Luyện tập Giá trị lớn nhất và giá trị nhỏ nhất của hàm số KNTT

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Thông hiểu
    Chọn đáp án đúng

    Một chất điểm chuyển động với quy luật s(t) = - t^{3} + 6t^{2}. Thời điểm t (giây) tại vận tốc v(m/s) của chuyển động đạt giá trị lớn nhất là:

    Hướng dẫn:

    Ta có: s(t) = - t^{3} + 6t^{2}
\Rightarrow v(t) = s'(t) = - 3t^{2} + 12t

    \Rightarrow v'(t) = 12 - 6t = 0
\Leftrightarrow t = 2

    Ta có bảng biến thiên như sau:

    Vậy vận tốc của chuyển động đạt giá trị lớn nhất bằng 12 khi t =
2.

  • Câu 2: Nhận biết
    Tìm giá trị nhỏ nhất của hàm số trên đoạn

    Cho hàm số y = f(x) liên tục trên đoạn \lbrack - 2;2brack có đồ thị như hình vẽ:

    Tìm giá trị nhỏ nhất của hàm số trên đoạn \lbrack - 2;2brack?

    Hướng dẫn:

    Trên đoạn \lbrack - 2;2brack ta có: f(x) \geq - 1f(x) = - 1 \Leftrightarrow \left\lbrack
\begin{matrix}
x = - 2 \\
x = 1 \\
\end{matrix} ight.

    Vậy \min_{\lbrack - 2;2brack}y = -
1.

  • Câu 3: Nhận biết
    Chọn khẳng định đúng

    Gọi giá trị nhỏ nhất của hàm số y =
\frac{x - 1}{x + 1} trên đoạn \lbrack 0;3brackm. Chọn khẳng định đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Ta có: y' = \frac{2}{(x + 1)^{2}}
> 0;\forall x \in D

    Suy ra hàm số đồng biến trên \lbrack
0;3brack suy ra \min_{\lbrack
0;3brack}y = f(0) = - 1 = m

  • Câu 4: Nhận biết
    Tính giá trị lớn nhất của hàm số

    Giá trị lớn nhất của hàm số y = - x^{4} +
2x^{2} + 1 trên đoạn \lbrack -
2;5brack bằng:

    Hướng dẫn:

    Ta có: y' = - 4x^{3} + 4x \Rightarrow
y' = 0 \Leftrightarrow \left\lbrack \begin{matrix}
x = 0 \\
x = - 1 \\
x = 1 \\
\end{matrix} ight.

    Khi đó \left\{ \begin{matrix}y( - 2) = - 5 \\y( - 1) = y(1) = 2 \\y(0) = 1 \\y(5) = - 574 \\\end{matrix} ight.\  \Rightarrow \max_{\lbrack - 2;5brack}y =y(1) = 2

  • Câu 5: Thông hiểu
    Tìm m thỏa mãn bất phương trình

    Tìm giá trị của m để bất phương trình x + \frac{4}{x - 1} \geq m có nghiệm trên khoảng ( -
\infty;1)?

    Hướng dẫn:

    Bất phương trình x + \frac{4}{x - 1} \geq
m có nghiệm trên khoảng ( -
\infty;1)

    \Leftrightarrow m \leq \max_{( -
\infty;1brack}g(x)

    Với g(x) = x + \frac{4}{x - 1}
\Rightarrow g'(x) = 1 - \frac{4}{(x - 1)^{2}}

    g'(x) = 0 \Leftrightarrow
\left\lbrack \begin{matrix}
x = 3 otin ( - \infty;1) \\
x = - 1 \in ( - \infty;1) \\
\end{matrix} ight.

    Ta có bảng biến thiên

    Dựa vào bảng biến thiên ta suy ra m \leq
- 3.

  • Câu 6: Nhận biết
    Chọn đáp án đúng

    Giá trị nhỏ nhất của hàm số y =
\frac{x^{2} + x + 4}{x} trên đoạn \lbrack - 3; - 1brack bằng:

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ 0 ight\} nên hàm số xác định và liên tục trên \lbrack - 3; - 1brack

    Ta có: y' = \frac{x^{2} -
4}{x^{2}};\forall x eq 0

    y' = 0 \Leftrightarrow \frac{x^{2} -
4}{x^{2}} = 0 \Leftrightarrow \left\{ \begin{matrix}
x = 2 \\
x = - 2 \\
\end{matrix} ight.

    y( - 3) = - \frac{10}{3};y( - 1) = -
4;y( - 2) = - 3

    \Rightarrow \min_{\lbrack - 3; -
1brack}y = y( - 1) = - 4

  • Câu 7: Nhận biết
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) liên tục trên \mathbb{R} và có bảng biến thiên như sau:

    Mệnh đề nào sau dây đúng?

    Hướng dẫn:

    Từ bảng biến thiên ta thấy hàm số có GTLN bằng 2 và không có GTNN.

  • Câu 8: Thông hiểu
    Tìm m để hàm số đồng biến trên đoạn

    Tìm tất cả các giá trị thực của tham số m để hàm số y
= \frac{1}{3}x^{3} - (m - 1)x^{2} - 4mx đồng biến trên đoạn \lbrack 1;4brack?

    Hướng dẫn:

    Theo yêu cầu bài toán ta có:

    y' = x^{2} - 2(m - 1)x - 4m \geq
0;\forall x \in \lbrack 1;4brack(*)

    Để hàm số đồng biến trên đoạn \lbrack
1;4brack

    \Leftrightarrow y' \geq 0;\forall x
\in \lbrack 1;4brack

    \Leftrightarrow x^{2} - 2(m - 1)x - 4m
\geq 0

    \Leftrightarrow m \leq \frac{x^{2} +
2x}{4 + 2x}

    Đặt g(x) = \frac{x^{2} + 2x}{4 + 2x}
\Rightarrow g'(x) = \frac{8x}{(4 + 2x)^{2}} > 0;\forall x \in
\lbrack 1;4brack

    \Rightarrow \min_{\lbrack
1;4brack}g(x) = g(1) = \frac{1}{2} \Rightarrow m \leq
\frac{1}{2}

    Vậy m \leq \frac{1}{2} là đáp án cần tìm.

  • Câu 9: Vận dụng cao
    Tổng GTLN và GTNN của biểu thức P

    Cho x, y là các số thực dương thỏa mãn điều kiện \left\{ {\begin{array}{*{20}{c}}  {{x^2} - xy + 3 = 0} \\   {2x + 3y - 14 \leqslant 0} \end{array}} ight.. Tổng giá trị lớn nhất và nhỏ nhất của biểu thức P = 3{x^2}y - x{y^2} - 2{x^3} + 2x bằng:

    Hướng dẫn:

    Ta có: \left\{ {\begin{array}{*{20}{c}}  {x > 0,y > 0} \\   {{x^2} - xy + 3 = 0} \end{array}} ight. \Rightarrow y = \frac{{{x^2} + 3}}{x} = x + \frac{3}{x}

    Lại có: 2x + 3y - 14 \leqslant 0

    \begin{matrix}   \Leftrightarrow 2x + 3\left( {x + \dfrac{3}{x} - 14} ight) \leqslant 0 \hfill \\   \Leftrightarrow 5{x^2} - 14x + 9 \leqslant 0 \Leftrightarrow x \in \left[ {1;\dfrac{9}{5}} ight] \hfill \\ \end{matrix}

    Từ đó P = 3{x^2}\left( {x + \frac{3}{x}} ight) - x\left( {x + \frac{3}{x}} ight) - 2{x^3} + 2x = 5x - \frac{9}{x}

    Xét hàm số f\left( x ight) = 5x - \frac{9}{x};\forall x \in \left[ {1;\frac{9}{5}} ight]

    f'\left( x ight) = 5 + \frac{9}{{{x^2}}} > 0;\forall x \in \left[ {1;\frac{9}{5}} ight]

    => Hàm số đồng biến trên \left[ {1;\frac{9}{5}} ight]

    => f\left( 1 ight) \leqslant f\left( x ight) \leqslant f\left( {\frac{9}{5}} ight) \Rightarrow  - 4 \leqslant f\left( x ight) \leqslant 4

    => \max P + \min P = 4 + \left( { - 4} ight) = 0

  • Câu 10: Nhận biết
    Xác định giá trị lớn nhất của hàm số

    Tìm giá trị lớn nhất của hàm số y = f(x)
= x^{3} - x^{2} - 8x trên đoạn \lbrack 1;3brack?

    Hướng dẫn:

    Ta có: y' = 3x^{2} - 2x -
8

    \Leftrightarrow y' = 0\Leftrightarrow \left\lbrack \begin{matrix}x = 2 \\x = - \dfrac{4}{3} \\\end{matrix} ight.

    \Rightarrow \left\{ \begin{matrix}
f(1) = - 8 \\
f(2) = - 12 \\
f(33) = - 6 \\
\end{matrix} ight.\  \Rightarrow \max_{\lbrack 1;3brack}f(x) = -
6.

  • Câu 11: Thông hiểu
    Chọn khẳng định đúng

    Biết giá trị lớn nhất của hàm số y =
\frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack bằng - 1. Khẳng định nào dưới đây đúng?

    Hướng dẫn:

    Ta có: y' = \frac{- 2 - m^{2}}{(x -
2)^{2}} < 0 nên giá trị lớn nhất của hàm số y = \frac{x + m^{2}}{x - 2} trên đoạn \lbrack - 1;1brack là: f( - 1) = - 1 \Leftrightarrow \frac{m^{2} - 1}{-
3} = - 1 \Leftrightarrow m = \pm 2 \in ( - 4;3)

    Vậy đáp án cần tìm là m \in ( -
4;3).

  • Câu 12: Vận dụng
    Ghi đáp án vào ô trống

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
    Đáp án là:

    Bác T làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp có chiều dài gấp đôi chiều rộng. Biết rằng bác T sử dụng hết 8m^{2} kính. Hỏi dung tích lớn nhất của bế cá bằng bao nhiêu?

    Chỗ nhập nội dung câu trả lời tự luận
  • Câu 13: Nhận biết
    Tìm GTNN của hàm số

    Trên đoạn \lbrack 0;1brack hàm số y = \sqrt{4 - 3x} có giá trị nhỏ nhất bằng bao nhiêu?

    Hướng dẫn:

    Tập xác định D = \left( -
\infty;\frac{4}{3} ightbrack

    Ta có: y' = \frac{- 3}{2\sqrt{4 -
3x}} < 0;\forall x < \frac{4}{3}

    Trên đoạn \lbrack 0;1brack hàm số đã cho nghịch biến

    \Rightarrow \min_{\lbrack 0;1brack}y =
y(1) = 1

  • Câu 14: Nhận biết
    Tìm giá trị lớn nhất của hàm số

    Cho hàm số y = f(x) xác định và liên tục trên \mathbb{R} có bảng biến thiên như sau:

    Giá trị lớn nhất của hàm số y =
f(x) trên \lbrack
1;5brack là:

    Hướng dẫn:

    Dựa vào bảng biến thiên ta suy ra giá trị lớn nhất của hàm số trên đoạn \lbrack 1;5brack3.

  • Câu 15: Vận dụng
    Tìm m để bất phương trình có nghiệm

    Giá trị của tham số m để bất phương trình (x - 2 - m)\sqrt{x - 1} \leq m - 4 có nghiệm là:

    Hướng dẫn:

    Đặt t = \sqrt{x - 1};(t \geq
0)

    Khi đó bất phương trình ban đầu trở thành:

    \left( t^{2} - m - 1 ight).t \leq m - 4
\Leftrightarrow m \geq \frac{t^{3} - t + 4}{t + 1}

    Xét hàm số f(t) = \frac{t^{3} - t + 4}{t
+ 1} trên \lbrack 0; +
\infty)

    Ta có: f'(t) = \frac{2t^{3} + 3t^{2}
- 5}{(t + 1)^{2}} = \frac{(t - 1)\left( 2t^{2} + 5t + 5 ight)}{(t +
1)^{2}}

    f'(t) = 0 \Leftrightarrow t =
1

    Bảng biến thiên của f(t) = \frac{t^{3} -
t + 4}{t + 1};t \in \lbrack 0; + \infty)

    Từ bảng biến thiên suy ra để bất phương trình có nghiệm thì m \geq 2.

  • Câu 16: Thông hiểu
    Xác định giá trị lớn nhất của hàm số

    Xác định giá trị lớn nhất của hàm số y = \sqrt {x - 1}  + \sqrt {3 - x}  - 2\sqrt { - {x^2} + 4x - 3}

    Hướng dẫn:

    Điều kiện xác định: \left\{ {\begin{array}{*{20}{c}}  {x - 1 \geqslant 0} \\   {3 - x \geqslant 0} \end{array} \Rightarrow x \in \left[ {1;3} ight]} ight.

    Đặt \sqrt {x - 1}  + \sqrt {3 - x}  = t ta có:

    \begin{matrix}  t' = \dfrac{1}{{2\sqrt {x - 1} }} - \dfrac{1}{{\sqrt {3 - x} }} \hfill \\  t' = 0 \Rightarrow x = 2 \hfill \\ \end{matrix}

    Ta có: t\left( 1 ight) = t\left( 3 ight) = \sqrt 2  \to \sqrt 2  \leqslant t \leqslant 2

    Khi đó:

    \begin{matrix}  {t^2} = 2 + 2\sqrt {\left( {x - 1} ight)\left( {3 - x} ight)}  \hfill \\   = 2 + 2\sqrt { - {x^2} + 4x - 3}  \hfill \\   \Leftrightarrow 2\sqrt { - {x^2} + 4x - 3}  = {t^2} - 2 \hfill \\ \end{matrix}

    Do đó: y = f\left( t ight) = t - \left( {{t^2} - 2} ight) =  - {t^2} + t + 2

    Xét hàm số f\left( t ight) = t - \left( {{t^2} - 2} ight);\forall t \in \left[ {\sqrt 2 ;2} ight]

    Ta xác được \mathop {\max f\left( t ight) = \sqrt 2 }\limits_{\left[ {\sqrt 2 ;2} ight]}  \Rightarrow \mathop {\max y = \sqrt 2 }\limits_{\left[ {\sqrt 2 ;2} ight]}

  • Câu 17: Thông hiểu
    Chọn mệnh đề đúng

    Cho hàm số y = f(x) = \frac{x + m}{x +
1} thỏa mãn \max_{\lbrack
1;2brack}y + \min_{\lbrack 1;2brack}y = \frac{9}{2}. Mệnh đề nào sau đây đúng?

    Hướng dẫn:

    Tập xác định D\mathbb{=
R}\backslash\left\{ - 1 ight\}

    Hàm số đơn điệu trên đoạn \lbrack
1;2brack nên \max_{\lbrack
1;2brack}y + \min_{\lbrack 1;2brack}y = f(1) + f(2)

    \Leftrightarrow \frac{1 + m}{2} +
\frac{2 + m}{3} = \frac{9}{2} \Leftrightarrow m = 4

    Vậy đáp án cần tìm là 2 < m \leq
4.

  • Câu 18: Thông hiểu
    Giá trị nhỏ nhất của hàm số

    Giá trị nhỏ nhất của hàm số y = 2{\cos ^3}x - \frac{9}{2}{\cos ^2}x + 3\cos x + \frac{1}{2} là:

    Hướng dẫn:

    Đặt t = \cos x;t \in \left[ { - 1;1} ight]

    Khi đó hàm số trở thành:

    f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2}

    Xét hàm số f\left( t ight) = 2{t^3} - \frac{9}{2}{t^2} + 3t + \frac{1}{2} trên đoạn \left[ { - 1;1} ight] ta có:

    f'\left( t ight) = 8{t^2} - 9t + 3 > 0;\forall t \in \left[ { - 1;1} ight]

    => Hàm số f(t) đồng biến trên \left( { - 1;1} ight)

    => \mathop {\min f\left( t ight)}\limits_{\left[ { - 1;1} ight]}  = f\left( { - 1} ight) = 1

  • Câu 19: Nhận biết
    Tính giá trị biểu thức

    Cho hàm số y = \frac{2x + 3}{x -
2}. Giả sử M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn \lbrack 0;1brack. Khi đó giá trị của biểu thức S = M + m là:

    Hướng dẫn:

    Ta có: y' = \frac{- 7}{(x - 2)^{2}}
< 0;\forall x \in \lbrack 0;1brack

    Vậy \left\{ \begin{matrix}M = y(0) = - \dfrac{3}{2} \\m = y(1) = - 5 \\\end{matrix} ight.\  \Rightarrow S = M + m = -\dfrac{13}{2}

  • Câu 20: Thông hiểu
    Tính giá trị biểu thức 3M + m

    Cho hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight]. Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số. Tính giá trị biểu thức 3M + m.

    Hướng dẫn:

    Xét hàm số y = f\left( x ight) = \frac{{3x - 1}}{{x - 3}} trên đoạn \left[ {0,2} ight] ta có:

    f'\left( x ight) = \frac{8}{{{{\left( {x - 3} ight)}^2}}} < 0

    => f\left( x ight) là hàm số nghịch biến trên \left( {0;2} ight)

    => \Rightarrow \left\{ {\begin{array}{*{20}{c}}  {\mathop {\min f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 2 ight) =  - 5} \\   {\mathop {\max f\left( x ight)}\limits_{\left[ {0;2} ight]}  = f\left( 0 ight) = \dfrac{1}{3}} \end{array}} ight. \Rightarrow 3M + m =  - 2

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (45%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (10%):
    2/3
  • Vận dụng cao (5%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 8 lượt xem
Sắp xếp theo