Công thức đúng của tổ hợp là:
Công thức đúng của tổ hợp là:
Công thức đúng của tổ hợp là:
Công thức đúng của tổ hợp là:
Cho . Tính giá trị biểu thức:
Ta có:
Thay n = 20 vào T ta được:
Nghiệm của phương trình:
Giải phương trình:
Tìm các số nguyên dương n sao cho:
Điều kiện
Ta có:
Tìm n biết:
Ta có:
(*)
Đạo hàm hai vế của biểu thức (*) ta được:
Chọn x = 1 ta có:
Vậy n = 4
Nghiệm của phương trình:
Các kiến thức cần nhớ:
Giải phương trình ta có:
Vậy n = 3
Cho dãy số 0, 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số có chẵn, mỗi số có 5 chữ số trong đó có đúng hai số lẻ, 2 số lẻ đó đứng cạnh nhau.
Gọi số tự nhiên có hai chữ số lẻ khác nhau từ các số 0, 1, 2, 3, 4, 5, 6 là m
Số cách chọn được m là:
Số chẵn có 5 chữ số mà hai số lẻ đứng kề nhau phải chứa M và ba trong bốn chữ số 0; 2; 4; 6
Gọi là số thỏa mãn yêu cầu bài toán
Trường hợp 1: Nếu a = m ta có:
Số cách chọn a là 1 cách
Số cách chọn b, c, d là cách
Trướng hợp 2: Nếu a khác m thì ta có:
Số cách chọn a là 3 cách
Nếu b = m thì có 1 cách chọn b và cách chọn c, d
Nếu c = m thì có 1 cách chọn c và cach chọn b, d
=> Số các số được tạo thành là:
Từ các chữ số 1, 2, 3, 4, 5, 6 có thể lập được bao nhiêu số tự nhiên gồm 3 chữ số đôi một khác nhau
Gọi số tự nhiên có ba chữ số khác nhau có dạng:
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
=> Số các số tự nhiên có ba chữ số khác nhau được tạo thành là: 6 . 5 . 4 = 120 số
Có bao nhiêu số tự nhiên có 7 chữ số biết rằng chữ số 2 có mặt 2 lần, chữ số 3 có mặt 3 lần, chữ số còn lại có mặt nhiều nhất 1 lần.
Số tự nhiên có 7 chữ số có dạng:
Xét trường hợp có chữ số 0 đứng đầu
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn 2 chữ số còn lại trong tập hợp các số đã cho để xếp vào hai vị trí cuối là
=> Số các số được tạo thành là:
Xét trường hợp không có chữ số 0 đứng đầu
Ta có:
Vì a = 0 => a có 1 cách chọn
Số cách chọn vị trí cho chữ số 2 là:
Số cách chọn vị trí cho chữ số 3 là:
Số cách chọn chữ số cuối trong tập hợp dãy số đã cho là 7 cách
=> Số các số được tạo thành là:
Vậy số các số được lập thành thỏa mãn yêu cầu đề bài là: 11760 - 420 = 11340 số
Đội học sinh giỏi toán 10 có tất cả 18 học sinh, trong đó có 7 học sinh giỏi môn Toán, 6 học sinh giỏi môn Văn và 5 học sinh giỏi môn Hóa. Hỏi có bao nhiêu cách chọn 8 học sinh đi dự thi chính thức, biết rằng mỗi môn có ít nhất 1 học sinh.
Số cách chọn 8 học sinh gồm hai khối là phần bù của cách chọn 8 học sinh đi dự đại hội sao cho mỗi khối có ít nhất 1 học sinh được chọn.
Số cách chọn 8 học sinh từ hai khối là:
Số cách chọn 8 học sinh bất kì là:
Số cách chọn thỏa yêu cầu bài toán:
Từ các chữ số 1, 2, 3, 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có 6 chữ số đôi một khác nhau và chia hết cho 5.
Nếu một số có chữ số tận cùng là 0 hoặc 5 thì số đó chia hết cho 5
Gọi số tự nhiên có 6 chữ số có dạng:
Do số tự nhiên tạo thành có các chữ số đôi một khác nhau =>
Khi đó:
Số cách chọn f là 1 cách
Số cách chọn a là 6 cách
Số cách chọn b là 5 cách
Số cách chọn c là 4 cách
Số cách chọn d là 3 cách
Số cách chọn e là 2 cách
=> Số các số tạo thành thỏa mãn điều kiện đề bài là:
6.5.4.3.2.1 = 720 số
Một lớp có 20 học sinh nữ, 26 học sinh nam. Giáo viên cần chọn ban cán sự lớp gồm 3 học sinh. Hỏi có bao nhiêu cách chọn biết trong ban cán sự có ít nhất một nữ.
Số học sinh của lớp là: 20 + 26 = 46 (học sinh)
Số cách chọn 3 học sinh làm cán bộ lớp là:
Số cách chọn 3 học sinh làm cán bộ lớp trong đó không có bạn nữ là:
Số cách chọn 3 học sinh trong đó có ít nhất một bạn nữ là:
cách chọn
Trong lớp có 20 học sinh nữ, 15 học sinh nam. Hỏi giáo viên có bao nhiêu cách chọn 3 học sinh làm ban cán sự lớp?
Số học sinh của lớp là 20 + 15 = 35 (học sinh)
Số cách chọn 3 học sinh làm ban cán sự lớp là: (cách chọn)
Cho hai đường thẳng d và d’ song song với nhau. Trên d có 10 điểm phân biệt, trên d’ có n điểm phân biệt (n ≥ 2). Tìm n biết có 2800 tam giác có đỉnh là các điểm nói trên.
Trướng hợp 1: Tam giác có một đỉnh thuộc d và hai đỉnh còn lại thuộc d'
=> Số tam giác tạo thành là: (tam giác)
Trướng hợp 2: Tam giác có hai đỉnh thuộc d và một đỉnh thuộc d'
=> Số tam giác tạo thành là: (tam giác)
Theo bài ra ta có: 2800 tam giác có đỉnh là các điểm đã cho nên ta có phương trình:
Vậy n = 20
Có bao nhiêu cách xếp n người vào một bàn tròn n chỗ?
Chọn một người vào một ví trí cố định làm trung tâm
Còn lại n - 1 người xếp vào n - 1 chỗ ngồi còn lại
=> Có (n - 1)! cách sắp xếp
Vậy có tất cả (n - 1)! cách sắp xếp n người vào một bàn tròn n chỗ