Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.
Chọn kết luận đúng.
Khoảng biến thiên của mẫu A và mẫu B đều là .
Vậy hai mẫu số liệu có khoảng biến thiên như nhau.
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.
Chọn kết luận đúng.
Khoảng biến thiên của mẫu A và mẫu B đều là .
Vậy hai mẫu số liệu có khoảng biến thiên như nhau.
Biểu đồ dưới đây thể hiện tốc độ tăng trưởng GDP của Việt Nam giai đoạn 2014 – 2021. Tính độ lệch chuẩn của mẫu số liệu.
Số trung bình của mẫu là:
Từ đó tính được phương sai: .
Suy ra độ lệch chuẩn: .
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện nhân 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Nhân hai với tất cả các số liệu: .
Khoảng biến thiên: .
Suy ra .
Chọn khẳng định đúng.
Khẳng định đúng là:
Khoảng biến thiên chỉ sử dụng thông tin của giá trị lớn nhất và bé nhất, bỏ qua thông tin các giá trị còn lại.
Tìm phương sai của dãy số liệu: 43 45 46 41 40.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Độ lệch chuẩn: .
Tìm phương sai của dãy số liệu: 43 45 46 41 40.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Bảng dưới đây thống kê điểm của bạn Dũng và Huy:
Hãy tính phương sai của mẫu số liệu về điểm của hai bạn, từ đó so sánh và chọn kết luận đúng.
Số trung bình của mẫu số liệu (1) và (2) là:
Phương sai của (1) là:
Phương sai của (2) là:
Vì nên bạn Huy học đều hơn bạn Dũng.
Xác định khoảng tứ phân vị của mẫu số liệu 1 6 4 7 8 20 15 10.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 1 4 6 7 8 10 15 20.
Hai giá trị chính giữa là 7 và 8. Suy ra trung vị .
Trung vị của mẫu 1 4 6 7 là
.
Trung vị của mẫu 8 20 15 10 là
.
Vậy khoảng tứ phân vị .
Điểm kiểm tra môn Văn của 2 tổ học sinh được thống kê:
Dựa vào khoảng biến thiên thì tổ nào học đều hơn?
Khoảng biến thiên điểm của tổ 1 là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên tổ 1 học đều hơn.
Hình dưới thống kê tỉ lệ phần trăm thất nghiệp ở một số quốc gia:
Hãy tìm giá trị bất thường (nếu có) của mẫu số liệu.
Sắp xếp các giá trị theo thứ tự không giảm:
3,2 3,6 4,4 4,5 5,0 5,4 6,0 6,7 7,0 7,2 7,7 7,8 8,4 8,6 8,7
Từ mẫu số liệu ta tính được: và
,
.
Suy ra .
Ta có:
.
Ta có:
.
Ta thấy không có số liệu nào nhỏ hơn và lớn hơn
nên mẫu không có giá trị bất thường.
Tìm độ lệch chuẩn của dãy số liệu: 18 14 15 8.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Độ lệch chuẩn: .
Bảng dưới đây thể hiện sản lượng lúa (đơn vị: tạ) của một số thửa ruộng:
Tính phương sai của mẫu số liệu.
Số trung bình của mẫu là:
.
Phương sai:
.
Tìm giá trị bất thường của dãy số liệu: 3 6 8 14 19 28.
Hai giá trị chính giữa là 8 và 14. Suy ra trung vị .
Trung vị của mẫu 3 6 8 là
.
Trung vị của mẫu 14 19 28 là
.
Suy ra .
Xét: .
Xét: .
Ta thấy không có giá trị nào nhỏ hơn và lớn hơn
nên dãy không có giá trị bất thường.
Xét mẫu số liệu gồm 10 số dương phân biệt. Thực hiện cộng 2 với tất cả số liệu trong mẫu. Chọn kết luận đúng về khoảng biến thiên.
Giả sử các số liệu trong mẫu là: đã sắp xếp theo thứ tự không giảm.
Khoảng biến thiên: .
Cộng hai với tất cả các số liệu: .
Khoảng biến thiên:
.
Suy ra .
Tìm phương sai của dãy số liệu: 8 15 14 18.
Số trung bình của mẫu số liệu là:
.
Ta có phương sai:
.
Bảng dưới đây thống kê điểm của An và Bình:
Dựa vào khoảng biến thiên thì bạn nào học đều hơn?
Khoảng biến thiên điểm của bạn An là .
Khoảng biến thiên điểm của bạn Bình là .
Vì nên Bình học đều hơn.
Xác định khoảng biến thiên của mẫu số liệu: 6 5 3 7 8 10 15.
Sắp xếp mẫu số liệu theo thứ tự không giảm: 3 5 6 7 8 10 15.
Suy ra khoảng biến thiên .
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.
Chọn kết luận đúng.
Giá trị trung bình của hai mẫu:
Vậy hai mẫu có giá trị trung bình bằng nhau.
Người ta phân tích thuế mặt hàng A tại 30 tỉnh một quốc gia và tính được: . Giá trị nhỏ nhất bằng 20, giá trị lớn nhất bằng 120. Chọn kết luận đúng.
Khoảng tứ phân vị
.
Khoảng biến thiên .
Ý nghĩa của khoảng tứ phân vị được thể hiện ở hình ảnh bên dưới:
Như vậy có khoảng 75% số tỉnh có thuế mặt hàng A lớn hơn 26.
Cho hai biểu đồ chấm như hình dưới của mẫu A và mẫu B.
Không tính toán, hãy chọn kết luận đúng.
Quan sát hai mẫu số liệu, ta thấy mẫu A có độ phân tán lớn hơn mẫu B. Suy ra mẫu A có phương sai lớn hơn. (Các số liệu ở mẫu B tập trung ở trung tâm)