Cho đường thẳng và . Tìm m để hai đường thẳng song song với nhau?
Ta có:
Điều kiện để hai đường thẳng song song là
Cho đường thẳng và . Tìm m để hai đường thẳng song song với nhau?
Ta có:
Điều kiện để hai đường thẳng song song là
Điều kiện của để phương trình là phương trình bậc nhất hai ẩn là:
Điều kiện để phương trình là phương trình bậc nhất hai ẩn là .
Cho hệ phương trình . Tìm các giá trị của tham số m để hệ phương trình nhận cặp số làm nghiệm?
Thay vào hệ phương trình ta được
Vậy thỏa mãn yêu cầu đề bài.
Cho phương trình . Khẳng định nào sau đây đúng?
Mỗi phương trình bậc nhất hai ẩn đều có vô số nghiệm, do đó có vô số nghiệm.
Hệ phương trình nào sau đây tương đương với hệ ?
Hai hệ và củng có nghiệm duy nhất là
Hệ phương trình nào dưới đây là hệ phương trình bậc nhất hai ẩn?
Dễ thấy hệ phương trình là hệ phương trình bậc nhất hai ẩn.
Phương trình tương đương với phương trình nào sau đây?
Ta có:
Vậy phương trình tương đương với phương trình đã cho là:
Đường thẳng song song với trục và cắt trục tung tại điểm có tung độ bằng:
Ta có:
Đường thẳng song song với Ox và cắt trục tung tại điểm có tung độ y = 6.
Với giá trị nào của thì hệ phương trình tương đương với hệ phương trình ?
Vì
Thay giá trị x; y vào hệ phương trình ta được:
Kết luận:
Cho hai số thực không đồng thời bằng 0. Cặp số thỏa mãn điều kiện nào sau đây để hệ nhận làm nghiệm?
Vì hệ phương trình nhận là nghiệm nên ta thay vào hệ phương trình ta được: .
Công thức nghiệm tổng quát của phương trình là:
Phương trình
Vậy công thức nghiệm tổng quát là: .
Phương trình đường thẳng đi qua điểm cố định có tọa độ là:
Giả sử là điểm cố định mà đường thẳng đi qua
Vậy điểm là điểm cố định mà đường thẳng đi qua.
Tìm giá trị của m để phương trình có một nghiệm là ?
Thay vào phương trình ta được:
Vậy m = 10 thì phương trình đã cho có một nghiệm .
Đường thẳng . Tìm m để đường thẳng cắt cả hai trục tọa độ.
Đường thẳng cắt cả hai trục tọa độ khi và chỉ khi
Vậy thỏa mãn yêu cầu bài toán.
Nghiệm nguyên âm lớn nhất của phương trình là:
Ta có:
Đặt
Nên nghiệm nguyên của phương trình là
Vì x, y là nguyên âm nên
Vì nghiệm nguyên âm lớn nhất mà t nguyên nên t = 2
Vậy