Cho ba điểm phân biệt Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Cho ba điểm phân biệt Có bao nhiêu vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm
đã cho?
Các vectơ khác vectơ không có điểm đầu và điểm cuối là các điểm đã cho là
.
Cho ngũ giác . Từ các đỉnh của ngũ giác đã cho có thể lập được bao nhiêu vectơ có điểm cuối là điểm
?
Các vectơ có điểm cuối là điểm là
;
;
;
.
Hình bình hành tâm
. Khẳng định sai là:
Ta có: .
Chọn đáp án sai .
Cho ngũ giác . Có bao nhiêu vectơ khác vectơ – không có điểm đầu và điểm cuối là đỉnh của ngũ giác đó?
,
,
,
,
.
Cho hình thang ,
là trung điểm của
. Có bao nhiêu vectơ khác vectơ – không cùng phương với
?
Vì ABCD là hình thang nên ta có các vectơ thỏa mãn yêu cầu là
Cho lục giác đều ABCDEF có tâm O. Số các vectơ bằng vectơ có điểm đầu và điểm cuối là đỉnh của lục giác bằng :
Các vectơ bằng vectơ có điểm đầu và điểm cuối là đỉnh của lục giác là
và
.
Cho lục giác đều tâm
. Ba vectơ bằng vectơ
là:
Ba vectơ bằng vectơ là:
,
,
.
Cho hình bình hành , vectơ có điểm đầu và điểm cuối là các đỉnh của hình bình hành bằng với vectơ
là:
Ta có là hình bình hành nên
do đó
.
Cho hình vuông . Khẳng định nào sau đậy đúng?
Ta có tứ giác là hình vuông nên
hay
nên phương án
đúng.
Khẳng định nào sau đây đúng?
Theo định nghĩa, hai véctơ bằng nhau phải thỏa mãn hai điều kiện:
+) Cùng hướng
+) Cùng độ dài.
Chọn đáp án: Hai vectơ được gọi là bằng nhau nếu chúng cùng hướng và cùng độ dài.
Gọi là giao điểm hai đường chéo
và
của hình bình hành
. Đẳng thức nào sau đây là đẳng thức sai?
Từ hình vẽ ta thấy đẳng thức sai là .
Cho lục giác đều có tâm
Đẳng thức nào sau đây sai?
Đẳng thức sai là
Cho lục giác đều tâm
Số các vectơ bằng
có điểm đầu và điểm cuối là các đỉnh của lục giác là:
Đó là các vectơ: .
Cho tam giác có trực tâm
. Gọi
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây đúng?
Ta có và
(do góc
chắn nửa đường tròn).
Suy ra
Tương tự ta cũng có
Suy ra tứ giác là hình bình hành. Do đó
và
.
Cho và một điểm
Có bao nhiêu điểm
thỏa mãn
Ta có . Suy ra tập hợp các điểm
thỏa mãn yêu cầu bài toán là đường tròn tâm
bán kính
.
Cho lục giác đều tâm
. Các vectơ đối của vectơ
là:
Các vectơ đối của vectơ là:
.
Cho tứ giác . Gọi
lần lượt là trung điểm của
. Trong các khẳng định sau, hãy tìm khẳng định sai?
Ta có là đường trung bình của tam giác
. Suy ra
hay
.
Chọn đáp án sai .
Cho tam giác đều với đường cao
. Đẳng thức nào sau đây đúng?
Chọn vì
là trung điểm
và
cùng hướng.
Cho tam giác với trực tâm
.
là điểm đối xứng với
qua tâm
của đường tròn ngoại tiếp tam giác
. Khẳng định nào sau đây là đúng?
Ta có là đường kính
.
Ta có
Ta lại có
Từ tứ giác
là hình bình hành
.
Cho bốn điểm phân biệt và không cùng nằm trên một đường thẳng. Điều kiện nào trong các đáp án A, B, C, D sau đây là điều kiện cần và đủ để
?
Ta có:
là hình bình hành.
Mặt khác, là hình bình hành
.
Do đó, điều kiện cần và đủ để là
là hình bình hành.