Luyện tập Cấp số nhân

Nhận biết Thông hiểu Vận dụng Vận dụng cao
  • Bài kiểm tra này bao gồm 15 câu
  • Điểm số bài kiểm tra: 15 điểm
  • Xem lại kỹ lý thuyết trước khi làm bài
  • Chuẩn bị giấy và bút để nháp trước khi bắt đầu
Bắt đầu làm bài
00:00:00
  • Câu 1: Nhận biết
    Cấp số nhân

    Trong các dãy số sau, dãy số nào là cấp số nhân?

    Gợi ý:

    {u_n} là cấp số nhân => {u_n} = {u_1}.{q^{n - 1}};\left( {n \geqslant 2} ight)

    Hướng dẫn:

     Dãy số 1, 2, 4, 8, 16 tuân theo quy luật \frac{{{u_{n + 1}}}}{{{u_n}}} = 2

    => Dãy số đó là cấp số nhân

  • Câu 2: Nhận biết
    Dãy số nào là cấp số nhân

    Trong các dãy số sau, dãy số nào là cấp số nhân?

    Hướng dẫn:

     Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{2^{n + 1}}}}{{{2^n}}} = 2

    => u_n=2^n là cấp số nhân

  • Câu 3: Thông hiểu
    Xác định cấp số nhân

    Trong các dãy số sau, dãy số nào là cấp số nhân?

    Hướng dẫn:

    Xét dãy số \left\{\begin{matrix}u_0=1 \\ u_n=2u_{n-1}\end{matrix}ight.\forall n\geq1

     Ta có: \frac{{{u_n}}}{{{u_{n - 1}}}} = 2 => Dãy số là cấp số nhân

  • Câu 4: Thông hiểu
    Tìm số hạng đầu tiên của cấp số nhân

    Số hạng đầu tiên của cấp số nhân (u_{n}) thỏa mãn hệ \left\{\begin{matrix}u_{4}-u_{2}=72\\ u_{5}-u_{3}=144\end{matrix}ight. là:

    Gợi ý:

     Áp dụng công thức: {u_n} = {u_1}{q^{n - 1}};\left( {n \geqslant 1} ight)

    Hướng dẫn:

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_4} - {u_2} = 72} \\   {{u_5} - {u_3} = 144} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}.{q^3} - {u_1}.q = 72} \\   {{u_1}.{q^4} - {u_1}.{q^2} = 144} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1}q.\left( {{q^2} - 1} ight) = 72} \\   {{u_1}.{q^2}\left( {{q^2} - 1} ight) = 144} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {q = 2} \\   {{u_1} = 12} \end{array}} ight.

  • Câu 5: Vận dụng
    Xác định công bội

    Công bội nguyên dương của cấp số nhân (u_{n}) thỏa mãn \left\{\begin{matrix}u_{1}+u_{2}+u_{3}=14\\ u_{1}u_{2}u_{3}=64\end{matrix}ight. là:

    Gợi ý:

     Áp dụng công thức: {u_n} = {u_1}{q^{n - 1}};\left( {n \geqslant 1} ight)

    Hướng dẫn:

    Ta có:

    \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_2} + {u_3} = 14} \\   {{u_1}{u_2}{u_3} = 64} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.q + {u_1}.{q^2} = 14} \\   {{u_2}.{{\left( {{u_2}} ight)}^2} = 64} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.q + {u_1}.{q^2} = 14} \\   {{{\left( {{u_2}} ight)}^3} = 64} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.q + {u_1}.{q^2} = 14} \\   {{u_2} = 4} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.{q^2} = 10} \\   {{u_1}.q = 4} \end{array}} ight. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {{u_1} + {u_1}.{q^2} = 10} \\   {{u_1}.q = 4} \end{array}} ight.

    \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}  {\left[ {\begin{array}{*{20}{c}}  {q = 2} \\   {q = \dfrac{1}{2}} \end{array}} ight.} \\   {{u_1}.q = 4} \end{array}} ight.

  • Câu 6: Nhận biết
    Tìm số hạng tiếp theo

    Một cấp số nhân có hai số hạng liên tiếp là 16 và 36. Số hạng tiếp theo là:

    Hướng dẫn:

    Do dãy số là cấp số nhân

    => q = \frac{{36}}{{16}} = \frac{9}{4}

    => Số hạng tiếp theo là: 36.\frac{9}{4} = 81

  • Câu 7: Thông hiểu
    Tìm b

    Tìm b > 0 để các số \frac{1}{\sqrt{2} };\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    Gợi ý:

    (Un) là một cấp số nhân thì từ số hạng thứ hai, bình phương của mỗi số hạng (trừ số hạng cuối đối với cấp số nhân hữu hạn) sẽ bằng tích của số đứng trước và số đứng sau nó:

    {\left( {{u_k}} ight)^2} = {u_{k - 1}}.{u_{k + 1}}

    Hướng dẫn:

    Ta có:

    Các số \frac{1}{\sqrt{2} };\sqrt{b};\sqrt{2} theo thứ tự đó lập thành một cấp số nhân.

    \Rightarrow {\left( {\sqrt b } ight)^2} = \left( {\frac{1}{{\sqrt 2 }}} ight).\left( {\sqrt 2 } ight)

    \Rightarrow b = 1 (Vì b > 0)

  • Câu 8: Vận dụng
    Tìm x để dãy số lập thành một cấp số nhân

    Tìm tất cả các giá trị của x để ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân.

    Gợi ý:

    (Un) là một cấp số nhân thì từ số hạng thứ hai, bình phương của mỗi số hạng (trừ số hạng cuối đối với cấp số nhân hữu hạn) sẽ bằng tích của số đứng trước và số đứng sau nó:

    {\left( {{u_k}} ight)^2} = {u_{k - 1}}.{u_{k + 1}}

    Hướng dẫn:

    Ta có:

    Ba số 2x - 1; x; 2x + 1 theo thứ tự đó lập thành một cấp số nhân:

    \Rightarrow {x^2} = \left( {2x - 1} ight)\left( {2x + 1} ight)

    \Rightarrow {x^2} = 4{x^2} - 1

    \Rightarrow 3{x^2} = 1

    \Rightarrow {x^2} = \frac{1}{3} \Rightarrow x =  \pm \frac{1}{{\sqrt 3 }}

  • Câu 9: Vận dụng
    Tìm x để dãy số lập thành một cấp số nhân

    Tìm x để ba số 1 + x, 9 + x; 33 + x theo thứ tự đó lập thành một cấp số nhân.

    Gợi ý:

     (Un) là một cấp số nhân thì từ số hạng thứ hai, bình phương của mỗi số hạng (trừ số hạng cuối đối với cấp số nhân hữu hạn) sẽ bằng tích của số đứng trước và số đứng sau nó:

    {\left( {{u_k}} ight)^2} = {u_{k - 1}}.{u_{k + 1}}

    Hướng dẫn:

    Ta có:

    Ba số 1 + x, 9 + x; 33 + x theo thứ tự đó lập thành một cấp số nhân:

    \Rightarrow {\left( {9 + x} ight)^2} = \left( {1 + x} ight)\left( {33 + x} ight)

    \Rightarrow 81 + 18x + {x^2} = 33 + x + 33x + {x^2}

    \Rightarrow 16x = 48 \Rightarrow x = 3

  • Câu 10: Thông hiểu
    Tìm y để ba số lập thành một cấp số nhân

    Ba số hạng đầu của một cấp số nhân là x - 6; x và y. Tìm y, biết rằng công bội của cấp số nhân là 6

    Hướng dẫn:

    Ta có x = 6(x – 6) => x = 36/5

    Từ đó suy ra y = 6x = 216/5

  • Câu 11: Thông hiểu
    Tìm số hạng thứ ba của cấp số nhân

    Hai số hạng đầu của một cấp số nhân là 2x + 1 và 4x2 - 1. Số hạng thứ ba của cấp số nhân là: 

    Hướng dẫn:

    Ta có: \frac{{4{x^2} - 1}}{{2x + 1}} = 2x - 1

    Vậy công sai của cấp số nhân là 2x - 1

    Vậy số hạng tiếp theo sẽ là: \left( {4{x^2} - 1} ight)\left( {2x - 1} ight) = 8{x^3} - 4{x^2} - 2x + 1

  • Câu 12: Nhận biết
    Chọn khẳng định đúng

    Cho dãy số (u_{n}) với u_{n}=\frac{3}{2}.5^{n}. Khẳng định nào sau đây là đúng?

    Hướng dẫn:

    Ta có: \frac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{3}{2}{{.5}^{n + 1}}}}{{\dfrac{3}{2}{{.5}^n}}} = 5 > 1

    => (u_{n}) là một cấp số nhân với công bội là q = 5

    Số hạng đầu tiên của dãy là: {u_1} = \frac{3}{2}{.5^1} = \frac{{15}}{2}

  • Câu 13: Nhận biết
    Xác định cấp số nhân

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Hướng dẫn:

    Xét dãy số u_n=\frac{1}{3^{n-2}} ta có:

    \dfrac{{{u_{n + 1}}}}{{{u_n}}} = \dfrac{{\dfrac{1}{{{3^{n + 1 - 2}}}}}}{{\dfrac{1}{{{3^{n - 2}}}}}} = \dfrac{{{3^{n - 2}}}}{{{3^{n - 1}}}} = {3^{ - 1}} = \frac{1}{3}

    Vậy dãy số u_n=\frac{1}{3^{n-2}} là cấp số nhân với q = 1/3

  • Câu 14: Nhận biết
    Dãy số nào là cấp số nhân

    Trong các dãy số (u_{n}) cho bởi số hạng tổng quát u_{n} sau, dãy số nào là một cấp số nhân?

    Hướng dẫn:

    Xét dãy số u_n=7.3^n ta có: 

    \frac{{{u_{n + 1}}}}{{{u_n}}} = \frac{{{{7.3}^{n + 1}}}}{{{{7.3}^n}}} = 3

    => Dãy số u_n=7.3^n là một cấp số nhân 

  • Câu 15: Thông hiểu
    Tìm công bội q của cấp số nhân

    Một cấp số nhân có 6 số hạng, số hạng đầu bằng 2 và số hạng thứ sáu bằng 486. Tìm công bội q của cấp số nhân đã cho.

    Hướng dẫn:

    Ta có:

    Cấp số nhân có số hạng đầu bằng 2 và số hạng thứ sáu bằng 486

    => \left\{ {\begin{array}{*{20}{c}}  {{u_1} = 2} \\   {{u_6} = 486} \end{array}} ight.

    => {{u_1}.{q^5} = 486}

    => {{q^5} = 243} => {q = 3}

    Vậy công bội q của cấp số nhân đã cho là q = 3

Chúc mừng Bạn đã hoàn thành bài!

Kết quả làm bài:
  • Nhận biết (40%):
    2/3
  • Thông hiểu (40%):
    2/3
  • Vận dụng (20%):
    2/3
  • Thời gian làm bài: 00:00:00
  • Số câu làm đúng: 0
  • Số câu làm sai: 0
  • Điểm số: 0
Làm lại
  • 11 lượt xem
Sắp xếp theo