Luyện tập Phương trình đường thẳng (Dễ)

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 20 câu
  • Điểm số bài kiểm tra: 20 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Vận dụng
    Viết phương trình tổng quát của đường thẳng

    Viết phương trình tổng quát của đường thẳng \Delta đi qua giao điểm của hai đường thẳng d_{1}:x + 3y - 1 = 0, d_{2}:x - 3y - 5 = 0 và vuông góc với đường thẳng d_{3}:2x - y + 7 =
0.

    Hướng dẫn:

    \left\{ \begin{matrix}
d_{1}:x + 3y - 1 = 0 \\
d_{2}:x - 3y - 5 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 3 \\
y = - \frac{2}{3} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left( 3; -
\frac{2}{3} ight). Ta có

    \left\{ \begin{matrix}
A \in d \\
d\bot d_{3}:2x - y + 7 = 0 \\
\end{matrix} ight. ightarrow
\left\{ \begin{matrix}
A \in d \\
d:x + 2y + c = 0 \\
\end{matrix} ight. ightarrow
3 + 2.\left( - \frac{2}{3} ight) + c = 0 \Leftrightarrow c = -
\frac{5}{3}.

    Vậy d:x + 2y - \frac{5}{3} = 0
\Leftrightarrow d:3x + 6y - 5 = 0.

  • Câu 2: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABCA(1;4), B(3;2)C(7;3). Viết phương trình tham số của đường trung tuyến CM của tam giác

    Hướng dẫn:

    \left\{ \begin{matrix}
\mathbf{A}\left( \mathbf{1;4} ight) \\
\mathbf{B}\left( \mathbf{3;2} ight) \\
\end{matrix} ight.\ \mathbf{ightarrow M}\left( \mathbf{2;3}
ight)\mathbf{ightarrow}\overrightarrow{\mathbf{MC}}\mathbf{=}\left(
\mathbf{5;0} ight)\mathbf{=}\mathbf{5}\left( \mathbf{1;0}
ight)\mathbf{ightarrow CM}\mathbf{:}\left\{ \begin{matrix}
\mathbf{x =}\mathbf{7}\mathbf{+ t} \\
\mathbf{y =}\mathbf{3} \\
\end{matrix} ight.\ \left( \mathbf{t}\mathbb{\in R}
ight)\mathbf{.}

  • Câu 3: Vận dụng
    Tìm m để ba đường thẳng đồng quy

    Tìm m để ba đường thẳng d_{1}:2x + y–1 =
0, d_{2}:x + 2y + 1 = 0d_{3}:mx–y–7 = 0 đồng quy?

    Hướng dẫn:

    \left\{ \begin{matrix}
d_{1}:2x + y–1 = 0 \\
d_{2}:x + 2y + 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = 1 \\
y = - 1 \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A(1; - 1) \in
d_{3} \Leftrightarrow m + 1 - 7 = 0
\Leftrightarrow m = 6.

  • Câu 4: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong mặt phẳng với hệ tọa độ Oxy, cho hình bình hành ABCD có đỉnh A(–2\ ;\ 1) và phương trình đường thẳng chứa cạnh CD\left\{ \begin{matrix}
x = 1 + 4t \\
y = 3t \\
\end{matrix} ight.. Viết phương trình tham số của đường thẳng chứa cạnh AB.

    Hướng dẫn:

    \left\{ \begin{matrix}
A( - 2;1) \in AB,\ \ \ {\overrightarrow{u}}_{CD} = (4;3) \\
AB||CD ightarrow {\overrightarrow{u}}_{AB} = -
{\overrightarrow{u}}_{CD} = ( - 4; - 3) \\
\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}
x = - 2 - 4t \\
y = 1 - 3t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

    Góc phần tư (I) : x - y =
0\overset{ightarrow}{}VTCP:\overrightarrow{u}(1;1) =
{\overrightarrow{u}}_{d}\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = - 3 + t \\
y = 5 + t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 5: Vận dụng
    Tìm m để hai đường thẳng trùng nhau

    Tìm m để hai đường thẳng d_{1}:4x - 3y + 3m =
0d_{2}:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 4 + mt \\
\end{matrix} ight. trùng nhau?

    Hướng dẫn:

    \left\{ \begin{matrix}
d_{1}:4x - 3y + 3m = 0 ightarrow {\overrightarrow{n}}_{1} = (4; - 3)
\\
d_{2}:\left\{ \begin{matrix}
x = 1 + 2t \\
y = 4 + mt \\
\end{matrix} ightarrow A(1;4) \in d_{2},\ \ {\overrightarrow{n}}_{2} =
(m; - 2) ight.\  \\
\end{matrix} ight. \overset{d_{1} \equiv d_{2}}{ightarrow}\left\{
\begin{matrix}
A \in d_{1} \\
\frac{m}{4} = \frac{- 2}{- 3} \\
\end{matrix} ight.\  \Leftrightarrow \left\{ \begin{matrix}
3m - 8 = 0 \\
m = \frac{8}{3} \\
\end{matrix} ight. \Leftrightarrow m = \frac{8}{3}.

  • Câu 6: Nhận biết
    Tìm vectơ pháp tuyến

    Đường trung trực của đoạn thẳng AB với A = (- 3;2), B = ( - 3;3) có một vectơ pháp tuyến là:

    Hướng dẫn:

    Gọi d là trung trực đoạn AB, ta có: \left\{ \begin{matrix}\overrightarrow{AB} = (0;1) \\d\bot AB \\\end{matrix} ight.\ \overset{ightarrow}{}{\overrightarrow{n}}_{d} =\overrightarrow{AB} = (0;1).

  • Câu 7: Nhận biết
    Viết phương trình tham số của đường thẳng

    Phương trình nào dưới đây không phải là phương trình tham số của đường thẳng đi qua hai điểm O(0;0)M(1; - 3)?

    Hướng dẫn:

    Kiểm tra đường thẳng nào không chứa O(0;0)\overset{ightarrow}{} loại.

    Có thể kiểm tra đường thẳng nào không đi qua điểm M(1; - 3).

  • Câu 8: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng d đi qua điểm M( - 3;5) và song song với đường phân giác của góc phần tư thứ nhất.

    Hướng dẫn:

    Góc phần tư (I) : x - y =
0\overset{ightarrow}{}VTCP:\overrightarrow{u}(1;1) =
{\overrightarrow{u}}_{d}\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = - 3 + t \\
y = 5 + t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 9: Vận dụng
    Tính góc tạo bởi hai đường thẳng

    Cho đường thẳng d_{1}:2x + 3y + m^{2} - 1 = 0d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.. Tính cosin góc tạo bởi giữa hai đường thẳng trên.

    Hướng dẫn:

    . \left\{ \begin{matrix}
d_{1}:2x + 3y + m^{2} - 1 = 0 ightarrow {\overrightarrow{n}}_{1} =
(2;3) \\
d_{2}:\left\{ \begin{matrix}
x = 2m - 1 + t \\
y = m^{4} - 1 + 3t \\
\end{matrix} ight.\  ightarrow {\overrightarrow{n}}_{2} = (3; - 1)
\\
\end{matrix} ight. \overset{\varphi = \left( d_{1};d_{2}
ight)}{ightarrow}\cos\varphi = \frac{|6 - 3|}{\sqrt{4 + 9}.\sqrt{9 +
1}} = \frac{3}{\sqrt{130}}.

  • Câu 10: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba điểm A(3;2)¸ P(4;0)Q(0; - 2). Đường thẳng đi qua điểm A và song song với PQ có phương trình tham số là:

    Hướng dẫn:

    Gọi d là đường thẳng qua A và song song với PQ.

    Ta có: \left\{ \begin{matrix}
A(3;2) \in d \\
{\overrightarrow{u}}_{d} = \overrightarrow{PQ} = ( - 4; - 2) = - 2(2;1)
\\
\end{matrix} ight.\  ightarrow d:\left\{ \begin{matrix}
x = 3 + 2t \\
y = 2 + t \\
\end{matrix} ight.

    \overset{t = - 2}{ightarrow}M( - 1;0)
\in d ightarrow d:\left\{ \begin{matrix}
x = - 1 + 2t \\
y = t \\
\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 11: Vận dụng
    Chọn khẳng định đúng

    Trong mặt phẳng với hệ tọa độ Oxy, có tất cả bao nhiêu đường thẳng đi qua điểm M(2\ ;\ 0) đồng thời tạo với trục hoành một góc 45{^\circ}?

    Hướng dẫn:

    Cho đường thẳng d và một điểm M. Khi đó.

    (i) Có duy nhất một đường thẳng đi qua M song song hoặc trùng hoặc vuông góc với d.

    (ii) Có đúng hai đường thẳng đi qua M và tạo với d một góc 0^{\circ} < \alpha <
90^{\circ}.

    Chọn phương án 2.

  • Câu 12: Nhận biết
    Viết phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(–1\ ;\ 3)B(3\ ;\ 1).

    Hướng dẫn:

    \left\{ \begin{matrix}A( - 1;3) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 13: Vận dụng
    Tìm m để ba đường thẳng đồng quy

    Nếu ba đường thẳng \ d_{1}:\ 2x + y–4 = 0, d_{2}:5x–2y + 3 = 0d_{3}:mx + 3y–2 = 0 đồng quy thì m nhận giá trị nào trong các giá trị sau?

    Hướng dẫn:

    \left\{ \begin{matrix}
\ d_{1}:\ 2x + y–4 = 0 \\
d_{2}:5x–2y + 3 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = \frac{5}{9} \\
y = \frac{26}{9} \\
\end{matrix} ight.\  ightarrow d_{1} \cap d_{2} = A\left(
\frac{5}{9};\frac{26}{9} ight) \in d_{3} ightarrow \frac{5m}{9} + \frac{26}{3} - 2 = 0
\Leftrightarrow m = - 12.

  • Câu 14: Nhận biết
    Viết phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(2; - 1)D(2;5).

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}C(2; - 1) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 15: Vận dụng
    Tìm m để ba đường thẳng cùng đi qua một điểm

    Trong mặt phẳng với hệ tọa độ Oxy, cho ba đường thẳng lần lượt có phương trình tổng quát d_{1}:3x - 4y + 15 =
0, d_{2}:5x + 2y - 1 = 0d_{3}:mx - (2m - 1)y + 9m - 13 =
0. Tìm m để ba đường thẳng đã cho cùng đi qua một điểm.

    Hướng dẫn:

    Ta có: \left\{ \begin{matrix}
d_{1}:3x - 4y + 15 = 0 \\
d_{2}:5x + 2y - 1 = 0 \\
\end{matrix} ight. \Leftrightarrow \left\{ \begin{matrix}
x = - 1 \\
y = 3 \\
\end{matrix} ight. ightarrow
d_{1} \cap d_{2} = A( - 1;3) \in d_{3}

    ightarrow - m - 6m + 3 + 9m - 13 = 0
\Leftrightarrow m = 5.

  • Câu 16: Thông hiểu
    Viết phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng d đi qua điểm M(4; - 7) và song song với trục Ox.

    Hướng dẫn:

    {\overrightarrow{u}}_{Ox} =
(1;0)\overset{ightarrow}{}{\overrightarrow{u}}_{d} =
(1;0)\overset{ightarrow}{}d:\left\{ \begin{matrix}
x = 4 + t \\
y = - 7 \\
\end{matrix} ight.\ \overset{t = - 4}{ightarrow}A(0; - 7) \in d
ightarrow d:\left\{ \begin{matrix}
x = t \\
y = - 7 \\
\end{matrix} ight.\ .

  • Câu 17: Nhận biết
    Viết phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng đi qua hai điểm C(–1\ ;\ 3)D(3\ ;\ 1).

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}C( - 1;3) \in CD \\{\overrightarrow{u}}_{CD} = \overrightarrow{CD} = (4; - 2) = - 2( - 2;1)\\\end{matrix} ight.\ \overset{ightarrow}{}CD:\left\{ \begin{matrix}x = - 1 - 2t \\y = 3 + t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

  • Câu 18: Nhận biết
    Viết phương trình tham số của đường thẳng

    Viết phương trình tham số của đường thẳng đi qua hai điểm A(2; - 1)B(2;5).

    Hướng dẫn:

    \left\{ \begin{matrix}A(2; - 1) \in AB \\{\overrightarrow{u}}_{AB} = \overrightarrow{AB} = (0;6) \\\end{matrix} ight.\ \overset{ightarrow}{}AB:\left\{ \begin{matrix}x = 2 \\y = - 1 + 6t \\\end{matrix} ight.\ \ \ \left( t\mathbb{\in R} ight).

  • Câu 19: Vận dụng
    Tìm a để hai đường thẳng vuông góc

    Tìm a để hai đường thẳng d_{1}:2x–4y + 1 = 0d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight. vuông góc với nhau?

    Hướng dẫn:

    Ta có:

    \left\{ \begin{matrix}
d_{1}:2x–4y + 1 = 0 \\
d_{2}:\left\{ \begin{matrix}
x = - 1 + at \\
y = 3 - (a + 1)t \\
\end{matrix} ight.\  \\
\end{matrix} ight. \overset{}{ightarrow}\left\{ \begin{matrix}
{\overrightarrow{n}}_{1} = (1; - 2) \\
{\overrightarrow{n}}_{2} = (a + 1;a) \\
\end{matrix} ight.\ \overset{d_{1}\bot
d_{2}}{ightarrow}{\overrightarrow{n}}_{1} \cdot
{\overrightarrow{n}}_{2} = 0 \Leftrightarrow a + 1 - 2a = 0 \Leftrightarrow a =
1.

  • Câu 20: Nhận biết
    Viết phương trình tham số của đường thẳng

    Đường thẳng d đi qua điểm A( - 4;5) và có vectơ pháp tuyến \overrightarrow{n} = (3;2) có phương trình tham số là:

    Hướng dẫn:

    \left\{ \begin{matrix}A( - 4;5) \in d \\{\overrightarrow{n}}_{d} = (3;2) ightarrow {\overrightarrow{u}}_{d} =( - 2;3) \\\end{matrix} ight.\ \overset{ightarrow}{}d:\left\{ \begin{matrix}x = - 4 - 2t \\y = 5 + 3t \\\end{matrix} ight.\ \left( t\mathbb{\in R} ight).

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (35%):
    2/3
  • Thông hiểu (25%):
    2/3
  • Vận dụng (40%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 13 lượt xem
Sắp xếp theo