqrt{3^{2} + 1}}= \frac{1}{\sqrt{10}}.\left| 3a+ 6 - \frac{2a + 1}{a + 2} ight|= \frac{1}{\sqrt{10}}.\left|\frac{3a^{2} + 10a + 11}{a + 2} ight|

    Xét hàm số f(a) = \frac{3a^{2} + 10a +
11}{a + 2};(a eq - 2)

    f'(a) = \frac{3\left( a^{2} + 4a + 3
ight)}{(a + 2)^{2}} = 0 \Leftrightarrow \left\lbrack \begin{matrix}
a = - 1 \\
a = - 3 \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Vậy giá trị nhỏ nhất của hàm số \left|
f(a) ight| = 4 tại a = -
1

    Vậy \left\{ \begin{matrix}
a = - 1 \\
b = - 1 \\
\end{matrix} ight.\  \Rightarrow a + b = - 2

  • Câu 5: Nhận biết
    Chọn mệnh đề đúng

    Cho hình vẽ sau:

    Đường cong trong hình vẽ là đồ thị của hàm số có dạng y = \frac{ax + b}{cx + d};\left(
a;b;c;d\mathbb{\in R} ight). Mệnh đề nào dưới đây đúng?

    Hướng dẫn:

    Từ đồ thị hàm số ta thấy hàm số đồng biến trên các khoảng ( - \infty; - 1)( - 1; + \infty) suy ra y' > 0;\forall x eq 1.

  • Câu 6: Nhận biết
    Tìm m nguyên thỏa mãn yêu cầu

    Cho hàm số y = f(x) có bảng biến thiên như sau:

    Có bao nhiêu giá trị nguyên của tham số m để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt?

    Hướng dẫn:

    Ta có: 2f(x) + 3m = 0 \Leftrightarrow
f(x) = \frac{- 3m}{2}

    Để phương trình 2f(x) + 3m = 0 có ba nghiệm phân biệt thì - \frac{3m}{2} =
- 3 \Leftrightarrow m = 2

    Vậy có 1 giá trị nguyên của m thỏa mãn yêu cầu.

  • Câu 7: Nhận biết
    Tìm tâm đối xứng của đồ thị hàm số

    Tâm đối xứng của đồ thị hàm số y =
\frac{3x - 1}{x + 2} là điểm nào trong các điểm cho sau đây?

    Hướng dẫn:

    Đồ thị hàm số y = \frac{3x - 1}{x +
2} nhận giao của hai tiệm cận làm tâm đối xứng

    Đồ thị hàm số có tiệm cận ngang là y =
3 và tiệm cận đứng là x = -
2

    Do đó tâm đối xứng của đồ thị hàm số là điểm ( - 2;3).

  • Câu 8: Vận dụng cao
    Bất phương trình chưa tham số m nghiệm đúng

    Cho hàm số y = f(x). Biết rằng hàm số y = f’(x) liên tục trên tập số thực và có đồ thị như hình vẽ:

    Bất phương trình chưa tham số m nghiệm đúng

    Bất phương trình f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m (với m là tham số thực) nghiệm đúng với mọi x \in \left( { - 1;3} ight) khi và chỉ khi:

    Hướng dẫn:

    Đặt u = \sqrt {x + 1}

    x \in \left( { - 1;3} ight) \Rightarrow u \in \left( {0;2} ight)

    => f\left( u ight) < u + m \Rightarrow f\left( u ight) - u < m

    Xét hàm số g\left( u ight) = f\left( u ight) - u;{\text{  }}u \in \left( {0;2} ight)

    Ta có: g'\left( u ight) = f'\left( u ight) - 1

    Dựa vào đồ thị hàm số ta thấy: u \in \left[ {0;2} ight] thì f'\left( u ight) < 1;\forall u \in \left[ {0;2} ight]

    => g(u) nghịch biến trên (0; 2)

    Vậy để f\left( {\sqrt {x + 1} } ight) < \sqrt {x + 1}  + m nghiệm đúng với mọi x \in \left( { - 1;3} ight) thì

    \begin{matrix}  f\left( u ight) - u < m;\forall u \in \left( {0;2} ight) \hfill \\   \Rightarrow m \geqslant \mathop {\max }\limits_{\left[ {0;2} ight]} g\left( u ight) = g\left( 0 ight) = f\left( 0 ight) \hfill \\ \end{matrix}

  • Câu 9: Thông hiểu
    Chọn hình vẽ thích hợp

    Hình vẽ nào sau đây là đồ thị của hàm số y = (x - c)(d - x)^{2} với c > d > 0?

    Hướng dẫn:

    Với c > d > 0 thì đồ thị hàm số y = (x - c)(d - x)^{2} theo thứ tự tiếp xúc với trục hoành tại điểm có hoành độ x = dx =
c

    Mặt khác với x \leq c thì y \leq 0 nên khi x \leq c thì đồ thị hàm số nằm phía dưới trục hoành

    Vậy đồ thị hàm số cần tìm là .

  • Câu 10: Thông hiểu
    Tìm tập hợp các điểm M

    Có bao nhiêu điểm M thuộc đồ thị hàm số y = \frac{x + 2}{x - 1} sao cho khoảng cách từ điểm M đến trục tung bằng hai lần khoảng cách từ điểm M đến trục hoành?

    Hướng dẫn:

    Gọi M\left( a;\frac{a + 2}{a - 1}
ight);(a eq 1) là điểm thuộc đồ thị hàm số y = \frac{x + 2}{x - 1}

    Ta có: \left\{ \begin{matrix}d(M;Oy) = |a| \\d(M;Ox) = \left| \dfrac{a + 2}{a - 1} ight| \\\end{matrix} ight.. Theo bài ra ta có phương trình:

    |a| = 2.\left| \frac{a + 2}{a - 1}ight| \Leftrightarrow \left\lbrack \begin{matrix}a = 2.\left( \dfrac{a + 2}{a - 1} ight) \\a = - 2.\left( \dfrac{a + 2}{a - 1} ight) \\\end{matrix} ight.

    \Leftrightarrow \left\lbrack\begin{matrix}a^{2} - 3a - 4 = 0 \\a^{2} + a + 4 = 0 \\\end{matrix} ight.\  \Leftrightarrow \left\lbrack \begin{matrix}a = - 1 \Rightarrow M\left( - 1; - \dfrac{1}{2} ight) \\a = 4 \Rightarrow M(4;2) \\\end{matrix} ight.

    Vậy có 2 điểm M thỏa mãn yêu cầu bài toán.

  • Câu 11: Nhận biết
    Chọn đáp án đúng

    Cho hình vẽ:

    Hàm số nào sau đây có đồ thị như hình vẽ bên?

    Hướng dẫn:

    Nhận thấy dạng đồ thị của hàm số bậc ba y
= ax^{3} + bx^{2} + cx + d;(a eq 0)

    Mặt khác đồ thị cắt trục tung tại điểm có tung độ âm nên hàm số tương ứng với đồ thị là y = - x^{3} + 2x -
2.

  • Câu 12: Thông hiểu
    Xác định số nghiệm tối đa

    Cho đồ thị hàm số y = f(x) như sau:

    Hỏi phương trình 2f(x) = m có tối đa bao nhiêu nghiệm thực?

    Hướng dẫn:

    Phương trình 2f(x) = m \Leftrightarrow
f(x) = \frac{m}{2} là phương trình hoành độ giao điểm của đồ thị hàm số y = f(x) và đường thẳng y = \frac{m}{2}

    Số giao điểm của hai đường bằng số nghiệm của phương trình f(x) = \frac{m}{2}.

    Dựa vào đồ thị hàm số ta thấy đường thẳng y = \frac{m}{2} cắt đồ thị tại nhiều nhất 5 điểm.

    Vậy phương trình có tối đa 5 nghiệm.

  • Câu 13: Vận dụng
    Ghi đáp án vào ô trống

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Biết hàm số y = (x - 1)(x + 1)\left(x^{2} - 7 ight) cắt trục hoành tại 4 điểm phân biệt có hoành độ là x_{1};x_{2};x_{3};x_{4}. Hỏi có tất cả bao nhiêu giá trị nguyên của tham số m để \frac{1}{1 - x_{1}} + \frac{1}{1 - x_{2}} +\frac{1}{1 - x_{3}} + \frac{1}{1 - x_{4}} > 1?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 14: Nhận biết
    Tìm hàm số tương ứng bảng biến thiên

    Chọn hàm số tương ứng với bảng biến thiên sau?

    Hướng dẫn:

    Từ bảng biến thiên ta suy ra đồ thị hàm số bậc 4 trùng phương có hệ số a < 0 nên hàm số cần tìm là y = - x^{4} + 2x^{2} + 1.

  • Câu 15: Thông hiểu
    Tính độ dài đoạn AB

    Cho hàm số y = f(x) = x^{3} - 3x^{2} +
3 có đồ thị (C). Gọi A;B \in (C) và đối xứng nhau qua gốc tọa độ O. Độ dài AB bằng:

    Hướng dẫn:

    Gọi A(x;y),B( - x; - y) là hai điểm đối xứng nhau qua gốc tọa độ (x >
0)

    Vì A và B thuộc (C) nên x^{3} - 3x^{2} +
3 = - \left\lbrack ( - x)^{3} - 3( - x)^{2} + 3
ightbrack

    \Leftrightarrow x^{2} = 1 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 1 \Rightarrow y = 1 \\
x = - 1(L) \\
\end{matrix} ight.. Khi đó A(1;1),B( - 1; - 1)

    Độ dài đoạn AB là: AB = \sqrt{(1 + 1)^{2}
+ (1 + 1)^{2}} = 2\sqrt{2}.

  • Câu 16: Thông hiểu
    Chọn đáp án đúng

    Cho hàm số y = x^{4} - 4x^{2} -
2 có đồ thị (C) và đường thẳng d:y = m. Tất cả các giá trị của tham số m để d cắt (C) tại bốn điểm phân biệt?

    Hướng dẫn:

    Ta có: y' = 4x^{3} - 8x^{2} = 0
\Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = \sqrt{2} \\
x = - \sqrt{2} \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Từ bảng biến thiên ta thấy đồ thị hàm số y = x^{4} - 4x^{2} - 2 cắt đường thẳng d:y = m tại 4 điểm phân biệt \Leftrightarrow - 6 < m < - 2.

  • Câu 17: Thông hiểu
    Xác định số tọa độ nguyên thuộc đồ thị

    Đồ thị hàm số y = \frac{2x - 1}{3x +
4} có bao nhiêu điểm có tọa độ nguyên?

    Hướng dẫn:

    Ta có: y\mathbb{\in Z\Rightarrow}3y\in\mathbb{ Z }\Rightarrow\frac{6x - 3}{3x + 4} = 2 -\frac{11}{3x + 4}\mathbb{\in Z}

    \Rightarrow \frac{11}{3x + 4}\mathbb{\in
Z \Rightarrow}3x + 4 \in U(11)

    \Rightarrow \left\lbrack \begin{matrix}3x + 4 = 1 \\3x + 4 = - 1 \\3x + 4 = 11 \\3x + 4 = - 11 \\\end{matrix} ight.\  \Rightarrow \left\lbrack \begin{matrix}x = - 1 \Rightarrow y = \dfrac{1}{7}(L) \\x = - \dfrac{5}{3}(L) \\x = \dfrac{7}{3}(L) \\x = - 5 \Rightarrow y = 1(TM) \\\end{matrix} ight.

    Với đồ thị hàm số đã cho có đúng 1 điểm có tọa độ nguyên.

  • Câu 18: Thông hiểu
    Chọn khẳng định đúng

    Cho hàm số y = f(x) xác định trên \mathbb{R}\backslash\left\{ - 1
ight\} liên tục trên các khoảng xác định của nó và có bảng biến thiên như sau:

    Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Hàm số không có giá trị lớn nhất vì \lim_{x ightarrow - 1^{-}}y = + \infty nên khẳng định “Giá trị lớn nhất của hàm số là 2” sai.

    Phương trình f(x) = m có 3 nghiệm thực phân biệt khi và chỉ khi 1 <
m < 2 nên khẳng định “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2)” đúng.

    Hàm số đồng biến trên các khoảng ( -
\infty;1)( - 1;1) nên khẳng định “Hàm số đồng biến trên một khoảng duy nhất là ( - \infty;1)” sai.

    Đồ thị hàm số có hai đường tiệm cận là x
= - 1;y = 1\lim_{x ightarrow
\pm \infty}y = 1;\lim_{x ightarrow - 1^{- 1}}y = + \infty nên khẳng định “Đồ thị hàm số có ba đường tiệm cận” sai.

    Vậy khẳng định đúng cần tìm là “Phương trình f(x) = m3 nghiệm thực phân biệt khi và chỉ khi m \in (1;2).”

  • Câu 19: Nhận biết
    Tìm hàm số tương ứng với đồ thị

    Đồ thị của hàm số nào dưới đây có dạng như đường cong trong hình vẽ cho sau đây?

    Hướng dẫn:

    Đồ thị hàm số bậc 4 có hệ số a <
0 và có ba điểm cực trị nên ab <
0 nên chọn y = - x^{4} + 2x^{2} +
1.

  • Câu 20: Vận dụng
    Chọn mệnh đề đúng

    Đường thẳng y = m^{2} cắt đồ thị hàm số y = x^{4} - x^{2} - 10 tại hai điểm phân biệt sao cho tam giác OAB vuông (với O là gốc tọa độ). Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Xét hàm số y = x^{4} - x^{2} -
10 ta có y' = 4x^{3} - 2x = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 0 \\x = \dfrac{\sqrt{2}}{2} \\x = - \dfrac{\sqrt{2}}{2} \\\end{matrix} ight.

    Ta có bảng biến thiên như sau:

    m^{2} \geq 0;\forall m nên từ bảng biến thiên ta thấy đường thẳng y =
m^{2} luôn cắt đồ thị hàm số y =
x^{4} - x^{2} - 10 tại những cặp điểm đối xứng nhau qua trục tung.

    Giả sử A\left( x_{1};m^{2}
ight);B\left( - x_{1};m^{2} ight). Tam giác OAB vuông

    \Leftrightarrow
\overrightarrow{OA}.\overrightarrow{OB} = \overrightarrow{0}
\Leftrightarrow - {x_{1}}^{2} + m^{4} = 0 \Leftrightarrow x_{1} =
m^{2}

    Suy ra A\left( m^{2};m^{2}
ight)A\left( m^{2};m^{2}
ight) thuộc đồ thị hàm số nên

    m^{8} - m^{4} - 10 = m^{2}
\Leftrightarrow m^{2} = 2 \in (1;3)

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (15%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 6 lượt xem
Sắp xếp theo