Tìm thuộc tập hợp số tự nhiên, biết rằng
(
là số tổ hợp chập k của n phần tử).
Trước hết ta chứng minh công thức với
và
Thật vậy, (đpcm)
Áp dụng công thức trên ta có
Theo đề .
Tìm thuộc tập hợp số tự nhiên, biết rằng
(
là số tổ hợp chập k của n phần tử).
Trước hết ta chứng minh công thức với
và
Thật vậy, (đpcm)
Áp dụng công thức trên ta có
Theo đề .
Tìm hệ số của số hạng chứa trong khai triển nhị thức
, (biết
).
Số hạng tổng quát trong khai triển nhị thức .
.
chứa
.
Vậy hệ số của số hạng chứa trong khai triển nhị thức
bằng:
.
Cho khai triển trong đó
và các hệ số thỏa mãn hệ thức
. Hệ số lớn nhất là:
Xét khai triển .
Cho ta được
Khi đó .
Ta có hệ số
Hệ số lớn nhất nên
Vì nên nhận
Vậy hệ số lớn nhất .
Khai triển . Hỏi có tất cả bao nhiêu số hạng hữu tỉ trong khai triển trên?
Ta có
Số hạng hữu tỉ trong khai triển tương ứng với .
Vậy số các giá trị là:
.
Cho là số tự nhiên thỏa mãn
. Biết số hạng thứ
trong khai triển Newton của
có giá trị bằng
. Tìm giá trị của
.
Ta có:
.
Ta được nhị thức .
Số hạng thứ ba của khai triển là .
Theo giả thiết ta có:
.
Từ khai triển biểu thức thành đa thức. Tổng các hệ số của đa thức là:
Xét khai triển .
Gọi là tổng các hệ số trong khai triển thì ta có
.
Hệ số lớn nhất trong khai triển là:
Ta có
Vậy hệ số lớn nhất trong khai triển là .
Khai triển nhị thức Niu-tơn của có bao nhiêu số hạng?
Ta có: Khai triển nhị thức Niu-tơn có
số hạng.
Vậy trong khai triển nhị thức Niu-tơn của có
số hạng.
Viết khai triển theo công thức nhị thức Niu-tơn .
Ta có:
Hay .
Tính tổng các hệ số trong khai triển .
Xét khai triển
Tổng các hệ số trong khai triển là:
Cho ta có:
Khai triển nhị thức newton của thành đa thức thì có tất cả bao nhiêu số hạng có hệ số nguyên dương?
Để hệ số nguyên dương thì ,do
nên ta có
vậy t=0,1,2….672 nên có 673 giá trị.
Cho khai triển . Giá trị của
bằng:
.
Thay vào
ta có:
.
Hệ số của trong khai triển
là:
Theo giả thiết: .
Vậy hệ số của là
.
Từ khai triển biểu thức thành đa thức. Tổng các hệ số của đa thức là:
Xét khai triển .
Gọi là tổng các hệ số trong khai triển thì ta có
.
Trong khai triển của , số hạng mà lũy thừa của
và
bằng nhau là số hạng thứ bao nhiêu của khai triển?
Ta có số hạng thứ là :
Theo đề bài ta có;
Vậy số hạng thỏa yêu cầu bài toán là số hạng thứ .
Có bao nhiêu số hạng là số nguyên trong khai triển của biểu thức ?
Ta có .
Để trong khai triển có số hạng là số nguyên thì
.
Ta có mà
. Suy ra có
số hạng là số nguyên trong khai triển của biểu thức.
Trong khai triển Tính giá trị
Ta có
Vậy
Hệ số của số hạng chứa trong khai triển nhị thức
(với
) là:
Số hạng tổng quát của khai triển (với
) là:
.
Số hạng trên chứa suy ra
.
Vậy hệ số của số hạng chứa trong khai triển trên là
.
Có bao nhiêu số hạng trong khai triển nhị thức ?
Trong khai triển nhị thức thì số các số hạng là
nên trong khai triển
có
số hạng.
Số số hạng trong khai triển là:
Số số hạng trong khai triển là: .