Tam giác có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Tam giác có
. Số đo góc
bằng:
Theo định lí hàm cosin, ta có
.
Do đó, .
Tam giác có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Tam giác có đoạn thẳng nối trung điểm của
và
bằng
, cạnh
và
. Tính độ dài cạnh cạnh
.
Gọi lần lượt là trung điểm của
.
là đường trung bình của
.
. Mà
, suy ra
.
Theo định lí hàm cosin, ta có:
Tam giác có
và
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có
.
Tam giác có
và
. Tính độ dài cạnh
.
Theo định lí hàm sin, ta có
.
Cho có
. Độ dài cạnh
là:
Ta có:
.
Cho có
Độ dài bán kính đường tròn ngoại tiếp
của tam giác trên là:
Ta có:
.
Cho có
Diện tích
của tam giác trên là:
Ta có: Nửa chu vi :
.
Áp dụng công thức Hê-rông:
.
Cho thỏa mãn :
. Khi đó:
Ta có:
Cho vuông tại
và có
. Số đo của góc
là:
Ta có: Trong
.
Cho hình thoi cạnh bằng
và có
. Tính độ dài cạnh
.
Do là hình thoi, có
.
Theo định lí hàm cosin, ta có
Tam giác có
. Điểm
thuộc đoạn
sao cho
. Tính độ dài cạnh
.
Theo định lí hàm cosin, ta có :
.
Do .
Theo định lí hàm cosin, ta có:
.
Tam giác có
. Gọi
là chân đường phân giác trong góc
. Khi đó góc
bằng bao nhiêu độ?
Theo định lí hàm cosin, ta có:
Trong có
.
Tam giác vuông tại
, đường cao
. Hai cạnh
và
tỉ lệ với
và
. Cạnh nhỏ nhất của tam giác này có độ dài bằng bao nhiêu?
Do tam giác vuông tại
, có tỉ lệ 2 cạnh góc vuông
là
nên
là cạnh nhỏ nhất trong tam giác.
Ta có .
Trong có
là đường cao
.
Cho góc . Gọi
và
là hai điểm di động lần lượt trên
và
sao cho
. Độ dài lớn nhất của đoạn
bằng:
Theo định lí hàm sin, ta có:
Do đó, độ dài lớn nhất khi và chỉ khi
.
Khi đó .
Cho góc . Gọi
và
là hai điểm di động lần lượt trên
và
sao cho
. Khi
có độ dài lớn nhất thì độ dài của đoạn
bằng:
Theo định lí hàm sin, ta có
Do đó, độ dài lớn nhất khi và chỉ khi
.
Khi đó .
Tam giác vuông tại
.
Hai chiếc tàu thủy cùng xuất phát từ một vị trí , đi thẳng theo hai hướng tạo với nhau góc
. Tàu
chạy với tốc độ
hải lí một giờ. Tàu
chạy với tốc độ
hải lí một giờ. Sau hai giờ, hai tàu cách nhau bao nhiêu hải lí? Kết quả gần nhất với số nào sau đây?
Sau giờ tàu
đi được
hải lí, tàu
đi được
hải lí. Vậy tam giác
có
và
Áp dụng định lí côsin vào tam giác ta có
Vậy (hải lí).
Sau giờ, hai tàu cách nhau khoảng
hải lí.
Để đo khoảng cách từ một điểm trên bờ sông đến gốc cây
trên cù lao giữa sông, người ta chọn một điểm
cùng ở trên bờ với
sao cho từ
và
có thể nhìn thấy điểm
. Ta đo được khoảng cách
,
và
.Vậy sau khi đo đạc và tính toán được khoảng cách
gần nhất với giá trị nào sau đây?
Áp dụng định lí sin vào tam giác ta có
Vì nên
Từ vị trí người ta quan sát một cây cao (hình vẽ).
Biết .
Chiều cao của cây gần nhất với giá trị nào sau đây?
Trong tam giác , ta có
.
Suy ra .
Suy ra
.
Áp dụng định lý sin trong tam giác , ta được
Giả sử là chiều cao của tháp trong đó
là chân tháp. Chọn hai điểm
trên mặt đất sao cho ba điểm
và
thẳng hàng. Ta đo được
,
.
Chiều cao của tháp gần với giá trị nào sau đây?
Áp dụng định lí sin vào tam giác ta có
Ta có nên
Do đó
Trong tam giác vuông có